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ABSTRACT

Advances in data analysis techniques may play a decisive role in the discovery reach of
particle collider experiments. However, the importing of expertise and methods from
other data-centric disciplines such as machine learning and statistics faces significant
hurdles, mainly due to the established use of different language and constructs. A
large part of this document, also conceived as an introduction to the description of
an analysis searching for non-resonant Higgs pair production in data collected by the
CMS detector at the Large Hadron Collider (LHC), is therefore devoted to a broad
redefinition of the relevant concepts for problems in experimental particle physics.
The aim is to better connect these issues with those in other fields of research, so

the solutions found can be repurposed.

The formal exploration of the properties of the statistical models at particle col-
liders is useful to highlight the main challenges posed by statistical inference in this
context: the multi-dimensional nature of the models, which can be studied only in a
generative manner via forward simulation of observations, and the effect of nuisance
parameters. The first issue can be tackled with likelihood-free inference methods
coupled with the use of low-dimensional summary statistics, which may be con-
structed either with machine learning techniques or through physically motivated
variables (e.g. event reconstruction). The second, i.e. the misspecification of the gen-
erative model which is addressed by the inclusion of nuisance parameters, reduces the

effectiveness of summary statistics constructed with machine-learning techniques.

A subset of the data analysis techniques formally discussed in the introductory part
of the document are also exploited to study the non-resonant production process
pp — HH — bbbb at the LHC in the context of the Standard Model (SM) and
its extensions in effective fields theories (EFT), based on anomalous couplings of the
Higgs field. Data collected in 2016 by the CMS detector and corresponding to a total
of 35.9 fb~! of proton-proton collisions are used to set an 95% confidence upper limit
at 847 fb on the production cross section o(pp — HH — bBbB) in the SM. Upper

limits are also obtained for the cross sections corresponding to a representative set
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of points of the parameter space of EFT. The combination of those results with the
ones obtained from the study of other decay channels of HH pairs is also discussed.

In addition, the exercise of reformulating the goals of high energy physics ana-
lysis as a statistical inference problem is combined with modern machine learning
technologies to develop a new technique, referred to as inference-aware neural op-
timisation. The technique produces summary statistics which directly minimise the
expected uncertainty on the parameters of interest, optimally accounting for the ef-
fect of nuisance parameters. The application of this technique to a synthetic problem
demonstrates that the obtained summary statistics are considerable more effective
than those obtained with standard supervised learning methods, when the effect
of the nuisance parameters is significant. Assuming its scalability to LHC data
scenarios, this technique has ground-breaking potential for analyses dominated by

systematic uncertainties.
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PREFACE

This document is a summary of the main projects that I have carried out within
my PhD in Physics at the University of Padua (UNIPD), between December 2015
and the December 2018. The main research focus, connecting the projects presented
here, has been the development and application of new statistical learning techniques
in particle collider experiments. Given the interdisciplinary nature of the topics
discussed in this thesis, an effort has been made to discuss the research issues and
solutions in a domain generic manner, so the links with the fields of statistics and
machine learning are more evident. The price of such attempt has likely been a less
cohesive narrative, yet I believe that is has been worth the cost for a different take

on the data analysis problems at particle colliders.

Most of the work included in this report has been carried out while employed by the
INFN - Sezione di Padova as an Early Stage Researcher of the AMVA4NewPhysics
MSCA-ITN. AMVA4NewPhysics is a European research network (EU Horizon 2020
Grant Agreement 675440) that provided the funding and context for the ventures
described in this document. Part of the results presented here were joint work with
other collaborators at CMS experiment at LHC, which is based at the European
Organisation for Nuclear Research (CERN).
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INTRODUCTION

Every new beginning

comes from some other beginning’s end.

Seneca the Younger

Humans strive for understanding the world by seeking explanations to the varied
natural phenomena happening around them, and accumulating the resulting know-
ledge in models that can be used to predict and shape the future reality. The scientific
method provides a formal framework for carrying out these investigations and check-
ing the validity of the current description of our environment. Recorded experiences
of assumed known origin, also known as data, have a central role in updating these
explicative theories, because they can provide quantitative or qualitative support to
some candidate explanations over others.

Direct sensory perception and personal information processing have a limited in-
vestigative reach and are easily affected by subjective conditions. Well understood
and calibrated measurement instruments can be used instead for data acquisition,
in controlled settings referred to as scientific experiments, so that quantifiability and
precision are enhanced. The same applies to theoretical modelling and experimental
data analysis, where robust mathematical and computational procedures empower
researchers to construct more accurate descriptions of the world we live in. These
establish a strong coupling between technology and science, by which technical and
conceptual innovations allow the development of better tools, which in turn lead to
more scientific knowledge.

The universe is filled with an abundance of interesting phenomena occurring at
very different time and space scales, so curious observers might face a difficult choice
when deciding what to focus their scientific attention on. Nevertheless, there seems to
be a complexity hierarchy whereby larger physical systems are composed by simpler
parts, and the properties of the former can be explained by means of those of the
latter. Hence, a worthy path of exploration can start with the study of the most

fundamental components of nature and their dynamics. At our current level of
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understanding, we can reason this would be a quest motivated solely by curiosity,
pushed by our desire of making sense of the structure of reality, and not a pragmatic
proxy for the development of technological applications. That will be our motivation
to delve into experimental particle physics, a discipline dealing with the practical

study of the most elementary constituents of matter and their interactions.

The elementary quality of the chosen subject of study does not imply that the jour-
ney towards valuable scientific knowledge in this area will be a simple one. On the
contrary, as the following chapters will make evident, this undertaking poses grand
technical and non-technical challenges which in many cases require novel solutions.
Furthermore, the problems at hand are often closely related with those present in
other research or technological fields, so their findings and innovations can be repur-
posed. Oftentimes this can even be a bidirectional relation, where the obstacles are
challenging or original enough that solutions have to go beyond the state of the art in
the relevant applied domain. In general, the pursuance of fundamental explanations

does require solutions to a multitude of practical problems.

Advances and expertise from other disciplines can accelerate significantly the rate
of progress in a fundamental research domain such as experimental particle physics.
This is specially relevant in areas such as data analysis, where the infrastructure
changes required in evolving environments are low. Yet, some barriers exist against
the proliferation of interdisciplinarity, such as field specific language (also known as
jargon) and seemingly unclear problem descriptions for collaborators with different
backgrounds. This document, in addition to presenting the main research results
of the projects I have been involved in the recent past, will attempt to reduce this
communication gap by trying to clearly state the main data analysis challenges we
face in experimental particle physics in a way they can be linked to other data-centric

disciplines such as statistics and machine learning.

The general methodology considered in this work consists on breaking the main
research goals in a series of applied problems, express them in a domain-generic
way, and understand what is their role in view of the final aim. When possible, the
presented concepts and methods will be illustrated with simple use cases when these
can help understanding their working principles. The mentioned perspective shift
combined with the use of practical but minimal examples has been really useful to
identify possible shortcomings on the way data analysis is carried out at the LHC,
as well as to develop new techniques capable of addressing them. Nevertheless, we
believe that the projects mentioned and presented here are nothing but the first step

of what is possible; and the evolution of data analysis techniques and tools could be
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a promising route for the advancement of our understanding of the basic building

blocks of the universe.

This thesis is organised as follows. Chapter 1 provides an overview of our current
comprehension of the properties and interactions of the fundamental constituents of
nature, followed by a summary of the limitations of our understanding together with
the main proposed testable alternative explanations. The links between the mathem-
atical description of our universe and the computation of experimental observables

will be highlighted when describing the theoretical foundations.

The focus shifts in Chapter 2 towards how these theories can be experimentally val-
idated through scientific experiments. In particular, the discussion revolves around
how the design and characteristics of general purpose experiments at high-energy
colliders are relevant for the attainment of valuable data that yields new insights on
the fundamental properties of the cosmos. The Compact Muon Experiment (CMS)
detector at the Large Hadron Collider (LHC) serves as the default example of such
an instrument, because it is the scientific experiment that provided the academic
context during my graduate (and late undergraduate) years and the main driver of
some of the projects included in this report. Experimental modelling and simula-
tion will be emphasised in this chapter, due to their importance when extracting

knowledge from the acquired data.

Indeed, the problem of obtaining useful information from data is so involved in
modern scientific experiments that a standalone chapter will be centered on stat-
istical inference concepts and techniques. Inference is the ultimate goal of particle
physics experiments, providing a key connection between theory and experiment. In
Chapter 3 we review the problem at hand in particle colliders form a formal statist-
ical perspective as well list the main approaches for making quantitative statements
based on data and their shortcomings. Two domain-specific aspects of data analysis
in high energy physics will be remarked: the generative-only characteristic of accur-
ate experimental models and the challenges of dealing with known unknowns we are

not interested in, commonly referred as nuisance parameters.

Advancements in computational power coupled with extensive research effort at
the intersection between computer science and statistics during the past few decades
have contributed to the development of techniques that deal with the automatic
improvement of certain objective tasks given some data. An introduction to this
family of methods, generally referred to as machine learning techniques, and a review
of their usefulness for tackling some common data analysis problem in experimental

particle physics, are included in Chapter 4. Some non-trivial connections between
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the use of those techniques and the details of the underlying statistical issues will be
stressed.

The first four chapters, as outlined above, offer a multi-disciplinary survey of the
theoretical and experimental foundations of our understanding of nature and the
relevant techniques that allow the extract valuable information from the data. In
contrast, Chapter 5 presents a complete example of an analysis at the LHC that
applies those techniques to a real-world scenario. Specifically, the use case will be
the search for evidence of anomalous non-resonant Higgs boson pair production using
CMS data at the LHC, which can be a smoking gun pointing to alternative explan-
ations to the current theoretical comprehension of the fundamental interactions and
constituents of the universe.

The aforementioned example will be useful to epitomise the main statistical and
methodological challenges on the way LHC analyses are carried out. In Chaper
6, we try to shed some light on these issues, and demonstrate how a novel machine
learning technique we have developed can deal with one of the most relevant concerns:
learning summary statistics using inference-aware losses that account for the effect of
nuisance parameters. The limitations of the proposed method as well as alternative
solutions to increase the discovery potential of the LHC will be explored.

This document will conclude with Chapter 7, where the main contributions and
outcomes of this work will be summarised together with some ideas for future exten-

sions and improvements.



1 THEORY OF FUNDAMENTAL
INTERACTIONS

Nothing in life is to be feared.

It is only to be understood.

Marie Sklodowska Curie

Scientific theories are frameworks describing natural phenomena that are capable
of making experimentally testable predictions. Oftentimes, they are specified us-
ing mathematical language and built on previous observational knowledge and basic
properties of the system under study. At the most fundamental scales known to
date, the Standard Model (SM) of particle physics is a scientific theory that provides
a very accurate description of most of the observed properties and dynamics of the
universe around us. It is constructed upon an innovative theoretical framework, gen-
erally referred as quantum field theory (QFT), and principles regarding fundamental
symmetries of the laws of nature. In this chapter, a non-exhaustive introduction to
this theory and its descriptive reach will be provided together with a summary of the
known limitations and possible extensions or alternatives. Given the experimental
character of the research discussed in the following chapters, the aim of this chapter
is not solely the discussion of the basic structure and properties of the theory, but
also the methodology followed to compute predictions for observables that can be

contrasted with empirical data.

1.1 THE STANDARD MODEL

The Standard Model (SM) of particle physics is a mathematically self-consistent
gauge field theory that classifies all known types of elementary particles and describes
their electromagnetic, weak and strong interactions. Within this fundamental theory,
all known matter and energy phenomena can be explained in terms of the kinematics
and interactions of elementary particles, which can in turn be understood as local

excitations of different fields that permeate our universe.
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Standard Model of Elementary Particles
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Figure 1.1: Schematic overview of the particle content within the SM. Fundamental particles
include fermions, further subdivided in quarks and leptons, and fundamental
bosons, including the force mediators and the Higgs boson. Diagram adapted
from MissMJ (CC BY 3.0 license).


https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

1.1 The Standard Model

From a historical perspective, this theory is the product of a succession of import-
ant theoretical developments and experimental discoveries over the last century [1],
culminating with the discovery of the Higgs boson in 2012 |2, 3|. If a more principled
viewpoint is taken, the SM can be thought of as the most general but mathematically
consistent theory that respects a set of symmetries, namely a global Poincaré group

symmetry (translational, rotational and relativistic boost invariance) and a local
Gsm =SUB)e@SU(2)L @ U(1)y (1.1)

gauge group symmetry. The Ggy symmetry group is essential to describe three
of the four fundamental interactions observed in nature: strong interaction, weak
interaction and electromagnetic interaction. In fact, the SU(3)¢ is associated the
strong force and the conservation of its charge, called colour, while the SU(2); ®
U(1)y symmetry instead is related with electroweak interactions (i.e. unification of
weak and electromagnetic) and the conservation of isospin and weak hypercharge.
The SM is typically specified using the Lagrangian formalism and depends on a total
of 19 parameters (not accounting for neutrino masses and mixing angles), which are
not predicted by the theory from first principles, and thus can only be determined

through experimental measurements.

In the context of the SM, excitations of the fundamental fields give rise to two
types of elementary particles: fermions (characterised by having half-integer spin)
and bosons (characterised by having integer spin). Fermions are the fundamental
constituents of matter, and they are further subdivided into leptons and quarks
depending on their interactions. A schematic overview of the fundamental particles
of the SM and their properties is provided in Figure 1.1. Three particle generations
are known for both quarks and leptons, each containing a pair of particles with
different masses. For quarks, the heavier is referred to as up-type and the lighter as
down-type. Instead, for leptons we distinguish the heavier charged particles (electron,

muon and tau) from their corresponding light and uncharged neutrinos.

Regular matter is largely made of the first generation of quarks and electrons, given
that higher generations rapidly decay quickly to lower generations characterised by
smaller masses. All fermions interact via the weak force but only quarks carry colour
charge and are subjected to the strong force. For each fermion in the SM, there is
a another particle with identical properties but opposite quantum numbers, globally
referred to as antimatter, and denoted for each particle with the anti prefix and a

bar over the symbol (e.g. up antiquark ) or by explicitly denoting the charge sign
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(e.g. positron e™). Neutrinos are the only fermions that do not carry electrical charge

and might be their own antiparticle.

The mediators of the strong, weak and electromagnetic fundamental interactions
are referred to as gauge bosons, and are characterised by having spin 1. To model
the strong interaction colour charge exchanges, a total of eight independent strong
massless force mediators, or gluons, are needed. Gluons carry colour charge them-
selves and thus participate in colour interactions with other gluons, which leads to a
phenomenon known as colour confinement, which will be discussed in Section 1.1.2 in
more detail. The massless and neutral photon is the mediator of the electromagnetic
force, while instead the massive Z, WT and W~ bosons mediate weak interactions.
The last piece in the SM is the Higgs boson, the only fundamental known particle
with spin 0. The Higgs boson is the quantum excitation of the Higgs field, which
also couples with other fundamental particles such as the gauge bosons of the weak
force, effectively generating their mass through their interaction. The Higgs boson
and Higgs field play an essential role in the electroweak symmetry breaking (EWSB)
mechanism, which will be discussed in more detail in Section 1.1.4.

The rest of this section will be devoted a more mathematically exhaustive review
of the different components of the Standard Model, starting by reviewing the basic
formalism of quantum field theories and incrementally building on it do describe
the characteristics of both the strong and electroweak interactions that give rise to
the diverse interactions dynamics of relevance in particle physics experiments. The
mentioned review is heavily inspired by standard bibliographical references on the
topic [4, 5], and which are recommended directly for a more detailed survey on the

subject.

1.1.1 ESSENTIALS OF QUANTUM FIELD THEORY

As hinted in the previous section, in quantum field theory (QFT), observed particles
are understood as excitations of fields that extend through the whole universe.
Quantum field theory unifies the physical foundations of quantum mechanics and
special relativity, and can be used to accurately describe phenomena in systems
where relativistic and quantum effects are relevant, such as interactions between
highly relativistic particles. In QFT, all the known physical processes in the uni-
verse are explained in terms of the state and dynamics of a set of fundamental tensor
fields. A tensor field can be defined as a continuous and differentiable set of values,

such a scalar or a vector, that exist for any given location and time. For simplicity,
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the fields in QFT are usually defined in a relativistic coordinate system = = (¢, ) in

order treat space & and time t jointly.

To exemplify the fundamentals of the QFT framework, let us consider the simplest
case, e.g. a single field that does not interact with any other field, which will be
denoted as ¢(x). The dynamics of a field (or several fields) in QFT are specified
by using the Lagrangian formalism, similarly to what can be done for systems in
classical mechanics. However, instead of considering the Lagrangian L which depends
the generalised coordinate vector g(t) and its time derivatives ¢(t), in QFT the
Lagrangian density £ is commonly used, which depends only on the field ¢(x) and
its first derivative d,¢(x). In an analogous manner to what is done in classical
mechanics to define the action functional Sejassical, We can define the action of the

quantum field SqpT as a function of the Lagrangian density £ as follows:

Sclassical = /L(Q(t)’q(t))dt = SQFT = /[’((ba 8u¢) d4x (12)

noting that the previous definition would also be valid when the Lagrangian depends
on multiple fields and their derivatives instead of a single free field. Identically to
what is done in classical systems, we can attempt to solve for the field that minimises
the action, i.e. §S = 0. With the help of some functional calculus [6], it is possible

to obtain the relativistic field theory version of the Euler-Langrange equation:

oL oL
8“<a<am) ~ 360 13

where 0, = 0/0x,, and the repetition of the coordinate index p € {0,1,2,3} means
summation over the product. The previous relation would still apply to each field
in the case a Lagrangian including several fields was considered; therefore, given a
Lagrangian, we can use Equation 1.3 to obtain their equations of motion. As an
example, let us consider the following Lagrangian Lpjac, which is a function of a
bispinor field ¥, a 4-dimensional complex vector field that can represent a field whose

excitations behave like fermions of mass m:

EDirac = ¢(i7“au - m)I/J (14)

where y* are the gamma matrices and 1) = 1140 is the spinor adjoint. As the chosen

naming for the previous Lagrangian Lpiac gave away, the Euler-Lagrange relation
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obtained by minimising the action 65 = 0 can be used to obtain field equations of

motion that correspond to the Dirac equation [4] for the spinor field and its adjoint:
iV O —myp =0 and iv*pd, +mp =0 (1.5)

as well as the well-known Klein-Gordon equation component-wise (049, +m?)¢ = 0,
where 0¥ = 9/0x". Both Dirac and Klein-Gordon equations were proposed in the
context of a relativistic formulation of quantum mechanics.

To shed some light on how a field like ¢ can represent actual fermions in the
universe, such as electrons or positrons, the field can be quantised by considering

a plane wave expansion and defining annihilation operators aj, and by, as well as

P
creation ap and pr operators. The field and its adjoint, which can be thought of

directly as operators instead of fields in this context, may then be expressed as:

W) = /27r \/ﬁZ(a p)e "+ bifu (p)e™) (1.6)

B() = / B3p \/ﬁz(bs 5 ipx_i_a;‘fﬂs(p)eipl‘) (1.7)

where u*(p) and v*(p) and its adjoints are the free particle solutions of the Dirac

equation, s is their spin and FEj, their energy. The operators in the previous quant-
isations can be used to define arbitrary many-particle states. The vacuum state |0)
can be defined as the state for which ap|0) = by[|0) = 0. A single free fermion state
of momenta p and spin s can be obtained by applying the creation operators on
the vacuum state |p, s) = \/Eafjm) - or alternatively an anti-fermion if the bﬂ is
used instead. Multi-particle free states in momenta representation can analogously
be defined by the successive application of creation operators over momenta space.

In particle colliders, we are instead interested in interacting theories rather than
free theories, given the we aim to compute total and differential cross sections. Inter-
acting theories can also be characterised by their Hamiltonian density H = Hree +
Hint, which can be expressed as a function the Lagrangian density H = -
where 1/1,1 is the time derivative of the field and 7® is the conjugate momentum. The
Hamiltonian density can divided in Hgee, that is the part corresponding to the free
theory, and Hiys that are the additional terms due to interactions. In interacting
theories, time-dependence becomes more important and depends only on the Hint
component. Additionally, the ground state |Q2) can be different in interacting theories

from the free theory vacuum state |0).

10
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Let us denote by |i) = [(t — —o0)) and | f) = |[¢(t — +00)) some arbitrary initial
and final multi-particle states, temporarily far before and after the actual interaction
being studied happened (i.e. around ¢ = 0), respectively. The observables of interest,
which are discussed in Section 1.3, are a function of the transition amplitude (i|S|f)
over all possible initial and final states, where S is an operator describing the trans-
ition. The transition probability, which is expressed as the modulus square of the
amplitude |(i|S|f)|?, is therefore also a function of S, fully describing the time-
evolution from the initial the final state. The & operator may be expressed as a

perturbative series using the Dyson expansion:

(1.8)

where T' is an operator ensuring that the Hamiltonian density factors Hin(x;) are
ordered in time. Each time-ordered term in the series can be written as a sum
of normal (i.e. not time ordered) products of permutations using Wicks theorem
[7], which can become rather tedious for high orders. The formalism of Feynman
diagrams can be used to simplify the computation of observables at a given order in

the perturbative expansion.

Based on the previous perturbative series expansion, the transition amplitude

(1|S|f) can be easily linked with scattering observables when denoted as:

(IS1F) = GlLLf) +imen)'s (S p - py) (1.9)

where the first term corresponds to no interaction occurring, and the second includes
the matrix element M including all orders in the perturbative orders, and multiplied
by a factor making explicit the conservation of momentum between the initial and
final state particles. The matrix element M, which can be computed perturbatively
as a function of the momenta of the particles given final state considered, can be

used to define the differential cross section:

d?
3@ |IM|? where d® = (27)%5% (Zpl pr) H 211?]0 p)f (1.10)

where the proportionality factor is a function of the initial state particles momenta

and d® is the full phase space differential element for which can be generally ex-

11
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pressed as a product of the final state particle momenta differential elements. Total
scattering rates can be obtained by summing over possible initial and final states and
integrating over final states. Both differential and total cross sections can be trun-
cated at a given perturbative order. The lowest expansion order is referred as leading
order (LO), yet considering additional expansion can greatly increase the prediction
accuracy so one (NLO) or two (NNLO) orders are often considered, higher orders
often being too computationally challenging. A truncation at an additional order
n, relative to the lowest interaction order, will provide corrections proportional to

a = g?/(4r), where g is the coupling constant characteristic of the interaction.

1.1.2 QUANTUM CHROMODYNAMICS

In a hadron collider such as the LHC, strong interactions between quark and gluons
are dominant, and they can be modelled using quantum chromodynamics (QCD).
The theory of QCD can be linked to a SU(3) symmetry group and is described by

the following gauge invariant Lagrangian density:

(o
_ 1
Lqcp = Y(VW' Dy —my)y — ZGZVG’JV, Y= |1y, (1.11)
(o

where 9 is a spinor quark field for a given flavour f € {u,d,s,c,b,t} and quark
mass my, and each vector component represents a colour degree of freedom. As-
suming that the Gell-Mann matrices A* are used to define a basis for the gluon field
A = 1/2X 37 Af, the covariant derivative can be defined as D, = 0, — igs Ay,
where g is the strong interaction coupling. In turn, the gluon field strength tensor

G, 1s also related with the gluon field components:

G, = 0, AL — 0, A% + g f**°Ab A (1.12)

where f are the structure constants of the SU(3) gauge group. The last term
accounts for the self-interaction of the gluon, which are the massless and electrically
neutral mediators of the strong force. There are two properties of QCD that play
an important role from a phenomenological standpoint: confinement and asymptotic
freedom.

The property of confinement has been postulated to explain why isolated quarks
and gluons are not found in nature. Quarks have only been found as part of hadrons,

that are colour-neutral composite particles. Even though confinement has not been

12
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understood from first principles, because the observables of bound states in QCD
at low-energies cannot be computed in a perturbative manner, there exist extensive
evidence both from lattice QCD calculations and experiments. In a bound state
between quarks, the effective potential includes a term that increases proportional to
their distance, so when the quarks are separated by an external energetic interaction,
the additional potential energy generates an additional quark-antiquark pair, leading
to the formation of bound states. Similar phenomena occur for isolated gluons, which
generally are referred as hadronization, and can be understood as a consequence
of colour confinement. In particle colliders, successive hadronization and radiation

processes led to parton showers (see Section 1.3.4).

Quark are then only found in bound states, referred to as hadrons, which can
either be mesons or baryons. Mesons are formed by quark-antiquark pairs qq, while
baryons are composed of three quarks qqq. Charged and neutral pions 7% (ud) and
70 ((uit — dd)/+v/2), kaons K* (us) and K° (ds) and the J/¥ (cc) are among the
most common mesons produced at particle colliders. Baryons instead include the
well-known proton (uud) and neutron (udd) that together with electrons are the
constituents of most of the known matter in the universe. Many more short-lived
baryons exist [8], in addition to the recently discovered exotic bound states referred
as tetraquarks [9] and pentaquarks [10]. A detailed description of the compositeness
of proton is an essential element for computing LHC observables, as reviewed in
Section 1.3.2.

Asymptotic freedom is instead linked with the strength reduction of the strong
coupling constant when higher energy scales are considered. Let us consider a renor-
malisation energy scale M%z, which has to be often defined in order to compute physical
observables which otherwise would be divergent due higher order perturbative cor-
rections which cannot be easily calculated. This effect can be also understood as a
coupling that varies with the energy scale, which is referred to as a “running” coup-
ling constant. The strong force coupling as = g2/(47) can thus be approximated as

a function of the renormalisation energy scale u% as follows:

2 ) _ as(M(Q))

as(/J'R - 33—2 2
1+ o (18) =157 ln<l:7§)

(1.13)

where ag (,u(%) is the measured coupling at a given energy and ny is total number of
quark flavours which are assumed to be massless in this approximation. The strong

interaction thus becomes weaker at higher energies (or short distances) allowing

13
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the perturbative computation of observables related with high-energy interactions,
as discussed in Section 1.3. The approximation from Equation 1.13 also provides
a lower bound for the energy scale at which QCD can be treated perturbatively,
i.e. the denominator becomes zero for an energy scale around 200 MeV, leading to a

diverging coupling constant.

1.1.3 ELECTROWEAK INTERACTIONS

The remaining two fundamental interactions between elementary particles are the
electromagnetic and the weak force. The description of the electromagnetic interac-
tion in terms of quantum fields and gauge symmetries, leading to the development
of quantum electrodynamics (QED) in the late 1940s, prompted a quest for an ana-
logous theory for the weak force. The weak force, known to be responsible for
the beta decay at the time, could effectively be modelled using Fermi theory using
four-fermion interactions [11] but was not renormalisable and lacked the predictive
capabilities and elegance of QED. A large theoretical effort lead to an alternative
description based on a SU(2) ® U(1) symmetry, which unified electromagnetic and
weak interactions [12, 13|, and where the weak interaction was mediated by means of
charged W and neutral Z massive vector bosons. Nevertheless, the theory did not
provide an explanation for the mass of the weak mediators, until the so-called Brout-
Englert-Higgs [14, 15, 16] mechanism for spontaneous symmetry breaking (SSB) was
conceived. Higgs also noted explicitly that the mechanism would effectively create
an additional scalar field, associated with a new scalar boson, whose existence could
experimentally testable. The SSB mechanism was then combined with SU(2) @ U(1)
unified theory [17] to give rise to what is now known as electroweak theory, which
was then proved to be renormalisable [18].

The different testable properties of electroweak phenomena were verified by ex-
periments including the existence of weakly-interacting neutral and charged currents
[19] and the discovery of the massive W+ [20, 21] and Z [22, 23] bosons. Experi-
mental evidence also showed that weak interactions were parity violating [24], thus
in the electroweak theory the fermion fields are separated in their left-handed r,

and right-handed g chiral components as follows:

YL=PLy=(1— )Y Yn=Pry=L(1+w) (1.14)

where Pr, and Pgr are the chiral projection operators and v5 = @vy9y1727y3 is the

product of the gamma or Dirac matrices. For massless particles, chirality is equal to
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the helicity H = (p - s)/|p| which is the sign of the scalar product of momenta and
spin. For massive particles, chirality is still defined but is not identical to helicity

which cannot be invariantly defined.

Within the electroweak theory, fermion fields are broken in into their left-handed
components, which can be expressed as doublets that would transform under SU(2),

and can be denoted as:

O O R B A 6 R G

and their right handed components, that instead can be expressed as singlets only

transforming under U(1):
Ry ={ur,cr,tr} Ra={dr,sr,br} Ri={er,pr,7r} (1.16)

where the right-handed neutrino components are omitted in the electroweak theory
(and the SM), given they are electrically neutral and would not interact weakly when
right-handed.

The electroweak interactions then can be made explicit by introducing additional
boson fields W = {W!, W2 W3} and B which will interact with the fermions. Sim-
ilarly in structure to QED (and also QCD as described in Section 1.1.2), the elec-
troweak Lagrangian before spontaneous symmetry breaking is composed by interac-
tion terms for the previous doublet and singlet fields, characterised by a covariant

derivative, and kinematic terms for both boson fields:

we{L(Ile} _ ¢6{Lq7Ll} B
Low= 3, YEwDDv+ . dnDR)Y L.17)
1 1
= Wi W = 2By B

where the covariant derivatives for left-handed D% and right-handed D‘é fermion

fields are respectively defined as:

1 1
D]’f =" — igBYBM - -gwoW,

! 2 (1.18)
Df, = 9"~ Zg5Y B,
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where 0 = {01,09,03} are the Pauli matrices and gp and gy are the coupling
constants. The W, and B,,, field strength tensors from kinematic terms can in turn
be obtained as:

Wi, = 0,W, — 0,W}. — gwe*WiWw}

(1.19)
By = 8,B, — 8,B,

where €% is the Levi-Civita symbol for each permutation, which is the structure
constant for SU(2).

1.1.4 SYMMETRY BREAKING AND THE HIGGS BOSON

The problem with the electroweak theory as described by the Lagrangian from Equa-
tion 1.17, which is based on Yang-Mills gauge theory formulation, is that it is not
possible to directly add mass term for the fermions nor the weak bosons to the Lag-
rangian density without breaking the SU(2) invariance. At the time the mentioned
theory was developed, there was extensive evidence not only for lepton masses but
also for the weak bosons being massive; the mass required to explain why the weak
interaction was short-ranged. The issue of lacking a theoretical mechanism that
could explain the mass of fermions and weak boson was solved by the spontaneous
symmetry breaking mechanism [14, 15, 16], which is based on postulating the ex-
istence of an additional complex scalar field ¢, which is a SU(2) doublet with the

following structure:
¢t $3 + igy
e p— 1 .20
’ <¢0> <¢1 +i¢2> (20

where we made the component notation explicit because it will be relevant later.
This scalar field is expected to interact with the electroweak fields W and B by

means of the following Lagrangian:
Lscalar = (D/,Ijqb)T(DMQS) - V(¢) (121)
where the covariant derivate in this case is defined as:

1 1
DY, = ot — §igBYBM - §igWUWM. (1.22)
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The minimal form for a scalar field potential V(¢), constructed ad-hoc to provide a
degenerate vacuum states and a local maximum - a required condition for spontan-

eous symmetry breaking, may be expressed as:
1
V() = 12610 + SA(90)’ (1.23)

where both the quadratic u? and the quartic A self-interaction parameters are defined
positive with this sign convention. The resulting shape for the potential is often
referred as mezxican hat, and is depicted in Figure 1.2. The presence of a potential
minimum different from the origin gives rises to a non-zero vacuum expectation value
for the scalar field:

(Po="=v (1.24)

whose values depend on the V (¢) potential parameters p? and A, and it is denoted
as v? for convenience. The non-zero vacuum expectation value is thus said to spon-
taneously break the the SU(2) ® U(1) symmetry, the consequences made more clear

when the field is expanded around the minimum:

1 -G 0
gbzﬁexp(z ” )<’U—|-H> (1.25)

as a product of a scalar field H and a complex exponential of the scalar product of
a three-component field G = {G1, G2, G3} with the Pauli matrices o = {01, 02,03}.
The complex exponential phase can be then removed by a SU(2) group rotation, a

transformation that is often referred as unitary gauge. The resulting scalar field can

1 0
¢ = \/§<U+H> (1.26)

where three of the four degrees of freedom in Equation 1.20, which correspond the

simply be expressed as:

field G which would otherwise give rise to the so-called Goldstone bosons, have been

removed after the gauge transformation.

Substituting the rotated scalar field from Equation 1.26 in the Lagrangian de-

scribed by Equation 1.21 leads to mass-like terms for linear combinations of the W
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and B fields. In order to obtain the physical bosons observed in nature, the mass

terms have to be made independent by the following transformations:

1 Z Ow —sinf w3
Wi = =i ()= (T (T (1.27)
V2 Ay sinfy  cos Oy B,

where the fields W and W~ are associated with the charged weak bosons, the field
Z with the neutral weak boson, the electromagnetic field A with the photon, and gy
is the Weinberg angle which is related with the electroweak couplings according the
relation tan Oy = gp/gw. Omitting for now the terms related with the H field, the
Lagrangian in Equation 1.21 leads to the following mass terms for the electroweak
force mediators after the unitary gauge and the transformation described in Equation

1.27 have been applied:

1 2 v? 1 2 v o
»CEW bosons — <gW > W;WJFM + 5 (gW ) Wﬂ w H—i_

2\ 4 4
2 2
T - (1.28)
1 M ZZM_,_}(O)AAM
2 4C089W a 2\,./ "
H/_/ m?y
my,

resulting in mass terms for the massive weak bosons which depend to the weak
coupling, the Weinberg angle and the vacuum expectation value of the Higgs field.
The last term for the electromagnetic field has only been included to make explicit
that no mass term is associated with the electromagnetic force carrier 4. The terms
related with the scalar H field (and Higgs boson) are discussed later independently.

In addition to providing a mechanism that leads to mass terms for the weak force
bosons, additional interactions of the various fermion fields with the scalar field ¢
can explain their masses. These gauge invariant terms are generally referred to as

Yukawa interactions, and correspond to the following Lagrangian terms:

Lyukawa = — N(LigR; + Rio' Ly)
— \i(Lq¢Ra + Ra¢'Ly) (1.29)
— Mu(Lyioadp' Ry + RyicadLy)

where \; , Ay and A, are the Yukawa coupling parameters. A charge-conjugate
transformation ¢ — io96! is used to give mass to up-type quarks. For the quark

sector, the A, and A\; couplings can be expressed by a single non diagonal matrix
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in the flavour basis, referred to as Cabibbo-Kobayashi-Maskawa (CKM matrix) |25,
26], which can in turn be parametrised by three angles and a complex phase. The
fact that the matrix is not diagonal leads to flavour mixing, due to the mass eigen-
states being different from flavour eigenstates. Another relevant property of fermion
masses is that after spontaneous symmetry breaking, the fermion mass is effectively
proportional to its coupling with the Higgs scalar field, which is useful to intuitively

understand the dominant interactions and decays of the Higgs boson.

Figure 1.2: Graphical depiction' of the mexican hat potential for the scalar field ¢. A local
maximum is present at the origin, but lower energy degenerate minima exist
arount it.

In addition of giving masses to both weak bosons and fermions, the remaining
degree of freedom after electroweak symmetry breaking gives rise to a scalar field
H. The terms of the Lagrangian concerning only H may be obtained substituting

Equation 1.26 in Equation 1.21, leading to the following expression:

A g (1.30)

1
Ly = 50, HO'H — prH? — NH? — 0

where the second (quadratic term) can be interpreted as a scalar boson with a mass
\/ﬁ, which is commonly referred as the Higgs boson. A particle with a mass of
125.09(24) GeV |27] and consistent with the expected properties for the Higgs boson
was discovered in 2012 by the CMS and ATLAS collaborations [3, 2]. The cubic
Av and quartic A terms will give rise to self-interaction interaction vertices. The
so-called cubic or trilinear Higgs coupling is discussed in a Higgs pair search using

data from the CMS experiment in Chapter 5. The direct determination of the Higgs
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self-coupling is an relevant missing piece, and an important proof of consistency of

the spontaneous symmetry breaking mechanism.

1.2 BEYOND THE STANDARD MODEL

The experimental success of the Standard Model and its main subcomponents QED,
QCD, and EW unification and symmetry breaking is clearly incontestable, ranging
from the confirmation of theoretical prognostication of the existence and some the
properties of new particles (e.g. Z, W* and Higgs bosons or top quark) to the agree-
ment of precise predictions with meticulous experimental observations. The fine
structure constant « at zero energy scale is an example of the latter, with its exper-
imentally determined value consistent among independent physical measurements
when the Standard Model based theoretical correction are accounted, down to 12
significant digits [28, 29]. In addition to describing natural phenomena with unpre-
cedented accuracy, the SM is a self-consistent theory that provides non-divergent

predictions at the highest energy scales probed to date.

1.2.1 KNOWN LIMITATIONS

In spite of the successes mentioned above, several shortcomings of the Standard
Model are known and hence the theory is not considered as a complete theory of
natural phenomena at the most fundamental scales. Those concerns include unex-
plained empirically observed phenomena such as gravitational interactions, neutrino
masses or dark matter particle candidates, theoretical considerations regarding the
stability of vacuum or aesthetic principles such as naturalness. Hence, it is presumed
that the Standard Model is an effective theory, able to successfully describe funda-
mental processes within a range of energies as an approximation of a more complete
unified theory. For completeness, the main empirical and theoretical concerns are

summarised:

e Omission of gravitational interactions: the current formulation of the
SM completely disregards the effect of gravity in fundamental interactions,
because no consistent quantum descriptions for gravity matching the experi-
mental predictions of the well-established theory of general relativity [30] have
been developed to date. While several theoretical efforts are ongoing, such as
loop quantum gravity [31] or string theory [32], the coupling for gravitational

interactions at the current experimental high-energy reach is expected to be

20



1.2 Beyond the Standard Model

more than 30 times weaker than for weak interaction, and hence can be safely

ignored when computing theoretical predictions.

Lack of a viable Dark Matter candidate: through a variety of astrophys-
ical observations, including the observed galaxy rotation curves [33], gravita-
tional lensing [34] and the Cosmic Microwave Background (CMB) [35], there is
clear evidence indicating the presence of more gravitational interacting matter
in the universe than what is expected by contrasting with the electromag-
netic spectra. It has been thus estimated that about 85% of massive existing
matter in the universe does not notably interact with ordinary matter and ra-
diation, and therefore is referred as Dark Matter. While its particular nature is
still unknown, scientific consensus seems to favour long-lived cold non-baryonic
matter as an explanation, predominantly weakly-interacting massive particles
(WIMPs). The three neutrino types are the only WIMP within the Stand-
ard Model, but considering the known upper limits on their masses, they can
only account for a very small fraction of the total mass of dark matter in the

universe.

Unexplained matter-antimatter asymmetry: as discussed in Section 1.1,
each matter particle in the Standard Model has an identical anti-matter pos-
sessing opposite quantum numbers. Because pair creation and annihilation
processes are symmetric, but our universe is manifestly dominated by what we
refer as matter, some asymmetric interaction processes ought to exist. Within
the SM, some electroweak processes are known to violate CP-symmetry and
potentially explain a small part of the observed matter-antimatter asymmetry.
New unknown CP-symmetry processes, potentially through interactions not

included in the SM, are needed to resolve the mentioned disparity.

Origin of neutrino masses: the Standard Model was developed assuming
that neutrinos were massless, yet is currently well established that neutrinos
oscillate between different flavour eigenstates [36, 37|, implying that flavour
states mix and hence that neutrino masses are very small but different from
zero. The SM Lagrangian can be extended to account for the masses of neut-
rinos in a similar fashion to what is done for leptons and quarks, but their
Yukawa coupling has to be much smaller than of any of the other particles,
and it requires the existence of very weakly interacting right-handed neutri-
nos. An alternative mechanism for including neutrino masses exists, and it is

based on assuming that these particles are Majorana fermions and hence they
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are their own anti-particle. This hypothesis is currently being experimentally
tested. It also worth noting that in order to explain the smallness of neut-
rino masses in a principled way, the Seesaw mechanism [38] has been proposed,
which implicitly assumes that the SM is only a low-energy scale effective theory

of a more complete unified theory.

Mismatch between vacuum energy and Dark Energy: in addition of
providing evidence for dark matter, astrophysical observations such as studies
of the properties of the Cosmic Microwave Background [35] or the redshift of
type la supernovae [39], consistently point to the hypothesis of an accelerating
expansion of the current universe. The simplest way to account for this in
cosmological models is to include a cosmological constant, which should be
understood as an intrinsic energy density of the vacuum, exerting a negative
pressure and therefore driving the observed expansion of the universe. In fact,
in order to reconcile the theoretical models with experimental observations,
about 68% of the total energy in the present universe would correspond to
this type of unknown energy density, generally referred to as Dark Energy.
In most quantum field theories, such as the Standard Model, some non-zero
zero-point energy originating from quantum fluctuations is expected. However,
modern attempts to predict energy densities from QFT are at variance with the
observed energy vacuum energy density, some of them differing by 120 orders

of magnitude [40].

Naturalness, hierarchy and fine-tuning concerns: as discussed at the
beginning of Section 1.1, the SM can be thought of the most general the-
ory based on a set symmetries, and its 19 parameters (or 26 accounting for
neutrino masses and mixing angles) are not obtained from first principles but
measured experimentally. Having such a large number of free parameters and
observing large differences among their relative magnitude has been viewed as
a theoretical concern from an aesthetic perspective. A related issue is why the
electroweak energy scale (epitomised by the Higgs mass) is much smaller than
the assumed cut-off scale of the SM, where gravitational interactions become
relevant at Mpianck ~ 10°GeV, which is generally referred as the hierarchy
problem. In the absence of New Physics or additional interaction mechanisms,
the only way to obtain the observed Higgs mass from the bare Higgs mass (at
zero energies) is through a very precise cancellation of divergences, which is

regarded as an unnatural or fine-tuned property of the SM theory.
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Other possible issues, in some cases related with those discussed, have also been
raised. One of them is the apparent vacuum meta-stability [41] and other the so-
called strong CP problem [42]. Many of these questions can be clarified once the
higher precision measurements of the SM become available, which are mainly ob-

tained in particle collider experiments.

1.2.2 POSSIBLE EXTENSIONS

The known limitations stated in the previous section have motivated the development
of alternative theories for describing fundamental interactions. Given the quantitat-
ive success of the Standard Model, most of the known proposed theoretical models
are either extensions of the SM or its associated predictions can be effectively reduced
to those of the SM at the energy range current being explored in particle physics
experiments. The set of alternatives that have been proposed is too substantial to
be exhaustively listed here, especially given that many of the alternatives include

additional free parameters that greatly modify the expected theoretical observables.

PRECISION MEASUREMENTS OF THE SM

Due the existing large space of alternatives to the SM from a theoretical standpoint,
the exploration of all possibilities through dedicated searches becomes unattainable.
An alternative way to possibly obtain quantitative information pointing to exten-
sion of the SM is to measure its most relevant observables with high precision. If
significant discrepancies are found between the experimental measurement and the
theoretical prediction of those observables, it could be evidence pointing to New
Physics outside the SM.

ErFrECTIVE FIELD THEORIES

In addition to carrying out precision measurements and model-specific searches, there
exists a practical way to consider possible extensions due to New Physics phenomena
occurring at a higher energy scale A than the one being probed, which will be denoted
by E. The model-independent approach often referred to as effective field theory
(EFT) [43, 44] allows to compute observables by extending the SM Lagrangian terms

from Section 1.1 with additional operators:

Ci
Lerr = Lsm + Z Woi (1.31)
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where O; are referred to as effective operators, describing the characteristics of the
new interactions that are considered in the extended theory and ¢; are the the EFT
or Wilson coefficients that parametrise the strength of those new interactions. The
integer d; defines the dimension of the operator dim(0;) = [E]%, and while in prin-
ciple an infinite set of operators with any dimension d; > 4 can be considered, their
effects is expected to be suppressed by (E/A)%~* thus high-dimensional operators
may be neglected when studying the dominant effects of an EFT extension of the
SM.

If all the EFT coefficients ¢; are zero or the new energy scale A is infinite, the
EFT theory reduces to the SM Lagrangian. Instead, if A ~ F, the effective approx-
imation in Equation 1.31 does not hold, and the interactions have to be realistically
modelled using a complete theoretical description of the New Physics scenario under
study. While in general effective field theories are not renormalisable, observables and
higher-order corrections can be computed, because of the well-defined cutoff energy
scale A. The best-known example of an EFT that has been used in practice is Fermi
theory, which is a useful simplification to compute EW observables at low-energies
FE =~ 10 MeV rather than an extension of the SM, given that the detailed structure
of electroweak interactions due to W boson mediating 3 decays was unknown at
the time.

At the LHC and other collider experiments, the main use case of EFT is to de-
scribe generic extensions of the SM that could arise due to New Physics at energy
scales that are not directly accessible. From an experimental standpoint, the goal
is thus to constraint the values of the EFT operator coefficients using experimental
data. Because the for d; = 5 the only possible operator is relevant for neutrino phe-
nomenology [45], the set of Lagrangian operators of interest at collider experiments
often corresponds to d; = 6 dimension operators. The large set of possible dimen-
sion six operators can be greatly reduced by requiring that the main experimentally
verified properties of the SM are respected, such as the gauge and Poincaré symmet-
ries, or baryon number conservation. In Chapter 5, a subset of dimension six EFT
operators are used to study non-resonant extensions of Higgs pair production in a

model-independent manner.

1.3 PHENOMENOLOGY OF PROTON COLLISIONS

Once the properties and limitations of the theoretical model that best describes the

current understanding of the fundamental structure and dynamics of nature have
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1.3 Phenomenology of Proton Collisions

been described, we can delve into how to model proton-proton collisions from a
quantitative perspective, so theoretical predictions can be contrasted with experi-
mental results at the LHC. The focus of this section then is to make sense of the
various outcomes of high-energy proton-proton collisions and how we can predict

their relative rates of occurring given some initial state conditions of the interaction.

1.3.1 MAIN OBSERVABLES

A related consideration that is useful as an introduction to the aforementioned topic
is the question of what outcomes can originate as a result of proton-proton collisions.
An answer somehow circular but compatible with our current interpretation of the
universe is that everything that could be produced would be produced, meaning
that any outcome that can happen in a way that is consistent with the underlying
properties of nature is possible. Even though probably the true description of the
properties of nature is not known, as discussed in Section 1.1, the Standard Model
provides an effective model and restricts considerably the space of possible outcomes,
in a way that can be compared with experimental observations. It is worth noting
that alternative descriptions of nature, such as those motivated by the known limita-
tions of the SM and reviewed in Section 1.2, may provide alternative mechanisms for
the production of outcomes that are not allowed by the SM, and hence often drive
the experimental searches for evidence of New Physics.

For those physical processes that could happen as a product of a proton-proton
collision, under the assumption of validity of a particular theoretical model, their
total expected rate of occurrence is one the most relevant quantities to predict and
compare with observations. To ease its experimental interpretation, the rate of
occurrence of any given subnuclear process is commonly expressed as a cross section
o, which has dimensions of area and is typically expressed in submultiples of barn
(1 barn = 1072®m?). The advantage of cross sections over rates is that their value is
independent from the density of the incident particle fluxes. The rate, or probability
per unit of time, of a process occurring can be computed simply by multiplying its
cross section by the instantaneous luminosity Li,s, which corresponds to the number
of particles per unit of area per unit of time crossing in opposite directions in the
collision volume.

Another related concept, which is especially important for simulating interactions,
is the differential cross section do. While the initial state conditions are fixed, the
rate of occurrence of a physical process can be expressed as a function of some final-

state variables, such as the angle and energy of outgoing particles. While these
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1 Theory of Fundamental Interactions

variables can be integrated over to compute total cross sections o, the integrand is
proportional to the probability density of each outcome happening as a function of
final-state variables, hence its evaluation is crucial for a correct modelling of their
multi-dimensional distributions via random sampling. In fact, we will be dealing
with differential cross sections instead of total process cross section in this section

for generality.

1.3.2 PARTON DISTRIBUTION FUNCTIONS

A complication that has not been addressed yet is that protons are composite
particles, which within a static interpretation can be thought of as the combina-
tion of two up-type quarks and one down-type quark bound together via the strong
force. The dynamics of proton-proton scattering are then dictated by quantum chro-
modynamics (see sec. 1.1.2), which cannot be addressed using perturbation theory
for low energies, limiting the first principles computation of relevant observables
for the most common interactions. That said, predictions regarding the interaction
outcomes from the hard scattering of proton constituents (referred to as partons)
can be perturbatively approximated under the assumption of asymptotic freedom at
high energies. This allows the modelling of very high energy collisions at particle
colliders, which are the focus of most LHC analyses, even if the details about the
parton structure cannot be calculated.

When modelling hard (i.e. high energy) scattering processes, a non-perturbative
input is required, mainly the probability of finding a particular proton constituent
with a certain momentum fraction inside each of the colliding protons, referred to
as the parton distribution function (PDF). The model of the proton as three quarks
coupled by strong force is too simplistic for modelling proton-proton scattering real-
istically, especially at high energies. The continuous exchange of gluons between the
three constituent quarks effectively generates a sea of virtual quark-antiquark pairs
from which other partons can scatter off. Consequently, in the interaction of two
protons, not only the constituent quarks, referred as to valence quarks, can take part
in the hard scattering process but also gluons and sea quarks.

At the time of writing, PDFs are not computable from first principles so they have
to be parametrised and extrapolated from various experimental sources including
fixed-target proton deep inelastic scattering (DIS) and previous collider studies. It is
worth noting that the distribution functions depend strongly on the energy scale of
the process, yet the evolution for parton densities can be modelled theoretically [47,

48, 49]. Given their relevance for computing observables in high-energy colliders,
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Figure 1.3: Distribution functions for the different partons at low and high energies. The
contribution from gluons shown is 1/10 of the actual contribution. Image adap-

ted from the NNPDF collaboration [46].
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several research collaborations such as NNPDF [46] provide accurate estimations
that can be readily used for simulation and prediction. In Figure 1.3 are shown the
parton distribution functions at two different energy scales estimated by one of those
collaborations, at lower energy scales the valence quarks (up and down) dominate
while when we extrapolate at higher energies, gluon scattering become the most

likely outcome for the interaction.

1.3.3 FACTORISATION AND GENERATION OF HARD PROCESSES

Let us consider the computation of the differential cross section for a hard scattering
process pp — X, which will be denoted as do(pp — X), for two protons colliding
head on at centre of mass energy s. Here X denotes a possible outcome for the
interaction, not necessarily a single particle and the proton remnants (e.g. a Higgs
boson X = H + other), but a set of particles (e.g. a bottom quark-antiquark pair
X = bb + other). According to the QCD factorisation theorem [50], the differential
cross section for do(pp — X) can be expressed as a sum of functions of the partonic

cross section do;;, x:

do(pp — X) = Z/fi(xhM%)fj(ilfz,M%)dﬁz‘jex(swlxmM%:,Mrfv)diﬁldxz (1.32)
2

where i and j indicate the partons involved (e.g. a certain type of quark or a
gluon), fi(z1, %) and f;(ze, p%) are their parton distribution functions for given
momentum fractions x; and xo respectively, ug is the factorisation scale and up is
the renormalisation scale. The differential partonic cross section do;;_, x for a centre
of mass energy of the interacting partons § = sxjx2, can be calculated perturbatively
at different expansion orders from the Lagrangian density as hinted in Section 1.1.
The total cross section o(pp — X)) can then be attained by integrating out all final
state quantities, commonly referred as phase space variables, in the differential total
cross section element do(pp — X). It is worth pointing out that for simple cases
(small number of particles in the final state) is often possible to integrate out the
final state phase space variables directly in the partonic differential cross section
do(ij — X), and thus directly compute the total cross section by a similar parton
distribution function integration as the one used in Equation 1.32.

As more more complex final states or higher perturbative orders are considered,

the final state phase space integration over many particles can rapidly become in-
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tractable. This motivates the use of Monte Carlo integration techniques, especially
those based on importance sampling such as VEGAS [51], which provide convergence
rates that scale well with the integral dimensionality by randomly sampling the
multi-dimensional space. In fact, the initial state integration over parton types and
momenta fractions can also be carried out jointly with these methods, greatly sim-
plifying the computation procedure. The resulting weighted random samples can be
used to estimate not only the total cross section, but also any other observable or dis-
tribution that is a function of the differential cross section do(pp — X). A common
observable that is often used in experimental high energy physics is the efficiency
€, or fraction of observations from a specific process pp — X that are expected to
satisfy a given condition that is a function of the final state details.

In collider experiments typically we cannot measure directly the properties of final
states produced in the hard scattering, either because of the characteristics of the
detector, the decay/hadronisation of particles producing other secondary particles,
or due to additional physical effects occurring in a bunch crossing not accounted in
Equation 1.32, such as additional collision products due to multiple interactions or
processes comprising the proton remnants. Thus it is very useful in the construction
of the complete model to consider the problem of generation of realistic collision
products.

Taking into consideration that some of the computational techniques for includ-
ing subsequent physical processes and the detailed simulation of the detectors are
considerably resource intensive, as will be detailed in Section 1.3.4 and Section 2.3.2
respectively, the use of weighted samples is not a very efficient approach. Hence,
for the generation of simulated products of high-energy collisions, also referred to
as event generation, an acceptance-rejection sampling step is carried out to obtain
an unweighted sample, where the relative frequency of each simulated outcome is
expected to match its theoretical prediction. After such procedure, the calculation
of all observables is also simplified, because the weight of all samples can be taken as
a constant, e.g. a unitary weight w = 1, so the computation of quantities of interest

such as efficiencies becomes trivial.

1.3.4 HADRONIZATION AND PARTON SHOWERS

In order to link the hard scattering process outcome with the actual observable
quantities that can be detected in an experiment, it is necessary to account for the
radiation of soft gluons or quarks form the initial or final state partons in the collision,

as well as the formation of hadrons from any free parton due to colour confinement
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(see Section 1.1.2). Additional processes that affect the collision outcome include
secondary interactions between the protons, as well as the decays of all generated
unstable particles. An example of the typical complexity of the physical processes
occurring as a result of a single high-energy proton-proton scattering is provided in
Figure 1.4. These and additional minor effects (e.g. colour reconnection) are accoun-
ted by parton showering (PS) programs, that take as the input the generated particle
outcome of the hard scattering and return a set of the resulting stable particles that

would propagate through the detector.

Figure 1.4: Diagram of a proton-proton collision and the underlying physical processes oc-
curring therein, adapted from [52]. The dark green ellipses following the three
parallel arrows represent the incoming hadrons. The main interaction between
partons is shown in red colour, producing a tree-like structure of decays, in turn
producing partons that rapidly transition to hadrons (light green ellipses) and
decay (dark green circles) as well as soft photon radiation (yellow lines). The
blue lines represent the interaction between partons and the path of the the
initial hadron remnants followed by light blue ellipses. For completeness, an
additional hard interaction within the same hadron-hadron process is shown in
purple, which often has to be accounted to obtain realistic simulations.
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2 EXPERIMENTS AT PARTICLE
COLLIDERS

Measure what is measurable

and make measurable what is not so.

Galileo Galilei (attributed)

In Chapter 1, we reviewed the most successful testable theory to date describing
the properties and dynamics of our universe at the most fundamental scales. Clear
limitations of the Standard Model as it is currently formulated are known, such
as the complete omission of gravity forces or the absence of viable dark matter
candidates, motivating the quest for alternative unified descriptions of the physical
world. A direct path to verify the predictions of the Standard Model up to high
accuracy and test alternative theoretical models is to collide high energy particles in
a controlled setting and quantitatively study the properties of the particles produced
as an outcome of the scattering. That is the aim of the Large Hadron Collider (LHC)
and the experiments set up around its collision points. In this chapter, the main
design characteristics of a general purpose high-energy physics experiment, namely
the Compact Muon Solenoid (CMS) detector at the LHC, will be explored. Given
the data-centric nature of the next chapters, particular significance will be given to
the acquisition, processing and simulation of individual experimental observations,

commonly referred to as events.

2.1 THE LARGE HADRON COLLIDER

The Large Hadron Collider (LHC) is the largest and most powerful particle acceler-
ator on operation at the time of writing. Its main purpose is to accelerate bunches
of protons and other heavier nuclei in opposite directions to ultra-relativistic velocit-
ies, so they can be collimated and made interact at high energies in several specified
collision points inside specially designed detectors. The LHC machine complex is loc-

ated at the European Organisation for Nuclear Research (CERN) laboratories at the
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2 Experiments at Particle Colliders

Switzerland-France border near Geneva, its most distinctive element being a circular
ring of superconductive magnets and accelerating structures installed inside a 26.7 km
long underground tunnel inherited from the Large Electron Positron (LEP) collider,
as depicted in Figure 2.1. The setup was designed to achieve center-of-mass energies
up to 14 TeV for nominal instantaneous luminosities reaching 1 x 10>*cm~'s™! for
proton-proton collisions, and hence explore the high-energy frontier of particle phys-
ics, extending by a factor of seven the reach at the highest collision energy, formerly

achieved by the Tevatron collider at Fermilab.

Figure 2.1: Depiction of the placement of LHC tunnel and the main experiments places at
its collision points (ATLAS, ALICE, CMS and LHCb) relative to Geneva and
the French-Swiss border. The image has been adapted from [53].

The main reason for building a high-energy proton-proton collider such as the
LHC instead of an electron-positron more powerful than LEP, given the difficulties
when computing observables due to protons being composite particles as described in
Section 1.3, is that protons are considerably more massive and thus their synchrotron
radiation loss is greatly reduced, so they can be accelerated to higher energies more
efficiently. Another practical advantage of proton colliders is that very high collisions
rates (i.e. instantaneous luminosities) are technically achievable, which makes them
suitable for the discovery of rare but interesting physical processes. While the LHC
and most of its detectors can also be used to study collisions of nuclei from heavier
atoms, such as Pb, Au or Xe ions, which have important scientific use cases such
as recreating the conditions present in the early universe, in this work we will be

focussing on proton-proton collisions.

32



2.1 The Large Hadron Collider

2.1.1 INJECTION AND ACCELERATION CHAIN

In order to achieve beam energies of the TeV order, protons have to follow several
stages of synchronised accelerations through a variety subcomponents of the CERN
accelerator complex, whose main subcomponents as of 2018 are summarised in Figure
2.2. The purpose of this section is to outline the sequence of steps followed to obtain

the high energy proton bunches that are used for high-energy collisions at the LHC.
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Figure 2.2: Schematic representation of the CERN Accerator Complex, including the the
relative placement of the experiments as well as the main elements of the LHC
accelerating chain: LINAC2, PSB, PS, SPS and the LHC ring. Figure credit to
Forthommel(CC BY-SA 3.0 license).

The process begins with the extraction of a low-energy beam of protons by filling
a duoplasmatron device [54] with gas from a hydrogen Hs bottle. Those protons are
then injected into to a linear accelerator, named LINAC2, which boosts them to an
energy of 50 MeV. The next step of acceleration occurs at the Proton Synchrotron
Booster (PSB), which receives beams split from the LINAC2 beam line and increases
their energy to 1.4 GeV using four superimposed synchrotron rings. Promptly after,
the Proton Synchrotron (PS) further splits and boosts the energy of proton bunches
to 25 GeV. The penultimate step of the chain is the Super Proton Synchrotron
(SPS) which accelerates the proton bunches to 450 GeV and injects them in opposite
directions in the LHC ring.

The main LHC machine is composed by two adjacent proton beam lines (also re-
ferred as beam pipes) kept at an ultra-high vacuum (107° — 10~!! mbar), in order
to reduce the likelihood of spurious collisions of the highly-boosted hadrons with gas

molecules. The proton trajectories are bent around the ring using a total of 1232
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super-conducting dipole electromagnets, each 15 m long and kept at a temperature
of 1.9 K using superfluid helium, capable of providing very strong magnetic fields
(up to 8.3 T for a 11.8 kA current). For collimation of the proton bunches, 392
additional quadrupole magnets are placed around the ring. Higher-order multipoles
are also interleaved to provide finer corrections of the beam direction and field geo-
metry. Additional energy is provided to the protons in each revolution using 8 radio
frequency (RF) cavities per beam line, until the protons reach the desired energy (6.5
TeV during the Run II of the LHC, which took place between 2015-2018). Given
that each cavity can provide about 60 keV per revolution, it takes about 20 minutes

of ramp time to reach collision energies.

During the whole acceleration process, specialised dipole magnets are used to keep
the beams separated at the four interactions points (IPs) and hence avoid collisions
during that time. With the purpose of maximising the interaction rates, the beams
are made more compact (commonly referred as squeezed) at the interaction region
right before switching to collision mode. Once the characteristics of the proton
beams are suitable, the quadrupoles focus the beam trajectories and collisions begin.
A stable configuration is then adopted by the LHC machine, providing about 7 keV
of energy per turn to the beam to account for synchrotron radiation losses using
the RF cavities. In the absence of problems, the proton beams are kept circling the
LHC ring and colliding at the IPs for several hours until the bunch properties are
degraded beyond correction, a period that typically is referred as a LHC fill. The
fill is terminated when some problem occurs or when all the proton bunches inside

the ring are dumped (made collide) against graphite absorbers tangent to the beam

pipes.

2.1.2 OPERATION PARAMETERS

One of the most relevant parameters for a particle collider is the instantaneous lumin-
osity Linst(t), which already appeared in Section 1.3 and corresponds to the number
of particles per unit of area per unit of time crossing each other in the interaction
volume. Given a certain physical process characterised by a cross section o, the
number of collisions n. expected to occur by unit of time, also known as the rate of

such collisions, can be expressed as:

dn,

dt

=L(t) o (2.1)
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2.1 The Large Hadron Collider

thus the luminosity £ is proportional to the number of expected interactions of
any given process. For studing rare scattering processes, corresponding to very small
cross sections o, the luminosity is a crucial factor, because it determines the expected
total amount such collisions produced per time unit. The instantaneous luminosity
at the interaction region at a given time can be estimated from the characteristics

of the proton beams as:
nz%nbfr%ﬂ

Liro =
inst 47"677,5*

(2.2)

where n, is the number of particles per bunch, n; is the number of bunches per
beam, f, is the beam revolution frequency, -, is a relativistic suppression factor, €,
is the normalised beam emittance, 8* is the transverse size of the beam, and F is
an additional luminosity reduction factor. The main contribution to the reduction
factor F comes from a small tilt of the beams at the crossing point, characterised
by the crossing angle ¢., which avoids parasitic interactions between bunches but

reduces the luminosity by approximately:

Fe <1 + @;f)) - (23

where o, is the root mean square (RMS) bunch length and o* is the RMS of the

beam in the transverse direction at the interaction volume. The peak instantaneous
luminosities per day for the different years of proton-proton data acquisition periods
(also known as runs) at the LHC are summarised in Figure 2.3, those numbers can be
compared with the peak design luminosity of the LHC of Lyesign = 1034 em 251 =
10 Hz/nb.

From Equation 2.2 it can be inferred that that value of instantaneous luminosity
varies between LHC fills depending on the beam parameters. In fact, it also varies
within a single fill with time, mainly because the number of average protons per bunch
n, decreases due to the collisions at all the interaction points. For convenience, a
quantity referred as integrated luminosity Ly that is computed by integrating over
the instantaneous luminosity for a given time period AT = t; — ty within a fill, is
used: "

L = | L(t)dt (2.4)

to
which is proportional to the number of collisions for a given process during that
period and thus can be used to quantify the amount of data acquired. When studying

data from different time periods jointly, integrated luminosity is additive, even if the
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Figure 2.3: Peak luminosity per day as measured using the CMS detector for the all the
proton-proton data-taking periods of the LHC to date. Figure from CMS Public
Luminosity Results.

beam conditions (e.g. proton density) are different as long as the beam energies are
matching. Such notion will be particularly useful when talking about the amount of

data collected by a detector during a year or a longer data acquisition period.

2.1.3 MuLTIPLE HADRON INTERACTIONS

Given the high density of protons in each bunch at the collision points, every bunch
crossing generates a few dozen proton-proton interactions, a phenomenon that is
commonly referred to as pileup. The products of all these interactions go through the
surrounding detectors at almost the same time, which complicates the interpretation
of the detector readouts as the product of a single interaction. The number of
proton-proton interactions for each crossing is effectively a random variable, however
its expected value is proportional to the instantaneous luminosity and the total
cross section of processes that produce detectable remnants in the detectors, mainly
originating from low-energy inelastic proton scattering processes.

In fact, at the collision point of one of the general purpose detectors at the LHC,
the most likely outcome of any given bunch crossing at the nominal design luminosity
of 1 x 103*em~1s~! is about 25 soft scattering interactions (i.e. ones characterised by
a low momentum transfer), producing hundreds of low energy particles all around the
collision region, as depicted in Figure 2.4. Quite rarely, given the small relative cross
section of hard scattering processes in comparison with the total scattering cross
section as discussed in Section 1.3, one of the produced interactions might involve

a large momentum transfer between partons, which is characteristic of the funda-
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Figure 2.4: Multiple interactions in a single bunch crossing as recorded by the CMS detector
during a special high-pile up luminosity at the end of 2016 [55]. The reconstruc-
ted primary interaction vertices are shown using orange circles while the yellow
lines represent the trajectories of charged particles.

mental physical processes of special interest at the LHC, such as the production of a
Higgs boson. The probability of two or more hard interactions happening in the same
bunch crossing is really low, and can be safely neglected for any practical purposes.
Nevertheless, the outcome of each hard interaction of interest will be overlapping in
the detector volume with the product of all other soft interaction that occurred on
the same bunch crossing, greatly complicating the task of event reconstruction as will
be discussed in Section 2.3. This also motivates the use of pileup mitigation tech-
niques, heavily based on accurate detectors that can extrapolate and differentiate the

primary interaction vertices of the collisions from the charged particle trajectories.

In addition to multiple hadron interactions per bunch crossing, the goal of record-
ing the outcome of a very high number of proton interactions leads to a different
experimental complication. As illustrated in Equation 2.1, a simple way to increase
the luminosity is to increase the number of total proton bunches per beam n;. This
fact is exploited in the nominal proton fill scheme of the LHC by having a total of
2808 proton bunches in each beam, corresponding to a separation between most of
the bunches of only approximately 7.5 m. Hence the time separation between consec-
utive bunch crossing is about 25 ns, which is of the same order as the response time
of many of the detector elements used at the LHC. The readout from a a particular
bunch crossing can therefore be affected by the detector occupation caused by the
previous or subsequent crossings, in what is referred to as out-of-time pileup, that
becomes an important consideration for detector design in high-luminosity environ-

ments.
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2.1.4 EXPERIMENTS

Around the collision volume at each of the interaction points, large detectors are
positioned in order to reveal and quantitatively study the outcomes of the highly-
energetic particle scattering, which can in turn be used to obtain information about
the properties of fundamental interactions. Four large particle experiments are in-

stalled at the LHC interaction points:

e ATLAS (A Toroidal LHC ApparatuS) [56]: the largest experiment at the
LHC, designed as a general-purpose detector to study the various products
of high-energy interactions, especially those of high-luminosity proton-proton
collisions. While one of the most important scientific goals of the ATLAS
experiment was to discover Higgs boson and provide a detailed study of its
properties, it was also built with the aim of extensive testing of Beyond the
Standard Model (BSM) theories.

e CMS (Compact Muon Solenoid) [57]: the other general-purpose experiment
at the LHC, sharing most of the research goals with ATLAS, but opting for
an alternative design and a different choice of detector technologies making it
considerably more compact. It is the detector that collected the data use in

the analysis in Chapter 5 and hence is described extensively in Section 2.2.

e LHCb (Large Hadron Collider beauty) [58]: operating at a lower range of
luminosity than ATLAS or CMS by deliberately separating the beams, this
experiment focusses on very accurate precision measurements of the properties
and rate decays of b-quark and c-quark hadrons as well as the search for in-
direct evidence of new physics leading to CP violation in heavy flavour physics

phenomena.

e ALICE (A Large Ion Collider Experiment) [59]: a heavy-ion collisions de-
tector, designed to study the dynamics quark-gluon plasma, a high energy
density state of strongly interacting matter, as it expands and cools down.
Such studies can lead to a better understanding of colour confinement and
other relevant QCD problems, as well as shedding some light on the processes

that occurred a few microseconds after the Big Bang.

Additionally, three smaller experiments are built around the mentioned detectors
with specific research purposes: TOTEM [60], LHCf [61] and MoEDAL [62]. Both
TOTEM and LHCf have been designed to investigate features of forward physics
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interactions, where scattering products remain the original proton trajectories, and
hence they are set up tangent to the LHC beam line at the sides of CMS and ATLAS
interactions points respectively. MoeDAL is instead built at the same experimental
space than LHCb and its main aim is to search for evidence of production of magnetic

monopoles and other highly ionising stable massive particles.

2.2 THE COMPACT MUON SOLENOID

The Compact Muon Solenoid (CMS) is a general purpose detector placed about
100 meters underground around one of the collision points of the Large Hadron
Collider (LHC) ring. It has been designed to carry out experimental research on
a wide range of high-energy physics phenomena, including searching for the Higgs
boson and studying its properties, testing alternative explanations of nature such as
extra dimensions or supersymmetry, and looking for evidence of direct production of
particle dark matter candidates.

In spite of having such ambitious research goals, the principle of operation of CMS
is rather simple, as it can be reduced to the detection of the outgoing particles pro-
duced as a result of high-energy interactions between protons and the identification
and measurement of their most relevant properties, such as momenta and energies.
These is done by putting together the information acquired by a large number of
simple detecting elements, placed in layers around the collision region. The prop-
erties and kinematics of several of those final state detected particles can often be
combined to compute observables of more complex objects, such as the invariant
mass of an intermediate particle. After collecting data from a large number of colli-
sions, a subset of relevance of the data can be compared with the expected theoretical
predictions, and statistical inference in the form of interval estimates on parameters
of interest or hypothesis testing of alternative explanations can be performed.

The CMS detector is built inside and around a large cylindrical coil of supercon-
ductive wire, forming a 6 m diameter solenoid magnet that can provide an homo-
genous magnetic field of 3.8 T. Particle detection and identification are achieved
using several layers of sub-detectors with specialised functions, almost covering the
full solid angle around the interaction region, as depicted in Figure 2.5. Inside the
solenoid volume, a particle tracker made of silicon pixel and strip detectors, a lead
tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator had-
ronic calorimeter (HCAL) are placed, each of them composed of a barrel and two

endcap sections. A large muon detection system, composed of cathode strip cham-

39



2 Experiments at Particle Colliders

bers (CSC), resistive plate chambers (RPC) and drift tubes (DT), is embedded in the
steel flux-return yoke outside the solenoid. Furthermore, extensive forward calori-
metry complements the coverage provided by the barrel and endcap sections. A more
detailed review of the detection principles and capabilities for each detector com-
ponent are included in the following sections, yet the detector performance technical

design report [63] and references therein are recommended for a more comprehensive

account.
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Figure 2.5: Cutaway view of the CMS detector, based on a three-dimensional representation,
an highlighting the main detecting systems and characteristics. The image has
been adapted from [64].

2.2.1 EXPERIMENTAL GEOMETRY

Given the geometry of the detector, the coordinate system used is centred at the
nominal interaction point inside the detector. The x axis point inwards towards the
LHC ring origin, while the y axis points vertically upward toward the terrestrial
surface. The z axis is thus tangent to the beam line, increasing in the counter-
clockwise direction when looking at the LHC ring from above. Considering the
expected symmetries for particle production, spherical coordinates are a convenient

representation, where ¢ is the angle from the z axis in transverse plane (i.e. z-y
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plane), and @ is the polar angle with respect to the LHC plane using a sign convention

consistent with the previous definition of the z and y axes.

As mentioned before, particle momentum is the main observable of the detected
particles. The energy is simply a function of the momentum and the mass of the
particle, as shown by the relation E? = p? 4+ m?, expressed in natural units (¢ = 1).
Because the z and y momentum components are insensitive to the initial state boost
in the z direction due to the stochastic differences in parton momenta in the initial
state, and are measured more accurately as a result of the design of the detector,
it is common to refer separately to the total transverse momentum quantity pr =
/D2 + pg = |p|sin@ and its transverse plane angle ¢. While the z component of
the momentum could be specified directly either by using p, or by the angle 6, the
differences of any of those observables between two particles detected on an event
depend on the initial parton state boost 8 on the z direction, which varies between
different collisions and it is hard to estimate precisely in the laboratory frame of

reference.

Since the dependence on the initial state z boost would complicate the statistical
analysis and the definition of derived observables, an alternative observable is used.

The rapidity vy is defined as:

1 E
y=—1In +Ps (2.5)
2 E — Dz

and its value under a z-axis boost [ is easily obtained by adding an additive factor
y' =y — tanh™'3. Hence differences in rapidity between two particles in a collision
Ay = |yp — Y| are invariant to Lorentz boost in the z direction. Because the rapidity
depends on the total energy /momentum of the particle, which might not be possible
to measure with high precision in hadron collider detectors, it is more suitable to

approximate it. The approximation is referred to as the pseudo-rapidity n, and can

be defined as: . 0
_ 1+ p+p: . v
77—21n<E_p2> —ln<tan2> (2.6)

that only depends on the polar angle 8 with respect to the LHC plane. The pseudo-

rapidity 1 is equal to the rapidity y for massless particles, and is a very effective
approximation in the highly-relativistic limit, when E > m. It is useful observing
that for particles produced in the transverse plane (i.e. § = 7/2), their pseudo-
rapidity is n = 0. Instead, in the limit of fully forward particles, when § — 0 or
0 — m, their pseudo-rapidity becomes n — 400 and 1 — —o0, respectively.
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Oftentimes, angular distances between two particles are very useful observables in
an collision to cluster observed particles or isolate interesting collisions. The distances
between two particles, indentified with a and b subindexes, in the transverse A¢ and

forward direction Az can be computed as:

A¢ = min(|dy — dal,2m — |¢p — ¢al) and  An = |n, — nal (2.7)

while the total angular distance AR between the two particles is instead defined as:
AR = (A7) 1 (B9)? (2.8)

which is invariant to boosts in the z direction in the highly-relativistic limit, and
is particularly practical to cluster the products of the hadronization of quarks and

gluons as detailed in Section 2.3.

2.2.2 MAGNET

The purpose of the CMS magnet is to curve the trajectories of charged particles
coming out the interaction region, so their transverse momenta pr can be accurately
estimated, and the sign of their charge determined. In order to understand how such
momentum measurement can be carried out, let us assume a solenoidal magnetic field
that is fully homogenous and pointing in the z direction B = B3. Due to Lorentz
force, a particle with a transverse momentum pp and a forward momentum p, would
describe an helicoidal trajectory, where the curvature radius in the transverse plane

r7 and the transverse momentum are related:

rp = % —  pr[GeV/c] = 0.3 - gle] - B[T] - rp[m] (2.9)
where ¢ is the particle charge, and the second equation corresponds to a simplification
using units denoted inside the brackets adjacent to each quantity (e are electron
charge units). This simple proportionality relation indicates that the higher the
momentum of a particle, the larger its radius of curvature. Furthermore, the direction
of the curvature is determined by the sign of the particle charge. For more realistic
scenarios, like the magnetic field not being completely homogenous or the particle
momentum decreasing along its trajectory due to interaction with the detecting
elements, Equation 2.9 is only an approximation and the trajectory path can be

obtained by solving the relevant differential equation.
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In the case of CMS, the magnetic field is generated by a large superconducting
solenoid, contained inside a hollow cylinder about 13 m long and with an outer radius
of 3 m. Very high currents, up to 19 kA, circulate along NbTi wires kept at 4.5 K
using a liquid helium cooling system, providing an almost homogenous field at the
centre of the solenoid up to 3.8 T in the z direction. In addition to the solenoid,
the magnetic flux lines are closed by a 10000 ton return yoke, composed by a series
of magnetised iron blocks interleaved with the muon detectors in the outer part of
CMS, providing a magnetic field about 2T in the opposite direction. The remaining
elements of the CMS magnetic spectrometer, referring to the detector systems used

to estimate the curved particle trajectories are reviewed in Sections 2.2.3 and 2.2.6.

2.2.3 TRACKING SYSTEM

The inner tracking system is the detector that is the closest to the interaction point,
and its functions include the estimation of the charged particles trajectories, used
to provide a measurement of their momenta as described in Section 2.2.2; as well as
allowing the positional determination of interaction or decay vertices by extrapolat-
ing the trajectories inside the interaction region. The detection of charged particle
trajectories, or tracks for short, is carried out by several silicon detector layers placed
non-uniformly around the collision volume, as shown in Figure 2.6. The placement
of layers is symmetric in ¢, the outermost layers contained within a supporting cyl-

indrical structure of 2.5 m of diameter and 5.8 m of length.
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Figure 2.6: Cross sectional view of the CMS detector inner tracker detector in the r — z
plane, detailing the position of detecting layers as well as the main detector sub-
components. The tracker is approximately symmetric around r = 0, so only the
top half is shown. Figure has been adapted from [65].
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The detector is composed of two main parts: a silicon pixel detector system situ-
ated very close to the interaction point and a much larger strip detector arrangement
placed outside the former. The disposition on the detecting layers allows to detect
tracks within a pseudo-rapidity range defined by |n| < 2.5. Both systems have to
deal with the efficient tracking of hundred of charged particles, at a rate of 40 MHz,
produced from each bunch crossing. A successful apparatus in such a environment
requires a short response time, as well as to be composed of many small detecting
elements. The latter property is commonly referred as high granularity, and allows
to keep the number of detected track points (i.e. hits) per detector unit at acceptable

levels.

Being so close to the collision region, the set-up has also to sustain very high
particle fluxes during long periods of time, up to 1MHz/mm? at the first pixel layer.
Therefore, resistance to radiation damage of the detecting elements and the accom-
panying electronics, dubbed as radiation-hardness, is an essential specification. Addi-
tionally, the amount of material present in the particle trajectories has to be kept to
a minimum, to avoid stochastic secondary interactions that would degrade the preci-
sion and efficiency of track determination. The use of silicon semiconductor detector
technologies [66] in the CMS tracking system is thus motivated by a combination of
all previously mentioned reasons. In total, the CMS tracking system is composed
of 1440 pixel detector modules and 15148 strip detector modules, accounting for an

active area over 200m?2.

The pixel detector, the innermost detecting system of the CMS experiment, is
comprised by a total of 66 million silicon cells placed in 1440 modules around the
collision region. Each pixel cell has an area of 100x 150um? and a thickness of 285um,
providing two-dimensional local track hit coordinates with a resolution around in
the cell surface plane about 20 pm, that can in turn be used to compute the global
three-dimensional hit location with high accuracy after accounting for the precise
location of the detecting module. As depicted in Figure 2.6, the pixel detector
is composed by three barrel layers (i.e. placed around the collision region in an
cylindrical arrangement), located at radii of 4.4 cm, 7.3 cm and 10.2 cm respectively,
and two forward disks at each side at distance of 34.5 cm and 46.6 cm from the

nominal interaction point.

The rest of the tracking system, placed outside the pixel detector, is constituted
of several silicon strip detector modules organised in four different sub-detectors,
referred as TIB, TID, TOB and TEC in Figure 2.6. The inner part of the strip

tracker, adjacent to the pixel detector, is composed of four barrel layers of strip
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modules constituting the tracker inner barrel (TIB) section, and three module layers
arranged in disks at at each side forming the tracker inner disk (TID). Further away
from the interaction region, the outer strip tracker, comprising of six barrel layers
in the tracker outer barrel (TOB) and nine disks at each side forming the tracker
endcaps (TEC). The strip specifications varies depending on the sub-detector, with
thicknesses ranging from 320 um to 500 um, and pitches (i.e. distances between strips)
from 80 pm to 184 pum.

The strips are placed longitudinally parallel to the beam line in the barrel modules
and radially in the perpendicular plane in the endcap disks, with silicon strip lengths
ranging from 10 cm to 20 cm, and in an overlapping tiled setting (see Figure 2.6)
Each strip layer provides a single local coordinate for a particle track hit, aligned
with ¢ both the barrel and the endcap disk. A second coordinate can be easily
obtained taking into account the placement on the module, thus obtaining the r
coordinate in the barrel and z in the endcap disks. In order to provide information
on the unknown coordinate in each case, some layers of the tracker (in blue colour
in Figure 2.6) are composed of two modules instead on one, with a small tilt of 0.1
rad that allows to obtain a precise 3D coordinate for a track hit by combining the

two local coordinates and their module positions.

2.2.4 ELECTROMAGNETIC CALORIMETER

The function of the CMS Electronic Calorimeter (ECAL) is to measure the total en-
ergy of the electrons, positrons and photons that reach that part of the detector, by
means of their electromagnetic showers. In order attain such task, scintillating lead
tungstate PbWQy transparent crystals are placed inside the solenoid magnet, right
outside the tracking system, covering the solid angle around the interaction point as
depicted in Figure 2.7. When a high energy electron or a positron enters the dense
crystal material, it rapidly decelerates and emits photons through bremsstrahlung
radiation. High energy photons from electron/positron deceleration or directly com-
ing from the collision region produce positron-electron pairs through matter inter-
action, that in turn radiate more photon through bremsstrahlung processes. These
chain of processes, referred as electromagnetic shower keeps occurring until the en-
ergy of the photons goes below the pair production threshold or the energy loss of
the electrons/positrons happens through alternative mechanisms. The resulting low
energy photons from the electromagnetic shower produce visible range light in the
scintillating but transparent crystal, which is detected, amplified and collected by
photodetectors placed at the end of each lead tungstate crystal.
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Figure 2.7: Cutaway view of the CMS electromagnetic calorimeter, based on a tree-

dimensional model of the detector geometry. The placement of the lead tungstate
crystal is shown for part of the barrel and endcaps. The figure has been adapted

[67].

from
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The ECAL is composed of two main parts, the barrel calorimeter (EB) section cov-
ering pseudo-rapidities up to |n| < 1.479, and two symmetrically positioned endcap
calorimeters (EE) further extending the coverage to || < 3.0. The trapezoid-shaped
crystals are placed radially around the collision region, a total of 61200 blocks in the
EB and another 7324 blocks for each EE part. The sides facing the IP in the barrel
section have dimensions of 22 x 22 mm? and a length of 23 cm, while the front-facing
sides of those in the endcaps are slightly larger at 28.6 x 28.6 mm? with a length of
22 cm. The advantages of using lead tungstate crystal include its very short radi-
ation length Xy = 0.89cm - which characterises the longitudinal energy loss profile
E(E) = Ege®/% - as well as its small Moliere radius of 2.19 cm - defining the radius
containing average transversal radius containing 90% of the shower energy - leading
to narrow showers which contribute to improved position and energy resolution. The
lengths of the crystal blocks in the EB and EE amount to 25.8&; and 24.7Xp, which
ensures that all the energy is effectively deposited inside the detectors.

Another advantage of lead tungstate crystals is that PbWOy is also a scintillating
material, thus the resulting shower energy is absorbed and partially emitted back as
visible light, with a yield spectrum maximum in the blue-violet range around 430
nm. The reemission process is also very fast, since about 80% of the scintillating light
is emitted within 25 ns of absorption, which is the time until the next LHC bunch
crossing occurs. The scintillator light propagates effectively through the crystal due
to its high transparency, and reaches the photodetectors attached to the end of the
crystal trapezoids. Avalanche photodiodes (APD) are used for light detection and
amplification at the barrel crystals while vacuum phototriodes (VPT) are used for the
endcaps, given their different radiation hardness and sensitivity to magnetic fields.

In addition to the EE and EB, a sampling detector referred as pre-shower elec-
tromagnetic calorimeter, based on two layers of lead absorber followed by two layers
of silicon strip detectors, is placed right before the lead tungstate crystals in the
endcap to provide higher granularity in the forward region. The main purpose of the
pre-shower extension is to distinguish high-energy photons coming directly from the
collision region and high energy neutral pions that have decayed into two closely-

spaced photons.

2.2.5 HADRONIC CALORIMETER

The purpose of the hadron calorimeter (HCAL) is to measure the energy and position
of all long-lived neutral or charged mesons and baryons produced as a result of the

collision, typically including pions, kaons, protons and neutrons. The main detecting
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elements of this sub-detector are an assortment of sampling calorimeters, interleaving
brass plates as absorber material and plastic scintillator tiles as active medium; the
former causing the deposition of energy in the form of secondary particles by means
of interactions with the material nuclei and the latter converting a part of that energy
to visible light. The light from each tile is captured by a thin optical fibre and carried
to a photodetector, producing an electric signal that can be used to measure the total

amount of deposited energy once it has been carefully calibrated.
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Figure 2.8: Cross sectional view of the CMS hadronic calorimeter (HCAL) detector in the
r — z plane, depicting the positioning of the various detector segments relative to
the beam line and the solenoid magnet. The HCAL is symmetric around r = 0,
so only the top half is shown. The figure adapted from [68].

The different segments of the CMS HCAL are shown in Figure 2.8. The barrel
section of the hadronic calorimeter (HB) as well as two endcap sections (HE) at
each side are placed after the ECAL but still inside the solenoid volume, providing
pseudo-rapidity coverages of |n| < 1.3 and 1.3 < |n| < 3.0, respectively. Both the HB
and HE sections are composed of a stack of brass plates with plastic scintillator tiles
in between, providing a total of 5.6A; at n = 0 and 11.8\; at n = 3, where \; is the
hadronic interaction length. Given the limited space inside the solenoid and the fact
that about 11); are required to absorb about 99% of the total energy of the hadrons
at the expected energy ranges, the hadronic calorimeter system is complemented by
an outer detector (HO) outside of the solenoid. The HO is composed of five rings
of scintillator tiles, effectively using the solenoid material as absorbing material.
Because the absorbing material path length is shorter around n = 0, the central
ring is shielded by large iron plates and an additional layer of scintillating material,
yielding a total absorber length over 11.8\; and therefore improving its measuring

capabilities.
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Over 70000 thin plastic scintillator tiles are placed between and after absorber
plates. The size of those plates depends on their geometrical placement and are
aligned according to their angular coordinates between layers, so each longitudinal
projection corresponds to an approximate area An x A¢ = 0.087 x 0.087 within the
HB coverage region and An x A¢ = 0.17 x 0.17 outside it. When secondary particles
go through the scintillating tiles, part of the energy is absorbed and promptly released
as violet-blue visible light, over 65% of the total amount of emitted light within 25 ns.
The light is collected and guided through thin optical wavelength-shifting fibres that
change the light to the green spectrum region, then through standard optical fibres
until reaching readout boxes that contain hybrid photodiodes (HPD). The optical
signal for each alignment of tiles are added optically to a single readout for most of
the radial projections, with the exception of those in the intersections between the
barrel and endcaps, that are kept in two or three separate channels in order to ease

calibration procedures.

The last element in the HCAL system is the forward hadronic calorimeter (HF),
situated 11.15 m at each side of the interaction point, adjacent to the beam pipe, and
providing detection capabilities for particles with pseudo-rapidities in the range 3.0 <
In|] < 5.2. The HF greatly increases the pseudo-rapidity energy measurement for
charged and neutral particles, allowing a near hermetic (full solid angle) coverage, and
hence allowing the estimation of missing energy in the event such that corresponding
to neutrinos leaving CMS undetected, as will be discussed in Section 2.3. Because
the radiation fluxes are extremely high in the forward region and there are no depth
constraints, a different detector design is used, based on 165 cm of steel absorber
plates and quartz fibres aligned of the z-axis, each with an effective detecting area
of An x A¢p =0.17 x 0.17.

The fibres running along the HF detect and guide the Cherenkov light of the
charged secondary particles produced in the showers to photomultipliers tubes (PMT)
placed behind a 40 cm thick steel and polyethylene shield. In this pseudo-rapidity
range, the HF serves also as an electromagnetic calorimeter. The HF detector has
been designed in a specific way to disentangle the energy contributions from electro-
magnetic and hadronic showers, which is useful for many physics data analyses use
cases. Only half of the fibres start close to the face of the absorber plates closest to
the IP, the rest starting at a depth of 22 cm. By comparing the readouts from the
long and short fibres the type of shower can be inferred, given that electromagnetic

showers are much shorter than hadronic showers.
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2.2.6 MUON SYSTEM

The scientific objective of the CMS muon sub-system, or outer tracker, is to identify,
determine the charge and measure the momenta of high energy muons, which are
the only type of charged particles capable of passing through all the other detector
systems without a significant energy loss. While their trajectories can be detected in
the inner tracker, the amount of energy loss due to bremsstrahlung is much smaller
than those of electrons or positrons due to its much heavier mass (given that the
emission probability scales with 1/m?) and hence the do not deposit a significant
fraction of their energy in the ECAL or the HCAL. The simplest way then to aug-
ment the amount of information about muons obtained from the tracker is to place
additional tracking detectors outside the solenoid, while sustaining a high magnetic
field that can curve the muon trajectories by using large blocks of ferromagnetic

material as flux-return yokes.
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Figure 2.9: Cross sectional view of the layout of CMS detector in the r — z plane, focussing
on the components of muon system. The detector is symmetric around r» = 0
axis and the z = 0 plane, so only the top quarter is shown. Figure adapted from
[69].

The muon system is the most external sub-detector of CMS and it is based on
gaseous tracking detector technologies, given the enormous volumes covered. The
principle of action of gaseous detectors is rather simple: charged particles passing
through the gas ionise gas molecules in their path, which start moving due to a
high electric field between conducing wires, producing an electrical signal that can
be read out. The time dependence of the signal on the different readout wires is

used to infer the particle trajectory with high precision, and in some cases built-in
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signal amplification can be achieved due to secondary ionisation by the choice of a
gas mixture combined with high electric field gradients.

An overview of the various detectors of the muons system and their geometrical
placement around the solenoid magnet cylinder is depicted in Figure 2.9. Due to
a combination of criteria regarding uniformity and strength of the magnetic field,
expected radiation fluxes and signal readout times, three different types of gaseous
detectors are used: drift tubes (DT), cathode strip chambers (CSC) and resistive
place chambers (RPC). In the barrel section where the particle flux is not expected
to be very high, four layers of drift tubes (DT) are arranged cylindrically around the
solenoid magnet, covering a pseudo-rapidity range |n| < 1.2. On the endcap section
instead, due to higher radiation fluxes and magnetic field non-uniformity, multi-wire
cathode strip chambers (CSC) are used, with a detecting pseudo-rapidity coverage
of 0.9 < |n| < 2.4. Both DT and CSC detectors can achieve very high position
resolution, but their signal readout time and time resolution is not as good, thus a
series of fast resistive plate chambers (RPC) are positioned both in the barrel and

the endcap sections, up to pseudo-rapidities |n| < 1.6.

2.2.7 TRIGGER AND DATA ACQUISITION

As discussed in Section 1.3, the occurrence of relevant processes that may provide
information about the physical properties of fundamental interactions in proton-
proton collisions is purely stochastic given some initial conditions, plus their relative
frequency is very rare compared with known phenomena. In order increase the
expected chances of recording interesting phenomena, the LHC collides 40 million
high-density proton bunches every second inside the CMS detector. Furthermore, as
discussed in Section 2.1.3, tens of proton-proton interactions typically happen within
each bunch crossing. The CMS sub-systems are hence detecting a good fraction of
100s of particles produced as a result of the interactions at each bunch crossing, in
addition of being subjected to instrumental noise or external radiation sources such
as cosmic rays.

The combined readout of all sub-detectors each 25 ns amounts to a large data
size, due to the total number of sub-system channels, even if efficient techniques
for representation and compression of information are used. Given that technical
limitations on the amount of data that can be recorded exist, a practical choice for
data acquisition is to keep only the detailed detector information of collisions that
could be maximally useful to study the properties of fundamental interactions in

subsequent data analyses. The decision system that makes the choice of whether to
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record or filter out the detailed detector readouts for a given collision, is commonly
referred as trigger, and is based on a fast and possibly asynchronous analysis of
those readouts. In particular, such decision criteria is typically focussed on the most
relevant properties of one or a subset of detected particles, such as their type, charge
or the magnitude and direction of their momenta.

A flexible and sparse representation of all CMS detector readouts for a given
collision that keeps sufficient information for detailed analyses is of the order of a
few megabytes (i.e. O(1) MB). Because of the technical capabilities of the storage
system, the total data acquisition rate is limited to less that 10 Gb/s, hence the
trigger system has to reduce the rate of collision readouts from 40 MHz to about 1
kHz. As a compromise between processing speed and requirement adaptability, the
trigger system of CMS is divided in two stages: the level 1 trigger (L1), which is a
custom-hardware based solution that reduces the detector readout rate to 100 kHz,
and the high-level trigger (HLT'), a second step reducing it to the required 1 kHz and

that is instead carried out by a commodity computer farm.

2.3 EVENT SIMULATION AND RECONSTRUCTION

The raw account of the readout of all detectors after a single bunch crossing, as well
as any derived representation of it, is commonly referred to as an event, and is the
most fundamental type of observation in high-energy data analyses. All approaches
to extract useful conclusions from CMS data are based on this information unit
or simplifications thereof. This is because for practical purposes, statistical inde-
pendence between events can be assumed, barring possible caveats (e.g. out-of-time
pile-up or detector malfunctioning). Therefore, data analyses are reduced to the task
of comparison between the observations and the predicted frequencies of events with
different characteristics.

The dimensionality of an event evidently depends on its data representation, sim-
pler representations being lower-dimensional and easing the comparison with theor-
etical predictions, at the cost of possibly losing some useful information. A principled
way to obtain lower dimensional representations of an event given its raw detector
readouts is to attempt to reconstruct all the primary particles that were produced
in the main proton-proton interaction of the collision and estimate their main prop-
erties, through a process generally referred as event reconstruction. Nevertheless,
for carrying out successfully the aforesaid task it is convenient to be able to have a

detailed model of the detector readout output expected for a given set of particles
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produced in a collision. Realistic modelling of high-energy physics collisions in high-
dimensional representations can be achieved through simulation.

In this section, a generative view of the main physical mechanisms that are hap-
pening both in the proton-proton collisions and when particles propagate through
the CMS detector is first discussed. Such overview doubles as an introduction of the
next section, where a description of how realistic simulations of the detector readouts
(i.e. events) can be obtained using computational tools is provided. Afterwards, the
inverse process is tackled, which is considerably harder and often ill-defined, namely
how can we estimate the set of primary particles that were produced in the collision

given the detector readout, through event reconstruction techniques.

2.3.1 A GENERATIVE VIEW

When two high-density proton bunches travelling in opposite directions pass through
each other inside the collision region of CMS, several proton-proton interactions can
occur as discussed in Section 2.1.3. While most of the interactions will correspond to
a small energy transfer between the interacting partons, given that the total interac-
tion cross section is heavily dominated by soft scattering processes, a small fraction
of collisions would include physically interesting process such as the production of
heavy particles (e.g. a Higgs boson). The absolute and differential rates for such
hard processes can be predicted as outlined in Section 1.3.3. Therefore, for a spe-
cific process in a proton-proton interaction, realistic high-dimensional modelling of
the intermediate particles can be obtained by repeated sampling of the parton dis-
tribution functions and phase space differential cross sections. Subsequent decay,
hadronization and radiation processes as well as more subtle effects and higher or-
der corrections, can be then accounted for using the methods mentioned in Section
1.3.4, generally referred to as Monte Carlo event generation techniques. The end
result of the mentioned procedures is a large dataset of simulated particle outcomes
for a specific process, each example including a set of stable or sufficiently long-lived
particles and their kinematics properties that would propagate through the detector.

In addition to the set of particles in the hard proton-proton interaction, the effect
of pileup interactions can be accounted for by adding the particle outcome of a
random number of randomly sampled soft interactions matching their approximately
expected distribution in the collisions given the instantaneous luminosity conditions.
This final set of long-lived particles produced in the interaction region represents
a possible particle outcome for a collision assuming a given hard process occurred.

While they cannot be directly observed, but only indirectly inferred through the
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Figure 2.10: Transverse view of a section of the CMS detector and the interactions of the
various particle types with the detecting sub-components. The figure has been
adapted from [70].

detector readouts, it is assumed that an analogous set of particles is produced as
result of each collision in the actual experiment. Based on the expected readout
that they produce in the different CMS detector subcomponents, five main types of
detectable particles are distinguished: muons, electrons, charged hadrons, neutral

hadrons and photons.

The traces that each of the mentioned particle types leave in each detector sub-
system are depicted in Figure 2.10. Even though muons are unstable particles, their
long mean lifetime 7, = 2.2us allows them to travel very large distances when highly
boosted, as is the case for all the high-energy muons coming out from the interaction
region. Hence, for the purposes of studying LHC collisions they can be considered
stable, given the unlikeliness of their decay in the detector volume at the range of en-
ergies studied. Because muons are charged particles, they leave hits in detector layers
of the inner tracker following their curved trajectories However, due to their high
mass, energy loss due to bremsstrahlung is not high enough to produce significant
EM showering in the ECAL. After passing through the HCAL without interact-
ing notably, muons reach the outer tracking system providing additional trajectory

points.

The trajectories of high-energy electrons are also recorded by the CMS inner
tracker, but as mentioned in Section 2.2.4, their interactions differ from those caused

by muons because electrons lose energy rapidly due to bremsstrahlung when they
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reach the ECAL, producing subsequent electromagnetic showers. It is worth not-
ing that within CMS reconstruction and analysis, it is common to simply use the
term electron to refer both to electrons and positrons, their charge inferred from the
curvature sign of their trajectories. Charged hadrons, the term here largely referring
to charged pions, kaons and protons, behave similarly to electrons in the tracking
detector! but instead generate much larger hadronic showers in the hadronic calori-
meter.

Long-lived neutral hadrons, including neutrons and the neutral kaon Kg, follow
instead straight lines in the inner detector volume because they are not affected by the
magnetic field neither leave any traces when passing through the tracking detectors.
It is not until neutral hadrons reach the calorimeter detectors, chiefly the HCAL, that
nuclear interactions produce large hadronic showers producing measurable signals
that can be correlated with the energy deposited. Photons are massless and neutral
particles, and at the ranges of energies of interest characteristic of the outcome of
particle collisions at the LHC are not expected to deposit enough energy in the thin
inner tracking layers to produce significant signal, thus they also follow a straight
line trajectory to the calorimetry sub-systems. In contrast, when photons reach the
electromagnetic calorimeter, electron-positron pair-production processes are bound
to occur, producing in turn electromagnetic showers which can be readout as a ECAL
detector signal.

The previous classification of particles based on their detectable energy remnants
in the different detectors, patently disregards a common outcome of high energy col-
lisions: neutrinos. Neutrinos only interact via weak and gravitational forces, hence
the probability of interaction with the detecting elements of CMS is negligible. They
thus escape the experimental area undiscovered. The production of high-energy neut-
rinos, or other weakly-interacting unknown hypothetical particles (e.g. dark matter
candidates), can nevertheless be inferred by the total transverse energy imbalance.
While the initial longitudinal momentum in the laboratory frame is unknown due to
the proton compositeness, the initial total transverse momentum is very close to zero
given that the collisions occur head-on. Because detecting structures of CMS have a
near complete angular coverage around the interaction points, with the exception of
very low transverse momentum particles that are lost near the beam pipe, the total
transverse collision momentum of all detectable particles can be obtained simply by

summing the estimation of their transverse momenta estimation. Ergo, the quant-

!Tracks from electrons and positrons are different due to bremsstrahlung, the radiated photons
often recovered in the ECAL.
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ity EXss = || — 3" pr|| is referred to as total missing transverse energy or by the
acronym MET, and can be used to infer the production of non-detected particles
particles such as neutrinos.

In summary, the physical characteristics of each category of particle previously
stated cause different signatures in the various detector sub-systems, that often can
be used to distinguish between each type. It is also worth pointing out the main
attributes each individual detector element readout, which are principally the an-
gular position in 7 and ¢, the distance to the interaction point which is given by
the detecting element placement or the z coordinate, and the amount of deposited
energy. The latter is especially relevant for calorimeter detecting units. The pre-
cision of the angular location coordinates greatly varies between different detector
types depending in their granularity, tracking detectors providing more accurate po-
sition measurements given that they extract information directly from the particle

trajectories.

2.3.2 DETECTOR SIMULATION

While the simplified map between the particle outcome of a given collision and the
corresponding detector readouts presented in the previous section is extremely useful
for obtaining a general understanding the operation of the CMS detector, it is not
detailed enough to realistically model the detector readouts given a set of particles
generated in a collision. Most of the relevant dynamics for modelling, such as in-
teractions between protons, the produced particles and the detector material or the
detector response, are of stochastic nature, hence they have to be specified either by
sampling approximated probability distributions or by a complex probabilistic pro-
gram that goes through a mechanistic simulation of the underlying physical processes
actually occurring.

A detailed simulation is found to be the most accurate approach, given the many
subtleties affecting the detector readout for a given set of generated particles, includ-
ing various possible particle decays and material interactions that can occur when the
particle is travelling through the detector, the non-uniformity of the magnetic field
and its effect on the particle trajectories, and the intricacy of the detector geometry
and the electrical response of its components. All these effects can be accounted for,
to a high degree of validity, in a simulator program considering the non-deterministic
propagation of the particles produce through the detector volume. The propagation
of each particle through magnetic and electric fields can often be treated independ-

ently though a stochastic chain of time steps, that can an any point branch out to
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produce new particles through decays and other secondary particle generating phys-
ical processes, so local energy deposits in the different detector structures can be
recorded. After propagating all particles, the combination of all energy deposits in

the detecting volumes can be used to produce realistic detector responses.

Such type of detector simulation is referred to as full simulation, or fullsim for
short, and it is carried out for CMS generated events using a custom implementation
of the geometry, properties and response of the different detectors as well as the
magnetic field details, heavily reusing components from the GEANT4 toolkit [71]
for the simulation of the passage of particles through matter. Additional modules
are used to incorporate relevant modelling details such as the distribution of the
interaction vertices in the interaction region, referred to as vertex smearing, and the
addition of particles coming from additional soft interactions in the same collision
or from adjacent bunch crossings, denoted as pileup mizing, which can affect the
readouts and subsequent interpretation due to the overlapping of detector deposits

and detector sensitivity dead-times.

As can be conjectured by its level of detail, such simulation processes are very
time consuming, taking several minutes of CPU time given currently available com-
puting technologies, for producing a realistic detector readout for each initial set
of particles produced at a primary hard interaction. Given that oftentimes billions
of generated events (i.e. simulated observations) of common processes are needed
in order to obtain a realistic modelling of known types of interactions, alternative
simulation techniques are sometimes used. By trading off some accuracy with simu-
lation speed, the modelling of the physical processes and detector responses can be
simplified, reducing running times considerably, up to two orders of magnitude [72].
Alternatively, as initially stated at the beginning of this section, detailed simulated
observations can be used to directly parametrise low-dimensional summaries of the
detector readout, such as the reconstructed main quantities that will be presented
in the next section, by using approximate conditional probability density functions.
While this approach, implemented in software packages such as DELPHES [73], is
limited by the flexibility and accuracy of the modelling of the conditional probabilit-
ies, it is very useful as a very fast substitute of the full simulation chain for simplified
studies that aim to obtain an approximate estimate the expected sensitivity reach
or measurement accuracy of a given analysis. Peripherally related with the focus of
this work, the use of unsupervised machine learning techniques structurally similar
to those describe in Section 4.2.2 is being investigated to provide a fast simulation

alternative without relying in a simplistic parameterisations |74, 75].
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2.3.3 EVENT RECONSTRUCTION

In the previous sections, the generative mechanisms by which particles produce sig-
nals in the different detectors, as well as the techniques used to procedurally simulate
them with high fidelity, were summarised. In contrast with simulated events, the set
of underlying particles that were produced in the interaction region, and subsequently
detected, are not known a priori in real collisions. A very helpful task to understand
the nature of the fundamental interaction that likely happened in a collision is to
infer the type and properties of the particles that were probably produced on a given
collision given the detector output. Such procedure is generally referred to as event
reconstruction. The underlying problem for achieving such goal is the assignment of
detector readouts to the produced particle. This is not a simple problem, because the
total number or the relative multiplicities of the different particle categories in a given
event is unknown and variable, however expected to be large given the high-energy

and luminosity conditions of proton-proton collisions.

RECONSTRUCTION AT CMS: PARTICLE-FLOW ALGORITHM

A hierarchical strategy is followed to perform event reconstruction at the CMS ex-
periment. First, the combined properties of small groups of low-level readouts for
each sub-detector in each collision are used to construct higher-level summaries that
distill the information regarding the origin, direction or energy of the particles. In
a second step, such high level constructs are linked by an algorithm based on the
expected properties of each particle type, to obtain a list of physics objects and
their relevant attributes, which would probably correspond to those that actually
were generated in the collision. Such approach, that is referred to as particle-flow
(PF) event reconstruction [70] within CMS, has proven very effective to obtain a
lower dimensional transformation of the detector readout that greatly simplifies the
interpretation and categorisation of events based on their particle content.

As mentioned before, the first reconstruction stage encompasses the combination
of detector traces in each sub-detector system to create higher level constructs. In
the tracking detector, this amounts to the association of location estimates for the
signals detected in all layers of the pixel and strip detector, referred to as hits, to
trajectories of charged particles, simply called tracks. This inverse measurement
problem is approached in CMS by using a combinatorial extension of the Kalman
Filter algorithm [76, 77, 65]. In broad terms, the algorithm starts by selection sets of

two-hit and three-hit associations from the inner layers, referred to as seeds, which
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are then extrapolated outwards and used to gather hits in the the other layers by
consecutive prediction and update steps, keeping all combinations that are deemed
compatible. An additional step is then carried out, that filters out all candidate
tracks under some pre-defined quality threshold and removes possible duplicates.
Once the set of hits that define each track are found, their parameters are fitted
again using a more detailed prediction step in the Kalman filter, thus obtaining

more accurate estimates for their origin, momentum and direction.

The reconstructed charged particle trajectories can be used to identify the spatial
locations where proton-proton interactions occurred in each bunch crossing, dubbed
primary vertices, by extrapolating them back to the collision region and looking
for overlapping subsets. In practice, a custom algorithm for vertex adaptive fitting
[78] is used in combination with deterministic annealing, to identify and compute
the vertices location and their uncertainty more accurately. Most primary vertices
correspond to soft scattering processes (pileup), and can be used to characterise the
position and size of the interaction region. In collisions where a hard interaction
occurs, the main primary vertex may effectively be identified with the one whose
linked tracks transverse momenta squared sum Zp% is the largest. The distinction
of a main primary vertex is useful to mitigate the effect of pile-up interactions in

reconstruction by removing the contributions from particles linked to pileup vertices.

Regarding the calorimeter detector readouts, the initial step comprises the cluster-
ing of low-level deposits in each sub-detector, so as to identify the energy remnants
left by each individual particle. The clustering procedure starts by finding the calor-
imeter cells where the amount of deposited energy are local maximal, referred to as
seed deposits. The deposits from contiguous energy cells are grouped together until
their energy is smaller than twice the expected noise level, forming larger groups
referred to as topological clusters. Because such clusters might be the result of the
overlapping of the energy deposited by two or more particles, the final clusters are
identified by fitting a Gaussian-mixture model via the expectation-maximisation al-
gorithm, using the number of initial seeds present in the cluster as the number of
Gaussian components in the mixture. The fitted cluster amplitudes are thus ex-
pected to be heavily correlated with the energy deposited by an individual particle,
however extensive calibration based on a detailed simulation of the detector and
the assumed particle type is needed for accurate energy estimates. The resulting
calibrated clusters in each sub-detector (ECAL, HCAL and HF) is instrumental for

improve the energy measurement of charged hadrons, identifying and measuring the
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energy of neutral hadrons and photons, and to facilitate the identification and re-
construction of electrons.

Once the basic elements for event reconstruction have been constructed, charged
particle tracks and calorimeter clusters are linked together to form blocks. This step
is an attempt to group the different traces that particle can leave in the various sub-
detectors, by linking pairs of elements based on their distance in the (1, ¢) plane and
other properties depending of the specific sub-systems considered. When considering
links between the inner tracker and calorimeter clusters, the curvature of the tracks
and other details regarding the detector geometry are taken into account. Calori-
meter cluster-to-cluster links between the HCAL and ECAL, and between the ECAL
and the pre-shower clusters are also sought. Additionally, ECAL clusters possibly
created by bremsstrahlung photons can also be linked to electron-like tracks if they
are consistent with an extrapolation of the track tangent. Finally, links between two
tracks due subsequent photon conversion via pair production are also considered if
the sum of track momenta matches the mentioned electron-like track tangent.

The outcome of the aforementioned procedure is a set of blocks of elements for a
given collision readout, formed by associating elements that have been directly linked
or share a common link with other elements. The following reconstruction step is
referred to as object identification, and it is based in the association of blocks to a
list of particle candidates, also known as physics objects. This is done sequentially,
starting out by the objects that more easily identified (e.g. muons) and progressively
masking out the blocks that are considered for each object until all particles can-
didates have been reconstructed. The reconstruction process is rather conservative,
given that most CMS data analysis share the same reconstructed physics objects,
therefore it is common to specify additional selection criteria on the resulting set
of objects based on their properties within each analysis to reduce the rate of fake
or wrong reconstruction. The rest of this section is devoted to discuss in more de-
tail the identification, calibration and common selection requirements on the main

reconstructed objects that are used within physical analyses.

MuoN RECONSTRUCTION

Muons can be thought of as the easiest object to identify given the observed detector
readouts, because they are the only particle expected to reach the outer tracking sys-
tems (i.e. muon detecting system). Furthermore, the detecting volume far away from
the interaction region is much larger and hence the density of particle trajectories

is considerably lower. The sparse particle hits in each of the muon detector systems
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are linked to form tracks that can be combined using a Kalman filter, similarly to
what is done for the inner tracker as described earlier this section. To increase the
measurement, accuracy and reduce the fake rate, for analyses directly studying final
states including muons, oftentimes a matching between the track segments in the
muon detectors and a those in the inner tracker is required. The details and per-
formance of the reconstruction procedure depend on the momenta of the muon, and
are described in more detail the following reference [65].

The main challenges of muon reconstruction include the dismissal of muons pro-
duced by cosmic rays hitting the atmosphere and going through the CMS detector,
simply dubbed as cosmic muons, as well as the rejection of signals from very energetic
hadrons produced in the collision that are able to transverse the dense calorimeter
and magnet section and still produce a response in the muon detectors, that are re-
ferred to as punch-through hadrons. In addition, muons are a common product of the
decay of hadrons and it is thus important to differentiate between muons produced in
the primary interaction, or prompt muons, and those produced in a secondary decay
of another particle. The amount of energy deposited around the muon trajectory,
called muon isolation, as well as the distance to the primary vertex are important

variables for such distinction.

ELECTRON AND PHOTON RECONSTRUCTION

Electron reconstruction is more challenging because it uses the readouts from the
inner tracker and the ECAL, both detectors being sensitive to additional charged
particles coming out from the interaction volume, and the latter also to high-energy
photons. Furthermore, electrons lose energy in their curved trajectories through the
tracker, thereby complicating an accurate track reconstruction. The latter can be
accounted for during the track reconstruction by using a Gaussian-Sum filter exten-
sion fo the Kalman filter [79] algorithm, which can be used to model the previously
mentioned non-linearities. The procedural details of the identification and prop-
erty measurement for electrons depend on their transverse momenta. Lower energy
electrons are more accurately indentified using the inner tracker hits, while the elec-
tromagnetic calorimeter is more useful at higher energy ranges. These and other
details regarding electron reconstruction are discussed in the following reference [30].

The electron momentum direction is measured using the track information, while
the energy is estimated by combining both information from the tracking and calor-
imeter detectors. In order to obtain precise energy and momentum estimates, under

5% in the full pseudo-rapidity range, a calibration step is required to correct for non-
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clustered energy deposits and pile-up contributions. Similarly to what is done for
muons, additional quality criteria can be applied to distinguish between the electrons
produced in the primary interaction and those coming from hadronic decays or con-
verted photons, including conditions on several track-based and calorimeter-based
observables as well as isolation requirements, the latter ensuring that no significant
energy from hadrons was deposited around the electron trajectory.

High-energy photons are identified and reconstructed using only the calorimeter
[81], when the energy distribution in the ECAL calorimeter cells is consistent with
that expected from a photon shower. Energy isolation requirements are also essential
to distinguish photons coming from hadrons or secondary radiative decays, which
will be discussed together with hadrons, from those originated as a direct product
of the primary interaction. Additional quality and fine-tuned calibration is often
used, for example in the H — ~~ analysis, to reduce the fake rate and obtain higher

momentum resolution.

JET RECONSTRUCTION AND B-TAGGING

Once muons, electrons and isolated photons in the event have been identified, the
remaining particle-flow blocks (i.e. linked tracks and/or calorimeters deposits) are
interpreted either as neutral or charged PF candidates |70|. These physics object
candidates account for charged and neutral hadrons coming from the hadronisation
of partons produced in the collision or their subsequent decays, as well as non-isolated
photons radiated during those processes. When the aim is studying high-energy fun-
damental interactions that produce partons or other parton-decaying intermediate
particles (e.g. H — bb), such reconstructed objects are not directly practical because
their individual momenta cannot be linked with original parton momentum. This is
because the processes of fragmentation, hadronisation, decays and associated radi-
ation are stochastic, producing tree-like structures with multiple leafs as discussed
in Section 1.3.4, difficulting most attempts to uniquely identify each parton with its
decay chain. In addition, contributions from additional soft pileup interactions may
further complicate the mentioned assignment, while this factor is lessen by charged
hadron subtraction techniques (CHS) [82] based on removing candidates not associ-
ated with a primary vertex.

A possible way to construct simpler observables that can be linked with the ori-
ginal partons is to create composite objects based the remaining candidates through
clustering. These objects, referred to as jets, are an attempt to represent the chain of

hadrons and radiated energy produced, so the original parton energy and momentum
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can be recovered from the summed of the components. They can be geometrically
viewed as cones coming from the interaction region, covering an angular area AR
of a given size in an outwards direction, that contains a collimated set of hadrons
and radiated photons flying away a direction similar to the original parton. Sev-
eral jet clustering algorithms exist, each characterised by a given a size or resolution
parameter R and a recombination scheme, defining how candidates are combined to

create the composite clustered object.

Due to the properties of hadronisation and QCD radiation processes, a common
requirement for such clustering algorithms is that they do not change significantly
when a particle is split in two collinear ones (i.e. they are collinear safe) or ad-
ditional soft radiation is produced by one of the clustered particles (i.e. they are
infrared safe), which greatly simplifies direct comparison with generation level ob-
servables. In particular, in the analysis described in Chapter 5, the default jet CMS
reconstruction is extensively used, which is based on the anti-kp algorithm [83]. This
is a sequential algorithm, also referred to as hierarchical agglomerative clustering in
statistical language. The algorithm starts by assigning each candidate to each own
cluster and successively merging them according to the following distances between
two jets indexes as i and j respectively:

2

dij = min(p, i) —g” and  dip = i} (2.10)

where ARZZj is the n— ¢ plane distance as defined in Section 2.2.1, pQT‘; and pQT‘; are the
transverse momenta of each jet, R is the size parameter, and a = —1 for the anti-kp
algorithm. The algorithm starts by computing all distances d;; and d;p for all initial
candidates, which are placed in a list. If the minimum corresponds to a given distance
between two candidates d;; then both candidates are removed from the candidate
list and group together by summing their four momenta forming a composite object,
which is in turn added to the list. Alternatively, if the minimum distance is d; g, the i
candidate is assigned as a jet and removed from the list. Such procedure is recursively
applied until the list is empty, because all single and composite candidates have been
grouped with other candidates or defined as a jets of a given size R. The choice of
the parameter R has to provide a balance between covering all the radiation from
the initial parton and being increasingly affected by noise produced by soft particles.
During the data taking period considered in Chapter 5, a cone size R = 0.4 was
used for the default jet collection, used in the analysis. Larger jet (e.g. R = 0.8)

cones are used in analyses that include final states with highly boosted intermediate
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particles, that produce a collimated set of hadrons and radiation when they decay,
commonly with internal structure that can be exploited to improve the sensitivity.
Various sequential clustering algorithms can be defined by considering a different
value of a in Equation 2.10. If a negative choice for the exponent a, as used in the
anti-kr algorithm, higher transverse momenta particles are clustered first and thus

the final jet outcome is less sensitive to soft pileup contributions and radiation.

The energy and momenta of the resulting jets is not expected to match accurately
that of the original partons, due to the compound effect of detector readout and
or non-linearities, as well as effect from pileup contribution. This motivates the
application of a set of corrections, referred to as jet energy corrections (JECs) [84],
that greatly reduce this discrepancies by sequentially shifting and rescaling the jet

four-momenta based on extensive calibrations obtained from simulation.

So far, jets have been defined as an experimental simplification of hadronisation,
decay and fragmentation chains in order to estimate the energy and the momenta
of initial partons produced in the collision, and we have ignored other properties of
the original parton. In particular, information regarding the flavour of the initial
parton can be instrumental to distinguish event containing jets coming from high-
energy processes with physical interesting intermediate particles like a Higgs boson
H or top quarks/antiquarks, which predominantly decay to b quarks. Heavy flavour
b quarks, and to a lesser extent also for ¢ quarks, hadronise producing B (and D)
hadrons that have lifetimes long enough to fly away from the primary vertex before

decaying.

displaced
charged

Jet lepton

heavy-flavour
jet

jet

Figure 2.11: Schematic representation of the features of a heavy-flavour jet that can be
used for jet tagging including the presence charged tracks, with a large impact
parameter (IP), that is not compatible with the primary vertex (PV), and a
reconstructed secondary vertex (SV), both due to the decay of B or C hadrons.
The figure has been adapted from [85].
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Some properties of the decay of B and D hadrons can be used to distinguish heavy
flavour jets from those produced by light quarks and gluon hadronisation processes.
The lifetimes of heavy flavour hadrons are often long, e.g. 1.638 4+ 0.004 ps and
1.519+0.005 ps for Bt and B [8], respectively. When long-lived hadrons are highly
boosted, they can move several millimetres away from the primary vertex where
they were produced before decaying. Thus, heavy flavour jets are associated with
the presence of displaced charged tracks and secondary vertices (SV) within the jet,
as depicted by Figure 2.11. In addition, both B or D hadron decays are characterised
by a large decay multiplicity (average 5 charged daughters) and a high probability
(36%) of producing a lepton in their decays chain. Flavour tagging techniques, often
referred to as b-tagging or c-tagging when the purpose is to identify a jets originating
from a particular type of parton, combine quantitative information related with the
various properties previously mentioned to distinguish the flavour of the parton that

generated a given jet.
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Figure 2.12: Misidentification probability (in log scale) for jets originating from ¢ (dashed
line) and light quarks or gluons (solid line) versus b-tagging efficiency, for differ-
ent b-tagging algorithms available in CMS during 2016. The misidentification
probability and efficiencies are obtained from the subset of reconstructed jets
with a pr > 20 GeV from a large tt simulated sample. The figure has been
adapted from [85].

Heavy flavour tagging, particularly b-tagging can very useful for analyses consid-
ering jets in final states, such as the search for Higgs pair production with CMS
data described in Chapter 5. The misidentification versus efficiency curve of the

main b-tagging algorithms that were available in 2016 for high-energy jets is shown
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in Figure 2.12. They differ in the subset of information associated to the jet that
is considered and the specifics of the multivariate techniques used to construct the
final discriminator. The simplest b-tagging algorithm, referred to as jet probability
(JP) is only based a calibrated estimation of the displaced track probabilities. The
b-tagging discriminators pertaining to the combined secondary vertex (CSV) fam-
ily combine displaced track information with reconstructed secondary vertex. The
improvement between different CSV-based b-tagging algorithms is due to the use of
more advanced statistical learning techniques and additional discriminating variables
[85]. The CMVAv2 algorithm, which is used in the analysis included in Chapter 5,
combines the output from JP and CSVv2 algorithms with two taggers that summarise
the information from non-isolated electrons and muons inside the jet.

In Section 4.3.2, the role of recent advances in machine learning techniques for
particle identification and regression are discussed in more detail, focussing on the
development and integration on a new deep learning based multi-category jet tagger
referred as DeepJet. The DeeplJet tagger outperforms both CMVAv2 and DeepCSV
(which also leverages deep learning technologies), while providing additional dis-
crimination capabilities (e.g. gluon-quark separation). It is worth mentioning that
jet tagging techniques can also be applied for identifying substructure in larger radius
jets, which are very relevant for analyses where highly boosted intermediate objects

are expected, but are not discussed in this work.

MisSING TRANSVERSE ENERGY

As hinted in Section 2.3.1, neutrinos can be produced at high-energy proton-proton
collisions, and they leave the detector undetected. Nevertheless, the presence of
neutrinos (or other hypothetically weakly-interacting particles) can be inferred by
the total momentum imbalance in the transverse plane of the event. Within the
Particle-Flow reconstruction framework, this accounts to computing the vectorial

sum of the transverse momenta of all PF reconstructed objects:
=3 (211)

where ﬁi‘}ﬁss is the total missing transverse momentum, whose Euclidean norm modulo
is the missing transverse energy E}niss, and ﬁTT“iiSS is the transverse momentum each
PF candidate.

It is worth remarking that some hadron decay processes can produce neutrinos,

therefore a non-zero transverse missing energy E7*° does not necessarily mean that
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weakly-interacting particles were produced in the hard interaction or by its direct
products. Furthermore, any mis-detections or mis-measurements of the momenta of

some of the produced particles can lead to transverse energy imbalances.
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3 STATISTICAL MODELLING AND
INFERENCE AT THE LHC

Life is complicated,

but not uninteresting.

Jerzy Neyman

In this chapter we will consider the problem of extracting quantitative information
about the validity or properties of the different theoretical models (see Chapter 1),
which can be made given the experimental data acquired in a controlled setting
(see Chapter 2). We will begin by formally defining the properties and structure of
the statistical models used to link the parameters of interest with the experimental
data, followed by a description of the inference problems in experimental high-energy
physics and how they can be tackled with statistical techniques. Some relevant
particularities of the inference problems typically of interest of the LHC experiments
will be discussed, mainly the generative-only nature of the simulation models and
the high dimensionality of the data. As we will see, these issues are intimately
related, the former requiring the use of likelihood-free inference techniques such as
constructing non-parametric sample likelihoods, which in turn demand for lower

dimensional summary statistics.

3.1 STATISTICAL MODELLING

An essential element for carrying out statistical inference is the availability of an
adequate statistical model. In this section, the main characteristics of the statist-
ical models used in particle collider analyses will be formally developed from first
principles. This methodology allows a mathematical approach to their structure and
factorisation. This will prove useful to establish a formal link between the techniques
discussed in the next chapters and the simulation-based generative models that are
often used to describe the data. Additionally, the role and importance of event selec-

tion, event reconstruction and dimensionality reduction - i.e. the compression of the
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relevant information from high-dimensional data into a lower-dimensional represent-
ation, such as the output of a multivariate classifier - will be described in the larger
statistical framework of an LHC analysis. Lastly, the main approaches commonly
followed to construct synthetic' likelihoods that efficiently connect summaries of the

detector observation with the parameters of interest will be illustrated.

3.1.1 OVERVIEW

Let us suppose that we record a collection of raw detector readouts D = {xq, ..., x,}
for a total of n bunch crossings at a particle collider experiment, such as CMS at
the LHC (see Section 2.2). Note that vector notation is used for each individual
readout, also referred to as event, because for mathematical simplification we will
be assuming that each detector observation can be embedded - in the mathematical
sense - as a member of a fixed size d-dimensional space, i.e. x € X C R? even
though variable-size sets or tree-like structures might be a more compact and useful
representation in practice, as will be discussed later. As a starting point, let us
assume for simplicity that the detector readout for every bunch crossing is recorded,
i.e. no trigger filtering system as the one described in Section 2.2.7 is in place, hence
after each bunch crossing 7 a given raw detector readout x; will be obtained. From
here onwards, each event/observation/readout will be assumed to be independent
and identically distributed (i.i.d.), a reasonable approximation if the experimental
conditions are stable during the acquisition period as discussed at the beginning of

Section 2.3; consequently the event ordering or index ¢ are not relevant.

EXPERIMENT OUTCOME

Within the above framework, we could begin by posing the question of how we expect
the readout output, which can be effectively treated as a random variable x, to be
distributed and how such distribution is related with the (theoretical) parameters we
are interested in measuring or the model extensions we are interested in testing using
the experiment. We would like then to model the probability density distribution
function generating a given observation x; conditional on the parameters of interest,
that is:

z; ~ p(x[6) (3.1)

In this work, synthetic likelihood will be used to refer to likelihoods that are not based on the
probability distribution function of the generative model, but on non-parametric approximations
using low-dimensional summaries of the data.
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where 8 € ©® C RP denotes all the parameters we are interested in and affects the
detector outcome of collisions. As will be extensively discussed in this chapter, an
analytical or even tractable approximation of p(x|@) is not attainable, given that we
are considering « to be a representation of the raw readout of all sub-detectors, thus
its dimensionality d can be of the order O(10%). It is worth mentioning that even
d is very high, each observation is usually extremely sparse given that most of the
detectors would not sense any signal. The total number of observations n is also very
large at modern colliders, e.g. a collision occurs each 25 ns at the LHC. Furthermore,
the known interactions that produce the set of particles of the event as well as the
subsequent physical processes that generate the readouts in the detectors are overly
complex, and realistic modelling can only be obtained through simulation, as jointly

reviewed in Section 1.3 and Section 2.3.

MIXTURE STRUCTURE

While a detailed closed-form description of p(x|@) cannot be obtained, we can safely
make a very useful remark about its basic structure, which is fundamental for simply-
fing the statistical treatment of particle collider observations and simulations, and
was already hinted at in Section 1.3.1 when discussing the possible outcomes of fun-
damental proton-proton interactions. The underlying process generating x can be
treated as a mixture model, which can be expressed as the probabilistic composition
of samples from multiple probabilistic distributions corresponding to different types
of interaction processes occurring in the collision. If we knew the probabilistic distri-
bution function of each mixture component p;(x|@) then p(x|@) could be expressed

as:
K

p(x|0) =) & p;(xl6) (3.2)

J=0

—_

where K is the number of mixture components and ¢; is the mixture weight /fraction,
i.e. probability for a sample to be originated from each mixture component j. The
specifics of the mixture expansion as well as the total number of mixture components
are not uniquely defined, but are based on the independence of groups of physical
processes, as will be discussed later. Practically, each p;(«|@) will be intractable due
to the exact same reason that p(x|@) is intractable, thus a more sensible description
of the mixture model is its generative definition, described by the following two-step

sampling procedure:

zi ~ Categorical(¢p) — @x; ~ p,,(x|0) (3.3)
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describing the sampling of random integer z; € {0,..., K — 1} from a random cat-
egorical” distribution and the subsequent sampling of the corresponding mixture
component indexed by z;, where ¢ = {¢o,...,¢px—_1} is the vector of probabilities
for each of the mixture components. For here onwards, mixture models might in
some cases be portrayed by using the analytical depiction as in Equation 3.2, always
noting that the generative approach might be more convenient for the actual estim-
ation of expectation values when the mixture component distributions p;(x|@) are

not tractable.

MiXTURE COMPONENTS

The mixture model structure can be directly linked to the physical processes happen-
ing in fundamental proton-proton collisions and within the detectors used to study
them, as described in previous chapters. As an additional simplification for now, let
us neglect the effect of multiple particle interactions, described in Section 2.1.3. For
each proton bunch crossing, hard interactions (i.e. ones associated with a large char-
acteristic energy scale Q2, whose cut-off does not have be specified for this particular
argument) between partons might or might not occur, given the stochastic nature
of the scattering processes. We could nevertheless associate a probability for a hard
interaction happening ¢nard, as well to it not happening ¢not-hard = 1 — @harqd- Given
the proton colliding conditions at the LHC, the latter case is much more likely, i.e.
Onot-hard > ®hard, yet the relative probabilities depend on the energy scale cut-off
considered.

We can further break each previously mentioned category in sub-components cor-
responding to different types of processes. The hard interaction category can itself
be expressed as a mixture of groups of physical interactions that can produce a hard

scattering’, so the probability ¢pna.q can be expresses as the following sum:

Ghard = G0+ + k2= Y O (3.4)

keH

2Here categorical distribution refers to the special case of the multinomial distribution were the
number of trials is one.

3The term group/type of interactions here generally refers to a set of processes that could be
generatively modelled independently, not to quantum mechanical amplitudes or intensities of a
process. For example, each group can correspond to a group of processes with a given final state
pp — X which could be modelled by sampling its differential cross section from Equation 1.32
followed by parton showering and detector simulation. The group category is a latent/hidden
variable for each event, i.e. it is not observed.
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where H represents a given set of independent contributions k, each characterised by
a distribution p;(|@), which depends on the group j of processes that produce hard
scatterings. Such a set is not uniquely defined nor its the number of elements, given
that any two components a and b in H can be substituted by ¢, where ¢. = ¢4 + @3
and

pel(|0) = —2 - paelo) + L - i(al6) (3.5)

Pa+ ¢ $a + ¢
which can be applied recursively to alter the number of components in the set.
Independently on the basis chosen for the mixture expansion, in general it is not
possible to infer the latent category z; (see Equation 3.2 given an observation x;,
because x; may be in the support of several mixture components p;(x|@). Only
probabilistic statements about the generative group j can be made based on the

observations.

A convenient definition for the set H is one that is aligned with the way theoretical
calculations are carried out, given that the relative probability for a given process
¢pp—x Will be proportional to its total cross section o(pp — X), while its readout
distribution will depend on its differential cross section do(pp — X) and its support
(i.e. subset of the function domain not mapped to zero). In fact, given that the
total and differential cross sections are proportional to the matrix element squared
(see Section 1.1.1) of a given process do(pp — X) o< |[M|?, it is often possible to
further divide each process into the cross product of Feynman diagram expansions
(including interference terms). This can be a very useful notion for some analysis

use cases, and is related with the approach that will be used in Chapter 5.

SIGNAL AND BACKGROUND

Oftentimes, we are interested in studying a subset S C H of all the hard interaction
processes, which will be referred to as signal set in what follows. This can be a single
type of physical process o(pp — X), e.g. the inclusive production of a pair of Higgs
bosons o(pp — HH + other), or several, which it can be effectively viewed as one
mixture component using Equation 3.5. We can accordingly define the background
subset B = H — S, as the result of all other generating processes in H that we
are not interested in, a definition which could also be extended to include collisions
where non-hard processes occurred if needed. Such distinction between generating
processes of interest S and background B is at the root of every analysis at the LHC

and it is motivated by the fact that small changes of the parameters of the SM or its
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theoretical extensions/alternatives affect only a subset of the produced processes at
leading order, those that are governed by the interactions linked to the parameter.
As a matter of a fact, customarily statistical inference at the LHC is not carried
out directly on the parameters of the SM or the extension being studied, but on
the relative frequency of the set of processes of interest ¢g or the properties of
its distribution pg(x|@). As previously mentioned, the former is proportional to
the cross section of the signal processes og (see Section 1.3) while the latter can
include properties such as the mass of an intermediate particle resonance® (e.g. the
Higgs mass my) or the general behaviour of the differential distribution (i.e. using
unfolding methods to remove the experimental effects, which are not discussed in
this work). Those parametric proxies can then be used by comparing them with the
theoretical predictions of the SM or the alternative considered, in order to exclude it

or constrain its fundamental parameters (i.e. those that appear in the Lagrangian).

EVENT SELECTION

Given the mixture model structure expected for p(x|@) and the fact we are only
interested in a small amount of the readout generating processes for each collision,
because in general ¢g < ¢p <K @not-hard, the effect of trigger or any other event
selection should be considered. The role of event selection is to reduce the fraction
of events that do not contain useful information for the inference task of interest.
Trigger selection can be thought of as a technical requirement, reducing the total rate
of detector readouts recorded to match the available hardware for data acquisition,
as discussed in Section 2.2.7. The purpose of analysis selection, as will be discussed
in Chapter 5, is instead to reduce the expected contribution of background processes
that are not well-modelled by simulation, as well as to the increase the expected
fraction of signal events in synthetic counting likelihoods, such as those which will
be detailed in Section 3.1.3.

In general mathematical terms, any deterministic event selection can be thought
of as an indicator function 1¢ : X — {0, 1}, of a given subset of the set of possible
detector readouts C C X. The indicator function 1¢(x) can be defined as:

liftxeC
le(z) = (3.6)
Oifx¢ C

“In particle physics, a resonance is a peak around a certain energy in the differential cross section
associated with the production of subatomic particles.
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where the specific definition of such function depends on the definition of the
subset C, e.g. a simple cut on a one-dimensional function f : X — T C R of
the readout f(x) > tcut. Any indicator function can also be viewed as a boolean
predicate function, so the event selection can also be expressed as a combination of
selection functions, i.e. if the set C = AN B is the intersection between two subsets,
the indicator function of C' can be simply expressed as the product 1o =1 4-15. This
framework is flexible enough to represent all deterministic event selections, and it
could also be extended by an independent non-deterministic term without affecting
the rest of the considerations presented in this chapter. A non-deterministic factor
could be useful to model for example trigger prescales, which are trigger decisions
based on randomly selecting a fraction of all the selected events to be recorded,

ensuring that the total rate is manageable.

In practice, a given selection 1¢(x), likely based on a composition of simple criteria,
would have been imposed on the recorded detector readouts before any statistical
analysis is carried out. The structure of the statistical model g(«|@) resulting after
applying an arbitrary selection 1¢(a) on a mixture model as the one described in
Equation 3.1 can be obtained by multiplying the probability density by 1¢(x). After
including the relevant normalisation term, the resulting probability distribution can

be expressed as:

le(x) 315" ¢ pi(]6) Kl( bi€; >
9(x|0) = . = —wr— |9i(x]0) (3.7
S (1e(@) TE 65 py(a10)) da ;) S e

where g;(x|0) = 1lc(x)p;(x|0)/¢€; is the probability density function of each mix-
ture component after the selection, €; = [ 1c¢(x)p;(x|0) is the efficiency on the
selection on each mixture, and the integral sign in the denominator in the last
expression has been simplified by noting that [ g;j(x|@)de = 1. From Equation
3.7 it becomes clear that the statistical model after any event selection is also a
mixture model, whose mixture components are g;(«|@) and mixture fractions are
Xj = ¢j€j/ Zf;ol ¢j€;. This fact will be very relevant to build statistical models of
the observed data after an event event selection is in place.

So far, no explicit assumptions on the probability distribution functions of each
mixture component j or the details of the event selection function 1¢(x) have been
considered, in order to keep the previously developed modelling framework as general

as possible. In the next sections, it will become increasingly clear how p;(x|@), and in
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turn g;(«|0) and the efficiency €;, can be modelled by generating simulated detector

readouts produced by a given process j.

3.1.2 SIMULATION AS GENERATIVE MODELLING

The physical principles underlying the simulation of detector readouts, or events,
for a given hard proton-proton interaction process were reviewed in Section 1.3 and
Section 2.3. Instead of focussing on the procedural details of event generation, the
focus of this section is the study of the simulation chain as a generative statistical
model, together with its basic structure and properties, that will be useful later
to understand many analysis techniques that are commonly used in experimental
particle physics.

For simplicity, we will be considering the statistical model describing the distribu-
tion of observations of detector readouts before any event selection, what was referred
to as p(x|@) in the previous section. Always taking into account that the distribution
after any arbitrary deterministic event selection 1¢(x) is also a mixture model (see
Equation 3.7) and samples under the corresponding probability distribution func-
tions g¢;(x|@) and mixture fractions x; can easily obtained from the non-selected

simulated events, as it is actually done in practice.

OBSERVABLE AND LATENT VARIABLES

The first step to build a generative statistical model is to define what are the observed
variables and what are the hidden quantities, referred to as latent variables, that
explain the structure of the data. For particle collider experiments, we may consider
the full detector readout £ € X C R? as the only observable variable, given that
any other observable can be expressed as a function of the raw readout, as will be
discussed in Section 3.1.3. The probability density function of the data p(zx|@) from
a generative standpoint can be written as an integration of the joint distribution

p(x, z|0) over all latent variables z of an event:

p(@l6) = [ pla.2l60)dz (3.8)

where 6 is a vector with all model parameters, which normally are global (same
for all the observations) and include the theory parameters of interest as well as
any other parameter that affect the detector readouts. While the true generative

model of the data p(x, z2|@) is unknown, knowledge about the underlying physical
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processes described in in Section 1.3 and Section 2.3 can be used to build a generative
approximation of p(x, z|@) which can describe the observed data realistically and be
used to carry out inference on the parameters of interest.

In fact, one of the most relevant latent variables at particle colliders has been
already introduced with the generative definition of a mixture model in Equation
3.3, the mixture assignment integer z; € {0,..., K —1}. This latent variable repres-
ents which type of fundamental interaction occurred in the event, and is useful to
exemplify the main property of latent variables: that they are not observed but can
only (at most) be inferred. Let us consider the problem of finding out the type of
interaction j that caused a single detector readout observation x;. As long as x; is
in the support space of more than one of the mixture components p;(x|@), which is
almost always the case, only probabilistic statements about the type of interaction
originating x; can be made, even if the p;(x|@) are known. In practice, p;(x|0)
are not known analytically so probabilistic classification techniques can be used to
estimate the conditional probabilities based on simulated samples, as discussed in
Chapter 4.

STRUCTURE OF GENERATIVE MODEL

Other than the basic mixture model structure, our understanding of the underly-
ing physical process occurring in proton-proton collisions can be used to recognise
additional structure in the generative model by means of factorising the joint dis-
tribution p(«, z|@) in conditional factors matching the various simulation steps and

their dependencies:

=

-1
p(, z|0) = p(x|za)p(za|2s)p(2s| zp) _ p(zi = j10)p(2p0, 2 = j) (3.9)

Il
=)

where each factor can be defined as follows:

e p(z; = j|@) = ¢;(0) is the probability of a given type of process j occurring,
which is usually a function of theory parameters 6.

e p(2p|0, 2 = j) is the conditional probability density of a given set of parton-
level four-momenta particles (characterised by the latent representation z, €
Z,) of being the outcome of a group of fundamental proton interaction pro-
cesses pp — X indexed by the latent variable z; € Z;, which might also be a

function of theory parameters 6.
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e p(zs|zp) is the conditional density of a given parton-shower outcome. zs € Z4
as a function of the parton-level outcome.

e p(z4|zs) is the conditional density of a set of detector interactions and readout
noise zq € Zq as a function of the parton-shower output.

e p(x|zq) is the conditional density of a given detector readout ¢ € X as a

function of the detector material interactions and detector readout noise.

The dimensionality of the latent space greatly increases with each simulation step,
from a single integer for Z;, to O(10) parton four-momenta variables within Z,, to
O(100) after the parton-shower Z, and finally to O(10%) in the detector interac-
tion latent space Z; and also the observable readout space X. In the factorisation
presented in Equation 3.9, the dependence on the parameters has only has been made
explicit for p(z;|@) and p(z,|6, 2;), that is because the theoretical parameters of in-
terest O often only affect the rate of the different fundamental processes and their
differential distributions, which correspond to the mentioned conditional probability
distributions. In the actual simulation chain, all conditional factors typically depend
on additional parameters which might be uncertain, and whose effect and modelling
will be discussed in Section 3.1.4.

As previously mentioned, computer programs can be used to realistically simulate
detector observations. For simulated observations, not only the final readout is
observed, but all latent variables can be obtained from the intermediate steps of the
generative chain. These variables, in particular z, and zs, are commonly referred
as generator level observables, and are extremely useful to construct techniques that
approximate the latent variables from the detector readouts. In fact, the whole
simulation chain can be viewed as a probabilistic program [86, 87|, thus each of the
factors in Equation 3.9 can be further broken down as a sequence of random samples,
which can be used to speed up latent variable inference based on the execution traces,

i.e. recorded sequences of random numbers generated for each observation.

Some joint factorisations are particularly useful for data analysis and simulation,
such as the one making explicit the dependence between the differential partonic
cross sections and the parton configuration in the collision, because it allows to factor
out the density of the latent variables zppp associated with the parton components
(i.e. flavour and momenta of each interacting parton and factorisation scale u%, as
depicted in Section 1.3.3). Each mixture component j in Equation 3.9, which repres-
ents a group of fundamental interactions between protons pp — X, can be expressed

as the product of the probability of a given parton configuration p(zppr|@ppr) and
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a mixture over all parton configurations that can that produce pp — X, referred

as L in the following expression:

geL
p(2i]0) p(2p0,2:) = p(zppr|OppF) > (25 = 910, 2pDF)D(2p]60, 2r = g)  (3.10)

where p(z5 = ¢/6, zppr) is the relative probability of given partonic process g given a
parton configuration zppr and p(2,|0, 2y = g) is the probability distribution function
of the parton-level particles produced as a result of the interaction for a given partonic
process g, which is proportional to the partonic differential cross section do(ij — X).
This factorisation is basically a probabilistic model version of Equation 1.32, dealing
with the QCD factorisation of the parton distribution functions and the hard process

differential cross section.

Another relevant phenomenon that can be made explicit in the joint distribution
p(x, z|0) is the effect of multiple hadron interactions in the collision, or pileup, as
discussed in Section 2.1.3. Given that each proton-proton interaction is independent
from the others, the effect of pileup interactions can be considered by augmenting
the factor representing the conditional probability density of the detector interaction
and noise as a function of the hard interaction parton shower output p(zq|zs) as

follows:

p(Zd|ZS) = p(zd|ZSa zpileup)p(zpileup‘Opileup) (3.11)

where zpijeup is a latent variable representing the details about the pileup interactions
that happened in a given collision (i.e. number of interactions and their corresponding
particle outcome), and @pjieup are the bunch crossing and luminosity parameters that

affect the pileup distribution.

Further structure in the generative model can be often found, depending on the
process being generated, the modelling assumptions, and the latent space represent-
ation chosen. As an example, it is often useful to factorise out the latent subspace
that depends directly on the subset of parameters of interest from those that do not.
The conditional observations in that latent subspace can sometimes be analytically
expressed, or their dimensionality may be low enough to use non-parametric density
estimation techniques effectively, which can greatly simplify the modelling of changes

in the parameters of interest.
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SIMULATED OBSERVATIONS

The mentioned mixing structure of the probability distribution function p(x|0) greatly
simplifies the simulation of realistic observations, because large datasets S; = {xo, ..., & }
of simulated observations for each type of interaction j can be simulated before any
event selection. The expected value of any measurable function of the detector

readout f(ax) for events coming from a given process j can be expressed as:

o) = [ f@pe)de~ 0 Y fa (3.12)
x~p; w|0

where the last terms approximates the integral as the sum over all stochastic simu-
lations for a given process. The previous Monte Carlo approximation can be used to
estimate the selection efficiency €;, as defined in Equation 3.7, after any deterministic

event selection 1¢(x):

1

6= E [le@)= / le@p(@0)dz ~ = 3 le(@)  (3.13)
z~p;(x]0) m

which simply corresponds to the number of simulated observations that pass the

selection divided by the total number of simulated observations m. Lastly, the ex-

pected value of any measurable function f(x) after a given event selection 1¢(x) for

events generated by a given process j can be approximated by:

TsES;

E )1e( x|0)d xs)le( 3.14
LEI@I= [ f@en e~ Y fe@ 31
which corresponds to the mean of f(x) for all the events that passed the selection,
noting that if all the events passed the selection (i.e. 1¢(x) = 1), then Equation 3.12

would be recovered.

While we have been dealing independently with the estimation of arbitrary expec-
ted values for a given mixture component j, the computation of expected values of
any measurable function f(x) under the total mixture distribution can be easily be

expressed as function of expectations of mixture components:

x~g(m|0

K-—1 K-—1
/ (@) Y v (xl0)dz ~ ng E [f@)]  (315)
7=0

= e(al)
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where x; = ¢j€;/ ZJK: _01 ¢j€; is the mixture fraction after selection (see Equation
3.7). While the problem of estimation of expected values might seem unrelated to
the inference problem at hand, in Chapter 3.1.3 it will become evident that the
construction of non-parametric likelihoods of summary statistics can be reduced to

the estimation of expected values.

Oftentimes, the simulated observations are generated using a somewhat different
probability distribution than that of experimental data, maybe because some of the
generating parameters are not known precisely beforehand (e.g. the properties of
pileup interactions). Alternatively, we might want to use a single set of simulated
observations to realistically model observables corresponding to a different value of
the parameters @ or even to compute observables under a different process j. Let us
suppose that the samples were generated under pg(x|@g) while we want to model
samples under pr(x|@r). In that case, if both distributions have the same support,

we can express the expectation value under the desired distribution as:

@) e Eee) Gope(@lBQ)de oSS (g ) ()

fggng)pcg 37|0Q)dg; Z:cbes w(®s)

(3.16)
w~pr(216Q)

which is analogous to what was done in Equation 3.12, but accounting for a weight
w(xs) = pr(xs|0R)/Po(xs|0¢) for each simulated observation. This technique can
be also used together with an arbitrary event selection 1¢(x) simply by considering
as event weight the product we(zxs) = le(x)w(xs), which amounts to summing over
the selected events. In particle physics experiments, the probability distribution
functions pg(x|@r) and pg(x|@r) are most likely intractable, thus estimation of
we(xs) has either to be carried out by non-parametric density estimation in a lower
dimensional-space of the detector readouts (discussed in Section 3.1.3) or by directly
estimating the density ratio via probabilistic classification as will be discussed in
Chapter 4.

As previously mentioned, an advantage of using simulated observations is that the
latent variables H; = {zo,..., 2} for a given simulated set of observations S; =
{zo,...,xm—1} are known. This allows to rewrite the weight w(xs, z5) for a given

event as the ratio of joint distributions:

Pr(Ts, 25|0r) _ Pr(®|Za)PR(24]25)PR (25| 20 )PR (2|0 R)
pQ(xs,25|0Q)  po(x|zd)pq(zd|2s)pg(2s|2p)Pq(2p]0Q)

w(xs, 25) = (3.17)
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where the last term is an expansion of each joint distribution as a product of the con-
ditional distributions discussed in Equation 3.9. If the difference between pr(x|0r)
and pg(x|0¢q) is contained in one of the factors of the joint distribution, which is
often the case, most of the factors in Equation 3.17 cancel out and we are left with
a much simpler problem of density ratio estimation in the latent space. This is often
what is done to model the effect of a different pileup distribution or alternative par-
ton distribution functions, further factoring the joint distribution to include explicit
dependencies with respect to zpileup Or 2ppF, as done in Equation 3.11 and Equation
3.10 respectively. The case when the difference between distributions is contained in
a subset of the parton-level latent variables is one of special relevance, because the

event weight for a given event w(zs) can be expressed as the ratio:

pR(Zp‘eR)

Pa(z100) (3.18)

w(zs) =
which is referred to as generator-level re-weighting, a procedure that in some cases
can even be done analytically. The concept of re-weighting will be useful to model
different parameter points in Chapter 5 with a single set of simulated observations
as well as to understand how the effect of varying parameters can be modelled via

differentiable transformations in Chapter 6.

3.1.3 DIMENSIONALITY REDUCTION

In the previous overview of the basic statistical modelling principles of experimental
high-energy physics, the structure and properties of the probability distribution of the
full detector readout € X have been considered. The consideration of the detector
readout as single observable variable x in the generative model greatly simplifies
the modelling narrative, plus also allows to include the effect of any arbitrary event
selection as a deterministic function 1¢(a). Nevertheless, the high-dimensionality of
the readout space £ € X (i.e. O(10®%)) complicates its direct use when comparing
simulated and recorded observations, which is crucial when carrying out any type of

statistical inference.

The high-dimensionality of the raw detector readout space * € X also makes it
very difficult to specify an effective event selection 1¢(x) that is able to reduce the
contributions from non-interesting or not well-modelled background processes. This
motivates the use of a dimensionality reduction function f(x): X — )Y, from the

raw detector readout space X C R? to a lower dimensional space )) C R®. Here f(zx)
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represents any deterministic function of the detector readout, but in practice it can
be implemented by a series of consecutive transformations.

Let us denote as y € Y the resulting variable after the transformation f(x) is
applied to the observed detector readout. If the function f is differentiable and
bijective (i.e. there is a one-to-one correspondence between @ and y), the probability
density distribution function of y could be obtained as:

p(y|0) = p(x|6)

dx
det — 3.19
ct G (319

where the last term is the Jacobian determinant of the inverse of f. The trans-
formations commonly used in particle colliders are non-bijective and sometimes non-
differentiable, plus Equation 3.19 is in any case of little use when p(x|0) is intractable.
However, the expectation value of y as well any other deterministic transformation
of the detector readout @ after any arbitrary event selection 1¢(x) can be obtained
using simulated samples for a given interaction process as shown in Equation 3.14,
independently of whether the transformation is invertible or differentiable. In the
rest of this section, the main procedures followed to reduce the dimensionality of the

observable space and its objectives from a statistical perspective will be discussed.

EVENT RECONSTRUCTION

The methods of event reconstruction, as described in Section 2.3.3, provide a very effi-
cient way to transform the high-dimensional detector readout to a lower-dimensional
space that can more easily be interpreted from a physical standpoint. In fact, recon-
struction can be viewed as a complex procedural technique of inference on a subset
of the latent variables given the detector readout « of an event. These methods
attempt to walk back the generative chain described in Equation 3.9 to recover the
subset of the parton-level z,, (and zs or zq in some cases) that strongly depends on
the detector readouts, providing a compressed summary of the information in the
event about the parameters of interest 8. The dimensionality of the output of the
reconstruction procedure y,.., depends on the subset of variables considered for each
physical object, which typically amounts to a total of ©(100) dimensions, which is a
significant reduction from dim(Xx’) ~ O(10%).

Due to the detector noise and characteristics, the reconstruction function f...() :
X — Vreco cannot fully recover z, € Z,. This is the case for neutrinos that leave
the detector undetected, when the measured four-momentum of a given particle dif-

fers from the real value, or when the reconstructed particle does not even exist in zp,.
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Simulated events can then be used to make calibrated probabilistic statements of the
resulting reconstructed physical objects and their relation with the actual unobserved
particles going through the detector. Particle identification (e.g. jet b-tagging) and
fine-tuned momentum regressions on the reconstructed objects can also be thought
of as inference of latent variables, which amounts to using the additional detector
information around an object to measure more precisely its properties. These prop-
erties include the type of particle that produced the detector readouts clustered for
particle identification, or a more precise determination of the momentum for particle

regression.

One aspect of the generative model that complicates both reconstruction and stat-
istical inference which has not been discussed yet is that efficient representations of
the latent space of simulated events are not easily represented as a fixed-size real
vector z € Z C RP. Let us consider as an example the parton-level latent inform-
ation zp, which amounts to a short list of produced particles. The total number
of particles and the number of particles of each type are variable, thus z} is better

represented by a set (or several sets, one for each particle type):
2= {2l |ie{l,...,np}} (3.20)

where ny, is the total number of particles produced at parton-level and zip are the
latent variables associated to each particle (i.e. type, four-momenta, charge, colour
and spin). A similar set structure can be attributed to latent variables describing
long-lived particles after the parton-shower zg, while additional variables might be
associated to each particle (e.g. production vertex) and total number and type di-
versity would be considerably larger. Because the number of particles and their
type greatly varies between different interaction processes, the mapping this struc-
ture to observable variable space is very useful. In fact, the result of general event

reconstruction process at CMS can be expressed also as a set of physical objects:

Yoowo = {Yheco | 7€ {1, 1, Mreco }} (3.21)

where nyeco is the total number of particles, yieco are the reconstructed variables
for each physical object (i.e. reconstructed type, reconstructed four-momenta, recon-

structed charge and any other reconstructed attributes). The calibration between

set

Yoo and the actual particles produced in the

the reconstructed physical objects

collision z;e/ts hence amounts to matching set elements (typically based on a AR
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distance criterion, see Section 2.2.1) and the comparison of their reconstructed and
generated attributes.
The fact that both reconstructed and latent spaces have a variable-size set struc-

ture greatly complicates the application of inference and learning techniques directly

set

eco, because they often can only deal with a fixed-size vector of real

based on y
numbers R?. Similarly to what is done for event selection, often the elements in the
set of reconstructed objects in an event are reduced by imposing a given condition

based on their attributes (e.g. type, isolation or momenta). There exist naive ways

set

set as a fixed-size vector R’ such as taking the relevant

to embed a set such as y
attributes of the first ng, objects according to a specific ordering convention after
a given object selection and possibly padding with zeros or alternative numerical
values the elements that do not exist for a given event. Some of the newer machine
learning techniques that will be presented in Chapter 4 can deal with variable-size
input, such as sequences, sets or graphs inputs, by embedding them in vector repres-
entations internally, providing new ways to deal with the mentioned representational

issue.

SUMMARY STATISTICS

The attributes of the subset of reconstructed objects selected in an event for a given
analysis, often as a fixed-size vector representation Yy € Zs1 C R?, are often still
too high-dimensional to be considered directly for statistical inference. The effect-
iveness of the likelihood-free techniques that will be presented later in this chapter
strongly depend on the dimensionality of the observable space considered. Hence,
it is desirable to further combine the reconstructed outputs in a lower dimensional
summary statistic, which can be either a function of each single observation or a set
of multiple observations, so simpler statistical models that relate the parameters of
interest with the observations can be constructed.

Until now, we have been dealing with the problem of how a single event is distrib-
uted p(x|0), however in practice a collection D = {xy, ..., ®, } of events is considered
for inference. Let us first consider again the set D, before any trigger or event se-
lection, similarly to what was done at the beginning of Section 3.1.1. Because of
the independence between events, the probability density of a given set D can be

expressed as the product of individual probability densities for each event x;:

x, €D
p(DI6) = [] »(zil6) (3.22)
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where p(x;|0) can only be modelled realistically by forward simulation, and has the
mixture model structure and latent factorisation discussed before. After an arbitrary
event selection 1¢(x), only a subset of events D¢ = {zo, ..., Ty, } € D remain. These

events are also independent, so their probability density can be expressed as:

wiEDc

9(Dcl0) = [ g(xil6) (3.23)

where the dependence between the distribution function after the event selection
g(x;|0) and that before p(x;|0) was already described in Equation 3.7. If we are only
focussed on the probability distribution of the events in D¢, we would be neglecting
an important quantity that can also provide information about the parameters of
interest: the total number of events that pass the event selection ne. Because this
quantity depends on the set of recorded readouts D, where each individual readout
x; is assumed to be an independent and identically distributed variable, the total
number of selected events n¢ after a deterministic selection 1¢(x) can be modelled

using a binomial distribution:
p(n¢|n, @) = Binomial(n, €) ~ Poisson(ne) (3.24)

where n is the total number of events, and the dependence on the parameters is
contained in the total efficiency e, i.e. probability @ ~ p(x|@) of passing the selection
criteria, that can be defined as € = [ 1¢(a)p(x|@). The Poisson approximation is
justified because the number of trials n is sufficiently large (i.e. 40 million bunch
crossings per second) and the total selection efficiencies € < 0.000025 already at
trigger level, as discussed in Section 2.2.7. This type of stochastic process is also
referred to in the literature as multi-dimensional homogenous Poisson point process
[88]. The expected value of ne coincides with the Poisson mean ne. It could be
more intuitively linked with the parameters of interest 6 by making explicit the

contributions from the different mixture processes:

E [nel=n) ¢; E [le(x)]=n) o€ (3.25)
Dp(D6)

where the efficiency for each process €; = [ lc(x)p;(2|@) can be estimated using
simulated observations as shown in Equation 3.13. In principle, all possible processes
j that could occur have to be considered, i.e. cases when no hard collision occurred

as well as the inclusive contribution of each possible hard process, as described in
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Equation 3.4. However, if the product of the expected probability of a given process
occurring ¢; and the event selection efficiency ¢; is low enough relative to the total
efficiency ¢ = ZJK: _01 ¢je;, the effect of those mixture components can be safely

neglected.

The situation discussed above is often the case for events where no hard colli-
sion occurred after some basic event selection, that is €pot-hard = 0 so it can thus be
neglected. For the subset of bunch crossings where hard interactions occur, the prob-
ability of a given type of interaction before any event selection might be expressed as
the product of its cross section o; by the total integrated luminosity during the data
taking period Liy divided by the total number of bunch crossings, thus the expected
value for number of observations n¢ after an event selection that reduces to a neg-

ligible fraction the contribution of non-hard processes 1¢(x) can also be expressed

o Klp o K-1
E [ne]=n e = Ling 0j € (3.26)
D~p(DI6) ; no 7 ; 7

where n; = Ly 0 €; is the expected number of events coming from a given process
J, that can be estimated with theoretical input regarding o;, simulated observations

to estimate €; and an experimental measurement of the luminosity L.

The number of observations n¢ that pass a given event selection 1¢(x), which
normally includes trigger and some additional analysis dependent selection, is the
quantity that serves as the basis of the simplest statistical model used in particle
physics to link theoretical parameters and observations. This type of summary stat-
istic is very effective when the parameter of interest is the cross section of a single
process og and the rest of background processes are well modelled by theoretical
predictions and simulated observations. In that case, if all parameters but og are
known, a cut-and-count sample-based likelihood can be built based on Equation 3.24,

corresponding to the following probability density function:

JEB
p(nc|os) = Poisson (ases + Z ajej> (3.27)

which can be used to carry out statistical inference about og given an observed

number of events that pass the event selection ngbs, using classical techniques.

The previous concept can be applied to several disjoint subsets of X' simultaneously
T = {Co, ...,Cp}, each characterised by a different indicator function 1¢,(x) defining

an arbitrary event selection, as long as their intersection is null. The probability
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function for the variable ny = {n¢,, ..., n¢, }, given that each n¢, is independent, can

be obtained as:
C;,eT jeEH
p(nr|@) = H Poisson(Z nfl(0)> (3.28)

where n]CZ (0) is the expected number of observed events coming from process j after
the selection C;. As long as a parametrisation of n?l(O) exists, which can be often

. C; _ . C;
estimated asn;'(0) = L 0 €;
to carry out inference on the parameters € based on the observed value of the sample

summary statistic nOTbS.

(0), Equation 3.28 can be used to construct a likelihood

SUFFICIENT STATISTICS

The selection count vector nOTbS(D), which has not been specified yet, could be also

written as a sum over a function ny(z) : X € R — Y C {0,1}* c R® applied for

each event in D = {xy, ..., z,, } as follows:

x, €D

n$* (D)= > nr(x) (3.29)

where n9P3(D) could be described as a summary statistic of the whole collection of

observations while ny(x;) summarises a single event ;.

There are infinite ways to choose a lower-dimensional summary statistic of the
detector readout s(x) : X C R — Y C Rb. Functions of the type nr(x) are only
a reduced subset, yet still infinite, of the possible space of functions. Regardless
of the likelihood-free inference methods considered (see Section 3.2), the need of a
low-dimensional summary statistic can be thought as an effective consequence of
the curse of dimensionality, because the number of simulated observations required
to realistically model the probability density function or compute useful distance
measures rapidly increases with the number of dimensions.

In general, the selection of a summary statistic s(x) is far from trivial, and naive
choices can lead to large losses of useful information about the parameters of interest
0. From classical statistics, we can define a sufficient summary statistic as the
function of the set of observations that can be used for carrying out inference about
the model parameters @ of a given statistical model in place of the original dataset
without losing information [89]. Such a sufficient statistic contains all the information
in the observed sample useful to compute any estimate on the model parameters, and

no complementary statistic can add any additional information about @ contained in
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the set of observations. Sufficient statistics can be formally characterised using the
Fisher-Neyman factorisation criterion, which states that a summary statistic s(x)
is sufficient for the parameter vector 6 if and only if the probability distribution

function of & can be factorised as follows:

p(x|0) = g(z)r(s(x)|6) (3.30)

where g(x) is a non-negative function that does not depend on the parameters and
r(x) is also a non-negative function for which the dependence on the parameters
0 is a function of the summary statistic s(x). The identity function s(x) = x is
a sufficient summary statistic according to the theorem in Equation 3.30, however
we are only interested in summaries that reduce the original data dimensionality

without losing of useful information about the parameters 6.

The definition of sufficiency can also be applied to a set of observations D =
{zg,...,xn}. In fact if we assume they are independent and identically distributed,

and s(x) is sufficient for each observation x;, we may rewrite Equation 3.22 as:

x,€D x, €D

p(DI6) = ] a(@) T] r(s(2:)6) = ¢(D)r(s(D)|6)

where the set of sufficient summary statistics for each observation is a sufficient sum-
mary statistic for the whole dataset s(D) = { s(x;) | Va; € D} and the dependence
on the summary statistic is contained as the product of independent factors for each

observation.

Because p(x|@) is not available in closed form in particle collider experiments,
the general task of finding a sufficient summary statistic that reduces the dimen-
sionality cannot be tackled directly by analytic means. However, for finite mixture
models where the only model parameters are a function of the mixture coefficients
¢;, probabilistic classification can be used to obtain (approximate) sufficient sum-
mary statistics. We will return to this topic in Chapter 4. When the parameters of
interest or additional unknown parameters affect the mixture components p;(x|@),
the construction of sufficient summary statistics cannot be addressed directly, thus
a fraction information about the parameters @ is very likely to be lost in the dimen-
sionality reduction step. An automated way to obtain powerful summary statistics

in those cases using machine learning techniques will be presented in Chapter 6.
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SYNTHETIC LIKELIHOOD

The advantage of using lower-dimensional summary statistics s(D) : Xp C R&>™ —
Yp C RP™ of the detector readout collected by the experiment is that often the gen-
erative model of p(x|@) can be used to build non-parametric likelihoods of s(D) that
link the observations with the model parameters, so classical inference algorithms
can be used. This likelihoods are referred here as synthetic because they are not
based on the actual generative model of & but on approximations constructed using
simulated observations.

For summary statistics of the type n9*5(D) : Xp C R™>*" — Yp C {0,1}° the
likelihood can be expressed as a product of independent Poisson count likelihoods as
shown in Equation 3.28. Such likelihood can be evaluated for the observed data D
and specific parameters @, even in the case that 8 modifies the distribution of the
mixture components p;(x|@), by forward approximating nfl(e r) (or alternatively
e?i(e r)) using simulated observations for each process j generated for @r. This pro-
cess would rapidly become computationally very demanding if it had to be repeated
for each likelihood evaluation during the whole inference process. Re-weighting pro-
cedures such as those described in Equation 3.18 can often be applied to re-use
already simulated events using 8 to model events corresponding to different values
of the parameters 0.

A more economical approach, commonly used in LHC analyses that use binned
Poisson likelihoods based on the formalism introduced in Equation 3.28, is to para-
metrise the effect of varying parameters by interpolating between the values of the
ejc.i (0%) (or directly n]CZ (0y)) for different values of k. Such parametrisation allows the
analytical approximation of the likelihood originated by Equation 3.28, and simpli-
fies the computation of gradients with respect to the parameters. This is particularly
relevant to model the effect of nuisance parameters, which are uncertain but not of
direct interest, and have to be accounted for in the inference procedure; this issue
will be discussed in Section 3.1.4. Different interpolation conventions exist [90], but
they are normally based on the marginal one-dimensional interpolation between the
effect of a single parameter 6; € 8 at three equally spaced values (the nominal para-
meter values and the up/down variations). In that case the total effect on ejc-i(Bk) is
accounted by adding absolute shifts or multiplying marginal effects.

Even assuming that the marginal description when a single parameter of interest
varies is accurate, which is not ensured by the interpolation, and the effect of each
parameter is factorised in p;(x|@), the integral definition of ejc-i(Gk) from Equation

3.13 does not ensure that the correlated effect of the variation of multiple 6; € 0 is
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accurately modelled. This issue can be easily exemplified, considering the product
of relative variations in the two parameter case Or = (6{%,6%). Let us consider the

expected value for the efficiency after a given selection 1¢,():

< (05) = / e ()p; (/0 ) da:

p;(a|(0F,07)) p; (2| (65, 0%))
pi(®l0g)  p(xl8q)

(3.31)
dx

- / Le()p;(2/60)

where Op is the parameter point we want to simulate by interpolating around a
nominal point 8. The last expression in Equation 3.31 is only correct when the effect
of each parameter is independent, i.e. the underlying probability density function can
be factorised as the product of independent factors. However, it becomes evident

that the previous expression does not simplify:

&' (Or) # €5 (6q) (3:32)

C
J J
€$1(0) € (0)
because the integral of the product of functions is not product of integrals, unless
the volume of the selected region C' is infinitesimally small - an irrelevant case as it
would correspond to null efficiencies. This effect also applies if additive variations

are considered and can be more notable when more parameters are considered.

The previously mentioned modelling issue, even though to the best of our know-
ledge has not been made explicit in the literature before, affects a multitude of ana-
lyses at the LHC, i.e. those that use template interpolation, as implemented in the
standard statistical libraries used in particle physics experiments [91, 92]. A possible
solution would include doing a multi-dimensional interpolation, but it would naively
require evaluating at least all 3-point combinatorial variations of the parameters,
amounting to a minimum of 3P evaluations of ejc-i(e), where p is the number of para-
meters. If the effect of the parameters can be factored out in the joint distribution
and the same simulated event set can be modified to describe each marginal vari-
ation, as reviewed around Equation 3.17, the non-marginal terms can be estimated
from the product of per-event marginal terms by considering the finite sum approx-
imation of the last expression in Equation 3.31, which would only require (2p + 1)
parameter variation evaluations. Alternatively, the basis of the approach presented
in Chapter 6, where the variation of the parameters and its derivatives are computed

in place over the simulated observations by specifying the full computational graph,
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could also be used in analyses where the discussed assumption fails to realistically
describe the data.

3.1.4 KNOWN UNKNOWNS

So far we have assumed that the simulated observations can model the data and
the only parameters 8 that affect the generative model are those we are interested in
carrying out inference on. However, simulated observations effectively depend on the
modelling of the physical processes occurring in the proton-proton collisions and the
detector, of which we only have an approximate description. Those mis-modelling
effects have to be accounted in the inference procedure to obtain unbiased estimates,
and are accounted by additional nuisance parameters in the statistical model when
their effect is known and can be approximated. For cases where simulation does
not provide the desired level of accuracy, the contribution from some of the mixture
components can often be estimated from data directly, using what are referred to as

data-driven estimation techniques.

NUISANCE PARAMETERS

The general definition of nuisance parameters in a statistical model refers to all the
uncertain parameters of the statistical model that are not of intermediate interest
but have to be accounted for in the inference procedure. These parameters can in-
clude uncertain theoretical parameters (e.g. top quark mass or expected background
rate), account for limitation on the experimentally measured parameterisations of
certain phenomena (e.g. parton density functions uncertainties) or represent the ac-
curacy limits of calibration between data and simulation. Nuisance parameters can
also represent additional degrees of freedom of the model that cover for possible
wrong assumptions or quantify imprecisions due to the limited number of simulated
observations.

Because the actual generative process for the experimental data is not known
perfectly, the simulation-based model is extended with additional parameters that
portray the possible variability on the distribution of the detector readouts. The
formalism developed in the previous part of Section 3.1 still applies, noting that the
parameter vector @ = {6,, 0, } now includes both parameters of interest €, and nuis-
ance parameters 6,. While the effect of (usually theoretical) parameters of interest

typically only affects the parton-level latent factor p(zp|@), some nuisance paramet-
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ers account for possible mis-modelling in subsequent steps of the simulation thus can

affect the other factors in Equation 3.9.

The effect of variation of nuisance parameters for any observable or summary
statistic considered in a given analysis can be estimated by simulating again the
affected observation with the chosen parameters - often prohibitively expensive - or
by re-weighting already simulated observations as described in Equation 3.17 - which
is much faster and reduces the statistical fluctuations between variations associated
with the random sampling of the full latent space. Unprincipled modelling shortcuts,
such as considering the additive or multiplicative effect of marginal efficiencies to
account for combined effects, are also frequently used for count vector observables
C;

n;

associated issues.

(0), as discussed in Section 3.1.3 together with possible solutions to some of the

The re-weighting approach from Equation 3.16 is extremely effective to model the
effect of parameters in the conditional factor that deal with low-dimensional latent
variables, such as p(z,|0), because the rest of the factors in the joint distribution
simplify and we are left with a low-dimensionality density estimation problem (even
analytically tractable in some cases). For conditional factors that deal with higher
dimensional latent or observable spaces, such as p(zq|zs, @) or p(x|zq,8), the ratio
can be very hard to estimate unless additional simplifications are possible. For
those nuisance parameters, it is easier to consider the effect on the lower-dimensional

summary statistic instead of the detector readout x, because the ratio:
s
w(s(z)) = LEE@)IOR) (3.33)

can be simpler to estimate through density estimation or approximately factorise if
the summary statistic is chosen carefully. This fact motivates an alternative way to
model the effect of some of the nuisance parameters, especially those related with
the differences in the reconstructed objects observables between simulation and data
after calibration. Let us consider the case where summary statistics s(xz) : X C
RY — Yam C R are effectively a function of the reconstructed objects and its
properties Y.oco € Vreco, Which can be schematically represented by the following

function composition chain:

h
X i> yreco — ysum (334)
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where Yoo = 9() and ygm = M(Yreeo). This compositional approach can be
extended to include also event selection at trigger or analysis level, or other inter-
mediate summaries of & complementary to reconstruction, as part of the definition
of the summary statistic s(x). In all cases where s(x) is a deterministic function,
all differences between simulated observations and data in any expected observables
originate from the differences between the simulation-based generative definition of
p(x|@) and the true unknown generative process piryue(). While the task of evaluat-
ing and parametrising these differences directly by studying the raw detector output
is quite convoluted, the differences can be corrected and their uncertainty assessed
for the lower-dimensional intermediate states of the composition chain depicted in

Equation 3.34.

For example, if the momenta of a certain subset of the reconstructed objects ¥, eco
statistically differ between experimental data and the simulated observations, based
on a subset of the data that is assumed to be well-modelled, the momenta of simulated
observations can be corrected to better model the data. The statistical accuracy of
such procedure due to the different factors leads to a set of nuisance parameters
that describe the limit of the mentioned calibration as a function of the value of
Yreco- The effect of these type of nuisance parameters often be modelled in the

simulation by using a function of the simulated intermediate outputs, e.g. in the

case of reconstructed objects:

E [s(z)] = E [2(r(Yreco: 0p))] (3.35)

:ch(m‘e) yrecoNp(yreco‘eo)
so p(x]@) can be approximated by computing observables after applying the re-
parametrisation 7 (Y, ee0, 0p) to the simulated observations, where 8, is the vector of

parameters representing the different uncertainty factors.

In general, the effects of all relevant nuisance parameters can be modelled by a com-
bination of simulated observations re-weighting by w(x;, z;|6,,) and transformations
of intermediate simulated observations ¥,y = 7(Ysim» 2i|@p). The former is based on
importance sampling [93| to estimate the properties of a different distribution than
the one sampled originally from, while the latter assumes that the mis-modelling can
be accounted by a parametrisation of the simulated intermediate observables. If the
functions w(x;, 2;|0.) and (Y, 2i|0,) are differentiable or can be approximated
by differentiable functions, the gradient (and higher order derivatives) with respect
to the parameters 8 of any expectation value can be very efficiently approximated.

This can be very useful for statistical inference (e.g. likelihood maximisation), while
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it has not been used so far in LHC analysis to our knowledge. This is one of the core

concepts of the technique to construct summary statistics presented in Chapter 6.

The inference results of a given analysis depend strongly on the assumptions impli-
cit in the statistical model. The determination, assessment and practical definition
of the effect of nuisance parameters that are relevant for a given analysis is one the
most challenging yet important aspects in experimental particle physics at the LHC.
When nuisance parameters are quantitatively taken into account in the statistical
model, they lead to an increase of the uncertainty on the parameters of interest and
larger interval estimates (or exclusion limits) on the parameters of interest. The
choice of summary statistics may also affect significantly subsequent inference, and
while nuisance parameters are usually qualitatively considered when building simple
summary statistics by physics-inspired combinations of reconstructed variables, they
are not regarded at all when the automatic multi-variate techniques described in
Chapter 4 are applied to construct complex non-linear observables. This issue is

addressed by the method proposed in Chapter 6.

DATA-DRIVEN ESTIMATION

For some fundamental processes, the generative modelling provided by simulated
observations might not be accurate enough for the purposes of a given LHC ana-
lysis. In a subset of those cases, the simulated observations can be calibrated to
better describe the observations in well-modelled data regions, as mentioned in the
previous section. However, if the description of the summary statistics considered in
the analysis provided by the simulated observations from process j is substandard,
e.g. the number of simulated observations that could be realistically simulated is not
sufficient, then the contribution from the mentioned mixture component might have

to be estimated from experimental observations directly.

The actual procedure used for modelling the contribution for a given mixture
component j from data depend on the specifics of the process as well the details of
the analysis, but often includes some re-weighting factor obtained from simulated
observations or additional experimental observations with an orthogonal selection
criterion. Such data-driven estimation techniques are often used for the background
processes, but are hard to combine with the non-linear summary statistics recon-
structed by machine learning techniques such as those described in Chapter 4. In
the CMS analysis presented in Chapter 5, we describe and utilise a fully data-driven

background estimation technique fine-tuned for the modelling of the QCD-based
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multiple jet background for the search of Higgs pair production decaying to four

b-quarks.

3.2 STATISTICAL INFERENCE

In the previous section, the main characteristics of the generative statistical model
p(D|@) relating the parameters 8 with the set of observations D = {xy, ..., x,} have
been reviewed. In addition, we discussed the role of lower dimensional summary
statistics as functional transformations of each detector readout s(x;) or even the
whole dataset s(D), as well as how the effect of additional uncertain parameters can
be included in the simulation-based generative model of the data. In this section,
we deal with the actual problem of inference of the subset of parameters of interest
0, once a summary statistic has already been chosen and the final statistical model
p(s(D)|0) has been fully specified.

3.2.1 LIKELIHOOD-FREE INFERENCE

One of the main properties of the statistical models at particle colliders we focussed
on in the last section was their generative-only nature, whereby their probability
density p(x|0) cannot be expressed analytically, but only by means of forward simu-
lated observation. This fact greatly complicates the application of standard inference

techniques which require the explicit definition of a likelihood

x, €D
L(6|D) = ][ p(xil6) (3.36)

in order to make quantitative statements about the parameters of interest, because it
expresses the extent to which a set of values for the model parameters are consistent
with the observed data. Problems where the likelihood cannot be expressed directly
are common in many scientific disciplines, because a link between observations and
the underlying parameters can often only be provided by a probabilistic computer
program. This is frequently the case when the system under study is complex,
e.g. can only be described by a hierarchy or a sequence of stochastic processes.

The evaluation of the likelihood for complex generative models rapidly becomes
impractical, especially when the dimensionality of the observations or the parameter
space is very high. Various statistical techniques for dealing with these cases exist,
generally referred to as likelihood-free or simulation-based inference techniques. A

well established group of techniques for inference when the likelihood function is
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unknown is referred to as Approximate Bayesian Computation (ABC) [94, 95]. The
fundamental concept behind ABC is the generation of a simulated sample Sy =
{zg, ..., xm—1} using a given vector of parameters 6y, which is then compared using
a distance criterion to the actual observed dataset D. If the data and the simulation
are close enough, then g is retained as sample from the posterior. The process is
repeated until the posterior is estimated with the desired accuracy. The quality of
the posterior approximation produced by ABC techniques, as well as the number of
sampling steps required to reach a given accuracy, strongly depend on the distance
definition. When the dimensionality of the output is high, a summary statistic
vector s(D) has to be used in practice to increase the computational efficiency of the
previous procedure, which would be otherwise intractable.

The approach commonly used when carrying out inference at particle physics ex-
periments at the LHC is somehow related with the mentioned family of techniques.
The observations are also reduced to a lower-dimensional summary statistic space,
but then a non-parametric likelihood is constructed so that standard inference tech-
niques can be applied. The likelihood is often based on the product of Poisson count
terms, as depicted in Equation 3.27 and Equation 3.28, where the dependence on the
expectations on the parameters is based on the simulation and the mixture structure.
Alternative approaches include the use of a simple one-dimensional parametrisation
for a continuous background and a bump-like signal, which is common when the
reconstructed mass of an intermediate object is used as summary statistic and its
distribution is well-controlled, e.g. a Higgs bosons decaying to two photons. An ad-
ditional alternative approach, which has not been used in LHC analyses to date,
could be to use non-parametric density estimation techniques to obtain an unbinned
likelihood directly from simulated data. This approach has been recently referred as
Approximate Frequentist Computation (AFC) [96], and can be also combined with
the technique presented in Chapter 6.

3.2.2 HYPOTHESIS TESTING

Statistical inference within experimental particle physics is often framed as a hypo-
thesis testing problem. The goal of statistical testing is to make a quantitative state-
ment about how well observed data agrees with an underlying model or prediction,
which is often referred to as a hypothesis. The statistical model under consideration
is often referred to as null hypothesis Hy. Classical statistical testing techniques often
require the definition of an alternative hypothesis H1, whose agreement with the data

is compared with that of the null. A hypothesis is said to be simple, when all the
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distribution (or generative model) parameters are fully specified, i.e. p(x|Hs) = f()
does not depend on any non-fixed parameter. A composite hypothesis instead de-
pends on one or more parameters 6, i.e. the distribution under the hypothesis can
be expressed as p(x|H.) = f(x,0).

In order to carry out hypothesis testing based on a set of observations D =
{xo,...,xn}, a test statistic t(D) that is a function of the observations is construc-
ted. The choice of test statistic is especially challenging when « is high-dimensional
and p(xz;]0) is not known. The concepts of test statistic and summary statistic,
the latter discussed in Section 3.1.3, are very related. A test statistic is in fact a
sample summary statistic’ s(D), that is used within an statistical test to accept or
reject hypothesis, so all the concerns regarding sufficiency from Section 3.1.3 also
apply. Regarding the dimensionality of ¢(D) : Xp C R¥™" — T, while it can be a
multi-dimensional vector (e.g. could even use t(D) = (xq, ..., Z,)), a one dimensional
variable is usually considered in order to simplify the process of making calibrated

statistical statements.

Let us refer to the test statistic for the set of observations as ¢, from here onwards.
The result of the statistical test is whether the hypothesis Hy can be rejected in
favour of Hy if the null is unlikely enough. In practice, in order to make a principled
decision, a critical region 7o C 7 in the space of the test statistic has to be defined
before looking at the set of observations. Once the critical region has been chosen,
a test can be then characterised by its significance level a and power 1 — 5. The
significance, which is also referred to as the Type I error rate, is directly related with
the probability of rejecting Hy when it is actually true. For a given test based on
the summary statistic ¢(D) and its critical region 7¢, the significance level can be
defined as: -

a = P(t € To|Hy) = / g(t|Ho)dt 2 | g(t|Ho)at (3.37)

Tc teut
where g(t|Hp) is the distribution of the test statistic under the null hypothesis Hy,
and the latter simplification applies for one-dimensional summary statistics where
the critical region is defined based on a given threshold t¢y,t. The power of a test
1 — [ is instead defined by the probability of not rejecting the null hypothesis when

the alternative is actually true, which often referred as type II error rate 5. The type

5Here a statistic is a function of observations, and sample summary statistic refers to statistics the
summarise a set of observations s(D) : Xp C R¥X™ 5 Yy, C RPX™,
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IT error rate 8 can be defined as the probability of not being in the critical region

under the alternative hypothesis:

teut
g(t|H)dt 21— / g(t|Hy)dt (3.38)

— 00

5=PlgTol) =1~ [
Tc
where g(t|Hp) is the distribution of the test statistic under the alternative hypothesis
Hi, and the last terms corresponds to the one dimensional case based on a threshold.
Both the significance level and the power of a hypothesis test depend on the definition
of its test statistic and the critical region. The significance level of a test « is often
fixed at a given value in order to reject the null in favour of an alternative. It is then
beneficial to design the test so its power is as high as possible, which is equivalent
to having a Type II error rate as low as possible.

From the definition of Type I and Type II error rates in Equation 3.37 and Equation
3.38, it is evident that either the probability distribution function of the test statistic
under both the null and alternative hypothesis or a way to estimate the integrals from
simulated observations are required. The main advantage of one-dimensional test
statistics, similarly to the low-dimensional summary statistics discussed in Section
3.1.3, is that they allow for an efficient estimation of the probability distribution
function using non-parametric techniques. When both the null Hy and alternative
hypothesis H; are simple, the Neyman-Pearson lemma [97] states that the likelihood
ratio, which is a one-dimensional test statistic defined as:

A(D; Ho, Hy) =

p(D|Ho) Ho)
p(D|Ho) Hp“” 0) (3.39)

D|H1 Q?’Hl

is the most powerful test statistic at any threshold t¢.y:, which is associated with a
significance o« = P(A(D; Hy, H1) < tcut). The last expansion requires independence
between the different observations. While the likelihood ratio can be proven to be
the most powerful test statistic, it cannot be evaluated exactly if the likelihood is
not known, which often the case for LHC inference problems as discussed in Section
3.2.1. The alternative hypothesis is usually composite in particle colliders because the
signal mixture fraction p (or its cross section equivalently) is one of the parameters
of interest. The likelihood ratio test can nevertheless be expressed in this case as a
function the parameter p, which will be the most powerful test for a given p if it is
the only unknown parameter.

It is worth noting that while the likelihood ratio defined in Equation 3.39 defines

the most powerful test, the likelihood ratio based on a summary statistic s(D) can

99



3 Statistical Modelling and Inference at the LHC

also be defined, but it is not the most powerful test for inference based on D un-
less s(D) is a sufficient summary statistic with respect to the parameters @ which
fully define the null p(x|Hy) = p(x|0p) and alternate p(x|H1) = p(x|01) hypotheses.
This fact motivates the use of machine learning techniques to approximate the like-
lihood ratio directly based on simulated observations as discussed in Section 4.3.1.
The likelihood-ratio can then be calibrated by means of non-parametric probability
density estimation techniques or count-based likelihoods.

Another relevant issue when defining test statistics is that hypotheses are rarely
simple (or with a composite alternate in the way previously described). Let us
suppose the p is the parameter of interest, e.g. the mixture coefficient for the signal.
The statistical model often depends on additional nuisance parameters 6, as discussed
in Section 3.1.4. The likelihood ratio from Equation 3.39 is not guaranteed to be the
most powerful test statistic when the hypotheses are composite. In this case, often
summary statistics based on the profile likelihood ratio are used, that can be defined

for LHC searches as:

Alp) = (3.40)

where é at the numerator refers to the value of the nuisance parameter that maxim-
ises the likelihood for a given u, and f and 6 at the denominator are the standard
maximum likelihood estimators. The property that motivates the use of the profile
likelihood ratio, other than its convergence to the likelihood ratio when the hypo-
theses are simple, is that the distribution for large numbers of observations can be
effectively approximated, as demonstrated by Wilks and Wald [98, 99].

For a discussion of the different test statistics based on the profiled likelihood ratio
as well as their asymptotic approximations, the following reference is recommended
[100]. In particular, the use of the Asimov dataset, where the observed sample
summary statistic of the type outlined Equation 3.29 is assumed to be equal to the
expectation, is instrumental for the technique described in Chapter 6. The statistical
framework of hypothesis testing is used to decide whether to reject or not reject the
null hypothesis in favour of the alternate. Alternatively it can also be useful to
estimate the probability of obtaining the observed data (or test statistic) under the
null hypothesis, which is simply referred to as the p-value or alternatively as Z-value
when standard deviation units are used. When the null hypothesis is not rejected Hy,
the statistical test can be recast to obtain exclusion upper limits at a given confidence
level (usually 95% is used), as is done in the non-resonant Higgs production search

included in Chapter 5.
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For obtaining exclusion upper limits, it is useful to define a modified test statistic

q(p):

B (WOW) ¢ -
21In L(O,(?(u)) if 1<0
q = _ L(M7?(M)) 3 <0<
(1) 2 pAEE 0 <<
0 if o> p

which does not regard negative background fluctuations or cases where i > p as evid-
ence against g. When using ¢(u) or similar profile-likelihood-based one-dimensional
test statistics, the observed exclusion upper upper limit can be defined as the largest
value of p for which the probability of obtaining a test statistic value is equal or
larger than a given confidence level (e.g. @ = 0.05 for 95% confidence intervals),

which can be expressed as the following integral:

[e.9]

PG = aln) = [ gl (3.41)
Gobs (1)
where Gobs(1t) is the observed test statistic and g(q(p)|w) is the distribution under
the alternate when the signal fraction is u. This integral can be approximated using
Monte Carlo simulations or by the asymptotic approximations described in [100].
A different upper limit definition is often used to avoid excluding an alternative
hypothesis with a fixed probably « even when the analysis has no sensitivity, referred
to as CLs procedure [101, 102], in which the exclusion limit is defined as the value
of u for which P(q(u) > a|u)/P(q(p) > «|0) > «), which solves the mentioned issue

at the cost of over-coverage.

Most data analyses at the LHC, and particularly searches such as the one discussed
in Chapter 5, are carried out in blinded manner to reduce the experimenter’s bias,
i.e. the subset of observations or results relevant for statistical inference are not
considered (or concealed) until all the analysis procedures have defined. In order
to optimise the various analysis components (e.g. selection or summary statistic),
it is useful to compute a figure of merit that is representative of the prospective
sensitivity of the analysis. The expected significance, is the expectation value for
the probability value from Equation 3.37 under the alternative hypothesis. Instead,
the median instead of the expectation is often considered to preserve monotonicity
with Z-values, and several approximations exist for simple cut-and-count likelihoods.
Both the expected and median significance depend on the signal fraction p assumed,
so they are particularly useful to optimise analyses where the order of magnitude

expected for p is known, e.g. cross section measurements of SM processes.
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Alternatively, the expected median upper limit can be defined as the exclusion
upper limit using the median test statistic gmeq(¢t) under the null hypothesis instead
of the observed statistic. In addition to the median expected limit, it is common
practice in LHC searches to also compute the so-called 1-sigma and 2-sigma bands,
that correspond to the 50.0 £ 34.1 and 50.0 4= 47.7 percentiles instead of the median.
The upper limit bands provide a quantitive estimation of the possible limit variation
if no signal is present in the data. Both the expected significance and the expected
upper limit can be estimated asymptotically for summary statistics like the one
described in Equation 3.29. The effect of nuisance parameters can be also included
in both in the asymptotic approximations or the Monte Carlo based estimation. The
asymptotic approximation are found to be good empirically, within 10% to 30% (for
situations where the number of events is small) of the Monte Carlo based estimation,
and thus are frequently used for obtaining limits and significances in New Physics

searches.

3.2.3 PARAMETER ESTIMATION

Another inference problem that can be defined based on the observed data, is para-
meter estimation, whose goal can generally be defined as the determination of the
possible or optimal values that the parameters of a statistical model in relation to
a set of observations. Two types of parameter estimation problems are often con-
sidered: point estimation and interval estimation. If the aim is to obtain the best
estimate (i.e. a single value) of a vector of parameter based on a set of observations,
it is referred to as a point estimation problem. When we are instead interested on
using a set of observations to make statistical statements about a range or region
for the values that the statistical model parameters, we are dealing with an interval
estimation problem.

Parameter estimation can be addressed either from a classical (i.e. also known as
frequentist) standpoint where the true values of the parameter are assumed to be
fixed but unknown, and intervals represent the region of parameters for which the
set of observed data could be obtained upon repeated sampling; or from a Bayesian
perspective, where probabilistic statements representing the degree of belief on the
values for the parameters are updated based on the set of observations. A classical
inference approach is predominantly adopted in this document, where the definition
of probability is based on the relative frequency of the outcome when repeated trials
are carried out. Classical interval estimation, often referred to as confidence interval

estimation is strongly related with hypothesis testing, as reviewed in Section 3.2.2.
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The 100(1 — @)% confidence interval (CI) for a one-dimensional parameter 6 can be
defined as the interval [0, 07]:, such that:

P~ <0< =1-a (3.42)

where 0~ and 07 are referred as the lower and upper limits. The definition of
confidence interval in the context of classical parameter estimation is the range of
values for a given parameter which, upon repeated trials, would contain the true
value 100(1 — a)% of the times. The concept of confidence interval can also be
extended to confidence region when a multi-dimensional parameter vector or several
disjoint intervals are considered. While the definition of confidence interval based on
its coverage properties is rather simple, its construction based on a set of observations
D = {x,...,x,} can be quite challenging. It is worth noting that both upper and
lower limit are estimators, quantities calculated by applying a given produce to the
set of observations, and thus §~ (D) and 61 (D) explicitly depend on the set of data.

The Neyman construction [103] provides a principled procedure to define 100(1 —
a)% confidence intervals which guarantee the property defined in Equation 3.42,
by inverting an ensemble of hypothesis tests (as defined in Section 3.2.2), by using
simulated datasets for the different values that parameter 8 can take. Confidence
intervals can be one-sided, e.g. such as the exclusion upper limits defined in Equation
3.41, or two-sided as the definition provided in Equation 3.42. In particle collider
analyses, there is often a dichotomy between one-sided intervals for null results and
two-sided intervals for non-null results, which can be solved by extending the Neyman

construction with a likelihood-ratio ordering criterion [104].

Confidence interval procedures based on the Neyman construction work very well
for simple statistical models with one or two parameters, however rapidly become
computationally intractable for larger number of parameters. Even though the num-
ber of parameters of interest at LHC analyses is usually small, nuisance parameters
play an important role in inference as reviewed in Section 3.1.4, and cannot be ac-
counted for in a straightforward manner in the previous procedure. Thus when the
total number of parameters is high, confidence intervals are usually computed based
on alternative approximations, often based of some of the properties of the profiled

likelihood ratio discussed in Section 3.2.2.

Before discussing the fundamentals of the confidence interval approximations, it
is useful to formally define the mazimum likelihood estimator of a parameter @ypr,

based on a set of observations D = {xy, ..., z,} as:

103



3 Statistical Modelling and Inference at the LHC

O\, = arg max L(D; 0) (3.43)
0co

where L(D;0) is the likelihood function given the set of observations D which is
a function of the model parameters 8. The maximum likelihood estimator of model
parameters was already used to define the profile likelihood ratio test statistic in
Equation 3.40, an it is a very common point estimator because it is asymptotically
consistent and efficient. In addition, the maximum likelihood estimator coincides
with the mazimum a posteriori (MAP) point estimator in Bayesian inference when
the parameter priors are uniform, because the evidence is proportional to the likeli-
hood.

The shape of the likelihood function around the maximum likelihood estimator
Onir, can be used to approximate confidence intervals. Using asymptotic theory
developed by Wilks [98], the 100(1 — )% confidence region for the parameter vector

0 can be determined using the following relation:

—InL(D;0) < —InL(D;0y1,) + Aln L (3.44)

where In L(D; 6yy,) is the natural logarithm of the likelihood for the maximum
likelihood estimator and Aln L depends on the number of parameter dimensions
and the desired coverage 1 — a. For example, the values of € inside the 68.27%
(i.e. 1-sigma) confidence region and for one dimensional parameter are those for
which the previous relation is verified using Aln L = 0.5. If @ is one-dimensional
and the function L(D; @) is convex, the confidence interval limits 6~ (D) and 61 (D)
can be obtained by finding the most extreme values of 6 that verify Equation 3.44
at each side of the maximum likelihood estimator Oypg,.

As discussed in Section 3.1.4, we are often interested on confidence intervals for a
subset of interest of the statistical model 6,, while regarding the others as nuisance
parameters 8,. The previous procedure can be extended for computing approximate
confidence interval for the parameters of interest, by considering the profiled likeli-
hood [105] L(D;8,) instead of the full likelihood in Equation 3.44, which is defined

as:

L(D;8,) = arg max L(D;6,,0,) (3.45)
0,€0,

so the nuisance parameters 8, are profiled by considering their values that would

maximise the likelihood conditional for each value of the parameters of interest 6,.
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Noting that a constant denominator in the likelihood would cancel out at each side
of Equation 3.44, and similarly when using the profiled likelihood from Equation
3.45. Both procedures can be theoretically linked with the profile-likelihood ratio
test statistic defined in Equation 3.40. Algorithms for likelihood maximisation and
computation of intervals based on the profiled likelihood are implemented in the
MINOS routine as part of the MINUIT software library [106], which can also account
for bounded parameters. Confidence intervals based on the profiled likelihood will be
used for benchmarking different ways for constructing summary statistics in Chapter

6.

Another important subtlety when dealing with nuisance parameters (which also
applies to a lesser degree to the combination of measurements), is that oftentimes
they are constrained by theory or external measurement. This can be included in
the previous likelihood-based techniques by considering the likelihood as a product of
the likelihood derived from the statistical model for the set of observations Lp(D;0)

with the available constraints L%,(0), as follows:

L(D:0) = Lp(D:0) [ £i:(0) (3.46)
=0

where simplified likelihoods (e.g. a normal approximation) are often used in the
constrain terms L’b(@) but they could in principle also depend on an independent
set of observations. The constrain terms could be also understood as prior probability

distributions in a Bayesian setting, obtained from previous evidence.

In order to obtain approximate confidence intervals from the shape of the likeli-
hood or profile likelihood function around the maximum likelihood, several likelihood
evaluations (together with a constrained optimisation problem if L(D; 8, ) is used) are
often required to estimate accurately a confidence interval. A cruder but often use-
ful approximation can be obtained from the curvature of the negative log-likelihood
function at Oyr,. In more than one dimension, the local curvature can be expressed
by the Hessian matrix H. The expectation of hessian of the —In L(D;8) is also

referred as the Fisher information matrix I(€) [107] and it is defined as:

2

1(6),, = H(0),,

_ —In L(D; 4
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which can be evaluated at any given 6, e.g. by using numerical differentiation. The
Cramér-Rao lower bound [108, 109] provides a link between the inverse of the Fisher

information matrix and the covariance of an unbiased estimator 6:
covg(0) > I(6)! (3.48)

which becomes an equality in the large-sample limit for an efficient parameter es-
timator such as the maximum likelihood estimator @y;,. The diagonal elements of

the inverse of the information matrix o7 = (I (0)_1)1.1. may be used to construct a

i
68.3% confidence interval for 6; parameter where the effect of the rest of paramet-
ers has been profiled as [@y, — 0, Oy + 0;]. This approximation is equivalent to
profiling assuming that the —In L(D;0) can be described by a multi-dimensional
parabola centered at @y, and thus leads to symmetric intervals. In Bayesian lit-
erature, an analogous approach is used to extend MAP estimation in order obtain
a multi-dimensional normal approximation for the posterior, which is often referred
to as Laplace approximation [110]. An important advantage of this approximation,
that will be used in Chapter 6 to construct an inference-aware machine learning loss
function, is that can be interpreted both in the context of classical and Bayesian

inference.
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PHYSICS

Computers are useless.

They can only give you answers.

Pablo Picasso

Machine learning is an interdisciplinary field that deals with the general problem of
how computers can automatically improve at certain tasks given data. The usefulness
and range of applicability of such techniques has surged in the last decades due to the
increase on accessible computational power and the amount of useful data available.
In this section, a general overview of machine learning methods as well as the main
tasks that can be addressed with them will be provided. Subsequently, the technical
basis of two specific types of machine learning methods used in the next chapters
will be explored: boosted decision trees and neural networks. Last but not least,
we will go through a brief review of the common past use cases of these techniques
at high energy physics experiments, especially focussing on those cases where they
can be used to address some of the statistical inference and modelling issues from
Chapter 3.

4.1 PROBLEM DESCRIPTION

Machine learning is the field that deals with algorithms, as described by computer
programs, that are able to learn from data. A more formal definition of learning, yet
general and useful in the context of this work, can be found in the literature [111]:
“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at task in T', as measured
by P, improves with experience E”. The previous sentence clearly denotes the three
key elements for learning in the context of computer algorithms: the task (or class

of task) that to be accomplished T, a quantitative and robust way to measure the
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performance on those tasks P and a set of data that the algorithm can experience
in order to improve E.

The first step in order to tackle a problem with machine learning techniques is
the formal definition of the task T, together with a quantifiable metric that scores
the accuracy on such task P. In this section, the most common machine learning
tasks that are of relevance for their possible use in particle collider experiments and
similar scientific contexts are introduced. Simultaneously with the description of the
tasks, performance measures and data, the main general machine learning concepts

are reviewed.

4.1.1 PROBABILISTIC CLASSIFICATION AND REGRESSION

One of the conceptually simple, yet versatile, tasks that can be addressed with ma-
chine learning algorithms is classification. A classifier or a classification rule is a
function f(x) : X — Y that predicts a label y € {0,...,k — 1}, denoting corres-
pondence to one category in a set of of k categories, for each input @ € X. The
task of classification, in the context of machine learning algorithms, is to produce
classification functions f(x) that perform well on an unobserved set of data.

Classification is often framed as belonging to a larger category of tasks referred to
as supervised learning, where the goal is predicting the value of an output variable
y (here a multi-dimensional vector for generality) based on the observed values of
the input variables x, based on a learning set of n input vectors with known output
values S = {(x0,¥yq); ---s (n,y,,)} The output values y are known in the learning
set, because they were previously determined by an external method, typically a
teacher or supervisor looking at past observations, thus explaining the name of these
family of techniques.

From a statistical standpoint, the input observations and target values from the
learning set can be viewed as random variables sampled from a joint probability
distribution p(x,y), which is typically unknown. The family of supervised learning
tasks also includes regression, which amounts to construct a f(«) that can to predict
a numerical target output y, and structured output tasks where the output vector y
is a vector or a complex data structure where its elements are tightly interrelated.
As will be reviewed in Section 4.3, most analysis problems amenable by machine
learning in high-energy physics experiments are framed as classification and regres-
sion tasks, while the use of structured output tasks is instead not quite extended.
The reconstruction of the set and properties of physical objects in an event directly

from the detector readout could be framed as a structured output task, if it was to
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be approached directly using machine learning algorithms instead of the procedures
described in Section 2.3.3.

The goal of supervised learning is not to perform well on the learning set S used
for improving at the specified task, but rather to perform well on additional un-
seen observations sampled from the joint distribution p(x,y). Supervised learning
algorithms exploit the conditional relations between the input and the output vari-
ables, in order to classify new observations better than a random classification rule
that does not depend on the value of . When using machine learning techniques
in data analysis at the LHC, as will be reviewed in Section 4.3, simulated observa-
tions are used instead of expert-labelled past observations. Simulated observations
correspond to random samples of the joint distribution over the latent variables for

the generative model p(x, 2|0), as described in Section 3.1.

In fact, the problem of inferring a subset of latent variables z of the statistical
model for the raw detector readouts of a collider experiment @, or from any determ-
inistic function of it s(x), can be cast as a supervised learning problem. The learning
set S would consist of simulated observations «; (or a summary of it s(x;)), and a
matching subset of interest of the latent variables y; € Y C Z. The supervised learn-
ing task can then be viewed as the estimation of the conditional expectation value
E,(ylz==,)[y] for each given input observation @;, thus characterising the probability

distribution p(y|x).

While several performance measures P are possible for a given task T, for super-
vised learning is common to use performance measures that estimate the expected
prediction error, or risk R, of a given predictor function f(x), which can normally

be expressed as:

R(f)= —E  [Ly, f(z))] (4.1)

(z,y)~p(,y)
where L is a loss function that quantifies the discrepancy between the true output
and the prediction. The quantity defined in Equation 4.1 is often also referred to as

risk, test error, or also as generalisation error.

The optimal model for a given task T thus depends on the definition of its loss
function L, if the objective is minimising the expected prediction error. In practice,
the expected prediction error cannot be estimated analytically because p(x,y) is

not known, or not tractable in the case of a generative simulation model. The
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generalisation error has thus to be estimated from a subset of labelled samples S" =

{(x0,Yg), - (X, Yyy) } as follows:

R ~Rs = S Ly, f(@) (1.2

(xi,y,)€S’

which is also commonly referred to as empirical risk approximation Rg(f) based on
the set S”. The supervised learning problem can then be stated as one of finding the
function f from a class of functions F, which depends on the particularities of the

algorithm, that minimises the empirical risk over the learning set S:

f = arg min Rg(f) (4.3)

fer
which is referred to as empirical risk minimisation (ERM) [112], and it is at core
of most of the existing learning techniques, such as those described in Section 4.2.
However, the ultimate goal of a learning algorithm is to find a function f* that

minimises the risk or expected prediction error R(f):

f* = arg min R(f) (4.4)

feF
where R(f) is the quantity defined in Equation 4.1, corresponding to the general-
isation error, or average expected performance on unseen observations sampled from
p(x,y). The previous equation can be used to define the optimal prediction function
fB(x), also referred as Bayes model, which represents the minimal error that any
supervised learning algorithm can achieve due to the intrinsic statistical fluctuations

and properties in the data. The Bayes model can be expressed as:

fp(x) =argmin  E [L(y, f(z))] (4.5)
yey  y~p(yle)

where the last term indicates the optimal choice of target y for each value of
x. The previous expression can be obtained by explicitly considering the con-
ditional expectation in the risk term described in Equation 4.4, that is R(h) =
Exmp(zly) [Eywp(mw)[L(y, f(x))]], that can be obtained using Bayes theorem. The
Bayes model fg(x), and its corresponding risk R(fp), also referred as residual error,
can only be estimated if p(x, y) is known and the expectation can be computed ana-

lytically. Even though the Bayes optimal model cannot be obtained for real world
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problems, it can be useful nevertheless when benchmarking techniques in synthetic

datasets or for theoretical studies.

Because most learning algorithms optimise f, or its parameters, using the learning
set S, the empirical risk Rg(f) is not a good estimator of the expected generalisa-
tion error R(f). In general, Rg(f) underestimates Rg(f) because the statistical
fluctuations of the finite number of observations in S can be learnt to increase the
performance on S, while they are not useful for prediction on a new set of observa-
tions. If the family of functions F considered in the learning algorithm is flexible
enough, which is often the case, it is possible to achieve Rg(f) = 0 for the learning
set S while the generalisation error R(f) is well away from zero. This effect can
actually lead to a degradation of the generalisation error while the empirical risk in
the learning set is decreasing during the learning procedure, which is often referred

to as over-fitting.

To compare different prediction functions or to realistically evaluate the generalised
performance of a given prediction model f, it is useful to be able to compute unbiased
estimates of R(f). The simplest way to obtain such estimate is to divide the learning
set S into two disjoint random subsets Straim and Siest. The train subset Sipain will
be used by the learning algorithm to optimise the prediction function f by means
of empirical risk minimisation, as described in Equation 4.3. The hold-out or test
subset Siest can then be used to obtain an unbiased estimation of the performance

of f on unseen observations.

For many learning algorithms, the learning process, or training, is iterative: the
function f is optimised incrementally based on the training data. In those cases,
an estimation of the generalisation error as the training evolves may be useful to
stop the training procedure and avoid the degradation of generalisation due over-
fitting, in what is referred as early stopping. In those cases, as well as to compare
and ensemble the results of various predictor functions and model configurations, is
useful to hold out a fraction of Siram which is commonly referred as validation set
Svalid- Alternative approaches to estimate the generalisation error exist, including
cross-validation and its variations [113], which are usually preferred when the amount
of training data is reduced.

Another important concept for most machine learning techniques is that of hyper-
parameters. The majority of machine learning algorithms depend on a set of para-
meters that regulate the flexibility of the family of functions F to consider for empir-
ical risk minimisation as well as the details of the optimisation procedure followed to

solve the task presented in Equation 4.3. The expected performance of a given model
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depends on these parameters, however their optimal value depends on the particular-
ities of the data (e.g. number of input dimensions or number of size of the data size).
This motivates the notion of hyper-parameter optimisation, where the performance
of the various choices of hyper-parameters is evaluated on the validation set or by

means of cross-validation techniques, in order to select the best configuration.

The loss function L of a supervised learning algorithm, which quantifies the dis-
crepancies between the prediction and the true output target, depends on the task
T and formally defines it. A principled loss function for classification is the zero-one
loss, which is defined as zero when the prediction f(x) matches the target y and one

otherwise. The zero-one risk can then be expressed as:

Ro1(f)= E  [ly# f(=))] (4.6)
(,y)~p(,y)

where 1(y # f(x)) is an indicator function, which was defined in Equation 3.6.
The zero-one loss is non-differentiable when y = f(x) and its gradients are zero
elsewhere; in addition, it is not convex, a property which makes the minimisation
task in Equation 4.3 hard to tackle by optimisation algorithms. In fact, it can be
proven that finding the function f in F' that minimises directly the Ryp—_; empirical
risk with a training sample is a NP-hard problem [114]. The Bayes optimal classifier
for the 0-1 loss can nevertheless be easily obtained from Equation 4.7 as a function

of the conditional expectation:

fp(x) =argmin  E  [1(y # f(x))] = arg maxp(y|z) (4.7)
yey  y~p(ylx) yey

thus the optimal classifier amounts to the prediction of the most likely output cat-
egory y for a given input @. The previous problem is normally referred to as hard
classification, where the objective is to assign a category for each input observation.
Because most problem in high-energy physics that can be cast as supervised learn-
ing are ultimate inference problems as will be reviewed in Section 4.3, it is generally
more useful to consider the problem of soft classification, which instead amounts to

estimate the class probability for each input «.

Soft classification is especially useful when the classes are not separable, which
is often the case for applications in collider experiments. Luckily, soft classification

is also a consequence of most convex relaxations of the zero-one loss of Equation
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4.1 Problem Description

4.6. For a two-class classification problem, e.g signal versus background, a useful

approximation of the zero-one loss is the binary cross entropy, defined as:

Lice(y, f(®)) = —ylog(f(x)) — (1 —y)log(1 — f(x)) (4.8)

where now the one-dimensional output prediction f (), when bounded between 0 and
1 (e.g. using a sigmoid /logistic function), will effectively approximate the conditional
probability p(y = 1|x). In fact, the Bayes optimal model for a binary cross-entropy
classifier is:
fe(®)= E  [Lece(y, f(@))] =ply = 1|z)
(,y)~p(e,y)
_ plxly = Lpy =1) _ <
a vae{o,l} p(xly = yi)p(y = vi) B

where the second line in the equation is a direct consequence of Bayes theorem and
from the last term it can be clearly seen that the prediction output is monotonic
with the density ratio between the probability density functions for each category.
Similar results can be obtained for the Bayes optimal classifier when using other
soft relaxations of the zero-one function. Machine learning binary classifiers will
effectively approximate this quantity directly from empirical samples, where the prior
probabilities of each class represent the relative presence of observations from each
category.

Binary cross entropy is a subclass of the more general cross entropy loss function,
that can be used for k-categories classification, commonly referred to as multi-class
classification. In these cases, a k-dimensional vector target y is often constructed,
where each component y; is one if the observation belongs to the class ¢ or zero
otherwise, and the output of the prediction function § = f() is also a vector of k

components. Within this framework, the cross entropy loss can then be defined as:
Log(y, f(=)) = =) yilog; (4.10)
i

which can be used to recover Equation 4.8 when k = 2, considering the one-
dimensional target and prediction as the i=1 elements and that yg = 1 — y and
gJo = 1 — f(z). If the prediction output is to generally represent exclusive class prob-
abilities, as is the goal of soft classification, the prediction sum is expected to be one.
A simple way to ensure the aforementioned property is to apply a function that en-

sures that the prediction outputs are in the range [0, 1] and normalised so ), §; = 1.
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The softmax function is a common choice to achieving the mentioned transformation
within the field of machine learning. It is a generalisation of the logistic function to

k dimensions, and is defined as:

ofi(@)/T

—_— 4.11
Z_];:() efj (®)/7 ( )

i =
where f; and f; refer to the ¢ and j elements of the vector function f(x) and 7 is the
temperature, a parameter that regulates the softness of the operator which is often
omitted (i.e. 7 = 1). In the limit of 7 — 07, the probability of the largest component
will tend to 1 while others to 0. The softmax output can be used to represent the
probability distribution of a categorical distribution in a differentiable way, where
the outcome represent the probabilities of each of the k possible outcomes. We will
make use of this function in Chapter 6. When the softmax function and the cross
entropy loss are used together for multiclass classification, the optimal Bayes model
is:

fB,i(x) = E  [Lee(y, f(=)] = ply = yilz)
(z,y)~p(x,y)

_ p(xly = yi)p(y = vi)
Zv%e{o,...,kq}P(ﬂy =yi)p(y = ¥i)

(4.12)

which can also be expressed as a function of a sum of density ratios of the categories.

4.2 MACHINE LEARNING TECHNIQUES

While the focus of the previous section was defining the main problems and properties
that can be addressed with machine learning techniques, details about the actual
computational and statistical procedures used for learning were not provided. In
this chapter, the basis of the two classes of algorithms that are used elsewhere in this
work will be described in detail: boosted decision trees and artificial neural networks.
These families of learning methods are also those that are most commonly used in
machine learning within experimental particle physics, mostly to solve supervised
learning problems, as will be described in Section 4.3. The overview included here is
by no means comprehensive about the mentioned approaches or alternative popular
statistical learning techniques such as random forests or support vector machines,

for which the following references provided a more extensive review [113, 115, 116].
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4.2.1 BOOSTED DECISION TREES

The term boosted decision trees (BDT) refers to a large family of algorithms that are
based on additively constructing ensembles of decision trees for supervised learning
tasks [117, 118, 119] as those described in Section 4.1.1. A subset of these techniques,
which is often referred as gradient boosting, are particularly useful for classification
and regression problems. The basis for these methods is that a strong model can
be obtained by combining the outcome of a set of weak models, e.g. shallow binary
decision trees, if they are built to minimise the residual error at each stage. Gradient
boosting algorithms can be applied to any supervised task as long as it can be
specified by a differentiable loss function, and they can be understood as gradient
descent (which will be discussed in Section 4.2.2) in function space [120].

While it can be applied to other weak learners, gradient boosting is often used to
learn ensembles of decision trees. A decision tree is hierarchical branched structure
that associates an outcome for each input & € X by means of partitioning the input
space in different disjoint subsets R = (X, ..., X1 ), each associated with a constant
prediction w, for each leaf. A generic type of decision trees, which is referred to
as classification and regression trees (CART) [121] can be expressed as a function
of the input ¢(x) as a sum over the indicator function 1% (x) of each subspace (see

Equation 3.6) as follows:
Xr-€ER

tx)= > wly(z) (4.13)

where w, is the outcome for each subspace, noting the summands will be zero for all
subsets X" except for one because their are disjoint. The indicator function 1y, ()
of a given subspace is specified by a series of binary decisions on a single feature.
If the leaf predictions w, are categorical, the resulting model ¢(x) is referred as a
classification tree. If w, are numerical, ¢(x) is a regression tree. In the context of
gradient boosting, regression trees are often more useful, even for classification tasks,
i.e. regression trees can be used in conjunction with soft classification loss functions
(e.g. cross entropy). For the rest of this section, we will then focus on gradient
boosting with regression trees. A schematic representation of a regression tree is
provided in Figure 4.1, which corresponds to the first tree in the ensemble used for
signal versus background classification in the analysis described in Chapter 5.
Given its structural limitations, a single CART tree of small maximum depth
d performs rather poorly a given supervised learning task for complex non-linear
problems. If d is very large, the problem of learning an optimal tree based on data is

computationally very demanding, and the resulting model would not generalise well
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Figure 4.1: Graphical representation of a regression tree. At each node that is not a leaf
node, the tree is split in two depending on wether based on whether a boolean
condition is met, which based on a threshold for the input variable indexed by
the number indicated. This tree corresponds to the first on the ensemble of trees
used for classification in Chapter 5, which was trained using binary cross entropy

as loss function.
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to unseen data. This motivates the use of tree ensembles, where the final prediction
is composed by the combined predictions of several small trees. For an ensemble of

K CART trees, the final model prediction T'(x) can be expressed as:

T(x) =) tj(=z) (4.14)

where each t;(x) is a CART model, as described in Equation 4.13. Other regres-
sion tree ensembles based on alternative methods such as bagging [122] can also be
expressed by a similar combination of predictions. The learning problem can be
expressed as empirical risk minimisation in the space of possible tree ensembles over
the learning set of labelled observations S = {(xo,¥yg), ..., (Tn,y,,)}, as discussed in
Equation 4.3. The total empirical risk functional R(T") for an ensemble of K trees

can usually be written as:

K

R(T)= > Ly,T(=))+> Q) (4.15)

where L(y;, T(x;)) is the preferred loss function for the task (e.g. binary cross entropy
as defined in Equation 4.8) and €(t;) is a regularisation term that depends on the
properties of each tree and controls the complexity of the model in order to avoid

overfitting.

Because learning the structure and leaf weights w, of all trees in the ensemble at
the same time is intractable, boosting is based on sequentially learning trees. At each
step, a tree t; is built to improve over the previously ensemble of trees T(j_l)(a:),
the prediction for each observation in the learning set a given step j of the training

procedure can then be expressed as:
T](wl) = T(j—l) ($z) + t]-(ar:l-) (416)

which can be used to redefine the equivalent risk from Equation 4.15 at each training

step, where the tree ¢;(x) is being created as:

K

R(Ty) = > Ly, Ty-n(@) +ti(x) + > Qt;) (4.17)

(zi,y;)€S Jj=1
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where the loss L(yi,T(j,l)(sci) can be expanded as a Taylor series assuming that
at the step j the ensemble T(;_;y(x) is constant. Omitting constant terms, which
do not play any role in risk minimisation, the risk at a given training step can be

expressed as:

8L<yi7T(j_1)(CCi))
RT)~ Y ( @)y ()
(@ n)ES OTj—1)(x:)

PS
4.18)
1 L(y;, Ty () (
2 TR (w) g (mi)> +0l)

hq

where g; and h; are so-called gradient statistics, computed using the first and second
partial derivatives of the loss function with respect to the ensemble prediction at the
previous step T(j_l)(wi). At each step the learning problem can then be reduced to
choosing a tree structure and weights, characterised by the function ¢;, that minimises
R(Tj). This technique can therefore be applied to any supervised learning tasks as
long the associated loss function is differentiable.

A common regularisation term, that is used by the XGBOOST library [123] used
for training the classifier in Chapter 5, is a combination of the number of leaves L

and the squared sum of the leaf weights w, for all the leaves:

1 XrER
_ 2
Q(t;) =L+ A > w? (4.19)

where v and A are constants that regulate the relative importance of each regular-
isation component. Using the previous regularisation term, it is possible to redefine

the risk of a given tree structure and set of leaf weight at given training step as:

XrER x, €S 1 x, €S
R(Tj) ~ > fw ) gier(wi)+§w3§ (hi + N)1x,(z) | +7L (4.20)
—_—
G Hy+X

where G, and H, represent the sum of g; and h; over all the samples in the learning
set that correspond to the leaf indexed by r. The previous expression can in turn
be used to obtain the optimal leaf weight w; and simplify the risk at a given step as

follows:

X-€R
s G%

+AT (4.21)
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where X, are the subsets of the input space corresponding to each leaf of the last
tree j. The last expression for R(7}) can be used to compare tree structures to be
added to the ensemble in a principled manner.

In practice, the number of possible tree structures is infinite so the problem of
finding the optimal tree at each step is still intractable. A greedy heuristic is instead
used, which proceeds one level of the tree at time. For each input feature, the optimal
splitting at a given level can be found by maximising the splitting gain, which can
be done very efficiently by sorting the observations in that feature and finding the

threshold that maximises the gain G, that is defined as:

T2 HL+)\+HR+)\_HL+HR+/\

where GG, and H, are the sum of gradient statistics left of the threshold and Gr and
Hp, are those right of the threshold. If the gain is negative for the whole, no splitting
is preferred in the considered features. Once the optimal splitting is determined for
all the features, the featurs that provides the minimal risk as defined in Equation
4.21 is chosen. The algorithm then proceeds to the next tree level until the maximum
tree depth is reached or any additional splitting degrades the performance.

Boosted tree ensembles are prone to overfitting to the learning set, so addi-
tional heuristics are often used to improve generalisation. A common approach
after each step that produces a tree t; by the procedure outlined before, is to
define ensemble for the next step by weighting the constribution from the last three
Tj(x;) = T(j—1y(x:) +ntj(x;), where 7 is referred as learning rate or shrinkage. The
use of 7 < 1 produces a less efficient learning procedure, so additional trees are
required in the ensemble, however the resulting model is less prone to overfitting.
Other policies against overfitting include subsampling the set of observations or the
feature vector dimensions. Early stopping, as defined in Section 4.1.1, can also be
trivially applied to boosted tree ensembles simply by leaving out the last n trees in

the summation so the risk over validation set is maximised.

4.2.2 ARTIFICIAL NEURAL NETWORKS

An alternative way to carry out empirical risk minimisation is based on consider func-
tion f(x; ¢), which depends on a vector of parameters ¢, and attempt to find the val-
ues of ¢ that minimise the risk Rg(f) over the learning set S = {(z0,yg), .., (®n,y,)}-
If f(x; ¢) is differentiable with respect to the parameter vector ¢, the minimisation

from Equation 4.4, can be attempted with gradient-based methods. The simplest
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gradient-based optimisation technique is referred to as gradient descent (GD), and
can be applied to the previous problem by initialising the parameter vector at random
¢" and then iteratively updating the model parameters ¢ at each step ¢ according
to:

! = n(t)VeRs(¢!) = n(t)w% > (Llyi fmis @) + Q")) (4.23)

(zi,y;)€S

where Vg is the gradient operator with respect the model parameters, n(t) is the
learning rate or step size and (@) is a generic generalisation term added to the loss to
constrain model complexity. Many other gradient-based optimisation methods exist
[124], e.g. using second-order derivative information. The previous flavour of gradient
descent is often referred as batch gradient descent, because the whole learning set
S is used to compute the parameter updates at each step. Batch gradient descent
can be very computationally demanding when the number of observations in S is
large and the computation of the gradient of the loss for each labelled observation
is costly. In addition, batch gradient descent is a deterministic optimisation method
and likely to get stuck at a local minima if the optimisation surface is non-convex.

A variation of the previous technique, that is referred to as stochastic gradient
descent (SGD) [125], overcomes the mentioned issues by using a random subset
B = {(x0,Yp), -, (Tm, Y,,)} of m observations from the training set S at each step.
If m is small the updates can be computed much faster, the trade-off being more
noisy estimates of E(z, y )esVe [L(yi,f(a:i; ¢t)]. The parameter update rule from
Equation 4.23 in SGD can be instead be expressed as:

" = n(t)VpRs (") = n(t)V¢% Y (Llyi flmis9h) +Q(¢1))  (4.24)

(zi,yi)EB

where B is a random subset of size m of the learning set S. In the original formu-
lation m = 1, yet nowadays a larger value for m is often used in what is referred
to as mini-batch SGD to obtain balance the estimate noise and take advantage of
vectorised computations. Several variations of SGD exist, which in some cases can
provide convergence advantages over the previous update rule by using adaptive
learning rates or momentum in the update dynamics [126]. Stochastic gradient des-
cent methods are a key element for training complex differentiate machine models
f(x; @) as artificial neural networks, which will be discussed in the rest of this sec-
tion. SGD in combination with a non-decomposable loss function is also used in

Chapter 6 to learn inference-aware summary statistics.
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A particularly promising family of parametric functions f(x;¢) is referred to as
artificial neural networks. Artificial neural networks are differentiable functions based
on the composition of simple (and possibly non-linear) operations. The simplest type
of artificial neural network is depicted in Figure 4.2, which is referred as feed-forward
neural network, that maps a input « to an output y by means of a series of forward
transformations, referred as neural network layers. In the simplest configuration, the
values at a given layer k other than the input layer can be computed as non-linear
transformation of the result of a linear combination of the output of the previous
layer after the addition of a bias term. The previous transformation can be expressed

very compactly in matrix form as:

ak = g(WHTab=1 4 bF) (4.25)

where a¥ is the outcome in vector notation after the layer transformation, a1 is

the vector of values from the previous transformation (or a’

= x if it is the first layer
after the input), WF a matrix with all the linear combination coefficients and b” is
the bias vector that is added after linear combination. The activation function g(z)
is applied element-wise, and it is often based on a simple non-linear function. The
sigmoid function o(z) = 1/(1 + €*) used to be a common choice for the activation
function, but nowadays the rectified linear unit (ReLU) function g(z) = max(0, z)

and its variants are most frequently used instead.

The full feed-forward model f(x; ¢) is based on the composition of transformation
of the type described in Equation 4.25. When a single transformation is applied,
ie. y = g(W)Tx + b), the model can be referred to as perceptron. If the model
is instead based on the composition of several transformations, it can also be called
multi-layer perceptron (MLP), and each of the intermediate transformations (which
can be composed by an arbitrary number of computational units) is referred as hidden
layers. The model in Figure 4.2 is a MLP. The advantage of using models based on
feed-forward neural networks with hidden layers is that they can be used to model
any arbitrary function due to the universal approximation theorem [127]. In fact,
while it is still the focus of theoretical research, the use of a large number of hidden
layers is found to increase the expressivity and facilitate the training of powerful
neural network models. The experimental success of these family techniques has led
to the concept of deep learning, where multiple transformations layers are used for

learning data representations in many learning tasks.
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Input Hidden Hidden Output
layer layer 1 layer 2 layer

Figure 4.2: Graphical representation of a feed-forward neural network with two hidden lay-
ers, which is a function mapping and input x to an output y by means simple
non-linear transformations. The output value of a node each layer (other than
the input layer) is the result of applying an activation function g to a linear
combination of the previous layer outputs plus possibly a bias term.

A good choice for depth and overall structure for a neural network model depends
on the problem at hand as well as the characteristics and size of the learning set
available, thus it frequently has to be defined by trial-and-error, based on the per-
formance on a validation set as discussed in Equation 4.1.1. The output size and
choice of activation function in the last transformation often depends on the task at
hand. For binary classification classification tasks, it is practical to use the sigmoid
function o(z) = 1/(1+€*) as the activation function of the last layer, in combination
with a loss function for soft classification (e.g. binary cross entropy from Equation
4.8). For multi-class classification problems, such as the one discussed in Section
4.3.2, the size of the output vector usually matches the number of the categories
given that the softmax function (see Equation 4.11) is often used in the last layer to
approximate conditional class probabilities in combination with a cross entropy loss
(see Equation 4.10). For learning tasks different from classification, different output
structures and constraints might be used, e.g. the output vector size in the use case
in Chapter 6 corresponds to the number of dimensions of the resulting summary
statistic, that is based on a transformation of the input using a multi-layer neural

network.

122



4.2 Machine Learning Techniques

The SDG update rule from Equation 4.24 requires the computation of the gradi-
ents of the loss function with respect to the model parameters. For complex models,
e.g. those put together by stacking layers as those described in Equation 4.25, the
computation of derivatives by numerical finite differences or symbolic differentiation
may become rather challenging. The former requires the evaluation of the loss func-
tion after variations for at least twice the number of parameters and are affected
by round-off and truncation errors, and a naive use of the later could instead lead
to very large expressions for the exact derivative that cannot be easily simplified.
Given that a numerical function as implemented in a computer program is a se-
quence of simple operations (e.g. addition, subtraction, exponentiation, etc.), it is
possible to efficiently obtain gradients and other derivatives by applying the chain
rule repeatedly based on the structure of the program, the derivatives of the simple

operations and a record of the intermediate values.

The previous family of techniques, which will not be discussed in depth in this
work, are referred as automatic differentiation (AD) [128]. The most efficient way
of computing the gradients of a one-dimensional function that depends on many
parameters, as the gradient of the empirical risk for a batch of observations from
Equation 4.24 is by means of reverse-mode automatic differentiation, which is also
referred to as the backpropagation in the context of neural network training. The
computational cost of computing the full gradient of the loss to numerical precision
using backpropagation is of the same order than a single forward evaluation of the
loss, which provides a great advantage relative to finite differences. In addition, when
implemented in a computation framework, it can be generally applied to any numer-
ical function as long as can be expressed as a computational graph, e.g. an arbitrary
program containing control flow statements, without requiring complex expression
simplification as would be the case for symbolic differentiation. In fact, modern
computational that include automatic differenciation such as TENSORFLOW [129] or
PYTORCH [130] may also be used to compute higher-order gradients (e.g. Hessian
matrix elements), which are useful in Chapter 6 to build a differentiable approxim-

ation the covariance matrix based on a summary statistic.

As mentioned before, reverse mode automatic differentiation can be used to com-
puted the gradients of an arbitrary function as long as it can be represented as a
computational graph containing differentiable simple operations. Thus the neural
network model f(x;¢) is not restricted to the composition of layers of the type
described in Equation 4.25, which are often referred as fully connected or dense lay-

ers. Alternative function components are useful for dealing with data cannot be
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represented by a fixed-length vector [115], e.g. convolutional layers are often useful
for working with 2D images while recurrent layers extend the application of neural
networks to sequences that vary in length between observations. Both convolutional
and recurrent layers are used in the neural network model for jet flavour-tagging
described in Section 4.3.2. Other differentiable neural network components have
also been developed to deal with permutation invariant sets [131] or graphs [132] as
input data structures, which could have promising applications in particle collider

experiments analyses.

4.3 APPLICATIONS IN HIGH ENERGY PHYSICS

Machine learning techniques, in particular supervised learning, are increasingly being
used in experimental particle physics analysis at the LHC [133]. In this section, the
main use cases are described, linking the learning task with the statistical problems
and properties which were described in Chapter 3. In broad terms, most supervised
learning at collider experiments can be viewed as a way to approximate the latent
variables of the generative model based on simulated observations. Those latent
variable approximations are often very informative about the parameters of interest
and then can be used to construct summary statistics of the observations, which

allow to carry out likelihood-free inference efficiently.

4.3.1 SIGNAL VS BACKGROUND CLASSIFICATION

The mixture structure of the statistical model for the outcome of collisions, discussed
in Chapter 3, facilitates its framing as a classification problem. Intuitively, the
classification objective could be stated as the separation of detector outcomes coming
from processes that contain information about the parameters of interest from those
that do not, which will be referred as signal and background respectively, following
the same nomenclature from Section 3.1.1. The two classes are often non-separable
- i.e. a given detector outcome x (or any function of it) could have been produced
either by signal or background processes, and only probabilistic statements of class
assignment can be made.

In order to use supervised machine learning techniques to classify detector out-
comes, labelled samples are required, yet only the detector readout @ is known for col-
lected data. Realistic simulated observations, generated specifically to model events
from a given set processes (e.g. signal and background) can instead be used as training

data, where the categorical latent variable z; that represents a given set of processes
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can effectively used as classification label. If the simulator model is misspecified,
e.g. due to the effect of known unknowns as discussed in Section 3.1.4, the result-
ing classifiers would be trained to optimise the classification objective for different

distributions.

To understand the role of classification in the larger goal of statistical inference
of a subset of parameters of interest in a mixture model, let us consider the general
problem of inference for a two-component mixture problem. One of the components
will be denoted as signal ps(x|@) and the other as background p,(x|0), where 6 are
of all parameters the distributions might depend on. As discussed in Section 3.1.1,
it is often the case that fs(x|@) and f;(x|@) are not known, observations can only be
simulated, which will not affect the validity the following discussion. The probability

distribution function of the mixture can be expressed as:

p(xlp, 0) = (1 — p)ps(x|0) + ups(z|0) (4.26)

where 1 is a parameter corresponding to the signal mixture fraction, which will be
the only parameter of interest for the time being. As discussed in Section 3.1.1,
most of the parameters of interest in analyses at the LHC, such as cross sections,
are proportional to the mixture coefficient of the signal in the statistical model. The
results presented here would also be also be valid if alternative mixture coefficient
parametrisations such as the one considered in Section 6.5.1 are used, e.g. u =
s/(s+ b) where s and b is the expected number of events for signal and background

respectively, as long as b is known and fixed and s is the only parameter of interest.

LIKELIHOOD RATIO APPROXIMATION

Probabilistic classification techniques will effectively approximate the conditional
probability of each class, as discussed in Equation 4.9 for the binary classification.
A way to approximate the density ratio r(x) between two arbitrary distribution
functions p(x) and g() is then to train a classifier - e.g. a neural network optimising
cross-entropy. If samples from p(x) are labelled as y = 1, while y = 0 is used for
observations from ¢(x), the density ratio can be approximated from the soft BCE

classifier output s(x) as:

py=1 (4.27)
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thus the density ratio 7(x) can be approximated by a simple function of the trained
classifier output directly from samples of observations. The factor p(y = 1)/p(y = 0)
is independent on «, and can be simply estimated as the ratio between the total
number of observations from each category in the training dataset - i.e. equal to 1 if
the latter is balanced.

Density ratios are very useful for inference, particularly for hypothesis testing,
given that the likelihood ratio A from Equation 3.39 is the most powerful test statistic
to distinguish between two simple hypothesis and can be expressed as a function of
density ratios. Returning to the two component mixture from Equation 4.26, for
discovery the null hypothesis Hy corresponds to background-only p(x|u = 0, 0) while
the alternate is often a given mixture of signal and background p(x|u = po, @), where
po is fixed. For the time being, the other distribution parameters € will be assumed
to be known and fixed to the same values for both hypothesis. The likelihood ratio

in this case can be expressed as:

: _ 17 Pl[Ho) plxlp=006)
A(D; Ho, Hy) = mer @) H Dl =0 (4.28)

where the p(x|u = 0,0)/p(x|uo, @) factor could be approximated from the output
of a probabilistic classifier trained to distinguish observations from p(x|u = 0,0)
and those from p(x|u = po, @). A certain g would have to be specified to generate
p(x|p = po, @) observations in order to train the classifier. The same classifier output
could be repurposed to model the likelihood ratio when Hj is p(x|p = p1,60) with
a simple transformation, yet the mixture structure of the problem allows for a more
direct density ratio estimation alternative, which is the one regularly used in particle
physics analyses.

Let us consider instead the inverse of the likelihood ratio A from Equation 4.28,

each factor term is thus proportional to the following ratio:

p(x|H1) (1 — po)py(x|0) + pops(z|60)

_1 ~ —
A el pNEI)

(4.29)

which can in turn be be expressed as:

Al (1 p) <£Z((Z||Z)) - 1> (4.30)

thus each factor in the likelihood ratio is a bijective function of the ratio ps(x|0)/py(x|0).

The previous density ratio can be approximated by training a classifier to distin-
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guish signal and background observations, which is computationally more efficient
and easier to interpret intuitively than the direct p(a|Hy)/p(x|H;) approximation
mentioned before.

From a statistical inference point of view, supervised machine learning framed as
the classification of signal versus background can be viewed as a way to approximate
the likelihood ratio directly from simulated samples, bypassing the need of a tractable
density function (see Section 3.2.1). It is worth noting that because it is only an
approximation, in order to be useful for inference it requires careful calibration.
Such calibration is usually carried out using a histogram and an holdout dataset
of simulated observations, effectively building a synthetic likelihood of the whole
classifier output range or the number of observed events after cut in the classifier is
imposed (see Section 3.1.3). Alternative density estimation techniques could also be
used for the calibration step, which could reduce the loss of information due to the
histogram binning.

The effect of nuisance parameters, due to known unknowns, have also to be ac-
counted for during the calibration step. The true density ratio between signal and
background depends on any parameter 6 that modifies the signal ps(x|@) or back-
ground py(x|@) probability densities, thus its approximation using machine learning
classification can become complicated. In practice, the classifier can be trained for
the most probable likely value of the nuisance parameters and their effect can be ad-
equately accounted during calibration, yet the resulting inference will be degraded.
While this issue can be somehow ameliorated using parametrised classifiers [134],
the main motivation for using the likelihood ratio - i.e. the Neyman-Pearson lemma
- does not apply because the hypothesis considered are not simple when nuisance

parameters are present.

SUFFICIENT STATISTICS INTERPRETATION

Another interpretation of the use of signal versus background classifiers, which more
generally applies to any type of statistical inference, is based on applying the concept
of statistical sufficiency (see Section 3.1.3). Starting from the mixture distribution

function in Equation 4.26, and both dividing and multiplying by py(x|@) we obtain:

plalun.6) = m(al6) (1~ u22 20 ) (431)

from which we can already prove that the density ratio s, (z) = ps(x|0)/py(x|0)

(or alternatively its inverse) is a sufficient summary statistic for the mixture coef-
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ficient parameter u, according the Fisher-Neyman factorisation criterion defined in
Equation 3.30. The density ratio can be approximated directly from signal versus

background classification as indicated in Equation 4.27.

In the analysis presented in Chapter 5 and in the synthetic problem considered in
Section 6.5.1, as well as for most LHC analysis using classifiers to construct summary

statistics, the summary statistic

s _ ps(w‘e)
SHH0 T po(2]6) + py(]6)

is used instead of s,;,(x). The advantage of s,/(sp)(x) is that it represents the
conditional probability of one observation & coming from the signal assuming a bal-
anced mixture, so it can be approximated by simply taking the classifier output. In
addition, being a probability it is bounded between zero and one which greatly sim-
plifies its visualisation and non-parametric likelihood estimation. Taking Equation
4.31 and manipulating the subexpression depending on u by adding and subtracting

W we have:

ps((6) +pb(w!9)> (4.32)

p(x|p, 0) = py(x|0) (1_2“—1'“ po(x|0)

which can in turn can be expressed as:

ps(x|6) -

(|, 0) = pixl0) (1 (1o O ) (4.33)
hence proving that s, /(444 () is also a sufficient statistic and theoretically justifying
its use for inference about y. The advantage of both s/(s44) (%) and s,/ (2) is that
they are one-dimensional and do not depend on the dimensionality of  hence allow-
ing much more efficient non-parametric density estimation from simulated samples.
Note that we have been only discussing sufficiency with respect to the mixture coef-
ficients and not the additional distribution parameters 6. In fact, if a subset of 8
parameters are also relevant for inference (e.g. they are nuisance parameters) then
Ss/(s+b)(x) and sy (x) are not sufficient statistics unless the ps(x|@) and py(x(6)

have very specific functional form that allows a similar factorisation.

In summary, probabilistic signal versus background classification is an effective
proxy to construct summary statistic that asymptotically approximate sufficient
statistics directly from simulated samples, when the distributions of signal and back-
ground are fully defined and p (or s in the alternative parametrisation mentioned

before) is the only unknown parameter. If the statistical model depends on addi-
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tional nuisance parameters, probabilistic classification does not provide any suffi-
ciency guarantees, so useful information about that can used to constrain the para-
meters of interest might be lost if a low-dimensional classification-based summary
statistic is used in place of . This theoretical observation will be observed in practice
in Chapter 6, where a new technique is proposed to construct summary statistics,
that is not based on classification, but accounts for the effect of nuisance parameters

is presented.

4.3.2 PARTICLE IDENTIFICATION AND REGRESSION

While the categorical latent variable z;, denoting the interaction process that oc-
curred in a given collision, is very useful to define an event selection or directly as
a summary statistic, information about other latent variables can also be recovered
using supervised machine learning. As discussed in Section 2.3.3, event reconstruc-
tion techniques are used to cluster the raw detector output so the various readouts
are associated with a list of particles produced in the collision. It is possible that
in the near future the algorithmic reconstruction procedure might be substituted by
supervised learning techniques, training directly on simulated data to predict the set
of latent variables at parton level, especially given the recent progress with sequences
and other non-tabular data structures. For the time being, machine learning tech-
niques are instead often used to augment the event reconstruction output, mainly
for particle identification and fine-tuned regression.

The set of physics objects obtained from event reconstruction, when adequately
calibrated using simulation, can estimate effectively a subset of the latent variables
z associated with the resulting parton level particles, such as their transverse mo-
menta and direction. Due to the limitations of the hand-crafted algorithms used,
some latent information is lost in the standard reconstruction process, particularly
for composite objects such as jets. Supervised machine learning techniques can be
used to regress some of these latent variables, using simulated data and considering
both low-level and high-level features associated with the relevant reconstructed ob-
jects. This information could be used to complement the reconstruction output for
each object and design better summary statistics, e.g. adding it as an input to the
classifiers discussed in Section 4.3.1.

The details of the application of machine learning techniques in particle identific-
ation and regression depend on the particle type and the relevant physics case. In
the remainder of this section, the application of new deep learning techniques to jet

tagging within CMS is discussed in more detail. The integration of deep learning jet
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taggers with the CMS experiment software infrastructure was one of the secondary
research goals of the project embodied in this document. Leveraging better machine
learning techniques for jet tagging and regression could substantially increase the
discovery reach of analyses at the LHC that are based on final states containing jets,

such as the search for Higgs boson pair production described in Section 5.

DEEP LEARNING FOR JET TAGGING

The concept of jet tagging, introduced in Section 2.3.3, is based on augmenting the
information of reconstructed jets based on their properties to provide additional de-
tails about latent variables associated to the physics object which were not provided
by the standard reconstruction procedure. Heavy flavour tagging, and in particular
b-tagging, is extremely useful to distinguish and select events containing final states
from relevant physical interactions. The efficiency of b-tagging algorithms in CMS
has been gradually improving for each successive data taking period since the first
collisions in 2010. The advance in b-tagging performance, which was already exem-
plified by Figure 2.12, is mainly due the combined effect of using additional or more
accurate jet associated information (e.g. secondary vertex reconstruction or lepton
information) and better statistical techniques.

Jet tagging can generally be posed as a supervised machine learning classification
problem. Let us take for example the case of b-tagging, i.e. distinguishing jets
originating from b-quarks from those originating from lighter quarks or gluon, which
can be framed as binary classification problem: predicting wether a jet is coming
from a b-quark or not given a set of inputs associated to each jet. The truth label
is available for simulated samples, which are used to train the classifier. The CSVv2
b-tagging algorithm (and older variants) mentioned in Section 2.3.3 is based on the
output of supervised classifiers trained from simulation, i.e. the combination of three
shallow neural network combination depending on vertex information for CSVv2.
The CMVAv2 tagger, which is used in the CMS analysis included in Section 5, is
instead based on a boosted decision tree binary classifier that uses other simpler b-
tagging algorithm outputs as input. Similar algorithms based on binary classification
have been also developed for charm quark tagging and double b-quark tagging for
large radius jets.

The first attempt to use some of the recent advances in neural networks (see Sec-
tion 4.2.2) for jet tagging within CMS was commissioned using 2016 data, and it
is referred to as DeepCSV tagger. The purpose for the development of this tagger

was to quantify the performance gain due to the use of deep neural networks for jet

130



4.3 Applications in High Energy Physics

tagging in CMS, which was demonstrated effective using a simplified detector sim-
ulation framework [135, 136]. Thus, a classifier based on a 5-layer neural network,
each layer with 100 nodes using ReLU activation functions, was trained based on
the information considered for the CSVv2 tagger. A vector of variables from up to
six charged tracks, one secondary vertex and 12 global variables was considered as
an input, amounting to 66 variables in total. Another change with respect to pre-
vious taggers is that flavour tagging is posed as a multi-class classification problem,
which is a principled and simple for tacking the various flavour tagging problems

simultaneously.

Five exclusive categories were defined based different on the generator level hadron
information': the jet contains exactly one B hadron, at least two B hadrons, exactly
one C hadrons and no B hadrons, at least two C hadrons and no B hadrons, or none
of the previously defined categories. The softmax operator (see Equation 4.11) was
used to normalise the category output as probabilities and construct a loss function
based on cross entropy (see Equation 4.10). As was shown in Figure 2.12 for b-
tagging performance, the DeepCSV tagger is considerably better than CSVv2 for
the b-jet efficiency /misidentification range - e.g. about 25% more efficient at light
jet and gluon mistag rate of 10~3. In fact, DeepCSV outperforms the CMVAv2 super-
combined tagger, which uses additional leptonic information. While not shown in this
document, the performance for c-tagging was found also comparable with dedicated
c-taggers [85].

The very favourable results obtained for DeepCSV motivated the use of newer
machine learning technologies, such as convolutional and recurrent layers, which were
readily available in open-source software libraries [137, 129], as well as advances in
hardware (i.e. more powerful GPUs for training). The large amount of jets available
in simulated data, e.g. in 2016 about 10° tt events were simulated for CMS (each
with two b-quarks and probably several light quarks), conceptually justifies the use
of more complex machine learning models because over-fitting is unlikely. Thus, a
new multi-class jet tagger referred to as DeepJet (formerly know as DeepFlavour)
was developed, whose architecture is depicted in Figure 4.3, that can be characterised

by a more involved input structure and both convolutional and recurrent layers.

Instead of a fixed input vector, optionally padded with zeroes for the elements

that did not exist (e.g. not reconstructed secondary vertex has been reconstructed), a

'Here by B and C hadrons we refer to hadrons containing b-quarks c-quarks as valence quarks
respectively, which often have a lifetime large enough to fly away from the primary vertex as
discussed in Section 2.3.3.
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|Charged (16 features) x25|{ 1x1 conv. 64/32/32/8|— RNN 150 | b
bb

|Neutral (8 features) x25 |—| 1x1 conv. 32/16/4 |—| RNN 50 |— Dense

lepb
200 nodes x1, — c
|Secondary Vix (12 features) x4|—| 1x1 conv. 64/32/32/8|—| RNN 50'— 100 nodes x5 I
|Global variables (15 features)] 9

Figure 4.3: Scheme of DeepJet tagger architecture. Four different sets of inputs are con-
sidered: a sequence of charged candidates, a sequence of neutral candidates,
a sequence of secondary vertices and a 15 global variables. Sequences go first
through a series of 1x1 convolution filter that learn a more compact feature rep-
resentation and then through a recurrent layer that summarises the information
of the sequence to in a fixed size vector. All the inputs are then feed to a 7-
layer dense network. A total of six exclusive output categories are considered
depending on the generator-level components: b, bb, leptonic b, ¢, light or gluon.
Figure adapted from [138].

complex input object is considered for DeepJet. Variable-size sequences are directly
taken as input for charged candidates, neutral candidates and secondary vertices;
each element in the sequence characterised by 16, 8 and 12 features respectively. Each
of the three input sequences go through a 3-layers of 1x1 convolutions in order to
obtain a more compact element representation, 8-dimensional for charged candidates
and secondary vertices and 4-dimensional for neutral candidates. The output of the
convolutional layers is connected with a recurrent layer, which transforms a variable-
size input to fixed-size embedding. The fixed-size outputs after the recurrent layer,
as well as a set of 15 global jet variables, are feed into a 6-layer dense network with
100 (200 for the first layer) cells with ReLU activation functions per layer.

A total of six mutually exclusive output categories are considered based on the

generator-level particle content associated to the jet:

e b - exactly one B hadron that does not decay to a lepton.
e bb - at least two B hadrons.

e [epb - one hadron B decaying to a soft lepton

e ¢ - at least one C hadron and no B hadrons

e [ - no heavy hadrons but originated from a light quark

e ¢ - no heavy hadrons but was originated from a gluon.

The DeepJet tagger aims to provide gluon-quark discrimination in addition to b-
tagging, c-tagging and double b-tagging. The output probabilities are normalised
by using the softmax operator (see Equation 4.11). The training loss function was
constructed based on cross entropy (see Equation 4.10). Additional details regarding

the architecture and training procedure are available at [139].
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The b-tagging performance of DeepJet, by means of the misidentification versus
efficiency curve compared with the DeepCSV tagger, is shown in Figure 4.4. The
additional model complexity and input variables lead to a clear performance improve-
ment, about a 20% additional efficiency at a mistag rate of 1072 for light quark and
gluon originated jets. Larger relative enhancements with respect to DeepCSV are
seen for b-jet versus c-jet identification. The performance for c-tagging and quark-
gluon discrimination is slightly improved in comparison with dedicated approaches,
with the advantage of using a single model for all the flavour tagging variations. The
expected relative performance boost, especially when compared non deep learning
based taggers (CSVv2 or CMVA) can increase significantly the discovery potential
for analyses targeting final states containing several b-tagged jets, such as the one
presented in Chapter 5. In addition similar model architectures have since been
successfully applied to large radius jet tagging [140] and could be also extended to
other jet related tasks, as providing a better jet momenta estimation by means of a

regression output.

41.9 fb* (13 TeV, 2017)
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Figure 4.4: Misidentification probability (in log scale) for jets originating from c quarks
(dashed lines) or light quarks and gluons (solid lines) as a function of the b-
tagging efficiency for both DeepCSV and DeeplJet taggers. The corrected mis-
tag/efficiency and its uncertainty for the loose, medium and tight working points
are also included. Figure adapted from [138].
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While both advances in model architecture and the addition of input features allow
notable jet tagging performance gains, they can complicate the integration of these
tools within the CMS experiment software framework [141], which is often referred as
CMSSW. Training and performance evaluation of both DeepCSV and DeepJet was
carried out using the KERAS [137] and TENSORFLOW [129] open-source libraries. In
order to integrate jet tagging models in the standard CMS reconstruction sequence,
which has rather stringent CPU and memory requirements per event because it is run
for both acquired and simulated data in commodity hardware in a distributed manner
around the world in the LHC computing grid [142]. In addition, the LWTNN open-
source library [143], a low-overhead C++ based interface used for the integration of
DeepCSV did not support multi-input models with recurrent layers at the time.

An alternative path to integrate DeepJet into production was thus required. Given
than TENSORFLOW backend is based on the C++ programming language and a basic
interface to evaluating training was also provided, the direct evaluation of machine
learning model using its native TENSORFLOW backend was chosen as the best al-
ternative. In addition, this way the integration effort and basic interface developed
could be re-used in future deep learning use cases in the CMS experiment (e.g. large
radius jet tagging), leading to the development of the CMSSSW-DNN module [144].
The integration process was made more challenging due to the difficulty recovering
the same features at reconstruction level, the strict memory requirements and multi-
threading conflicts. After resolving all the mentioned issues [145], the output of the
DeepJet model at production was verified to match that of the training framework
[146] to numerical precision. The successful integration, that is currently in use,
facilitated the measurement of DeepJet b-tagging performance on data for the main

discriminator working points, as shown in Figure 4.4.
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5 SEARCH FOR ANOMALOUS HIGGS PAIR
PRODUCTION WITH CMS

All Life is Problem Solving.

Karl Popper

In this chapter, the concepts and techniques from the previous sections are applied
in the search for non-resonant production of Higgs boson pairs, using data from
proton-proton collisions at a centre-of-mass energy of 13 TeV collected in 2016 by the
CMS detector at the LHC, corresponding to a total integrated luminosity of 35.9 fb~1.
The most probable decay channel for the Higgs boson pairs, where each Higgs boson
leads to a bb, is considered. While the aforementioned final state is the most frequent
by a considerable margin, a large background of similar events is expected from
multi-jet QCD processes, which motivates the use of machine learning techniques to
construct a summary statistic that can exploit the fine differences between signal and
background for statistical inference. In fact, the expected background is so copious
that is not possible to generate a sufficiently large number of simulated observations
to obtain the required level of modelling accuracy, thus we have to resort to the
development of a new data-driven background estimation technique referred to as
hemisphere mixing [147]. In addition to setting upper limits on the Standard Model
(SM) production of Higgs boson pairs, the data analysis framework is also used to set
upper limits in the context of effective field theories (EFT) of anomalous couplings,
that parametrise possible deviations from the SM. The main results presented in this
section have been carried out within the CMS Collaboration, and have been made
public and published [148].

5.1 INTRODUCTION

After the discovery of the Higgs boson (H) in 2012 with the LHC experiments |2,
3, 149], the detailed study of its properties has become one of the most important
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topics in fundamental physics. The experimental determinations of its couplings
and production production rates by the CMS and ATLAS collaborations [27, 150],
including the recent observations of the associated production of the Higgs boson with
a tt quark pair [151, 152], are found to be compatible with the Standard Model (SM)
theoretical predictions. That said, several predicted properties remain unmeasured
because of the difficulty of their experimental determination. Among them, the
Higgs boson self-coupling being one of the most relevant parameters since it can be
modified by physics beyond the standard model (BSM) [153, 154, 155, 156, 157].

A principled way to determine the Higgs self-coupling, and thus reconstruct the
scalar potential of the Higgs field that is responsible for spontaneous symmetry break-
ing described in Section 1.1.4, is to measure the production of Higgs boson pairs (HH)
[158]. The SM prediction for the inclusive HH production cross section for 13 TeV
proton-proton collisions, assuming my = 125.09 GeV [27, 159], can be theoretically
calculated [160, 161, 162, 163, 164| obtaining:

o(pp — HH + jets) = 33.49743% (scale) £ 2.3% (as) £ 2.1%(PDF) fb  (5.1)

where the listed sources of uncertainties correspond to factorisation ug and renor-
malisation pp scales, uncertainties in the strong coupling constant «g, and the un-
certainty associated with the parton distribution functions (PDF), respectively. The
predicted cross section of the HH production process in the SM is very small, several
orders or magnitude smaller than that of single Higgs production, and thus has not
been directly observed the LHC data yet and will require targeted studies at the
HL-LHC or other future colliders. New physics effects beyond the SM can enhance
the HH production cross sections, e.g. as can be modelled by effective theories of
anomalous couplings [165], in a way so HH production could be observed with the
data already collected at the LHC.

The search of possible beyond the SM enhancements of HH production motivated
early searches using /s = 8 TeV LHC data [166, 167], as well as several analyses
using data collected during 2015 and 2016 at the LHC experiments, including the
one presented in this work. Several analyses looking for an enhancement of resonant
HH production, leading to a peak in the reconstructed invariant mass of the Higgs
pair due to decay of the hypothetical mediating particle, have also been performed,
Such mechanism for the production of Higgs boson pairs is not considered in this
analysis. Regarding non-resonant production of HH pairs at at /s = 13 TeV, both
ATLAS and CMS collaborations have carried out searches for different decay channels
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including bbbb [168], bblvly [169], bbrr [170] and bbyy [171]. In all the mentioned
analyses, one of the Higgs bosons decays to a bb quark pair, which its the most likely
decay model (with a branching fraction of 57.7% for my = 125 GeV), in order to
consider a large fraction of expected HH decays. The CMS Collaboration has also
carried out an analysis complementary to the one presented here, where one of the
bb is highly boosted and thus reconstructed as a single large-area jet [172]. The most
stringent expected upper limit on the SM HH production cross section to date, which
corresponds to a 95% C.L. exclusion for rates about 19 times the SM prediction, was
obtained by the CMS bbryy channel search [170], which yielded an observed upper
limit of 22 times the SM. The ATLAS bbbb channel search has a similar experimental
reach [168], studying the same final state considered in this analysis, however with a
different methodology regarding their summary statistic and background estimation.

A detailed description of the main characteristics and results of an analysis search-
ing for HH production using CMS experiment data, with both Higgs bosons decaying
into bb quark pairs, is included in this chapter. The data considered was acquired by
the CMS detector during the year 2016, corresponding to an integrated luminosity
of 35.9 fb~1. In the final state considered here, each of the four b quark results in a
distinct reconstructed jet. While it is the most likely decay mode for the Higgs pair,
a much larger quantity of similar events with four or more jets are expected from
hard quantum chromodynamics (QCD) interactions. The differences between signal
and background are used to increase the sensitivity by using as a summary statistic
the prediction of a multivariate probabilistic classifier. Because the expected contri-
bution from the QCD multi-jet processes is so abundant, it could not be modelled
with the required precision with the available simulations. To address this issues, a
method for carrying out a fully data-driven background estimation was developed,

that is described in Section 5.6.

5.2 HicGs PAIR PRODUCTION AND ANOMALOUS COUPLINGS

At proton-proton colliders, the main production mechanism for a Higgs pair is gluon
fusion. The gluon fusion interaction at leading order includes a fermion loop as depic-
ted in the top diagrams of Figure 5.1, which is largely dominated by the contribution
from top and bottom quarks, and thus explaining the low expected production rate
listed in Equation 5.1. The most common production mode, labelled as (b) in Figure
5.1, features a triangular fermion loop followed by the production of an off-self Higgs

boson, that in turn decays on two on-shell Higgs bosons via a triple Higgs boson
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interaction vertex. In addition, within the SM is also possible to produce a pair of
Higgs bosons at leading order through a fermion box loop, as shown in diagram (a)
of Figure 5.1, which evidently does not depend on the Higgs self-coupling. Both box
and triangle loop contributions interfere destructively in the SM amplitude to give

rise to the total HH production.

Figure 5.1: Set of HH production Feynman diagrams, representing all gluon-induced pro-
cesses at leading order. The interactions depicted by (a) and (b) represent pro-
cesses that are expected within the SM, while the contact interactions between
the Higgs bosons and gluons (c¢) and (d), as well the contact interaction of two
Higgs bosons with top quarks (e), are effective diagrams of BSM interactions.
Figure adapted from [148].

New physics at higher energy scales can affect processes and observables at the
electroweak scale, such as Higgs pair production. As reviewed in Section 1.2.2; the
effective field theory (EFT) approach is a way to calculate observables of possible
extensions of the SM without being tied to a certain class of BSM model, by adding
non-renormalisable local interactions. In the context of Higgs pair production, the

effect of new operators can be parametrised by the following effective Lagrangian:

1 1
Ly = ia” Ho*H — §m%{H2 — ky Agmo H?
—%(v o H A+ %HH) (tLtr + h.c.) (5.2)

las o c v
43771)(ch 2v HH) GG

where v = 246 GeV is the vacuum expectation value of the Higgs field. After
neglecting the enhanced coupling of the Higgs boson with bottom quarks due its
experimental constraints and the presence of new light particles, a total of five EFT
parameters remain, which are highlighted by using red colour in Equation 5.2. The

factors k) = Agpn/Asm and k¢ = y¢/ysm account for possible deviations from the
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SM of the Higgs boson trilinear coupling and the top quark Yukawa coupling, thus
effectively modifying the relative weight of the SM Feynman diagrams described at
the beginning of the section. The absolute parameters ¢y, coy and cy instead lead
to new contact interactions not expected within the SM, represented in the (c), (d)
and (e) Feynman diagrams of Figure 5.1, and which could arise by mediation of
heavy particles beyond the electroweak scale. The previous parametrisation is com-
monly referred to as dimension-six non-linear or anomalous couplings EFT, however
alternative approaches exist, such as the so-called linear EFT [173] which is more
appropriate to model smaller BSM effects.

A theoretical prediction for the differential and total cross section for each point
in the mentioned five-dimensional EFT parameter space (ky, K¢, C2, Cg, C2g) can be
computed as outlined in Section 1.3. The distribution of the final state kinematical
variables, i.e. the relative angles and momenta of the Higgs pair, can depend sub-
stantially on the value of some of these couplings. A naive grid or random scan of
the full five-dimensional space would require simulated samples of observations at
too many EFT points and hence it is not feasible. While this signal modelling issue
could be tackled by means of event re-weighting, as described in Section 3.1.2, it is
useful to consider a different methodology to represent the main properties of the
anomalous couplings parameter space where only a reduced number of EFT points
are considered.

For the analysis presented in this work, a total of twelve EFT points referred to as
benchmarks are considered, which have been chosen via a agglomerative clustering
procedure so they represent the main kinematical topologies in the parameter space.
The details of the clustering methodology are detailed in [174], but they amount to
the construction of a distance between the main kinematic distributions at generator
level of each pair of EFT points. The parameters corresponding to each of the
benchmarks, as well as those corresponding to the SM model and the case where

Higgs boson self coupling is zero, are included in Table 5.1.

5.3 ANALYSIS STRATEGY

The goal of this analysis is to carry out statistical inference on the occurrence of pp —
HH — bbbb, as predicted by the SM or in BSM effective field theory extensions,
based on experimental data acquired by the CMS detector on 2016. The type of
statistical inference applicable to this search is hypothesis testing, as introduced

in Section 3.2.2. In principle, we would like to test whether the null hypothesis
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Table 5.1: Effective field theory parameters for the anomalous couplings benchmarks con-
sidered in this analysis, as defined in [174], as well as the modified couplings
corresponding to the Standard Model.

Benchmark point k) Kt co Cg Cog
1 75 1.0 -1.0 0.0 0.0
2 1.0 1.0 05 -0.8 0.6
3 1.0 10 -15 0.0 -0.8
4 35 15 -3.0 00 00
5 1.0 1.0 00 08 -1.0
6 24 1.0 00 02 -02
7 50 1.0 00 02 -02
8 150 1.0 0.0 -1.0 1.0
9 1.0 1.0 10 -06 0.6
10 10,0 1.5 -1.0 0.0 0.0
11 24 10 00 1.0 -1.0
12 150 1.0 1.0 0.0 0.0
Box 0.0 1.0 00 0.0 0.0
SM 1.0 1.0 00 0.0 0.0

Hy corresponding to the SM without HH production hypothesis can be rejected.
Several alternate hypothesis H; are considered, which are based on the SM including
HH production processes, either coming from SM production models or from EFT
extensions. However we do not expect to reject the Hy hypothesis, so the objective is
the one of setting exclusion upper limits on the signal cross section for a given model
including Higgs pair production. This, we would like to adopt an analysis strategy
that maximises the sensitivity to the presence of HH production, which amounts to
minimising the Type II error rate for a given fixed Type I error rate in statistical
terms. The Type II error rate would in turn depend on the alternate hypothesis
H; considered, which for the optimisation of the analysis strategy would be the SM

including HH production through SM processes at an enhanced rate.

The event selection in this analysis will include some custom online requirements,
which were set at trigger level to reduce the total rate of data collection while keeping
a large fraction of events relevant for this analysis, as well as an offline selection
to reduce the contribution of background processes that are not well modelled, in
order to simplify the construction of powerful summary statistics. The online trigger
requirements as well as the characteristics of the datasets considered in this analysis
are described in Section 5.4, while the adopted event selection is described in detail

in Section 5.5.
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After a basic event selection, mainly comprising the filtering of events with four
or more b-tagged jets', a subset including four of the reconstructed jets within each
event is paired to construct two di-jet candidates, as an attempt to recover the
kinematic properties of the Higgs bosons, including their reconstructed masses. The
information from the two di-jet candidates can in turn be combined to compute
variables that can approximate the features of the Higgs pair system, which are
also quite useful for inference. A set of variables from the selected jets, the H
candidates and the HH system, are combined in a single discriminating variable
obtained by training a probabilistic classification model, specifically machine learning
model based on boosted decision trees (see Section 4.2.1), to separate signal from

background, in a analogous manner to what was described in Section 4.3.1.

The statistical inference in this analysis is based on constructing a binned likeli-
hood of the expected distribution of the classifier output for events originated from
signal and background processes. This likelihood, which also accounts for the effect of
nuisance parameters as discussed in Section 3.1.3, is used to extract information the
about the parameter of interest (i.e. HH production cross section times the branch-
ing ratio) based on the observed data. While both the SM and the various BSM
signal models can be modelled using simulated observations, the main background
of the analysis, multi-jet QCD production, is hard to model by simulation. Thus
a data-driven background estimation method, described in detail in Section 5.6, is
used both for training the probabilistic classifier and for modelling the background

contribution in the binned likelihood.

After including the effect of the relevant sources of systematic uncertainty, which
are listed in Section 5.7, upper limits are obtained for the pp — HH — bbbb cross
section for each of the benchmarks listed in Table 5.1, as well as for the SM HH
production process. The results, which are contained in Section 5.8, include the
upper limit on the mentioned cross section a function of the Higgs self-coupling factor
parameter k) when x; = 1 and the other EFT parameters are null. While the analysis
could be redone for any arbitrary EFT point by recomputing the limits for the
particular model, given that the benchmarks have been constructed to represented
the main differential cross section differences in a large part of the EFT parameter
space, approximate limits can be obtained by considering the limit obtained for the

closest benchmark using the distance measure from [174].

'Events with a different b-tagged jet definition will be also used to define a data control region,
as will be discussed in Section 5.6.2.
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5.4 TRIGGER AND DATASETS

The experimental data considered in this analysis was collected by the CMS detector
in 2016 from proton-proton collisions at centre-of-mass energy /s = 13 TeV. The
total integrated luminosity at the CMS interaction point corresponding to the cer-
tified set of datasets used in this analysis is 35.9 fb~!, which is the subset of data
corresponding to periods when the relevant detecting systems were running regu-
larly and no problematic anomalies were discovered during data quality monitoring
(DQM).

Because the rates for the main background processes of this analysis - events ori-
ginating from QCD multi-jet events - are expected to be much higher that those of
the signal, an efficient online trigger selection is essential for maximising the sens-
itivity of the analysis. While the set of standard CMS trigger path includes ones
that select events with several high-energy jets, a more practical strategy is to in-
clude some b-tagging requirements within the high-level trigger sequence. Hence,
this analysis re-uses the multi-jet trigger paths that were developed for the search of
the resonant process pp — X — HH — bbbb [175], where X is a heavy mediating
particle. These two paths both require that at least three jets have are b-tagged by
the online version of the Combined Secondary Vertex (CSV) algorithm [85].

The full specification trigger selection used is rather complex, however it may be
represented by a logical OR of the following two HLT trigger paths that were in place
during the CMS 2016 data taking period:

e HLT DoubleJet90 Double30 TripleBTagCSV  p087
o HIT QuadJetdd TripleBTagCSV _p087

which represent a particular online selection sequence at the HLT. The sequence
is preceded by a given set of L1 trigger seeds, as conceptually reviewed in Section
2.2.7. The L1 trigger paths are different for each of the HLT paths, but are based
on the logical OR between several conditions requiring a certain number of L1 jets
over a given energy or the total deposited energy on the calorimeter Hr to be over
a certain threshold. At the HLT, both paths require some quality criteria on the
reconstructed primary vertex and at least 4 reconstructed jets within a pseudo-
rapidity range defined by |n| < 2.6. The first path in addition requires that the
momenta of two of the reconstructed jets satisfy the requirement pr > 90 GeV,
while two other jets are required to have pr > 30 GeV. The second path instead

requires that the event contains at least four reconstructed jets with pr > 45 GeV.
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As mentioned, both paths include a b-tagging requirement, chiefly that the value of
the online CSV discriminator is larger than the value of 0.87, which is defined as
the “medium working point” of the algorithm, for three of the eight most energetic
reconstructed jets in the event.

Samples of simulated observations from Higgs pair production are generated using
MadGraph5 aMCQ@NLO [176] at leading-order, following the relevant prescriptions,
including the loop factor on an event-by-event basis detailed in [177]. A total of
300,000 events have been simulated for the SM model production component, as
well as an older version of the clustering benchmarks discussed in Section 5.2 and
the k) = 0 box model. Regading the parton distribution function used for generation,
the NNPDF30 LO_ AS 0130 NF 4 n set [178] was used for all samples.

The datasets for the benchmark points listed in Table 5.1, or any other EFT point
for that matter, can be generated from the previous samples by means of generator
re-weighting. As described in Section 3.1.2; the latent variables of the simulator
can be used to model a different point of the parameter space of the the underlying
theory by computing observables after assigning to each event a weight proportional
to the ratio between probability density functions. In this case, the effect of varying
EFT parameters in Equation 5.2 can be fully characterised by two parton variables
at leading order: the Higgs pair invariant mass myyg and the |cos 0*|, where 6* is the
polar angle of any one of the Higgs bosons with the respect to the beam axis. Once
these two variables are specified, the rest of the simulation does not depend on the
EFT parameters. A set of HH production simulated events generated for a given

vector of EFT parameters Ogpr = (k), k¢, C2, Cq, C2g) Te-weighted by:

p(mun, |cos0*| | @'gpr)
p(mun, [cos 0*| | Ogrr)

w(mpm, |cos %) = (5.3)
could be used to model events generated at the EFT point 8'gpr, as long as the
both the numerator and denominator are not zero. The previous concept can be
extended to any arbitrary probability distribution of p(mpm, [cos0*|), e.g. a large
sample uniformly distributed in the mentioned 2D-space could be re-weighted to
model any EFT parameter point. While the density ratio in Equation 5.3 can also
be estimated exactly as the ratio between the matrix elements [179], a non-parametric

density estimation approach was adopted in this analysis.

A large sample of HH production events was formed by concatenating all non-
resonant Higgs pair events simulated from each of the 14 samples, creating what

will be referred to as the pangea sample. For all the EFT points of interest, 50,000
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events (300,000 for the SM production) were generated at parton level, which is
rather inexpensive. The per-event weight in Equation 5.3 is estimated by the ratio
of 2D-histograms, which effectively approximate the mentioned density ratio. The
weighted pangea sample can represent any EFT parameter point at leading order
by this procedure, so it is used to model the signal characteristics of all the models

considered in this work.

5.5 EVENT SELECTION

Given that the final state studied in this analysis is characterised by the presence
of four highly energetic b quarks, the physics objects of relevance are reconstructed
jets. The details of the reconstruction procedure at CMS were already discussed in
Section 2.3.3. Advanced jet flavour tagging, in particular b-tagging, is also essential
to distinguish jets that originate from b quarks from those originating from lighter
quarks and gluons, and thus very useful to reduce the contribution from a large
number of QCD multi-jet processes.

The subset of collected events that pass the trigger requirements, as well as all the
simulated events, as listed at the beginning of Section 5.4 undergo a process of event
reconstruction, producing a representation of the detector readout that attempts
to recover the latent particle features at parton level, as discussed in Section 3.1.3.
The first step of the offline event selection is to consider for each event the set of
reconstructed particle-flow jets with pr > 30 GeV and |n| < 2.4. An event is only
selected if four or more jet passing those requirement are found.

After filtering out jets with lower energy or falling out of the tracker acceptance,
at least four of the remaining jets are required to be b-tagged to consider the event
in the final selection. The medium working point of the CMVA discriminator [85],
defined as the value of the discriminator for which the expected mis-identification
of light quarks and gluons is 1%, is used as b-tagging criteria. The object selection
efficiency for jets originating from the b quarks produced in the decay of the Higgs
boson pairs has been estimated from simulated samples to be around 65%. For the
SM HH production process, the absolute and relative selection efficiencies of the
trigger and offline selection, and the total number of expected events per fb™!, are
included in Table 5.2, as estimated from the simulated events.

The goal of the previous selection is to reduce the contribution from QCD multi-jet
processes and to isolate the set of signal events where all the jets from the Higgs pair

decays can be fully reconstructed. After such selection, the most often occurring
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Table 5.2: Event selection efficiency and number of events expected per each integrated bt
of integrated luminosity for the Standard Model pp — HH — bbbb production
process, as estimated using simulated events.

Produced Trigger > 4 btags

N ovents / b 11.4 3.9 0.22
Relative eff. 34% 5.6%
Efficiency 34% 1.9%

value for the number of jets in the selected subset of events is five. The four jets
with highest CMVA discriminant are chosen as candidate decay products of the
Higgs bosons. In order to reconstruct features of the Higgs boson candidates, a
pairing between the selected jets has to be defined. The pairing used in this analysis
is rather simple, the invariant masses for the two Higgs candidates My, and My,
are computed for the three possible combinations of the four decay candidate jets,

and the invariant mass difference AM (y, y,) is computed for each combination:

AM (1, 115) = |My, — M, | (5.4)

so the combination with the smallest mass difference is taken. Alternative decay
candidates selection and pairing techniques were considered and tested. The fact that
the chosen procedure does not explicitly use the mass of the Higgs boson makes it
very effective to avoid conditioning also the distributions of the background processes.
The aforementioned procedure correctly pairs the jets to form Higgs candidates in
approximately 54% of the events. The distribution of AM y, g,) and My, versus
My, is shown in Figure 5.2. To distinguish between the two Higgs candidates during
the rest of this chapter, the term leading Higgs H; will be used for the reconstructed
Higgs candidates with the largest invariant mass while trailing Higgs H; for the other

candidate.

In this analysis, the final summary statistic considered for inference is based on
the output of classifier that discriminates signal and background observations, which
will approximate the likelihood ratio or a sufficient summary statistic if the signal
and background components are fully specified, as discussed in Section 4.3.1. The
machine learning classification technique used is based on gradient boosted decision
trees (BDT), a technique that was summarised in Section 4.2.1. The implementation
from the XGBOOST software library [123] was used to train a probabilistic classifier

using a set of simulated events corresponding to SM Higgs pair production (i.e. 60%
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Figure 5.2: Mass difference AM (g, p,) (left) and 2D histogram of My, versus My, (right)
for simulated signal observations. Only the lower right part of the right plots
includes observations because the Higgs candidates are ordered by mass.

of the weighted pangea observations) and background artificial events resulting from

the data-driven procedure which will be described in Section 5.6.

The set of features, or input variables, which are fed to the probabilistic classifier
are listed in Table 5.3. The set of variables are divided in three subgroups, the first
corresponding to variables related with the properties of the reconstructed Higgs pair
HH system, which are compared for signal and background in Figure 5.3, including
its invariant mass Mpgy, its total transverse momentum p¥1H2 and cos O, g, p,>
where 0f; 7, ¢, is the angle between the HH system and the leading Higgs boson
candidate. Another feature that is found to increase the discrimination power of the

classifier is the Mx variable, defined as:
Mx = Myn — (My, — Mu) — (Mu, — Mn) (5.5)

where My = 125 GeV is the Higgs boson mass. The second group of features includes
variables associated individually with each Higgs boson candidate (see Figure 5.4 for
a comparison of marginal distributions), such as the reconstructed mass of each
paired di-jet system My, and Mp,. The reconstructed Higgs candidate masses have
the largest discrimination power, because their marginal distributions are expected

to peak around My = 125 GeV for the subset of well-paired signal events while more

146



5.5 Event Selection

spread for background events. Other features in this sub-group include the transverse

1

momenta of the reconstructed Higgs candidates p¥ and p¥2, the angular distances

between their component jets AR%?, ARJH]?, Agb]Hjl, A¢]Hj2, and cos 6y, y, p,, where
0%, 1, 1, is the angle between the leading Higgs boson candidate and the leading
jet. The last group includes variables directly associated to the reconstructed jets,

including the transverse momenta p%,zlle)

and pseudo-rapidity 17(’:1_4) of the first
four jets, ordered by their value of the CMVA b-tagging discriminant as well as the
scalar sum of their transverse momenta Hp. Finally, the scalar pp sum of all the
jets that were not used for the reconstruction of the Higgs pair system H** and the
b-tagging CMVA discriminant value for the third and fourth jet CMVA3, CMVAy are
also used. The marginal comparison of the distributions of signal and background

for jet-based based variables is shown in Figure 5.5.
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Figure 5.3: Comparison of the signal (SM HH production) and background (mixed data)
distributions for the HH system features considered in the probabilistic classifier.
See Table 5.3 and associated text for more details.

The trained classifier combines the 25 variables from Table 5.3 in a single scalar

value, that approximates the conditional probability of belonging to the signal con-

ditional on the input p(y = 1|x), which depends on the relative frequencies of signal
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Table 5.3: List of reconstruction-based features used as input of the probabilistic classifier.
HH system H candidates

Mx, Mymn, My, , My,

Jet variables

HiHo

H, Hp
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*
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21 11

ARz Al Agll
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J
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Figure 5.4: Comparison of the signal (SM HH production) and background (mixed data)
distributions for the di-jet features considered in the probabilistic classifier. Di-
jet candidates are ordered by their mass value. See Table 5.3 and associated text
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Figure 5.5: Comparison of the signal (SM HH production) and background (mixed data)
distributions for the jet-based features considered in the probabilistic classifier.
Jet are ordered by CMVA value. See Table 5.3 and associated text for more

details.
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and background events in the training dataset, as discussed in Section 4.1.1. For
training, signal and background observations were weighted so as to represent the
same prior probability and balance the classification problem. The hyper-parameters
have been chosen based on a simple grid search, with the help of the scikit-learn soft-
ware library [180], based on the area under the curve (AUC) of the resulting classifiers

on a validation hold-out dataset.

5.6 DATA-DRIVEN BACKGROUND ESTIMATION

The principal background of this analysis is composed of events with several jets
coming from multiple quarks and gluon production from QCD processes. While sim-
ulated observations of multi-jet QCD processes can be generated, and were in fact
readily available at the time this analysis was carried out, they are in practice not
useful to realistically model the background contribution for the purposes of this
work. Large datasets modelling inclusive QCD multi-jet production were produced
in the CMS simulation campaign, divided in various consecutive range of total gen-
erator level scalar transverse momenta sum H¥™". Leaving aside issues regarding the
accuracy of the modelling of high jet multiplicity event provided by current lead-
ing order plus parton shower generators, the main obstacle for using the simulated
samples is that their equivalent luminosity in the HF™ relevant for this analysis is
several orders of magnitude smaller than the actual luminosity.

As a rule of thumb, to accurately model a mixture component using simulated
samples, the number of simulated events has to be at least 10 times more than the
number of expected events, or the modelling uncertainty due to the limited simulation
statistics will greatly degrade subsequent inference. This problem is made worse
when a significant fraction of the simulated dataset has to be used for training a
probabilistic classifier and thus cannot be used for computing any expected value,
because they might lead to biased estimations. A naive solution could be to simulate
more events, but given the large cross section of low energy QCD processes, the total
number of QCD inclusive simulated events required would be well over 1 billion
which is too a large number given the total simulation budget available for the CMS
experiment.

Another option, which was initially explored for modelling the QCD background
in this analysis, was to only simulate events that pass a selection at parton level,
e.g. with two or more high energy b-quarks. This could provide a radical reduction

on the total computing time needed for simulation, especially if combined with the
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approximate simulation techniques described in Section 2.3.2, because the associated
cross section can be greatly reduced. However, such generator level filtering is difficult
to implement in a way that relevant events are not omitted after the event selection.
Because of that, the desired level of modelling accuracy could not be achieved with
this method.

The previously mentioned reasons motivate the direct used of real data to estimate
the background contribution, as discussed in Section 3.1.4. Data-driven background
estimation can be notoriously difficult and often several assumptions about the prop-
erties of the background have to be made. For example, the corresponding search
by the ATLAS collaboration [168], models the background contribution with an in-
dependent data sample characterised by the same trigger and selection but for the
looser requirement of only two b-tagged reconstructed jets. These events are then
re-weighted using a factor that accounts for the probability that QCD processes
produce two additional b-tagged jets, where the mentioned weight is also obtained
from a data side band where not significant signal is expected. While that approach
is proven effective when using the reconstructed My distribution for inference, it
cannot be easily extended to a situation where all the multi-dimensional features
of the data require to be precisely modelled, as is the case when the output of a
probabilistic classifier is used as the summary statistic.

In the analysis presented here a different path was followed, based on developing a
new data-driven background estimation method based on the concept of hemisphere
mixing and some assumptions of the phase space characteristics of QCD multi-jet
processes [147]. The technique, which is described in Section 5.6.1, directly attempts
to create an artificial dataset using the the whole original dataset as input, hence can
be used both for training the probabilistic classifier and to model the distribution of
the final summary statistic used for inference. Because some aspects of the method
are ad-hoc and cannot be formally demonstrated, it has been calibrated and then
validated using a signal-depleted control region, a procedure that is discussed in

Section 5.7.

5.6.1 HEMISPHERE MIXING

The basis of the data-driven background estimation method here proposed is to
divide each event in two parts, referred to as hemispheres, so each can be substituted
by an hemisphere from a different event in order to produce an artificial dataset.
A graphical illustration of the hemisphere mixing technique used in this work is

provided in Figure 5.6. The transverse thrust axis, defined as the axis in the z — y
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plane for which the absolute value sum of the projections of the transverse momenta
of the selected subset of reconstructed jets is maximal, is used as a reference to
divide each original event in two halves perpendicularly to the mentioned axis. This
procedure is carried out for all the collected events that pass the selection described
in Section 5.5, creating a dataset (or library) of hemispheres with as many rows as
twice as many rows as the number of original events. Each half, or hemisphere, can
be basically reduced to a set of reconstructed jets with their directions relative to the
thrust axis. Once the hemisphere library has been created, each hemisphere in the
original event can be substituted by a similar one by from a different event, once an
appropriate distance metric has been defined. The procedure results in an artificial

dataset that can be used to model the background component.

Original Event Hemisphere library Mixed Event
break in two hemispheres filled in 1% pass, queried on 2" using replaced hemispheres

N\ 4 A
~ — - (o ’
transverse

thrust axis

transverse
thrust axis
— — p b-tag jets — — p non b-tag jets

Figure 5.6: Schematic depiction of the hemisphere mixing background estimation procedure.
The red arrows represent b-tagged jets and the blue arrows represent jets that
were not b-tagged in an event. The first step includes finding the thrust axis in
the z — y plane. The event is then divided in two hemispheres, each composed of
a set of jets, by the plane perpendicular to the thrust axis. All these hemispheres
are used to create a dataset (or library) of hemispheres. For each original event,
a artificial event can be created by substituting each original hemisphere with
its closest neighbours, once a distance metric for hemispheres has been defined.
Figure adapted from [148].

The matching between the original and the replacement hemisphere is done by
finding the pair minimising a inter-hemisphere distance. The mentioned distance is
a function of the set of reconstructed jets contained within each hemisphere, and it
is a combination of discrete and continuous variables. The discrete requirement for
matching original hemispheres with those in the library is that they have the same

number of jets IV Jh and b-tagged jets N,fl, which ensures a similar jet multiplicity
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distributions for the artificial data. The previous condition also avoids creating
artificial events that do not pass the event selection, e.g. by combining an hemisphere
with 2 b-tagged jets with another one including only one b-tagged jet, which would
result in the artificial events having less that four b-tagged jets. For infrequent jet and
b-jet multiplicity categories, the discrete condition is relaxed by considering a unique
category. This is for example the case when four jets or b-jets are present in the
hemisphere. In addition to the mentioned categorisation, the following continuous
distance metric between the original hemisphere h, and each hemisphere from the

library h, is defined as a measure of similarity:

(Mi(ho) — Mi(hg))* | (T(ho) — T(hy))?

dho bl ===y T VarD) (5.6)
L (Tulha) = Tu(h)* | (P(ho) ~ Pu(hy))? |
Var(T,) Var(FP;)

where M;(h) is the invariant mass of the system composed of all the jets contained
in the hemisphere, T'(h) is the scalar sum of all the transverse momenta projection of
all jets of an hemisphere to the thrust axis, T,(h) is the scalar sum of the transverse
momenta projections over a axis orthogonal to the thrust axis, and P,(h) is the
absolute value of the projection of the vectorial sum of the jet momenta along the
beam axis. The denominators in Equation 5.6 are the variances of each of the
variables and discrete category, as estimated directly from the library of hemispheres.
This normalisation factor is included in order to reduce the effect of the scale of the

magnitude of each component to the distance metric.

kP nearest-

The substitute for each original hemisphere is found by finding the
neighbour hemisphere in the library. The closest hemisphere (k = 0), corresponding
to zero distance, would be the very same original hemisphere which is present in
the library. Rather, the hemisphere is substituted with its k™" nearest neighbour,
only considering £ > 1. Assuming forward-backward symmetry in the z direction
and ¢ rotational symmetry, and given that the distance metric d(h,, hy)? does not
depend on the sign and absolute magnitude of those quantities, all the jets in the
hemisphere can be rotated in ¢ or their p, sign to match the original hemisphere
properties. It is possible to considering different k neighbours for each hemisphere,
obtaining a different artificial dataset in each case. Each of this artificial datasets can
be labelled by a tuple (k1, k2), where ky indicate the ordinal of the neighbour used
as the substitute for the original hemisphere corresponding to a A¢ > 0 with respect

to the thrust vector rotated /2 clock-wise, and ko corresponds to the ordinal of the
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neighbour substituting the other original hemisphere. Consequently, if up to kmax

2

ax artificial datasets,

neighbours are considered for each hemispheres, a total of &
each of the same size of the original dataset, could be composed by considering all

the permutations.

The rationale of the above technique rests on the fact that QCD multi-jet produc-
tion at leading-order corresponds to a 2 — 2 parton scattering process, which is then
affected by higher order corrections such such as QCD radiation, pileup or multiple
interactions. By breaking the event in two hemispheres using the transverse thrust,
the aim is to separate the outcome of the processes associated with each of the two
final state partons in the mentioned 2 — 2 approximation. The hemisphere distance
metric attempts to preserve the main properties of the event, while avoiding strong
correlations between jets in the two hemispheres. The goal of the hemisphere mixing
procedure is then to obtain an artificial dataset where the effect of the signal present
in the original dataset are effectively removed. This has been tested by injecting up
to 100 times the expected SM contribution of simulated HH production events to a
dataset of simulated QCD multi-jet events [147]. The distributions of the various
variables after hemisphere mixing are not affected by the presence of signal, and are
compatible with the QCD multi-jet component, which is the majority component.
The level of agreement for the variables used as input of the probabilistic classifier

in a control region will be discussed in more detail in Section 5.6.2.

35.9 fb~}(13 TeV)
+

CMS
14041 preliminary

130 1
30
120 1
110 1
5%

1001 + " 10%

90 1

x?2 score (mixed versus re-mixed data)

80 o 50%
+

1-1 2-2 4-4 8-8 16-16 32-32 64-64 128-128
k1 — k2 neighbour combination

Figure 5.7: Comparison (x? score) of the mixed and re-mixed data (see Section 5.6.2) as a
function of the neighbour combination (ki,k2). The test score has been calcu-
lated based on the binned distribution of the probabilistic classifier. The one-
sided confidence bands for the test score are also included for guidance. Figure
adapted from [148].
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The hemisphere mixing technique is applied to the data events passing the se-
lection described in Section 5.5. Artificial datasets up to kmnmax = 10 have been
considered, given that good modelling was observed until very large values of kpax.
The test score of the compatibility between the mixed artificial data as a function of
the combination label is included in Figure 5.7, modelling breaks only at high val-
ues, e.g. k = 128. All the neighbour combinations up to kpax = 10 are sub-divided
in three sets used for training the probabilistic classifier (training), validating and
optimised the classifier (validation) and to estimate the background distribution of
the final summary statistic (application). The last dataset is referred to as applic-
ation instead of test set because its purpose is not to obtain unbiased estimates of
the classifier performance, but rather to extract unbiased estimates of the classifier
output distribution of background events. All the artificial datasets are not inde-
pendent, e.g. the (1,1) and (1,2) dataset use the same first hemisphere, thus some
careful choices are required when splitting the mixed datasets. The dataset splitting
considered in this analysis, using the (k1, k2) notation described before, correspond

to:

e training set: concatenation of (1,1), (1,2), (2,1) and (2,2) mixed datasets
e validation set: concatenation of (3,4), (5,6), (7,8) and (9, 10) mixed datasets
e application set: concatenation of (4, 3), (6,5), (8,7) and (10,9) mixed datasets

noting that the observation in the training set are not fully independent, but it
is expected that reusing hemispheres in the training sample at most might degrade
slightly the classifier performance, but does not bias in any way the inference results
if an independent set is used. The next section is devoted to the validation of the
background model in data control regions and the development of a methodology
to correct for possible biases in the final summary statistic expectations. For com-
pleteness, a comparison of the distribution of relevant variables, that are used as
input to the probabilistic classifier, between the QCD multi-jet simulations available
and those estimated using hemisphere mixing, are shown in Figure 5.8. The overall
agreement is good, as expected from the discussion at beginning of this section, the
statistical uncertainties coming from the low Hp range simulated QCD dataset are

large.

5.6.2 BACKGROUND VALIDATION

One of the drawbacks of using data-driven methods, is that they are often based on a

series of implicit assumptions regarding the underlying statistical model of the data,
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Figure 5.8: Comparison between the background model obtained with the hemisphere mix-
ing technique and the simulated observations from QCD processes for a set of
relevant reconstructed variables. A correction factor obtained from the binned
classifier distribution, as described in Section 5.6.2, has been applied as a weight
to the mixed dataset. Only statistical uncertainties are shown. Figures adapted
from [148].
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which are difficult to demonstrate directly. Therefore, a more practical approach to
verify the validity of a given background model is usually taken, studying its validity
in a set of data control region where the component under study dominates and the
contribution from the signal is negligible. For the purpose of studying the hemisphere

mixing method in this analysis, two data control regions (CRs) are defined:

e mass control region (My CR): this dataset is obtained using the same selection
described in Section 5.5, but removing all events around the Higgs candidate
masses 90 < My, < 150 GeV and 80 < My, < 140 GeV. This cut in the
reconstructed Higgs masses plane considerably reduces the signal contribution,
which is expected to peak around My = 125 GeV.

e b-tag control region (b-tag CR): this dataset is obtained using the same se-
lection described in Section 5.5 but b-tagged jets are defined using the loose
working point of CMVA, which has a misidentification rate of 10% and a b-
tagging efficiency around 85% for jets originating from the Higgs pair decay,
while filtering out events with any jet above the medium working point of the
CMVA discriminator.

The relative signal contribution in each of these control regions is greatly reduced,
e.g the expected ng/np ratio in the mass (b-tag) control region is only a 16%(17%)
of that of those events inside the 90 < My, < 150 GeV and 80 < My, < 140 GeV
region. The multi-jet QCD component is still the dominant background in both
control regions. While for carrying out the mass control region comparison is enough
to apply an additional cut over the selection, the b-tag control region study requires
redoing the hemisphere mixing procedure on the new set of event with different b-
tag jet selection. For both control regions, all the relevant one-dimensional marginal
distributions are found to be in good agreement, as shown for a reduced number
of important variables that used as input for the classifier in Figure 5.9 and Figure
5.10.

While the marginal distributions of each variable are well-modelled, the goal of
the technique is rather to obtain an adequate modelling accuracy in the higher di-
mensional space considered as input of the probabilistic classifier. A way to check
the quality of such modelling is to compare the classifier output distribution for the
control region data with the background model. This comparison is shown for the
My control region in Figure 5.11. The same comparison is not straightforward to

carry out for the b-tag control region, because the classifier was trained using the
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Figure 5.9: Comparison between the background model obtained with the hemisphere mix-
ing technique and the data for the My control region for a set of reconstructed
variables used as input of the classifier. A correction factor obtained from the
binned classifier distribution, as described in Section 5.6.2, has been applied as
a weight to the mixed dataset. Only statistical uncertainties are shown. Figures
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Figure 5.10: Comparison between the background model obtained with the hemisphere mix-

ing technique and the data for the b-tag control region for a set of reconstructed
variables used as input of the classifier. A correction factor obtained from the
binned classifier distribution, as described in Section 5.6.2, has been applied as
a weight to the mixed dataset. Only statistical uncertainties are shown. Figures

adapted from [148].
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lowest value of the CMVA classifiers, which was lower bounded by the medium work-
ing point for the standard selection which instead is upper bounded by same working
point in the b-tag CR. While Figure 5.11 shows a reasonable agreement overall, a

slight background model excess seems to exist in the lower classifier output range.
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Figure 5.11: Left: Comparison of the BDT classifier output for data in the My control
region, with the same output computed using an artificial dataset by hemisphere
mixing. Right: bin-by-bin differences between the control region data and the
hemisphere mixing estimation, divided by their uncertainty, both before (top
right) and after the bias correction procedure. The pull distributions and their
parameters when fitted by a Gaussian are also shown. The uncertainty after
the bias correction has been increased conservatively in order to obtain a unit
standard deviation for the residual pull distribution. Figures adapted from
[148].

The previous mentioned issue has motivated a quantitative study to assess and
potentially correct the hemisphere mixing based background model for the classifier
output. The bias assessment procedure, schematically depicted in Figure 5.12, starts
by constructing a very large artificial sample M by concatenating all the permuta-
tions of the (k1,ke) datasets up to a kmax = 10, except those used for training the
classifier. A total of 200 smaller datasets, referred as replicas M;, with the same
number of events of the original data are obtained by subsampling without replace-
ment N times from the large mixed dataset M. Each replica dataset is treated in
an analogous manner to the original dataset, thus the hemisphere mixing procedure
is applied again to create a set of new artificial datasets R;. The classifier output

distribution is obtained for all the new artificial datasets R; and compared with the
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reference distribution of the large sample M, considering a histogram with 80 bins
of equal width in the full range of the classifier output [0.0, 1.0].

The median difference between the distribution of the classifier output between the
large dataset M and each of the mixed replicas R; is shown in Figure 5.13 for the final
event selection. A small bias is found in the recovered distribution, which is directly
used as a correction to hemisphere mixing technique prediction. Similar results are
obtained in the previously mentioned control region. The effect of the correction in
the classifier output distribution and pulls in the My control region is also shown
in Figure 5.11. The mean of the predicted values minus the observed values are
compatible with zero in both control regions, while the root-mean-squared of the
pull distribution is not compatible with one in the My. In order to conservatively
account for the mentioned discrepancy, the variation due to the nuisance parameters
added per bin to account for the limited statistics of the artificial background sample
is multiplied by a factor o = 1.9 so the previous pull distribution root-mean-square

becomes one.
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Figure 5.12: Diagram describing the procedure used to estimate the background bias cor-
rection. All possible combinations of mixed hemispheres except those used for
training are added together to create a large sample N of 96 N events from which
we repeatedly subsample without replacement 200 replicas M; of N events. The
hemisphere mixing procedure is then carried out again for each of this replicas
to produce a set of re-mixed data replicas R;. The trained multivariate classifier
is then evaluated over all the events of M and each R; and the histograms of the
classifier output are compared to obtain the differences for each of the replicas.
The median difference is taken as bias correction. Figure adapted from [148].
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Figure 5.13: Bias estimation obtained by the resampling technique described in the text, in

relative units of the statistical uncertainty of the predicted background, used to
correct the background estimation. The median (red line) and the upper and
lower one s.d. quantiles (green lines) have been computed from 200 subsamples
of the re-mixed data comparing the predicted background nj with the observed
ny. The variability due to the limited number of subsamples is estimated by
bootstrap and it is shown for each estimation using a coloured shadow around
the quantile estimation. The light yellow shadow represents the uncertainty
due to the limited statistics of the reference observed sample. The separation
between the one s.d. quantiles is compatible with the expected variance if the
estimation was Poisson or Gaussian distributed. Figure adapted from [148].
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5.7 SYSTEMATIC UNCERTAINTIES

Both the signal model based on simulated observations and data-driven background
model in this analysis are not perfectly known, hence a set of nuisance parameter
have to be considered in the statistical model to account for such lack of certainty,
as generally discussed in Section 3.1.4. Each nuisance parameter, which can affect
the signal, the background component or both, effectively leads to an increase of the
uncertainty on the parameters of interest. For analysis where upper limits are set
such as this, the presence of these unknown parameters increases the total interval
width. The effect of these parameters in the final statistical estimates is also often
referred as systematic uncertainty. A list of the sources of systematic uncertainty
considered in this analysis, and their estimated relative effect in the expected upper

limit for the SM Higgs pair production, is provided on the Table 5.4.

Table 5.4: List of systematic uncertainties considered in this analysis, and their relative
impact on the expected limit for the SM HH production. The relative impact
is obtained by fixing the nuisance parameters corresponding to each source and
recalculating the expected limit.

Source Affects Exp. limit variation
Bkg. shape bkg. 30%
Bkg. norm. bkg. 8.6%
b-tagging eff. sig 2.8%
Pileup sig <0.01%
Jet energy res. sig <0.01%
Jet energy scale sig <0.01%
Int. luminosity sig <0.01%
Trigger eff. sig <0.01%
pr and pp scales sig <0.01%
PDF sig <0.01%

The main sources of uncertainty in this analysis are those associated with the data-
driven background model. For each classifier output bin, an independent nuisance
parameter is included that accounts for the possible variation of the background
prediction due to the limited data statistics of the artificial events used for building
the background model and the accuracy limitations found during the bias correction
procedure described in Section 5.6.2. Because the data-driven technique described
in the previous section does not provide a way to estimate the normalisation of the
background, the background normalisation is added a nuisance parameter that is left

fully unconstrained.
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Regarding systematic uncertainties due to nuisance parameters of the simulation-
based signal distribution, the most relevant factors are the uncertainties in the meas-
ure differences between data and simulation in b-tagging efficiencies. These are es-
timated by recomputing the signal distribution weighted by a factor that accounts
for a one standard deviation for each of the relevant nuisance parameters and in-
terpolating in-between as described in Section 3.1.3. The uncertainty due to the
modelling of the pile-up contribution is included by considering the different effect of
pile-up reweighting when a +4.6% variation on the total inelastic cross section value
at 13 TeV is allowed [181]. The effect due to the modelling uncertainties in jet energy
resolution and scale are estimated by smearing or shifting the reconstructed jet en-
ergy respectively, according to their corresponding uncertainties as a function of the
jet pr and |n|, and evaluating the effect on the final summary statistic. For all the
mentioned sources of uncertainty, both the effect on the classifier output distribution
and its normalisation have been considered.

After a correction by the observed discrepancies between the data and simulation,
the uncertainty on the trigger efficiency after to a 2% effect on the signal normalisa-
tion. The total signal component normalisation is also affected by the uncertainty in
the measurement of the integrated luminosity Ly, which has been estimated during
the 2016 data-taking period to be 2.5%[182]. The effect of theoretical uncertainties
that affect the simulation samples are modelled using per-event weights provided by
the simulation software. In particular, the effect of a variation of the renormalisation
ur and factorisation up scales on the signal efficiency are estimated by taking the
maximum and the minimum difference with respect to the nominal efficiency when
varying pr and pp each individually as well as both together up and down by a factor
of two. For estimating the total signal efficiency variation due to parton distribution
function (PDF) uncertainties, the PDFALHC recommendations [183] are followed,
computing the variation as the standard deviation of a set of 100 MC replicas of the
NNPDF 3.0 set [178].

5.8 ANALYSIS RESULTS

This section includes the experimental results of the search of non-resonant Higgs pair
production with CMS data collected during 2016 at the LHC. The final summary
statistic is the distribution of a probabilistic classifier output, which was trained
on simulated events of SM HH production and events resulting from the data-

driven background estimation technique described in Section 5.6. Specifically, a
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non-parametric sample likelihood composed by a product of Poisson count likeli-
hoods is used, where each Poisson factor represents a bin of the distribution of the
classifier output, in an analogous manner to Equation 3.28. The classifier distribu-
tion was initially divided in 80 equal sized bins, and the expected number of counts
from each mixture component and their variations due to nuisance parameters were
estimated using simulated observations under the SM hypothesis and each of the
BSM EFT points considered for the signal, and from the bias corrected distribution

for the data-driven background dataset.

Given the slight mis-modelling observed in the lower range of the classifier output
on the control regions discussed in Section 5.6.2, a study studying the variation of
the expected limit when a non-zero minimum value is considered in the likelihood
binning was carried out. It was found that restricting the fit to classifier output values
larger than 0.2 resulted on a negligible loss on sensitivity (i.e. smaller than 2%) while
greatly improving the overall data-background compatibility. For this reason, onty
the rightmost 64 of the initial 80 bins of the classifier distribution are used to build
the Poisson likelihood used for statistical inference. The best-fit distributions for
signal, background and data for the classifier output are shown in Figure 5.14, while
the those corresponding to the reconstructed Higgs boson masses are shown in Figure
5.15.

Only two mixture components are considered in the final statistical model, signal
representing pp — HH — bbbb, and background estimated from data and dom-
inated by QCD multi-jet processes and secondarily by top quark production with
additional jets. The contribution from other hard processes that can produce four
b-quarks, such as ttH, ZH, bbH, and single Higgs boson production was estimated
from simulated samples and found to be negligible in comparison with the considered

background uncertainties at the current level of experiment sensitivity.

The same statistical model is used to obtain he observed and expected 95% confid-
ence level (CL) upper limits for non-resonant pp — HH — bbbb production, using
the asymptotic approximation [100] of the CLg criterion [101, 102, 184], and the
so-called LHC test statistic, that is based on the profile likelihood ratio. All the
nuisance parameters are treated by profiling the likelihood. The median expected
and observed upper limits for the SM Higgs pair production, as well as the expec-
ted limit 1 and 2 standard deviation intervals around the median are included in
Table 5.5. The median expected limit obtained for SM HH production is 419 fb,
which corresponds to approximately 37 times the SM expectation, which can be

obtained by taking the cross section from Equation 5.1 and multiplying it by the

166



5.8 Analysis Results

35.9 fb™ (13 TeV)
L L |

10° LB By s e e e

————r
CMS —— Data
~— HH - bbbb SM
£ Mixed data
772 Total unc.

Events

10*

10°

IIII|_|,|,| | IIIII|,|,| L1l

102

10

T T T T T T T
e (Data - background) / background

~— (HH - bbbb signal) / background

7/ Total uncertainty

,,,,,,,,,,

Normalized residuals

1
o
N
i\)llllllllll

03 04 05 06 07 08 0.9 1
BDT output

Figure 5.14: Results of the for best fit of the statistical model of BDT classifier output
distribution for the SM HH production signal for the observed data. In the
lower panel a comparison is shown between the best fit signal and best fit
background subtracted from measured data. The dashed band in the lower
panel, centred at zero, shows the total uncertainty. Figure adapted from [148].
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Figure 5.15: Distributions of the reconstructed Higgs masses for the best fit. A correction
factor obtained from the binned classifier distribution, as described in Section
5.6.2, has been applied as a weight to the mixed dataset. Figures adapted from
[148].

bbbb decay branching fraction. The obtained observed limit is 847 fb, which is
about two standard deviations above the expected limit. To facilitate the compar-
ison with the analyses carried out in other channels, the observed limit corresponds
to o(pp — HH) = 2496 SM as an upper limit the inclusive HH production cross

section of SM-like processes.

Table 5.5: Observed and expected upper limits on o(pp — HH — bbbb) in the SM at 95%
CL in units of fb.

Category HH — bbbb  Observed Expected -2s.d. -1sd. +1sd. +2s.d.

SM 847 419 221 297 601 834

The same procedure was carried out for each of the EFT benchmarks previously
listed in Table 5.1, by re-weighting the simulated HH production observation as
discusses and evaluating the signal distribution under each BSM model considered.
The observed and expected limits obtained for each of the benchmark points are
provided in Table 5.6. The observed and expected limits are also graphically com-
pared between the various EFT points and the SM in Figure 5.16. The observed
limits are also found about two standard deviations over the median expected limits,

which can be explained by taking into account that the same classifier and thus the
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5.9 Combination with Other Decay Channels

same background model (and its associated fluctuations) is considered in the statist-
ical model for all the inference procedures. In particular, the last bins of the classifier
distribution for the data-driven background prediction has a small deficit compared

to the observed data, as can be seen in Figure 5.14.

Table 5.6: Observed and expected upper limits on the o(pp — HH — bbbb) cross section
for the 13 BSM benchmark models listed in Table 5.1 at 95% CL in units of fb.

Benchmark point Observed Expected -2s.d. -1sd. +1sd. +2s.d.

1 602 295 155 209 424 592
2 554 269 141 190 389 948
3 705 346 182 245 497 691
4 939 461 244 327 662 920
) 508 248 131 176 357 501
6 937 457 240 323 657 916
7 3510 1710 905 1210 2440 3390
8 686 336 177 238 483 674
9 529 259 136 183 373 520
10 2090 1000 527 709 1440 2010
11 1080 525 277 372 755 1050
12 1744 859 455 611 1230 1710
Box 1090 542 286 384 775 1080

In addition to the BSM benchmarks, limits are also obtained for the cross section
times branching ratio of Higgs pair production processes in the EFT framework,
varying k) in the range [—20,20], while assuming that x; = 1 and the rest of the
couplings are zero. The results are shown in Figure 5.17, noting that the upper
limit changes considerably in this range because the distribution of the final state
properties change considerably, and consequently the associated efficiency for the
process also varies. The EFT cross section prediction as a function of k) and keeping
kt = 1 is also shown in the previous figure, noting that no values of k) can be excluded

at the current level of experimental sensitivity.

5.9 COMBINATION WITH OTHER DECAY CHANNELS

The results of the search presented here have been combined with other Higgs pair
searches carried out by the CMS collaboration for other decay channels for the same
data collection period at /13 TeV. For the combination, another three decay modes
are considered in addition to the bbbb, where one the Higgs decays to a bb pair where

the other decays into 47y, 77 or a pair or vector bosons, respectively. Combined upper
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Figure 5.16: Graphical comparison between the observed and expected upper limits at 95%

CL on the o(pp — HH — bbbb) cross section for the SM and the 13 BSM
models investigated. The inner green bands and the outer yellow bands and
correspond to the range of percentiles around the median that contain the 68%
and 95% times the upper limit under the background-only hypothesis. See Table
5.1 for their respective EFT parameter values. Figure adapted from [148].
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5.9 Combination with Other Decay Channels

limits where obtained by considering the product of the likelihoods, which depend on
the HH cross section and several nuisance parameters. Some sources of uncertainty
that are correlated between different channels, such as the luminosity or b-tagging
uncertainty, where modelled using the same nuisance parameters in each individual
likelihood. More details on the combination procedure are included in the following
CMS Public Analysis Note [185].

The 95% C.L. upper limits for the Higgs pair non-resonant production cross sec-
tion o(pp — HH) from the pp — HH — bbbb can be compared with those obtained
by the other searches in Figure 5.18. In the same figure, the upper limits for the
combination of the four decay modes are also shown. The combination results are
statistically compatible with the SM background contribution. An median expected
limit of 12.8 times the SM expectation is obtained from the combination. The com-
bined observed upper limit is 22.2 times the SM expectation, which is well-within
the expected variation under the background only hypothesis. Analogously to what
was done in Section 5.8, upper limits are also obtained for the cross section times
branching ratio of Higgs pair production processes in the EFT framework, varying
K in the range [—20, 20], while assuming that x¢ = 1 and the rest of the couplings
are zero. This results are shown graphically in Figure 5.19; values for the anomal-
ous self-coupling k) in the range —11.8 < k) < 18.8 are not excluded by the data
(—7.1 < Ky < 13.6 was the expected interval). The aforementioned results make this
combination analysis the most sensitive search to date at the LHC for non-resonant
HH production. Substantial improvements can be expected due to the extensions of

each analysis to the full Run II dataset.
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that contain the 68% and 95% times the upper limit under the background-only
hypothesis. Figure adapted from [185].
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6 INFERENCE-AWARE NEURAL
OPTIMISATION

An approximate answer to the right question is worth
a great deal more than a precise answer to the wrong

question.

John Tukey

By this point, it should be evident that powerful statistical inference is the ulti-
mate objective of all experimental high-energy analyses. Supervised learning based
on simulated observations or acquired data from control regions, and in particular
probabilistic classification, provides a way to extract and approximate estimate of
the latent variables of the generative model. Those latent variable estimates are in
turn very useful to construct powerful summary for statistical inference. While this
approach is very often encountered in experimental high energy physics, complex
computer simulations are also required for many other scientific disciplines, making
inference very challenging due to the intractability of the likelihood evaluation for
the observed data. Summary statistics based on a supervised learning algorithms
can be asymptotically optimal if the generative model is fully defined, as is the case
for the output of soft classification for mixture models where we are interested in the
mixture coefficients, as demonstrated in Section 4.3.1. Unfortunately, their useful-
ness can rapidly decrease when additional uncertain parameters affect the generative
model.

As a practical example, in the analysis presented in Chapter 5, the limiting factor
for experimental sensitivity was not in the choice of summary statistics but rather
on the lack of detailed knowledge about the expected contribution from background
processes, which had to be addressed by the inclusion of nuisance parameters. The
technique presented in this chapter, referred to as INFERNO and published in [186],
is an attempt to tackle directly the problem of constructing non-linear summary
statistics from a statistical perspective that directly addresses the goal of the final

inference question. The key contribution required for achieving such goal is to lever-
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6 Inference-Aware Neural Optimisation

age the technology that has been developed for recent machine learning techniques,
to build inference-aware loss functions that approximate the expected uncertainty

on the parameters of interest, accounting for the effect of nuisance parameters.

6.1 INTRODUCTION

Simulator-based inference is currently at the core of many scientific fields, such as
population genetics, epidemiology, and experimental particle physics. In many cases
the implicit generative procedure defined in the simulation is stochastic and/or lacks
a tractable probability density p(x|@), where 8 € O is the vector of model paramet-
ers. Given some experimental observations D = {xy,...,x,}, a problem of special
relevance for these disciplines is statistical inference on a subset of model parameters
w € ) C O. This can be approached via likelihood-free inference algorithms such
as Approximate Bayesian Computation (ABC) [95], simplified synthetic likelihoods
[187] or density estimation-by-comparison approaches [188].

Because the relation between the parameters of the model and the data is only
available via forward simulation, most likelihood-free inference algorithms tend to
be computationally expensive due to the need of repeated simulations to cover the
parameter space. When data are high-dimensional, likelihood-free inference can rap-
idly become inefficient, so low-dimensional summary statistics s(D) are used instead
of the raw data for tractability. The choice of summary statistics for such cases
becomes critical, given that naive choices might cause loss of relevant information
and a corresponding degradation of the power of resulting statistical inference.

For the particular problem of high energy physics data analyses at the LHC, the
properties of the underlying generative model discussed in Chapter 3 make the like-
lihood intractable, but its structure facilitates the construction of simulation-based
likelihoods of low-dimensional summary statistics that approximate latent variables.
The ultimate aim is nevertheless to extract information about Nature from the large
amounts of high-dimensional data on the subatomic particles produced by energetic
collision of protons, and acquired by highly complex detectors built around the col-
lision point. Accurate data modelling is only available via stochastic simulation of a
complicated chain of physical processes, from the underlying fundamental interaction
to the subsequent particle interactions with the detector elements and their readout.
As a result, the density p(x|@) cannot be analytically computed.

Due to the high dimensionality of the observed data, a low-dimensional summary

statistic has to be constructed in order to perform inference. A well-known result of
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6.2 Problem Statement

classical statistics, which was also discussed in Section 3.2.2 as the Neyman-Pearson
lemma|97], establishes that the likelihood-ratio A(x) = p(x|Hy)/p(x|H1) is the most
powerful test when two simple hypotheses are considered. As p(x|Hp) and p(x|H;)
are not available, simulated samples are used in practice to obtain an approximation

of the likelihood ratio by casting the problem as supervised learning classification.

Within high energy physics analysis, the nature of the generative model (a mixture
of different processes) allows the treatment of the problem as signal (S) versus back-
ground (B) classification [189], when the task becomes one of effectively estimating
an approximation of pg(x)/pp(x) which will vary monotonically with the likelihood
ratio. This has been discussed at great lengths in Section 4.3.1. While the use of
classifiers to learn a summary statistic can be effective and increase the discovery
sensitivity, the simulations used to generate the samples which are needed to train
the classifier often depend on additional uncertain parameters (commonly referred to
as nuisance parameters). These nuisance parameters are not of immediate interest
but have to be accounted for in order to make quantitative statements about the
model parameters based on the available data. Classification-based summary stat-
istics cannot easily account for those effects, so their inference power is degraded

when nuisance parameters are finally taken into account.

In this chapter, we present a new machine learning method to construct non-
linear sample summary statistics that directly optimises the expected amount of
information about the subset of parameters of interest using simulated samples,
by explicitly and directly taking into account the effect of nuisance parameters. In
addition, the learned summary statistics can be used to build synthetic sample-based
likelihoods and perform robust and efficient classical or Bayesian inference from the
observed data, so they can be readily applied in place of current classification-based

or domain-motivated summary statistics in current scientific data analysis workflows.

6.2 PROBLEM STATEMENT

Let us consider a set of n i.i.d. observations D = {xy,...,x,} where x € X C R?,
and a generative model which implicitly defines a probability density p(x|@) used
to model the data. The generative model is a function of the vector of parameters
0 € © C RP, which includes both relevant and nuisance parameters. We want to
learn a function s : D C R¥*™ — § C R? that computes a summary statistic of the

dataset and reduces its dimensionality so likelihood-free inference methods can be
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applied effectively. From here onwards, b will be used to denote the dimensionality

of the summary statistic s(D).

While there might be infinite ways to construct a summary statistic s(D), we are
only interested in those that are informative about the subset of interest w € 2 C ©
of the model parameters. The concept of statistical sufficiency is especially useful
to evaluate whether summary statistics are informative. In the absence of nuisance
parameters, classical sufficiency can be characterised by means of the factorisation

criterion (see Section 3.1.3 for more details):
p(D|w) = h(D)g(s(D)|w) (6.1)

where h and g are non-negative functions. If p(D|w) can be factorised as indicated,
the summary statistic s(D) will yield the same inference about the parameters w as
the full set of observations D. When nuisance parameters have to be accounted in
the inference procedure, alternate notions of sufficiency are commonly used such as
partial or marginal sufficiency [190, 191]|. Nonetheless, for the problems of relevance
in this work, the probability density is not available in closed form so the general
task of finding a sufficient summary statistic cannot be tackled directly. Hence,

alternative methods to build summary statistics have to be followed.

For simplicity, let us consider a problem where we are only interested in performing
statistical inference on a single one-dimensional model parameter w = {wp} given
some observed data. Be given a summary statistic s and a statistical procedure to
obtain an unbiased interval estimate of the parameter of interest which accounts for
the effect of nuisance parameters. The resulting interval can be characterised by its
width Awg = d)ar — Wy , defined by some criterion so as to contain on average, upon
repeated samping, a given fraction of the probability density, e.g. a central 68.3%
interval. The expected size of the interval depends on the summary statistic s chosen:
in general, summary statistics that are more informative about the parameters of
interest will provide narrower confidence or credible intervals on their value. Under
this figure of merit, the problem of choosing an optimal summary statistic can be
formally expressed as finding a summary statistic s* that minimises the interval
width:

§" = arg min Awy. (6.2)

The above construction can be extended to several parameters of interest by consid-
ering the interval volume or any other function of the resulting confidence or credible

regions.
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6.3 Method

6.3 METHOD

In this section, a machine learning technique to learn non-linear sample summary
statistics is described in detail. The method seeks to minimise the expected variance
of the parameters of interest obtained via a non-parametric simulation-based syn-
thetic likelihood. A graphical description of the technique is depicted on Fig. 6.1.
The parameters of a neural network are optimised by stochastic gradient descent
within an automatic differentiation framework, where the considered loss function
accounts for the details of the statistical model as well as the expected effect of

nuisance parameters.

compute via automatic differentiation

2
softmax ~ 50,00; It
Z log [EA U
SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
APPROXIMATION NETWORK STATISTIC LOSS
stochastic gradient update ¢'™' = @' + n(t)V4U

Figure 6.1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is based on a
neural network model applied to each dataset observation f(x;¢) : X C R? —
Y C R?, whose parameters ¢ will be learned during training by means of stochastic
gradient descent, as will be discussed later. Therefore, using set-builder notation the

considered family of summary statistics considered can be denoted as:

s(D,¢) =s({ f(zi;9) |Vai€ D }) (6.3)

where f(x;; ¢) will reduce the dimensionality from the input observations space X
to a lower-dimensional space ). The next step is to map observation outputs to
a dataset summary statistic, which will in turn be calibrated and optimised via a
non-parametric likelihood £(D; 8, ¢) created using a set of simulated observations
Gs = {zo, ..., x4}, generated at a certain instantiation of the simulator parameters
0,.
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In experimental high energy physics experiments, which are the scientific context
that initially motivated this work, histograms of observation counts are the most
commonly used non-parametric density estimator because the resulting likelihoods
can be expressed as the product of Poisson factors, one for each of the considered bins.
A naive sample summary statistic can be built from the output of the neural network
by simply assigning each observation x to a bin corresponding to the cardinality
of the maximum element of f(x;¢), so each element of the sample summary will

correspond to the following sum:

3 1 i=argmaz;_q, . (fi(x; @)
zeD |0 i # argmaz;_go 5y (fi(@; @)

5i(D; ) = (6.4)

which can in turn be used to build the following likelihood, where the expectation

for each bin is taken from the simulated sample Gj:

£(D:0.6) = ﬁ)Pois (o)1 (2)scs0)) (6.5)

where the n/g factor accounts for the different number of observations in the simu-
lated samples. In cases where the number of observations is itself a random variable
providing information about the parameters of interest, or where the simulated obser-
vations are weighted, the choice of normalisation of £ may be slightly more involved
and problem specific, but nevertheless amenable. Note the relation between the sum-
mary statistics and likelihoods defined in this section and those discussed in Section
3.1.3.

In the above construction, the chosen family of summary statistics is not differ-
entiable due to the argmax operator, so gradient-based updates for the parameters
cannot be computed. To work around this problem, a differentiable approximation

5(D; ¢) is considered. This function is defined by means of a softmaz operator:

efil@id) /T

Si(D; ) = s
S ( ¢) Z Z?:O eli(z:@)/T

zeD

(6.6)

where the temperature hyper-parameter 7 will regulate the softness of the operator.
In the limit of 7 — 0T, the probability of the largest component will tend to 1
while others to 0, and therefore 5(D;¢) — s(D;¢). Similarly, let us denote by

N

L(D; 8, ¢) the differentiable approximation of the non-parametric likelihood obtained
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by substituting s(D; ¢) with §(D; ¢). Instead of using the observed data D, the value
of £ may be computed when the observation for each bin is equal to its corresponding
expectation based on the simulated sample G, which is commonly denoted as the
Asimov likelihood [100] £4:

£a(0:0) = f:[OP(@(G o1 (1)stcao) (6.7)

for which it can be easily proven that argmaxgeg(ﬁA(O; ¢)) = 0y, so the maximum
likelihood estimator (MLE) for the Asimov likelihood is the parameter vector O
used to generate the simulated dataset G5. In Bayesian terms, if the prior over the
parameters is flat in the chosen metric, then @, is also the maximum a posteriori
(MAP) estimator. By taking the negative logarithm and expanding in @ around 6,

we may obtain the Fisher information matrix [107] for the Asimov likelihood:

2
i 06,00,

1(6) (~108£4(6:9)) (6.8)
which can be computed via automatic differentiation if the simulation is differentiable
and included in the computation graph, or if the effect of varying 8 over the simulated
dataset G4 can be effectively approximated. While this requirement does constrain
the applicability of the proposed technique to a subset of likelihood-free inference
problems, it is quite common in e.g. physical sciences that the effect of the parameters
of interest and the main nuisance parameters over a sample can be approximated
by the changes of mixture coefficients of mixture models, translations of a subset of

features, or conditional density ratio re-weighting.

If 6 is an unbiased estimator of the values of 0, the covariance matrix fulfils the
Cramér-Rao lower bound [108, 109]:

covg(8) > 1(0)! (6.9)

and the inverse of the Fisher information can be used as an approximate estimator
of the expected variance, given that the bound would become an equality in the
asymptotic limit for MLE. If some of the parameters @ are constrained by inde-
pendent measurements characterised by their likelihoods {£%(8), ..., £ (6)}, those
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constraints can also be easily included in the covariance estimation, simply by con-

sidering the augmented likelihood EA;l instead of £ 4 in Eq. 6.8:

L(0:0) = La(0;0) [ £0(6). (6.10)
=0

In Bayesian terminology, this approach is referred to as the Laplace approxima-
tion [110] where the logarithm of the joint density (including the priors) is expanded

around the MAP to a multi-dimensional normal approximation of the posterior dens-
ity:

p(6]D) ~ Normal(6; 0, 1(6) ) (6.11)
which has already been approached by automatic differentiation in probabilistic pro-
gramming frameworks [192]. While a histogram has been used to construct a Poisson
count sample likelihood, non-parametric density estimation techniques can be used
in its place to construct a product of observation likelihoods based on the neural
network output f(x;¢) instead. For example, an extension of this technique to
use kernel density estimation (KDE) should be straightforward, given its intrinsic
differentiability.

The loss function used for stochastic optimisation of the neural network paramet-
ers ¢ can be any function of the inverse of the Fisher information matrix at 6,
depending on the ultimate inference aim. The diagonal elements I;; 1(6,) correspond
to the expected variance of each of the ¢; under the normal approximation men-
tioned before, so if the aim is efficient inference about one of the parameters wg = 6
a candidate loss function is:

U=1.,05) (6.12)

which corresponds to the expected width of the confidence interval for wy accounting
also for the effect of the other nuisance parameters in 6. This approach can also
be extended when the goal is inference over several parameters of interest w C 6
(e.g. when considering a weighted sum of the relevant variances). A simple version
of the approach just described to learn a neural-network based summary statistic

employing an inference-aware loss is summarised in Algorithm 1.
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Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation g(8).
Input 2: initial parameter values 6.
Input 3: parameter of interest wg = 0.

Output: learned summary statistic s(D; ¢).

1: fort=1to N do

2 Sample a representative mini-batch G from ¢(85).

3 Compute differentiable summary statistic §(Gs; ).

4 Construct Asimov likelihood £4(6, ¢).

5: Get information matrix inverse 1(8) ™' = H,'(log £L4(8, ¢)).
6 Obtain loss U = I, (6).

7 Update network parameters ¢ — SGD(V4U).

8:

end for

6.4 RELATED WORK

Classification or regression models have been implicitly used to construct summary
statistics for inference in several scientific disciplines. For example, in experimental
particle physics, the mixture model structure of the problem makes it amenable to
supervised classification based on simulated datasets [193, 194]. While a classification
objective can be used to learn powerful feature representations and increase the
sensitivity of an analysis, it does not take into account the details of the inference
procedure or the effect of nuisance parameters like the solution proposed here.

The first known effort to include the effect of nuisance parameters in classification
and explain the relation between classification and the likelihood ratio was by Neal
[195]. In the mentioned work, Neal proposes training of classifier including a function
of nuisance parameter as additional input together with a per-observation regression
model of the expectation value for inference. Cranmer et al. [188] improved on this
concept by using a parametrised classifier to approximate the likelihood ratio which
is then calibrated to perform statistical inference. At variance with the mentioned
works, we do not consider a classification objective at all and the neural network is
directly optimised based on an inference-aware loss. Additionally, once the summary
statistic has been learnt the likelihood can be trivially constructed and used for

classical or Bayesian inference without a dedicated calibration step. Furthermore,
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the approach presented in this work can also be extended, as done by Baldi et al.
[134] by a subset of the inference parameters to obtain a parametrised family of

summary statistics with a single model.

Recently, Brehmer et al. [196, 197, 198] further extended the approach of paramet-
rised classifiers to better exploit the latent-space structure of generative models from
complex scientific simulators. Additionally they propose a family of approaches that
include a direct regression of the likelihood ratio and/or likelihood score in the train-
ing losses. While extremely promising, the most performing solutions are designed for
a subset of the inference problems at the LHC and they require considerable changes
in the way the inference is carried out. The aim of the algorithm proposed here is
different, as we try to learn sample summary statistics that may act as a plug-in
replacement of classifier-based dimensionality reduction and can be applied to gen-
eral likelihood-free problems where the effect of the parameters can be modelled or

approximated.

Within the field of Approximate Bayesian Computation (ABC), there have been
some attempts to use neural network as a dimensionality reduction step to generate
summary statistics. For example, Jiang et al. [199] successfully employ a summary
statistic by directly regressing the parameters of interest and therefore approximating
the posterior mean given the data, which then can be used directly as a summary
statistic.

A different path is taken by Louppe et al. [200], where the authors present a
adversarial training procedure to enforce a pivotal property on a predictive model.
The main concern we have on the use of that approach is that a classifier which
is pivotal with respect to nuisance parameters might not be optimal, neither for
classification nor for statistical inference. Instead of aiming for being pivotal, the
summary statistics learnt by our algorithm attempt to find a transformation that
directly reduces the expected effect of nuisance parameters over the parameters of

interest.

6.5 EXPERIMENTS

In this section, we first study the effectiveness of the inference-aware optimisation
in a synthetic mixture problem where the likelihood is known. We then compare
our results with those obtained by standard classification-based summary statist-

ics. All the code needed to reproduce the results presented here is available in an
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online repository [201], extensively using TENSORFLOW [129] and TENSORFLOW
PROBABILITY [192, 202] software libraries.

6.5.1 3D SYNTHETIC MIXTURE

In order to exemplify the usage of the proposed approach, evaluate its viability and
test its performance by comparing to the use of a classification model proxy, a three-
dimensional mixture example with two components is considered. One component
will be referred as background f,(a|\) and the other as signal fs(); their probability

density functions are taken to correspond respectively to:

fo(x|r, \) :N<(IE0,:E1) (2+7,0), [(5) g )Exp($2|)\) (6.13)

fs(x) :N<(x0,x1) (1,1), [; (1) )Exp(:cQ]Q) (6.14)

so that (xo,z1) are distributed according to a multivariate normal distribution while
xo follows an independent exponential distribution both for background and signal,
as shown in Fig. 6.2a. The signal distribution is fully specified while the background
distribution depends on r, a parameter which shifts the mean of the background dens-
ity, and a parameter A which specifies the exponential rate in the third dimension.
These parameters will be the treated as nuisance parameters when benchmarking
different methods. Hence, the probability density function of observations has the

following mixture structure:

p(@|p,r, A) = (1= p) fo(|r, A) + pufs() (6.15)

where p is the parameter corresponding to the mixture weight for the signal and
consequently (1 — u) is the mixture weight for the background. The low-dimensional
projections from samples from the mixture distribution for a small x = 50/1050 is
shown in Fig. 6.2b.

Let us assume that we want to carry out inference based on n i.i.d. observations,
such that E[ns] = un observations of signal and E[ny] = (1 — pu)n observations of
background are expected, respectively. While the mixture model parametrisation
shown in Eq. 6.15 is correct as is, the underlying model could also give information
on the expected number of observations as a function of the model parameters. In

this toy problem, we consider a case where the underlying model predicts that the
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Figure 6.2: Projection in 1D and 2D dimensions of 50000 samples from the synthetic problem
considered. The background distribution nuisance parameters used for generat-
ing data correspond to r = 0 and A = 3. For samples the mixture distribution,
s =50 and b = 1000 were used, hence the mixture coefficient is p = 50/1050.

total number of observations are Poisson distributed with a mean s+b, where s and b
are the expected number of signal and background observations. Thus the following

parametrisation will be more convenient for building sample-based likelihoods:

b
s+b

p(x|s,r, A\, b) = fo(x|r, A) + fs(x). (6.16)

s+b

The parametrisation of Equation 6.16 is common for physics analyses at the LHC,
because theoretical calculations provide information about the expected number of
observations. If the probability density is known, but the expectation for the number
of observed events depends on the model parameters, the likelihood can be extended

[203] with a Poisson count term as:

L(s,r,\,b) = Pois(n|s + b) [ [ p(x|s,r, A\, b) (6.17)

which will be used to provide an optimal inference baseline when benchmarking the

different approaches. Another quantity of relevance is the conditional density ratio,
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which would correspond to the optimal classifier (in the Bayes risk sense) separating

signal and background events in a balanced dataset (equal priors):

fs(z)
fs(m) + fb(i)3|7“, >‘)

s*(xlr, ) = (6.18)
noting that this quantity depends on the parameters that define the background dis-
tribution r and A, but not on s or b that are a function of the mixture coeflicients.
It can be proven (see Section 4.3.1 ) that s*(x) is a sufficient summary statistic
with respect to an arbitrary two-component mixture model if the only unknown
parameter is the signal mixture fraction p (or alternatively s in the chosen paramet-
risation). In practice, the probability density functions of signal and background are
not known analytically, and only forward samples are available through simulation,

so alternative approaches are required.

The synthetic nature of this example allows to rapidly generate training data on
demand, yet a training dataset of only 200,000 simulated observations has been
considered, in order to study how the proposed method performs when training data
is limited. Half of the simulated observations correspond to the signal component
and half to the background component. The latter has been generated using r = 0.0
and A = 3.0. A validation holdout from the training dataset of 200,000 observations
is used exclusively for computing relevant metrics during training and to control
over-fitting. The final figures of merit that allow to compare different approaches
are computed using a larger dataset of 1,000,000 observations. For simplicity, mini-
batches for each training step are balanced so the same number of events from each

component is taken both when using standard classification or inference-aware losses.

A common treatment of this problem in high-energy physics consist of posing the
problem as one of classification based on a simulated dataset, as discussed in Section
4.3.1. A supervised machine learning model such a neural network can be trained
to discriminate signal and background observations, considering a fixed parameters
r and A. The output of such a model typically consist in class probabilities ¢s and ¢
given an observation @, which will tend asymptotically to the optimal classifier from
Eq. 6.18 given enough data, a flexible enough model and a powerful learning rule.
The conditional class probabilities (or alternatively the likelihood ratio fs(x)/fy())
are powerful learned features that can be used as summary statistic; however their
construction ignores the effect of the nuisance parameters r and A on the background
distribution. Furthermore, some kind of non-parametric density estimation (e.g. a

histogram) has to be considered in order to build a calibrated statistical model using
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the classification-based learned features, which will in turn smooth and reduce the
information available for inference.

To exemplify the use of this family of classification-based summary statistics, a
histogram of a deep neural network classifier output trained on simulated data and its
variation computed for different values of » and A are shown in Fig. 6.3a. The details
The classifier

output can be directly compared with s(xz|r = 0.0, A\ = 3.0) evaluated using the

of the training procedure will be provided later in this document.

analytical distribution function of signal and background according to Eq. 6.18, which
is shown in Fig. 6.3b and corresponds to the optimal classifier. The trained classifier
approximates very well the optimal classifier. The summary statistic distribution
for background depends considerably on the value of the nuisance parameters both
for the trained and the optimal classifier, which will in turn cause an important

degradation on the subsequent statistical inference.
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Figure 6.3: Histograms of summary statistics for signal and background (top) and variation
for different values of nuisance parameters compared with the expected signal re-
lative to the nominal background magniture (bottom). The classifier was trained
using signal and background samples generated for » = 0.0 and A = 3.0.

The statistical model described above has up to four unknown parameters: the ex-
pected number of signal observations s, the background mean shift r, the background
exponential rate in the third dimension A, and the expected number of background
observations. The effect of the expected number of signal and background obser-
vations s and b can be easily included in the computation graph by weighting the

signal and background observations. This is equivalent to scaling the resulting vector
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of Poisson counts (or its differentiable approximation) if a non-parametric counting
model as the one described in Sec. 6.3 is used. Instead the effect of » and A, both
nuisance parameters that will define the background distribution, is more easily mod-
elled as a transformation of the input data . In particular, r is a nuisance parameter
that causes a shift on the background along the first dimension and its effect may
be accounted for in the computation graph by simply adding (r,0.0,0.0) to each ob-
servation in the mini-batch generated from the background distribution. Similarly,
the effect of A can be modelled by multiplying xo by the ratio between the \g used
for generation and the one being modelled. These transformations are specific for
this example, but alternative transformations depending on parameters could also
be accounted for as long as they are differentiable or substituted by a differentiable
approximation.

For this problem, we are interested in carrying out statistical inference on the
parameter of interest s. In fact, the performance of inference-aware optimisation as
described in Sec. 6.3 will be compared with classification-based summary statistics
for a series of inference benchmarks based on the synthetic problem described above

that vary in the number of nuisance parameters considered and their constraints:

e Benchmark 0: no nuisance parameters are considered, both signal and back-
ground distributions are taken as fully specified (r = 0.0, A = 3.0 and b =
1000.).

e Benchmark 1: r is considered as an unconstrained nuisance parameter, while
A= 3.0 and b = 1000 are fixed.

e Benchmark 2: r and ) are considered as unconstrained nuisance parameters,
while b = 1000 is fixed.

e Benchmark 3: r and A\ are considered as nuisance parameters but with the
following constraints: N'(r]0.0,0.4) and N'()|3.0,1.0), while b = 1000 is fixed.

e Benchmark 4: all , A and b are all considered as nuisance parameters with
the following constraints: N(r]0.0,0.4), A(A]3.0,1.0) and A (b|1000.,100.).

When using classification-based summary statistics, the construction of a sum-
mary statistic does depend on the presence of nuisance parameters, so the same
model is trained independently of the benchmark considered. In real-world inference
scenarios, nuisance parameters have often to be accounted for and typically are con-
strained by prior information or auxiliary measurements. For the approach presented
here, inference-aware neural optimisation, the effect of the nuisance parameters and

their constraints can be taken into account during training. Hence, 5 different train-
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ing procedures for INFERNO will be considered, one for each of the benchmarks,

denoted by the same number.

The same basic network architecture is used both for cross-entropy and inference-
aware training: two hidden layers of 100 nodes followed by ReLU activations. The
number of nodes on the output layer is two when classification proxies are used,
matching the number of mixture classes in the problem considered. Instead, for
inference-aware classification the number of output nodes can be arbitrary and will
be denoted with b, corresponding to the dimensionality of the sample summary stat-
istics. The final layer is followed by a softmax activation function and a temperature
7 = 0.1 for inference-aware learning in order to ensure that the differentiable ap-
proximations are closer to the true expectations. Standard mini-batch stochastic
gradient descent (SGD) is used for training and the optimal learning rate is fixed
and decided by means of a simple scan; the best choice found is specified together

with the results.

1.75 cross-entropy
inference-aware

N
ES

20

validation-set inference-aware loss
profiled likelihood A(-Int)

-
®

16

0 25 50 75 100 125 150 175 200 720 30 40 50 60 70 80
training epoch s parameter of interest
(a) inference-aware training loss (b) profile-likelihood comparison

Figure 6.4: Dynamics and results of inference-aware optimisation: (a) square root of
inference-loss (i.e. approximated standard deviation of the parameter of interest)
as a function of the training step for 10 different random initialisations of the
neural network parameters; (b) profiled likelihood around the expectation value
for the parameter of interest of 10 trained inference-aware models and 10 trained
cross-entropy loss based models. The latter are constructed by building a uni-
formly binned Poisson count likelihood of the conditional signal probability out-
put. All results correspond to Benchmark 2.

In Fig. 6.4a, the dynamics of inference-aware optimisation are shown by the val-
idation loss, which corresponds to the approximate expected variance of parameter
s, as a function of the training step for 10 random-initialised instances of the IN-

FERNO model corresponding to Benchmark 2. All inference-aware models were
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trained during 200 epochs with SGD using mini-batches of 2000 observations and a
learning rate v = 1075, All the model initialisations converge to summary statistics
that provide low variance for the estimator of s when the nuisance parameters are

accounted for.

To compare with alternative approaches and verify the validity of the results, the
profiled likelihoods obtained for each model are shown in Fig. 6.4b. The expected
uncertainty if the trained models are used for subsequent inference on the value of
s can be estimated from the profile width when AL = 0.5. Hence, the average
width for the profile likelihood using inference-aware training, 16.97 + 0.11, can be
compared with the corresponding one obtained by uniformly binning the output of
classification-based models in 10 bins, 24.01 + 0.36. The models based on cross-
entropy loss were trained during 200 epochs using a mini-batch size of 64 and a fixed

learning rate of v = 0.001.
A more complete study of the improvement provided by the different INFERNO

training procedures is provided in Table 6.1, where the median and 1-sigma per-
centiles on the expected uncertainty on s are provided for 100 random-initialised
instances of each model. In addition, results for 100 random-initialised cross-entropy
trained models and the optimal classifier and likelihood-based inference are also in-
cluded for comparison. The confidence intervals obtained using INFERNO-based
summary statistics are considerably narrower than those using classification and
tend to be much closer to those expected when using the true model likelihood for
inference. The only exception being the results obtained for Benchmark 0, where no
nuisance parameters are considered, and thus the classification approach is expected
to approximate a sufficient summary statistic. Much smaller fluctuations between
initialisations are observed for the INFERNO-based cases. The improvement over
classification increases when more nuisance parameters are considered. The res-
ults also seem to suggest the inclusion of additional information about the inference
problem in the INFERNO technique leads to comparable or better results than its

omission.

Given that a certain value of the parameters @5 has been used to learn the sum-
mary statistics as described in Algorithm 1 while their true value is unknown, the
expected uncertainty on s has also been computed for cases when the true value of
the parameters O, differs. The variation of the expected uncertainty on s when
either r or A is varied for classification and inference-aware summary statistics is
shown in Fig. 6.5 for Benchmark 2. The inference-aware summary statistics learnt

for 8 work well when 6¢,4c # 05 in the range of variation explored.
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Table 6.1: Expected uncertainty on the parameter of interest s for each of the inference
benchmarks considered using a cross-entropy trained neural network model, IN-
FERNO customised for each problem and the optimal classifier and likelihood
based results. The results for INFERNO matching each problem are shown with
bold characters.

Benchmark 0 Benchmark 1

Benchmark

2

Benchmark 3

Benchmark 4
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Figure 6.5: Expected uncertainty when the value of the nuisance parameters is different for
10 learnt summary statistics (different random initialisation) based on cross-
entropy classification and inference-aware technique. Results correspond to
Benchmark 2.
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This synthetic example demonstrates that the direct optimisation of inference-
aware losses as those described in the Section 6.3 is effective. The summary statistics
learnt accounting for the effect of nuisance parameters compare very favourably to
those obtained by using a classification proxy to approximate the likelihood ratio. Of
course, more experiments are needed to benchmark the usefulness of this technique
for real-world inference problems as those found in High Energy Physics analyses at

the LHC.

191






7 CONCLUSIONS AND PROSPECTS

So Long,
and Thanks for All the Fish.

Douglas Adams

A large part of this thesis has dealt with the role of statistical learning techniques in
the context of particle collider analyses, and their usefulness from a statistical infer-
ence perspective. After a broad introduction to the theoretical models of fundamental
interactions and a summary of the main characteristics and working principles of the
Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC), the
fundamentals for statistical modelling at the LHC has been discussed. The relation
between the theoretical parameters of interest and the experimental observations
can only be modelled accurately by means of a complex simulation chain of the
underlying physical processes and expected detector response. The generative-only
nature of the simulation-based model combined with its high dimensionality make
the definition of the probability density or likelihood function intractable, thus clas-
sical inference techniques cannot be applied to carry out statistical inference based
on the acquired observations.

The statistical model for particle colliders can be described by a mixture model,
each mixture component originating from a group of fundamental physical interac-
tions. The latent variable structure of the generative model can be mapped to the
different simulation steps in the simulation: process type, parton-level four-momenta,
parton-shower outcome and detector readout. While the dimensionality of the latent
space greatly increases for each subsequent step, the joint distribution can be factor-
ised as a product of conditionals, the information about the parameters of interest
being compactly expressed by the lowest dimensional latent variables. An efficient
way to reduce the dimensionality of the data is thus to approximate the latent vari-
ables using the observations. This can be done by a well-calibrated combination
of the different detector readouts, as is the case when using event reconstruction is
performed, or by directly estimating the latent variables using supervised learning

techniques trained on simulated observations.
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Recent advances in supervised learning techniques have led to more accurate lat-
ent variable estimation that can scale to more data and use advanced non-linear
transformations to obtain better performance in complex tasks, both in the context
of classification and regression. Signal versus background probabilistic classification,
a common conceptual framework for simplifying the event selection problem and
constructing low-dimensional summaries in high-energy physics, has been formally
proven to produce sufficient summary statistics for the mixture coefficients when the
generative model is fully defined. The usefulness of probabilistic classification for
such tasks, even in the optimal classifier case, cannot be guaranteed when nuisance
parameters affect significantly the distribution of observed samples. In addition,
particle identification and regression problems that augment the reconstruction out-
put and can be tackled with machine learning techniques are also discussed. The
use of deep learning techniques for advanced jet flavour tagging in CMS are used to
exemplify the previous use case, which demonstrates the possible performance im-
provements due to the combined use of deep neural networks and non-standard input
transformations that can deal with sequences. Newer machine learning methodolo-
gies that can deal with sets, graphs and other types of non-vector input coupled
with powerful parallel hardware could be a promising path to substitute a larger
part of the event reconstruction chain by latent variable approximations based on
simulated observations, providing higher accuracy and throughput than hand-tuned

algorithms.

An analysis using 35.9 fb~! of data collected in 2016 by the CMS detector at the
LHC was also included in this work. Proton-proton collisions at a centre-of-mass
energy of 13 TeV were used to study the pp — HH — bbbb process in the context
of the Standard Model (SM) and anomalous couplings effective field theory (EFT)
extensions. The main challenge for this LHC analysis was the large background con-
tribution from multi-jet QCD processes, so numerous that could not be modelled
accurately by simulated observations. Hence, a data-driven estimation method, re-
ferred to as hemisphere mixing, was developed and validated on control regions to
model the background contribution. The final summary statistic used in the analysis
is based on the output of a probabilistic classifier, an ensemble of gradient boosted
decision trees, trained using simulated signal observations and artificial events pro-
duced by the background estimation method. After assessing the different sources of
systematic uncertainties and including their effect in the statistical model, a median
expected limit obtained for SM HH production of 419 fb was obtained, which corres-
ponds to approximately 37 times the SM expectation. The observed limit obtained
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is 847 fb, which is about two standard deviations above the expected limit. Limits
were also obtained for a set of EFT benchmarks, which summarise the kinematical
properties of a large space of EFT models. The results of the combination of this
analysis with other HH decay channels were also included. The estimation of QCD
multijet backgrounds will likely remain an important issue for future jet-based ana-
lysis at the LHC, given that the biases of the data-driven estimation methods would

become increasingly relevant as more data is available.

The ultimate goal of LHC analyses is statistical inference, in the form of hypo-
thesis testing or parameter estimation. Machine learning techniques are useful to
approximate latent variables which can then be used to construct powerful summary
statistics for inference. In the presence of a generative model that depends on addi-
tional uncertain parameters, often referred to as nuisance parameters, the merits of
classification or regression based summary statistics are greatly diminished. These
concerns have motivated the development of a new family of techniques to construct
powerful summary statistics that account directly for the final inference objective. By
building and minimising loss functions that approximate the expected uncertainty on
the parameters of interest, also accounting for the effect of nuisance parameters, the
INFERNO approach can leverage recent machine learning technologies to construct
better summary statistics for the inference problem at hand. These techniques were
applied to a series of synthetic problems and were found to significantly outperform
classification-based summary statistics (e.g. a deep neural network and the optimal
classifier) when nuisance parameters are included in the problem. More experiments
are needed to evaluate the value of this technique for real-word inference problems,

such as those found in particle physics analyses.

As machine learning algorithms become increasingly popular in scientific contexts,
it will be more important to formally describe the particularities of the problems we
are trying to solve, in order to understand whether the tools at hand are answering
the right questions. Otherwise we risk falling for the anti-pattern “if all you have is a
hammer, everything looks like a nail”, which could significantly slow down the pace of
scientific progress. This issue is particularly pressing for particle collider experiments,
where the acquired familiarity with a given set of data analysis techniques might
hinder the rigour in their application relative to the final objective. Some effort is
then required to make sure of the role of a given tool is aligned with the task at
hand instead on the subtleties of the tool itself. When using advanced statistical
techniques or machine learning, the final analysis goal is of the upmost relevance

and cannot be neglected in favour of procedural conventions. If those measures are
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coupled with open research practices and a careful use of domain-specific language
and constructs in order to promote collaboration with other disciplines, better tools

are likely to be developed which could in turn lead to major advancements in this

research field.
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