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Abstract 
  

In the last decade, the pharmaceutical industry has been experiencing a period of drastic change 

in the way new products and processes are being conceived, due to the introduction of the 

Quality by design (QbD) initiative put forth by the pharmaceutical regulatory agencies (such as 

the Food and Drug Adminstration (FDA) and the European Medicines Agency (EMA)). 

One of the most important aspects introduced in the QbD framework is that of design space 

(DS) of a pharmaceutical product, defined as “the multidimensional combination and 

interaction of input variables (e.g. material attributes) and process parameters that have been 

demonstrated to provide assurance of quality”. The identification of the DS represents a key 

advantage for pharmaceutical companies, since once the DS has been approved by the 

regulatory agency, movements within the DS do not constitute a manufacturing change and 

therefore do not require any further regulatory post-approval. This translates into an enhanced 

flexibility during process operation, with significant advantages in terms of productivity and 

process economics. 

Mathematical modeling, both first-principles and data-driven, has proven to be a valuable tool 

to assist a DS identification exercise. The development of advanced mathematical techniques 

for the determination and maintenance of a design space, as well as the quantification of the 

uncertainty associated with its identification, is a research area that has gained increasing 

attention during the last years. 

The objective of this Dissertation is to develop novel methodologies to assist the (i) 

determination of the design space of a new pharmaceutical product, (ii) quantify the assurance 

of quality for a new pharmaceutical product as advocated by the regulatory agencies, (iii) adapt 

and maintain a design space during plant operation, and (iv) design optimal experiments for the 

calibration of first-principles mathematical models to be used for design space identification. 

 

With respect to the issue of design space determination, a methodology is proposed that 

combines surrogate-based feasibility analysis and latent-variable modeling for the identification 

of the design space of a new pharmaceutical product. Projection onto latent structures (PLS) is 

exploited to obtain a latent representation of the space identified by the model inputs (i.e. raw 

material properties and process parameters) and surrogate-based feasibility is then used to 

reconstruct the boundary of the DS on this latent representation, with significant reduction of 

the overall computational burden. The final result is a compact representation of the DS that 

can be easily expressed in terms of the original physically-relevant input variables (process 
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parameters and raw material properties) and can then be easily interpreted by industrial 

practitioners. 

 

As regards the quantification of “assurance” of quality, two novel methodologies are 

proposed to account for the two most common sources of model uncertainty (structural and 

parametric) in the model-based identification of the DS of a new pharmaceutical product. 

The first methodology is specifically suited for the quantification of assurance of quality when 

a PLS model is to be used for DS identification. Two frequentist analytical models are proposed 

to back-propagate the uncertainty from the quality attributes of the final product to the space 

identified by the set of raw material properties and process parameters of the manufacturing 

process. It is shown how these models can be used to identify a subset of input combinations 

(i.e., raw material properties and process parameters) within which the DS is expected to lie 

with a given degree of confidence. It is also shown how this reduced space of input 

combinations (called experiment space) can be used to tailor an experimental campaign for the 

final assessment of the DS, with a significant reduction of the experimental effort required with 

respect to a non-tailored experimental campaign. The validity of the proposed methodology is 

tested on granulation and roll compaction processes, involving both simulated and experimental 

data.  

The second methodology proposes a joint Bayesian/latent-variable approach, and the assurance 

of quality is quantified in terms of the probability that the final product will meet its 

specifications. In this context, the DS is defined in a probabilistic framework as the set of input 

combinations that guarantee that the probability that the product will meet its quality 

specifications is greater than a predefined threshold value. Bayesian multivariate linear 

regression is coupled with latent-variable modeling in order to obtain a computationally 

friendly implementation of this probabilistic DS. Specifically, PLS is exploited to reduce the 

computational burden for the discretization of the input domain and to give a compact 

representation of the DS. On the other hand, Bayesian multivariate linear regression is used to 

compute the probability that the product will meet the desired quality for each of the 

discretization points of the input domain. The ability of the methodology to give a scientifically-

driven representation of the probabilistic DS is proved with three case studies involving 

literature experimental data of pharmaceutical unit operations. 

 

With respect to the issue of the maintenance of a design space, a methodology is proposed to 

adapt in real time a model-based representation of a design space during plant operation in the 

presence of process-model mismatch. 

Based on the availability of a first-principles model (FPM) or semi-empirical model for the 

manufacturing process, together with measurements from plant sensors, the methodology 

jointly exploits (i) a dynamic state estimator and (ii) feasibility analysis to perform a risk-based 
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online maintenance of the DS. The state estimator is deployed to obtain an up-to-date FPM by 

adjusting in real-time a small subset of the model parameters. Feasibility analysis and surrogate-

based feasibility analysis are used to update the DS in real-time by exploiting the up-to-date 

FPM returned by the state estimator. The effectiveness of the methodology is shown with two 

simulated case studies, namely the roll compaction of microcrystalline cellulose and the 

penicillin fermentation in a pilot scale bioreactor. 

 

As regards the design of optimal experiments for the calibration of mathematical models for 

DS identification, a model-based design of experiments (MBDoE) approach is presented for an 

industrial freeze-drying process. A preliminary analysis is performed to choose the most 

suitable process model between different model alternatives and to test the structural 

consistency of the chosen model. A new experiment is then designed based on this model using 

MBDoE techniques, in order to increase the precision of the estimates of the most influential 

model parameters. The results of the MBDoE activity are then tested both in silico and on the 

real equipment.
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Riassunto 
 

Negli ultimi anni, le modalità con le quali le aziende farmaceutiche sviluppano e 

successivamente producono nuovi prodotti sta subendo un cambiamento radicale, a causa 

dell’introduzione dell’iniziativa Quality by Design (QbD) da parte delle agenzie di 

regolamentazione, come l’americana Food and Drug Administration (FDA) o l’agenzia europea 

del farmaco (European Medicines Agency; EMA). 

Lo scopo dell’iniziativa è quello di promuovere l’adozione di un approccio scientifico e 

sistematico nelle fasi di (i) sviluppo di prodotto e di processo, (ii) trasferimento di processo da 

scala laboratorio a scala industriale e (iii) monitoraggio e controllo di processo. Il fine ultimo 

dell’iniziativa è quello di stimolare l’utilizzo di tecniche scientifiche rigorose all’interno di un 

contesto industriale, come quello farmaceutico, tipicamente orientato all’empirismo e poco 

propenso al cambiamento (in larga parte a causa degli stringenti vincoli regolatori imposti in 

passato). 

Uno dei concetti più importanti introdotti nell’ambito dell’iniziativa QbD è quello di spazio di 

progetto (design space; DS) di un nuovo prodotto farmaceutico. Lo spazio di progetto è definito 

come l’insieme delle combinazioni delle proprietà delle materie prime (ad esempio, la 

composizione del principio attivo) e dei parametri di processo (portate, temperature, etc…) per 

le quali la qualità finale del prodotto risulta essere garantita. Le aziende interessate possono (in 

forma volontaria) identificare lo spazio di progetto di un nuovo prodotto e sottoporlo 

all’approvazione delle agenzie regolatorie: se il DS viene approvato, il processo può essere 

esercito, senza dover richiedere una nuova approvazione all’ente regolatore, anche cambiando 

le condizioni operative e/o le proprietà delle materie prime, purché la loro combinazione 

rimanga all’interno dello spazio di progetto. Ciò comporta un notevole vantaggio in termini di 

flessibilità nell’esercizio del processo produttivo, consentendo alle aziende di ottimizzare la 

marcia dell’impianto con conseguente notevole riduzione dei costi di esercizio. 

Al fine di ottenere l’approvazione del DS, le agenzie regolatorie richiedono che vengano 

rispettati due concetti chiave, ovvero che l’azienda: (i) dimostri con un metodo scientifico 

rigoroso la procedura utilizzata per l’identificazione dello spazio di progetto; (ii) quantifichi il 

grado di certezza (e quindi, la probabilità) che la qualità del prodotto venga garantita qualora il 

processo venga esercito all’interno dello spazio di progetto.  

Da un punto di vista ingegneristico, entrambe le richieste possono essere affrontate attraverso 

l’utilizzo congiunto di modellazione matematica e osservazioni sperimentali. Le tecniche 

modellistiche possono essere basate esclusivamente su dati storici di laboratorio o di impianto 

(modelli cosiddetti data-driven), su una conoscenza approfondita dei fenomeni fisici e chimici 

che avvengono nel processo (modelli a principi primi o knowledge-driven) o su una 
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combinazione di entrambi (modelli semi-empirici). In tutti i suddetti casi, vi è la necessità di 

sviluppare metodologie sistematiche che, basandosi sulla tipologia di modello prescelta, 

consentano di soddisfare entrambe le richieste degli enti regolatori. 

Nonostante il numero di contributi scientifici in questo ambito sia aumentato in modo 

significativo negli ultimi anni, permane la necessità di sviluppare e integrare le tecniche 

esistenti per sviluppare metodologie che consentano di risolvere quattro aspetti ancora irrisolti, 

e cioè: 

1. identificare con il minor carico computazionale possibile lo spazio di progetto, e 

ottenerne una rappresentazione immediata che possa essere interpretata anche dal 

personale non esperto in modellazione matematica; 

2. fornire una metrica dell’incertezza associata alla predizione, mediante modello, dello 

spazio di progetto; 

3. adattare la predizione dello spazio di progetto durante la marcia dell’impianto, per far 

fronte a mancanze strutturali del modello e/o deviazioni parametriche dello stesso; 

4. progettare esperimenti ottimali per l’identificazione di modelli a principi primi al fine 

di individuare rapidamente lo spazio di progetto di nuovi prodotti. 

L’obiettivo di questa Dissertazione è proporre tecniche di modellazione avanzata per affrontare 

le quattro problematiche sopra descritte. L’approccio scientifico adottato si basa sia sullo 

sviluppo di nuove procedure metodologiche, sia sull’integrazione e combinazione di tecniche 

note. 

 

La problematica riguardante la quantificazione dell’incertezza associata alla predizione del 

DS di un nuovo prodotto farmaceutico viene affrontata nei Capitoli 3 e 4. 

In particolare, nel Capitolo 3 viene presentata una metodologia per quantificare l’incertezza 

associata ad una predizione del DS qualora un modello di proiezione su strutture latenti (PLS: 

projection onto latent structures) venga utilizzato a tal scopo. La metodologia si basa sullo 

sviluppo di due nuovi modelli di propagazione dell’incertezza dallo spazio della qualità di 

prodotto (cioè dallo spazio delle uscite del modello) allo spazio delle proprietà delle materie 

prime e parametri di processo (cioè lo spazio degli ingressi del modello). I due modelli vengono 

derivati in modo analitico sfruttando nozioni di statistica frequentista, e successivamente 

integrati in un contesto di inversione di modelli a variabili latenti. La procedura consente di 

individuare un sottospazio del dominio degli ingressi, chiamato spazio degli esperimenti (ES; 

experiment space) nel quale è possibile garantire, con un livello di fiducia preassegnato, che lo 

spazio di progetto risieda. Da un punto di vista pratico, l’individuazione dello spazio degli 

esperimenti può essere sfruttata per condurre una campagna sperimentale mirata in una zona 

ristretta del dominio degli ingressi, al fine di ottenere più rapidamente l’identificazione 

definitiva del DS del nuovo prodotto. Ciò comporta un vantaggio in termini di riduzione dei 

tempi e dei costi della campagna sperimentale, con conseguente guadagno in termini di 



 
 
xii Riassunto 

 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

competitività da parte dell’azienda che ne voglia trarre beneficio. L’efficacia della metodologia 

proposta viene verificata su diversi casi studio riguardanti alcune operazioni unitarie tipiche 

dell’industria farmaceutica (ad esempio, granulazione a secco/a umido), utilizzando sia dati 

simulati al calcolatore che dati sperimentali di letteratura. 

Nel Capitolo 4 viene presentata una metodologia che, attraverso la combinazione di tecniche di 

statistica Bayesiana e di regressione multivariata, consente di ottenere una metrica (ossia una 

valutazione quantitativa) dell’incertezza associata alla predizione di uno spazio di progetto. 

Tale metrica viene definita come la probabilità (intesa in termini Bayesiani) che il prodotto 

soddisfi le specifiche di qualità suddette. In quest’ottica, lo spazio di progetto viene identificato 

come l’insieme di combinazioni di caratteristiche delle materie prime e parametri di processo 

per i quali la probabilità che il prodotto sia in specifica supera un certo valore di soglia definito 

dall’utente e consistente con le richieste dell’ente regolatorio.  

La metodologia proposta si basa sue due idee chiave: (i) l’utilizzo di un modello PLS per la 

riduzione delle dimensione dello spazio degli ingressi, con conseguente riduzione del carico 

computazionale e ottenimento di una rappresentazione compatta di tale spazio; (ii) l’utilizzo di 

metodi Monte Carlo basati su catene di Markov per la ricostruzione delle funzioni di densità di 

probabilità (PDF: probability density function) delle uscite del modello per diversi valori degli 

ingressi. Il risultato finale è una rappresentazione compatta (in molte situazioni, 

bidimensionale) dello spazio di progetto probabilistico, garantendo un pieno adempimento alle 

richieste degli enti regolatori. L’efficacia della metodologia viene verificata anche in questo 

caso su diversi casi di studio relativi ad operazioni unitarie tipiche dell’industria farmaceutica, 

coinvolgenti sia dati simulati al calcolatore che dati sperimentali di letteratura. 

 

Per quanto riguarda la problematica dell’identificazione dello spazio di progetto di un nuovo 

prodotto farmaceutico, nel Capitolo 5 viene presentata una metodologia che combina un 

modello PLS e una tecnica denominata analisi di fattibilità basata su surrogati (surrogate-based 

feasibility analysis) per identificare il DS. Il modello PLS viene utilizzato per ridurre la 

dimensione dello spazio degli ingressi mediante l’introduzione di un numero ridotto di variabili 

latenti, cioè combinazioni lineari degli ingressi reali. L’analisi di fattibilità basata su una 

funzione base di tipo radiale (radial-basis function; RBF) viene successivamente utilizzata per 

identificare lo spazio di progetto all’interno dello spazio latente. La riduzione della dimensione 

dello spazio degli ingressi viene utilizzata per rendere l’analisi di fattibilità possibile da un 

punto di vista computazionale, con un significativo vantaggio sia in termini di durata totale 

della simulazione, sia in termini di precisione ottenibile per l’identificazione del DS. L’efficacia 

della metodologia proposta viene dimostrata sia su una linea di produzione continua 

(coinvolgente sei operazioni unitarie) di compresse, sia su esempi relativi a dati simulati al 

calcolatore. 
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Con riferimento alla problematica dell’adattamento in linea della predizione dello spazio di 

progetto, nel Capitolo 6 viene proposta una metodologia che consente di correggere in linea la 

predizione del DS sulla base delle misure raccolte durante la marcia dell’impianto. La 

metodologia sfrutta in maniera congiunta uno stimatore dinamico di stato e l’analisi di fattibilità 

descritta al Capitolo 5 per adattare in tempo reale la predizione del DS in presenza di un 

disallineamento fra le predizioni di modello e il comportamento dell’impianto (process/model 

mismatch). Basandosi sulle misure in linea disponibili, lo stimatore dinamico viene utilizzato 

per correggere in tempo reale alcuni dei parametri critici del modello e per ottenere una stima 

accurata dello stato del sistema. L’analisi di fattibilità (basata o meno su modelli surrogati) 

viene successivamente utilizzata per predire lo spazio di progetto sulla base della correzione 

apportata al modello da parte dello stimatore. Il DS adattativo può quindi essere utilizzato per 

ottimizzare in tempo reale il processo produttivo, supportare in tempo reale il processo 

decisionale (ad esempio, la chiusura o apertura manuale di determinate valvole da parte degli 

operatori), o fungere da base per la definizione dei set-point del sistema di controllo 

implementato nell’impianto. La procedura proposta è stata verificata in silico su un processo 

continuo di granulazione di un formulato e su un processo di produzione di penicillina in un 

bioreattore. Entrambi i casi studio analizzati dimostrano l’affidabilità della metodologia. 

 

Per quanto concerne la progettazione di esperimenti ottimali per l’identificazione di modelli 

a principi primi, da usarsi successivamente per identificare il DS di un nuovo prodotto, nel 

Capitolo 7 viene presentata un’applicazione relativa ad un processo industriale di 

liofilizzazione. Dopo una fase preliminare di identificazione del modello a principi primi da 

utilizzare per la descrizione del processo, viene eseguita una verifica della consistenza 

strutturale di tale modello e vengono identificati i parametri che maggiormente influiscono sulle 

sue predizioni. Sulla base di tale analisi preliminare, viene progettato un nuovo esperimento 

attraverso l’utilizzo di tecniche di progettazione ottimale degli esperimenti basata su modello 

(model-based design of experiments; MBDoE). L’esperimento viene progettato in modo tale da 

massimizzare l’informazione che può essere estratta dai dati sperimentali ai fini della 

calibrazione di modello. L’esperimento progettato è stato condotto nell’impianto industriale, e 

i dati ottenuti hanno consentito di migliorare significativamente la precisione e l’accuratezza 

della stima dei parametri del modello.
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Chapter 1 

Motivation and state of the art* 
 

 

The objective of this Chapter is to provide an overview of the background and motivations of 

this Dissertation. First, facts and figures on the current state and future trends of the 

pharmaceutical industry are presented. Then, the Quality by design (QbD) initiative that has 

been introduced in the pharmaceutical context is analyzed from a regulatory perspective, with 

particular focus on the concept of design space (DS) of a new drug. The main challenges that, 

from a process systems engineering perspective, need to be addressed for the identification and 

maintenance of a design space are then pinpointed. Finally, the state-of-the art on the ways 

these challenges have, up to now, being addressed in the scientific literature is presented and 

critically discussed. 

1.1 Pharmaceutical industry: facts and figures 

This section provides facts and figures on the state of the pharmaceutical industry, with 

particular focus on four different thematic areas: i) economic evolution; ii) pharmaceutical 

research and development; iii) pharmaceutical manufacturing; iv) role of the regulatory 

agencies. 

1.1.1 Economic outlook 

Whilst the economic outlook is characterized by positive expectations on the healthcare market 

growth and global medicine expenditure, the pharmaceutical industry is facing unprecedented 

challenges due to a large number of patent expirations, lower market growth in the so-called 

pharmerging countries1 and increased pricing and market pressures. A recent market report 

proposed by the QuantileIMS Institute (QuantileIMS Institute, 2016) forecasts that the total 

expenditure for drugs will reach $1.5 trillion by 2021, with an increase of 33% with respect to 

                                                           
* Bano, G., Facco, P., Bezzo, F., Barolo, M. (2018) Design space description in pharmaceutical development and 

manufacturing: a review. In preparation. 
1 The countries are: China, Brazil, India, Russia, Mexico, Turkey, Poland, Saudi Arabia, Indonesia, Egypt, Philippines, 

Pakistan, Vietnam, Bangladesh, Argentina, Algeria, Colombia, South Africa, Chile, Nigeria, Kazakhstan. 
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the global medicine expenditure of 2016, but with a moderate decrease on the compound annual 

growth rate2 (CAGR), that is expected to range between 4% and 7 % with respect to the nearly 

9% annual growth rate of the years 2014 and 2015. A more conservative market report that has 

been recently proposed by EvaluatePharma® (EvaluatePharma, 2018) suggests that the above 

figures should be revised to $ 1.2 trillion by 2024, with an average annual growth rate of 6.4%, 

as a consequence of the sales losses due to the increased genericization of drugs and due to a 

slower performance of the market of biosimilars. Similar figures are reported in the economic 

analysis suggested by Deloitte (Deloitte, 2018). As reported in Table 1.1, the US market is 

expected to remain the world’s largest pharmaceutical market, but the annual growth rate is 

forecast to decrease significantly from the 12% reached in 2015 to 6-7% in the next five years. 

On the other hand, China is expected to continue playing a key role as the second largest market, 

with a robust average annual growth rate of 12%. As for Europe, the situation is expected to be 

less thriving than in the rest of the highly industrialized countries, with a forecast annual growth 

rate of 1-4 %, mainly due to the weak economic growth in the region. Finally, the growth of the 

pharmaceutical market is expected to proceed at a slower pace in the pharmerging countries 

(excluding China), from an average of 7% in the year 2012-2016 to an average of 4% for the 

years 2016-2021. 

Table 1.1 Top 20 countries ranking forecast by 2021 based on the 

pharmaceutical market size (100 = U.S. market size). Adapted from 

QuantileIMS Institute, 2016. 

Rank # Country 

Market size index (100 = 

U.S.) in constant USD 

1 U.S. 100 

2 China 25 

3 Japan 14 

4 Germany 8 

5 Brazil 6 

6 U.K. 6 

7 Italy 5 

8 France 5 

9 India 5 

10 Spain 4 

11 Canada 4 

12 South Korea 2 

13 Russia 2 

14 Turkey 2 

15 Australia 2 

16 Mexico 2 

17 Saudi Arabia 1 

18 Poland 1 

19 Argentina 1 

20 Egypt 1 

  

                                                           
2 CAGR is the rate of return of an investment that would be obtained by investing the profits at the end of each year. 
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The general consensus on the significant increase of the global medicine expenditure for the 

next years is supported by the fact that the global population is expected to increase by an 

average 1.24% by 2030, with an increase of people aged 65-80 from 22% in 2000 to 28% in 

2030 (QuantileIMS Institute, 2016). This aspect, together with an easier availability of drugs to 

more people due to the increasing urbanization and growing of the middle class (Rauschnabel, 

2018), represents a key driver for the expansion of the healthcare market in the next years.  

The top 20 pharmaceutical companies are expected to keep their leading position during the 

next years, but a reduction from 63.2% (in 2017) to 51.9% (in 2024) of the total market share 

of these companies is expected to happen in favor of the other market players. Table 1.2 gives 

an overview of the top 20 pharma companies and their forecast prescription drug sales for the 

period 2017-2024 (EvaluatePharma, 2018). The same table suggests that the next years will be 

characterized by an increased competition between the different pharma players, and therefore 

innovation and differentiation will play a key role for the maintenance of the market shares.  

Table 1.2 Worldwide (WW) prescription drug sales and market share for the 

top 20 pharma companies for the period 2017-2024. Adapted from 

EvaluatePharma, 2018. 

Rank # Company                      Prescription sales ($ bn) 

Market share 

(%) 

Rank 

change (+/–) 

  2017 2024 2017 2024  

       

1 Novartis 41.9 53.2 5.3 4.4 +1 

2 Pfizer 45.4 51.2 5.8 4.3 –1 

3 Roche 41.7 50.6 5.3 4.2 +0 

4 Johnson & Johnson 34.4 47.4 4.4 3.9 +1 

5 Sanofi 34.1 44.2 4.3 3.7 +1 

6 GlaxoSmithKline 28.7 38.4 3.6 3.2 +1 

7 Merck & co. 35.4 38.0 4.5 3.2 –3 

8 AbbVie 27.7 37.2 3.5 3.1 +0 

9 AstraZeneca 19.8 31.7 2.5 2.6 +2 

10 Bristol-Myers Squibb 19.3 28.7 2.4 2.4 +2 

11 Amgen 21.8 24.8 2.8 2.1 –1 

12 Novo Nordisk 17.0 24.6 2.2 2.0 +4 

13 Celgene 12.9 23.7 1.6 2.0 +8 

14 Eli Lilly 18.5 22.2 2.3 1.8 –1 

15 Bayer 17.7 19.7 2.2 1.6 +0 

16 Gilead Sciences 25.7 19.0 3.3 1.6 –7 

17 Boehringer Ingelheim 14.3 18.3 1.8 1.5 +2 

18 Shire 14.4 17.7 1.8 1.5 +0 

19 Takeda 13.3 17.0 1.7 1.4 +1 

20 Allergan 14.9 16.8 1.9 1.4 –3 

       

 Total top 20 498.8 624.7 63.2 51.9  

 Other 290.0 578.8 36.8 48.1  

 Total 788.8 1203.5 100.0 100.0  
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In terms of employment, the pharmaceutical industry is expected to maintain a leading role in 

the manufacturing sector, thanks to a steady employment growth both in high- and low-income 

countries. A recent review from the International Federation of Pharmaceutical Manufacturers 

& Associations (IFPMA, 2017) reports that the pharmaceutical industry employed around 5.1 

million people worldwide in 2014, with an increase of 1.5 million with respect to the 2006 and 

with steady expectations on the annual growth for the period 2014–2021. Moreover, due to its 

peculiar feature of employing high-skilled workers with high qualifications, the pharmaceutical 

sector induces the creation of many other indirect jobs within the manufacturing sector. The 

qualified training and the direct exposure to innovative processes and new technologies that 

pharmaceutical employees experience also represents an asset for the entire workforce. In fact, 

it has been proven (WifOR, 2016) that many pharmaceutical workers decide to exploit the 

knowledge gained during their working experience to start new companies or to transfer their 

skills to other manufacturing sectors, thus fostering economic development.  

Different positions and solutions have been proposed to boost the economic performance of the 

pharmaceutical industry with respect to the forecast figures described above. However, the most 

important analysts (QuantileIMS Institute, 2016; Deloitte, 2018; EvaluatePharma, 2018; 

KPMG, 2018; McKinsey, 2018; PwC, 2018;) seem to agree on the following key actions that 

pharmaceutical companies should implement to increase their competitiveness: 

1. Increase R&D productivity in terms of discovery and launch of new molecular entities 

(NMEs) and biologicals; 

2. Increase the automation of the manufacturing processes, in line with the Industry 4.0 

paradigm (Kagermann et al., 2011) that has been recently gained attention in the 

manufacturing sector; 

3. Exploit big data methodologies to extract information on the patient profiles, and 

therefore design new drugs that are perfectly suited to the patient needs; 

4. Optimize the supply chain and consider strategic clinical, regulatory and scientific 

partnerships. 

In view of the above, it is clear that the introduction of innovative solutions and technologies 

to assist all the different stages of pharmaceutical production (i.e. drug discovery, product and 

process development, product manufacturing) will represent a competitive advantage for 

companies in an era of patent expiration and strict governments’ budget constraints.  

1.1.2 Pharmaceutical R&D: past, present & future 

The discovery, test and approval of new drugs represents the milestone upon which 

pharmaceutical companies can diversify and strengthen their assets. Research and development 
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(R&D) is the activity that is deemed to support the discovery, launch and approval of NMEs 

and new biological entities (commonly referred to as biologicals)3 in the market.  

The process that leads to the launch of a new drug on the market is typically very long and is 

comprised by several steps, as schematically shown in Fig. 1.1. 

 

 
 

Figure 1.1 Pre-launch stages for a new pharmaceutical drug and qualitative profile of R&D costs during the 

pre-launch stage. 

 

Research deals with the first two steps of the process, which are: 

1) Drug discovery. Chemical or biological compounds that exhibit the potential to treat 

new or existing conditions are initially screened. A promising compound is, on average, 

found every 5,000-10,000 candidates (IFPMA, 2017). This step may take up to 6 years 

and the chance of success are, as explained above, less than 0.01% (EFPIA, 2017; 

IFPMA, 2017).  

2) Pre-clinical trials. At this stage, the safety and efficacy of the compound is tested before 

testing its performance on humans. Different types of pre-clinical tests exist: these 

include, but are not limited to, pharmacodynamics and pharmacokinetic tests, toxicity 

tests, ADME (adsorption, distribution, metabolism and excretion) tests, and are 

typically performed both in silico and in vivo. It is estimated that a top-20 

pharmaceutical company has, on average, around 250 compounds under pre-clinical 

tests per year (IFPMA, 2017; EvaluatePharma, 2018) and the completion of this step 

may take up to 2 years. 

                                                           
3 New molecular entities are drugs that contain an active moiety that has not been previously approved by the regulatory agency.   

They are typically new chemical entities. Biologicals represent biologic compounds or vaccines that have not been previously 

approved by the regulatory agency.  



 

 

6 Chapter 1 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

The budget required to perform the two research tasks described above is typically very large, 

and the return on investment is very low, due to the low chance of success. It is estimated 

(EFPIA, 2017, Deloitte, 2017) that around 21% of the overall budget for the launch of a new 

drug is used in these two stages (Fig. 1.2). 

Development refers to the activities that are performed after the new drug successfully passes 

the pre-clinical trials and is characterized by a series of clinical trials (i.e. on humans). These 

clinical trials are divided into three different phases, which need to subsequently obtain positive 

results (i.e., the drug needs to pass Phase I in order to enter Phase II, and so on). The phases 

are: 

3) Phase I.  This phase is intended as the first stage for the assessment of the efficacy and 

safety of the new drug on humans. It involves a small number of healthy volunteers 

(typically in the range 20-100) and the rate of success is, on average, around 65% 

(IFPMA, 2017). The main target of this step is to assess a suitable dose (or range of 

doses) for the new drug to be effective. 

4) Phase II. This phase is intended to assess if the drug has any biological activities or side 

effects on humans. The number of volunteers involved is larger (100-500) and the rate 

of success for this phase drastically decreases to around 40% (IFPMA, 2017). Most of 

the new drugs fail during this phase, where it is typically discovered that the drug does 

not work as planned or may exhibit toxicity effects (Deloitte, 2017). 

5) Phase III. This phase involves a much larger number of volunteers (1000-5000) and is 

aimed at assessing the real effectiveness of the drug with respect to the current 

treatments. Due to the large number of people involved, this phase represents a costly 

and time-consuming step, but the rate of success are typically higher than for phase II 

(an average success rate is around 50%). 

 

 
Figure 1.2 R&D costs division in the pharmaceutical industry (IFPMA, 2017). 

 

The overall development process requires 6 to 8 years (IFPMA, 2017, Deloitte, 2017, 

EvaluatePharma, 2018) and up to 65% of the overall budget for the launch of the new drug (Fig. 

1.2).  Therefore, the overall research and development process is deemed to absorb more than 

85% of the total budget for the development and launch of a new molecular entity.  
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If the new drug successfully passes all the phases of the clinical trials, the following step is the 

submission for approval to the regulatory agency (green text in Fig. 1.1).  

This step may take up to 2 years and absorbs around 2% of the total budget. If successful, the 

drug is ready for its launch on the market. However, periodic clinical trials are required after 

the launch in order to review the safety and efficacy of the drug. This step is typically referred 

to as Phase IV clinical trials, and may absorb up to 12% of the total budget (Deloitte, 2017). A 

qualitative trend of the R&D costs (thus excluding the approval and Phase IV costs) during the 

development of a new drug is shown in Fig. 1.1 (red dashed line).  

From the above considerations, it can be concluded that R&D costs represent a significant 

portion of the overall costs that pharmaceutical companies are forced to face (∼ 20%; Deloitte, 

2017) and are characterized by low chances of success and continuously decreasing returns on 

investments (Deloitte, 2017; IFPMA, 2017; McKinsey, 2017; EvaluatePharma, 2018). Deloitte 

(2017) estimates that the overall cost for the development of a new drug (from discovery to 

launch) has reached, on average, the all-time peak of 165 billion dollars in 2017, and is expected 

to increase during the next years. EvaluatePharma® (EvaluatePharma, 2018) estimates an 

average growth rate for the worldwide R&D costs in the pharmaceutical industry of 3.2% for 

the period 2018-2024. The past and the expected trend for the worldwide R&D spend is reported 

in Table 1.3. 

Table 1.3.  Worldwide pharma R&D spend and growth rate with respect to 

the previous year in the period 2010-2024. Adapted from EvaluatePharma, 

2018. 

Year 

R&D spend [$bn] R&D spend growth 

with respect to the previous year [%] 

2010 129 (-) 

2011 137 +6.2 

2012 136 –0.4 

2013 138 +1.7 

2014 144 +4.4 

2015 149 +3.5 

2016 159 +6.3 

2017 165 +3.9 

2018 172 +4.1 

2019 177(*) +3.1 

2020 183(*) +3.0 

2021 188(*) +3.1 

2022 194(*) +3.0 

2023 199(*) +2.5 

2024 204(*) +2.6 

                                         (*) = forecast 

 

If, from one side, the global R&D spend is expected to increase nonstop during the next years, 

the expectations on the number of NMEs and biologicals that can potentially be approved by 

the regulatory agencies seem promising. In fact, after a very poor performance in 2016, the 
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number of approved NMEs and biologicals has significantly increased in 2017, and historically 

high levels are expected to be reached in the next six years. Table 1.4 shows the number of 

NMEs and biologicals that have been approved by the Food and Drug Administration (FDA) 

in the period 2002-2017. The number of drugs that are expected to be launched in the market 

for the next six years is forecast to be, on average, 45 per year (QuantileIMS, 2016; 

EvaluatePharma, 2018) with a peak of 63 new approved drugs forecast for 2024. It is worth 

noticing that these forecasts are subject to a high degree of uncertainty, since regulatory 

requirements are expected to become stricter year after year, and the pre-launch stage is 

characterized by unpredictable events that may lead to a regulatory rejection. 

Table 1.4. FDA new drug approvals (NMEs + biologicals). Adapted from 

EvaluatePharma, 2018. 

Year # of NMEs approved # of biologicals approved Total NMEs+biologicals approved 

2002 17 9 26 

2003 21 14 35 

2004 31 7 38 

2005 18 10 28 

2006 18 11 29 

2007 16 9 25 

2008 21 10 31 

2009 20 15 35 

2010 15 11 26 

2011 24 11 35 

2012 34 10 44 

2013 25 10 35 

2014 30 21 51 

2015 33 23 56 

2016 15 12 27 

2017 36 19 55 

 

In summary, pharmaceutical R&D is inherently a high-risk, high-reward endeavor. However, 

the steep increase of the costs for drug development that is expected to continue during the next 

years is building up a remarkable pressure on R&D productivity. Pharmaceutical companies 

are forced to deal with an increasing competition on the global market, and new technologies 

that can speed-up the R&D process are becoming essential tools to cope with this problem. 

Although it is impossible to find a common agreement between the different analysts on the 

tools that should be used to increase R&D productivity, some recognized solutions (Deloitte, 

2017; McKinsey, 2018; PwC, 2018) that can be proposed are: 

 the use of artificial intelligence (AI) techniques to assist and speed-up the drug 

discovery stage. AI algorithms can be used to analyze large amount of data from 

different sources, such as pre-clinical or clinical-trials of already existing compounds, 

in order to get new insights that may help researchers to identify new patients’ needs 

and therefore new drug discoveries. Moreover, AI algorithms can be used to identify 
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potential candidates for clinical trials through targeted advertising (thanks to huge 

amount of data available, for example, from social media) and to assist a better 

understanding of the patients’ needs.   

 Use of real world evidence (RWE)4 to obtain a better understanding of rare diseases, to 

identify new potential diseases, to assist clinical trials or to expedite the enrolment of 

volunteers.  

 Use of in silico tools (i.e., model-based tools) to assist: i) the product development stage; 

ii) the process (or “recipe”) development stage, i.e. the way the new drug is designed to 

be manufactured. In more detail, modeling tools are expected to predict clinical 

outcomes, inform clinical trials design and support evidence of safety and efficacy of 

the new drug during the product development stage. On the other hands, in silico 

simulations are expected to assist the conceptual development, the design and the 

optimization of the manufacturing process for the production of the new drug. 

 Use of robotic and cognitive automation to automatize certain aspects of the R&D 

process, such as the design and monitoring of the clinical trials, or organize and speed-

up the large amount of documentation that needs to be filled in during the drug 

development process and in the submission for approval by the regulatory agency. 

Most of the techniques described above have long been known and used within the process 

systems engineering (PSE) community, which therefore can give a key contribution to boost 

pharma R&D productivity.  

 

1.1.3. Pharmaceutical manufacturing: past, present & future 

As described in the previous section, pharmaceutical R&D (which not only includes product 

development, but also process development) is worldwide recognized as a time-consuming, 

highly specialized cutting-edge activity, due to the strict requirements that new products need 

to fulfill before being launched to the market. However, on the other side, pharmaceutical 

manufacturing has been traditionally characterized by strict and experience-based procedures, 

that led to the adoption of several process malpractices and high percentages of rejected 

products during the production campaigns. The main reason for this lack of innovation is to be 

found in the strict regulatory environment within which companies were forced to operate. The 

regulatory agencies, in fact, by addressing all the focus towards the achievement of the desired 

drug safety and efficacy, were unintentionally stimulating companies to invest their money on 

obtaining new patents, rather than on innovating and revamping their manufacturing processes. 

The final result was that, in terms of manufacturing procedures and facilities, the 

                                                           
4 RWE is the evidence obtained from observational data that are not obtained during clinical trials and that are typically 

stored in electronic health records, billing activities databases, registries, mobile devices and so on.  
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pharmaceutical industry was (and still is) lagging behind several other industries, despite its 

cutting-edge R&D activity and its role for the society.  

A turning point in the relationship between pharmaceutical companies and regulatory agencies 

was first introduced in 2004 (FDA, 2004a; FDA, 2004b) by the American FDA. FDA was the 

first agency to acknowledge that the rigid regulatory environment was the main restraint for 

companies to not invest on innovation and on the adoption of cutting-edge technologies in 

product manufacturing. Several initiatives (FDA, 2004a; FDA, 2004b; FDA, 2004c; FDA, 

2006) culminated in the introduction of the Quality by Design (QbD) framework (as opposed 

to Quality by Testing), whose objective is to favor a flexible and efficient environment within 

which high quality products can be manufactured without extensive regulatory oversight. QbD 

promotes the adoption of systematic and science-based (as opposed to experience-based) tools 

to assist: i) product and process design (i.e., product and process development); ii) technology 

transfer; iii) product manufacturing. A detailed description of all these aspects is given in § 1.2.  

Regarding product manufacturing, the introduction of QbD represented (and is still 

representing) the main driving force for the modernization of the practices and technologies 

that are adopted in pharmaceutical manufacturing. In terms of product manufacturing, the early 

stage of QbD (2009-2011) was mainly focused on the implementation of some of the new ideas 

introduced within this new framework (adoption of process analytical technologies (PAT); 

exploitation of real-time release testing and in/on-line quality testing to pre-existing and well-

established manufacturing processes and procedures (Reklaitis, 2017). These processes are 

traditionally operated batchwise and involve multiple units and stages that are typically 

followed in sequence according to strict procedures. In the following years (2012-2015), as a 

result of the adoption of new paradigms to assist the product and process development stage 

(culminating in the definition of the design space of the product to be manufactured), particular 

effort was put towards the development of efficient control strategies and monitoring tools to 

guarantee process operation within the boundary of the design space. The focus was, again, 

mainly towards traditional technologies operated batchwise, and still represents the most 

important target that pharmaceutical companies are addressing to improve their process 

operation5 (Reklaitis et al., 2017). 

Continuous manufacturing (CM) of pharmaceuticals has gained attention from the scientific 

community, the industrial practitioners and the regulators (Lee et al., 2015; Fisher et al., 2016; 

Kopcha, 2017; Nasr, 2017; Yu and Kopcha, 2017). It is worth noticing that the possibility of 

adopting continuous operation for some of the units involved during drug manufacturing was 

first proposed in the 90s (Paul, 1990) and kept being proposed throughout the years 

(Dienenmann, 2000). Potentially, CM could enable a much faster and more efficient (in terms 

                                                           
5 It is estimated that more than 95% of the unit operations involved in the pharmaceutical industry are operate batchwise or 

semi-batchwise, and, despite the increasing attention towards continuous manufacturing, this percentage is expected to 

remain stable for the next 5-8 years (Troup and Georgakis, 2013; Reklaitis et al., 2017). 
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of reduction of products that need to discarded due to off-specifications) operation with respect 

to batch manufacturing, as a result of the tighter handling of product specifications that can be 

obtained with this technology. Moreover, it would enable a substantial reduction of the energy 

needs of the manufacturing line and would involve a sensible reduction of the risk of human 

error due to its high degree of automation. However, some challenges still need to be faced for 

a practical implementation of CM, e.g., high equipment and installation costs, the costs of 

developing and implementing the advanced process control strategies that are needed to 

guarantee product specifications, and the strategies to be adopted in the presence of a product 

recall. These drawbacks, together with the strict regulatory environment within which 

companies were forced to operate, represented the main reasons that kept CM as a potential, 

but not applicable alternative to the traditional batch approach in the early 2000s. The recent 

launch of the QbD initiative has revived the interest towards this technology, even though the 

lack of a regulatory framework on this topic is still limiting a systematic approach to its 

implementation. To have an idea of the gap that currently exists between the scientific literature 

(where the number of publications on CM has exponentially grown in the past 5 years) and the 

practical implementation of CM (Collins, 2018), it is worth considering that the only marketed 

products that have been obtained through CM are the two reported by the FDA (Kopcha, 2017) 

and a new drug that has been recently approved (Collins, 2018). 

Interestingly, the opinion of industrial practitioners on the real benefits of CM is not always as 

optimistic as the one of many regulators and academics (Reklaitis, 2017). For example, Collins 

(2018) highlights the fact that the costs for implementing CM are comparable with the costs 

required to upgrade (i.e., to adopt the technologies encouraged within the QbD framework) the 

existing batch operations. However, while CM is characterized by a total lack of experience 

and a scarce (or inexistent) regulatory framework, batch manufacturing is well-established and 

is characterized by a wide and detailed regulation. Therefore, it is worth questioning the real 

advantage of investing in CM with respect to investing in the upgrade of the existing batch 

operations. 

Despite the different views on the benefits that CM may bring to the pharmaceutical industry, 

it is commonly accepted that batch manufacturing will still be the preferred route towards drug 

production, while CM will keep gaining increasing attention especially for the production of 

the new drugs that will be launched in the market (Reklaitis, 2017; Collins, 2018). 

Independently of the type of operation adopted, the next years are expected to bring an increased 

level of digitalization within the manufacturing processes, in line with the Industry 4.0 

revolution (Kagermann et al., 2011) that has recently involved other manufacturing sectors. 

The digitalization of drug manufacturing is expected to involve an extensive use of process 

simulators, advance process control and monitoring techniques, supply chain automation and 

big data technologies to extract information from the huge amount of data that are collected 

throughout the product lifecycle (Herwig et al., 2017; Ding, 2018; Rauschnabel, 2018). A 
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futuristic overview of the challenges that must be faced towards the implementation of the 

Industry 4.0 paradigm in pharma is given by Herwig et al. (2017). As for R&D (i.e., product 

and process development), process systems engineering tools are expected to give a key 

contribution to the solution of these challenges (Reklaitis, 2017). 

1.1.4 Regulatory aspects: past, present & future 

As briefly mentioned in the previous section, the role of the regulatory agencies is of paramount 

importance for protecting and improving human health, as well as for influencing the decisions 

and strategies that pharmaceutical companies adopt to keep their competitiveness in the global 

market. These agencies include the already cited FDA, the European Medicines Agency (EMA) 

and many other regulatory bodies that are spread all over the world (a full list can be found in 

Global Regulatory Authority Websites, 2018). Some of the activities carried out by these 

agencies are (Collins, 2018): i) the review of information for new drug submissions from 

pharmaceutical companies; ii) the review of updated process information throughout the 

lifecycle of medicines; iii) the regular inspection of manufacturing sites around the world and 

iv) the continuous assurance of compliance of quality. Some of these agencies share alignment 

on the most important regulations and quality expectations for the medicines that are introduced 

in the market through the International Council on Harmonization (ICH)6, while others have 

specific expectations that are not always shared by the other regulatory bodies. Despite this 

complex regulatory framework, several common ideas can be found between the different 

regulatory entities, and the discussion proposed in this Dissertation will mainly focus on the 

ideas and guidelines enforced within the context of ICH.   

The need to establish common regulations for good practices in pharmaceutical development 

and manufacturing was largely driven by toxicological safety-related disasters such as the elixir 

of sulfanilamide incident in 1932 (Immel, 2001) or the sulfathiazole disaster in 1941 (Swann, 

1999). In the former case, diethylene glycol was used within the elixir, without testing its 

toxicity (which is now well-known) to humans. The latter incident, instead, refers to the 

commercialization by the Winthrop Chemical Company of New York of sulfathiazole tablets 

contaminated with phenobarbital, which caused hundreds of deaths and thousands of injuries, 

and that was proven to be due to a manufacturing control failure and serious firm’s 

irregularities. These two disasters pushed FDA to conceive (and finalize in 1987) the current 

Good Manufacturing Practices (cGMP), that were intended to guarantee the safety and efficacy 

of drugs through the use of methods, facilities and controls for the manufacturing, processing, 

packing or holding of these products (Immel, 2001; Woodcock, 2013; Collins, 2018). 

Based on the context in which these cGMPs were first conceived (i.e. as a reaction to the 

incidents described above), it is easy to understand why the main focus of these documents was 

                                                           
6 ICH is composed by the regulatory authorities of Europe, U.S. and Japan, together with industrial experts. 
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addressed towards ensuring the toxicological safety of the drug, rather than promoting the 

adoption of innovative methodologies and technologies for drug development and 

manufacturing. Indeed, interpretations of these cGMPs varied amongst companies (Collins, 

2018), and the two main strategies adopted by the regulatory bodies to ensure compliance with 

the cGMPs were: i) the manufacturing site inspection approach (Junod, 2004), and ii) the 

preparation of guidance documents, which contain nonbinding recommendations and invite the 

companies to engage in a proactive discussion with the regulatory agency. These guidance 

documents were not intended to substitute the cGMPs (whose adherence is mandatory), but 

rather as a series of suggestions that, if followed, would have helped the company to comply 

with them.  

The guidance documents’ approach immediately received an incredibly positive feedback from 

companies. Since these documents contain the current regulatory agency’s thinking on the 

topic, many manufacturers started to interpret their recommendations as compulsory (Collins, 

2018), and they are nowadays recognized as the fastest and most efficient way to understand 

the position of the regulatory agencies on a given topic. Given the success of this formula, and 

based on the increased awareness of the regulatory agencies to foster innovation within the 

pharmaceutical context (§ 1.1.3), a series of important initiatives was put forth by the American 

FDA in the early 2000s. First, in 2004, the “Pharmaceutical cGMPs for the 21st century – A 

risk-based approach” was introduced (FDA, 2004b). The targets of this new set of cGMPs 

were, among others, to foster the adoption of new technological advances in pharmaceutical 

manufacturing, introduce quality system and risk management approaches for product 

development and manufacturing and, in a nutshell, promote the adoption of science-based 

approaches and state-of-the-art technologies within the existing pharmaceutical framework. 

Many other initiatives followed this original document (FDA, 2004c; FDA, 2006) and the 

formalization of this new approach for pharmaceutical development and manufacturing was 

finalized through a series of ICH guidelines (ICH 2006, 2009a, 2009b, 2011, 2012) that 

represent the foundation of the broad framework which is now known as Quality by Design 

(QbD). The introduction of the QbD initiative aimed at replacing the traditional procedural and 

inspection-based approach to assure compliance (i.e., product quality) with a new scientific and 

risk-based approach, characterized by a greater understanding of the product and process 

considered, as well as the sources of variability that can potentially affect product quality. The 

fundamental idea behind Qbd is that product quality should be “built” into the product since its 

conception and design, rather than verified after its manufacturing. This requires a mechanistic 

understanding of the relationship between product quality and all the sources of variability that 

may have an impact on it. 

The launch of QbD represented a turning point for the pharmaceutical community, and the 

practical implementation of this paradigm still remains the core of the current pharmaceutical 

innovation (that not only involves the R&D process, but also the manufacturing stage, as 
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explained in § 1.1.3). From their side, the regulatory agencies regularly release documents 

(which are, mainly, guidelines or drafts of guidelines, in view of the considerations described 

above) aimed at describing their current thinking on specific topics. A brief record of the main 

ICH guidelines that have been proposed throughout the years and that contain the main ideas 

of the QbD paradigm are reported in Table 1.5. As can be noticed, the release of these guidelines 

is still an ongoing process (two final guidelines and one draft have been released in 2018), and 

represent a reference for the practical implementation of the QbD paradigm. Moreover, in order 

to centralize the regulatory activities in terms of review, policy, research and science activities, 

the FDA has recently created the Office for Pharmaceutical Quality (OPQ) (Yu and Woodstock, 

2015), whose aim is to uniform and ease any communications between the regulatory bodies 

and the manufacturers. A detailed description of the activities carried out by this “central” 

regulatory body is reported by Yu and Woodstock (2015). 

1.1.4 Regulatory aspects: past, present & future 

As briefly mentioned in the previous section, the role of the regulatory agencies is of paramount 

importance for protecting and improving human health, as well as for influencing the decisions 

and strategies that pharmaceutical companies adopt to keep their competitiveness in the global 

market. These agencies include the already cited FDA, the European Medicines Agency (EMA) 

and many other regulatory bodies that are spread all over the world (a full list can be found in 

Global Regulatory Authority Websites, 2018). Some of the activities carried out by these 

agencies are (Collins, 2018): i) the review of information for new drug submissions from 

pharmaceutical companies; ii) the review of updated process information throughout the 

lifecycle of medicines; iii) the regular inspection of manufacturing sites around the world and 

iv) the continuous assurance of compliance of quality. Some of these agencies share alignment 

on the most important regulations and quality expectations for the medicines that are introduced 

in the market through the International Council on Harmonization (ICH)7, while others have 

specific expectations that are not always shared by the other regulatory bodies. Despite this 

complex regulatory framework, several common ideas can be found between the different 

regulatory entities, and the discussion proposed in this Dissertation will mainly focus on the 

ideas and guidelines enforced within the context of ICH.   

The need to establish common regulations for good practices in pharmaceutical development 

and manufacturing was largely driven by toxicological safety-related disasters such as the elixir 

of sulfanilamide incident in 1932 (Immel, 2001) or the sulfathiazole disaster in 1941 (Swann, 

1999). In the former case, diethylene glycol was used within the elixir, without testing its 

toxicity (that is now well-known) to humans. 

 

                                                           
7 ICH is composed by the regulatory authorities of Europe, U.S. and Japan, together with industrial experts. 
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Table 1.5.  Main ICH guidelines describing the key ideas of the QbD paradigm 

(adapted and updated from Tomba, 2013). 

Date Document Reference Title Type 

06/01/2006 ICH Q9 ICH (2006) Q9- Quality risk management 

(QRM) system. 

Final guidance 

     

04/07/2009 ICH Q10 ICH(2009a) Q10 – Pharmaceutical quality 

system  

Final guidance 

     

11/20/2009 ICH Q8(R2) ICH(2009b) Q8(R2)- Pharmaceutical 

development 

Final guidance 

     

11/01/2011 ICH Q&A ICH (2011) Q8, Q9, Q10 Questions and 

Answers 

Final guidance 

     

07/25/2012 ICH Q&A 

from training 

sessions 

ICH (2012a) Q8, Q9, Q10 points to consider Final guidance 

     

11/09/2012 ICH Q11 ICH (2012b) Q11- Development and 

manufacture of drug substances 

Final guidance 

     

09/30/2016 ICH Q7 ICH (2016) Q7- Good manufacturing practice 

guidance for active 

pharmaceutical ingredients. 

Guidance for industry 

Final guidance 

     

02/23/2018 ICH Q11 

Q&A 

ICH (2018a) Q11- Development of 

manufacture of drug substances – 

Questions and answers 

Final guidance 

     

     

04/19/2018 ICH Q7 

Q&A 

ICH(2018b) Q7- Good manufacturing practice 

guidance for active 

pharmaceutical industry. 

Guidance for industry- Questions 

and answers 

Final guidance 

     

05/30/2018 ICH Q12 ICH(2018c) Q12- Technical and regulatory 

considerations for pharmaceutical 

product lifecycle management. 

Core guideline for industry 

Draft guidance 

 

 The latter incident, instead, refers to the commercialization by the Winthrop Chemical 

Company of New York of sulfathiazole tablets contaminated with phenobarbital, which caused 

hundreds of deaths and thousands of injuries, and that was proven to be due to a manufacturing 

control failure and serious firm’s irregularities. These two disasters pushed FDA to conceive, 

and after few years (specifically, in 1987) finalize the current Good Manufacturing Practices 

(cGMP), that were intended to guarantee the safety and efficacy of drugs through the use of 

methods, facilities and controls for the manufacturing, processing, packing or holding of these 

products (Immel, 2001; Woodcock, 2013; Collins, 2018). Based on the context in which these 
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cGMPs were first conceived (i.e. as a reaction to the incidents described above), it is easy to 

understand why the main focus of these documents was addressed towards ensuring the 

toxicological safety of the drug, rather than promoting the adoption of innovative 

methodologies and technologies for drug development and manufacturing. Indeed, 

interpretations of these cGMPs varied amongst companies (Collins, 2018), and the two main 

strategies adopted by the regulatory bodies to ensure compliance with the cGMPs were: i) the 

manufacturing site inspection approach (Junod, 2004) and ii) the preparation of guidance 

documents, which contain nonbinding recommendations and invite the companies to engage in 

a proactive discussion with the regulatory agency. These guidance documents were not intended 

to substitute the cGMPs (whose adherence is mandatory), but rather as a series of suggestions 

that, if followed, would have helped the company to comply with them.  

The guidance documents’ approach immediately received an incredibly positive feedback from 

companies. Since these documents contain the current regulatory agency’s thinking on the 

topic, many manufacturers started to interpret their recommendations as compulsory (Collins, 

2018), and they are nowadays recognized as the fastest and most efficient way to understand 

the position of the regulatory agencies on a given topic. Given the success of this formula, and 

based on the increased awareness of the regulatory agencies to foster innovation within the 

pharmaceutical context (§ 1.1.3), a series of important initiatives was put forth by the American 

FDA in the early 2000s. First, in 2004, the “Pharmaceutical cGMPs for the 21st century – A 

risk-based approach” was introduced (FDA, 2004b). The targets of this new set of cGMPs 

were, among others, to foster the adoption of new technological advances in pharmaceutical 

manufacturing, introduce quality system and risk management approaches for product 

development and manufacturing and, in a nutshell, promote the adoption of science-based 

approaches and state-of-the-art technologies within the existing pharmaceutical framework. 

Many other initiatives followed this original document (FDA, 2004c; FDA, 2006) and the 

formalization of this new approach for pharmaceutical development and manufacturing was 

finalized through a series of ICH guidelines (ICH 2006, 2009a, 2009b, 2011, 2012) which 

represent the foundation of the broad framework which is now known as Quality by Design 

(QbD). The introduction of the QbD initiative aimed at replacing the traditional procedural and 

inspection-based approach to assure compliance (i.e. product quality) with a new scientific and 

risk-based approach, characterized by a greater understanding of the product and process 

considered, as well as the sources of variability that can potentially affect product quality. The 

fundamental idea behind Qbd is that product quality should be “built” into the product since its 

conception and design, rather than verified after its manufacturing. This requires a mechanistic 

understanding of the relationship between product quality and all the sources of variability that 

may have an impact on it. 

The launch of QbD represented a turning point for the pharmaceutical community, and the 

practical implementation of this paradigm still remains the core of the current pharmaceutical 
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innovation (that not only involves the R&D process, but also the manufacturing stage, as 

explained in § 1.1.3). From their side, the regulatory agencies regularly release documents 

(which are, mainly, guidelines or drafts of guidelines, in view of the considerations described 

above) aimed at describing their current thinking on specific topics. A brief record of the main 

ICH guidelines that have been proposed throughout the years and that contain the main ideas 

of the QbD paradigm are reported in Table 1.5. As can be noticed, the release of these guidelines 

is still an ongoing process (two final guidelines and one draft have been released in 2018) and 

represent a reference for the practical implementation of the QbD paradigm. Moreover, in order 

to centralize the regulatory activities in terms of review, policy, research and science activities, 

FDA has recently created few years ago the Office for Pharmaceutical Quality (OPQ) (Yu and 

Woodstock, 2015), whose aim is to uniform and ease any communications between the 

regulatory bodies and the manufacturers. A detailed description of the activities carried out by 

this “central” regulatory body is reported in Yu and Woodstock, 2015. 

1.2 Quality by design paradigms: regulatory overview 

The concepts embedded within the Quality by Design initiative can be understood through a 

rigorous interpretation of the guidelines that have been issued, and are still being issued, by the 

regulatory agencies. From a general perspective, the interpretation of QbD proposed by the 

regulators can be schematically summarized as a sequence of 5 activities (Yu et al., 2014; Yu 

et al., 2015):  

1) identification of a quality target product profile (QTPP), from which the critical quality 

attributes (CQAs) of the drug under development can be assessed; 

2) product design and understanding, including the identification of the raw material 

properties that are critical for product quality (often defined as critical material 

attributes; CMA); 

3) process design and understanding, including the identification of critical process 

parameters (CPPs) and the derivation of a mechanistic relationship between the raw 

material properties and CPPs with the product CQAs; 

4) definition of a control strategy, in terms of identifying the specifications for the API, 

excipient and the final drug, and in terms of developing a strategy to control each step 

of the manufacturing process; 

5) exploitation of process capability and adoption of a continual process improvement 

strategy. 
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Table 1.5.  Brief record of the main ICH guidelines that describe the key ideas 

of the QbD paradigm. Adapted and updated from Tomba, 2013. 

Date Document Reference Title Type 

06/01/2006 ICH Q9 ICH (2006) Q9- Quality risk management 

(QRM) system. 

Final guidance 

     

04/07/2009 ICH Q10 ICH(2009a) Q10 – Pharmaceutical quality 

system  

Final guidance 

     

11/20/2009 ICH Q8(R2) ICH(2009b) Q8(R2)- Pharmaceutical 

development 

Final guidance 

     

11/01/2011 ICH Q&A ICH (2011) Q8, Q9, Q10 Questions and 

Answers 

Final guidance 

     

07/25/2012 ICH Q&A 

from training 

sessions 

ICH (2012a) Q8, Q9, Q10 points to consider Final guidance 

     

11/09/2012 ICH Q11 ICH (2012b) Q11- Development and 

manufacture of drug substances 

Final guidance 

     

09/30/2016 ICH Q7 ICH (2016) Q7- Good manufacturing practice 

guidance for active 

pharmaceutical ingredients. 

Guidance for industry 

Final guidance 

     

02/23/2018 ICH Q11 

Q&A 

ICH (2018a) Q11- Development of 

manufacture of drug substances – 

Questions and answers 

Final guidance 

     

     

04/19/2018 ICH Q7 

Q&A 

ICH(2018b) Q7- Good manufacturing practice 

guidance for active 

pharmaceutical industry. 

Guidance for industry- Questions 

and answers 

Final guidance 

     

05/30/2018 ICH Q12 ICH(2018c) Q12- Technical and regulatory 

considerations for pharmaceutical 

product lifecycle management. 

Core guideline for industry 

Draft guidance 

 

Based on the definition proposed in § 1.1.2 and § 1.1.3, steps 1-4 are typical R&D activities, 

while steps 5 is related to the manufacturing stage8. This concept has been eventually 

formalized in the ICH-Q10 guideline (ICH, 2009a), where the activities that characterize the 

lifecycle of a pharmaceutical product are classified as follows: 

a) Pharmaceutical development, that collects steps 1-3 of the previous classification; 

                                                           
8 Note that the definition of the control strategy, even if practically tested and implemented during the manufacturing stage, 

may be conceived during the process development stage (i.e., step 3). 
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b) Technology transfer, whose goal is to transfer product and process knowledge from 

development to manufacturing (scale-up) or from different manufacturing sites (scale-

out); 

c) Commercial manufacturing (or product manufacturing), which collects steps 4 and 5 of 

the previous classification. 

Moreover, a new step (called product discontinuation) has been added to the previous 

classification. The goal of this step is to develop strategies for an effective management of the 

terminal stage of the product lifecycle (e.g. product recall from the market). The key activities 

and the key terminology that is adopted in the three steps (a,b,c) described above is briefly 

reviewed in the following sections. 

1.2.1 Pharmaceutical development 

The definition of pharmaceutical development and the steps that should be implemented during 

this activity according the QbD framework are thoroughly described in the regulatory guideline 

ICH Q8(R2) (ICH, 2009b). ICH defines pharmaceutical development as the activity “whose 

aim is to design a quality product and its manufacturing process to consistently deliver the 

intended performance of the product” (ICH, 2009b). The elements that, according to the QbD 

framework, pharmaceutical development should include are schematically shown in Fig. 1.3. 

 

 
Figure 1.3 Elements that should be considered in pharmaceutical development according to ICH (ICH, 2009b). 

 

Steps (a), (b), (c), (e) are considered minimum requirements, while step (d) represents the core 

step to implement an enhanced QbD approach. 
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1.2.1.1 Step (a): identification of the Quality Target Product Profile (QTPP) 

Before going through the different steps of pharmaceutical development, the definition of 

quality for a pharmaceutical drug must be given. According to the ICH Q6A guideline, quality 

is defined as the suitability of either a drug substance or drug product for its intended use (ICH, 

1999). A revised definition of quality is proposed in the ICH Q9 guideline, where quality is 

defined as the degree to which a set of inherent properties of a product fulfills requirements 

(ICH, 2006). A prospective summary of the quality characteristics of the product that ideally 

should be achieved to ensure the desired safety and efficacy is defined as the Quality Target 

Product Profile (QTPP). The identification of the QTPP is a key step of pharmaceutical 

development and directly influences the success of all the remaining activities. Raw and 

coworkers (Raw et al., 2011) analyzed the impact that a wrong identification of the QTPP can 

have on the subsequent development stages, emphasizing that this step is often underestimated 

by companies. Following the regulatory guidelines (ICH, 2009b), the definition of the QTPP 

should include the following aspects: 

 intended use in clinical setting, route of administration, dosage form, delivery systems; 

 dosage strength(s); 

 container closure system; 

 therapeutic moiety release or delivery and attributes affecting pharmacokinetic 

characteristics (e.g. dissolution, aerodynamic performance) appropriate to the drug 

product dosage form being developed; 

 drug product quality criteria (e.g. sterility, purity, stability and drug release) appropriate 

for the intended marketed product. 

Once identified, the QTPP forms the basis for the identification of the critical quality attributes 

(CQAs) of the product. 

1.2.1.2 Step (b): identification of the product Critical Quality Attributes (CQAs) 

A critical quality attribute (CQA) is defined by ICH (ICH, 2009b) as a physical, chemical, 

biological or microbiological property or characteristic of an output material, including a 

finished drug product, that should be within an appropriate limit, range, distribution to ensure 

the desired product quality. According to this definition, the CQAs may not only be related to 

the drug product, but also to the intermediates (i.e., in-process materials). CQAs should be 

derived from the QTPP identified at the previous step, and criticality should be primarily based 

upon the severity of harm to the patient should the product fall outside the acceptable range for 

that attribute (Yu et al., 2014). Examples of CQAs could include all those aspects affecting 

product purity, dug release and stability, or specific properties such as aerodynamic properties 

for inhaled products, sterility for parenterals and so on. The CQAs of intermediates could 

include specific properties (e.g. particle size distribution, bulk density etc…) that may 

potentially affect product CQAs. It is worth noticing that, in several situations, the CQAs of the 
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intermediates are improperly referred to as “product” CQAs. For the sake of simplicity, in this 

Dissertation, this terminology will be adopted. 

1.2.1.3 Step (c): product and process design and understanding 

Steps (c) and (d) of the methodology presented in (§ 1.2) can be classified according to two 

different and sequential activities: i) product design and understanding and ii) process design 

and understanding.  

Product design is concerned with the assessment of the ability of the product to meet the desired 

QTPP and maintain the desired QTPP over the product shelf life. Product understanding is 

related to the identification of the raw material properties that can potentially affect the product 

CQAs, and on the ability to link these material properties to the product CQAs (ICH, 2012b; 

Yu et al., 2014). Process understanding is related to the identification of the critical process 

parameters (CPPs) that can potentially affect the product CQAs, and on the development of a 

link between the CPPs and the CQAs. Finally, process design is concerned with the design of 

a manufacturing process that can consistently guarantee to produce the desired product and to 

maintain the desired product CQAs throughout the entire production campaign. 

With respect to product design, the key elements that should be taken into account at this stage 

are (ICH, 2012b; Yu et al., 2014): 

 physical, chemical and biological characterization of the API; 

 identification and selection of the excipient type and grade, and understanding of its 

potential variability; 

 understanding of the interaction between drug and excipients. 

Examples of physical properties of the API that may be considered are solubility, dissolution 

rate, stability and many others. Chemical properties may include, for example, chemical 

stability in solid state; examples of biological properties are bioavailability and membrane 

permeability. The final target of this step is to design, through an open-ended activity of 

formulation optimization, a product that meet the desired QTPP and that can guarantee to 

preserve this QTPP throughout its entire lifecycle. 

With respect to product understanding, the identification of the raw material properties (critical 

material attributes; CMAs) that affect the product CQAs is the first step that must be followed. 

Following the regulatory parlance, a CMA is a physical, chemical, biological or microbiological 

property or characteristic of an input material that should be within an appropriate limit, range 

or distribution to assure product quality (ICH, 2009b). It is worth noticing the similarity of this 

definition with that of CQA (§ 1.2.1.2), but the difference is that, while CQAs are related to 

output materials (such as intermediates and the drug product), CMAs are related to input 

materials (such as the drug substance and the excipients). Moreover, the CQA of an 

intermediate may become a CMA of that same intermediate for a downstream manufacturing 

step (Yu et al., 2014). Given that investigating all the material attributes that may potentially 
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affect the product CQAs is not practically feasible (due to the large number of attributes to be 

investigated), it is recommended (ICH, 2009b; Yu et al., 2014) to follow a risk-based approach 

based on prior knowledge and scientific understanding to identify the CMAs and relate them to 

the product CQAs. This activity can include the following steps (Yu et al., 2014: Yu et al., 

2017): 

 qualitative determination of all possible known input material attributes that may affect 

the product CQAs; 

 identification of potentially high-risk attributes through risk assessment methodologies 

and scientific knowledge; 

 design and execution of experiments (eventually designed with design of experiments; 

DoE) based on predefined levels or ranges for the attributes identified at the previous 

step; 

 analysis of the experimental data with data-driven or (whenever possible) mechanistic 

modeling to assess the criticality of each attribute. 

With respect to the process design activity, the process that should be used to manufacture the 

drug product must be conceived at this stage. The target of process design is to identify all the 

unit operations and manufacturing stages (along with their operating mode, i.e. batch or 

continuous) that should be adopted for the manufacturing of the drug product. The design of 

the manufacturing process should not only guarantee to obtain the desired product 

characteristics, but also that these characteristics can be achieved throughout the entire 

production campaign. The regulatory guidelines (ICH, 2009b) explicitly require a detailed 

description of the unit operations and equipment involved in the manufacturing process when 

applying for a new drug approval, emphasizing that every choice should be justified 

scientifically, and not based only on experience (e.g., from previous products). Moreover, 

scientific proof of the appropriateness of the equipment and unit configurations chosen should 

be given. 

With respect to process understanding, the key elements that should be followed are 

intrinsically similar to those of product understanding (Yu et al., 2014): 

 qualitative determination of all possible known process parameters that may impact on 

the product CQAs; 

 identification of potentially high-risk process parameters through risk assessment 

methodologies and scientific knowledge; 

 design and execution of experiments (eventually designed) based on predefined levels 

or ranges for the parameters identified at the previous step; 

 analysis of the experimental data with data-driven or mechanistic modeling to assess if 

a given process parameter is critical. 

The main target of this stage is the identification of the critical process parameters (CPPs) that 

have an impact on the product CQAs during manufacturing and the identification of a link 
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between the CPPs and the CQAs. These can be obtained with a combination of experimentation 

and modeling (data-driven or mechanistic), as will be discussed in § 1.3. In many situations, 

the models that link the CMAs with the CQAs obtain during product understanding are 

integrated with the models that link the CPPs and CQAs obtained at this stage, thus obtaining 

an “integrated” model that related the CMAs and CPPs with the product CQAs. Once this “link” 

is obtained, the next step is the identification of the design space of the drug product considered. 

1.2.1.4 Step (d): design space (DS) description 

The concept of design space (DS) of a pharmaceutical process represents one of the 

fundamental paradigms of the QbD initiative. According to the regulatory documents (ICH, 

2009b), the DS is defined as “the multidimensional combination and interaction of input 

variables (e.g. material attributes) and process parameters that have been demonstrated to 

provide assurance of quality”.  Based on the definitions given in § 1.2.1.3, the definition of DS 

can also be reformulated as the multivariate space identified by the CMAs and CPPs that 

guarantee to obtain the desired product CQAs.  

The establishment of the design space is to be considered as the ultimate result of the product 

and process understanding activities, and it represents the most important evidence of the 

change in the relationship between the regulatory bodies and pharmaceutical companies 

introduced within the QbD initiative. In fact, if the design space is approved by the regulatory 

agency, the process can be run anywhere within the design space without requiring any 

regulatory post-approval endorsement. This translates into an enhanced process flexibility, in 

contrast with the traditional approach where every change in the process had to be 

communicated to the regulatory body for assessment and approval. The DS therefore represents 

a “window” of operating conditions within which the company can optimize the manufacturing 

process, which can increase process profitability. 

Five remarks are worth being discussed with respect to the regulatory definition of DS and its 

implications. Additional (technical) comments will be provided in § 1.3. 

 Remark #1: the identification of the design space, even if strongly encouraged by the 

regulatory bodies, is a non-binding activity that can be performed on a volunteer basis. 

The regulatory guidelines, in fact, explicitly state that the design space “can be proposed 

by the applicant and is subject to regulatory assessment and approval” (ICH, 2009b). 

 Remark #2: in the definition given by the regulatory agencies, the multivariate nature 

of the design space is explicitly emphasized. In mathematical terms, this means that the 

design space is given by the manifold spanned by the vector field of each relevant input 

parameter (CPPs and CMAs) and that the correlation between these inputs should be 

taken into account when defining the DS. Accordingly, univariate experiments (i.e., 

experiments performed by changing one input factor at a time) cannot constitute the 

basis for the definition of a DS. The definition of the DS as a combination of proven 
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acceptable ranges9 is therefore not permitted (ICH, 2009b), since it lacks of 

understanding of the possible interactions between the input parameters. Interestingly, 

it should be noted that the regulatory documents are not entirely consistent in this 

respect. In fact, while stating that the DS cannot be expressed in terms of PARs, they 

also state that “a design space can be expressed in terms of ranges of material attributes 

and process parameters, or through more complex mathematical relationships” (ICH, 

2009b). Clearly, the first part of this statement is not consistent with the previous one 

or, provided that those attributes are obtained as a result of a multivariate analysis (i.e., 

accounting for input correlation), is to be considered at least misleading. 

 Remark #3: the regulatory documents leave the freedom to establish independent design 

spaces for each single unit operation of the manufacturing line, or a single design space 

that spans multiple operations (ICH, 2009b). From the one side, the establishment of 

independent design spaces for single unit operations is typically simpler to develop; 

however, on the other side, the definition of a single design space for the overall 

manufacturing line can provide an enhanced operational flexibility (ICH, 2009b). In 

practical terms, this poses two technical problems: i) how to derive the design space of 

an entire manufacturing line given the independent design spaces of the single unit 

operations of that line (if the first option is adopted); ii) how to deal with the complexity 

and high dimensionality of a single DS for a whole manufacturing process (if the second 

option is adopted).  

 Remark #4: when a design space is to be established, the scale at which the DS has been 

developed should be stated and the relevance of the proposed design space with respect 

to the plant manufacturing process should be described. In this respect, the regulatory 

guidelines provide qualitative recommendations without giving substantial details. The 

regulatory documents leave the freedom to develop the DS at any scale the manufacturer 

may consider relevant (ICH, 2009b). However, if the DS developed at a small scale 

(e.g., laboratory scale) is claimed to be applicable to the manufacturing process, the 

rationale behind the scale-up of the DS that has been adopted should be described (ICH, 

2009b). In this regard, the regulatory guidelines suggest to describe the design space in 

terms of relevant scale-independent parameters, and to give a thorough description of 

the models adopted for scaling (ICH, 2009b). 

 Remark #5: from a general perspective, it should be emphasized that the regulatory 

guidelines only provide general indications on how to establish the design space, but no 

specific technical recommendations are given. This leaves the freedom to the 

manufacturer to develop and propose the rationale adopted for the description of the 

DS. If, from one side, this represents a clear advantage for the applicants, since it 

                                                           
9 A proven acceptable range (PAR) is defined as a “characterised range of a process parameter for which operation within this 

range, while keeping the others parameters constant, will result in producing a material meeting relevant quality criteria”. 
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provides greater flexibility on the choice of the experimental/modeling strategy to be 

adopted, from the other side it paves the way for different interpretations of the 

regulatory documents, thus compromising the development of a common 

implementation framework. This problem has been recently highlighted by industrial 

practitioners (Watson et al., 2018) and will be discussed in more detail in § 1.4.4.. 

1.2.1.5 Step (e): definition of a control strategy 

The definition of control strategy given by the regulatory documents is “a planned set of 

controls, derived from current product and process understanding that ensures process 

performance and product quality” (ICH, 2009b). This definition is not the same definition that 

is typically adopted in common engineering understanding, where the term control is 

specifically related to the concept of process control. In fact, the definition of control strategy 

proposed by the regulatory agencies involves three different levels of controls (Yu et al., 2014), 

namely: 

 Level 1. This type of control coincides with the engineering definition of process 

control, i.e., it is related to the monitoring of CMAs and automatic adjustment of CPPs 

to consistently obtain the desired product CQAs. In other terms, Level 1 control is 

related to the exploitation of (feedback/feedforward/advanced) process control 

strategies to guarantee that desired product quality characteristics (set-points) can be 

obtained by appropriate manipulation of the process parameters (i.e., CPPs), even in the 

presence of disturbances (i.e., raw material properties fluctuations). 

 Level 2. This type of control is related to the implementation of non-automatic decisions 

(i.e., decisions implemented manually by operators) within the boundaries of the design 

space, with the aim of reducing end-product testing. 

 Level 3. This type of control is the one that has been traditionally implemented in the 

pharmaceutical industry. It relies on extensive end-product testing and tight handling of 

process parameters. In practical terms, this type of control is equivalent to an a 

posteriori product quality verification (quality by testing), and has nothing to do with 

the engineering definition of control. 

To give a simple engineering interpretation of three different levels of control proposed by the 

regulatory bodies, a rough classification is that Level 1 control coincides with the concept of 

closed-loop process control (i.e., feedback, feedforward, or other advanced process control 

techniques), Level 2 with the concept of open-loop process control (i.e., manual control), while 

Level 3 is equivalent to not having process control at all. The regulatory documents encourage 

the use of a combination of Level 1 and Level 2 controls for a correct implementation of the 

QbD framework (ICH, 2009b; Yu et al., 2014). It should be noted that regulatory documents 

are not entirely clear on the relationship existing between control strategy and design space. In 

fact, while in one point of the body of the ICH Q8(R2) guideline the identification of the design 
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space and the definition of a control strategy are presented as two sequential activities (ICH, 

2009b), in other sections of the same guideline it is stated that “(…) an appropriate control 

strategy can, for example, include a proposal for a design space(s) and/or real-time release 

testing”. It is not entirely clear, therefore, if the control strategy should guarantee that the 

process can be operated within the boundary of the DS previously established, or if the 

identification of the DS can be interpreted as part of the control strategy itself. 

1.2.2 Technology transfer 

Technology transfer includes all the activities required to transfer the manufacturing process 

from the laboratory scale to the commercial scale (possibly through a pilot plant). These 

activities include not only the transfer of equipment and process operating conditions, but also 

all the subsidiary technologies tested and implemented at the laboratory scale (e.g., sensors, 

analyzers, control instrumentation etc…). Within these activities, the scale-up of the design 

space and control strategy discussed in § 1.2 represent key steps to guarantee that the desired 

product quality can be obtained also in the commercial scale plant. According to the regulatory 

recommendations, technology transfer is an activity that should be performed using a risk-based 

approach (ICH, 2006) and should pose the basis for a continual process improvement strategy. 

Despite simple general recommendations on how technology transfer should be implemented, 

it is worth noticing that the regulatory documents do not provide technical recommendations 

on how this step should be implemented. Therefore, manufacturers are left with the freedom to 

prove the effectiveness of the scale-up procedures adopted (Yu et al., 2014). This has the 

advantage of giving great flexibility on how to face this problem, but at the same time leaves 

companies with several different options and interpretations (Watson et al., 2018).  

1.2.3 Commercial manufacturing & continual process improvement 

Commercial manufacturing is the culmination of the product/process design and technology 

transfer activities, and is meant to obtain a mass production of the desired drug. As briefly 

discussed in §1.1.3, pharmaceutical processes typically involve several operating units that may 

be operated batchwise or continuously. Despite very few entire manufacturing lines are 

operated continuously, the presence of single units operated continuously has long been 

considered as a standard practice in pharmaceutical manufacturing (Garcia-Munoz et al., 2018).  

The regulatory documents explicitly mention two elements that should be considered when 

mass production of the drug has been reached: process capability and continual process 

improvement (ICH, 2006; ICH, 2009b, Yu et al., 2014). 

Process capability is defined as “a measure of the inherent variability of a stable process that is 

in a state of statistical control in relation to the established acceptance criteria” (ICH, 2006; Yu 

et al., 2014). In practical terms, the definition of process capability given by the regulators is 
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equivalent to the concept of process monitoring, to be intended as the early identification of 

potential sources of common-cause variation within the process. Once these common sources 

of variation have been identified, mitigation actions should be taken via the control strategy to 

guarantee that the process will give the desire product quality (i.e., process control). 

The regulatory concept of continual process improvement refers to a set of activities that the 

company can carry out to enhance the ability of the process to maintain product quality (ICH, 

2006; Yu et al., 2014). These activities may include, but are not limited to (Yu et al., 2014): 

 measuring key aspects of the current process and collect relevant data; 

 analyzing the data to investigate and verify cause and effect relationships; 

 improving or optimizing the current process based upon data analysis ; 

 continuously monitoring the process and implementing control systems such as 

statistical process control. 

The regulatory agencies encourage manufacturers to exploit the additional process knowledge 

that can be obtained during manufacturing (e.g., through sensors, analyzers etc…) to improve 

their processes (ICH, 2009a; ICH, 2009b). In this respect, a specific mention is given to the 

periodic maintenance of design spaces obtained using mathematical models. The ICH Q8(R2) 

document, in fact, explicitly states that “(…) for certain design spaces using mathematical 

models, periodic maintenance could be useful to ensure the model’s performance…” and that 

“expansion, reduction of redefinition of the design space could be desired upon gaining 

additional process knowledge” (ICH, 2009b). Interestingly, while specific mention to the 

possibility of updating the design space during the product lifecycle is given, no indication on 

how this should be done and communicated to the regulatory bodies are given. 

Solicited by manufacturers (Herwig et al., 2017; Watson et al., 2018), ICH has recently released 

a draft for a new guidance, the Q12 guidance on Technical and regulatory considerations for 

pharmaceutical product lifecycle management, that aims at removing the “(…) technical and 

regulatory gaps that limit the full realization of more flexible regulatory approaches to post-

approval changes as describe in ICH Q8(R2) and Q10 Annex 1…” (ICH, 2018). This document 

is still a draft guidance and is currently under public evaluation for final approval. Once 

finalized, the guidance will represent the regulatory reference for a common implementation of 

product lifecycle approaches, including design space updates and control strategy updates. 

1.2.4 Technical and economic benefits of QbD: a critical review 

Since the launch of the QbD initiative, several surveys and reviews have been published to 

understand the reaction of the pharmaceutical companies to this new paradigm, both in technical 

and economic terms.  

IBM (IBM, 2005) was the first one to forecast the impact of QbD from an economic point of 

view. As an example, for a drug with US$ 1billion peak annual sales, it was estimated that 

practical implementation of the QbD paradigm could have generated an extra US$ 1.6 billion 
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over the entire drug lifecycle (IBM, 2005). Despite this rather optimistic forecast, the opinion 

of market observers started becoming more prudent when the QbD implementation process 

started taking place within industry. In 2009 a private survey of the FDA, which was then made 

publicly available by McKinsey (McKinsey,2009), revealed that, despite the potential of QbD 

to promote innovative technological advancements, many industrial companies were still 

skeptics on its real economic benefits (in terms of return on investment). FDA identified four 

different challenges occurring within companies and six internal challenges occurring within 

the regulatory bodies. The four challenges involving companies were briefly summarized as 

follows (McKinsey, 2009): 

 disconnection between cross functional areas of the same company, e.g. R&D and 

manufacturing; 

 lack of belief in business case, i.e., many companies proved to be skeptic about the 

timing and the investments required to practically implement QbD; 

 lack of suitable technological equipment for a correct implementation of QbD; 

 alignment with third parties (e.g., suppliers) on QbD implementation. 

As per the regulatory bodies, the following criticalities were emphasized: 

 presence of a small portion of people within FDA not supportive towards the real 

efficacy of QbD; 

 lack of technical and specific guidance on how to implement in practice the principles 

of QbD; 

 misalignment between international regulatory bodies; 

 lack of preparation on the topic of some regulators that could be deduced during on-site 

inspections; 

 scarce collaboration between companies and regulators; 

 scarce ability of the regulatory to inspire confidence on the actual benefits of QbD 

implementation. 

The regulatory agencies promoted different initiatives to face both the internal challenges and 

the challenges that were directly investing pharmaceutical companies. Positive results were 

obtained and the QbD paradigms started to spread at a very fast pace within the community. 

The increasing interest of companies towards a systematic implementation of the QbD approach 

was first confirmed by an industrial survey10 conducted by Kourti and coworkers (Kourti and 

Davis, 2012), where the benefits of QbD in terms of improved product and process 

understanding and improved robustness in manufacturing were extensively acknowledged. A 

later survey (Cook et al., 2014) conducted by the American Association of Pharmaceutical 

Scientists (AAPS), involving 149 pharmaceutical scientists11, reported that the majority of 

                                                           
10 The survey involved 12 different pharma companies, including bio-tech companies. 
11 The composition of the scientists was as follows: 88% from industry, 7% from academia, 4% from regulatory bodies, 1% 

others. 
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respondents (54 to 76%) acknowledged an extensive use of QbD tools and elements for product 

and process development. Moreover, respondents acknowledged the positive benefits of QbD 

in terms of the impact it can have on the patient’s health (78%), as well as on internal processes 

such as knowledge management (85%), decision-making (79%) and lean manufacture (71%) 

(Cook et al., 2014). However, scientists seemed to be more skeptics (more than 50%) on the 

economic benefits (in terms of return on investments) of the QbD implementation. Very recent 

surveys on this topic (Chatfield, 2017; Lundsberg-Nielsen and Bruce, 2017) confirm that QbD 

has now reached a mature and generalized level of implementation between companies, and the 

economic benefits that can be obtained are starting getting acknowledged. However, critical 

gaps still exist between the regulatory bodies and pharmaceutical companies on the technical 

details for a correct implementation between the QbD (Herwig et al., 2017; Watson et al., 2018; 

Collins, 2018). Process systems engineering tools are expected to play a key role to reduce this 

gap (Herwig et al., 2017; Reklaitis, 2017) and to enhance the profitability of a correct QbD 

implementation. 

1.3 Mathematical modelling 

1.3 Mathematical modelling for QbD implementation 

As extensively discussed in the previous sections, the most important target of the QbD 

paradigm is to promote the adoption of rigorous scientific tools to assist the different stages 

(pharmaceutical development, technology transfer, commercial manufacturing) of the lifecycle 

of a new pharmaceutical drug. One of the most important tools that can be used to achieve this 

purpose is mathematical modelling (García-Muñoz and Oksanen, 2010). 

The importance of mathematical modelling for a correct implementation of the QbD paradigm 

is extensively emphasized in the regulatory documents (FDA, 2004c; ICH, 2009a; ICH, 

2009b,ICH, 2012a). Since the final scope of every development/manufacturing activity is the 

achievement of the desired product quality, models are classified by regulators according to 

their impact (low/medium/high) in assuring this target (ICH, 2012a). Following the regulatory 

parlance (ICH, 2012a), low-impact models are defined as models that are typically used in 

product/process development (e.g., for formulation optimization). Medium-impact models are 

models that can be useful in assuring quality of the product but are not the sole indicators of 

product quality (e.g., most design space models). High-impact models are models whose 

predictions are significant indicators of product quality (e.g., a chemometric model for product 

assay or a surrogate model for dissolution). 

From a PSE perspective, a much more useful classification of the models that can be exploited 

in pharmaceutical development/manufacturing is based on the following two criteria (Bonvin 

et al., 2017): 

 model type, i.e., knowledge-driven, hybrid or data-driven; 
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 model scope, i.e. based on the final purpose of implementation (e.g., models for design 

space determination). 

From a general perspective, a model is characterized by three elements: equations, variables 

and parameters. The model type describes the amount of knowledge embedded within the 

model. In this regard, models can be classified as knowledge-driven (also known as first-

principles or mechanistic or deterministic), hybrid (also known as semi-empirical or gray-box) 

and data-driven (also known as data-based or empirical or black-box). 

Knowledge-driven models are based on fundamental knowledge of the underlying physical 

phenomena that govern the system under investigation. For these models, the equations 

describe in mathematical terms the physical laws (e.g., mass and energy balances, heat/mass 

transfer mechanisms) representing the system; the variables represent the system states; 

parameters inform on how the mathematical description given by the equations should be tuned 

to match the actual system behavior. Data-driven models do not embed any knowledge on the 

physical mechanisms involved in the system. For these models, the equations simply represent 

a convenient representation of the dataset(s) collected for the system under investigation; 

variables collect the inputs and outputs of the dataset; parameters inform on how equations 

should be tuned to match the available data. Semi-empirical models represent an intermediate 

situation between knowledge-driven and data-driven models, i.e. they combine fundamental 

knowledge on the system to describe certain phenomena with empirical reasoning to describe 

others phenomena. 

The model scope describes the purpose of implementation (i.e., the application) of the model. 

Models can be exploited to assist the three stages of the drug lifecycle (pharmaceutical 

development, technology transfer, commercial manufacturing and continual process 

improvement). In pharmaceutical development, models can be used to assist all the sequential 

activities discussed in § 1.2.1 (QTTP and CQAs identification; product and process 

understanding; product and process design, including design space identification and definition 

of a control strategy) with the purpose of accelerating the launch of new products in the market. 

With respect to technology transfer, models can be used to assist both the scale-up and scale-

out of the manufacturing process (including its design space and its control strategy), with the 

purpose of facilitating its transfer between different scales or between different sites. Finally, 

with respect to commercial manufacturing and continual process improvement, models can be 

used to assist product quality monitoring and control, as well as to enhance process productivity 

(i.e., via process optimization) and to assist process intensification. 

The increasing interest of the pharmaceutical community towards mathematical modelling has 

been thoroughly reviewed by Troup and Georgakis (2013), Rogers and Ierapetritou (2015) and, 

very recently, by Reklaitis et al. (2017).  

In 2013, Troup and Georgakis (2013) presented the results of a survey involving 21 

professionals from worldwide top-pharma companies on the use of mathematical modelling for 
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process analytics, process monitoring, plant-wide information system, unit operation modeling, 

quality control and process optimization. The results showed that, with respect to process 

analytics and monitoring, the use of multivariate chemometric models and multivariate 

statistical process control represented common practices in the industrial context (according to 

67% of the respondents), as well as the use of statistical multivariate tool to analyze historical 

process data. With respect to process modelling and optimization, more than one third of the 

respondents revealed that data-driven approaches were adopted to model between 80-100% of 

the unit operations of the manufacturing lines, while the other two thirds revealed that data-

driven approaches were exploited to model at least 60% of the unit operations. However, the 

use of first principles models were acknowledged for at least 10% of the unit operations, mainly 

involving secondary manufacturing activities. Moreover, the advantages (possibility to perform 

extrapolation, wider applicability range, possibility to include product physical properties) and 

disadvantages (costs and complexity of model development, computational burden) of first-

principles models with respect to data-driven models were stressed out by the respondents.  

In 2015, a review by Rogers and Ierapetritou (2015) revealed the increasing interest of the 

pharmaceutical community towards the use of hybrid as well as first-principles models. This 

interest was partially driven by the increasing attention towards continuous manufacturing in 

the pharmaceutical community (§ 1.1.3). Very recently, Reklaitis et al. (2017) revealed that 

data-driven, hybrid and first-principles models are nowadays jointly exploited by 

pharmaceutical companies to tackle different problems of the drug lifecycle. Specifically, while 

data-driven approaches still represent the most adopted tools for process analytics, process 

monitoring and process control, hybrid as well as first-principles models are starting being 

exploited much more frequently to assist the different phases of pharmaceutical development. 

Moreover, due to the recent advancements in computational power and technology, it is 

expected that online applications of these model will play a key role in the next years (Reklaitis 

et al., 2017). 

Within the different scopes of mathematical modeling in the pharmaceutical context, the 

identification of the design space of a new pharmaceutical product probably represents the most 

important one (García-Muñoz and Oksanen, 2010). For example, almost 70% of the 

respondents of the survey of Troup and Georgakis (2013) reported the use of multivariate 

approaches for DS identification, while Reklaitis et al. (2017) suggested that this activity is 

nowadays common routine in pharmaceutical R&D. Since the launch of the QbD initiative, 

different modelling strategies have been proposed to tackle this issue. The aim of the next 

sections is to propose a critical review of the most important contributions on this topic, from 

both industry and academia. 
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1.4 Design space applications throughout drug lifecycle 

Considering the three different activities (pharmaceutical development, technology transfer, 

commercial manufacturing and continual process improvement) of a drug lifecycle, different 

applications related to the concept of design space can be identified. These possible problems 

are briefly summarized in Fig. 1.3. 

 
 

Figure 1.4 Different problems involved in a design space description during pharmaceutical development, 

technology transfer, and commercial manufacturing and continual process improvement. 

 

With respect to pharmaceutical development, typical issues to be tackled are: 

 design space description and uncertainty quantification; 

 design space propagation from individual units to the entire process. 

Design space description concerns the identification of the subset of raw material properties 

and CPPs that allows obtaining the desired quality characteristics for a new drug under 

development. This activity should be complemented with analysis of the uncertainty associate 

to the proposed description of the DS.  

Design space propagation refers to the problem of defining the DS of the overall manufacturing 

line, based on the design spaces of the individual units arranged in the line. As discussed in 

§1.2.1.4, DSs are typically determined for single unit operations , but the determination of a 

single DS for the entire manufacturing process is always desirable to increase process 

flexibility. 

With respect to technology transfer activities, issues related to the DS are: 

 design space scale-up; 

 design space scale-out. 
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Design space scale-up refers to the transfer of the DS obtained at the laboratory scale during 

product/process development to the commercial manufacturing scale by preserving its 

validity12. On the other side, design space scale-out refers to the transfer of the design space 

between different sites producing the same product but implementing different process 

configurations. 

With respect to commercial manufacturing and continual process improvement, the main issue 

related to the concept of DS is that of design space maintenance. Design space maintenance is 

the continuous verification and, possibly, update of the design space of the manufacturing 

process during plant operation, in order to preserve its validity throughout the entire production 

campaign. 

Several contributions on the use of mathematical modeling to assist each of the activities 

described above have been presented in the literature. A short review of these contributions is 

presented in the following sections. 

1.4.1 Design space description and uncertainty quantification 

Exploitation of mathematical modelling for DS description is very frequent (Reklaitis, 2017). 

From a general perspective, DS description, as well as quantification of uncertainty in the 

description, require two elements:  

a) a model to relate the raw material properties and CPPs to the product CQAs; 

b) a methodology that, given the desired quality specifications and the model of point (a), 

returns the model-based prediction of the DS, including the uncertainty associated with 

this prediction. 

With respect to the first point, several modelling strategies have been proposed in the literaute  

to relate the CMAs and CPPs with the product CQAs for a new drug. A thorough review on 

this topic can be found in the work of Tomba (2012) and Reklaitis (2017). With respect to the 

second point, a summary of  the different approaches (related to knowledge-driven, data-driven 

and hybrid models respectively) is shown in Fig.1.5. 

1.4.1.1 Design space description strategies for data-driven models 

Once a model to relate the CMAs and CPPs to the product CQAs has been selected and 

validated against experimental evidence, the next step is to determine the DS with a given 

mathematical technique and appropriate uncertainty metrics. As summarized in Fig.1.5, 

alternative approaches have been proposed to perform this task for knowledge-driven models, 

data-driven models and hybrid models.  

 

                                                           
12 This means that the subset of CPPs and raw material properties that are derived from the laboratory-scale DS must guarantee 

the desired product quality on the commercial manufacturing scale. 
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Figure 1.5 Available mathematical techniques to assist DS description. 

 

In the context of data-driven models, multivariate data analysis based on DoE data is one of the 

oldest strategies that have been adopted to assist DS description. Once one selected multivariate 

model (e.g., multivariate linear regression) is built upon DoE-based data, this analysis simply 

consists of describing the DS in mathematical terms (via mathematical inversion of the original 

model) or, in most situations, in graphical terms (typically with contour surface plots that span 

the entire input domain). A detailed review of the different contributions on this topic has been 

presented by Lepore and Spavins (2008) and has been recently updated by Reklaitis et al. 

(2017). 

Response surface methodology (RSM; Box and Wilson, 1951) represents a class of statistical 

methods that consist of three iterative steps:  

1. selection of a model to relate CMAs and CPPs to product CQAs within the ones 

described above (typically, a polynomial regression model); 

2. design (using standard DoE techniques) and execution of experiments in order to 

tune the parameters of the model until the model representativeness is satisfactory 

(if no satisfactory prediction fidelity is obtained by tuning the model parameters, the 

model structure can be changed); 

3. exploitation of optimization methods to find the values of the independent variables 

(i.e., CMAs and CPPs) that produce the desired values of the responses (i.e., product 

CQAs). This step is equivalent to identify the boundary of the design space within 

the region of the input domain within which the model is deemed to be 

representative (also known as knowledge space). 
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Therefore, with respect to simple DoE-based multivariate analysis, RSMs have the peculiarity 

to require an iterative process that includes an optimization strategy. RSM has for long 

represented one of the most used techniques for DS determination in an industrial context 

(Lepore and Spavins, 2008; Garcia-Munoz et al., 2015). However, due to the increasing 

attention towards hybrid and knowledge-driven models, its use has seen a slight decrease during 

the last years (Garcia- Munoz et al., 2015). Nonetheless, several applications of RSM for DS 

determination have been reported. Examples include the use of RSM for the determination of 

the design space of fluid bed granulators (Zacour et al., 2012), continuous mixers (Boukouvala 

et al., 2010), wet granulators (Huang et al., 2009), direct compression (Charoo et al., 2012) or 

entire manufacturing lines (am Ende et al., 2007). Several other applications have been recently 

reviewed by Reklaitis et al. (2017). The main advantage of these techniques is that they are 

very easy to use thanks to the use of specific commercial software; on the other hand, they are 

not able to handle model parameter uncertainty in a rigorous manner (Peterson, 2004). 

Latent variable model inversion is related to the inversion of the LVMs  in order to identify the 

subset of input combinations (CPPs and CMAs) that allows obtaining the desired product 

CQAs. The advantage of this approach is that the DS can be determined and represented on the 

latent space, which has usually a much smaller dimension than the original input space, thus 

obtaining a compact representation of the DS. The theoretical framework for LVM inversion 

has been originally proposed by Kourti (2006), and then implemented in practice by Garcia-

Munoz et al. (2010) and eventually refined by Tomba et al., (2012). Examples on the use of 

LVM inversion for DS description of tablet manufacturing lines (Liu et al., 2011; Yacoub and 

MacGregor, 2011), granulation and roll compaction (Tomba et al., 2013; Facco et al., 2015) 

have been reported. A detailed description of these methods will be given in Chapter 2. 

Monte Carlo methodologies perform a random sampling of the input domain (using one 

selected sampling strategy) and compute the values of the model outputs for each of the 

sampling points selected. The single values of the model outputs obtained for each sampling 

point are then used to obtain approximate distributions of the model outputs, where 

“distribution” is to be intended according to its frequentist meaning, not the Bayesian one. 

These distributions are then used to build appropriate confidence intervals (or regions, if the 

number of product CQAs is greater than one). The subset of input combinations that guarantee 

to obtain the product CQAs within these confidence regions is then identified as the DS of the 

product considered. 

Applications of this approach with standard multivariate linear regression (Gujra et al., 2007), 

stepwise multivariate linear regression (Debrus et al., 2011) and polynomial regression models 

(Kauffman and Geoffroy, 2008) have been reported. Additional applications have been 

reviewed by Reklaitis et al. (2017). 

Bayesian methodologies combine fundamentals of Bayesian statistics with one of the 

aforementioned data-driven models (in most situations, multivariate linear regression models) 
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to return a probabilistic representation of the DS of a new pharmaceutical product. The most 

important difference of these methods with respect, for example, to standard Monte Carlo 

methods is that model inputs and outputs (as well as model parameters) are not treated as 

deterministic variables (i.e., described by single numerical values), but as random variables 

(i.e., described by probability distributions). The probabilistic DS is obtained with these 

approaches by first building the posterior predictive distribution of the product CQAs , and then 

by identifying the subset of the input domain that guarantee to obtain the desired product quality 

characteristics with a probability greater than a predefined threshold value. The pioneer on the 

use of Bayesian techniques for DS determination is Peterson (2004; 2008), and some 

applications of these techniques for DS determination have been reported (Stockdale et al., 

2009; Peterson, 2009; Peterson, 2010). The main disadvantage of these methodologies is that 

they require expensive Markov Chain Monte Carlo (MCMC) simulations, which can become 

prohibitive when the number of input factors is large.  

1.4.1.2 Design space description strategies for knowledge-driven models 

In the context of knowledge-driven models, the mathematical techniques that have been 

proposed to assist a DS determination are: 

 Global sensitivity analysis (GSA); 

 feasibility analysis; 

 operability analysis. 

Due to the limited diffusion of knowledge-driven models for the description of pharmaceutical 

unit operations, the contributions that can be found in the open literature are fewer than for data-

driven models. However, increasing attention has been directed towards these methodologies 

recently. 

Global sensitivity analysis (GSA; Saltelli et al., 2008) collects a series of simulation tools whose 

aim is to evaluate how the variability on the model outputs can be apportioned to the different 

model inputs. In pharmaceutical development, this can be used to: 

a) determine the CPPs and CMAs that are most influential with respect to the product 

CQAs; 

b) determine the probability distributions of the model outputs by spanning the entire range 

of variability of the model inputs; 

c) determine the subset of the input domain that allows satisfying the desired specifications 

on the product CQAs with a given confidence (i.e. the DS). 

The three activities (a)-(b)-(c) can be performed separately or (more often) in a sequential 

manner. Different categories of GSA methods have been proposed, namely: i) screening 

methods; ii) regression-based methods; iii) variance-based methods; iv) metamodel-based 

methods. A thorough review on these techniques can be found in the study of Iooss and 
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Lemaître (2015). In the context of DS determination, the two approaches that are mostly 

adopted are screening methods and variance-based methods. 

Screening methods (Saltelli et al., 2008) consider wide ranges of variation for the model inputs 

and compute a global sensitivity metric for a given output as an average of local measures. The 

most important method belonging to this category is the Morris method (Morris, 1991). A recent 

application of this method for the determination of the most influential CPPs of a continuous 

pharmaceutical manufacturing line and subsequent DS determination has been proposed by 

Wang et al. (2017).  

Variance-based methods (Helton et al., 2003) decompose the variance of each single model 

output into several components, including the contributions of the single input factors as well 

as their interaction. The most famous methods belonging to this category are the so called 

Sobol’s methods (Sobol, 1993; Sobol, 2001), which exploit a Monte-Carlo approach to compute 

the variance of each output and to decompose it according to the contributions of the different 

input factors. The use of these methods in pharmaceutical manufacturing has been strongly 

supported by their recent implementation in advanced process modelling environment such as 

gPROMS® (Process Systems Enterprise, 2014). Recent applications of Sobol’s methods in 

pharmaceutical manufacturing have been proposed by Wang et al. (2017) and Garcia-Munoz 

et al. (2018), where their ability to return to rapidly screen the entire input domain and identify 

the boundary of the DS for a large number of input factors has been proven.  

While GSA solves the DS determination problem as a “forward” problem, (i.e., by building the 

posterior distributions of the product CQAs through extensive sampling within the input 

domain and performing one simulation for each input sample), a technique that solves the DS 

determination problem as an “inverse” problem is feasibility analysis. 

Feasibility analysis was first proposed for the design of general chemical processes (Halemane 

and Grossman, 1983) and that only recently has been applied for the determination of the DS 

of pharmaceutical processes. Differently from GSA, feasibility analysis solves the DS 

determination problem as an “inverse” problem: assigned the specifications (constraints) for 

the product CQAs, the portion of the input domain that allows satisfying those constraints (i.e., 

the DS) is obtained by solving a bi-level nonlinear programming optimization problem. The 

solution of the bi-level optimization problem requires the definition of a function, called 

feasibility function, that collects the maximum value of all the quality constraints imposed on 

product. Mathematical details on this technique, together with recent advances in this area, can 

be found in the recent work of Bhosekar and Ierapetritou (2017). Feasibility analysis has been 

proposed to assist DS description for single unit operations such as roller compaction (Banjeree 

et al., 2010) granulation (Rogers and Ierapetritou, 2015; Wang and Ierapetritou, 2017) as well 

as for the determination of the DS of an entire continuous manufacturing line (Wang et al., 

2017b). The main advantage of this technique is that multivariate constraints on the product 

CQAs can be handled in straightforward fashion; the main disadvantage is that all the sources 
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of uncertainty (e.g., on model parameters) as well as external disturbances that may affect the 

DS prediction must be determined and modeled a priori. Additionally, this technique suffers 

from the curse of dimensionality, i.e., obtaining a solution within a reasonable amount of time 

can become prohibitive when the number of input factors is large. 

Operability analysis (Vinson and Georgakis, 2000) is a mathematical technique that aims at 

understanding whether all the points in the desirable output ranges (i.e., product quality) are 

operable in the presence of expected disturbances and with the available ranges of the inputs 

(i.e., CPPs and CMAs). In the pharmaceutical context, the definition of DS is equivalent to the 

definition of “operable space” used by this technique. Description of the DS with operability 

analysis, although conceptually very similar to feasibility analysis, presents the substantial 

difference of not requiring the solution of a nonlinear optimization problem. Examples of 

applications for pharmaceutical unit operations have been proposed by Uztürk and Georgakis 

(2002) and by Georgakis (2017). The use of this technique for DS determination, however, is 

still very limited and mainly focused on bio-pharmaceutical operations. 

1.4.1.3 Design space description strategies for hybrid models 

In the context of hybrid models, mention should be given to surrogate-based feasibility analysis 

(Banjeree et al., 2010; Rogers and Ierapetritou, 2015), which is a particular type of feasibility 

analysis that is applied with computationally expensive models characterized by black-box 

constraints on the product CQAs (i.e., hybrid models). The idea behind this technique is to build 

a computationally cheap approximation of the original hybrid model, which is called a 

surrogate, and to compute the DS of the original model based on this surrogate. Different types 

of surrogate can be used (Banjeree et al., 2010), including kriging surrogates, radial basis 

functions (RBFs) and simple polynomial interpolants (Rogers et al., 2015). Applications of 

surrogate-based feasibility analysis for DS determination have been proposed recently (Wang 

and Ierapetritou, 2017a; Wang et al., 2017). A detailed description of this approach will be 

provided in § 5.2. 

1.4.2 Design space propagation from individual units to an entire process 

A pharmaceutical manufacturing process is typically composed by several processing units. As 

described in the regulatory documents (ICH, 2009), during a DS description it would always 

be desirable obtaining the DS for the entire manufacturing process rather than for the individual 

units only. Some attempts of defining the DS for entire manufacturing lines have been proposed 

recentlyature (Wang and Ierapetritou, 2017b). However, in many practical situations, the 

determination of the DS is performed for each individual unit of the manufacturing line, due to 

the complexity (both in terms of model building effort and computational power required) of 

dealing with integrated flowsheet models. Strategies to describe the DS of the entire process 

based on the DSs of the individual unit operations would therefore be useful to fit the regulatory 
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guidelines. However, the contributions that can be found in the literature on this topic are very 

limited. From a modelling perspective, the determination of the DS of an entire process based 

on the DSs of the individual processing units can be interpreted as a problem of how input 

variability propagates across the entire manufacturing line (the output of the first unit becomes 

the input of the second one, and so on) till the final product. Attempts of studying this variability 

propagation have been proposed by Rogers and Ierapetritou (2015) and Wang and Ierapetritou 

(2017a) in the context of feasibility analysis, and by Metta et al. (2018) in the context of a 

DEM- PBMs.  

1.4.3 Design space scale-up and scale-out 

The design space of a new pharmaceutical product is typically determined and validated at 

laboratory scale during the drug development stage. However, its final use is intended for the 

commercial manufacturing scale. The activity that is deemed to transfer the DS obtained at the 

laboratory scale to the commercial scale is defined as DS scale-up. From an industrial 

perspective, the advantage of developing a DS at laboratory scale and scaling it up to the 

commercial manufacturing scale is that the costs for the experimental assessment of the DS are 

much lower at the laboratory scale. Therefore, the main target of the DS scale-up activity is to 

reduce to a minimum the number of experimental runs that must be performed on the 

commercial-scale plant for the final assessment of the DS. In this regard, model-based 

approaches play a key role to assist a DS scale-up exercise. 

Despite several contributions on the scale-up of pharmaceutical unit operations/processes have 

been published, the number of studies on DS scale-up is very limited. In the context of data-

driven approaches, the available contributions are limited to the exploitation of historical plant 

data of products similar to the one under development to perform the DS scale-up activity. 

Latent variable models are exploited to this purpose; in particular, Garcia-Munoz et al. (2004, 

2005) proposed a new PLS-based technique, called joint-Y PLS (JY-PLS), specifically 

designed to relate two datasets of the same process at two different scales, in order to identify 

the relationships between variables at multiple scales and identify similarities that can be 

exploited for DS scale-up. Liu et al. (2011b) exploited this technique to assist the DS scale-up 

for a roller compaction process, while Garcia-Munoz et al., (2009) used JY-PLS to understand 

the effect of raw material properties on product CQAs on different scales in order to guide a 

DS scale-up exercise. 

In the context of knowledge-driven models, a larger number of contributions can be found, and 

this is mostly related to the fact that knowledge-driven models require fewer plant data. These 

studies can be classified according to two categories: 

a) contributions based on the derivation of scale-up relationships from CFD or DEM 

simulations; 
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b) contributions based on the derivation of scale-independent formulations for the DS. 

In the first category, scale-up relationships are derived from complex CFD/DEM simulations 

and used to scale up the DS from the laboratory scale to the production scale. Examples of this 

approach include applications to fluid bed drying (Parker et al., 2013; Chen et al., 2018), freeze 

drying (Zhu et al, 2018), mixing (Lindenberg and Mazzotti, 2009), film and pan coating 

(Pandey et al., 2013; Chen et al., 2017) and blending (Horibe et al., 2018). As an example, 

Pandey et al. (2013) developed a DEM simulation to study the effect of changing operating 

conditions and equipment scale on the particle motion during pan coating, and based on the 

DEM results developed a simple scale-up relationship for the DS of the pan coater. Zhu et al. 

(2018) followed a similar procedure for the scale-up of a freeze drying cycle, but they exploited 

intensive CFD simulations. Horibe et al. (2018) used DEM simulations to derive scale-up 

relationships for pharmaceutical blenders. 

In the second category, a mechanistic model is typically used to determine the DS at the 

laboratory scale (i.e., the DS prediction is validated against experimental data obtained at the 

laboratory scale). Then, the model is re-formulated using scale-independent parameters 

(typically, dimensionless numbers) that allow transferring the DS to the larger scale. It is worth 

noticing that this approach is also advocated by the regulatory agencies (§ 1.1.2.). Reported 

applications of this approach are very limited and mostly refer to the scale-up of the DS for 

pharmaceutical freeze-drying processes. For example, Fissore and Barresi (2011b) and Pisano 

et al. (2013) derived a scale-independent formulation for a simple mechanistic model of the 

primary drying stage of a freeze-drying process, and used this formulation to derive the DS of 

the process at commercial scale. A very recent work of Yoshino et al. (2018) use a similar 

approach to assist the scale-up of a film coating process, while Garcia-Munoz et al. (2015) 

exploit this methodology to scale-up the DS for the adsorption of a drug substance in a packed-

bed reactor. 

Scale-up is not the only technology transfer activity that involves a DS description. In fact, 

when the product is already being manufactured in the commercial plant, there may be the need 

to: 

 transfer the manufacturing of the given product to a different site, with a different 

process configuration; 

 use the same process to produce a different product. 

Both activities are referred to as scale-out activities (Reklaitis, 2017). However, whereas the 

problem of product transfer has been addressed by several authors (Jaeckle and MacGregor, 

2000; Garcia Munoz et al., 2005; Tomba et al., 2013), the problem of assisting the scale-out of 

a DS has not been addressed so far in the open literature, even if its importance has been 

emphasized (Reklaitis, 2017). 
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1.4.4 Design space maintenance 

If the DS for a given product is known, the input materials properties and process operating 

conditions lie within the DS. However, if the DS was described using a model of the process, 

an issue arises on whether the model originally used to simulate the process (hence, to describe 

the DS) is still valid under the current process state. Process/model mismatch may arise from 

uncertainty in the evaluation of some model parameters (e.g., a heat exchange coefficient may 

change due to fouling), or insufficient/inappropriate description of the underlying physical 

phenomena driving the process (e.g., environmental factors not accounted for). The fact that, 

during the plant lifecycle, the model may not be able to accurately reproduce the actual plant 

behavior, questions the appropriateness of the operating conditions selected by using the DS 

defined using that model. 

When a model is used to assist DS description in a lab-scale plant, the different sources of 

uncertainty (e.g., parametric uncertainty) and structural mismatch (e.g., environmental factors) 

that can potentially affect the prediction fidelity of the model at the plant scale should be 

included and accounted for in the DS description. This requires knowing a priori all the 

uncertainties and disturbances that may affect plant operation. However, in practical situations, 

modelling all these possible sources of uncertainty and disturbances is never possible. Different 

phenomena may occur during plant operation (e.g., parameters drifts or unmodeled phenomena 

that could not be observed at the laboratory scale, such as the effect of upstream and 

downstream units) that can impact on the prediction fidelity of the model, hence on the model-

based DS representation. In some cases, some of these phenomena can be observed and 

accounted for during the DS scale-up activity. However, there is no guarantee that plant 

operation will remain stable over long periods, hence that the initial model-based DS 

description will preserve its validity throughout the entire production campaign. 

Following the regulatory parlance, the activity that is deemed to keep constantly updated the 

DS of a pharmaceutical product throughout its entire lifecycle is named DS maintenance (ICH, 

2009). even though no indications are given by the regulators on how to perform this activity. 

From a modelling perspective, despite the importance of performing a regular model 

maintenance during pharmaceutical manufacturing is not new (Wise and Roginski, 2015; 

Flaten, 2018), applications are limited to the maintenance of multivariate data-driven models 

(e.g., PCA or PLS models) for process monitoring purposes. Contributions on how to perform 

a DS maintenance (with either data-driven or knowledge-driven models) are lacking. The 

relevance  of developing such contributions within the framework of the Industry 4.0 initiative 

has been emphasized by Herwig et al. (2017), and the recent launch of the Q12 regulatory 

document (ICH, 2018) is expected to push the scientific community to tackle this topic in the 

near future (Herwig et al., 2017). 



 

 

42 Chapter 1 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

1.5 Objectives of the research 

Despite the increasing attention towards mathematical modelling for DS description, several 

issues still need to be addressed to obtain a general modelling framework for practical 

implementation of the regulatory guidelines. These issues can be briefly summarized into four 

points. 

1. A key requirement advocated by the regulatory agencies for a correct description of the 

design space is the quantification of the assurance of quality for the final product. From 

a modeling perspective, this translates into a rigorous quantification of the uncertainty 

associated with the model-based prediction of the DS. However, the majority of the 

contributions presented in the literature focus on the adoption of deterministic 

approaches for DS identification rather than probabilistic ones: whereas the former do 

not consider model uncertainty, the latter do. 

2. The few probabilistic approaches presented in the literature mainly focus on situations 

where the product quality can be described in terms of univariate quality specifications, 

while in most practical situations the quality of the product is expressed in terms of 

multivariate specifications. 

3. In the context of first-principles and semi-empirical modeling, advanced techniques are 

required in order to handle several inputs (process parameters and raw material 

properties) in a computationally efficient way. Most of the proposed techniques still 

rely on computationally expensive simulations which, in some cases, are not even able 

to return a DS description with the desired level of accuracy. Moreover, providing a 

compact and easy-to-interpret representation the DS when a large number of inputs are 

involved is typically impossible, thus preventing easy interpretation of the results by 

regulators and non-practitioners. There is therefore the need to develop 

computationally efficient methodologies that allow obtaining user-friendly and ready-

to-use representations of the design space.  

4. While several modeling strategies have been proposed for the identification of the DS 

at the product and process development stage, very few studies address how to regularly 

assess and possibly adjust its model-based representation during product 

manufacturing. In fact, the prediction fidelity of the model adopted at the 

product/process development stage may deteriorate during plant operation, thus 

affecting the validity of the prediction of the DS obtained at the beginning of the 

product lifecycle. In other terms, several phenomena may arise during plant operation 

(e.g. parameter drifts, un-modeled physical phenomena such as environmental effects, 

effect of upstream and downstream units, etc…) that may partially or totally invalidate 

the prediction of the DS obtained at the product and process development stage. The 

importance of exploiting the additional process knowledge that can be gained during 



 
 

Motivation and state of the art 43 

 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

plant operation for reduction, expansion or redefinition of the design space is clearly 

stated in the regulatory documents (ICH, 2009) and is part of a continual process 

improvement strategy that pharmaceutical companies should adopt for a correct 

implementation of the QbD framework. The scientific contributions on this topic are 

still very limited and tailored to very specific applications, while the development of 

general methodologies is still an open research area. 

5. The identification of the DS by means of first-principles or semi-empirical models 

require accurate and precise estimation of the model parameters, in order to obtain a 

high prediction fidelity and therefore a reliable estimation of the DS. The parameter 

estimation activity is performed by challenging the model predictions against the 

experimental observations that can be collected during an experimental campaign on 

the real equipment. When the number of parameters is large or the parameters are 

strongly correlated with each other, obtaining an accurate and precise parameter can be 

difficult and require a large number of experiments. It is therefore desirable to design 

new experiments in order to maximize the information that can be extracted from these 

experiments for a precise estimation of the model parameters. A class of techniques 

that can be exploited to this purpose are model-based design of experiments (MBDoE) 

techniques. While MBDoE techniques have recently gained increasing attention in 

many process engineering applications, their use in pharmaceutical product and process 

development contexts is still very limited. The introduction of MBDoE to assist 

pharmaceutical product and process development is therefore still an open research 

area. 

 

In view of the above, the objective of this Dissertation is to propose novel and systematic 

methodologies to tackle the research issues previously discussed. Specifically, the innovative 

contributions that can be found in this Dissertation are the following. 

 

 Quantification of the “assurance” of quality for a new pharmaceutical product as 

advocated by the regulatory agencies, with particular focus on data-driven modeling 

strategies such as latent variable modeling (LVM) and multivariate linear regression. 

Two situations are addressed, namely: i) the situation where a projection onto latent 

structures (PLS) model is to be used for design space identification; ii) the situation 

where a general multivariate linear regression model is to be used for DS identification. 

With respect to the former case, the inversion of latent-variable models, such as PLS 

models, has proved to be an effective tool to assist the determination of the DS of a new 

pharmaceutical product. A challenging issue in PLS model inversion is to describe how 

the uncertainty on the model outputs (product quality) relates to the uncertainty on the 

model inputs (raw material properties and process parameters). This in turn translates 
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into a quantitative inclusion of the concept of assurance of quality for the final product 

in the model-based representation of the design space. The objective of the first part of 

this Dissertation is to develop a methodology to relate the uncertainty on the output of 

a PLS model to the uncertainty on the model inputs. The expected result is the 

identification of a portion of the original input domain within which the DS of the 

product under development is expected to lie with a confidence equal to or greater than 

an assigned threshold. This narrow region of the input domain is expected to be used to 

assist a targeted experimental campaign for the final assessment of the DS, with 

significant reduction of the time and costs of the experimentation. 

With respect to the second aspect, the objective is to exploit elements of Bayesian 

statistics in order to quantify the probability that a pharmaceutical product will meet its 

quality specifications during manufacturing. The focus is restricted on situations where 

a multivariate linear regression model is used to relate the process parameters and raw 

material properties with the product quality attributes. The final target is to obtain a 

quantitative metric, i.e. the Bayesian probability of the product to meet its quality 

specifications, that completely addresses the concept of assurance of quality advocated 

by the regulatory agencies. The DS that can be obtained within this Bayesian framework 

can therefore be defined as a probabilistic DS, and it can be claimed that its derivation 

is entirely consistent with the regulatory guidelines.  

 

 Design space description using semi-empirical or first-principles models, with 

particular focus on the reduction of the overall computational burden and the 

development of low-dimensional and easy to interpret representations of the design 

space. The research effort will be targeted on a mathematical technique that has been 

recently proven to be potentially very effective for DS determination with complex 

mathematical models. This technique is surrogate-based feasibility analysis and, 

although being very efficient in handling complex multivariate quality specifications 

and complex process models, it suffers from one important drawback, i.e. the curse of 

dimensionality. In other terms, when the number of input factors is large, this technique 

shows severe limitations in obtaining an accurate prediction of the design space within 

a reasonable computational time. A methodology will be developed in this Dissertation 

to solve this issue and an application to a continuous manufacturing line of a 

pharmaceutical tablet will be presented. 

 

 Maintenance of a model-based design space during plant operation, based on the 

concept of continual process improvement and lifecycle management advocated by the 

regulatory agencies. The target in this respect is to develop an automatic methodology 

to obtain an accurate real-time representation of the design space as process operation 
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progresses, by exploiting the additional process knowledge that can be captured during 

product manufacturing. The methodology presented in this Dissertation will use 

concepts of model adaptation and state estimation to reach this target, and concepts of 

feasibility analysis and surrogate-based feasibility analysis to assist the real time DS 

identification. 

 

 Design of optimal experiments for model calibration and design space description, 

with specific focus on industrial freeze-drying processes. The main objective is to show 

how the exploitation of model-based design of experiments (MBDoE) can be used to 

assist the design of informative experiments for the identification of complex 

mechanistic models of freeze-drying processes, and how these models can be used to 

assist DS description. The final target is to reduce the number and cost of the 

experiments to be performed for model identification, thus speeding up the process 

development stage and boosting its profitability. 

 

Simulated, experimental and industrial case studies will be presented throughout the 

Dissertation to prove the effectiveness of the proposed methodologies. A schematic roadmap 

for the interpretation of the Dissertation is presented in the next section. 

1.6  Dissertation roadmap 

The Dissertation is organized following the four research objectives presented in the previous 

section. A schematic roadmap of the Dissertation is shown in Fig. 1.5. After a brief review of 

the mathematical tools exploited throughout the Dissertation (Chapter 2), the central chapters 

(Chapters 3,4,5,6) collect four innovative methodologies to tackle the first three research 

objectives presented above. The nature of these chapters is purely methodological, and the 

effectiveness of the innovative modeling strategies proposed are tested with industrially-

relevant case studies.  The final chapter (Chapter 7) is focused on an industrial application of a 

well-established methodology (model-based design of experiments; MBDoE): its main 

innovation is therefore related to the area of application of the methodology, rather than the 

methodology itself. 

With respect to the issue of quantification of assurance of quality, in Chapter 3 a methodology 

is proposed to handle the back-propagation of uncertainty from the outputs (i.e. product quality) 

to the inputs (i.e. raw material properties and process paraemters) of a PLS model. The 

methodology is exploited to identify a small portion (defined as the experiment space; ES) of 

the input domain within which the design space of a new pharmaceutical product is expected 

to lie with a given degree of confidence. It will be shown with both simulated and experimental 

case studies that the identification of such experiment space allows the product developer to 
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tailor his/her experimental campaign on a smaller domain of input combinations, with 

significant reduction of the time and cost of the experiments for DS assessment. 

In Chapter 4, a methodology is proposed to quantify the probability that a new drug will meet 

its quality specifications by combining latent variable modelling (specifically, a PLS model) 

with a Bayesian multivariate linear regression model. The set of input combinations for which 

this probability (to be intended in its Bayesian interpretation) is greater than an assigned 

threshold is identified as the probabilistic (or Bayesian) design space of the new product. The 

Bayesian probability can therefore be considered as a scientific and unambiguous metric to 

implement the concept of assurance of quality advocated by the regulatory agencies, and the 

probabilistic design space can be considered as fully compliant with the regulatory guidelines. 

It will be shown how PLS modelling can be coupled with Bayesian model calibration to reduce 

the dimensionality of the input domain, thus allowing :i) a significant reduction of the 

computational burden of the simulations (which require extensive Markov chain Monte-Carlo 

computations); ii) a compact representation of the design space that can be easily interpreted 

by regulators or non-practitioners.    The effectiveness of the proposed approach will be shown 

with both simulated and experimental case studies of pharmaceutical unit operations. 

In Chapter 5, a methodology to overcome the curse of dimensionality of surrogate-based 

feasibility analysis for design space description of a new pharmaceutical product with semi-

empirical or first-principles models is presented. The ability of PLS to reduce the input space 

dimensionality is exploited to obtain a low-dimensional representation (i.e., a latent 

representation) of the input domain. An adaptive sampling feasibility analysis based on a radial-

basis function (RBF) surrogate is then used to identify the boundary of the design space on the 

latent space. It will be shown how the proposed approach can be exploited to give an accurate 

and robust description of the design space by simultaneously reducing the computational 

burden for the feasibility analysis problem. The effectiveness of the methodology will be 

challenged with a complex integrated flowsheet model of a continuous manufacturing line of a 

pharmaceutical tablet. 

Chapter 6 presents a methodology to obtain a real-time representation of the design space of a 

pharmaceutical process while plant operation progresses. Given a first-principles model of the 

process and measurements from plant sensors, the proposed approach exploits a dynamic state 

estimator and feasibility analysis to obtain the real-time representation of the design space. The 

state estimator is deployed to adapt online the model predictions with the available plant 

observations, while feasibility analysis and surrogate-based feasibility analysis are exploited to 

obtain the boundary of the design space with the up-to-date model returned by the state 

estimator. The ability of the methodology to timely track changes in the DS representation will 

be shown with two simulated case studies, the former involving an enforced parametric 

mismatch, the latter a structural mismatch.  
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Finally, Chapter 7 discusses an industrial application of MBDoE techniques for the 

identification of a mechanistic model of a pharmaceutical freeze dryer. Particular focus is given 

to the primary drying stage of the process, which has a strong impact on the overall process 

efficiency due to its duration (∼60-80% of the overall freeze-drying cycle). Optimal 

experiments are designed in order to extract the maximum information from the data for the 

estimation of two critical model parameters. A good improvement of the model identifiability 

will be shown be performing the designed experiments both in silico and in the real equipment. 
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   Chapter 2 
 

Methods 
 

This chapter provides a concise overview of the mathematical techniques that are exploited in 

this Dissertation. The chapter is organized in four sections.  In Section A, a review of projection 

on latent structures (PLS) for dimensionality reduction is presented. In Section B, the key 

concepts of Bayesian statistics and Bayesian multivariate regression are summarized. In Section 

C, the mathematical formulation of feasibility analysis and surrogate-based feasibility analysis 

is discussed. Lastly, in Section D state estimation techniques for online model adaptation and 

recalibration are presented. 

 

SECTION A: DIMENSIONALITY REDUCTION TECHNIQUES 

 

Latent variable models (LVMs) are a class of statistical models that are used for three main 

purposes: (i) data interpretation, (ii) dimensionality reduction and (iii) regression analysis. 

Let 𝐗 [𝑁 × 𝑉] be a historical dataset of 𝑁 observations of 𝑉 observable variables. The aim of 

LVMs is to explain the correlation structure of 𝐗 by means of 𝐴 unobservable variables, called 

latent variables (LVs), that explain the maximum multidimensional variance of the original 

dataset. In the presence of a strong collinearity in the original dataset, LVMs are able to capture 

the information retained in the matrix 𝐗 with a much smaller number of LVs, i.e. 𝐴 ≪ 𝑉. One 

of the most important LVM that can be used to interpret and reduce the dimensionality of a 

highly correlated dataset is principal component analysis (PCA; Jackson, 1991). 

In many other applications, the historical dataset is split into a matrix of 𝑉 input variables 

𝐗 [𝑁 × 𝑉] and a matrix of 𝑀 response variables 𝐘 [𝑁 × 𝑀]. In this context, LVMs are used to 

explain the joint correlation structure of 𝐗 and 𝐘, i.e. the LVs are selected in order to explain 

the maximum multidimensional variance of the input space that is mostly correlated with the 

output space. The identification of this correlation structure can then be used to predict a new 

response given a new set of model regressors (i.e. for regression analysis). One of the most 

common techniques in this area is projection on latent structures (PLS; Wold et al., 1983). In 

the following, a brief theoretical overview of PLS and on the available methodologies to 

estimate prediction uncertainty in PLS modeling is presented. 
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2.1 Projection on latent structures (PLS)  

Projection on latent structures (PLS; Wold et al., 1983; Höskuldsson, 1988) is a LVM that aims 

at (i) explaining the joint correlation structure of the input matrix 𝐗 and the response matrix 𝐘 

and (ii) predicting a new response  �̂�𝑝 [1 × 𝑀] given a set of new regressors 𝐱𝑝. 

PLS can be used to perform the first task or both the two tasks described above. In the former 

case, PLS is used as a dimensionality reduction technique. In the latter case, PLS is used as a 

multivariate linear regression technique. In both scenarios, PLS identifies a small set of 𝐴 LVs 

that explain as much as possible of the joint covariance of 𝐗 and 𝐘. This decomposition proves 

to be particularly useful when a set of response variables has to be correlated with a large set of 

highly collinear input variables. 

The structure of a PLS model can be summarized by the set of equations: 

 

𝐗 = 𝐓𝐏T + 𝐄X  (2.1) 

 

𝐘 = 𝐓𝐐T + 𝐄Y (2.2) 

 

𝐓 = 𝐗𝐖∗ (2.3) 

 

where 𝐓 [𝑁 × 𝐴] is the score matrix, 𝐏 [𝑉 × 𝐴] and 𝐐 [𝑀 × 𝐴] are the 𝐗 and 𝐘 loading matrices, 

𝐄X and 𝐄Y the residuals; 𝐖∗[𝑉 × 𝐴] is the weight matrix, through which the data in 𝐗 are 

projected onto the latent space to give 𝐓 according to Eq. (2.3).  

The weight vector 𝐰1 [𝑉 × 1] related to the first LV can be computed by solving the 

eigenvector decomposition problem for the matrix 𝐗T𝐘𝐘T𝐗: 

 

𝐗T𝐘𝐘T𝐗𝐰1 = 𝜆1𝐰1 (2.4) 

 

where 𝜆1 is the eigenvalue associated with the first LV. Eq. (2.4) is equivalent to solving the 

optimization problem: 

 

max
𝐰1
(𝐰1

T𝐗T𝐘𝐘T𝐗𝐰1) 

 

(2.5) 

s.t      𝐰1
T𝐰1 = 1. (2.6) 

 

Given 𝐰1, the score vector 𝐭1[𝑁 × 1] related to the first LV can be computed according to the 

following expression: 

 

𝐭1 = 𝐗𝐰1. (2.7) 
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The weights related to the subsequent LVs can be computed according to the optimization 

problem (2.5), but using the deflated input and output matrices 𝐗𝑎+1 and 𝐘𝑎+1 respectively. 

These matrices are defined for 𝑎 = 1, 2, … , 𝐴 − 1 as: 

 

𝐗𝑎+1 = (𝐈𝑁 −
𝐭𝑎𝐭𝑎

T

𝐭𝑎T𝐭𝑎
)𝐗𝑖  

 

 

(2.8) 

𝐘𝑎+1 = (𝐈𝑁 −
𝐭𝑎𝐭𝑎

T

𝐭𝑎T𝐭𝑎
)𝐘𝑖 (2.9) 

 

where 𝐈𝑁 is the 𝑁 ×𝑁 identity matrix. The corresponding loading vectors for the 𝑎-th LV 

related to 𝑋 and 𝑌 respectively are given by: 

 

𝐩𝑎
𝑇 =

𝐭𝑎
T𝐗𝑎
𝐭𝑎
T𝐭𝑎

  

 

(2.10) 

𝐪𝑎
𝑇 =

𝐭𝑎
T𝐘𝑎
𝐭𝑎T𝐭𝑎

. (2.11) 

 

The weight matrix 𝐖∗ that appears in Eq. (2.3) is related to the matrix 𝐖 that collects the 

weight vectors 𝐰𝑖, 𝑖 = 1, … , 𝑉 according to the following relationship: 

 

 𝐖∗ = 𝐖(𝐏T𝐖)−1 . (2.12) 

 

It is worth noticing that the 𝐗-score matrix of Eq. (2.2) is sometimes substituted by the 𝐘- 

loading matrix 𝐔 [𝑁 × 𝐴]. The two score matrices are related to each other by a linear 

relationship (called inner relation; Geladi and Kowalski, 1986), thus making the two 

formulations mathematically equivalent. 

The solution of the eigenvector problem (2.4) is not straightforward from an algebraic point of 

view (e.g. via singular value decomposition (SVD) techniques) and is particularly cumbersome 

when dealing with missing data in the original dataset. Therefore, several iterative algorithms 

have been proposed in the literature for a computationally efficient implementation of PLS. The 

two most famous algorithms are the NIPALS algorithm (Wold et al., 1983) and the SIMPLS 

algorithm (de Jong, 1993). A thorough description of these algorithms can be found in the cited 

references. 

2.1.1 Pre- and post- PLS modeling activities 

When a PLS model is used to describe a historical dataset [𝐗; 𝐘], three activities must be 

performed at different stages of the modeling procedure, namely: 
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1. data pretreatment (before building the PLS model); 

2. selection of the optimal number of LVs (to finalize the PLS model structure); 

3. PLS model diagnostics (to validate the performance of the PLS model). 

A point-to-point description of these activities is described in the following sections. 

2.1.1.1 Data pretreatment 

Data pretreatment is a preliminary step that is performed in order to avoid misleading results 

from the PLS model. This activity needs to be done to account for the different physical nature 

and dimensions of the variables of the original dataset. 

Different data pretreatment techniques exist (Eriksson et al., 2006), including mean-centering, 

auto-scaling, filtering and denoising. When the variables of the historical dataset are physically 

different, as it is often the case with process variables, the most suitable data pretreatment 

technique is auto-scaling.  

Auto-scaling consists of subtracting to each column of the original dataset [𝐗; 𝐘] the mean value 

of that column and then dividing each element for the standard deviation of the column. In other 

terms, each column is mean-centered and then normalized with its standard deviation. This 

allows obtaining unbiased directions of maximum variability from the PLS model that are not 

affected by the mean values of the original variables.  Moreover, the scaling operation (i.e. 

normalization with the standard deviation) has the advantage of partially linearizing the original 

dataset.  

All the studies presented in this Dissertation assume that the historical data have been auto-

scaled according to the procedure described above. 

2.1.1.2 Selection of the optimal number of LVs 

A key step of the PLS model building activity is the selection of the number of LVs (i.e. the 

dimensionality of the latent space). From a general perspective, the selection of the number of 

LVs depends on several factors and should be suited to the final application of the PLS model. 

In most situations, it may be desirable to select a number of LVs that explain a big portion of 

the variability of both the input and output datasets. However, there may be situations where 

only one of the two aforementioned requirements needs to be fulfilled. 

Different methods have been proposed in the literature to select the appropriate number of LVs. 

The most famous are: 

 the scree test (Jackson et al., 1991); 

 the eigenvalue-greater-than-one rule (Mardia et al., 1979); 

 cross-validation (Wold, 1978). 

The scree test is a graphical procedure that monitors a metric (the explained variance 𝑅2 of the 

input and output calibration datasets) and assumes that the optimal number of LVs is the one 

that yields to a “stabilization” to the metric profile. The underlying assumption behind this 
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approach is that the amount of explained variability of the original dataset reaches a “steady-

state” after a certain number of LVs.  

The eigenvalue-greater-than-one rule is a method that discards all the latent variables whose 

associate eigenvalue is smaller than one. In fact, if data are auto-scaled, the eigenvalue 

associated with the 𝑎-th LV roughly describes the number of original variables that are captured 

by the given LV. Therefore, all the latent variables that describe less than one original variable 

are discarded and not considered in the PLS model.  

Cross-validation is a technique that selects the optimal number of LVs by minimizing the error 

of the PLS model in reconstructing new samples. Different cross-validation procedures are 

presented in the literature: the most common is the one proposed by Wold (Wold, 1978). 

Mathematical details can be found in the cited reference. 

2.1.1.3 PLS model diagnostics 

Once a PLS model has been calibrated,  it is necessary to assess its performance by means of 

some diagnostic procedures. Three different areas can be identified: model diagnostics, sample 

diagnostics and variable diagnostics. All these procedures can be performed on one or both the 

input and output matrices. 

As regard model diagnostics, the most important metric that is typically used is the amount of 

variability of the original data captured by the model, i.e. the coefficient of determination 𝑅2: 

  

 𝑅2 = 1 −
∑ ∑ (𝑥𝑛,𝑣 − �̂�𝑛,𝑣)

2𝑉
𝑣=1  𝑁

𝑛=1

∑ ∑ (𝑥𝑛,𝑣)
2𝑉

𝑣=1
𝑁
𝑛=1

. 
(2.13) 

 

The value �̂�𝑛,𝑣 is the PLS reconstruction of the 𝑥𝑛,𝑣 element of the original input matrix. The 

same definition (2.13) can be applied to the output matrix. To distinguish between the amount 

of 𝐗- and 𝐲- variability explained by the PLS model, the coefficient of determinations will be 

denoted as  𝑅𝑋
2 and 𝑅𝑦

2 respectively.  

As regard sample diagnostics, it is possible to identify potential outliers or samples of the 

original dataset that have a strong influence on the PLS model with two metrics, namely the 

Hotelling’s 𝑇2 and the squared prediction error 𝑆𝑃𝐸.  

The Hotellintg’s 𝑇2 (Hotelling, 1933) is a metric that quantifies the Mahalanobis distance from 

the projection of a sample on the latent space to the origin of the latent space itself. It is mainly 

used to assess the deviation of a given sample with respect to the average conditions of the 

historical dataset. The higher this metric for a given sample, the lower the adherence of the 

sample with respect to the calibration dataset, the higher its leverage with respect to the model 

(i.e. the higher its influence on model calibration). The Hotellintg’s 𝑇2 for the 𝑛-th sample is 

computed according to the equation (Mardia et al., 1979): 
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 𝑇𝑛
2 = 𝐭𝑛

T𝚲 𝐭𝑛. =  ∑
𝑡𝑎,𝑛
2

𝜆𝑎

𝐴

𝑎=1

 

(2.14) 

 

where 𝐭𝑛 is the score vector of the 𝑛-th observation, 𝜆𝑎 is the 𝑎-th eigenvalue and 𝚲 is the [𝐴 ×

𝐴] matrix collecting the 𝐴 eigenvalues on its diagonal.  

The squared prediction error (SPE) is a metric that describes the mismatch between the value 

of a sample 𝐱𝑛 and its model representation �̂�𝑛. Geometrically, it represents the squared 

orthogonal (Euclidean) distance between the projection of the 𝑛-th observation and the latent 

space, and it is computed as: 

 

𝑆𝑃𝐸𝑛 = (𝐱𝑛 − �̂�𝑛)
T(𝐱𝑛 − �̂�𝑛) = 𝐞𝑛

T𝐞𝑛  (2.15) 

 

where 𝐞𝑛 is the residual vector for the 𝑛-th observation. Samples with high values of 𝑆𝑃𝐸𝑛 

have a different correlation structure with respect to the one captured by the PLS model, and 

therefore are not described properly by the model.  

As regard variable diagnostics, it is often desirable to understand which regressor variables are 

most influential with respect to the model responses and therefore mainly affect the PLS model. 

This can be quantified with a metric called  VIP index (variable importance in the projection; 

Chong and Jun, 2005), that is given by: 

 

𝑉𝐼𝑃𝑣 = √𝑉
∑ 𝑅𝑦,𝑎2 (𝑤𝑣,𝑎)

2𝐴
𝑎=1

∑ 𝑅𝑦,𝑎2
𝐴
𝑎=1

  

(2.16) 

 

where 𝑅𝑦,𝑎
2  is the amount of 𝐲-variance explained by the 𝑎-th LV and 𝑤𝑣,𝑎 is the weight of the 

𝑣-th input variable on the 𝑎-th LV. The higher the value of  𝑉𝐼𝑃𝑣, the higher the influence of 

the 𝑣-th input variable on the PLS model. Typically, variables with values of 𝑉𝐼𝑃𝑣 greater than 

one are considered as valuable predictor for the model responses (Eriksson et al., 2001). 

2.2 Prediction uncertainty in PLS modeling 

As stated in the previous section, once a PLS model has been calibrated according to Eq. (2.1)-

(2.3), a new response �̂�𝑝 can be predicted given a set of regressors 𝐱𝑝 (i.e. the PLS model can 

be used for regression analysis). The model prediction �̂�𝑝 can be obtained according to: 

 

�̂�𝑝 = 𝐭𝑝𝐐
T   

 

(2.17) 

where  𝐭𝑝 is the score vector related to the new set of regressors 𝐱𝑝: 
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 𝐭𝑝 =
𝐱𝑝𝐖

𝐏T𝐖
 . (2.18) 

 

When using a PLS model to predict a new response, prediction uncertainty must be quantified 

in order to assess the predictive ability of the model.  Different approaches have been proposed 

in the literature (a thorough review can be found in the work of Zhang and Garcia-Munoz, 

2012). All these methods assume that a single univariate response must be predicted (i.e. �̂�𝑝 =

�̂�𝑝) an rely on the interpretation of the PLS model as a standard linear regression model (details 

on the derivation of this formulation can be found in Wold et al., 1983): 

 

𝑦𝑝 = 𝐱𝑝
T𝛃 + 𝜖𝑝 .   

 

(2.19) 

The general procedure to estimate prediction uncertainty is composed by the following two 

steps: 

1. Step #1: an estimation of the standard deviation of the prediction error 𝑠 is obtained and 

the degrees of freedom 𝑑𝑓 of the model are computed. 

2. Step #2: A confidence interval for the model prediction �̂�𝑝 is established assuming a 𝑡-

statistics distribution with (𝑁 − 𝑑𝑓) degrees of freedom and significance level 𝛼 for the 

prediction error: 

 

               𝐶𝐼 = �̂�𝑝 ± 𝑡𝛼
2
,(𝑁−𝑑𝑓) 𝑠 .   

 

(2.20) 

 

The sources of uncertainty that can affect the model prediction can be classified into three 

categories: 

1. Measurement errors in both the input and output calibration dataset; 

2. uncertainty in the model parameters ; 

3. structural uncertainty due to the un-modeled part of  �̂�𝑝 (e.g. due to nonlinearities of the 

original dataset that cannot be captured with the linear PLS model). 

The available approaches typically consider only the second and third sources of uncertainty, 

i.e. they describe how the uncertainty on the model parameters propagates to the model response 

and accounts for structural uncertainty by assuming an error distribution for the model residuals. 

These uncertainty propagation models can be classified in four categories: Ordinary-Least-

Squares (OLS)-type methods, linearization-based methods, resampling-based methods and the 

Unscrambler method.  A brief review of each of these approaches is presented in the following. 

2.2.1 OLS-type methods 

The starting point of OLS-type methods is the OLS expression for the vector of model 

parameters: 
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 �̂�𝑂𝐿𝑆 = (𝐗
T𝐗)−1𝐗T𝐲   

 

(2.21) 

where 𝐲 is the univariate output calibration dataset.  By taking the covariance of both sides of 

Eq. (2.19), it follows: 

 

cov( �̂�𝑂𝐿𝑆) = (𝐗
T𝐗)−1𝐗Tcov(𝐮) 𝐗(𝐗T𝐗)−1 = (𝐗T𝐗)−1𝜎2   

 

(2.22) 

where cov(𝐮) = σ2𝐈𝑁 ,  with 𝜎2 variance of the model residuals. The combination of  (2.19) 

and (2.22) leads to: 

  

var(�̂�𝑝) = var( 𝐱𝑝
T�̂�𝑂𝐿𝑆) + var(𝜖𝑝) = 𝐱𝑝

Tcov( �̂�𝑂𝐿𝑆)𝐱𝑝 + 𝜎
2 = 𝜎2(ℎ𝑝 + 1)   

 

(2.23) 

where ℎ𝑝 is defined as the leverage of the 𝑝 observation and is given by: 

 

ℎ𝑝 = 𝐱𝑝
T (𝐗T𝐗)−1𝐱𝑝. 

 

(2.24) 

The geometrical meaning of ℎ𝑝 corresponds to the distance of the new observation with respect 

to the calibration center (i.e. to the origin of the axis of the PLS model). The standard deviation 

of the prediction error 𝑠 can thus be obtained from Eq. (2.25): 

 

𝑠 = 𝜎√1 + ℎ𝑝. 

 

(2.25) 

Eq. (2.25), even though derived for an OLS estimate of the model parameters for a standard 

linear regression model, can be transposed to a PLS model in a straightforward manner. 

Mathematical details can be found in the work of Zhang and Garcia-Munoz (2009). The same 

formulation of Eq. (2.17) can be used to obtain the standard deviation of the prediction error, 

where the leverage ℎ𝑝 can be derived from the score vector 𝐭𝑝  of the new observation as in the 

following: 

 

ℎ𝑝 = 𝐭𝑝
T𝐭𝑝. 

 

(2.26) 

Eq. (2.17) can be used to build to build the confidence interval for the new prediction of the 

PLS model, according to step#2 of the methodology described above. 

Faber and Kowalski (1997) proposed an extension to Eq. (2.25) that accounts for the 

measurement errors in both the input and response matrices. The main limitation of this 

approach is that it requires an estimate of the error variance of the input and output calibration 

datasets from replicated experiments, thus limiting its practical implementation. A through 

mathematical description of this approach can be found in the cited reference.  
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2.2.2 Linearization-based methods 

The derivation of prediction uncertainty with these methods is obtained by first-order 

linearization of the nonlinear dependency of the model parameters �̂� with respect to the model 

response 𝑦. The dependency of �̂� on the model response 𝑦 is obtained by Taylor series 

expansion truncated after the first term: 

 

 �̂�(𝑦) =  �̂�(𝑦𝑝) + 𝐉𝑝(𝑦 − 𝑦𝑝). 
 

(2.27) 

where 𝐉𝑝 is the Jacobian matrix of the derivatives of each element of �̂� with respect to 𝑦 

computed at 𝑦 = 𝑦𝑝. By taking the covariance of both sides of Eq. (2.27), an estimate of the 

uncertainty on the model parameters can be obtained: 

 

cov(�̂�) ≃ 𝐉𝑝𝐉𝑝
T𝜎2. 

 

(2.28) 

By plugging Eq. (2.28) into Eq. (2.23), an estimate of the prediction uncertainty can be obtained 

according to: 

 

var(�̂�𝑝) = 𝜎
2(1 + 𝐱𝑝

T𝐉𝑝𝐉𝑝
T𝐱𝑝). 

 

(2.29) 

Prediction uncertainty (2.29) can be computed once an appropriate estimate of the covariance  

𝐉𝑝 is obtained. Different methods have been proposed, based on differential calculus (Phatak et 

al., 1993) or inductive estimation algorithms (Denham, 1997 ; Seernels et al., 2004). A recent 

work on this topic has been presented by Zhang and Fearn (2015).  

2.2.3 Re-sampling based methods 

The underlying idea behind these methods is to build synthetic datasets from the original 

calibration dataset by introducing artificial perturbations and  to estimate the covariance of the 

model parameters  based on these datasets. The two most important methods are jack-knife and 

bootstrap (Zhang and Garcia-Munoz, 2012). 

Jack-knife consists of generating 𝐾 datasets (𝐗𝑘, 𝑦𝑘), 𝑘 = 1,2, … , 𝐾 by deleting one calibration 

sample at a time from the original dataset and estimating the regression coefficient  �̂�𝑘 for each 

reduced dataset. A set of “pseudo” regression coefficients �̂�𝑝𝑠,𝑘 are then obtained according to 

the following equation: 

 

�̂�𝑝𝑠,𝑘 = 𝑁�̂� − (𝑁 − 1)�̂�𝑘;      𝑘 = 1,…𝐾  
 

(2.30) 
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where  �̂� is the vector of the model parameters obtained with the entire calibration dataset. From 

Eq. (2.30) and after small algebraic manipulations, the covariance of �̂�  can be obtained 

according to: 

 

cov(�̂�) =
1

𝑁(𝑁 − 1)
∑(�̂�𝑝𝑠,𝑘 − �̅�𝑝𝑠)

𝐾

𝑖=1

(�̂�𝑝𝑠,𝑘 − �̅�𝑝𝑠)
T   

 

(2.31) 

where �̅�𝑝𝑠 is the vector collecting the average values of the pseudo parameters. The 

combination of Eq. (2.31) with Eq. (2.23) yields the estimation of prediction uncertainty using 

a jack-knife approach: 

 

var(�̂�𝑝) = 𝐱𝑝
T 1

𝑁(𝑁−1)
∑ (�̂�𝑝𝑠,𝑘 − �̅�𝑝𝑠)
𝐾
𝑖=1 (�̂�𝑝𝑠,𝑘 − �̅�𝑝𝑠)

T 𝐱𝑝 + 𝜎
2 . 

 

(2.32) 

As regard bootstrap techniques, two main approaches to estimate prediction uncertainty can be 

found in the literature, namely bootstrap by residuals and bootstrap by objects.  

In the former approach, new residual vectors are randomly generated by drawing the original 

residuals with replacements and new datasets are obtained by adding these new residuals to the 

fitted response �̂�𝑝. The variance of the regression coefficients vector can then be derived under 

the assumption of independent and identically distributed re-sampled datasets. The procedure 

is as follows. 

First, the real residuals are computed according to : 

 

𝜖𝑛 =
𝑦𝑐𝑎𝑙,𝑛 − �̂�𝑐𝑎𝑙,𝑛

(1 −
𝑑𝑓
𝑁 )

1
2

 ; 𝑛 = 1,2, … , 𝑁 

 

(2.33) 

where �̂�𝑐𝑎𝑙,𝑛 is the 𝑛-th PLS fitted response for the 𝑛-th calibration sample. The new residual 

vectors and the corresponding new response datasets are then computed according to the set of 

equations: 

 

𝜓𝑛
𝑏 = round [𝑈(0,1) ⋅ 𝑁] + 1 ;    𝑛 = 1,2, … ,𝑁; 𝑏 = 1,2, … , 𝐵  

 
(2.34) 

𝑦𝑛
𝑏 = �̂�𝑐𝑎𝑙,𝑛 + 𝜖𝜓𝑛𝑏 ;                           𝑛 = 1,2, … , 𝑁; 𝑏 = 1,2, … , 𝐵 (2.35) 

 

where round [⋅] represents the rounding to the nearest integer number towards zero and 𝑈(0,1) 

is a random number drawn from a uniform distribution between 0 and 1. The bootstrap 

procedure is repeated 𝐵 times, thus generating 𝐵 re-sampled datasets. The value of 𝐵 should be 
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chosen large enough to obtain accurate estimate of the covariance of the model parameters: 

typical values are in the range 𝐵 = [100 ÷ 10000].  

The set of 𝐵 re-sampled datasets can therefore be mathematically summarized as: 

 

(𝐱𝑛
𝑏 , 𝐲𝑛

𝑏) = (𝐱cal,𝑛, 𝐲𝑛
𝑏), 𝑛 = 1,2, …𝑁;    𝑏 = 1,2, … , 𝐵 (2.36) 

𝐗𝑏 = (𝐱1
𝑏, … , 𝐱𝑁

𝑏 )
T
                 𝑏 = 1,2, … , 𝐵 (2.37) 

𝐲𝑏 = (𝐲1
𝑏 , … , 𝐲𝑁

𝑏)
T
                  𝑏 = 1,2, … , 𝐵                  (2.38) 

 

with 𝐱cal,𝑛 input vector for the 𝑛-th calibration sample. For each resampled dataset [𝐗𝑏; 𝐲𝑏], the 

corresponding vector of model parameters �̂�𝑏 can be obtained by fitting the model responses 

of the given dataset. Once iterated for all the 𝐵 datasets, the bootstrap estimated of the 

covariance of the vector of model parameters �̂� can be obtained according to: 

 

cov(�̂�) =
1

𝐵 − 1
 ∑(�̂�𝑏 − �̅�)(�̂�𝑏 − �̅�)

T
𝐵

𝑏=1

  

 

(2.39) 

where  �̅� is the average of the 𝐵 regression vectors �̂�𝑏. By plugging in Eq. (2.39) into Eq. (2.23) 

the estimation of prediction uncertainty can be obtained: 

 

var(�̂�𝑝) = 𝐱𝑝
T 1

𝐵−1
 ∑ (�̂�𝑏 − �̅�)(�̂�𝑏 − �̅�)

T𝐵
𝑏=1 𝐱𝑝 + 𝜎

2.   

 

(2.40) 

Eq. (2.40) is the mathematical formulation of the variance of a new PLS response obtained 

with a bootstrap of residuals method. 

In the bootstrap by objects approach, the procedure is the same as in the bootstrap by residuals, 

with the difference that the 𝐵 re-sampled datasets are generated by randomly drawing sample 

(and not residuals) with replacements. The covariance of the model parameters vector is 

obtained as in Eq. (2.39), and prediction uncertainty has the exact same formulation as in Eq. 

(2.40). 

2.2.4 The Unscrambler method 

The Unscrambler formula (De Vries and Ter Braak, 1995) for the estimation of prediction 

uncertainty in PLS modeling is an empirical formula that is implemented in the chemometrics 

commercial software Unscrambler™.  Its derivation has been thoroughly reviewed  in the 

literature (De Vries and Ter Braak, 1995; Høy et al., 1998). Given the formulation of the PLS 

prediction model (2.17), the underlying idea behind this approach is to derive two expressions 

for prediction uncertainty assuming first that the PLS scores are not affected by uncertainty, 



 
 
60 Chapter 2 

 

                    ________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

and then that the model loadings are not affected by uncertainty. An average of the two 

expressions is then obtained leading the following estimate of prediction uncertainty: 

 

var(�̂�𝑝) = 𝑉𝑦𝑣𝑎𝑙 (1 −
𝐴+1

𝑁
) (ℎ𝑝 +

𝑉𝑥𝑝

𝑉𝐱𝑡𝑜𝑡,𝑣𝑎𝑙
) .   (2.41) 

 

where 𝑉𝑦𝑣𝑎𝑙is the 𝑦- residual variance in the validation dataset, 𝑉𝐗𝑡𝑜𝑡,𝑣𝑎𝑙  is the average 𝐱-residual 

variance in the validation dataset and 𝑉𝑥𝑝is the 𝐱-residual variance in the new regression vector 

𝐱𝑝. Details on the mathematical derivation of Eq. (2.41) are reported in the cited references. 

2.2.5 Estimation of 𝜎2 and degrees of freedom 

The estimation of prediction uncertainty according to OLS-type methods (2.23), linearization-

based methods (2.29), jack-knife approach (2.32) and bootstrap methods (2.40) requires an 

estimation of the standard deviation of the model residuals 𝜎.  

An unbiased estimator of 𝜎 that is typically used in the chemometrics literature is the root means 

squared error of calibration 𝑅𝑀𝑆𝐸𝐶:  

 

𝑅𝑀𝑆𝐸𝐶 = (
∑ (𝑦𝑐𝑎𝑙,𝑛 − �̂�𝑐𝑎𝑙,𝑛)

2𝑁
𝑛=1

𝑁 − 𝑑𝑓
) (2.42) 

 

where �̂�𝑐𝑎𝑙,𝑛 is the PLS prediction of the 𝑛-th calibration object. 𝑅𝑀𝑆𝐸𝐶 is used in place of 𝜎 

to estimate prediction uncertainty according to the methods described in the previous sections. 

However, the use of 𝑅𝑀𝑆𝐸𝐶 according to Eq. (2.42) poses the problem of obtaining an accurate 

estimation of the degrees of freedom of the model13. Three approaches have been proposed to 

estimate 𝑑𝑓 (Zhang and Garcia-Munoz, 2009): 

1. Naïve approach: each PLS factor (i.e. LV) is assumed to consume one degree of 

freedom; 

2. Pseudo degrees of freedom (PDF) approach: it computes 𝑑𝑓 based on the ratio of a 

model fit error and a predictive performance error (derivation can be found in the work 

of Zhang and Garcia-Munoz, 2009); 

3. Generalized degrees of freedom (GDF) approach: it computes 𝑑𝑓 based on the sum of 

the sensitivity of each fitted response to perturbations in the corresponding observed 

response. 

In this study, the only approach that has been used to estimate 𝑑𝑓 is the Naïve approach. 

Additional details are provided in Chapter 3.  

                                                           
13 Note that the estimation of the degrees of freedom is also intrinsically required in order to estimate prediction uncertainty 

in the bootstrap by objects/residuals approach. Moreover, the estimate of 𝑑𝑓 is required in order to build the confidence 

interval for the model prediction (Step #2). 
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2.2.5.1 Summary 

A schematic review of all the methods to estimate prediction uncertainty in PLS modeling 

described above is reported in Table 2.1. In the same table, the different types of model 

uncertainty that are taken into account by each method are also reported. 
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Table 2.1. Summary of the different methods to estimate prediction uncertainty in PLS modeling. 

Method Std. of prediction uncertainty 𝑠 = √var(�̂�𝑝) 
Measurement uncertainty 

on 𝐗 and y? 

Uncertainty on model 

parameters? 

Structural 

uncertainty? 

OLS-type 𝑠 = 𝑅𝑀𝑆𝐸𝐶√1 + ℎ𝑝 ✘ ✔ ✔ 

Linearization 

 

s = 𝑅𝑀𝑆𝐸𝐶√(1 + 𝐱𝑝
T𝐉𝑝𝐉𝑝

T𝐱𝑝) 

 

✘ ✔ ✔ 

Jack-knife 

 

s = √𝐱𝑝
T

1

𝑁(𝑁 − 1)
∑(�̂�𝑝𝑠,𝑘 − �̅�𝑝𝑠)

𝐾

𝑖=1

(�̂�𝑝𝑠,𝑘 − �̅�𝑝𝑠)
T 𝐱𝑝 + 𝑅𝑀𝑆𝐸𝐶

2 

 

✘ ✔ ✔ 

Bootstrap 

residuals 

 

s = √𝐱𝑝
T

1

𝐵 − 1
 ∑(�̂�𝑏 − �̅�)(�̂�𝑏 − �̅�)

T
𝐵

𝑏=1

𝐱𝑝 + 𝑅𝑀𝑆𝐸𝐶
2 

 

✘ ✔ ✔ 

Bootstrap 

objects s = √𝐱𝑝
T

1

𝐵 − 1
 ∑(�̂�𝑏 − �̅�)(�̂�𝑏 − �̅�)

T
𝐵

𝑏=1

𝐱𝑝 + 𝑅𝑀𝑆𝐸𝐶
2 ✘ ✔ ✔ 

Unscrambler  s = √𝑉𝑦𝑣𝑎𝑙 (1 −
𝐴+1

𝑁
) (ℎ𝑝 +

𝑉𝑥𝑝

𝑉𝐱𝑡𝑜𝑡,𝑣𝑎𝑙
) . ✘ ✔ ✔ 
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SECTION B: BAYESIAN MODELING 

 

Since the introduction of Bayes’ theorem (Bayes, 1763), Bayesian statistical modeling has been 

considered as an alternative school of thought as opposed to classical frequentist statistical 

modeling. The two approaches rely on a completely different interpretation of the concept of 

probability: in frequentist statistics, probability is defined as the frequency that an event will 

occur over a large number of trials. On the other hand, in Bayesian statistics, probability is 

considered as the degree of plausibility for the occurrence of a given event.  

In the process systems engineering community, Bayesian modeling has gained particular 

attention in the last few decades, thanks to the rapid increase of computational power for 

intensive numerical calculations. The ability to perform in a very short time Markov-chain 

Monte Carlo (MCMC) simulations, such as the ones required in Bayesian modeling, played a 

key role for the application of Bayesian methodologies in chemical engineering- related 

problems. 

In this section, a brief mathematical background on Bayesian statistics is presented. A particular 

focus is given to Bayesian multivariate linear regression, since its practical application to 

problems related to the pharmaceutical industry will be presented in Chapter 4.  A rigorous 

mathematical description of Bayesian modelling for chemical engineers can be found in the 

work of Lenk and DeSarbo (2000). 

2.3 Key concepts of Bayesian statistics 

The key assumption of Bayesian statistics is that the variables of interest are random variables 

described by probability density functions (PDFs). Let 𝐘 = (𝐲1, 𝐲2, … , 𝐲𝑀) be a set of 𝑁 

observations of the multivariate responses 𝐲𝑚[𝑁 × 1],𝑚 = 1,2, … ,𝑀. In the Bayesian 

framework, 𝐲𝑚, 𝑚 = 1,2, … ,𝑀 are a set of random variables described by their respective 

probability distributions. The vector 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑀) that collects all the 𝑀 response 

variables is therefore assumed to be a multivariate random variable with a given PDF. It is 

assumed that 𝐲 depends upon a set of parameters 𝛉 according to a given pre-defined model (i.e. 

regression model, mechanistic model etc…). The PDF of 𝐲, given the parameters 𝛉 and any 

other pertinent information about the system 𝐼, is expressed as 𝑝(𝐲|𝛉, 𝐼). 𝐼 includes, for 

example, any relevant assumption that is made on the type and shape of the PDF of 𝐲. The 

vector of parameters 𝛉 is considered as a multivariate random variable with PDF  𝑝(𝛉|𝐲, 𝐼). 

Any information known a priori on the values and uncertainty of the model parameters 𝛉  is 

described by the PDF 𝑝(𝛉|𝐼). For sake of simplicity, 𝐼 will be omitted in the following notation. 

Bayes’ theorem can be formulated according to the following expression: 
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𝑝(𝛉|𝐲) =
𝑝(𝐲|𝛉)𝑝(𝛉)

∫ 𝑝(𝐲|𝛉)𝑝(𝛉)d𝛉
𝜃

 (2.43) 

 

where 𝑝(𝛉) is called the prior (distribution) of 𝛉, 𝑝(𝛉|𝐲) the posterior of 𝛉 and 𝑝(𝐲|𝛉) is called 

the likelihood function and it is often written as ℒ(𝛉|𝐲). The prior of 𝛉 contains all the 

information available a priori on 𝛉; the likelihood function describes the plausibility of 𝛉 given 

𝐲, while 𝑝(𝛉|𝐲) describes how 𝛉 is distributed given the observed response data. The 

denominator of Eq. (2.43) is a constant normalizing factor that depends only on the data 

available. For this reason, Eq. (2.43) is often expressed as: 

 

𝑝(𝛉|𝐲) ∼ ℒ(𝛉|𝐲) 𝑝(𝛉) . (2.44) 

 

Eq. (2.44) clarifies that the posterior distribution of the parameters 𝛉, given the observed data, 

is obtained from the prior knowledge about 𝛉, updated according to the likelihood function 

ℒ(𝛉|𝐲). The correct interpretation and application of Eq. (2.44) requires few comments, 

namely: 

1. How the prior distribution 𝑝(𝛉) should be assigned; 

2. how the final posterior 𝑝(𝛉|𝐲) can be computed from a practical viewpoint; 

3. how the uncertainty on the prediction of a new response �̂�𝑝 can be obtained in a Bayesian 

framework. 

2.3.1 Prior distribution 𝑝(𝜽) 

The incorporation of the prior distribution 𝑝(𝛉) in the computation of the posterior of the model 

parameters is one of the key difference between Bayesian and frequentist parameter estimation. 

Every Bayesian computation requires an appropriate choice of the prior of 𝛉: this is often 

considered as a strong argument against Bayesian modeling, since there is no general rule on 

the choice of 𝑝(𝛉). However, in many model-based engineering-related problems, the 

possibility of incorporating available knowledge on the system can be extremely beneficial to 

improve the accuracy of model predictions. In this sense, the above argument can be easily 

reverted and the incorporation of 𝑝(𝛉) in the analysis can be seen as one of the strengths of the 

Bayesian framework. 

Although there is no general rule for the choice of 𝑝(𝛉), there are two different types of priors 

that can be used when performing a Bayesian simulation: 

1. Non-informative prior distributions 

2. Informative prior distributions. 

Non-informative priors are used when very limited or no knowledge is available for the model 

parameters 𝛉. In this case, the posterior 𝑝(𝛉|𝐲) is affected only by the likelihood ℒ(𝛉|𝐲). The 

typical choice of non-informative prior that can be made is a flat prior distribution for 𝛉 over 
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its entire domain. However, it is worth noticing that there are other type of priors that, even 

though they can be classified as informative from a structural point of view, can be considered 

as non-informative when the values of some or all of their moments is not informative. A typical 

example is a Gaussian prior distribution (thus informative from a structural point of view) with 

a very large standard deviation and a random guess of its mean value. This type of prior 

distribution has to be considered non-informative, even though formally informative from a 

structural point of view. The reason why the choice of non-informative priors with informative 

structure can be useful in certain applications will be discussed in more detail in Chapter 4.  

Informative priors can be used when general knowledge is available on 𝛉, e.g. from previous 

experiments or from previous studies for the system under analysis. In this case, suitable PDF 

structures and values for their moments can be assigned for the prior 𝑝(𝛉). The definition of 

informative priors typically becomes more challenging when the dimensionality of 𝛉 increases 

(Coleman and Block, 2006). The problem can be typically solved by performing a sensitivity 

analysis of the posterior with respect to the conditional priors of the single parameters, and then 

obtaining a suitable joint prior for 𝛉 based on the results of this analysis. 

2.3.2 Posterior distribution 𝑝(𝜽|𝒚) 

Once the prior distribution for the model parameters has been set, the posterior  𝑝(𝛉|𝐲) can be 

computed according to Bayes’ theorem (2.44).  The solution of (2.44) can be analytical or 

numerical. Obtaining an analytical expression for 𝑝(𝛉|𝐲) is possible in very rare situations and 

under very strict simplifications (low dimensionality, linearity, simple priors etc…). In many 

engineering-related problems, the solution of (2.44) can only be obtained with numerical 

sampling methodologies such as Markov Chain Monte Carlo (MCMC) techniques. Different 

sampling algorithms have been proposed that are able to follow any joint posterior distribution 

of the model parameters. The most famous MCMC sampling algorithms are the Metropolis 

algorithm and the Metropolis-Hastings algorithm (Hastings, 1970), the modified Metropolis-

Hastings algorithm and the Gibbs sampler (Geman, S. and Geman, D., 1993). The description 

of these algorithms is out of the scope of this Dissertation. A thorough description can be found 

in the cited references.  

The application of these sampling strategies to obtain a discrete representation of  𝑝(𝛉|𝐲) 

requires intensive computer simulations due to the (possibly) slow convergence of the Markov 

chains (MCs). The assessment of the convergence of the MCs and the computational 

requirements are thoroughly discussed in Chapter 4. 

2.3.3 Posterior predictive distribution of a new response �̂�𝑝 

Once the parameters of the model have been calibrated in a Bayesian framework (i.e. their 

posterior distribution has been obtained), it is very often desirable to use that model to predict 
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a new response �̂�p and to compute the uncertainty associated with that prediction. The strength 

of Bayesian modeling is that the value of a new prediction and its uncertainty are derived in a 

unified framework. In fact, as discussed in section 2.3, the model prediction �̂�p is treated as 

random variable and it is therefore described by a PDF 𝑝(�̂�𝑝|𝐲). The distribution 𝑝(�̂�𝑝|𝐲) is 

called the posterior predictive distribution (PPD) of �̂�𝑝. The PPD of �̂�p can be formally 

computed as: 

 

𝑝(�̂�𝑝|𝐲) = ∫ 𝑝 (�̂�𝑝, 𝛉|𝐲)d𝛉 = ∫ 𝑝 (�̂�𝑝|𝐲, 𝛉)𝑝(𝛉|𝐲)d𝛉
𝛉𝛉

 . (2.45) 

 

Under the assumption that, for a given 𝛉, �̂�𝑝 and 𝐲 are conditionally independent, Eq. (2.45) can be 

simplified to: 

 

𝑝(�̂�𝑝|𝐲) = ∫ 𝑝 (�̂�𝑝|𝛉)𝑝(𝛉|𝐲)d𝛉
𝛉

 . (2.46) 

 

According to Eq. (2.45), the computation of the PPD of  �̂�𝑝 requires the posterior distribution 

𝑝(𝛉|𝐲) of the model parameters, obtained according to Eq. (2.44), and the PDF  𝑝(�̂�𝑝|𝛉), which 

can be obtained from the original model for the given values of 𝛉. If analytical expressions for 

𝑝(𝛉|𝐲) and 𝑝(�̂�𝑝|𝛉) were available, Eq. (2.46) could be used to obtain an analytical expression 

for 𝑝(�̂�𝑝|𝐲) by direct integration.  However, as previously explained, the analytical expression 

of 𝑝(𝛉|𝐲) is almost never available and this PDF is usually obtained via MCMC sampling. For 

this reason, the PPD of  �̂�𝑝 can only be obtained by propagating the posterior PDF of the model 

parameters to the model responses, i.e. samples from the PPD can  be obtained following the 

procedure: 

1. Draw a sample 𝛉(𝑙) from the posterior distribution of the model parameters  𝑝(𝛉|𝐲); 

2. Draw the respective model response �̂�𝑝
(𝑙)

  from the model 𝑝(�̂�𝑝|𝛉); 

3. Repeat for 𝑙 = 1,2, … , 𝐿 times, with 𝐿 number of samples (user-defined). 

The application of the above procedure allows obtaining the PPD for a new response, with the 

notable drawback of increasing the total computational time (sampling from the PPDS sums up 

to the sampling from the posterior of the model parameters). 

2.3.4 Credible region Vs Confidence region 

The PPD of a new response that can be obtained from a Bayesian simulation carries information 

on both the predicted value of the new response vector �̂�𝑝 and its uncertainty. In this regards, it 

can be said that prediction uncertainty is incorporated in a straightforward fashion in the 

Bayesian framework. 
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In many situations, it is desirable to express the uncertainty on the model predictions in terms 

of confidence intervals/regions around the expected value of �̂�𝑝, similarly to what is done in 

classical frequentist modeling.  

From a Bayesian perspective, the concepts of confidence interval and confidence region of 

frequentist statistics are replaced by the concepts of credible interval and credible region. 

Although the two definitions (confidence region/ credible region) may look similar at a first 

sight, they are completely different from both a methodological and significance point of view. 

In frequentist statistics, the predicted response �̂�𝑝 is considered as a fixed value and the 

boundary of the 𝑀- dimensional confidence region as a random variable. On the other side, in 

Bayesian statistics, the predicted response �̂�𝑝 is considered as a random variable and the 

boundary of the 𝑀- dimensional credible region as a random variable. In other terms, a 

frequentist (1 − 𝛼)% confidence region means that if a large number of repeated samples from 

the original population is drawn, (1-𝛼)% of these samples would fall within the calculated 

confidence region, with 𝛼 = user-defined significance level. On the other hand, a 𝛿 (%) credible 

interval for the random variable �̂�𝑝 means that the probability that �̂�𝑝 lies within the credible 

region is equal to 𝛿.  

From a mathematical point of view, a 𝛿 (%) credible region 𝐶𝛿 for the random variable �̂�𝑝 can 

be defined as: 

 

𝐶𝛿 :  ∫ 𝑝 (�̂�𝑝|𝐲)d�̂�𝑝
Cδ

 = 𝛿 (2.47) 

 

The definition of credible region (2.47) gives a measure of prediction uncertainty that can be 

obtained in a straightforward way for both univariate and multivariate responses. This last 

situation is of particular interest in engineering-related problems and gives a great advantage 

with respect to classical frequentist statistics, where the definition of multidimensional 

confidence regions for multivariate response vectors is often very complicated or obtained 

under strong and limiting assumptions. 

2.4 Bayesian multivariate linear regression 

As observed in section 2.1, many applications involve the availability of a historical dataset of 

model responses 𝐘 [𝑁 × 𝑀], that has to be correlated with a historical dataset of model inputs 

(ore regressors) 𝐗 [𝑁 × 𝑉]. The simplest model that can be used to correlated the input dataset 

with the output dasate is a linear multivariate regression model: 

 

  𝐘 = 𝐗𝐁 + 𝐄 (2.48) 
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where 𝐁 [𝑉 × 𝑀] is the matrix of model parameters, and 𝐄 [𝑁 × 𝑀] is the matrix of model 

residuals. The model residuals are assumed to have 𝟎- mean and characterized by a semi-

definite positive covariance matrix 𝚺 [N ×M], equal for every model residual 𝐞𝑚, 𝑚 =

1,2, … ,𝑀. 

The Bayesian calibration of the regression model (2.48) can be obtained by sampling from the 

joint multivariate posterior PDF of 𝐁 according to Eq. (2.44). The calibrated regression model 

can then be used to predict a new response �̂�𝑝 and characterize prediction uncertainty according 

to Eq. (2.46). The simple model structure of Eq. (2.48) allows obtaining a deeper insight on the 

likelihood function and posterior distribution of 𝐁. The main characteristics are briefly 

described in the following sections. 

2.4.1 Likelihood function in multivariate linear regression 

The linear regression model (2.48) allows obtaining a simple analytical expression for the 

likelihood function ℒ(𝐁, 𝚺|𝐲) under the assumption that the model residual are independent 

identically normal distributed with mean 𝟎 and covariance 𝚺. From the properties of normal 

distributions, it follows that each response vector 𝐲𝑚, 𝑚 = 1,2, …𝑀 is assumed to follow a 

multivariate normal distribution according to: 

 

  𝐲𝑛 ∼ 𝑁𝑚(𝐱𝑖𝐁, 𝚺),       𝑛 = 1, .2, … ,𝑁. (2.49) 

 

Under this assumption, the likelihood function ℒ(𝐁, 𝚺|𝐲) can be analytically expressed as: 

 

  ℒ(𝐁, 𝚺|𝐲) = (2𝜋)−
𝑀𝑁

2 det(𝚺)−
𝑁

2 exp(−
1

2
𝛴𝑛=1
𝑁  [(𝐲𝑛 − 𝐱𝑛𝐁)𝚺

−1(𝐲𝑛 − 𝐱𝑛𝐁)
T])   (2.50) 

 

or more conveniently as: 

 

  ℒ(𝐁, 𝚺|𝐲) ∼ det(𝚺)−
𝑁

2 exp (−
1

2
 𝑡𝑟 [𝚺−1(𝐘 − 𝐗𝐁)T(𝐘 − 𝐗𝐁)])   (2.51) 

 

Expression (2.51), combined with any choice of the prior distributions of the model parameters 

and the covariance of the residuals, allows obtaining the joint posterior of the model parameters 

and the covariance of the residuals. A possible set of prior distributions that can be assigned is 

discussed in the next section. 

2.4.2 Prior distributions 

Depending on the choice of the joint prior distribution for the model parameters and the 

residuals covariance (informative/non-informative, as discussed in section 2.3.1), the joint 

posterior can be obtained by updating the given prior through the likelihood function (2.51). 
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As regard non-informative prior distributions, different choices have been proposed in the 

literature(see e.g. Geisser and Cornfield (1963)). A typical choice is that of assuming 𝐵 and Σ 

completely independent to each other and assigning a flat distribution for 𝐁 (i.e. a non-

informative prior) and an inverse Wishart distribution for 𝚺 (Wishart, 1958). 

A common choice that is adopted is to use a structural informative prior distribution for 𝐁, and 

assigning informative or non-informative values to the moments of this distribution according 

to the previous knowledge available on the model parameters. Typically, a (𝑉 ×𝑀) matrix-

variate normal distribution is assigned to the conditional distribution of 𝐁 with respect to 𝚺, and 

a inverse Wishart distribution is assigned as the prior of 𝚺. To understand the reasoning behind 

this choice, it is worth noticing that the joint prior distribution of 𝐁 and 𝚺 (𝑝(𝑩, 𝚺)) can be 

decomposed as: 

 

  𝑝(𝐁, 𝚺) = 𝑝(𝐁|𝚺)𝑝(𝚺)   (2.52) 

 

where 𝑝(𝐁|𝚺) is the conditional distribution of 𝐁 with respect to 𝚺, and 𝑝(𝚺) is the prior 

distribution of  𝚺. Based on Eq. (2.52), the choice of a matrix-variate normal distribution for 

𝑝(𝐁|𝚺) and an inverse Wishart distribution for 𝑝(𝚺) is related to the fact that they both represent 

conjugate prior distributions (i.e. a joint Normal-Wishart prior distribution for (𝐁, 𝚺−1) will 

generate a Normal-Wishart posterior distribution for 𝑝(𝐁, 𝚺−1)). Therefore, 𝑝(𝐁|𝚺) can be 

expressed as: 

 

  𝑝(𝐁|𝚺) ∼ 𝑁𝑉×𝑀(𝐁0, 𝚺, 𝚺0)  (2.53) 

 

where 𝐁0 and 𝚺0 are the initial guesses for the model parameters and residuals covariance 

respectively (i.e. the values that the user can set in order to make more or less informative the 

prior distribution). On the other hand, an inverse Wishart distribution is assigned to 𝑝(𝚺): 

 

  𝑝(𝚺) ∼ 𝑊−1(𝛀, 𝜈0)  (2.54) 

 

where 𝛀 is called the a priori response scale matrix and can be interpreted as a sum of squared 

errors, and 𝜈0 (user-defined) is the number of degrees of freedom of the prior distribution. The 

lower 𝜈0, the lower the subjectivity of the prior distribution. The analytical expression of the 

inverse Wishart distribution can be found in the work of Wishart (1958). 

Eq (2.54) and (2.53) leads to the joint prior distribution according to Eq. (2.52). The above 

priors have been set in all the work presented in this Dissertation and additional details on this 

topic will be given in Chapter 4.  



 
 

70 Chapter 2 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

2.4.3 Posterior distribution 

By combining Eq. (2.54) with (2.53) through Eq. (2.52), and combining them with Eq. (2.51), 

the joint posterior distribution of 𝐁 and 𝚺 can be obtained from Eq. (2.44) according to the 

following expression: 

 

𝑝(𝐁, 𝚺|𝐗, 𝐘) ∼  ℒ(𝐁, 𝚺|𝐲) 𝑝(𝐁|𝚺)𝑝(𝚺) ∼ 

∼  det(𝚺)−
𝑁
2 exp (−

1

2
𝑡𝑟[𝚺−1(𝐘 − 𝐗𝐁)T(𝐘 − 𝐗𝐁)]) ⋅ 

⋅ det(𝚺)−
𝑉

2 exp (−
1

2
𝑡𝑟[𝚺−1(𝐁 − 𝐁0)

𝑇𝚺0
−1(𝐁 − 𝐁0)]) det(𝚺)

−𝜈0−2𝑀

2 exp (−
1

2
𝑡𝑟(𝛀𝚺−1))  

(2.55) 

 

Sampling from the above distribution can be obtained with one of the MCMC sampling 

strategies discussed in section 2.3.2. The obtained PDF can then be obtained to build the PPD 

of a new response according to the procedure described in the next section. 

2.4.4 Posterior predictive distribution of a new response 

The PPD for a new response can be obtained by re-writing Eq. (2.45) adapted to the multivariate 

linear regression scenario, i.e.: 

 

  𝑝(�̂�𝑝|𝐗, 𝐘, 𝐱𝑝) =  ∫ ∫𝑝(�̂�𝑝|𝐁, 𝚺)𝑝(𝐁, 𝚺)d𝐁d𝚺
𝚺𝐁

 (2.56) 

 

Depending to the type of priors chosen (non-informative or informative), it may be possible to 

give an analytical expression to Eq. (2.56). For example, if the structurally informative priors 

described in section 2.4.2 are used, the corresponding PPD can be obtained by plugging in Eq. 

(2.55) into Eq. (2.56) and Eq. (2.49) adapted to the new response vector �̂�𝑝.  In any case, the 

PPD is typically obtained with the sampling procedure described in section 2.3.2. 
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SECTION C: FEASIBILITY ANALYSIS  

 

The concept of feasibility and flexibility analysis applied to chemical engineering problems 

was first introduced in the ‘80s by the joint studies of Morari (Lenhoff and Morari, 1982) and 

Grossmann (Halemane and Grossman, 1983). Although the definitions of feasibility and 

flexibility analysis are different from each other, they are often interchanged with a slight 

misuse of terminology. 

Feasibility analysis describes the ability of a process to satisfy all the relevant constraints 

(quality constraints, production constraints, environmental constraints) in the presence of 

uncertainty on (i) model parameters, (ii) raw material properties (external variability) and (iii) 

critical process parameters (external variability). These three sources of uncertainty are 

typically identified as uncertain parameters, and the combination of these parameters that 

satisfy all the relevant constraints is defined as feasible region. The identification of the feasible 

region can be obtained by solving a feasibility test problem. Mathematically, the variables that 

appear in a feasibility test problem formulation can be classified as: 

1. design variables 𝐝 [1 × 𝐷 ]: variables related to the structure and equipment size; 

2. control variables 𝐮 [1 × 𝑈]: manipulated variables of the system; 

3. uncertain parameters 𝛘 [1 × 𝐶], as defined above. 

If the process is at steady-state, the set of 𝐽 relevant constraints imposed on the process under 

investigation can be mathematically written in forms of inequalities of the type: 

 

   𝑓𝑗(𝐝, 𝛘, 𝐮) ≤ 0,   𝑗 = 1,2, … , 𝐽.  (2.57) 

  

If it is assumed that there are no control variables in the system, the maximum values of all 

these constraints defines the so-called feasibility function Ψ(𝐝, 𝛘): 

 

   Ψ(𝐝, 𝛘) = max
𝐽
𝑓𝑗(𝐝, 𝛘)  (2.58) 

 

s.t.  𝛘 ∈ [𝝌𝑚𝑖𝑛 ;  𝝌𝑚𝑎𝑥]. 
 

 

If the process design is fixed, the feasibility function has an immediate interpretation: if 

Ψ(𝐝, 𝛘) < 0, the process can be feasibly operated for the given uncertain parameters 𝛘; if 

Ψ(𝐝, 𝛘) > 0, the process is infeasible. It follows that the feasible region can be defined as the 

combinations of uncertain parameters that satisfy Ψ(𝐝, 𝛘) < 0; in particular, the combinations 

of uncertain parameters that satisfy the condition Ψ(𝐝, 𝛘) = 0 represent the boundary of the 

feasible region. 

The solution of the feasibility problem (2.58) can be obtained by solving the equivalent 

optimization problem: 
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   Ψ(𝐝, 𝛘) = min
𝑝
𝑝  (2.59) 

s. t.   𝑓𝑗(𝐝, 𝛘) ≤ 𝑝, 𝑗 = 1,2, … , 𝐽. 

 

The solution of the optimization problem (2.59) is straightforward if the process constraints are 

differential closed-form constraints and their evaluation is computationally tractable. However, 

many applications involve black-box constraints and the evaluation of the original process 

model can be extremely demanding from a computational point of view. For this reason, 

different surrogate-based approaches have been developed to overcome these limitations 

(Bhosekar and Ierapetritou, 2017). These methods build a surrogate as a cheap and reliable 

approximation of the original process model, and compute the feasible region based on this 

surrogate rather than the original process model. The main concepts of surrogate-based 

feasibility analysis are briefly summarized below. An extension of feasibility analysis applied 

to dynamical systems is reported in Chapter 6.  

2.5 Surrogate-based feasibility analysis 

The key idea of surrogate-based feasibility analysis is to build a surrogate as an approximation 

of the original process model, and use this surrogate to solve the feasibility problem in order to 

identify the feasible region of the process. Clearly, the approximation error that is introduced 

with the surrogate must be kept to a minimum, in order to avoid a wrong representation of the 

feasible region with respect to the one that can be obtained with the original process model. 

Surrogate-based feasibility analysis consists of different steps, namely: 

1. initial sampling of the input domain (i.e. uncertain parameters domain); 

2. evaluation of the feasibility function for each of the initial samples obtained at step 1;  

3. determination of a response surface for the feasibility function; 

4. continuous update of the surrogate model with adaptive sampling strategies until the 

surrogate accuracy is deemed to be sufficient; 

5. prediction of the feasible region boundary using the surrogate obtained after the 

adaptive sampling strategy. 

Different choices can be used when applying this methodology, including the choice of the 

surrogate model, the type of adaptive sampling strategy adopted and the stopping criterion for 

the surrogate accuracy. A brief of each of these aspects is reported below. 

2.5.1 Surrogate models 

Different surrogate models have been proposed in the literature in order to perform a feasibility 

analysis exercise, including high-dimensional model representations (Banerjee and 

Ierapetritou, 2002; Banerjee et al., 2010), Kriging surrogates (Boukouvala and Ierapetritou, 
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2012; Boukouvala and Ierapetritou, 2013) and Radial-Basis function (RBF) surrogates (Wang 

and Ierapetritou, 2017). Kriging surrogates and RBF surrogates have been proven to be more 

efficient than high-dimensional surrogates, while maintaining the computational burden 

relatively low. 

2.5.1.1 Kriging surrogate 

Kriging (Krige, 1951) is a well-established interpolation method that has proven to work 

efficiently as an approximation of many nonlinear dynamic models. The basic idea of Kriging 

is that the function value for an unexplored sampling point can be obtained as a weighted sum 

of the function values at known sampling locations. Given 𝑆 design sites, the function value at 

the unknown sampling point 𝐱∗ can be obtained from the function values at the known design 

sites 𝐱𝑠, 𝑠 = 1,2, … 𝑆 according to: 

  

  𝑓(𝐱∗) =∑𝑤𝑠 𝑓(𝐱𝑠)

𝑆

𝑠=1

+ 𝜖∗  (2.60) 

 

where 𝜖∗ is the variance of the Kriging predictor at the sampling point 𝐱∗. Eq. (2.60) can be 

decomposed into a regression model and a correlation model, according to the structure: 

 

  𝑓(𝐱∗) = 𝐟(𝐱𝑠)
T𝛾 + 𝐫(𝐱𝑠)

T𝛿  (2.61) 

 

where 𝐟(𝐱𝑠)
T is the vector collecting the function values at the 𝑆 design sites and 𝐫(𝐱𝑠)

T is a 

vector collecting the correlations between the function values at the 𝑆 design sites.  

Different types of regression models and correlation models can be used in Eq. (2.61), thus 

leading to different types of Kriging estimators. The regression models are typically 

polynomial, e.g. zero-th order, first-order, second-order polynomials and so on. The correlation 

models can be of different types, including linear, exponential and Gaussian correlation models. 

A thorough discussion on the different correlation models of the Kriging estimator can be found 

in the work of Kleijnen (Kleijnen, 2009). 

2.5.1.2 Radial-basis function (RBF) surrogate 

RBF surrogates for feasibility analysis have recently gained attention, since it has been proven 

that they can outperform Kriging surrogates in many relevant situations (Wang and Ierapetritou, 

2017). Let 𝐱1, 𝐱2, … , 𝐱𝑆 be the usual known set of sampling points and 𝑓(𝐱1), 𝑓(𝐱2),… , 𝑓(𝐱𝑆) 

the respective function values as for the Kriging surrogate. Mathematically, a RBF surrogate 

can be expressed with the formulation: 
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  𝑠𝑠(𝐱) =  ∑𝜆𝑠𝜙||𝐱 − 𝐱𝑠||2 + 𝐛
T𝐱 + 𝑎

S

s=1

  (2.62) 

 

where || ⋅ ||2 is the Euclidean distance, 𝛌 = [𝜆1, 𝜆2, … , 𝜆𝑆], 𝐛 and 𝑎 are model coefficients that 

can be obtained by solving the system of equations: 

 

   (
𝚽 𝐒

𝐒T 𝟎
) (
𝛌

𝐜
) = (

𝐅

𝟎
) 

  
(2.63) 

with: 

 

   𝐒 = (

𝐱1
𝑇

𝐱2
𝑇

⋮

𝐱𝑆
𝑇

 1

 1

 1

 1

) ; 𝝀 = (

𝜆1
𝜆2
⋮
𝜆𝑆

) ; 𝐜 =

(

 
 

b1
b2
⋮
b𝑄
𝑎 )

 
 

 ;  𝐅 = (

𝑓(𝐱1)

𝑓(𝐱2)
⋮

𝑓(𝐱𝑆)

) .  

  

(2.64) 

The basis function 𝜙 can be chosen depending on the problem considered: common choices are 

linear, cubic and Gaussian basis functions. Additional details on this aspect can be found in the 

work of Forrester and Keane (2009). 

2.5.2 Adaptive sampling 

As explained in Section 2.5, the surrogate can be continuously updated using an adaptive 

sampling strategy until its accuracy reached a pre-defined threshold value. Adaptive sampling 

allows increasing the surrogate accuracy in contrast with the standard space-filling sampling 

algorithms. The basic idea of adaptive sampling for the identification of the feasible region is 

as follows. The new sampling points are chosen based on two criteria: 

1. New points should be chosen near the boundary of the feasible region (local search); 

2. New points should be chosen in unexplored portions of the uncertain parameters 

domain, i.e. where prediction uncertainty is higher (global search). 

The balance of these local and global search criteria should allow a thorough exploration of the 

entire input domain and an accurate identification of the boundary of the feasible region. 

Mathematically, this can be obtained by maximizing at each iteration a modified expected 

improvement (EI) function (Wang and Ierapetritou, 2017): 

 

  max
𝐱
𝐸𝐼𝑓𝑒𝑎𝑠(𝐱) = 𝑠 × 𝜙 (

−�̂�

𝑠
) = 𝑠 × (

1

 √2𝜋
)  𝑒

−0.5(
�̂�2  

𝑠2
)
  

 

(2.65) 

where �̂� is the surrogate model prediction at 𝐱 and 𝑠 is the standard error of prediction. If a 

Kriging surrogate is used, 𝑠 is simply the square root of the estimated prediction variance. With 
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RBF surrogates, 𝑠 can be estimated through an “error indicator” 1/𝜇 first proposed by Gutmann 

(2001) or with the modified error indicator ” 1/𝜇𝑛 proposed by Wang and Ierapetritou (2017). 

Details on the mathematical formulation of these error indicators can be found in the cited 

references. 

2.5.3 Surrogate accuracy 

Defining the accuracy of the results of a surrogate-based feasibility analysis exercise depend 

on the main purpose of the analysis and there are no general metrics that can be used for any 

situation. If the main purpose of surrogate-based feasibility analysis is that of determining with 

high accuracy the boundary of the feasible region of the system under investigation, there are 

three key requirements that can be used to assess surrogate accuracy: 

1. The portion of feasible region that has been correctly identified by the surrogate is 

sufficiently high; 

2. The portion of infeasible region that has been correctly identified by the surrogate is 

sufficiently high; 

3. The surrogate does not considerably overestimate the actual feasible region of the 

system. 

The third requirement is particularly useful when applied to pharmaceutical processes, as 

discussed in Chapter 5.  

Several metrics have been proposed to assess the surrogate accuracy based on the following 

considerations (Rogers and Ierapetritou, 2015; Adi et al., 2016). However, all these metrics lack 

of meeting at least one of the above criteria. A new set of metrics that allows fulfilling all of 

the above requirements have been recently proposed by Wang and Ierapetritou (2017). A 

detailed discussion and extension of these metrics is reported in Chapter 5. 
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SECTION D: STATE ESTIMATION TECHNIQUES FOR ONLINE MODEL 

CALIBRATION 

 

The main application of state estimators (or state observers) in the process industry is for 

process control, i.e. state estimators are used to continuously update the model-prediction of 

the current state of the system, given the availability of a limited number of online 

measurements from plant sensors. The up-to-date system state is then used to inform pre-

defined control strategies (e.g. model predictive control) on the most suitable control action to  

be implemented at the given point in time. 

Formally, the role of a state estimator can be briefly described as follows. 

Let ℵ be the system under analysis (e.g. single unit/entire manufacturing line of a pilot/full-

scale plant). Let 𝐟(𝐱, 𝐮) be a mathematical model (data-driven and/or semi-empirical and/or 

mechanistic) that is used to describe the behavior of ℵ. The vector 𝐱[1 × 𝑄] collects all the state 

variables of the system, while 𝐮 [1 × 𝑈] collects all the control variables. It is assumed that 

online measurements 𝐳 [1 × 𝑍] are available from plant sensors. These measurements can be 

considered continuous in time 𝐳(𝑡) or, in most practical situations, to be obtained at discrete 

points in time 𝐳𝑘, 𝑘 = 1,2, … , 𝐾. In this Dissertation, the only scenario that will be considered 

is the one with discrete measurements. The following formulation is based on this underlying 

assumption. 

A state estimator can be defined as an observer that allows updating the model-based estimate 

of the system state �̂�𝑘
− at time 𝑡𝑘, by accounting for the available measurements at the same 

time 𝐲𝑘. The updated system state �̂�𝑘
+ is expected to give a more accurate representation of the 

system at time 𝑡𝑘 with respect to the original model prediction. 

In the classical formulation, it is assumed that the system behavior can be described by a set of 

ordinary differential equations (ODEs) that can be expressed in a discrete-time form as: 

 

  𝒙𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘) + 𝐰𝑘  (2.66) 

 

where 𝐰𝑘 is the process error (sometimes called, in a misleading way, process noise) at time 

𝑡𝑘. The measurements 𝐳𝑘 are related to the system state through a measurement (or observation) 

equation 𝐡(𝐱𝑘), i.e.: 

 

  𝒛𝑘 = 𝐡(𝐱𝑘) + 𝐯𝑘   (2.67) 

 

where 𝐯𝑘 is the measurement noise. Eq. (2.66) and (2.67) represent the starting point for any 

state estimation algorithm. However, it must be noticed that many chemical engineering-related 

systems are typically described by set of high-order algebraic and differential equations (i.e. 

high-index DAEs) whose reduction to pure ODE systems is not always possible. Therefore, the 
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classical formulation (2.66) does not hold true for these systems and, consequently, the 

available state estimation algorithms cannot be applied in a straightforward fashion. An 

extension of state estimation techniques to DAE systems is thoroughly described in Chapter 6. 

In the following, it is assumed that the system state can be described by the discrete-time ODE 

formulation (2.66). The three estimation algorithms that will be briefly discussed are the 

Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF) and the Ensemble Kalman 

Filter (EnKF). A discussion on other more sophisticated state estimators (e.g. particle filters 

(PFs), Moving Horizon Estimation (MHE) algorithms) can be found in the work of Rao et al., 

2001. 

2.6 State estimation algorithms 

The Kalman filter (Kalman, 1960) has been the precursor of most of the available state 

estimation algorithms and has been widely used in the process industry throughout these last 

decades. Although its original formulation can be applied to systems described by a linear state 

space model in Eq.(2.66), several extensions to nonlinear state space models have been 

proposed in the literature. The most famous extension is the Extended Kalman Filter (EKF), 

that has proved to be successful in several chemical engineering applications (Haseltine and 

Rawlings, 2005). In the last few years, due to the poor performance of the classical EKF 

formulation with highly nonlinear systems, other more sophisticated state estimation algorithms 

have been proposed. Among these, the Unscented  Kalman Filter (UKF) and the Particle Filter 

(PF) have gained particular attention in the last years. Other formulations (EnKF, MHE) are out 

of the scope of this Dissertation. 

2.6.1 Extended Kalman Filter (EKF) 

Based on the discrete-time state space model (2.66) and observation model (2.67), the EKF can 

be formulated at each time step according to a two-step procedure (Jazwinski, 1960): 

1. State prediction from time step 𝑡𝑘−1 to time step 𝑡𝑘; 

2. Measurement update at time step 𝑡𝑘. 

The relevant equations involved in each step can be summarized as follows. 

2.6.1.1 Prediction step 

The process error and the measurement noise are assumed to be white Gaussian noises with 

mean 𝟎 and covariance 𝐐 and 𝐑 respectively, i.e.: 

0. 

  𝐰𝑘 ∼ 𝑵(𝟎,𝐐𝑘); 𝐯𝑘 ∼ 𝑁(𝟎, 𝐑𝑘).  (2.68) 

Moreover, the initial state of the system 𝐱0 is assumed to be normally distributed with initial 

state estimate �̂�0 and error covariance for the state estimate 𝐏0. In all the following state 
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estimation algorithms, it is implicitly assumed that 𝐐𝑘 and 𝐑𝑘 are tuning parameters to be set 

according to the case study considered. Additional details on the choice of  𝐐𝑘 and 𝐑𝑘 on 

practical application will be thoroughly discussed in Chapter 6. 

The state prediction 𝐱𝑘
− from time 𝑡𝑘−1  to time 𝑡𝑘 is obtained through the set of model equations 

𝐟 according to: 

 

  𝐱𝑘
− = 𝒇(𝐱𝑘−1, 𝐮𝑘)  (2.69) 

 

The error covariance the state prediction at time 𝑡𝑘 𝐏𝑘
− is obtained through the expression: 

 

  𝐏𝑘
− = 𝐅𝑘−1𝐏𝑘−1

+ 𝐅𝑘−1
𝑇 + 𝐐𝑘−1 (2.70) 

 

where 𝐏𝑘−1
+  is the updated error covariance at the previous time 𝑡𝑘−1, and 𝐅𝑘−1 is the following 

Jacobian matrix: 

 

𝐅𝑘−1 = (
𝜕𝐟

𝜕𝐱
)
𝐱= 𝐱𝑘−1

+
.       (2.71) 

 

Eq. (2.70) is in the same form of the famous Riccati equation (Riccati, 1724) for linear systems, 

and it is obtained by a first order linearization of the error estimate on the systems state. It is 

worth noticing that this last aspect is one of the main drawbacks of the EKF, since the error 

covariance is propagated from one time step to another with a linearized propagation equation, 

thus posing a serious limitation when the behavior of the system is highly nonlinear. 

2.6.1.2 Measurement update step 

Given the measurement 𝐲𝑘 at time 𝑡𝑘, the system state prediction 𝐱𝑘
− and error covariance 

prediction 𝐏𝑘
−  are updated accordingly to their new values 𝐱𝑘

+ and 𝐏𝑘
+ according to the 

following filter equations: 

 

𝐱𝑘
+ = 𝐱𝑘

− + 𝐊𝑘[𝐳𝑘 − 𝐡(𝐱𝑘
−)] ;       (2.72) 

  

𝐏𝑘
+ = (𝐈𝑄×𝑄 − 𝐊𝑘)𝐏𝑘

− (2.73) 

 

where 𝐊𝑘 is the Kalman gain and is defined as: 

 

   𝐊𝑘 = 𝐏𝑘
−𝐇𝑘

𝑇(𝐇𝑘𝐏𝑘
−𝐇𝑘

𝑇 + 𝐑𝑘)
−1 , (2.74) 

 

while 𝐈𝑄×𝑄 is the identity matrix, and 𝐇𝑘 is the Jacobian matrix: 

 



 

 
Methods 79 

 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

𝐇𝑘 = (
𝜕𝐡

𝜕𝐱
)
𝐱= 𝐱𝑘

−
.       (2.75) 

 

Eq. (2.72) suggests that the correction to the model-predicted state 𝐱𝑘
− is proportional to the 

measurement residual (𝐲𝑘 − 𝐡(𝐱𝑘
−)), with the proportionality factor given by the Kalman gain 

of Eq. (2.74). 

The combination of Eqs. (2.69)-(2.74) represents the EKF algorithm. From these equations, it 

is possible to notice that one big disadvantage of the EKF is that it requires the computation of 

(possibly) large dimensional Jacobians matrices. The numerical computation of these Jacobians 

can be sometimes very difficult or very expensive, thus limiting the robustness of this filter. 

2.6.2 Unscented Kalman Filter (UKF) 

The underlying assumption behind the EKF formulation is that, if the system state is considered 

as random variable, this variable is assumed to be distributed with a Gaussian PDF. The mean 

of this PDF is propagated from one point in time to another according to Eq. (2.69), while the  

covariance of this PDF is propagated according to the linearized analytical expression (2.70). 

As discussed in section 2.6.1.2, this approach has the notable disadvantage of introducing a 

linearization error and requiring the computation of expensive Jacobians. 

The two key ideas behind the Unscented Kalman filter (UKF) algorithm that aims at 

overcoming the limitations of the EKF are: 

1. It is easier to perform a nonlinear transformation on a single point rather than an 

entire PDF; 

2. it is easy to find a set of deterministic points (called sigma points) whose sample 

PDF approximates the true PDF of the state vector. 

Consistently with these statements, the UKF approximates the true PDF of the state vector with 

a set of deterministic (i.e. pre-allocated) sampling points, and propagates this PDF by 

propagating each of these sampling points through the nonlinear transformation 𝐟(𝐱, 𝐮). This 

procedure has the notable advantage of avoiding linearization errors and the computation of 

Jacobians. Mathematically, the algorithm can be decomposed in the same prediction and update 

step as for the EKF. The relevant equations are discussed below. 

2.6.2.1 Prediction step 

The key problem of the UKF is the choice of the sigma points whose sample PDF is assumed 

to be an approximation of the true PDF of the state vector. The criterion that is adopted is as 

follows.  

Let 𝜂 be the updated PDF of the state vector at time 𝑡𝑘−1, whose mean value and covariance 

are given by 𝐱𝑘−1
+  and 𝐏𝑘−1

+  respectively. In the UKF algorithm, 𝜂 is approximated with the 
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sampling PDF of 2𝐿 (𝐿 is user-defined) sampling points chosen according to the following 

criterion: 

 

  𝐱𝑘−1
− (𝑙)

= 𝒙𝑘−1
+ + (√𝐿𝐏𝑘−1

+ )
(𝑙)

         𝑙 = 1,2, … , 𝐿 (2.76) 

 

  𝐱𝑘−1
− (𝑙)

= 𝒙𝑘−1
+ − (√𝐿𝐏𝑘−1

+ )
(𝑙)

         𝑙 = 𝐿 + 1,… , 2𝐿. (2.77) 

 

The 2𝐿 sigma points are then propagated to time 𝑡𝑘 using the model equations 𝐟(𝐱, 𝐮): 

 

  𝐱𝑘
−(𝑙)

= 𝒇(𝐱𝑘−1
−(𝑙)
, 𝐮𝑘)  (2.78) 

 

and the predicted estimate and covariance of the state vector are computed as: 

 

  𝐱𝑘
− =∑𝑊𝑠

(𝑙)
 𝐱𝑘
−(𝑙)

2𝐿

𝑙=1

 ;  (2.79) 

 

  𝐏𝑘
− =∑ 𝑊𝑐

(𝑙)
 (𝐱𝑘

−(𝑙) − 𝐱𝑘
−)(𝐱𝑘

−(𝑙) − 𝐱𝑘
−)

T
2𝐿

𝑙=1

+ 𝐐𝑘−1 . (2.80) 

 

where the weighting factors are given by: 

 

  𝑊𝒔
(0)
=

𝜆

𝐿 + 𝜆
   (2.81) 

 

  𝑊𝒄
(0)
=

𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽)  (2.82) 

 

  𝑊𝑠
(𝑙)
= 𝑊𝑐

(𝑙)
=

1

2(𝐿 + 𝜆)
 (2.83) 

 

  𝜆 =  𝛼2(𝐿 + 𝜅) − 𝐿. (2.84) 

 

The two parameters 𝛼 and 𝜅 are related to the spread of the sigma points of the sample PDF, 

while 𝛽 is related to the PDF of the state vector. Although these parameters can be considered 

as tuning parameters (Wan et al., 2000), their recommended values are typically 𝛼 = 10−3,

𝜅 = 0, 𝛽 = 2. 

Eq. (2.79) and (2.80) represent the prediction equations for the UKF. 
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2.6.2.2 Measurement update step 

In the update step, 2𝐿 sigma points are chosen using the same approach of the prediction step 

but considering that best state and error estimates are now 𝐱𝑘
− and 𝐏𝑘

−. Eqs (2.76) thorugh (2.84) 

are therefore used to select the new sampling points according to these two best estimates. It is 

worth noticing that the covariance 𝐏𝑘
− is augmented with the model error 𝐐𝑘 as in Eq. (2.80). 

The obtained sampling points 𝐱𝑘
+(𝑙)
 , 𝑙 = 1,2, … , 𝐿 are projected through the measurement 

function 𝐡(𝐱) to generate 2𝐿 “predicted” measurements 𝐲𝑘
(𝑙)

 according to: 

 

  𝐳𝑘
+(𝑙)

= 𝒉(𝐱𝑘
+(𝑙)), 𝑙 = 1,2, . . 2𝐿. (2.85) 

 

The predicted measurements (2.85) are then combined in order to obtain the predicted 

measurement error 𝐳𝑘
+ and the predicted measurement covariance 𝐏𝑧 according to: 

 

  𝐳𝑘
+ =∑𝑊𝑠

(𝑙)
𝐳𝑘
+(𝑙)

2𝐿

𝑙=1

 ; (2.86) 

 

  𝐏𝑧 =∑𝑊𝑐
(𝑙)
(𝐳𝑘
+(𝑙)

− 𝒛𝑘) (𝒛𝑘
+(𝑙) − 𝒛𝑘)

T

2𝐿

𝑙=1

 . (2.87) 

 

The cross state-measurement covariance 𝐏𝑥𝑧 is then computed: 

 

  𝐏𝑥𝑧 =∑𝑊𝑐
(𝑙)
 (𝐱𝑘

+(𝑙) − 𝐱𝑘
−)(𝒛𝑘

+(𝑙) − 𝒛𝑘)
T

2𝐿

𝑙=1

  (2.88) 

 

And its value is used to compute the “Kalman” gain: 

 

  𝐊𝑘 = 𝐏𝑥𝑧 𝐏𝑧
−1. (2.89) 

 

The update equations for the state vector and the error covariance can therefore be written in 

the standard form: 

 

𝐱𝑘
+ = 𝐱𝑘

− + 𝐊𝑘[𝐳𝑘 − 𝐡(𝐱𝑘
−)] ;       (2.90) 

  

𝐏𝑘
+ = 𝐏𝑘

− − 𝐊𝑘𝐏𝑧𝐊𝑘
T. (2.91) 

 

Eqs (2.90) and (2.91) are the final update equations for the UKF. 
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2.6.3 Ensemble Kalman Filter (EnKF) 

The EnKF can be considered as a Bayesian MCMC implementation of the EKF and relies on 

similar concepts with respect to the ones of the UKF, i.e: 

1. It is easier to propagate points rather than distributions through nonlinear operators; 

2. it is easy to approximate the state vector PDF with a sample PDF. 

However, the most important difference between the UnKF and the EnKF is that the sampling 

points are not pre-allocated as in the UKF, but are drawn randomly according to a MCMC 

approach. The EnKF is sometimes erroneously considered as a particular type of particle filter, 

since it relies on the same Bayesian MCMC sampling approach. However, the EnKF is based 

on the assumption that the state vector follows a multivariate Gaussian PDF, while PFs do not 

make any assumption regarding the shape of the PDF of the state vector. For this reason, it is 

more convenient to consider the EnKF as a MCMC implementation of a standard EKF, rather 

than a specific type of particle filter. 

The PDF of the state vector is approximated with 𝑆 randomly-drawn sample points, with 𝑆 (i.e. 

the ensemble size) chosen according to user’s risk adversity (typical values are in the range 

50 ÷ 1000). Therefore, the EnKF is particular suited for systems involving a large number of 

state variables (i.e. 𝑄 ≫ 𝑆), since the computational burden can be significantly reduced. 

The relevant equations for the EnKF can be classified as for the previous filters in a prediction 

and update step. 

2.6.3.1 Prediction step 

A time 𝑡𝑘, the PDF of the state vector is approximated with an ensemble of 𝑆 randomly-drawn 

sampling points : 

   

  𝑋𝑘
− = (𝐱𝑘

−(1), 𝐱𝑘
−(2), … , 𝐱𝑘

−(𝑆)). (2.92) 

 

The ensemble mean �̅�𝑘
−  is used to approximate the state prediction 𝐱𝑘

− at time 𝑡𝑘 : 

 

  𝐱𝑘
− ∼ �̅�𝑘

− =
1

𝑆
∑𝐱𝑘

−(𝑠)

𝑆

𝑠=1

. (2.93) 

 

The ensemble error is then computed according to the following expression: 

 

  𝐄𝑘
− = [(𝐱𝑘

−(1) − �̅�𝑘
−), (𝐱𝑘

−(2) − �̅�𝑘
−),… , (𝐱𝑘

−(𝑆) − �̅�𝑘
−)].   (2.94) 

 

The ensemble covariance �̅�𝑘
− is then computed and used as an approximation of the true 

covariance 𝐏𝑘
− of the state vector: 
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  𝐏𝑘
− ∼ �̅�𝑘

− =
1

(𝑆 − 1)
 𝐄𝑘
−(𝐄𝑘

−)T. (2.95) 

 

Eqs (2.93) and (2.95) are the prediction step equations for the EnKF. 

2.6.3.2 Measurement update step 

In this step, a set of “perturbed” measurements 𝐳𝑘
𝑠 , 𝑠 = 1,2, … , 𝑆 is first obtained from the 

observed measurements at time 𝑡𝑘, 𝐳𝑘,  according to: 

 

  𝐳𝑘
(𝑠)
= 𝐳𝑘 + 𝐯𝑘

(𝑠)
 ,    𝑠 = 1,2, … 𝑆 (2.96) 

 

where 𝐯𝑘
(𝑠)

 is randomly drawn from the PDF 𝑁(𝟎, 𝐑𝑘).  

Secondly, the measurement ensemble error covariance 𝐄𝑦𝑘
−  is computed according to: 

  

  𝐄𝑦𝑘
− =  [ (𝐳𝑘

−(1) − �̅�𝑘), (𝐳𝑘
−(2) − �̅�𝑘), … , (𝐳𝑘

−(𝑆) − �̅�𝑘)]  (2.97) 

 

where �̅�𝑘 is the mean of the ensemble (2.96). Given 𝐄𝑦𝑘
− , the “Kalman” gain 𝐊𝑘 can then be 

computed according to: 

 

  𝐊𝑘 =
1

𝑆 − 1
𝐄𝑘
−(𝐄𝑦𝑘

− )
𝑇
 [

1

𝑆 − 1
𝐄𝑦𝑘
− (𝐄𝑦𝑘

− )
𝑇
]
−1

.  (2.98) 

 

Each member of the ensemble (2.92) can therefore be updated according to the standard 

expression: 

 

  𝐱𝑘
+(𝑠)

= 𝐱𝑘
−(𝑠)

+ 𝐊𝑘 (𝐳𝑘
(𝑠) − 𝐡(𝐱𝑘

−(𝑠)))  ,    𝑠 = 1,2, … 𝑆. (2.99) 

 

The updated state vector 𝑥𝑘
+ and the updated covariance 𝑃𝑘

+ can then be computed as the mean 

and the covariance of this updated ensemble (2.99), using the same structural expression of Eq. 

(2.93) and (2.95). 

The updated ensemble is then propagated to the next step in time following the set of model 

equations 𝐟(𝐱, 𝐮). 

2.7 State estimation and online model recalibration 

State estimators are typically deployed in the process industry in order to obtain an accurate 

prediction of the up-to-date state of the system. This information is then typically used as an 

input for the control system implemented in the plant (e.g. MPC). However, state estimators 
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can be used not only to obtain information about the current state of the system, but also to 

perform an online re-calibration of some of the parameters of the original process model (or to 

account for un-modeled disturbances that arise during the actual plant operation). In fact, during 

the normal operation of the plant, the representativeness of the model may change due to slow- 

dynamics physical phenomena that were not considered during the offline model calibration. 

Typical examples are fouling and catalyst deactivation. These phenomena may cause a drift in 

the some of the original model parameters and therefore a process-model mismatch (PMM) on 

the key performance indicators (KPIs) of the system. In order to account for these phenomena, 

state estimators can be deployed to obtain a regular re-calibration of some of the model 

parameters in order to remove the PMM on the KPIs. The choice of which model parameters 

should be re-calibrated online can be done based on previous knowledge or through sensitivity 

analysis on the KPIs. This aspect will be discussed in more detail in Chapter 6. 

Let  �̃� be the set of model parameters that need to be re-calibrated online. The simplest way to 

perform a re-calibration through a state estimator is to perform a state augmentation procedure 

The state-space model (2.66) is therefore re-written as: 

 

  𝐱𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘) + 𝐰𝑘  (2.100) 

 

  �̃�𝑘 = �̃�𝑘−1  + 𝐰�̃�  (2.101) 

 

with 𝐰�̃� ∼ 𝑁(𝟎, 𝐑�̃�) “process” error on the model parameters �̃� (the covariance 𝐑�̃� has to be 

considered as a tuning parameter) and initial conditions: 

 

  𝐱(0) = 𝐱0  (2.102) 

 

  �̃�(0) = �̅�  (2.103) 

 

where �̅� is the vector collecting the nominal values of the parameters. It is worth noticing that 

Eq. (2.101) corresponds to the following set of equations in continuous form: 

 

 
d�̃�

dt
= 𝟎.  (2.104) 

 

The model parameters �̃� are then used as additional states to be updated based on the 

measurements coming from plant sensors following one of the algorithms described above (or 

other state estimation algorithms that have not been considered in this Dissertation).
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Chapter 3 
 

Uncertainty back-propagation in PLS 

modeling for design space 

determination*

 
 

In this Chapter, a methodology to relate the uncertainty on the output of a PLS model to the 

uncertainty on the model inputs is proposed. Two uncertainty back-propagation models are 

formulated and critically compared and frequentist confidence regions (CRs) for the solution 

of the inversion problem are built. These CRs are used to target an experimental campaign for 

the identification of the design space (DS) of a new pharmaceutical product. 

The proposed methodology is tested on three different case studies, two of which involve 

experimental data taken from the literature, respectively on a roller compactor and on a wet 

granulator. It is shown that both uncertainty back-propagation models are effective in 

bracketing the design space of a new pharmaceutical product, with the second model 

outperforming the first one in terms of shrinkage of the space within which experiments should 

be carried out to identify the DS. 

3.1 Introduction 

The quality-by design (QbD) initiative set forth by the pharmaceutical regulatory agencies 

(such as the U.S. Food and Drug Administration and the European Medicines Agency) 

encourages the adoption of systematic and science-based tools for the development and 

manufacturing of new pharmaceutical products (ICH, 2005). One key aspect of QbD is the 

determination of the design space (DS) of the process that manufactures the product under 

development. The DS is defined as the multidimensional combination and interaction of input 

variables (e.g. material attributes) and process parameters that have been demonstrated to 

                                                           
* Bano G., Facco, P., Meneghetti, N., Bezzo F., Barolo M. (2017) Uncertainty back-propagation in PLS model inversion for 

design space determination in pharmaceutical product development. Comput. Chem. Eng. 101, 110-124. 
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provide assurance of quality (ICH, 2009). Identification of the DS of a new product is important, 

because “working within the DS is not considered as a change” (ICH, 2009), and as such does 

not require any further approval by the regulatory agencies. On the other hand, movements 

outside the DS would normally initiate a regulatory post-approval process. 

Different model-based techniques can be used to assist a DS identification exercise. The use of 

static and dynamic first principles models has been reported (Pantelides et al., 2009; Prpich et 

al., 2010; Close et al., 2014), as well as that of dynamic grey-box state-space models (Kishida 

and Braatz, 2012; Kishida and Braatz, 2014), possibly accounting for the effect of feedback 

control (Harinath et al., 2015), and of data-driven models (MacGregor and Bruwer, 2008; 

Peterson, 2008). Among data-driven models, approaches based on design of experiments 

(Zidan et al., 2007; am Ende et al., 2007; Lepore and Spavins, 2008; Chatzizacharia et al., 

2014) and latent variable models have become particularly popular within the pharmaceutical 

industry community. 

When a new product under development is similar to other products already developed (“old” 

products), historical information on the old products can be very useful for the determination 

of the DS for the new one. Facco et al. (2015) proposed a latent-variable (LV) model inversion 

approach (Jaeckle and MacGregor, 2000) to segment the knowledge space (KS, i.e. the space 

of historical information about the manufacturing of the old products) in such a way as to 

identify a subspace of it (called the experiment space; ES) that brackets the DS of the new 

product. Experiments to identify the DS can be carried out within the ES, with the advantage 

that this space is narrower that the KS, so that product development can be sped up. The model 

inverted by Facco et al. (2015) to determine the ES is a partial least-squares (PLS) regression 

one (Geladi and Kowalski, 1986; Wold et al., 1983). Since this model is subject to prediction 

uncertainty, upon inversion the uncertainty is back-propagated to the input space, hence 

affecting the ES determination as shown by the authors. 

Whereas the methodology proposed by Facco et al. (2015) is effective in segmenting the KS, 

it nevertheless suffers from some limitations. Firstly, the general issue of how the prediction 

uncertainty is allocated between the model inputs and the model parameters is not addressed. 

Secondly, the methodology returns an ES that is defined in the space of latent inputs rather than 

in the space of true inputs. While using the latent space is permitted by the regulatory agencies 

and can be useful to provide a compact graphical representation of a large-dimensional input 

space, this representation may be cumbersome for a practitioner aiming to design a set of 

experiments to be carried out at given values of the true inputs. A third limitation is related to 

the fact that the methodology only refers to products characterized by one equality constraint 

specification. However, in several practical situations, the product quality target may be 

assigned also in terms of inequality constraints. 

In this study, an approach is proposed that can handle the back-propagation of uncertainty from 

the outputs to the inputs of a PLS model, while simultaneously allowing one to overcome the 
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limitations of the methodology proposed by Facco et al. (2015). The proposed approach makes 

it possible to quantify the uncertainty on the PLS inversion solution in terms of both latent 

variables (LVs) and real input variables. Two uncertainty back-propagation models are 

formulated and solved using an optimization framework. Confidence regions (CRs) for the PLS 

inversion solution identifying the ES are built at an assigned significance level for both back-

propagation models. The resulting ES is deemed to include the DS of the product under 

development, thus allowing the developer to tailor his/her experimental campaign on a smaller 

domain of input combinations. The proposed methodology is first tested on a nonlinear 

mathematical example, with quality targets described by equality or inequality constraints. 

Then, five case studies involving experimental data taken from the literature are considered, 

one concerning the roll compaction of an intermediate drug load formulation (Souihi et al., 

2015), and the others concerning different types of granulation processes (Vemavarapu et al. 

,2009; Oka et al., 2015; Facco et al. (2015). 

3.2 Methods 

In the following, the link between the mathematical methods used in this Chapter and their 

application in pharmaceutical development is briefly discussed. 

3.2.1 Projection to latent structures (PLS) for pharmaceutical product 

development 

Let 𝐗 [𝑁 × 𝑉] be a regressor (or input) matrix of 𝑁 training observations and 𝑉 variables, and 

𝐘 [𝑁 × 𝐿] a response (or output) matrix of 𝐿 variables. The regressor matrix collects the 

material attributes and process parameters and settings of the system under investigation, while 

the output matrix collects the product quality attributes of the pharmaceutical product to be 

designed. Data are assumed to be autoscaled, i.e. mean-centered and scaled to unit variance. 

PLS (Geladi and Kowalski, 1986; Wold et al., 1983) is a multivariate regression technique that 

projects the regressor and response variables onto a common latent space (the model space) of 

𝐴 new variables, called LVs, according to the model structure:  

 

𝐗 = 𝐓𝐏T + 𝐄𝐗  (3.1) 

𝐘 = 𝐓𝐐T + 𝐄𝐘  (3.2) 

𝐓 = 𝐗𝐖∗  (3.3) 

where 𝐓 [𝑁 × 𝐴] is the score matrix, 𝐏 [𝑉 × 𝐴] and 𝐐 [𝐿 × 𝐴] are the 𝐗 and 𝐘 loading matrices, 

𝐄𝐗 and 𝐄𝐘 the residuals; 𝐖∗[𝑉 × 𝐴] is the weight matrix, through which the data in 𝐗 are 

projected onto the latent space to give 𝐓 according to Eq.(3.3).  
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In this study, the algorithm used to build the PLS model is NIPALS (Geladi and Kowalski, 

1986). 

When a new observation 𝐱𝑝[1 × 𝑉] is considered, its projection 𝐭𝑝 on the latent space can be 

obtained according to:  

 

𝐭𝑝 =
𝐱𝑝𝐖

∗

𝐏T𝐖∗  (3.4) 

and whether or not this new observation conforms to the calibration data set is assessed using 

two indices: 

• the Hotelling’s 𝑇2 statistic (Hotelling, 1931):  

 

𝑇𝑝
2 = ∑

𝑡𝑎,𝑝
2

𝜆𝑎

𝐴
𝑎=1    ,  (3.5) 

where 𝜆𝑎 is the eigenvalue of the matrix 𝐗T𝐘𝐘T𝐗 related to the 𝑎-th LV. 𝑇𝑝
2 is a measure 

of the Mahalanobis distance of the projection of 𝐱𝑝 from the origin of the latent space, 

and is usually compared to the respective 95% confidence limit:  

 

𝑇𝑙𝑖𝑚
2 =

(𝑁−1)𝐴

𝑁−𝐴
𝐹𝐴,𝑁−𝐴,0.95   ,  (3.6) 

where 𝐹𝐴,𝑁−𝐴,0.95 is the value of the 95% percentile of the 𝐹-distribution with 𝐴 and 

(𝑁 − 𝐴) degrees of freedom; 

 

• the SPE statistic:  

SPE𝑝 = 𝐞𝐱,𝑝
T 𝐞𝐱,𝑝 ,  (3.7) 

which is the Euclidean distance of the projection of 𝐱𝑝 from the latent space. SPE𝑝 is 

usually compared to the 95% confidence limit: 

 

SPE𝑙𝑖𝑚 =
𝜎𝑞

2𝜇
𝜒2𝜇
𝜎𝑞
,0.95

2  , (3.8) 

where 𝜇 and 𝜎𝑞 are the mean and standard deviation of the training set residuals, 

respectively, and 𝜒2𝜇
𝜎𝑞
,0.95

2  is the chi-square distribution with (
2𝜇

𝜎𝑞
) degrees of freedom and 

significance level 0.95. 

 

In the 𝐴-dimensional latent space, 𝑇𝑙𝑖𝑚
2  determines a 95% hyper-ellipsoidal confidence region 

whose semiaxis 𝑠𝑎 alongh the 𝑎-th LV is given by:  
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𝑠𝑎 = √𝜆𝑎𝑇lim   
2    . (3.9) 

This region is called the historical KS, and inference using the PLS model can be made only 

for points that lie inside this region. Therefore, in this study the input combinations, whose 

projections lie outside the KS, are assumed not to be described properly by the model. 

This study deals with univariate responses (𝐿 = 1), so that 𝐘 becomes 𝐲 [𝑁 × 1], 𝐐 becomes 

𝐪 [1 × 𝐴], and 𝐄𝐘 becomes 𝐞𝐲 [𝑁 × 1]. 

Once a PLS model has been calibrated using a training set of regressors and responses according 

to Eqs (3.1)-(3.3), a new response �̂�𝑝[1 × 𝐿] can be predicted, given a set of input data 

𝐱𝐩[1 × 𝑉]:  

 

𝐲
𝑝
= 𝐭𝐩𝐐

T (3.10) 

 

where 𝐭𝐩 is the score vector of the new observation as given by Eq. (3.4). 

A PLS model can also be used in its inverse form to determine the set 𝐱𝑛𝑒𝑤 of input 

combinations that yields a desired quality target 𝑦𝑑𝑒𝑠 (Jaeckle and MacGregor, 2000). 

From a mathematical point of view, the prediction model (10) is a linear transformation ℒ𝑃𝐿𝑆(𝐭) 

from an A-dimensional space 𝛴𝐓 (the score or latent space) to a 1 dimensional space 𝛴𝑦 (the 

response or y-space), whose kernel can be defined as:  

 

ker(ℒ𝑃𝐿𝑆) = {𝐭 ∈ 𝛴𝐓: ℒPLS(𝐭) = 0}.  (3.11) 

 

 The rank-nullity theorem can be used to determine the dimension of ker(ℒ𝑃𝐿𝑆):  

 

dim(ker(ℒ𝑃𝐿𝑆)) = dim(𝛴𝐓) − dim(Im(ℒ𝑃𝐿𝑆))  (3.12) 
 

from which, since dim(𝛴𝐓) = 𝐴 and (for this study) dim(Im(ℒ𝑃𝐿𝑆)) = 1, it follows that:  

 

dim(ker(ℒ𝑃𝐿𝑆)) = 𝐴 − 1   . (3.13) 

 

If the dimension of the latent space (i.e., 𝐴) is the same as the dimension of the 𝑦-space (i.e., 

1), then dim(ker(ℒ𝑃𝐿𝑆)) = 0 and a unique solution vector 𝐱𝑛𝑒𝑤 for a given target 𝑦𝑑𝑒𝑠 exists:  

 

𝐱𝑛𝑒𝑤 = 𝐭𝑛𝑒𝑤𝐏
T (3.14) 

 

with: 

 

𝐭𝑛𝑒𝑤
T = (𝐐T𝐐)−1𝐐T𝑦𝑑𝑒𝑠

T    . (3.15) 
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Note that 𝐱𝑛𝑒𝑤 (or 𝐭𝑛𝑒𝑤 if working on the score space) can be calculated as in Eq. (3.14) or 

(3.15) for any value of 𝐴. This solution will be denoted as the direct inversion solution to the 

inversion problem. 

On the other hand, if the dimension of the latent space is greater than the dimension of the 𝑦-

space (i.e. 𝐴 > 1), then dim(ker(ℒ𝑃𝐿𝑆)) > 1 and multiple solutions of the model inversion 

problem exist. The set 𝑊of possible solutions on the model space that guarantees the desired 

response 𝑦𝑑𝑒𝑠 can be described as:  

 

𝑊 = {(𝐭𝑛𝑒𝑤 + 𝐭), 𝐭 ∈ ker(ℒ𝑝𝑙𝑠)}  (3.16) 

 

and is called null space (Jaeckle and MacGregor, 1998). The null space can be computed 

analytically by determining the kernel of the 𝑦-loadings matrix 𝐐. 

If the PLS model is not affected by uncertainty and the quality target is described by equality 

constraints only, the null space can be interpreted as the mathematical description of the DS14. 

However, since any model is affected by uncertainty, also the null space determined by model 

inversion is affected by uncertainty. By back-propagating the model prediction uncertainty onto 

the model space, Facco et al. (2015) determined a subspace of it (the ES) that most likely 

brackets the DS.  

3.2.2 Formulation of prediction uncertainty 

Consider the PLS prediction model. Given a new observation 𝐱𝑝, the expected value of the 

response variable 𝑦
𝑝
 can be computed using (3.10). If the PLS model were not affected by 

uncertainty, 𝑦
𝑝
 would be equal to the true value of the response 𝑦𝑝, i.e. to the value of the 

response variable that would be obtained in the real process using the set of inputs defined by 

𝐱𝑝. However, since the model is affected by uncertainty, a mismatch between 𝑦
𝑝
 and 

𝑦𝑝 is observed. Three different sources of uncertainty15 can affect the prediction of a new 

observation: 

1. measurement uncertainty in both the regressor matrix (𝐗) and the response matrix (𝐘) used 

to calibrate the PLS model (Reis et al., 2005); 

2. uncertainty in the estimated model regression parameters (Faber and Kowalski, 1997); 

3. uncertainty due to the unmodeled part of 𝑦𝑝. Assuming that the residual 𝑒𝑝 = 𝑦𝑝 − 𝑦𝑝 

belongs to a normal distribution with zero mean and variance 𝜎2, the contribution to the 

overall prediction uncertainty given by this term is 𝜎2. 

                                                           
14 Strictly speaking, when the PLS model is not affected by uncertainty and the quality target is described by one equality 

constraint, the null space represents the projection of the DS onto the PLS model space. 
15 It is assumed that the variance of the residuals and the variance of the measurement errors in the input/output data are 

independent of the sample considered. 
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In this study, the prediction uncertainty is estimated according to the work of Faber and 

Kowalski (1997), which accounts for the second and third contributions mentioned above. 

An estimation of the variance var(𝑦�̂�) of the prediction error is calculated using the relationship 

(Faber and Kowalski 1997):  

 

 𝑠2 =  var(𝑦
𝑝
) = 𝜎2(1 + ℎ𝑝)   , (3.17) 

where ℎ𝑝 is the leverage of the new observation:  

 

ℎ𝑝 =
𝐭𝑝 𝚲

−1 𝐭𝑝
T

𝑁−1
   . (3.18) 

The variance 𝜎2 of the residuals is estimated as the square of standard error of calibration (SEC):  

 

𝜎2 ≅ SEC2 =
∑ (𝑦𝑛−�̂�𝑛)

2𝑁
𝑛=1

𝑁−𝑑𝑓
   , (3.19) 

where 𝑦𝑛 and 𝑦
𝑛

 refer to the 𝑛-th calibration sample, and 𝑑𝑓 is the number of degrees of 

freedom of the model. In this study, 𝑑𝑓 has been set equal to 𝐴, although different approaches 

to estimate 𝑑𝑓 exist (Voet, 1999). 

The derivation of Eq. (3.17) involves a zeroth-order local linearization of the PLS estimator, 

and holds true under some assumptions (Vanlaer et al., 2009). Eq. (3.17) is made up of two 

contributions: σ2 is the contribution to the prediction uncertainty due to the unmodeled part of 

𝑦
𝑝
, while 𝜎2ℎ𝑝 accounts for the uncertainty in the model parameters. The 100(1 − 𝛼)% 

confidence interval (CI) on ŷ
p
 can be expressed as: 

 

CI = 𝑦
𝑛
± 𝑠 𝑡𝛼

2
,𝑁−𝑑𝑓 , (3.20) 

where 𝛼 is the significance level for the confidence interval. 

3.2.3 Back-propagation of uncertainty in PLS model inversion 

When a PLS model is used in its direct form (i.e., to predict a response from a set of inputs) a 

100(1 − 𝛼)% CI can be built for the prediction using the procedure outlined in section 3.2.2. 

The wider the CI at a given significance level, the larger the uncertainty on the output 

prediction. On the other hand, when a PLS model is used in its inverse form (i.e., to predict a 

new set 𝐱𝑛𝑒𝑤 of inputs that yield a desired target 𝑦𝑑𝑒𝑠), the prediction uncertainty is back-

propagated to the calculated inputs. If 𝐴 > 1, a null space exists, and the uncertainty in null-

space determination must be accounted for.  
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A systematic methodology is now developed to back-propagate the 𝑦-space uncertainty to the 

latent space of input variables first, and to the real input space subsequently. 

Consider the prediction model (3.10). By taking the variance/covariance of both sides it 

follows:  

 

cov(𝐲
𝑝
) = cov(𝐭𝑝𝐐

T)   . (3.21) 

If model (3.17) is used to estimate the prediction uncertainty, then it follows that: 

 

SEC2(1 + ℎ𝑝) = cov(𝐭𝑝𝐐
T)   . (3.22) 

The right-hand side of Eq. (3.22) is difficult to estimate, since both the scores and the loadings 

are affected by uncertainty and depend on each other. However, two limiting situations can be 

considered (Høy et al., 1998): 

 

1. the loadings are not affected by error. If this is the case, Eq. (3.22) simplifies to:  

 

SEC2(1 + ℎ𝑝) = 𝐐
Tcov(𝐭𝑝)𝐐   . (3.23) 

In this scenario, only the scores are assumed to contribute to the overall prediction 

uncertainty. In other terms, the overall prediction uncertainty on the 𝑦-space is entirely 

back-propagated to the score space of the inputs; 

 

2. the scores are not affected by error. In this case,  Eq. (3.22) simplifies as follows:  

SEC2(1 + ℎ𝑝) = 𝐭𝑝
Tcov(𝐐T)𝐭𝑝   . (3.24) 

In this scenario, the overall prediction uncertainty on the 𝑦-space is fully back-propagated 

to the loadings of the model, i.e. it is assumed that the null space can be exactly located in 

the latent space when the PLS model is inverted, and the only source of uncertainty is due 

to the calibration step. 

 

Following the idea implemented in the popular chemometrics software The UnscramblerTM 

(Camo ® Inc., Oslo, Norway), the right-hand terms of (3.23) and (3.24) can be averaged using 

the correction factor proposed by De Vries and Ter Braak (1995) to obtain:  

 

𝑆𝐸𝐶2(1 + ℎ𝑝) = (1 −
𝐴+1

𝑁
) [𝐭𝑝

Tcov(𝐐T)𝐭𝑝⏟        


+ 𝐐Tcov(𝐭)𝐐⏟      


]   . (3.25) 
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Eq. (3.25) is empirical and has no theoretical foundation (Faber and Kowalski, 1996), but is 

nevertheless widely used (Andersson et al., 1999; Cahyadi et al., 2010). By using this approach, 

the overall prediction uncertainty is obtained as the average of the contribution due to the 

loadings uncertainty ( in Eq. (3.25)) and the contribution due to the scores uncertainty ( in 

Eq. (3.25)). In other terms, the prediction uncertainty is simultaneously determined by the 

uncertainty on the model “parameters” (i.e, the loadings) and the uncertainty on the location of 

the scores on the score space. It is reasonable to think that, when PLS model inversion is 

performed, only a fraction of the overall prediction uncertainty is back-propagated to the scores 

(i.e., to the location of the null space in the score space), whereas the remaining fraction is 

assigned to the loadings (i.e., to uncertainty on the model parameters). 

Contribution  can be estimated as in De Vries and Ter Braak (1995):  

 

𝐭𝑝
Tcov(𝐐T)𝐭𝑝 = 𝑉𝑦,𝑣𝑎𝑙ℎ𝑝   , (3.26) 

where 𝑉𝑦,𝑣𝑎𝑙 is the residual variance of the response variable in the validation dataset. By 

substituting (3.26) into (3.25), it follows:  

 

𝑆𝐸𝐶2(1 + ℎ𝑝) = (1 −
𝐴+1

𝑁
) [𝑉𝑦,𝑣𝑎𝑙ℎ𝑝⏟    



+ 𝐐Tcov(𝒕𝑝)𝐐⏟        


] .  (3.27) 

Eq. (3.27) shows that the contribution  of the loadings to the overall prediction uncertainty is 

proportional to the leverage of the new observation. This is reasonable, since the uncertainty 

due to the non-representativeness of the model increases when the distance of the validation 

dataset projection from the origin on the score space increases. 

The weighting factor 𝑉𝑦,𝑣𝑎𝑙 in (3.27) is strongly dependent on the validation dataset available 

and significantly affects contribution  to the overall prediction uncertainty. To avoid this 

dependency on the validation dataset available, a modification to Eq. (3.27) is proposed. 

Assume that the right-hand term of (3.26) can be re-written as 𝐶ℎ𝑝, with 𝐶 being a weighting 

factor to be tuned. Following this assumption, we will first investigate how the contribution of 

the scores to the overall prediction uncertainty depends on the leverage of the observation ℎ𝑝. 

Then, we will identify the threshold value of ℎ𝑝 that causes the contribution of the scores to 

vanish. We will finally determine the value of the weighting factor 𝐶 that corresponds to this 

limiting situation. 

By substituting 𝑉𝑦,𝑣𝑎𝑙 with 𝐶 into (3.27) and rearranging, the following equation can be 

obtained:  

 

𝐐Tcov(𝐭𝑝)𝐐 =
SEC2

1−
𝐴+1

𝑁

+ [
SEC2−𝐶(1−

𝐴+1

𝑁
)

1−
𝐴+1

𝑁

] ℎ𝑝   . (3.28) 
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The left-hand term of (3.28) is the contribution to the prediction uncertainty related to the 

scores: if ℎ𝑝 increases, this contribution decreases since the dominant contribution becomes the 

one related to the non-representativeness of the model (i.e., related to the loadings). In 

particular, the contribution of the scores vanishes (i.e, all the uncertainty on the prediction is 

due to the non-representativeness of the model) when:  

 

ℎ𝑝 =
SEC2

𝐶(1−
𝐴+1

𝑁
)−SEC2

= ℎ∗   . (3.29) 

In other words, for those points on the score space that satisfy the condition ℎ𝑝 < ℎ
∗, both the 

scores and the loadings contribute to the overall prediction uncertainty; in this case, the 

contribution of the scores (loadings) is greater (smaller) for low (high) values of ℎ𝑝. When ℎ𝑝 ≥

 ℎ∗, the model is considered as non-representative, and the inversion should not be performed. 

To determine a value for the weighting factor 𝐶, recall that a likely region of the score space 

within which the model is considered representative is the KS (section 2.1). Then, if C is 

selected in such a way that ℎ∗ corresponds to the 95% confidence limit of the Hotelling’s 𝑇2 

(i.e ℎ∗ = ℎ𝑙𝑖𝑚) then the points outside the KS will only be affected by uncertainty due to the 

model non-representativeness. It follows that: 

 

  𝐐Tcov(𝐭) 𝐐 =  
SEC2

1−
𝐴+1

𝑁

+ [
SEC2−𝐶(1−

𝐴+1

𝑁
)

1−
A+1

N

] ℎ𝑝    if   ℎ𝑝 < ℎ𝑙𝑖𝑚 

 

(3.30) 

  𝐐Tcov(𝐭) 𝐐 =  0                                              if   ℎ𝑝 ≥ ℎ𝑙𝑖𝑚 (3.31) 

 

The weighting factor 𝐶 can then be tuned to have ℎ∗ = ℎ𝑙𝑖𝑚:  

 

𝐶 =
SEC2(1 + ℎ𝑙𝑖𝑚)

(1 − 
𝐴+1

𝑁
)ℎ𝑙𝑖𝑚

=
SEC2[1 + (

𝑇𝑙𝑖𝑚
2

𝑁−1
 + 

1

𝑁
)]

(1 − 
𝐴+1

𝑁
)(
𝑇𝑙𝑖𝑚
2

𝑁−1
 + 

1

𝑁
)

    . (3.32) 

The resulting uncertainty back-propagation model is then given by:  

 

SEC2(1 + ℎ𝑝) = (1 −
𝐴+1

𝑁
) [𝐶ℎ𝑝 + 𝐐

Tcov(𝐭𝑝)𝐐]   , (3.33) 

with 𝐶 defined as in (3.32) . 

To summarize, when a PLS model is inverted, the back-propagation of uncertainty can be done: 

• model #1: according to (3.23), if only the contribution of the scores is considered. This is 

a conservative situation, since all the prediction uncertainty is back-propagated to the 
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calculated solution of the inversion problem (i.e., to the location of the null space on the 

score space, as in Facco et al., 2015); 

• model #2: according to (3.33), in the more general situation where the contributions of 

both the scores and the loadings to the overall prediction uncertainty are accounted for. 

Clearly, Eq. (3.33) is an empirical back-propagation formula whose effectiveness must be 

evaluated. 

3.3 Uncertainty back-propagation and experiment space determination 

The problem of developing a new product with a desired quality target 𝑦𝑑𝑒𝑠 is addressed. 

Consider a PLS model built on a historical dataset of input combinations 𝐗 that yield products 

whose quality is summarized by 𝐲. If the model is used for prediction, the response  �̂�𝑝 that 

corresponds to the desired input specifications 𝐱𝑝 can be computed according to the steps 

bracketed by the dashed black box of Fig. 3.1. On the other hand, when the model is inverted, 

the set of regressors that, according to the model, corresponds to the desired quality target 𝑦𝑑𝑒𝑠 

(that can be expressed in terms of equality or inequality constraints) can be determined. 

If the number of latent variables is greater than one, the set of inputs (on the score space) that 

matches  𝑦𝑑𝑒𝑠 is the vector space 𝑊 of Eq. (3.16). As described in 3.2.3, the prediction of 𝑊 is 

affected by different sources of uncertainty. To quantify this uncertainty, we use the systematic 

methodology centered on the back-propagation formulas (3.23) and (3.32)-(3.33). The rationale 

behind the proposed methodology is shown in Fig. 3.1, blue dashed box. The step-by-step 

procedure is presented in the next section. 

3.3.1 Proposed methodology 

In this section, the methodology will be illustrated in detail only for problems where an equality 

constraint is set on the product quality (𝑦 = 𝑦𝑑𝑒𝑠); the extension to inequality constraints is 

straightforward and will be discussed in section 3.5.2. Given the calibration dataset [𝐗; 𝐲], a 

PLS model with 𝐴 LVs relating 𝐗 to y is built. 𝐴 can be chosen according to the eigenvalue-

greater-than-one rule (Kaiser, 1960), in such a way as to explain a significant fraction of the 

variance of both 𝐲 and 𝐗 (to have good reliability also in model inversion). The projections of 

the calibration samples onto the score plot and the KS boundary (blue ellipse) are shown in Fig. 

3.2a for 𝐴 = 2. 
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Figure 3.1. Schematic of uncertainty characterization in PLS modelling. When a PLS model 

is used for prediction (i.e., to predict the product quality given a set of raw material 

properties and process parameters), the steps are those bracketed by the dashed black box. 

When the model is inverted (i.e., it is used to determine the combinations of raw material 

properties and process parameters that give rise to a desired product quality), the steps are 

those bracketed by the dashed red box. The rationale behind the back-propagation of 

uncertainty in PLS model inversion according to the proposed methodology involves the 

steps bracketed by the dashed blue box. 

1. A model to estimate the variance on the model prediction is chosen. The model considered 

in this study is given by (3.17). 

2. A new product of quality 𝑦𝑑𝑒𝑠 is desired. The direct inversion solution 𝐭𝑛𝑒𝑤 on the score 

space corresponding to the given quality target 𝑦𝑑𝑒𝑠 is calculated according to (3.15). If 

𝐴 > 1, a null space of dimension 𝐴 − 1 exists and can be computed as in section 3.2.2. If 

𝐴 = 2, the graphical representation of the null space in the score plot is a straight line 

passing through 𝐭𝑛𝑒𝑤, as shown in Fig. 3.2b. 

3. The null space is discretized at 𝐿 score points (with 𝐿 sufficiently large). The coordinates 

of the l-th score point along the null space are (𝑡1,𝑙, 𝑡2,𝑙, … , 𝑡𝐴,𝑙). For each of these points, 

the associated covariance matrix: 

cov(𝐭l) =  

(

 
 
 

𝜎𝑡1,𝑙
2   cov(𝑡1,𝑙 , 𝑡2,𝑙) ⋯    cov(𝑡1,𝑙, 𝑡𝐴,𝑙) 

   cov(𝑡2,𝑙, 𝑡1,𝑙)           𝜎𝑡2,𝑙
2  ⋯           ⋮

⋮             ⋮            ⋱           ⋮        
cov(𝑡𝐴,𝑙 , 𝑡1,𝑙)           ⋯   ⋯         𝜎𝑡𝐴,𝑙

2

    )

 
 
 

 (3.34) 

 

is calculated using one of the following two options: 
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 model #1: if it is assumed that the prediction uncertainty is back-propagated to the 

scores only, the uncertainty back-propagation formula is given by (3.23). Eq. (3.23) 

is solved as a constrained optimization problem:  

cov(𝐭𝑙) = min
cov(𝐭)

[𝐐Tcov(𝐭)𝐐 − SEC2(1 + ℎ𝑝)][𝐐
Tcov(𝐭)𝐐 − SEC2(1 + ℎ𝑝)]

T
(3.35) 

         s.t  𝜎𝑡𝑖,𝑙
2 > 0 ,                                         𝑖 = 1,… , 𝐴                                             (3.36)  

cov(𝑡𝑖,𝑙, 𝑡𝑗,𝑙) = cov (𝑡𝑗,𝑙, 𝑡𝑖,𝑙) = 0 ,      𝑖, 𝑗 = 1,… , 𝐴                                            (3.37)                                                             

  

Constraint (3.37) reflects the fact the scores are uncorrelated, because the NIPALS 

algorithm produces orthogonal 𝐗-scores.  

 

 Model #2: the uncertainty back-propagation formula is given by (33), meaning that 

the uncertainty on the prediction is propagated on both the loadings and the scores. 

Eq. (33) is solved as a constrained optimization:  

 

cov(𝐭𝑙) = min
cov(𝐭)

{(1 −
𝐴+1

𝑁
) [𝐶ℎ𝑝 + 𝐐

T cov(𝐭)𝐐] − SEC2(1 + ℎ𝑝)} {(1 −
𝐴+1

𝑁
) [𝐶ℎ𝑝 +

𝐐T cov(𝐭)𝐐] − SEC2(1 + ℎ𝑝)}
T

                                                      (3.38) 

  

                    s.t 

                     𝜎𝑡𝑖,𝑙
2 > 0 ,                                                     𝑖 = 1,… , 𝐴  (3.39) 

cov(𝑡𝑖,𝑙 , 𝑡𝑗,𝑙) = cov (𝑡𝑗,𝑙 , 𝑡𝑖,𝑙) = 0 ,            𝑖, 𝑗 = 1,… , 𝐴.                      (3.40) 

4. The set of 𝐿 points 𝐭𝑙 along the null space and their associated covariance matrices 

cov (𝐭𝑙) can be used to completely identify a restricted portion of the KS that is 

expected to bracket the DS projection of the process. To this purpose, for each point 

a (1 − 𝛼)%-confidence hyper-ellipsoid is built by joining the points of coordinates 

𝐭[1 × 𝐴] that satisfy the equation (Tomba et al., 2012):  

 

(𝐭 − 𝐭𝑙)cov(𝐭𝑙)(𝐭 − 𝐭𝑙)
T =

𝐴(𝑁2−1)

𝑁(𝑁−𝐴)
𝐹𝐴,𝑁−𝐴,𝛼   , (3.41) 

where 𝐹𝐴,𝑁−𝐴,𝛼 is the value corresponding to the 𝛼-th% percentile of the 𝐹 

distribution with 𝐴 and (𝑁 − 𝐴) degrees of freedom. An example of projection on 

the score space of the 95% confidence hyper-ellipsoids on the first two LVs is 

shown in Fig. 3.2c (model #1) and Fig. 3.2e (model #2). 

5. The confidence limits of the null space can be built by calculating the envelope of 

the 𝐿 (1 − 𝛼)(%)-confidence hyper-ellipsoids determined in the previous step. The 

region bracketed by this envelope is the experiment space, namely a subspace of the 
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KS within which the DS projection of the process is likely to lie with a confidence 

of at least (1 − 𝛼)(%). A graphical interpretation is shown in Fig. 2d for model #1 

and in Fig. 3.2f for model #1 and model #2 altogether. When the scores are assumed 

not to be affected by uncertainty, the null space can be exactly located on the score 

space (black solid straight line). On the opposite, when the prediction uncertainty is 

entirely back-propagated to the scores, the ES is the one bracketed by the divergent 

red solid lines (model #1). The average situation, according to model #2, is 

represented by the black dashed lines: the uncertainty in the location of the null 

space decreases as far as the leverage of the 𝑙-th point increases, and it becomes zero 

outside the KS (where the model is not representative). 

6. Each point 𝐭𝑙 of the null space is projected onto the multivariate 𝑉-dimensional real 

input space to give 𝐱𝑙 according to: 

  

𝐱𝑙 = 𝐭𝑙𝐏
T   .                                                                                                   (3.42) 

 

The uncertainty related to this 𝑙-th point of the null space, described by its 

covariance cov(𝐭𝑙), is back-propagated to the real input space using the back-

propagation formula: 

 

cov(𝐭𝑙) = 𝐖
∗Tcov(𝐱𝑙)𝐖

∗   .                                                                            (3.43) 

 

Eq. (3.43) is derived from (3.3) by assuming that the model weights are not affected 

by uncertainty. This is a conservative assumption since all the uncertainty related to 

𝐭𝑙 is back-propagated to the multidimensional input space. Eq. (3.43) is solved for 

cov(𝐱𝑙) using an optimization framework and enforcing cov(𝐱𝑙) to be positive 

definite. 

 

7. The multidimensional confidence region for the projected null space is built on the 

real input space following the same procedure as for steps #5 and #6, by substituting 

𝐭𝑙 with 𝐱𝑙 and cov(𝐭𝑙) with cov(𝐱𝑙). This generates a 𝑉-dimensional space of 

combinations of input variables that brackets the real DS with at least (1 − 𝛼)(%) 

confidence. To obtain a graphical interpretation of this multidimensional space, its 

projections onto two-dimensional plots of pairs of input variables can be plotted. It 

is worth remembering that this multidimensional space is completely defined by the 

set of points 𝐱𝑙 and their associated covariance matrices cov(𝐱𝑙). 

 

With respect to the methodology proposed by Facco et al. (2015), the following improvements 

are obtained: 
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 The proposed methodology is completely analytical and allows quantifying the uncertainty 

on  the  inversion solution in terms of point estimates and corresponding covariance 

matrices. 

 As in Facco et al. (2015), the solution of the PLS model inversion problem and the 

estimation of solution uncertainty can be conveniently expressed in terms of LVs instead 

of true input variables, thus obtaining a strong reduction of the problem dimension. 

However, from a practical point of view, the approach by Facco et al. (2015) requires one 

to transform the result of the PLS inversion problem and its uncertainty in terms of real 

input variables. The proposed methodology allows one to project the solution back in the 

real input space together with the analytical quantification of its uncertainty. 

 The proposed methodology is general and can also be used when multivariate quality 

targets are assigned, provided that a reliable model to estimate the uncertainty on the 

prediction of the multivariate response is available. The development of such models is 

still an open research area and this study may direct further investigation on this topic. 

The methodology has been tested on three case studies. All the algorithms were implemented 

in MATLAB v. 2015b using a sequential quadratic programming optimization algorithm. 
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(a)                                                                                  (b) 

 
(c)                                                                                     (d) 

 
                                                                   (e)                                                                                      (f) 

Figure 3.2.  (a) Projection of the calibration samples onto the score space and KS boundary. 

(b) Direct inversion solution (triangle) and null space across it (solid line). (c) and (e): 95% 

confidence ellipses along the null space for model #1 and #2. (d) and (f ): envelope of the 

confidence ellipses obtained with model #1 (red lines) and model #2(dashed lines). 
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3.4 Case studies 

3.4.1 Case study #1: mathematical example 

The first illustrative example is the nonlinear mathematical example presented by Facco et al. 

(2015). The calibration dataset is made of 15 observations of five input variables 𝐗 [15 × 5] =

[𝐱1, 𝐱2, 𝐱3, 𝐱4, 𝐱5] and one response variable 𝐲[15 × 1]. Two (𝐱1, 𝐱2) of the five input variables 

are independent and are generated as normal random Gaussian distributions with mean and 

standard deviation as in Tab. 1. The other three (𝐱3, 𝐱4, 𝐱5) dependent input variables are related 

to 𝐱1 and 𝐱2 for any observation 𝑖 according to:  

𝑥𝑖,3 = 𝑥𝑖,1
2   (3.45) 

𝑥𝑖,4 = 𝑥𝑖,2
2   (3.46) 

𝑥𝑖,5 = 𝑥𝑖,1𝑥𝑖,2   . (3.47) 

The response dataset is obtained using the model:  

𝐲 = 𝑘0 + 𝑘1𝐱1 + 𝑘2𝐱2 + 𝑘3𝐱3 + 𝑘4𝐱4 + 𝑘5𝐱5                                                    (3.48) 

with [𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5] = [−21.0,4.3,0.022,−0.0064,1.1, −0.12]. 

Table 3.1. Case study #1: characterization of the input/output data. 

Variable Mean Standard deviation 

Inputs 

𝐱𝟏 

 

41.73 

 

16.07 

𝐱𝟐 11.13 2.97 

𝐱3 1999.15 1408.07 

𝐱𝟒 132.63 66.93 

𝐱𝟓 464.85 227.38 

Response   

𝐲 235.99 71.35 

3.4.2 Case study #2: roll compaction of an intermediate drug load 

formulation 

This case study concerns a roll compaction of an intermediate drug load formulation with the 

following composition: 15% paracetamol, 55.3% mannitol, 23.7% microcrystalline cellulose, 

4% croscarmellose and 2% sodium stearyl fumarate. Experimental data for this case study have 

been provided by Souihi et al. (2015) and refer to two different equipment configurations 
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(vertically- and horizontally- fed roll compactor). Details on the process and on the formulation 

can be found in the cited reference. 

The historical data set includes 34 observations (11 related to the vertically-fed roll 

configuration, 23 to the horizontally-fed roll configuration) of 4 input variables (roll force, roll 

width, roll diameter, dimensionless ratio of gap to roll diameter 𝐺𝐷) and one quality response 

variable (ribbon porosity)16. A summary of this dataset is reported in Table 3.2. The input 

variables are collected in the calibration regressor matrix 𝐗 [34 × 4], and the observations of 

the ribbon porosity are collected in the response vector 𝐲 [34 × 1]. 

Table 3.2. Case study #2: list of the input and response variables (data from 

Souihi et al., 2015). 

 ID Variable name Units Symbol 

Inputs    

1 Roll force [kN/cm] 𝑝𝑟𝑜𝑙𝑙  
2 Roll width [mm] 𝑠𝑟𝑜𝑙𝑙  
3 Roll diameter [mm] 𝐷𝑟𝑜𝑙𝑙  
4 Ratio of the gap to roll diameter [-] 𝐺𝐷 

Response    

R1 Ribbon porosity [%] 𝑃 

 

Nine external validation samples are used in the work of Souihi et al. (2015) to validate the 

model predictions. These validation samples have been used also in this study to test the 

effectiveness of the proposed methodology. 

3.4.3 Case study #3: high-shear wet granulation of a pharmaceutical 
blend 

Experimental data for this case study are taken from Oka et al. (2015) and are based on a design 

of experiment approach (full factorial, 3 × 3 × 3). The high-shear wet granulation of a two-

component (API + excipient) pharmaceutical blend is considered. The effect of three process 

parameters (impeller speed, liquid to solid ratio (𝐿/𝑆), wet massing time) on the median particle 

size 𝑑50 is considered. Twenty-seven observations of the input process parameters and of the 

corresponding 𝑑50 are available. This historical dataset is split into 20 randomly-chosen 

calibration samples and 7 validation samples. The input calibration matrix 𝐗 [20 × 3] collects 

the 20 calibration observations of the three process inputs, whereas the response calibration 

matrix 𝐲 [20 × 1] collects the respective 20 observations for the median particle size. A list of 

the input and output variables considered in this case study is given in Table 3.3. 

                                                           
16 In the work of Souihi et al. (2015), other 4 input variables (roll gap, roll speed, screw speed, ratio between the screw speed 

and the roll speed) are considered. However, since they have little effect on ribbon porosity (see Fig. 3.7a of the cited 

reference for more detail) they have not been included into the calibration dataset. 
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Table 3.3. Case study #3: list of the input and response variables (data from 

Oka et al, 2015). 

ID Variable name Units Symbol 

Inputs 

1 

 

Liquid to solid ratio 

 

[-] 

 

𝐿/𝑆 

2 Impeller speed [rpm] 𝑣𝑖𝑚𝑝 

3 Wet massing time [min] 𝑡𝑤𝑒𝑡 

Response    

R1 Median particle size [𝜇𝑚] 𝑑50 

 

3.4.4 Case study #4: dry granulation by roller compaction 

Historical data for this case study were generated by Facco et al. (2015) using the modelling 

environment of gSOLIDS® (Process Systems Enterprise Ltd, 201417) based on the model of 

Johanson (1965). Eight input variables (compressibility factor, roller diameter, roller width, 

roller speed, pressure force, friction angle between solid granulate and roller compactor, 

effective friction angle and springback factor) and one response variable (intravoid fraction of 

the solids out of the compactor) are considered. Details on the characterization of the 

input/output data for the calibration data set are reported in the cited reference.  

 

3.4.5 Case study #5: wet granulation  

This case study deals with the design of a powder product by means of high-shear wet 

granulation. The historical data set is taken from the experimental work of Vemavarapu et al. 

(2009) and is composed by 25 observations of seven input material properties (H2O solubility, 

contact angle, H2O holding capacity, Sauter mean diameter, distribution span, surface area, pore 

volume) and one response variable (fraction of granules larger than 1,4 mm). Additional details 

on the historical data set can be found in the cited reference. 

3.5 Results for case study #1 

3.5.1 Quality target described by an equality constraint 

The problem of determining the set of process inputs that yields a product with 𝑦𝑑𝑒𝑠 = 300 is 

addressed. First, a PLS model using the calibration datasets 𝐗 and 𝐲 as described in section 

3.4.1 is built. The diagnostics of such a model is presented in Table 3.4. 

                                                           
17 Free software license provided by Process Systems Enterprise Ltd is gratefully acknowledged.  
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Table 3.4. Case study #1. Diagnostics of the PLS model. 

LV # 𝑅𝑋
2(%) 𝑅𝑋,𝑐𝑢𝑚

2 (%) 𝑅𝑦
2 (%) 𝑅𝑦,𝑐𝑢𝑚

2  (%)  

1 60.59 60.59 96.63 96.63  

2 38.47 99.06 1.48 98.11  

3 0.67 99.73 0.94 99.05  

4 0.19 99.92 0.71 99.77  

5 0.08 100.00 0.23 100.00  

 

Two LVs (𝐴 = 2) are chosen, explaining more than 99% of the total variability of 𝐗 and more 

than 98% of the total variability of 𝐲. Since 𝐴 > dim (𝐲) = 1, a 1-dimensional null space exists. 

The DS corresponding to 𝑦𝑑𝑒𝑠 is calculated from model (3.48) and then projected onto the score 

space (green line in Figs. 3.3a and 3.4a) and on the real input space (green line in Figs. 3.3b 

and 3.4b). Notice that, since the number of independent input variables is 2, also the dimension 

of the true input space is 2. The DS of the process is a curve because model (3.48) is nonlinear. 

The input combinations that project outside the KS (which is bracketed by the blue contours 

both in Figure 3.3 and in Figure 3.4) cannot be represented by the PLS model because outside 

the KS the model cannot be assumed to be fully representative. 

 
(a)                                                                  (b) 

Figure 3.3. Case study #1, uncertainty back-propagation model #1: confidence limits of the 

null space and projection of the DS (a) onto the score space and (b) onto the real input space. 

One issue deserves attention. The DS of the product is defined as the set of input combinations 

that corresponds exactly to a product with quality 𝑦𝑑𝑒𝑠. The green line of Figs. 3.3a and 3.4a is 

actually the projection of the DS onto the score space, i.e., it is the DS as it is “seen” by the PLS 

model. Different PLS models (i.e., different calibration datasets) would result in different DS 

projections. However, for a given 𝑦𝑑𝑒𝑠, the DS is unique by definition. For example, the green 

lines of Figs. 3.3b and 3.4b represent the DS for 𝑦𝑑𝑒𝑠=300. Since in these plots the DS is 

expressed in terms of real input variables, its representation is independent of the PLS model 

used to interpret the historical dataset.  
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(a)                                                                       (b) 

Figure 3.4. Case study #1, uncertainty back-propagation model #2: confidence limits of the 

null space and projection of the DS (a) onto the score space and (b) onto the real input 

space.  

The direct inversion solution 𝐱𝑛𝑒𝑤 (black triangles of Figs. 3b and 4b) and its projection 𝐭𝑛𝑒𝑤 

(black triangles of Fig. 3.3a and 3.4a) are then computed. The null space is then plotted in the 

score space (black solid line of Figs. 3.3a and 3.4a). A finite number of 𝐿 points are chosen 

along the null space and their projections onto the real input space are shown as black diamonds 

in Figs. 3.3b and 3.4b. It is worth noticing that not all the input combinations lying along the 

null space may be achievable in practice  because of physical or operational constraints. The 

same thing can be said for the DS. For each of the 𝐿 points along the null space, the 95% 

confidence ellipse is built using the uncertainty back-propagation model #1 (red solid ellipses 

of Fig. 3.3a) and the modified model #2 (black solid ellipses of Fig. 3.4a). The envelope curves 

of this family of co-axial 95% confidence ellipses are then plotted (model #1: red solid lines of 

Fig. 3.3a; model #2: black dashed lines of Fig. 4a). Their projections onto the real input space 

are shown in Figs. 3.3b and 3.4b, respectively. The resulting ESs obtained with model #1 and 

model #2 are shown on the score space in Fig. 3.5a and on the real input space in Fig. 3.5b. 

Notice that part of the ES built using model #1 (blue region) is overlapped with the one built 

using model #2; namely, the red region is the portion of the KS that belongs to the CR obtained 

with model #1, but not with model #2. It can be noticed that the predicted ES for model #1, as 

well as that for model #2, effectively bracket a large fraction of the DS of the process lying 

within the KS. However, due to the system nonlinearity, not all the DS projection that lies inside 

the KS can be bracketed. The colored regions of Fig. 3.5b are the combinations of true 

independent input variables that should be primarily considered in the experimental campaign 

to determine the DS of the new product. They indeed point to a region, much narrower than the 

KS, within which the DS of the process is likely to lie. 
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(a)                                                                     (b) 

 

Figure 3.5. Case study #1: graphical interpretation on (a) the score space and (b) the real 

input space   of the ES built using the uncertainty back-propagation model #1 (red + blue 

area) and model #2 (blue area).  

From a practical viewpoint, when a new product of desired characteristics needs to be 

developed, the DS is not known a priori. The direct validation of the proposed methodology 

would therefore require the experimental validation of the results obtained from the model. In 

this mathematical example, the effectiveness of the proposed methodology has been validated 

using coverage probabilities (CPs) according to the following procedure. A set of 𝑁𝑣𝑎𝑙 = 1000 

validation samples (𝐗∗, 𝐲∗) and 𝑁𝑐𝑎𝑙 calibration samples are generated as described in section 

4.1. A PLS model with 𝐴 = 2 LVs is built with the calibration data set. For each validation 

sample, the null space and its confidence regions at assigned confidence levels are calculated 

using alternatively model #1 and model #2. It is then checked if the projection 𝐭𝑝 of the known 

reference value 𝐱𝑟𝑒𝑎𝑙 falls within the specified confidence region of the null space. The CP is 

calculated as the ratio between the number of validation samples that fall within the predefined 

CR of the null space and the total number of validation samples (CP is expressed as a 

percentage). If a validation sample is found to be outside the KS, it is discarded and not 

considered in the analysis. The CP is expected to be equal to, or greater than, the assigned 

confidence level, which is set to 95%. 

To analyze the effect of the size of the calibration dataset, CPs have been calculated using 

different values for  𝑁𝑐𝑎𝑙, but always maintaining the same 1000 validation samples. Results 

are reported in Table 3.5. 
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Table 3.5. Case study #1: observed CPs for uncertainty back-propagation 

models #1 and #2 with a confidence level of 95%. CPs lower than the 

predefined confidence level are highlighted in bold. 

𝑵𝒄𝒂𝒍 𝐂𝐏 model #1 (%) 𝐂𝐏 model #2 (%) 

5 92.5 86.1 

10 93.6 88.5 

15 94.1 91.6 

20 95.1 93.2 

25 95.8 95.8 

30 99.0 95.4 

50 96.1 95.2 

100 97.8 96.1 

150 98.2 96.8 

200 99.3 97.2 

 

It can be seen that both uncertainty back-propagation models perform properly even when only 

few calibration samples are available. Model #1 seems to perform slightly better than model 

#2: this is reasonable, since in this model all the prediction uncertainty is back-propagated to 

the scores and the CR of model #1 is larger than the one of model #2. However, an additional 

issue that should be considered when assessing the performance of the two uncertainty back-

propagation models is quantifying the extent of the shrinkage (with respect to the original KS) 

of the space within which experiments should be carried out to identify the DS. We therefore 

propose a simple metric to quantify the extent of the shrinking of the experimental region to be 

spanned by experiments. 

Consider the 𝑉-dimensional space obtained as the projection of the KS from the score space to 

the real input space. Let 𝑉𝑘 be the hypervolume of this space. Then consider the projections of 

the ES boundaries located inside the KS (obtained with model #1 or #2) on the 𝑉-dimensional 

input space, and let 𝑉𝑒,𝑖 be the hypervolume of the region bracketed by these boundaries, with 

𝑖 = 1 (model #1) or 𝑖 = 2 (model #2). The ES shrinking (ESS) factor for model 𝑖 can be 

quantified as: 

 

ESS𝑖(%) = [1 − (
𝑉𝑒,𝑖

𝑉𝑘
)] ⋅ 100  (3.49) 

The larger this factor, the more effective the segmentation of the KS obtained with a given 

uncertainty back-propagation model. This metric complements the CP to evaluate the model 

performance. An effective uncertainty back-propagation model should be reliable (i.e., with CP 

equal to, or greater than, the predefined confidence level) and ensure the largest possible 

shrinking of the ES at the same time. 

In the case study under investigation, the real input space is 2-dimensional and (3.49) reduces 

to a ratio of areas. The ratio ESS𝑖 as a function of the size of the calibration data set for model 

#1 and #2 is reported in Table  3.6. 
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Table 3.6. Case study #1: experimental space shrinking using the uncertainty 

back-propagation models #1 and #2.  

𝑵𝒄𝒂𝒍 
𝐄𝐒𝐒𝟏 (%) 

model #1 

𝐄𝐒𝐒𝟐(%)  
model #2 

10 79.0 93.3 

15 86.0 97.2 

20 81.6 96.4 

25 74.3 94.3 

30 77.5 92.7 

50 83.1 97.0 

100 86.5 97.4 

200 88.9 98.0 

500 91.5 98.8 

1000 91.1 97.5 

 

It can be noticed that the shrinkage of the experiment space that can be obtained with model #2 

is significantly larger than the one that can be obtained with model #1. This is due to the fact 

that model #1 is more conservative than model #2. Moreover, ESS1 is much more dependent 

on the size of the calibration data set than ESS2. 

3.5.2 Quality target described by an inequality constraint 

In several practical situations, the quality target for the product to be developed is not specified 

as an equality constraint, but as an acceptance region (i.e., as a set of inequality constraints). In 

the following, we discuss the case where the set of quality constraints is assigned as 𝑦𝑙𝑜 ≤

𝑦𝑑𝑒𝑠 ≤ 𝑦𝑢𝑝, where ylo and yup are the lower and upper bounds for ydes, respectively. 

Consider Fig. 3.6. The bounds for 𝑦𝑑𝑒𝑠 are set to 𝑦𝑙𝑜 = 278 and 𝑦𝑢𝑝 = 378. A PLS model with 

𝐴 = 2 LVs and 𝑁 = 15 calibration samples is built as in section 3.5.1. The green area shown 

in Fig. 3.6a is the projection of the DS falling within the KS. This area is bracketed by the KS 

boundary and by the DS projections as if these projections corresponded to two distinct equality 

constraints, namely 𝑦𝑑𝑒𝑠 = 𝑦𝑙𝑜 and 𝑦𝑑𝑒𝑠 = 𝑦𝑢𝑝. The null spaces corresponding to 𝑦𝑑𝑒𝑠 = 𝑦𝑙𝑜 

and 𝑦𝑑𝑒𝑠 = 𝑦𝑢𝑝 can then be computed. If no uncertainty on the location of these boundary null 

spaces is assumed, the DS projection that would be predicted by the PLS model is the one given 

by the black area of Fig. 3.6b. 

 



 

 
Uncertainty back-propagation in PLS modeling for design space determination 109 

 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

 
(a) 

 
(b) 

Figure 3.6. Case study #1, quality target described by 278 ≤ ydes ≤ 378: (a) projection of the 

true DS on the score space (green area); (b) DS projection predicted by the PLS model when 

prediction uncertainty is not accounted for (black area). 

If prediction uncertainty is accounted for, the envelope curves of  the 95% confidence ellipses 

for the boundary null space locations can be built by using the uncertainty back-propagation 

model #1 or model#2 as shown in Figs. 3.7a and 3.7b, respectively. 

 

 

(a)                                                                          (b) 

 

Figure 3.7. Case study #1, quality target described by 278 ≤ ydes ≤ 378: 95% envelope curves 

of the 95% confidence ellipses for the boundary null spaces according to (a) model #1 and 

(b) model #2. 
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Therefore, the DS is expected to lie within the red area of Fig. 3.8a (uncertainty back-

propagation model #1) or within the blue area of  Fig. 3.8b (uncertainty back-propagation model 

#2). 

 
(a)                                                                (b) 

Figure 3.8. Case study #1, quality target described by 278 ≤ ydes ≤ 378:  ES according to 

(a) model #1 and (b) model #2. 

 

Fig. 3.9 provides a comprehensive graphical interpretation of the overall discussion. If the 

segmentation of the KS is done using the PLS inversion solution and model uncertainty is not 

accounted for (Fig. 3.9a), a large portion of the DS projection is not bracketed and therefore 

will go unexplored during an experimental campaign. Note that in this case uncertainty in the 

determination of the DS projection mainly derives from the fact that a linear model (the PLS 

model) is used to predict a strongly nonlinear DS. When uncertainty in the PLS inversion 

solution is accounted for, a larger portion of the DS of the process is bracketed (Fig. 3.9b for 

model #1, Fig. 3.9c for model #2). However, a much smaller subspace of the DS is still not 

bracketed (green areas) by the envelope curves of the inversion solution. In fact, the 

contribution of the variance of the residuals to the overall prediction uncertainty in Eq. (3.17), 

which partially accounts for nonlinearity, is back-propagated to the calculated solution. By 

increasing the confidence level (i.e. by reducing the risk of not bracketing the DS), a broader 

ES would be obtained. In a nutshell, the greater the desired confidence level in bracketing the 

DS of the new product, the wider the operating window that must be investigated by 

experimentation. 
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(a) 

 
(b)                                                                      (c) 

 

Figure 3.9.  Case study #1, quality target described by 278 ≤ ydes ≤ 378. (a) Model-predicted 

DS projection without accounting for uncertainty (black area), and portion of the DS 

projection that is not bracketed by the model predictions (green area). (b) ES (red area) 

according to model #1, and portion of the DS projection that is not bracketed (green area). 

(c) ES (blue area) according to model #2, and portion of the DS projection that is not 

bracketed 

3.6 Results for case study #2 

The same external validation data set as in Souihi et al. (2015) is used. First, a PLS model is 

built using the 34 calibration samples. The model diagnostics is shown in Table 3.9. 

Table 3.9. Case study #2: diagnostics of the PLS model. 

LV # 𝑹𝑿
𝟐(%) 𝑹𝑿,𝒄𝒖𝒎

𝟐 (%) 𝑹𝒚
𝟐 (%) 𝑹𝒚,𝒄𝒖𝒎

𝟐  (%) 

1 57.72 57.72 66.82 66.82 

2 38.87 96.59 20.28 87.10 

3 3.41 100.00 12.33 99.43 

4 0.00 100.00 0.57 100.00 
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Using 𝐴 = 2 LVs, 96.6% of the total variability of 𝐗 and 87.1% of the total variability of 𝐲 are 

explained. The proposed methodology is then tested on the 9 validation samples available. As 

an illustrative example, the results obtained for a product with desired average porosity ydes = 

22.6% (validation sample #7) are shown in Fig. 3.10. 

 
 

Figure 3.10. Case study #2: bracketing the DS projection of an intermediate drug load 

formulation with ydes = 22.6%. The green circle is the projection of the inputs actually giving 

ydes, the black triangle is the direct inversion solution, the black solid line is the null space as 

calculated by the PLS model, the red solid lines are the envelope of the 95% confidence 

ellipses of the null space as calculated by model #1 and the black dashed lines those 

calculated by model #2. 

 

The projection of the process inputs actually required to obtain the desired product quality 

(green circle in Fig. 3.10) lies within the ES both for model #1 and for model #2. It is worth 

noticing that this green circle is only one of the possible real input combinations that can lead 

to the desired product quality. We will refer to this point as  𝐭𝑟𝑒𝑎𝑙. The null space related to the 

direct inversion solution 𝐭𝑛𝑒𝑤 (black solid line in Fig. 3.10) is quite far from 𝐭𝑟𝑒𝑎𝑙. Therefore, 

if the PLS model were used without accounting for prediction uncertainty, a significant error 

on the location of the DS projection would be obtained. The 𝐸𝑆𝑆 indices that can be obtained 

with the two models for this case study are 𝐸𝑆𝑆1 = 77.9% and 𝐸𝑆𝑆2 = 87.7% respectively. 

The proposed methodology has been tested on all the 9 validation samples available. The rate 

of success was 100% both with model#1 and with model #2.  
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3.7 Results for case study #3  

A PLS model is first built using the randomly-chosen 20 calibration samples. 𝐴 = 2  LVs are 

used, accounting for 76.3% of the total variability of 𝐗 and 86.5% of the total variability of 𝐲. 

The seven validation samples are then used to test the effectiveness of the proposed 

methodology. An example is shown in Fig. 3.11 (validation sample #2). The green circle is the 

projection onto the score space of the input combination that actually yields the desired median 

particle size (𝑑50
𝑑𝑒𝑠 = 1101 𝜇𝑚). The direct inversion solution (black triangle) and the null 

space across it (black solid line) are shown in the same figure. It can be noticed that, if 

uncertainty is not accounted for, the model-predicted DS projection would not include the actual 

set of inputs. When considering the back-propagation of uncertainty on the score space, the 

resulting ES effectively brackets the true input combination for the desired quality target. By 

carrying out the experimental campaign across these restricted operating windows, an 

experiment space shrinkage of 𝐸𝑆𝑆1 = 69.3% and 𝐸𝑆𝑆2 = 74.5% can be obtained.  

 
Figure 3.11. Case study #3: bracketing the true input combinations (green dot) yielding a 

desired median particle size granulate (𝑑50
𝑑𝑒𝑠 = 1101 𝜇𝑚) in a high-shear wet granulation 

process. The KS is segmented using model #1 (red convolution lines) and model #2 (black 

dashed convolution lines). 

3.8 Results for case study #4 

Differently from Facco et al. (2015), 30 calibration samples are selected randomly from the 

historical dataset (composed by 80 samples). The problem of designing a process that allows 

one to obtain a granulate with intravoid fraction of the solids out of the roller compactor of 
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𝑦𝑑𝑒𝑠 = 0.6341 m
3/m3 is considered. The results obtained with two uncertainty back-

propagation models are shown in Fig. 3.12. A reduction of the experimental effort of 𝐸𝑆𝑆1 =

69% can be obtained by using model #1, and of 𝐸𝑆𝑆2 = 76% with model #2. 

 

 
Figure 3.12. Case study #4: bracketing the true input combinations (green circle) yielding a 

desired intravoid fraction of solids out of the roller compactor (ydes = 0:6341m3/m3). 

3.9 Results for case study #5 

Fourteen calibration samples are randomly-chosen from the historical dataset, and a PLS model 

accounting for 67.2 % of the total variability of 𝐗 and 79.3 % of the total variability of 𝐲 is built 

based on this calibration data set. The problem of bracketing the knowledge space to provide 

guidance for the experimental campaign of granulate with a percent of oversize granules equal 

to 74% is considered. The results are shown in Fig. 3.13. It can be noticed that, also in this case, 

the segmentation of the knowledge space is effective for both uncertainty back-propagation 

models, being able to bracket the real input combination that yield the desired product. The 

reduction of the experimental effort that can be obtained for this case study are 𝐸𝑆𝑆1 = 56.1% 

and 𝐸𝑆𝑆2 = 66.3%. 
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Figure 3.13. Case study #5: bracketing the true input combinations (green dot) that gives a 

granulate with a percent of oversize granules equal to 74% in a high-shear wet granulation 

process.  

3.10 Conclusions 

In this study, the possibility of using PLS model inversion to assist the determination of the 

design space of a new pharmaceutical product has been discussed. A methodology to back-

propagate the uncertainty on the prediction of the PLS model to the calculated inputs has been 

developed, and the practical outcomes that can be obtained in pharmaceutical product 

development have been discussed. Two uncertainty back-propagation models have been 

formulated, and their performance critically compared. The first model assumes that all the 

prediction uncertainty is back-propagated to the PLS scores, whereas the second one attempts 

to allocate the overall prediction uncertainty on both the scores and the loadings. From a 

mathematical viewpoint, the two models allow one to determine the covariance matrix of a 

point belonging to the solution space of the PLS inversion problem by making some 

assumptions on how uncertainty back-propagates from the 𝑦-space to the latent space first, then 

to the real input space. The final objective of the methodology is to build confidence regions 

for the calculated solution of the inversion problem, thus identifying an operational space (i.e., 

a set of combinations of raw material properties and process parameters) that brackets the real 

DS of the product at the predefined confidence level. From a practitioner’s perspective, the 

proposed methodology can be used to substantially shrink the space within which experiments 

must be carried out to identify the DS, since the experimental campaign can be focused on this 

restricted operating window instead of the entire historical decision space. Moreover, the 

proposed procedure returns an accurate quantification of uncertainty for quality risk 

management. 
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The effectiveness of the proposed methodology has been tested on three different case studies. 

The ability of the two uncertainty back-propagation models to effectively bracket the real DS 

of the new product and to shrink the experiment space have been assessed. The first model is 

more conservative than the second, in the sense that it guarantees a slightly higher performance 

in bracketing the true DS of the product; however, it also results in a less effective shrinkage of 

the experiment space.  

Some areas of further investigation can be pointed out. The proposed procedure can be extended 

to multivariate product specifications, given the availability of a reliable model to estimate the 

prediction covariance matrix in PLS modelling. The development of such a model is still an 

open research area. Moreover, more sophisticated and rigorous relations may be derived to 

relate the uncertainty on the model outputs to the uncertainty on the model inputs. These 

formulas should account for the intrinsic reduced-rank nature of PLS modeling. Additionally, 

uncertainty in the input and output measurements should be accounted for.
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Chapter 4 
 

A Bayesian/latent variable approach for 

design space determination* 
 

In this Chapter, a methodology that combines latent-variable modeling and multivariate 

Bayesian regression is presented in order to identify a subset of input combinations (process 

operating conditions and raw materials properties) within which the design space  (DS) of a 

new pharmaceutical product will lie at a probability equal to, or greater than, an assigned 

threshold. The methodology is tested on three relevant pharmaceutical case studies, two of 

which involving experimental data. The ability of the proposed approach to obtain a 

probabilistic identification of the DS, while simultaneously reducing the computational burden 

for the discretization of the input domain and providing a simple graphical representation of the 

DS, is shown. 

4.1 Introduction 

In the last decade, the pharmaceutical regulatory agencies have strongly encouraged the 

pharmaceutical industries to gain deeper understanding of their manufacturing processes. The 

International Conference on Harmonization (ICH) Q8 guideline (ICH, 2009) emphasized the 

Quality by Design (QbD) approach, according to which quality should be built into the product 

since its conception, and not simply tested after the manufacturing process is completed. This 

requires understanding how input materials properties and process operating conditions can 

affect the product quality. A key concept introduced by this guideline is that of design space 

(DS), defined as the “multidimensional combination and interaction of input variables (e.g. 

material attributes) and process parameters that have been demonstrated to provide assurance 

of quality” (ICH, 2009).  As long as raw material properties and process parameters are changed 

within the approved DS, no regulatory process of post-approval change is required. Product 

quality is expressed in terms of critical quality attributes (CQAs), which must lie within 

                                                           
* Bano, G., Facco, P., Bezzo, F., Barolo, M. (2018) Probabilistic design space determination in pharmaceutical development: 

a Bayesian/latent variable approach. AIChE J. 64, 2438- 2449. 
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acceptance limits defined a priori. “Assurance of quality” implicitly requires quantifying the 

confidence of the manufacturer at providing products with the desired quality.  

In this study, we address the problem of identifying the DS of a new pharmaceutical product. 

From a general perspective, assisting the identification of the DS requires both experimentation 

and mathematical modeling. When models are used to identify the DS, different sources of 

uncertainty can affect the DS identification exercise, e.g. model parameter uncertainty (Faber 

and Kowalski, 1997), measurement uncertainty in the calibration dataset (Reis and Saravia, 

2005), and structural uncertainty due to inadequacy of the model structure. However, as 

observed by Peterson (Peterson, 2008),  most of the available modeling techniques used to assist 

a DS identification exercise do not account for model uncertainty, and some of them do not 

even fully account for the multivariate correlation between model inputs and outputs. For 

example, overlapping mean response surface methodologies (Anderson and Whitcomb, 1998; 

Zidan et al., 2007) fail to account for model parameter uncertainty and for the correlation 

between the CQAs. The multivariate correlation between inputs and outputs is inherently 

considered in latent-variable modeling (LVM; Tomba et al., 2013). However, accounting for 

model uncertainty when using this approach may be complex and at present has been shown 

only for products characterized by a single CQA, i.e. when quality is a univariate property 

(Bano et al., 2017). 

A comprehensive way to account for model parameter uncertainty and correlation between the 

CQAs, as well as to provide a metric for the assurance of quality, is to use a Bayesian posterior 

predictive approach. The idea of Bayesian or probabilistic DS was first introduced by Peterson 

(Peterson, 2004). With this approach, the posterior predictive probability to observe the CQAs 

within their predefined specifications is computed. DoE techniques are used to determine 

appropriate experimental conditions for the design of multivariate linear regression models 

between the input factors and the CQAs (Peterson and Yahyah, 2009; Stockdale and Cheng, 

2009; Debrus et al., 2011). The multivariate regression model is then used to predict the DS in 

a Bayesian framework. The input domain is first discretized using a sampling algorithm. 

Samples from the joint posterior distribution of the CQAs are then drawn using Markov-Chain 

Monte Carlo (MCMC) techniques for each discretization point of the input domain. The 

probability of the CQAs to meet their specifications for the given point is then recorded. The 

DS is finally identified as the subspace of the original input domain within which the probability 

of the CQAs to meet their specifications is higher than a user-defined acceptance level. 

Several studies proved the ability of the above approach to quantify the concept of “assurance 

of quality” defined by ICH (Stockdale and Cheng, 2009; Debrus et al., 2011; Peterson and Lief, 

2010). However, two issues are still unresolved: (i) how to obtain a computationally tractable 

discretization of the multidimensional input domain when several input factors are involved, 

and (ii) how to express the results of the DS identification exercise in an intuitive and compact 

way (e.g., graphically). With respect to the first issue, the typical approach for the discretization 
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of the input domain is to use space-filling algorithms. However, these algorithms suffer from 

the curse of dimensionality (Cioppa and Lucas, 2007),  i.e. the computational burden increases 

very significantly with the number of input factors. With reference to the second issue, the 

results of a multidimensional DS identification exercise are usually expressed in a tabular way, 

or as a matrix of two-dimensional probability maps by considering two inputs at a time and 

fixing the other factors to their nominal values. Both these approaches are difficult to interpret 

and fail in giving an intuitive representation of the multivariate DS. The aim of this study is to 

exploit the advantages of LVM to overcome both issues, while maintaining the Bayesian 

posterior predictive approach for DS identification. 

We assume that a historical dataset of products “similar” (Jaeckle and McGregor, 1998) to the 

one under development is available. The historical dataset is first used to build a partial least-

squares (PLS) regression model. PLS is used to obtain a linear transformation between the 

original multidimensional input domain and a low-dimensional latent space, and the Bayesian 

posterior predictive approach proposed by Peterson (Peterson, 2004) is applied to identify the 

probabilistic DS. The reduction of the input space dimensionality obtained with PLS is 

exploited to obtain a computationally efficient discretization of the input domain and to express 

the DS in an intuitive 2-dimensional graphical way, thus overcoming two of the main 

limitations of the approach proposed by Peterson. The practical outcome of the proposed 

methodology is the identification of the DS in a probabilistic fashion, which can be used to 

demonstrate the confidence the manufacturer has on the product meeting its quality targets 

when the manufacturing process is run within the proposed DS.  

The methodology is tested on three case studies. The first one involves a model-generated 

historical dataset for the dry granulation of a pharmaceutical blend (taken from the work of 

Facco et. al. (2015), based on the model of Johanson (1965)). In the second case study, a high-

shear wet granulation process of a pharmaceutical blend is addressed, using experimental data 

from Oka et. al. (2015). The third case study involves the roller compaction an intermediate 

drug load formulation, with  experimental data taken from Souihi et al. (2015) . 

4.2 Review of Partial least-squares (PLS) regression 

Let [𝐗; 𝐘] be a historical dataset of “old” products similar18 to the one under development. 

Matrix 𝐗 [𝐼 × 𝑄] collects I samples concerned with a set of Q process inputs (raw material 

properties and process parameters) that affect the M quality attributes 𝐘[𝐼 × 𝑀] of the historical 

products. 

Partial least-squares (PLS) regression (Wold et al., 1983; Geladi and Kowalski, 1986) is a 

multivariate regression technique that projects a dataset of input and response variables onto a 

                                                           
18 Product similarity can be assessed using the methodology proposed by Jaeckle  and MacGregor (1998). 
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common latent space of 𝐴 new variables, called latent variables (LVs). This set of new variables 

is determined by finding the multidimensional direction on the 𝐗-space that explains the 

maximum multidimensional variance direction in the 𝐘-space, according to the model structure: 

 

𝐗 = 𝐓𝐏T + 𝐄𝐗  (4.1) 

𝐘 = 𝐓𝐐T + 𝐄𝐘  (4.2) 

𝐓 = 𝐗𝐖∗  (4.3) 

where 𝐓 [𝐼 × 𝐴] is the score matrix, 𝐏 [𝑄 × 𝐴] and 𝐐 [𝑀 × 𝐴] are the 𝐗 and 𝐘 loading matrices, 

𝐄𝐗 and 𝐄𝐘 the residuals; 𝐖∗[𝑄 × 𝐴] is the weight matrix. 

The number 𝐴 ≪ 𝑄 of LVs can be chosen in such a way as to explain a meaningful fraction of 

the variance of both the input and output data. In the presence of a strong input collinearity, a 

significant reduction of the problem dimensionality can be obtained by applying this data 

compression technique. This property will be exploited as later illustrated in Section 4.4. 

The subspace of the input domain enclosed by the historical dataset is called the knowledge 

space (KS; MacGregor and Bruwer, 2008). Mathematically, the KS can be identified in the 

latent space as the hyper-ellipsoidal confidence region determined by the 95% confidence limit 

for the the Hotelling’s 𝑇2 statistic (Tracy et al., 1992): 
  

𝑇𝑙𝑖𝑚
2 =

𝐴(𝐼2−1)

𝐼(𝐼−𝐴)
𝐹𝐴,(𝐼−𝐴),0.95   ,  (4.4) 

where 𝐹𝐴,(𝐼−𝐴),0.95 is the value of the 95% percentile of the 𝐹-distribution with 𝐴 and (𝐼 − 𝐴) 

degrees of freedom. The hyper-ellipsoid semiaxes are given by: 

 

𝑠𝑎 = √𝜆𝑎𝑇lim   
2                                  𝑎 = 1,… , 𝐴 (4.5) 

where 𝜆𝑎, 𝑎 = 1,… , 𝐴 is the variance of the scores related to the 𝑎-th LV. 

4.3 Bayesian design space: mathematical formulation 

Let 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑄) be the vector that collects the set of inputs and 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑀) the 

one that collects all the response variables. Let 𝐡(𝐱) be a model relating the inputs to the 

outputs. From a modeling perspective, the DS of the new product can be interpreted as the 

region of the input domain where the corresponding predicted model response 𝐲 = 𝐡(𝐱) has an 

acceptable probability to satisfy assigned specifications. In this study, only the subspace of the 

DS lying within the projection of the KS onto the latent space is explored. To simplify the 

notation, we will refer to this subspace as to the DS itself. 
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The desired quality characteristics for the product to be developed can be expressed in terms of 

acceptance criteria. The region where all product quality attributes meet their acceptance 

criteria is defined as the acceptance region (AR). 

A risk-based definition of the DS is the one proposed by Peterson (Peterson, 2008): 

 

DS = {𝐱 ∈ KS: Pr(𝐲 ∈ AR|𝐱, 𝐗, 𝐘) ≥ 𝜃𝑡ℎ} (4.6) 

 

where th  is an assigned probability threshold for the product quality to be acceptable. Eq. (4.6) 

clarifies that this study considers the DS as the subspace of the historical KS where the posterior 

probability that the product attributes will all lie within their acceptance criteria is greater than 

an assigned threshold, conditionally on the historical dataset [𝐗; 𝐘]. The DS as defined by (4.6) 

will be denoted as probabilistic or Bayesian DS.  

The definition of DS as in (4.6) allows for a quantification of the concept of “assurance of 

quality” as advocated by ICH. The benefits of this Bayesian approach have been extensively 

discussed (Lebrun et al., 2013).  Eq. (4.6) is general and can be used whenever a model relating 

the product quality 𝐘 to the raw material properties and process parameters 𝐗 is available. In 

this study, the model used to relate the product quality to the input factors is a multivariate 

linear regression model: 

 

𝐘 = 𝐗𝚩 + 𝐄 (4.7) 

 

where 𝚩 [𝑄 ×𝑀] is the matrix of model parameters and 𝐄 [𝐼 × 𝑀] = [𝐞1, … , 𝐞𝐼]
T is the matrix 

of the residuals. The residuals are assumed to be independent and normally distributed with 

mean 𝟎 [𝐼 × 𝑀] and covariance 𝚺 [𝑀 ×𝑀], i.e. 𝐞𝑖 𝑁(𝟎, 𝚺), 𝑖 = 1,… , 𝐼. 

The posterior predictive probability included in (4.6) can be determined using a Bayesian 

approach with the multivariate regression model (4.7). To this purpose, a posterior predictive 

distribution for future responses must be obtained. 

Let 𝑓(𝐲|𝐱, 𝐁, 𝚺) be the probability density function for the new response 𝐲 under the set of 

inputs x, given the set of uncertain model parameters 𝐁 and the covariance of the residuals 𝚺. 

This pdf depends on the model adopted. The posterior predictive distribution for 𝐲, conditional 

on the historical data [𝐗; 𝐘], is given by: 

 

𝑔(𝐲|𝐱, 𝐗, 𝐘) = ∫ ∫ 𝑓(𝐲|𝐱, 𝐁, 𝚺)𝑝(𝐁, 𝚺|𝐗, 𝐘)𝑑𝐁𝑑𝚺 (4.8) 

 

where 𝑝(𝐁, 𝚺|𝐗, 𝐘) is the joint posterior distribution of the model parameters 𝐁 and the 

covariance of the residuals 𝚺. The probability Pr(𝐲 ∈ 𝐴R|𝐱, 𝐗, 𝐘) of (4.6) can then obtained 

from 𝑔(𝐲|𝐱, 𝐗, 𝐘) by simple integration within the entire AR: 
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Pr(𝐲 ∈ 𝐴𝑅|𝐱, 𝐗, 𝐘) =  ∫  𝑔(𝐲|𝐱, 𝐗, 𝐘)𝑑𝐲
AR

. (4.9) 

 

Eq. (4.9), combined with (4.8), indicates that that the probability Pr(𝐲 ∈ AR|𝐱, 𝐗, 𝐘) can be 

determined once the joint posterior distribution of the model parameters 𝑝(𝐁, 𝚺|𝐗, 𝐘) is derived. 

This distribution can be obtained using Bayes’ theorem: 

 

𝑝(𝐁, 𝚺|𝐗, 𝐘) ℒ(𝐁, 𝚺|𝐘) 𝑝(𝐁, 𝚺) (4.10) 

 

where ℒ(𝐁, 𝚺|𝐘) is the likelihood function, given by (Tiao and Zellner, 1964): 

 

ℒ(𝐁, 𝚺|𝐘) |𝚺|−
𝑛

2 exp (−
1

2
𝑡𝑟 [𝚺−1(𝐘 − 𝐗𝐁)T(𝐘 − 𝐗𝐁)]) (4.11) 

 

and 𝑝(𝐁, 𝚺) is the joint prior distribution of the model parameters 𝐁 and 𝚺.  

MCMC sampling techniques can be used to draw samples from the joint posterior distribution 

of the model parameters 𝑝(𝐁, 𝚺|𝐗, 𝐘). The response posterior predictive distribution 

𝑔(𝐲|𝐱, 𝐗, 𝐘) can then be obtained from this distribution and finally Pr(𝐲 ∈ 𝐴𝑅|𝐱, 𝐗, 𝐘) can be 

computed. The sampling algorithm that has been used in this study is the Metropolis-Hastings 

algorithm (Hastings, 1960). 

The choice of the prior distributions for the model parameters and the covariance of the 

residuals is critical. Non-informative or informative priors can be used to this purpose. When 

informative priors are used, the amount of prior information available determines the choice of 

the parameters of these distributions. Strictly speaking, if no or very limited prior information 

is available, prior distributions that are considered informative from a structural point of view 

can be made uninformative by choosing uninformative prior parameters. Stated differently, 

when informative priors are used, the amount of prior information can be tuned by choosing 

the values of the parameters of these prior distributions. 

In this study, informative (from a structural point of view) prior distributions for the model 

parameters and the covariance of the residuals have been chosen. Namely, 𝑝(𝚩, 𝚺) =

𝑝(𝚩|𝚺)𝑝(𝚺) with 𝑝(𝚩|𝚺) matrix-variate normal distribution with mean 𝚩0 and covariances 𝚺 

and 𝚺0, i.e. 𝑝(𝚩|𝚺) N(𝚩0, 𝚺, 𝚺0), and 𝑝(𝚺) inverse Wishart distribution with scale matrix 𝛀 

and degrees of freedom 𝜈0, i.e. 𝑝(𝚺) 𝑊𝑖𝑠ℎ
−1(𝛀, 𝜈0). The choice of the prior parameters 

(𝐁0, 𝚺0, 𝜈0) determines the amount of prior information available. The values of these 

parameters have been set as uninformative as possible, since no prior information for the case 

studies considered was available. 

A graphical representation of the discussed Bayesian approach for the determination of the 

posterior predictive probability of a new response is shown in Fig. 4.1. 
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Figure 4.1. Diagram of the Bayesian approach to obtain the posterior predictive probability 

of a new response.  

 

4.4 Bayesian identification of the design space 

Identification of the DS according to the Bayesian definition (4.6) involves the following steps.  

1) Identification of the critical process parameters (CPPs) and critical quality attributes 

(CQAs) for the new product. 

2) Acquisition of an experimental dataset, by performing experiments according to a DoE-

based plan. 

3) Calibration of a model to relate the CPPs and raw material properties to the CQAs. In 

most situations, a statistical multivariate linear regression model is built at this stage. 

4) Identification of the multidimensional knowledge space (i.e., input domain). 

5) Discretization of the multidimensional KS. Different sampling algorithms can be used 

to this purpose. Space-filling algorithms are mostly used, which become 

computationally expensive as the number of input factors increases. 

6) Determination (by MCMC simulations) of the joint posterior probability of the CQAs 

to meet their specifications for every discretization point of the KS. 

7) Probabilistic reconstruction of the DS according to (4.6). 

8) Representation of the multidimensional DS with a tabular approach or a matrix of 2-

dimensional probability maps. 

Notice that the DoE inputs are the CPPs and the raw materials properties. Hence, they may be 

large in number and correlated, which has some notable drawbacks. Firstly, this complicates 

the DoE exercise, because independent factors should be singled out (step 2). Secondly, 

investigating the entire KS by experiments (step 2) may be hard or even impossible. Thirdly, 
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the discretization of the KS with space-filling algorithms (step 5) may be computationally very 

intensive . Finally, visualizing the DS  (step 8) may be complex. Two-dimensional posterior 

probability maps are often derived for each pair of model inputs, with the remaining inputs fixed 

at their nominal values. However, this approach does not account for the multivariate 

correlation structure of the model inputs, thus leading to results that are partial at best, but 

possibly even misleading.  

As discussed in Section 4.2, PLS can be used to project the input space onto a low-dimensional 

latent space, while simultaneously accounting for its correlation with the output space. 

Coupling PLS with the multivariate linear regression Bayesian approach discussed in Section 

4.3 can be a way to enhance the advantages of the latter (quantification of assurance of quality; 

handling of model parameter uncertainty and of the multivariate nature of the responses) with 

the ability of PLS to reduce the dimensionality of the multivariate input space. In this study, a 

systematic methodology is proposed to take full advantage of both techniques. In more detail, 

the ability of PLS to reduce the input space dimensionality is exploited to improve Step 5 and 

Step 8 of the above procedure. The methodology is discussed below. 

4.4.1 Proposed methodology 

Figure 4.2 provides an illustrative graphical representation of the methodology for a 2-LV 

space. 

The step-by-step procedure is as follows. 

a. Given the historical dataset [𝐗; 𝐘], a PLS model with 𝐴 LVs relating 𝐗 to 𝐘 is built. In 

this study, 𝐴 has been chosen according to the eigenvalue-greater-than-one rule (Kaiser, 

1970) in such a way as to explain a significant fraction of the variance of both 𝐘 and 𝐗. 

Once the PLS model has been calibrated, the KS is identified as the region defined by 

the 95% confidence limit of the Hotelling’s 𝑇2 statistic (Section 4.2). The boundary of 

the KS is identified by the ellipse of Fig. 4.2a for a two-dimensional latent space. 

b. The KS is discretized, e.g. by using the following approach:  

(i) a very large (e.g., 𝑁𝑎>1000) number of samples in the latent space is chosen 

inside a unit hyper-sphere centered in the origin; 

(ii) the samples are then scaled to the confidence hyper-ellipsoid size by 

multiplying their coordinates by the lengths of the ellipsoid axes. 

An example of KS discretization using this approach is shown in Fig. 4.2b for 𝑁𝑎 = 

2000. 

c. A representative number 𝑁𝑠 < 𝑁𝑎 of samples 𝐭𝑙 , 𝑙 = 1,2, …𝑁𝑠  is chosen. The 

corresponding values in the original input space 𝐱𝑙, 𝑙 = 1,2, …𝑁𝑠 are obtained 

according to Eq. (4.1) using the PLS loadings found in step #1. The choice of 𝑁𝑠 must 

be done so as to compromise between having a good coverage of the entire KS and 
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reducing the computational effort. The next subsection discusses how this can be 

achieved. Once 𝑁𝑠 has been determined, a space-filling algorithm is used to span the 

KS using the defined number of samples. In this study, the Kennard-Stone algorithm 

(Kennard and Stone, 1969) has been used. The Kennard-Stones algorithm is a sequential 

sampling algorithm that allows selecting a subset of 𝑁𝑠 samples given a set of 𝑁𝑎 

candidates. The rationale behind this algorithm is to select each new sample by choosing 

the farthest sample (in terms of Euclidean distance) from the previously selected ones, 

starting from the two farthest points in the KS. As other space filling algorithms, the 

Kennard-Stone algorithm suffers from dimensionality issues. Therefore, its 

implementation in the latent space is much less computationally expensive than in the 

true input space. 

An example of the selection of Ns = 100 samples using the Kennard-Stone algorithm is 

shown in Fig. 4.2c. 

d. For each of the 𝑁𝑠 selected samples, the joint posterior predictive distribution (PPD) of 

the quality responses is obtained by performing a Bayesian simulation in the true input 

space (Section 4.3). 

An example of posterior predictive distribution for a case study involving a single 

quality specification is shown in Fig. 4.2d. 

e. Given the desired quality target 𝐲𝑑𝑒𝑠 or the desired quality interval 𝐲𝑝 < 𝐲𝑑𝑒𝑠 (or 𝐲𝑙𝑜 <

𝐲𝑝 < 𝐲𝑢𝑝,, with 𝐲𝑙𝑜and 𝐲𝑢𝑝 lower and upper bounds for the quality variables 

respectively), if the condition expressed by (4.6) is satisfied, then the given sample is 

considered to belong to the probabilistic DS (green diamonds in Fig. 4.2e). If (4.6) is 

not satisfied, the given sample is rejected as it does not belong to the probabilistic DS 

(red diamonds of Fig. 4.2e). 

 

A schematic flowchart involving all the different steps  of the proposed methodology is shown 

in Fig. 4.3. 
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(a)                                                              (b) 

 
(c)                                                                      (d) 

 
   (e) 

 
Figure 4.2. Graphical representation of the proposed methodology for probabilistic DS 

determination in a two-dimensional latent space: (a) KS identification in the latent space; 

(b) discretization of the KS; (c) sampling of the selected point with KSA; (d) posterior 

predictive distribution for a single sample; (e) Bayesian DS. 
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Figure 4.3. Flowchart of the proposed methodology for the determination of the Bayesian 

design space of a new pharmaceutical product. 
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4.4.2 Selection of the optimal number of samples 

This section presents an automatic methodology to determine the optimal number 𝑁𝑠
𝑜𝑝𝑡

 of 

discretization samples of step 3 discussed in the previous section. 

Consider the PLS model (4.1)-(4.3). After calibration, the PLS model can be used to predict a 

new response 𝐲𝑝 given a new observation 𝐱𝑝 according to : 

 

𝐲𝑝 = 𝐭𝑝𝐐
T (4.12) 

 

where 𝐭𝑝 is the score vector of the new observation 𝐱𝑝. 

The score vector 𝐭𝑝 can be related to the input vector 𝐱𝑝 through the model weights 𝐖 according 

to: 

𝐭𝑝 = 𝐱𝑝𝐖
∗. (4.13) 

 

As shown elsewhere (Zhang and Garcia Munoz, 2009) both the score vector 𝐭𝑝 and the loadings 

matrix 𝐐T of (4.12) are affected by uncertainty, and accordingly weights , too. Eq. (4.13) can 

be seen as linear prediction model between the model “response” 𝐭𝑝 and the model “regressors” 

𝐱𝑝, through the model “parameters” 𝐖∗. Therefore, the PPD of the score vector 𝐭𝑝 can be 

obtained by performing a Bayesian calibration of model (4.13) by feeding a new (fixed) set of 

model regressors 𝐱𝑝
∗ . 

The choice of the optimal number of discretization samples 𝑁𝑠 can therefore be done as follows. 

Let [𝑁1, 𝑁2, … , 𝑁𝑀] be a set of discrete values for 𝑁𝑠, with 𝑁𝑠 = 𝑁1 < 𝑁2 < ⋯ < 𝑁𝑀. The 

PPD of the score vector 𝐭𝑝 is obtained for each of these discrete values and for the given fixed 

value 𝐱𝑝
∗   adopting the Bayesian procedure presented in Section 4.3. The conditional posterior 

predictive distributions (CPPDs) of each component of 𝐭𝑝 can then be obtained by picking out 

the contributions of every single component to the PPD. 

An illustrative example of the two CPPDs obtained with a PLS model built on A = 2 LVs (i.e., 

𝐭𝑝 = [𝑡𝑝,1, 𝑡𝑝,2]) is shown in Fig. 4.4, where five discretization samples (𝑁𝑠 = 5) have been 

used. 

The 95% credible intervals for 𝑡𝑝,𝑎  ( 𝑎 =  1, … , 𝐴) can then be computed for each value of 𝑁𝑠. 

Mathematically, for 𝑁𝑠 = 𝑁1, 𝑁2, … , 𝑁𝑀, the 95 % credible intervals of 𝑡𝑝,𝑎, 𝑎 = 1,… , 𝐴  can 

be expressed as: 

 

                                      𝑡𝑝,1
𝑙𝑜 (𝑁𝑠) < 𝑡𝑝,1 < 𝑡𝑝,1

𝑢𝑝(𝑁𝑠)                                                            (4.14) 

                                                                                  … 
     

𝑡𝑝,a
𝑙𝑜 (𝑁𝑠) < 𝑡𝑝,a < 𝑡𝑝,a

𝑢𝑝(𝑁𝑠)                                                                      (4.15) 
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Figure 4.4. Illustrative example of the CPPDs of the two components of the score vector 𝒕𝑝 

with 5 discretization samples. 

 

where 𝑡𝑝,a
𝑙𝑜  and 𝑡𝑝,a

𝑢𝑝
 are the lower and upper bound of the credible interval for the 𝑎-th component 

of 𝐭𝑝. 

Let 𝑤𝑎(𝑁𝑠) = 𝑡𝑝,𝑎
𝑢𝑝 (𝑁𝑠) − 𝑡𝑝,𝑎

𝑙𝑜 (𝑁𝑠) , 𝑎 = 1,… , 𝐴  be the width of the credible intervals for the 

𝑎-th component of the score vector, and 𝑠𝑎 the semiaxis of the KS on the 𝑎-th LV as defined 

by Eq. (4.5).  The ratio: 

  

𝛼𝑎(𝑁𝑠) =
𝑤𝑎(𝑁𝑠)

𝑠𝑎
                               𝑎 = 1,… , 𝐴 (4.16) 

 

can be used as a measure of the amount of variability captured by the 𝑁𝑠 discretization samples 

for the a-th LV of the PLS model. For each value of 𝑁𝑠, the respective values of 𝛼𝑎 , 𝑎 = 1,… , 𝐴 

can then be computed. Simple regression models 𝑓𝑎, 𝑎 = 1,2, … , 𝐴 can then be built to relate 

the behavior of 𝛼𝑎, 𝑎 = 1, … , 𝐴 with respect to the number of discretization points 𝑁𝑠. 

Mathematically, the following regression models can be obtained: 

 

𝛼𝑎(𝑁𝑠) = 𝑓𝑎(𝑁𝑠)                                     𝑎 = 1, … , 𝐴 .        .    (4.17) 

 

Notice that regression models (4.17) can be built with a small set of values of 𝑁𝑠. Moreover, 

the maximum value assumed by 𝑁𝑠 (i.e. 𝑁𝑀) is relatively small (typically, less than 

25).Therefore, the derivation of the regression models (4.17) is computationally very fast and 

does not significantly contribute to the overall computational burden.  

We define the total amount of variability Ѱ (𝑁𝑠) captured by the 𝑁𝑠 discretization samples on 

the latent space as a weighted sum of the metrics 𝛼𝑎(𝑁𝑠) for all the 𝑎-th components, the 

weights being the amount of 𝐗-variability explained by the given LV. Mathematically: 
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Ѱ (𝑁𝑠) = ∑ 𝑅𝑋,𝑎
2𝐴

𝑎=1 𝛼𝑎(𝑁𝑠) .              (4.18) 

 

The optimal number 𝑁𝑠
𝑜𝑝𝑡

 of discretization points can be derived as the number of samples that 

maximizes Ѱ (𝑁𝑠) (i.e. that maximizes the total amount of variability captured by the 𝑁𝑠 

discretization samples) while keeping the total computational time to a minimum. For 

simplicity, the total computational time is considered as the product of the time  𝜏𝑠 required to 

perform a simulation for a single sample and the number of samples 𝑁𝑠: 

 

𝑇𝑠 = 𝑁𝑠 ⋅ 𝜏𝑠.              (4.19) 

 

𝑁𝑠
𝑜𝑝𝑡

 can then be computed as: 

 

𝑁𝑠
𝑜𝑝𝑡 = min

𝑁𝑠
[ − Ѱ (𝑁𝑠) + 𝑁𝑠 ⋅ 𝜏𝑠].              (4.20) 

 

The above strategy for the selection of the optimal number of discretization points has been 

implemented in MATLAB® and has been used for all the Bayesian simulations involved in this 

study. All the Bayesian Monte Carlo simulations for the multivariate linear regression model 

(4.7) have been implemented in MATLAB v. 2015b. Parallel computing (12 parallel threads) 

has been used to speed up the simulations on an InteL® Core™ I7-6700 CPU@3.40GHz 

processor with 16.0 GB RAM. 

4.5 Case studies 

4.5.1 Case study #1: dry granulation of a pharmaceutical blend by roller 

compaction 

The first case study concerns the dry granulation of a pharmaceutical blend by roller 

compaction. Historical data for this case study were generated by Facco et al. (2015) based on 

the model of Johanson (1965).The modeling environment of gSOLIDS® (Process Systems 

Enterprise, 2014)  was used to this purpose. 

The historical dataset is composed by eight input variables (compressibility factor, roller 

diameter, roller width, roller speed, pressure force, friction angle between solid granulate and 

roller compactor, effective friction angle and springback factor) and one response variable 

(intravoid fraction of the solids out of the compactor). A summary of the input/output variables 

and the characterization of the input dataset is reported in Table 4.1. Full details on the 

derivation of the historical dataset can be found in the cited reference. 
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Table 4.1.  Case study #1: list of the input and response variables (data from 

Facco et al. (2015), based on the model of Johanson (1965)) and 

characterization of the input dataset (columns 5 and 6). 

 ID Variable name Units Symbol Mean Std. 

Inputs      
1 Compressibility factor [-] 𝐾 9.85 2.53 

2 Roller width [m] 𝑠𝑟𝑜𝑙𝑙  0.13 0.02 

3 Roller diameter [m] 𝐷𝑟𝑜𝑙𝑙  0.40 0.07 

4 Roller speed [Hz] 𝜈𝑟𝑜𝑙𝑙  0.1707 0.1072 

5 Pressure force [kN] 𝐹𝑟𝑜𝑙𝑙  13866.67 6951.19 

6 Friction angle [rad] 𝛾𝐹𝑅 27.51 8.78 

7 Effective friction angle [rad] 𝛾𝐸𝐹𝐹  48.17 31.86 

8 Springback factor [-] 𝐹𝑠𝑏 0.11 0.03 

      

Response      
R1 Intravoid fraction of solids [𝑚3/𝑚3] 𝜙𝑠 [-] [-]  

 

The historical dataset presented in Facco et al. (2015) includes 80 calibration samples. In this 

study, 20 calibration samples have been randomly selected from the historical dataset. These 

data have been collected in the input calibration matrix 𝐗 [20 × 8], and in the response 

calibration vector 𝐲 [20 × 1]. 

4.5.2 Case study #2: high-shear wet granulation of a pharmaceutical 
blend 

This case study concerns the high-shear wet granulation of a pharmaceutical blend 

(API+excipient). Experimental data can be found in the study of Oka et al.(2015) and are based 

on a full factorial DoE (3 × 3 × 3). Three input variables are considered (impeller speed, liquid 

to solid ratio 𝐿/𝑆, wet massing time) and their effect on the particle size distribution (PSD) of 

the granulate has been studied. Twenty-seven samples are available.  

Three different scenarios of increasing complexity are considered: 

1. scenario 1 (univariate): only the median particle size 𝑑50 is considered to characterize 

the quality of the granulate; 

2. scenario 2 (bivariate): the quality of the granulate is characterized by the median 

particle size 𝑑50 and the 90-th percentile of the PSD (𝑑90); 

3. scenario 3 (trivariate): the quality of the granulate is characterized by 𝑑50, 𝑑90 and the 

10-th percentile of the PSD (𝑑10)). 

The respective calibration datasets have been collected in the input calibration matrix 𝐗 [27 ×

3] and the response matrices 𝐲𝟏 [27 × 1], 𝐲𝟐 [27 × 2]  and 𝐲𝟑 [27 × 3] for the three scenarios 

considered. 
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A summary of the input-output variables involved for the three scenarios is reported in Table 

4.2. In the same table, the target values of the CQAs that have been considered in the three 

scenarios are reported. 

Table 4.2. Case study #2: list of input and response variables for the three 

scenarios considered (data from Oka et al., 2015). 

ID Variable name Units Symbol Target value 

Inputs 

1 

 

Liquid to solid ratio 

 

[-] 

 

𝐿/𝑆 

 

2 Impeller speed [Hz] 𝑣𝑖𝑚𝑝 [-] 

3 Wet massing time [s] 𝑡𝑤𝑒𝑡 [-] 

Response     

Scenario 1     

R1 Median particle size [𝜇𝑚] 𝑑50 1129 

     

Scenario 2     

R1 Median particle size [𝜇𝑚] 𝑑50 1129 

R2 90-th percentile [𝜇𝑚] 𝑑90 1849 

     

Scenario 3     

R1 Median particle size [𝜇𝑚] 𝑑50 1129 

R2 90-th percentile [𝜇𝑚] 𝑑90 1849 

R3 10-th percentile [𝜇𝑚] 𝑑10 732 

     

 

The purpose of analyzing three different scenarios were: 

1)  to test the ability of the proposed methodology to identify the probabilistic DS when 

the number of quality specifications increases; 

2) to study the robustness of the methodology, namely to analyze how numerical issues 

(e.g., convergence of the Markov chain for every Bayesian simulation) may be affected 

when the problem dimensionality increases. 

4.5.3 Case study #3: roll compaction of an intermediate drug load 

formulation 

Experimental data for this case study are taken from the study of Souihi et al. (2015). Four input 

variables (roller force, roller width, roller diameter, dimensionless ratio of gap to roller diameter 

𝐺𝐷) and 3 product quality variables (ribbon envelope density, ribbon relative density and ribbon 

porosity) are considered. The historical dataset is composed by 34 calibration samples. A 

summary of the input-output variables for this case study is reported in Table 4.3. 
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Table 4.3. Case study #3: list of the input and response variables (data from Souihi et 

al.(2015)) 

ID Variable name Units Symbol Target values 

Inputs     
1 Roller force [kN/cm] 𝑝𝑟𝑜𝑙𝑙  [-] 

2 Roller width [mm] 𝑠𝑟𝑜𝑙𝑙  [-] 

3 Roller diameter [mm] 𝐷𝑟𝑜𝑙𝑙  [-] 

4 Ratio of the gap to roll diameter [-] 𝐺𝐷 [-] 

Response     
R1 Ribbon envelope density [g/cm3]  𝜌𝑒 1065 

R2 Ribbon relative density  [-] 𝜌𝑟 0.72 

R3 Ribbon porosity [%] 𝑃 28 

 

The target values for the CQAs that have been investigated are reported in the same table. 

4.6 Results  

4.6.1 Results for case study #1 

The problem addressed in this case study is the development of a granulate with an intravoid 

fraction of solids leaving the roller compactor equal to 0.6341 m3/m3. The ability of the 

proposed methodology is tested to identify a subspace of the historical knowledge space within 

which the probability that the product specification will be on target is equal to, or greater than, 

90%. First, a PLS model is calibrated using the historical dataset. Two LVs are used, explaining 

95.1 % of the variability of 𝐗 and 89.8 % of the variability of 𝐲. The PLS model allows 

identifying the KS onto the latent space (Fig. 4.5a). The KS is then discretized according to step 

2 of the proposed methodology, and the discretization is shown in Fig. 4.5b. A total of 𝑁𝑠
𝑜𝑝𝑡 =

242 representative samples are then chosen according to the procedure discussed in Section 

4.4.2. Fig. 4.5c shows the optimal sampling points (red diamonds). Once the sampling point 

have been chosen, an MCMC simulation is performed for each optimal sample and the posterior 

predictive probability is calculated. A summary of the computational specifications for this case 

study is shown in Table 4.4. A multivariate Gaussian distribution is chosen for the model 

parameters, and an inverse Wishart distribution for the covariance of the residuals. The values 

of the prior parameters have been set as uninformative, since no prior information on the system 

was available. 1e5 MCMC iterations are used for each selected input combination 
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(a)                                                                                   (b) 

 
  (c)                                                                                     (d) 

Figure 4.5. Case study #1. (a) KS boundary and calibration samples projected onto the latent space. (b) KS 

discretization. (c) Sampling within the KS. (d) Bayesian DS and rejected points. 

 

Of them, 1e3 are discarded (“burn-in” iterations). The optimal number of sampling points for 

the Kennard-Stone algorithm is 242. 

Table 4.3. Case study #1: problem specifications. 

 Specification Value 

No. of calibration samples 20 

No. of model parameters 8 

𝑁𝑠
𝑜𝑝𝑡

 242 

Priors of model parameters Non informative Gaussians 

No. of iterations per sample 1e5 

No. of burn-in iterations 1e3 

Total simulation time (parallel computing) 3h 35min 
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The probability of the given sampling points to give a granulate with the desired intravoid 

fraction of solids is then computed. Finally, the samples (i.e., combinations of raw material 

properties and process parameters) that allow obtaining the desired granulate with 90% 

probability are determined. These samples are represented by green diamonds in Fig. 4.5d.  

Being this a simulated case study, the first-principles model can be used to determine the set of 

input combinations that belong to the DS. A trial-and-error approach was used to determine a 

subset of them, and the result shown by the black circles in Fig. 4.5d was obtained. Note that 

we denote this subset as the actual DS, even though it more properly represents a subspace of 

it. It can be seen that the Bayesian DS returns a reliable estimation of the actual DS. The role 

of the threshold value for the probability can be understood from Fig. 4.6: the larger the 

probability required for the final product to be on target (i.e., the smaller the risk to manufacture 

a product not meeting its quality specifications), the narrower the subspace of input 

combinations that can be used. 

 

Figure 4.6. Case study #1: effect of the threshold value on the Bayesian DS. (a) Threshold = 

90% . (b) Threshold = 80%. 

 

The threshold value should be determined by engineering judgement. Too large values for the 

threshold may result in rejecting all the selected samples within the knowledge space, since the 

desired probability cannot be achieved at the given model accuracy (which is limited by 

definition, since different sources of uncertainty affect the model predictions). On the other 

hand, too small values for the threshold mean that the DS is identified with a larger uncertainty. 

In all the case studies considered in the following, a threshold value of 90% is used. 

4.6.2 Results for case study #2 

One of the 27 historical samples (namely, sample #17) is selected to validate the proposed 

methodology. The PLS model is then calibrated using the remaining 26 samples. Two LVs are 
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chosen, accounting for 97.2 % of the total variability of 𝐗 and 91.8 % of the total variability of 

𝐘. As discussed in Section 5.2, three scenarios are considered. The target values assigned to the 

CQAs for each scenario are reported in Table 4.2. 

Table 4.5 reports the problem specifications for the three scenarios. Non-informative Gaussian 

distributions are used for the model parameters, and inverse Wishart distribution for the 

covariance of the residuals.  

Table 4.5. Case study #2: problem specifications for the three scenarios 

considered. 

 Specification Scenario #1 Scenario#2 Scenario #3 

No. of calibration samples 26 26 26 

No. of model parameters 3 6 9 

𝑁𝑠
𝑜𝑝𝑡

 390 485 491 

Priors of model parameters Non informative 

Gaussians 

 

Non informative 

Gaussians 

Non informative 

Gaussians 

No. of iterations per sample 1e4 1e5 1e6 

No. of burn-in iterations 1e3 1e4 2e5 

Total simulation time (parallel 

computing) 

2h 05min 2h 15 min 2h 20min. 

 

The number of required iterations for each sampling point to obtain convergence of the Markov 

chain increases (from 1e4 to 1e6) with the number of quality specifications. Additionally, a 

larger number of iterations is required to build the joint PPD of the product quality attributes 

for the multivariate scenarios with respect to the univariate one. This is reasonable since the 

number of model parameters for the linear regression model increases with the number of model 

outputs, also resulting in a slower convergence of the Markov chain for each iteration. 

The probabilistic DS projections that can be obtained with the proposed methodology for the 

three scenarios are shown in Fig. 4.7. The green diamonds represent the sampling points (i.e., 

input combinations) that have a probability equal to, or higher than, 90% to give the desired 

granulate. For the univariate scenario (Fig. 4.7a), a narrow portion of the historical KS is 

determined as the probabilistic DS for the product. This subset of input combinations does 

include the actual input combination that allows obtaining the desired median particle size 

(circle in Fig. 4.7). It is worth noting that this circle is only one of the possible real input 

combinations that can lead to the desired product quality. When two quality specifications are 

assigned (Fig. 4.7b), a smaller portion of the historical KS is identified as a probabilistic DS. 

The subspace further shrinks in the trivariate scenario (Fig. 4.7c).  
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    (a) 

 

          (b)                                                                            (c) 

Figure 4.7. Case study #2: Bayesian DS at 90% probability (green diamonds) for: (a) a granulate with assigned 

𝑑50 = 1129 𝜇𝑚; (b) a granulate with assigned𝑑50 = 1129 𝜇𝑚 and 𝑑90 = 1849 𝜇𝑚; (c) a granulate with assigned 

𝑑50 = 1129 𝜇𝑚, 𝑑90 = 1849 𝜇𝑚 and  𝑑10 = 732 𝜇𝑚. 

 

The different shapes of the Bayesian DS obtained for the three scenarios can be explained by 

considering the reduction of dimensionality obtained with the PLS model. Since the number of 

LVs used in the PLS model is 2, when a single quality specification is assigned a 1-dimensional 

null space (Jaeckle and MacGregor, 1998) exists in the space of the model inputs, and the 

projection of the model inputs onto the latent space is therefore a straight line. This explains 

why, in the latent space, the probabilistic DS appears to bounded by straight lines. When the 

number of quality specifications is greater than 1, a null space does not exist in the latent space. 

In this case, if no uncertainty is accounted for, a PLS model would predict (after inversion) a 
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single point in the latent space for a given set of quality specifications. This is why no shape of 

the probabilistic DS is apparent in the latent space. Also note that even if a shape of the DS may 

be apparent in the latent space, this does not imply that the shape is maintained in the real input 

space. 

The results obtained for this case study confirm the ability of the proposed methodology to 

identify a set of input variables combinations for which the probability to meet the quality 

specifications is greater than the assigned thresholds, thus providing a quantification of the 

“assurance of quality” for the investigated product also for products characterized by 

multivariate quality targets. The computational effort increases as the number of quality 

specifications increases, but remains fully tractable 

4.6.3 Results for case study #3 

A historical dataset of 34 samples is available. One sample is chosen as a validation sample, 

and the other 33 are used as calibration samples for the PLS model. As for the other two case 

studies, 2 LVs are chosen, accounting for 96.1 % of the total variability of 𝐗, and 87.7 % of the 

total variability of 𝐲. The target values assigned to the CQAs are reported in Table 4.3. 

The problem specifications are summarized in Table 4.6. Note that the number of optimal 

samples for this case study is 234. 1e5 iterations are used for each iteration, and non informative 

Gaussians are set as prior distributions for the model parameters. 

Table 4.6. Case study #3: problem specifications. 

 Specification Value 

No. of calibration samples 33 

No. of model parameters 12 

𝑁𝑠
𝑜𝑝𝑡

 234 

Priors of model parameters Non informative Gaussians 

No. of iterations per sample 1e5 

No. of burn-in iterations 1e4 

Total simulation time (parallel computing) 1h 15min 

 

The projection onto the latent space of the input combinations that allow obtaining the desired 

quality with a probability equal to, or higher than, 90% is shown in Fig. 4.8 (green diamonds). 

The probabilistic DS captures the available true input combination leading to the desired quality 

target, and offers additional combinations of input materials properties and process operating 

conditions that can be used to manufacture the desired product, with a given probability to meet 

the desired quality targets. The probabilistic DS identification exercise is carried out in a 

reasonably short time (1.25 h). 
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Figure 4.8. Case study #3: Bayesian DS at 90% probability (green diamonds) and actual 

input combination that gives the desired multivariate quality target (black circle). 

4.7 Discussion 

Two issues deserve further discussion at this point, namely i) the relation between Bayesian DS 

(as discussed in this study) and confidence region for the DS (as assumed by frequentist 

approaches), and ii) some limitations on the use of the proposed methodology. 

With respect to the first issue, it should be pointed out that the meaning of the Bayesian DS is 

intrinsically different from the concept of confidence region for the DS predicted with 

traditional frequentist approaches. For example, Facco et al. (2015) build a frequentist 

confidence region for the model prediction of the DS and name this restricted portion of the KS 

as the “experiment space”. This experiment space represents a subspace of the KS, which is 

deemed to include the DS at the given confidence level: the greater the confidence level, the 

wider the experiment space that must be investigated to determine the DS. On the other side, 

the Bayesian DS discussed in this study can be interpreted as the portion of the KS within which 

the probability for the product to be on target is greater than (or equal to) an assigned threshold: 

the greater the probability threshold, the narrower the Bayesian DS. 

The difference between the two approaches relies on the difference between the concepts of 

confidence region (in frequentist statistics) and credible region (in Bayesian statistics). The 

confidence region (i..e., the experiment space) determined by Facco and coworkers considers 

the model prediction of the DS as fixed, and the bounds of the experiment space as random 

variables. On the other side, the credible region (i.e., the Bayesian DS) as discussed in this study 

considers the bounds of the probabilistic DS as fixed, and the model prediction of the DS as a 

random variable. The practical outcome is that, whereas the experiment space proposed by 
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Facco and coworkers cannot be considered as a model-based representation of the DS, the 

Bayesian DS proposed in this study can be deemed as such, given that the intrinsic probabilistic 

nature of model predictions is recognized (Pantelides et al., 2012). 

With regard to the limitations of the proposed methodology, it must be noted that the amount 

of 𝐗-variability explained by the PLS model for the chosen number of LVs plays a key role for 

its successful implementation. Indeed, the smaller the amount of cumulative 𝐗-variability 

explained by the LVs, the greater the error on the projection of the KS onto the latent space, 

and the worse the representation of the original input space by the latent space. In practice, 

when the amount of explained 𝐗-variability is small, the risk of not considering portions of the 

KS that may belong to the DS of the process increases. As a rule of thumb, a limiting value for 

the amount of cumulative 𝐗-variability explained by the PLS model may be set as 90%, but this 

value can possibly be decreased according to the user’s risk adversity. The cumulative 𝐗-

variability may be increased by increasing the number of LVs of the PLS model (e.g., for A >

2), at the expense of a larger computational burden for the KS discretization as well as of a 

higher complexity of the graphical interpretation of the DS (possibly even losing the possibility 

to provide a graphical interpretation if A > 3). On the other side, a small amount of cumulative 

𝐲-variability explained by the PLS model does not preclude the use of the methodology, even 

though in certain situations it may be a warning that significant nonlinearity exists in the 

original dataset that is not captured adequately by the linear PLS model.  

4.8 Conclusions 

The aim of this Chapter was to propose a methodology that allows identifying the design space 

of a new pharmaceutical product with a risk-based Bayesian posterior predictive approach, 

while reducing the problem dimensionality by using PLS modeling. 

A methodology, based on PLS modeling, that allows automatic determination the optimal 

number of sampling points needed to cover the entire knowledge space has been developed. 

This methodology compromises between reduction of the computational effort and 

achievement of a satisfying coverage of the historical knowledge space. The joint posterior 

predictive probability of each sampling point was obtained with a multivariate Bayesian linear 

regression model, and the probability that product quality will meet its specifications for the 

given point was computed. By performing this analysis for each of the sampling points of the 

historical knowledge space, the probabilistic (or Bayesian) DS of the product under 

investigation was determined. The results were then expressed with a simple and intuitive 

graphical representation on the low-dimensional latent space. 

Three case studies were considered to illustrate the effectiveness of the proposed methodology. 

The obtained probabilistic DS represents a way to demonstrate (i.e., quantify) the level of 
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“assurance of quality” the manufacturer can guarantee for a given product, as advocated by the 

pharmaceutical regulatory agencies. 

Possible areas of further investigation can be pointed out. First, the methodology is completely 

general and can be applied not only to linear multivariate regression model, but also to nonlinear 

data-driven models or nonlinear mechanistic models. Therefore, the combined effect of a 

reduction of problem dimensionality given by PLS and the identification of the Bayesian DS 

using a detailed mechanistic model for the process can be investigated. Secondly, the effect of 

measurement uncertainty (e.g., noise) on the Bayesian DS can be studied (incorporation of 

measurement uncertainty in the Bayesian framework is straightforward). Finally, the effect of 

uncertainty propagation in manufacturing processes involving multiple units (thus with 

significant dimensionality issues) can be assessed with the proposed methodology.
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Chapter 5 
 

Feasibility analysis and latent variable 

modeling for design space 

determination* 

 
In this Chapter, a methodology that exploits first-principles (or semi-empirical) and latent 

variable modeling for the identification of the design space of a new pharmaceutical product is 

presented. Specifically, feasibility analysis is coupled with projection to latent structures (PLS) 

to obtain a computationally tractable identification of the DS of complex pharmaceutical 

processes. PLS is used to obtain a linear transformation between the original multidimensional 

input space and a lower dimensional latent space. Radial Basis Function (RBF) adaptive 

sampling feasibility analysis is then used on this lower dimensional space to identify the feasible 

region of the process. The accuracy and robustness of the results is assessed with three metrics, 

and the criteria that should be adopted for the choice of the number of latent variables are 

discussed. The performance of the methodology is tested on three simulated case studies, one 

of which involving the continuous direct compaction of a pharmaceutical powder. 

5.1 Introduction 

The design space (DS) of a pharmaceutical process is defined as the multidimensional 

combination and interaction of input variables (e.g. material attributes) and process parameters 

that have been demonstrated to provide assurance of quality (ICH, 2009). A modeling technique 

that can be used to assist a DS identification exercise is feasibility analysis (Boukouvala et al., 

2010; Wang and Ierapetritou, 2017). 

The aim of feasibility analysis (Halemane and Grossman, 1983) is to quantify the capability of 

a process design to be feasibly operated over the whole domain of input factors, thus including 

raw material properties and process parameters. The final objective is to determine the 

                                                           
* Bano G., Wang, Z., Facco, P., Bezzo, F., Barolo, M., Ierapetritou, M. (2018) A novel and systematic approach to identify 

the design space of pharmaceutical processes. Comput. Chem. Eng. 115, 309-322 
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multivariate region of the input domain within which the process is considered to be feasible. 

Hence, the concept of feasible region is strictly related to the one of DS for pharmaceutical 

processes. 

Different mathematical approaches can be used to identify the feasible region. When the model 

of the process is computationally inexpensive, the feasible region can be directly determined 

from the model itself (Prpich et al, 2010; Close et al., 2014). When the original model is 

computationally expensive or the computation of its derivatives is cumbersome, surrogate-

based approaches can be used (Boukouvala et al., 2010; Grossmann et al.,2014; Wang and 

Ierapetritou, 2017; Wang et al., 2017). The underlying idea behind these methods is to build a 

surrogate as a computationally cheap and reliable approximation of the original model, and use 

this surrogate to identify the feasible region. In this regard, different types of surrogate models 

have been used (Goyal and Ierapetritou, 2002; Banerjee et al., 2010; Boukouvala et al., 2010; 

Rogers and Ierapetritou, 2015). Recently, Wang and Ierapetritou (2017) proposed a radial basis 

function (RBF) adaptive sampling approach that outperforms all the other surrogate-based 

approaches for low dimensional test problems. The adaptive sampling is a technique that was 

first proposed in the optimization literature (Jones et al., 1998). In surrogate-based feasibility 

analysis, it is used to maximize the potential of the sampling budget and to simultaneously 

explore regions of the original input domain that are close to the boundary of the feasible region 

and less explored regions. 

Although feasibility analysis can be a valuable tool to identify the feasible region of a 

manufacturing process, it suffers from one main limitation, namely the curse of dimensionality 

(Shan and Wang, 2010). When a large number of input factors is involved, as it is often the case 

with large and complex integrated flowsheet models, the computational cost of feasibility 

analysis has a potential to increase significantly. The solution of a feasibility analysis problem 

in this scenario can be extremely complicated if not impossible to solve. When the number of 

input factors is large, the computational burden could be so high or the results so inaccurate as 

to effectively preclude the application of this methodology. Moreover, a visualization problem 

of the feasible region in high dimensions arises, given the impossibility of graphically 

representing a 𝑁- dimensional space (𝑁 > 3). 

A recent work of Wang et al. (2017) tried to solve this problem by transforming a 

multidimensional feasibility analysis problem into a series of disjoint 2-dimensional problems, 

and presenting the results as a matrix of 2-dimensional feasibility contour plots. However, this 

approach does not account for the multivariate correlation between the original input factors 

and is thus incomplete.  

The input factors of a pharmaceutical process are often correlated to each other (Tomba et al., 

2013) and have a different impact on the process output (e.g. product quality; Saltelli et al., 

2010). In most common situations, not all the combinations of the original input factors have a 

strong effect on the output, i.e. some “driving forces” can be identified that predominantly affect 
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the responses (Jaeckle and McGregor, 2000). A class of statistical models that can identify these 

underlying driving forces are latent variable models (LVMs). In particular, partial least-squares 

(PLS) regression (Geladi and Kowalski, 1986; Wold et al., 1983) is a multivariate latent 

variable technique that can be used to capture the variability of the input and output spaces by 

means of few meaningful variables, called latent variables, thus reducing the problem 

dimensionality. The latent variables are chosen by performing a simultaneous decomposition 

of the input and output space, such that these variables explain as much as possible of the 

covariance between the two spaces. Stated differently, PLS identifies linear combinations of 

the original input factors that best describe the correlation between the input factors and their 

effect on the model responses. PLS can be used by itself as a black-box data-driven modelling 

technique to assist a DS identification exercise when a historical dataset of the process under 

investigation is available (Facco et al., 2015; Bano et al., 2017). However, when a historical 

dataset is not available or the process behavior cannot be captured by a linear regression model, 

the ability of PLS to “compress” the original multidimensional input and output spaces (Mevik, 

et al., 2004) can be coupled with more sophisticated modelling techniques to assist a DS 

identification exercise.  

The aim of this work is to overcome the curse of dimensionality of feasibility analysis 

identification by exploiting the ability of PLS to reduce the input space dimensionality. A PLS 

model is used to perform a linear transformation from the original multidimensional input space 

to a lower dimensional latent space. Based on the PLS diagnostics, different scenarios are 

identified in which the proposed methodology is deemed to be profitable.  

RBF-based adaptive sampling feasibility analysis is then performed on the latent space and the 

accuracy and robustness of the results are assessed with three appropriate metrics. The 

performance of the methodology is tested on three simulated case studies, two of them 

involving two-and three unit multidimensional test problems, and one involving a continuous 

direct compaction of a pharmaceutical powder. In all case studies, the ability of the 

methodology to give accurate and robust results by simultaneously reducing the computational 

burden for the feasibility analysis problem is shown. 

The rest of this Chapter is organized as follows. PLS and RBF-based adaptive sampling 

feasibility analysis are briefly reviewed in Section 5.2. The proposed methodology to couple 

PLS and feasibility analysis for the identification of the feasible region of a manufacturing 

process is then discussed in Section 5.3. Section 5.4 collects the case studies considered in this 

work and Section 5.5 shows the results obtained with the proposed methodology. 

5.2 Mathematical background 

In the following, we briefly review the mathematical techniques that we will use throughout 

this Chapter. 
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5.2.1 Partial Least Squares Regression (PLS) 

PLS (Geladi and Kowalski, 1986; Wold et al., 1983) is a multivariate regression technique that 

projects a historical dataset of input 𝐗 [𝐼 × 𝑄] and response variables 𝐘 [𝐼 × 𝑀] onto a common 

latent space of 𝐴 latent variables (LVs), according to the model structure: 

 

𝐗 = 𝐓𝐏T + 𝐄𝐗  (5.1) 

𝐘 = 𝐓𝐐T + 𝐄𝐘  (5.2) 

𝐓 = 𝐗𝐖∗  (5.3) 

where 𝐓 [𝐼 × 𝐴] is the score matrix, 𝐏 [𝑄 × 𝐴] and 𝐐 [𝑀 × 𝐴] are the 𝐗 and 𝐘 loading matrices, 

𝐄𝐗 and 𝐄𝐘 the residuals, 𝐖∗[𝑄 × 𝐴] is the weight matrix. 

The new set of latent variables is determined by finding the multidimensional directions on the 

𝐗-space that explain the maximum multidimensional variance direction in the 𝐘-space. 𝐴 can 

be chosen in such a way as to explain a significant fraction of the variance of both the input and 

output data.  

The PLS model calibration described by Eqs. (5.1)-(5.3) can be interpreted as a linear 

transformation 𝐿𝑃𝐿𝑆 between the original set of input factors (𝑥1, 𝑥2, … , 𝑥𝑄) and the new set of 

𝐴 latent variables, identified by the model scores (𝑡1, 𝑡2, … , 𝑡𝐴), according to Eq. (5.1). 

Therefore, PLS can be used as a projection technique to express the original set of input factors 

(𝑥1, 𝑥2, … , 𝑥𝑄)  in terms of a reduced set of variables (𝑡1, 𝑡2, … , 𝑡𝐴).  

The latent representation of the original input space obtained with the PLS model captures most 

of the variability of the original input space that is correlated with the model outputs. This is a 

key advantage with respect to other decomposition techniques such as principal component 

analysis (PCA; Hotelling, 1933) or Singular Value Decomposition (SVD), in which the latent 

representation of the original input space only accounts for the variability of the original input 

dataset. In the presence of a strong input collinearity and/or in the presence of a strong 

sensitivity of the model outputs to a reduce set of input combinations, a significant reduction of 

the problem dimensionality can be obtained by exploiting the PLS model (5.1)-(5.3) (i.e. 𝐴 ≪

𝑄). The linearity of the transformation (5.1)-(5.3) allows expressing the original input factors 

as linear combinations of the latent variables, as opposed to other more sophisticated nonlinear 

methods such as Kernel PCA (Schölkopf et al., 1998). For the purpose of this study, this has 

the advantage of keeping the dimensionality reduction step as simple as possible, since process 

nonlinearity is tackled at a subsequent stage of the proposed methodology. 
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5.2.2 Feasibility analysis 

Feasibility analysis is a mathematical tool that allows investigating the portion of the input 

space within which the process under investigation is considered to be feasible. For 

pharmaceutical processes, this is equivalent to determining the design space of the process 

(ICH, 2009). A rigorous mathematical description of the feasibility of a process can be found 

in Wang and Ierapetritou (2017). In a nutshell, given a process with 𝐽 constraints 𝑓𝑗(𝐝, 𝐱), 𝑗 =

1, … , 𝐽, where 𝐝 is the vector of the design variables (which are constant since the process is 

determined) and 𝐱 is the vector collecting the input variables (raw material properties and 

process parameters), the process is considered to be feasible when all its constraints are met, 

i.e. when  𝑓𝑗(𝐝, 𝐱) ≤ 0 ∀𝑗 ∈ [1,… , 𝐽]. In order to verify if any of the process constraints is 

violated, it is enough to check the maximum value of all the constraint function values. The 

maximum value of the constraint function values is defined as a “feasibility function” 𝜓(𝐝, 𝐱) 

(Grossmann, 2014) according to 

 

𝜓(𝐝, 𝐱) = max
𝑗∈𝐽

𝑓𝑗(𝐝, 𝐱).                                                                                            (5.4) 

 

If 𝜓(𝐝, 𝐱) ≤ 0, it means that, for the given set of design variables and input variables, the 

process is feasible. If 𝜓(𝐝, 𝐱) > 0, it means that one or more of the constraints are violated, i.e. 

the process is not feasible. If 𝜓(𝐝, 𝐱) =  0, it means that we are at the boundary of the feasible 

region. The objective of feasibility analysis is to identify the subspace of input combinations of 

the original input domain within which the process is feasible, i.e. to identify the DS of the 

process under investigation.   

5.2.3 Surrogate-based feasibility analysis 

The feasibility analysis problem described in Section 5.2.2 is based upon the availability of a 

model to describe the single unit and/or the overall process under investigation. When the model 

complexity is high (e.g. in the case of an integrated flowsheet model) feasibility analysis can 

be rather difficult due to the computational burden required by the simulation. In this scenario, 

a surrogate-based method can be used to efficiently identify the feasible region. With this 

approach, a surrogate model is built as a computationally cheap approximation of the original 

model. The feasible region is then determined based on this surrogate. Adaptive sampling 

(Rogers and Ierapetritou, 2015) can then be used in order to improve the accuracy of the 

surrogate by making the best possible use of the sampling budget. New points are sampled near 

the boundary of the feasible region as well as in less explored regions of the historical input 

domain. In this work, the feasibility analysis problem is solved using a radial basis function 
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(RBF)-based adaptive sampling method proposed by Wang and Ierapetritou (2017). The main 

features of this approach are briefly discussed below; additional details can be found in the 

original reference. 

5.2.4 Radial basis function (RBF) surrogate model 

RBFs (Björkman and Holmström, 2000) can be used to predict the value of the original function 

at an unsampled point according to: 

 

𝑦𝑛(𝐱) =  ∑ 𝜆𝑖𝜉 (||𝐱 − 𝐱𝒊||𝟐) + 𝐛
T𝐱 + 𝑎𝒏𝑵

𝒊=𝟏   (5.5) 

where 𝐱𝑖 ∈ 𝐑
𝑄 , 𝑖 = 1, … , 𝑁 are 𝑁 distinct sample points of known function values 𝑓(𝐱𝑖); ||∗||2 

is the Euclidean norm and 𝜉 is the basis function that in this study is chosen as the cubic basis 

function: 

 

𝜉(𝑟) = 𝑟3 . (5.6) 

The RBF surrogate model with cubic basis function has been proven to outperform other 

surrogate models by Wang and Ierapetritou (2017). 

The coefficients 𝜆𝑖, 𝐛 and 𝑎 of Eq. (5.5) can be determined by solving the following equation: 

 

(
𝚽 𝐒
𝐒𝑇 𝟎

) (
𝛌
𝐜
) = (

𝐅
𝟎
) . (5.7) 

where 𝚽 is the 𝑁 × 𝑁 matrix whose elements are defined by Φ𝑖𝑗 = 𝜉 (||𝐱 − 𝐱𝑖||2) and: 

 

𝐒 = (

𝐱1
𝑇

𝐱2
𝑇

⋮
𝐱𝑁
𝑇

 1
 1
 1
 1

) ; 𝝀 = (

𝜆1
𝜆2
⋮
𝜆𝑁

) ; 𝐜 =

(

 
 

𝐛1
𝐛2
⋮
𝐛𝑄
𝑎 )

 
 

 ; 𝐅 = (

𝑓(𝐱1)

𝑓(𝐱2)
⋮

𝑓(𝐱𝑁)

) .                                  (5.8) 

In order to describe how well the region near an unsampled point 𝐱∗ has been explored, an error 

indicator 1/𝜇𝑛(𝐱
∗) first introduced by Gutmann (2001) is used. The larger the value of 

1/𝜇𝑛(𝐱
∗), the less the nearby region of the unsampled point has been explored. Full details on 

the derivation of this estimator can be obtained in the cited reference and in Wang and 

Ierapetritou (2017). 
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5.2.5 Adaptive sampling 

Adaptive sampling is a technique that allows improving the accuracy of the surrogate without 

spanning the whole historical input domain of the original model (Boukouvala and Ierapetritou, 

2012; Rogers and Ierapetritou, 2015). Various adaptive sampling techniques have been 

developed for different purposes, such as enhancing the accuracy of a global surrogate model 

(Garud, et al. 2017), improving the approximation of distribution functions (Martino et al. 

2015), and facilitating surrogate-based global optimization (Huang et al. 2006; Picheny et al. 

2013; Boukouvala and Ierapetritou 2014).   

In this Chapter, the sampling strategy proposed by Boukouvala and Ierapetritou (2014) was 

used. With this technique, the search for new sample points is directed towards the boundary 

of the feasible region as well as less explored regions of the historical input domain. New 

sampling points are chosen by maximizing a modified expected improvement (EI) function: 

 

 max
𝐱
𝐸𝐼𝑓𝑒𝑎𝑠(𝐱) = 𝑠 × 𝜙 (

−�̂�

𝑠
) = 𝑠 × (

1

 √2𝜋
) 𝑒

−0.5(
�̂�2  

𝑠2
)
  (5.9) 

where 𝐸𝐼𝑓𝑒𝑎𝑠(𝐱) is the modified expected improvement function at 𝐱; 𝑠 is the standard error of 

the predictor; �̂� is the surrogate model prediction; 𝜙(∗) is the standard normal density function.  

For RBF-based methods, the prediction error can be estimated with the error indicator 1/𝜇 

discussed in Section 5.2.4, by introducing a scale factor to balance the magnitude of 1/𝜇 with 

that of the surrogate value �̂�. As shown by Wang and Ierapetritou (2017), 𝑠 can be estimated 

as: 

 

𝑠 = √
1/𝜇

𝑠𝑐𝑎𝑙𝑒
                                                                                                          (5.10) 

where: 

 

                   √
1/𝜇

𝑠𝑐𝑎𝑙𝑒
= √

(
1

𝜇
)

 (
1

𝜇0
)
max

×
RBF0

max

𝑉0
 .                                                                         (5.11) 

with  (
1

μ0
)
max

= max (
1

𝜇0
) maximum value of  

1

𝜇
 with the initial surrogate model; 

RBF0
max = max(𝑅𝐵𝐹0) is the maximum value of the initial cubic RBF prediction; 𝑉0 is the 

number of initial sample points. 

By taking the derivative of 𝐸𝐼𝑓𝑒𝑎𝑠(𝐱) with respect to �̂�, it can be shown (Wang and Ierapetritou, 

2017) that its value is large when the surrogate prediction �̂� is close to zero (i.e. near the 

boundary of the feasible region) and/or when prediction uncertainty 𝑠 is high. Therefore, the 
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adaptive sampling allows sampling new points near the boundary of the feasible region for the 

surrogate as well as in those regions of the historical input domain where prediction uncertainty 

is high (i.e. less explored regions).  

A schematic representation of the RBF-based adaptive sampling algorithm in shown in Figure 

5.1. This algorithm was first proposed by Wang and Ierapetritou (2017). Three steps are 

involved: in the first step, a space-filling sampling algorithm is used to span the historical input 

domain and build the initial surrogate according to a Design of Experiments (DoE) approach. 

The scale factor of Eq. (5.11) is computed at this step. In the second step, the surrogate accuracy 

is improved by sequentially adding new sampling points obtained with the adaptive sampling 

strategy discussed above. The adaptive sampling stops when the number of iterations exceeds 

a maximum defined by user. A typical value for the maximum number of iterations is 100. In 

the third and last step, the surrogate is used to predict the feasible region (i.e. the DS) of the 

process under investigation. 

 
Figure 5.1. RBF-based adaptive sampling for feasibility analysis. Originally presented by Wang and 

Ierapetritou (2017). 

 

5.2.6 Surrogate accuracy 

The results of the surrogate-based feasibility analysis can be deemed to be accurate if three 

conditions are simultaneously satisfied: 

1. The feasible region is correctly identified by the surrogate; 

2. The infeasible region is correctly identified; 
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3. The surrogate does not considerably overestimate the actual feasible region of the 

process. 

Different metrics have been proposed to quantify the surrogate accuracy, based on the 

computation of simple coverage probabilities (Rogers and Ierapetritou, 2015) or comparison 

between the predicted and theoretical hyper-volumes of the feasible region (Adi et al., 2016). 

However, while these techniques aim at quantifying the first two requirements listed above, 

they fail at addressing the third one. A set of simple metrics accounting for all three aspects is 

the one that has been recently proposed by Wang and Ierapetritou (2017). A graphical and 

analytical interpretation of these metrics can be found in the cited reference. 

The metrics are: 

1. CF (%): percentage of the feasible region for the original function which has been 

correctly discovered by the surrogate model; 

2. CIF (%): percentage of infeasible region for the original function which has been 

correctly discovered by the surrogate model; 

3. NC (%): percentage of feasible region that has been overestimated by the surrogate 

model. 

The first two metrics can be considered as “quality” metrics: they describe how well the input 

space has been explored and classified with respect to feasibility. The third metric can be 

considered as a measure of the “conservativeness” of the results, i.e. it describes how large is 

the portion of the input domain that has been wrongly classified as feasible by the surrogate 

with respect to the overall feasible region predicted by the surrogate itself. In summary, it can 

be said that the feasible region has been classified thoroughly and conservatively if CF(%) and 

CIF(%) are close to 100, and NC(%) is close to 0. 

5.3 Feasibility analysis and reduction of input space dimensionality 

In the following, a systematic methodology to couple PLS input space projection and feasibility 

analysis for the identification of the feasible region of a process involving a (possibly) large 

number of input factors is proposed.  

5.3.1 Proposed methodology 

The proposed methodology involves multiple steps. Although the discussion will be general, 

an illustrative case study shown in Figure 5.2 will be used to give a simple interpretation of the 

methodology. The example involves two units.  Let 𝑥1 and 𝑥2 being the input factors for the 

first unit. Let 𝜓1 be the feasibility function for the first unit, i.e the maximum values of all the 

constraints on the outputs of the first unit. Let 𝑢1 being an additional input for the second unit 

and 𝜓2 be the feasibility function for the second unit. The objective is to determine the set of 
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input combinations 𝐱 =  (𝑥1, 𝑥2, 𝑢1) that satisfy 𝜓2(𝐱) ≤ 0.  In the test problems, it is assumed 

that 𝜓2 monotonically increases with 𝜓1. It is worth noticing that this condition does not imply 

that 𝜓1 ≤ 0 if 𝜓2 ≤ 0; in practical terms, the outputs of the second unit may satisfy all their 

constraints, but the outputs of the first unit may violate some of their own constraints. This 

reflects a practical situation where a process may satisfy the quality constraints on the final 

product (output of unit #2), but not all the constraints on the outputs of all the units of the 

manufacturing line. 

In practical situations, the methodology assumes the availability of an integrated flowsheet 

model of the process (we will refer to this model as the “original” model), with quality 

constraints imposed on the final product. The maximum value of all these constraints will by 

denoted by the feasibility function 𝜓(𝐱). 

 

 

Figure 5.2. Illustrative example for the proposed methodology: block flow diagram. 

The flowchart of the methodology is shown in Figure 5.3. The steps are as follows. 

1. Step #1: collection of simulated data from the model. A dataset is generated using the 

original model (i.e., simulated data). First, the input space is spanned using the Kennard-

Stones’s sampling algorithm (KSA; Kennard and Stone, 1969). KSA is a space-filling 

sampling strategy that selects each new sample by choosing the farthest sample (in terms 

of Euclidean distance) from the previously selected ones, starting from the two farthest 

points on the historical input domain. Each selected sample corresponds to a selected 

input combination. Let 𝐱𝑖, 𝑖 = 1, . . , 𝑄 be the vector that collects all the selected values 

for the 𝑖-th input factor. The selected samples can then be collected in the input matrix 

= [𝐱1, 𝐱2, … , 𝐱𝑄] . The number of samples can be selected by the user and can be 

possibly increased to improve the PLS model accuracy. In all case studies, we generated 

a number of sample points equal to the number of sample points that we used to build 

the initial surrogate.  

Then, the values of the feasibility function 𝜓(𝐱) are collected according to the original 

process model. The vector that collects all these values is denoted by  𝛙. For the 
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illustrative example of Fig. 5.2,  𝐗 = [𝐱1, 𝐱2, 𝐮1], and the feasibility function for the 

overall process corresponds to the feasibility function for the second unit (i.e. 𝛙 = 𝛙2).  

 

2. Step #2: PLS model calibration. A PLS model (Eqs.(5.1)-(5.3)) is calibrated with the 

dataset generated in the previous step. A total number of 𝐴 latent variables are chosen 

according to the desired dimensionality reduction of the input space. In most situations, 

two or three LVs are able to capture most of the variability of the original input space.  

As explained in section 5.2.1, the PLS model is then used in the form of Eq. (5.1) to 

obtain a linear transformation 𝐿𝑃𝐿𝑆 between the original set of input factors 

(𝑥1, 𝑥2, … , 𝑥𝑄) and a new set of 𝐴 latent variables, identified by the PLS model scores 

(𝑡1, 𝑡2, … , 𝑡𝐴), according to Eq. (5.1). In the illustrative example considered, assuming 

𝐴 = 2 latent variables, the linear transformation 𝐿𝑃𝐿𝑆 ∶ (𝑥1, 𝑥2, 𝑢1) ↔ (𝑡1, 𝑡2) can be 

written as: 

 

            𝑥1 = 𝑡1𝑝11 + 𝑡2𝑝12 + 𝑒1   

                        𝑥2 = 𝑡1𝑝21 + 𝑡2𝑝22 + 𝑒2                                                                             (5.12) 

                        𝑢1 = 𝑡1𝑝31 + 𝑡2𝑝32 + 𝑒3  

 

           where 𝑒𝑖 is the residual (i.e. projection error) for the 𝑖-th input factor. 

3. Step #3: PLS model diagnostics. Some diagnostics on the representativeness of the PLS 

model are evaluated. To this purpose, the amount of 𝐗- and 𝐲-variability explained by 

the PLS model is used, which is quantified by the determination coefficients 𝑅𝑋
2 and 𝑅𝑦

2 

(together with their cumulative values 𝑅𝑋,𝑐𝑢𝑚
2  and 𝑅𝑦,𝑐𝑢𝑚

2 ): 

 

𝑅𝑋
2 = 1 −

∑ ∑ (𝑥𝑖,𝑞−�̂�𝑖,𝑞)
2𝑄

𝑞=1
𝐼
𝑖=1

∑ ∑ (𝑥𝑖,𝑞)
2𝑄

𝑞=1
𝐼
𝑖=1

 (5.13) 

𝑅𝑦
2 = 1 −

∑ ∑ (𝑦𝑖,𝑚−�̂�𝑖,𝑚)
2𝑀

𝑚=1
𝐼
𝑖=1

∑ ∑ (𝑦𝑖,𝑚)
2𝑀

𝑚=1
𝐼
𝑖=1

 (5.14) 

where �̂�𝑖,𝑞 is the element of the 𝑖-th row and 𝑞-th column of the matrix  �̂� = 𝐓𝐏T 

reconstructed through the PLS model; �̂�𝑖,𝑚 is the element of the 𝑖-th row and 𝑚-th 

column of the matrix �̂� = 𝐓𝐐T. The two metrics (5.13)-(5.14) can be computed for 

every latent variable included in the model and their cumulative values can be reported. 

If the chosen number of latent variables is 𝐴, 𝑅𝑋,𝑐𝑢𝑚
2  and 𝑅𝑦,𝑐𝑢𝑚

2  represent the 

cumulative amount of input and output variability respectively captured by the PLS 

model with 𝐴 LVs. 
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Figure 3. Flow chart of the  proposed methodology. 
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Three possible levels for the metrics 𝑅𝑋,𝑐𝑢𝑚
2  and 𝑅𝑦,𝑐𝑢𝑚

2  are identified, namely “low” 

when they are smaller than 70%, “medium” when they are between 70% and 90%, and 

“high” when they are greater than 90%. These are indicative values dictated by 

experience and can be adjusted according to user’s risk adversity. 

According to the values of 𝑅𝑋,𝑐𝑢𝑚
2  and 𝑅𝑦,𝑐𝑢𝑚

2 , three different possible scenarios can be 

identified, namely Scenario #1 , Scenario #2 and Scenario #3 respectively. 

Scenario #1: the PLS model cannot explain a large portion of both the input and the 

output variability for the chosen number of LVs. In other words, the predictive ability 

of the PLS model is limited (low 𝑅𝑦,𝑐𝑢𝑚
2 ) and a large portion of the original input space 

is not captured by the PLS model (low 𝑅𝑋,𝑐𝑢𝑚
2 ). In order for the methodology to be 

effective, the number of latent variables 𝐴 must be increased to increase the cumulative 

𝐗-variability explained by the PLS model. The higher 𝑅𝑋,𝑐𝑢𝑚
2 , the better the description 

of the original input space by the latent space, the lower the projection error of the linear 

transformation of variables 𝐿𝑃𝐿𝑆. The value of 𝐴 should be increased to obtain a 𝑅𝑋,𝑐𝑢𝑚
2  

close to or higher than 90% (in order to switch to scenario #2). The greater the number 

of LVs chosen, the smaller the reduction of the dimensionality of the original input 

space, the higher the computational burden for the feasibility analysis. If feasibility 

analysis is computationally infeasible for the number of LVs required to satisfy the 

conditions above, the proposed methodology is not useful and should not be used. 

Scenario #2: for the chosen number of LVs, the amount of 𝐗-variability explained by 

the PLS model is high, while the amount of 𝐲-variability explained is low. In this 

scenario, the predictive ability of the PLS model is low (low 𝑅𝑦,𝑐𝑢𝑚
2 ), but the original 

input space is well described by the new latent space, i.e. the projection error of the 

linear transformation 𝐿𝑃𝐿𝑆 is low. This is an ideal scenario for the application of the 

methodology. In fact, recall from section 5.2.1 that, in this study, the PLS model is only 

used as a projection method and not for prediction. Therefore, a small value of 𝑅𝑦,𝑐𝑢𝑚
2  

indicates that PLS (i.e. a simple linear regression model) is not a suitable model for the 

description of the process under investigation. On the other hand, a high value of 𝑅𝑋,𝑐𝑢𝑚
2  

indicates that the original input space is well described by the latent space identified by 

the new set of latent variables (𝑡1, 𝑡2, … , 𝑡𝐴). Since feasibility analysis is performed on 

the original process model by applying the linear transformation of variables 𝐿𝑃𝐿𝑆, this 

scenario represents the ideal situation for the methodology to be effective. The 

feasibility analysis problem is transformed from a 𝑄-dimensional problem to an 𝐴-

dimensional problem, with 𝐴 ≪ 𝑄. 

Scenario #3: the amount of 𝐲-variability explained by the PLS model is high, 

independently of the amount of 𝐗-variability captured by the 𝐴 LVs. In this situation, 

the predictive ability of the PLS model is high, no matter how large is the projection 

error of the linear transformation 𝐿𝑃𝐿𝑆. This suggests that PLS (which is a linear 
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regression model) would be enough to describe the input-output correlation for the 

original process, and could be directly used to predict the feasible region. In this 

scenario, the use of a more sophisticated integrated model for the overall process is not 

necessary to determine the feasible region. Therefore, feasibility analysis is not required 

and the PLS model can be used by itself without going on with the next steps of the 

methodology. Details on the direct use of PLS modelling for the determination of the 

feasible region are reported elsewhere (e.g. Tomba et al., 2012; Facco et al, 2015; Bano 

et al., 2017). 

Figure 5.4 shows the possible combinations of the values of 𝑅𝑋,𝑐𝑢𝑚
2  and 𝑅𝑦,𝑐𝑢𝑚

2  and their 

corresponding scenarios. The cells with two indicated scenarios (e.g. Scenario 1/ 

Scenario 3) represent transitional situations where it is up to the user deciding which 

scenario to be chosen between the two, and therefore which corrective actions to be 

implemented as indicated in Figure 5.5. This gives the user a degree of freedom on the 

choice of the most suitable techniques/corrective actions to be implemented for the case 

study under investigation. 

 

4. Step #4: feasibility analysis. Once verified that the methodology can be effective 

(scenario #2), the surrogate-based feasibility analysis previously discussed is performed 

on the original process model, by applying the linear transformation of variables 𝐿𝑃𝐿𝑆. 

Going back to the illustrative example, the surrogate-based feasibility analysis is 

performed on the original model structure for units 1 and 2, but applying the linear 

transformation of the original input variables described by Eq. (5.14). The surrogate-

predicted feasible region is then identified on the new 𝐴-dimensional latent space, i.e. it 

is identified in terms of the new set of variables [𝑡1, 𝑡2, … , 𝑡𝐴]. 

 

5. Step #5: results validation on the latent space. The surrogate accuracy is validated on 

the latent space of the 𝐴 new variables. The three metrics CF(%), CIF(%),NC(%) are 

computed to test the accuracy and robustness of the results. It is worth noticing that 

these metrics, as computed at this step, simply quantify the agreement between the 

feasible region predicted by the surrogate and the projection of the actual feasible region 

of the process onto the latent space. If these metrics satisfy the threshold values specified 

by the user, the analysis of the surrogate accuracy with respect to the original input space 

can be performed (step #6). If the metrics do not satisfy the requirements, the accuracy 

of the results can be improved by increasing the maximum number of iterations of the 

feasibility analysis or by increasing the number of initial sample points to build the 

surrogate. As a rule of thumb, the following stopping criterion can be used for the 

accuracy metrics: CF(%) > 97, CIF(%) > 97, NC(%) < 3. 
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Figure 5.4. Application of the proposed methodology: possible PLS modeling scenarios. 

 

 

6. Step #6: PLS model inversion. The results of the feasibility analysis are expressed in 

terms of the original input variables by applying the inverse linear transformation 𝐿𝑃𝐿𝑆
−1 . 

In the illustrative example considered, the results of the feasibility of step #5 (expressed 

in terms of (𝑡1, 𝑡2)) are expressed in terms of (𝑥1, 𝑥2, 𝑢1). 

 

7. Step #7: results validation on the original input space. The accuracy and robustness of 

the results are evaluated by computing the metrics CF(%), CIF(%),NC(%) in terms of 

the original input factors (𝑥1, 𝑥2, … , 𝑥𝑄). To emphasize that these metrics are different 

from the ones of step #5, they have been defined as CF2(%), CIF2(%),NC2(%). It must 

be noticed that CF2(%) ≤ CF(%), CIF2(%) ≤ CIF(%) and NC2(%) ≥ NC(%) always 

result, due to the projection error of the linear transformation 𝐿𝑃𝐿𝑆. In the limiting case 

where there is no projection error with the PLS model, then CF2(%) =

CF(%), CIF2(%) = CIF(%) and NC2(%) = NC(%). If the metrics satisfy the 

requirements defined by the user, the results can be considered accurate and the 

algorithm stops. If these metrics do not satisfy the requirements, the projection error 

should be decreased by increasing the number of LVs of the PLS model (thus increasing 

the computational burden). A possible set of threshold values that can be imposed for 

the accuracy metrics at this step is CF2(%) > 90, CIF2(%) > 95, NC2(%) < 5. 
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Figure 5.5. Description and corrective actions for the different PLS modeling scenarios. 

 

 

The methodology presented above was implemented in MATLAB® 2015, and the simulations 

were performed on an InteL® Core™ I7-5600U CPU@2.60GHz processor with 16.0 GB 

RAM. A schematic of the different MATLAB® routines and their interactions are shown in 

Figure 6. Two main routines (PLS and feasibility routines) interact with each other to obtain 

the linear transformation of variables 𝐿𝑃𝐿𝑆. In the PLS routines, the dataset generation and the 

PLS diagnostics subroutines are sequentially called. In the main feasibility routine, the unit 

models and the results validation subroutines are involved. The feasibility routine interacts with 

the PLS routine to transform the reduce set of latent variables to the original input variables 

through the PLS loadings, thus computing the results validation on the original 

multidimensional input space.  

5.4 Case studies 

The proposed methodology was tested on three case studies of increasing complexity.  

In the first case study, a low dimensional two-unit mathematical test problem involving 3 input 

factors is considered. The second case study is a three-unit high dimensional test problem with 

7 input factors. The third case study involves a direct compaction manufacturing process of a 

pharmaceutical powder. Six units and six relevant input factors are considered with 40 

constraints on the model output. 
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Figure 6. Set of MATLAB® routines used to implement the methodology and their interaction 

5.4.1 Case study #1: low dimensional test problem 

The case study is a simplified 2-unit process, as schematically shown in Figure 5.7. The first 

unit is characterized by two input factors (𝑥1, 𝑥2), and the maximum constraint value for its 

output is denoted by 𝜓1. An additional input 𝑢1 enters the second unit, whose feasibility 

function is 𝜓2.  

 
 

Figure 5.7. Case study #1: block flow diagram. 

 

The models for the two units have been taken from Wang and Ierapetritou (2017), based on the 

previous work of Rogers and Ierapetritou (2015). Mathematically, the feasibility problem for 

the first unit (“ex3”) can be expressed as: 

 

−2𝑥1 + 𝑥2 − 15 ≤ 0                                                                                             (5.15) 
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𝑥1
2

2
+ 4𝑥1 − 𝑥2 − 5 ≤ 0                                                                                          (5.16) 

              −
(𝑥1−4)

2

5
−

𝑥2
2

0.5
+ 10 ≤ 0 .                                                                                     (5.17) 

10 ≤ 𝑥1 ≤ 5                                                                                                          (5.18) 

              −15 ≤ 𝑥2 ≤ 15                                                                                                     (5.19) 

 

while the feasibility problem for the second unit (“branincon”) can be expressed as: 

 

  𝑎(𝜓1 − 𝑏𝑢1
2 − 𝑐𝑢1 − 𝑑)

2 + ℎ(1 − 𝑓𝑓)cos(𝑢1) − 5ℎ ≤ 0                                (5.20)                      

-5 ≤ 𝜓1 ≤ 10                                                                                                        (5.21) 

0 ≤ 𝑢1 ≤ 15                                                                                                          (5.22) 

where  

 

𝑎 = 1; 𝑏 =
5.1

4𝜋2
; 𝑐 =

5

𝜋
; 𝑑 = 6; ℎ = 10; 𝑓𝑓 =

1

8𝜋
 .                                                (5.23) 

 

The overall process consists of three input factors (𝑥1, 𝑥2, 𝑢1), thus being a 3-dimensional 

problem. 

5.4.2 Case study #2: high dimensional test problem 

The case study is a high dimensional test problem involving three units and a total of 7 input 

factors for the overall process (Figure 5.8).  

 

 

Figure 5.8. Case study #2: block flow diagram. 

 

The model for the first unit (“g4con”) is taken from Koziel and Michalewicz (1999) and can be 

mathematically described as: 
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0 ≤ 85.334407 + 0.0056858𝑥2𝑥5 + 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5 ≤ 92          (5.24) 

90 ≤ 80.51249 + 0.0071317𝑥2𝑥5 + 0.002955𝑥1𝑥2 + 0.0021813𝑥3
2 ≤ 110           (5.25) 

 20 ≤ 9.300961 + 0.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3 ≤ 25               (5.26) 

                 78 ≤ 𝑥1 ≤ 102, 33 ≤ 𝑥2 ≤ 45, 27 ≤ 𝑥𝑖 ≤ 45, 𝑖 = 3,4,5.                                 (5.27) 

 

The second unit is the “branincon” test model described for case study #1. The model for the 

third unit (“camelback”) is taken from Goel et al. (2007) and is given by: 

 

(4 − 2.1𝜓2
2 +

𝜓2
4

3
)𝜓2

2 + 𝜓2𝑢2 + (−4 + 4𝑢2
2)𝑢2

2 ≤ 0                                          (5.28) 

−3 ≤ 𝜓2 ≤ 3                                                                                                        (5.29) 

−2 ≤ 𝑢2 ≤ 2 .                                                                                                       (5.30) 

 

The feasibility function for the third unit is denoted as 𝜓3. The input factors for the overall 

process are (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑢1, 𝑢2). The case study is thus a 7-dimensional test problem. 

 

5.4.3 Case study #3: simulation of continuous direct compaction for 
pharmaceutical production 

This case study involves the continuous direct compaction (DC) for the production of powder 

based drugs and is based on the work recently presented by Wang et al. (2017). The flowsheet 

model of the manufacturing line is based on a continuous DC pilot plant situated at ERC-C-

SOPS Rutgers University and is shown in Figure 5.9. 

 

 

 
Figure 5.9: Case study #3: process flow diagram of the continuous direct compaction manufacturing line. 

Originally presented by Wang et al. (2017). 
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The integrated model was developed in gPROMS® (Process Systems Enterprise, 2014) and 

consists of 6 units (API, excipient and lubricant feeders, co-mill, blender and tablet press). The 

behavior of each unit is described by a semi-empirical model. Full details on the models of each 

unit can be found in the work of Wang et al. (2017).  

In this DC process, the API and the excipient are first fed to the co-mill. The lubricant is added 

after the co-mill to improve the flowability of the powder mixture. The API and the excipient, 

together with the lubricant, are then mixed in a continuous convective blender and then 

transported to a rotary feed frame, which feeds the mixture into dies where the press compacts 

the powder into tablets. 

The integrated flowsheet model consists of 22 input factors, including raw material properties, 

process parameters and tablet geometry, and 20 output variables, which include blends material 

properties, operation safety, mixing characterization and tablet product qualities. A detailed list 

of the input and output variables can be found in the cited reference. 

As shown by Wang et al. (2017), sensitivity analysis can be performed to determine the most 

influential input factors with respect to the desired output variables. Wang et al (2017) 

identified 10 influential input factors, 4 of them being raw material properties that are assumed 

to be fixed at their nominal values throughout the entire process operation. Therefore, only 6 

input factors are investigated by feasibility analysis, as reported in Table 5.1. 

Table 5.1. Case study #3: list of the influential input factors and the fixed raw 

material properties. Originally presented by Wang et al. (2017). 

Input # Variable name LB UB Nominal 

value 

Measure

ment unit 

Significant input factors      

1 API flow rate 2.85 3.15 [-] [kg/h] 

2 Excipient flow rate 25.365 28.035 [-] [kg/h] 

3 Co-mill blade speed 1064 1176 [-] [RPM] 

      

4 Blender blade speed 237.5 262.5 [-] [RPM] 

5 Tablet press fill 

depth 

0.0095 0.0105 [-] [m] 

6 Tablet press 

thickness 

0.002375 0.002625 [-] [m] 

Fixed material properties      

MP1 Excipient bulk 

density 

[-] [-] 400 [kg/m3] 

MP2 Excipient true 

density 

[-] [-] 2500 [kg/m3] 

MP3 Excipient 𝑑50 [-] [-] 120 [𝜇𝑚] 
MP4 Excipient 𝑑90 [-] [-] 250 [𝜇𝑚] 

 

A total of 20 double-sided inequality constraints (i.e. 40 single-sided inequality constraints) are 

assigned to the 20 output variables of the flowsheet model, thus making the feasibility problem 
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as a 6-dimensional problem with 40 inequality constraints. The maximum value of all these 

constraints is the feasibility function 𝜓(𝐱) of this case study. 

5.5 Results 

In the following, the results of the proposed methodology for the three case studies discussed 

above are presented and critically discussed. 

5.5.1 Results for case study #1 

The original feasibility problem for this case study was a 3-dimensional problem with quality 

constraints set for the output of the second unit. In other words, it has been imposed that the 

quality constraints must not be violated for the output of the second unit, while some of the 

constraints described by Eqs. (5.15)-(5.17) for the output of the first unit may possibly be 

violated.  

Mathematically, the feasible region on the 3-dimensional input domain identified by 

(𝑥1, 𝑥2, 𝑢1) was considered by accounting only for the feasibility function 𝜓2. The objective 

was to understand if the proposed methodology can reduce the original 3-dimensional problem 

to a lower-dimensional problem, without substantially affecting the accuracy of the prediction 

of the original feasible region. 

Following the procedure of Fig. 5.3, a simulated dataset was first built using the single unit 

models described in section 5.4.1. 49 = 72 KSA-selected calibration samples were used to build 

the PLS model. The obtained PLS diagnostics is reported in Table 5.2. 

Table 5.2. Case study #1. Diagnostics of the PLS model 

LV # 𝑅𝑋
2(%) 𝑅𝑋,𝑐𝑢𝑚

2 (%) 𝑅𝑦
2 (%) 𝑅𝑦,𝑐𝑢𝑚

2  (%)  

1 53.12 53.12 23.12 23.12  

2 42.01 95.13 28.08 51.20  

3 4.87 100.00 7.76 58.96  

 

 

From Table 5.2, it can be seen that with 𝐴 = 2 latent variables the PLS model explains 95.13 

% of the input variability and 51.20 % of the output variability. Recalling Figure 5.4, the case 

study falls into scenario #2 and the methodology can be effective to reduce the original 3-

dimensional problem to a 2-dimensional problem. The linear transformation 

𝐿𝑃𝐿𝑆: (𝑥1, 𝑥2, 𝑢1) ↔ (𝑡1, 𝑡2) was therefore applied and feasibility analysis was executed with 

this new set of latent variables. A rectangular-grid sampling with 49 initial samples (as we did 

to build the PLS model) was used to build the initial surrogate onto the 2-dimensional latent 

space. The contour plot of the original feasibility function 𝜓2 projected onto the 2-dimensional 
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latent space is shown in Figure 5.10a. The grey-shaded areas represent the projection of the true 

feasible region of the process onto the latent space. It is important to notice that these areas, 

even if computed with the original feasibility function, do not correspond exactly to the 3-

dimensional feasible region of the process, due to the projection error of the linear 

transformation 𝐿𝑃𝐿𝑆. 

Adaptive sampling (section 5.2.5) was used to iteratively sample new points and improve the 

surrogate accuracy. A scale factor for the adaptive sampling 10 times larger than the default 

value identified by Eq. 5.11 was used, thus enhancing local search with respect to global search. 

In other words, it was preferred optimizing the sample budget without facing the risk to over 

explore the latent space. In all the case studies considered, it was verified a posteriori that all 

the disjoint feasible regions were correctly identified by the surrogate using the increased scale 

factor, thus confirming the validity of our choice. 100 iterations were fixed as the maximum 

number of iterations for the adaptive sampling. The surrogate accuracy after 100 iterations can 

be seen in Figure 5.10b, where the blue dots represent the initial sampling points and the red 

circles represent the adaptive sampling points after 100 iterations. From the same figure, it can 

be seen that the adaptive sampling points are correctly located near the boundaries of the 

disjoint feasible regions onto the latent space.  

 

 
                                              (a) 

 

  
                                       (b) 

Figure 5.10. Case study #1. (a) Projection of the original function onto the latent space. The 

grey-shaded area represents the projection of the feasible region. (b) RBF model after 100 

iterations. The blue dots represent the initial samples. The red circles represent the adaptive 

sampling points after 100 iterations. 

 

The three metrics 𝐶𝐹(%), 𝐶𝐼𝐹(%),𝑁𝐶(%), that quantify the accuracy and robustness of the 

results with respect to the projection of the actual feasible region onto the latent space, were 

then computed. After 100 iterations, the following values were obtained: 𝐶𝐹(%) =

99.1, 𝐶𝐼𝐹(%) = 99.9, 𝑁𝐶(%) = 1.20. These values confirmed that the surrogate can identify 

with high accuracy the projections of both the feasible and infeasible regions (over 99% of the 
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feasible regions were correctly discovered). They also confirmed that the percent of 

overestimated feasible regions is very low (1.20 %). 

As discussed in section 5.2.6, these metrics quantify the accuracy of the results on the 2-

dimensional latent space and are computed just as an intermediate step for the final assessment 

of the results. 

Since the values of these metrics resulted to be very satisfactory, the results in terms on the 

original input factors were computed, by applying the inverse linear transformation 𝐿𝑃𝐿𝑆
−1 . The 

values of the new metrics  CF2(%), CIF2(%),NC2(%), that describe the accuracy and 

robustness of the results with respect to the original input space, were: CF2(%) =

98.2, CIF2(%) = 99.90, NC2(%) = 1.32. As expected, the values of these metrics are worse 

than the previous ones, due to the projection error of 𝐿𝑃𝐿𝑆 . However, these values confirm that 

over 98% of the actual 3-dimensional feasible regions are correctly discovered, and that the 

methodology overestimates only 1.32% of them.  

In conclusion, the results are very satisfactory: the methodology was able to transform a 3-

dimensional problem into a 2-dimensional problem, reducing the computational burden for 

feasibility analysis, but at the same time guaranteeing the prediction of the actual feasible region 

with an accuracy higher than 98 %. Table 5.3 shows a summary of the results obtained for this 

case study. 

Table 5.3. Case study #1. Surrogate accuracy onto the latent and original 

input space after 100 iterations. 

   Metric 

 

Latent space (2-D) 

 

Original input space (3D) 

 

 

CF(%) 99.10 98.20  

CIF(%) 99.90 99.90  

NC(%) 1.20 1.32  

 

For this case study, the total simulation time for feasibility analysis was 11 min and 32 sec. 

5.5.2 Results for case study #2 

In the second case study, the original problem is 7-dimensional and it would make feasibility 

analysis computationally difficult if not impossible. Moreover, giving a compact representation 

(i.e. graphic) of a 7-dimensional feasible region is impossible and makes the interpretation of 

the results cumbersome.  

The PLS model was built with 49 KSA-selected calibration samples and the diagnostics of 

Table 5.4 were obtained. 

As can be seen in Table 5.4, even though the original number of input factors is 7, the “driving 

forces” that affect the process output are much less. In fact, with 2 latent variables, 88.14 % of 

the variability of the original input space can be captured, and 41.15 % of the variability of 
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output space is described. It is worth noticing that this represents an intermediate situation 

between scenario #1 and scenario #2, since the amount of 𝐗- variability explained is smaller 

than 90 %. 

Table 5.4. Case study #2. Diagnostics of the PLS model 

LV # 𝑅𝑋
2(%) 𝑅𝑋,𝑐𝑢𝑚

2 (%) 𝑅𝑦
2 (%) 𝑅𝑦,𝑐𝑢𝑚

2  (%)  

1 51.12 51.12 26.89 26.89  

2 37.02 88.14 14.26 41.15  

3 5.99 94.13 6.11 47.26  

4 1.09 95.22 1.12 48.38  

5 1.78 97.00 3.29 51.67  

6 0.15 97.15 1.01 52.68  

7 2.85 100.00 2.15 54.83  

 

Therefore, if the case study is treated as belonging to scenario #2, feasibility analysis can be 

applied to a reduced 2-dimensional problem and the accuracy of the results must be assessed. 

On the other hand, if we consider scenario #1, the number of latent variables should be increased 

to increase 𝑅𝑋,𝑐𝑢𝑚
2 . From Table 5.4, it can be noticed that if the number of latent variables is 

increased to 3, 𝑅𝑋,𝑐𝑢𝑚
2  becomes 94.13%, while 𝑅𝑦,𝑐𝑢𝑚

2  does not increase significantly. In this 

case, feasibility analysis must be performed on a 3-dimensional latent space thus increasing the 

computational burden. To compare the balance between the reduction of the projection error 

and the increase of the computational burden, the methodology was tested with both 2 and 3 

latent variables and compared the results. 

In the 2-dimensional case, the initial surrogate was built with 49 calibration samples selected 

according to a rectangular-grid sampling. The projection of the original function onto the latent 

space is shown in Figure 5.11a.  The surrogate accuracy after 100 iterations is shown in Figure 

5.11b.  

It can be noticed that the adaptive sampling points correctly identify the boundary of the feasible 

regions for the process. The metrics CF(%), CIF(%),NC(%) resulted to be 92.15, 98.87 and 

2.97 respectively. When computed on the original 7-dimensional input space, they become 

CF2(%) = 90.11, CIF2(%) = 98.15, NC2(%) = 3.26. These results show that, with 2 latent 

variables, over 90% of the feasible regions are correctly identified by the surrogate, and the 

percent of overestimated feasible regions is smaller than 4%. 

In the 3-dimensional case, a Latin hypercube sampling strategy with 64 samples was used to 

build the initial surrogate. We noticed that the accuracy and robustness of the results increases 

as expected. In fact, the surrogate accuracy after 100 iterations with respect to the original input 

space is CF2(%) = 94.13, CIF2(%) = 99.15, NC2(%) = 1.8. However, the total 

computational time for the feasibility analysis significantly increases from the 2-dimensional 

to the 3-dimensional problem (from 36 min. to 1h 26 min), as shown in Table 5.5. 
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This case study shows how the choice of the number of latent variables should be done as a 

compromise between the desired accuracy of the results and the reduction of the computational 

burden for the feasibility analysis. For most practical applications, an accuracy of around 90% 

 

 
(a) 

 
(b) 

 

Figure 5.11. Case study #2. (a) Projection of the original function onto the latent space. The 

grey-shaded area represents the projection of the feasible region. (b) RBF model after 100 

iterations. The dots represent the initial samples. The red circles represent the adaptive 

sampling points after 100 iterations. 

 

Table 5. Case study #2. Comparison of the surrogate accuracy and simulation 

time after 100 iterations with 2 and 3 latent variables respectively. 

Metric 

 

2 latent variables (2-D) 

 

3 latent variables (3-D) 

 

 

CF2(%) 90.11 94.13  

CIF2(%) 98.15 99.15  

NC2(%) 3.26 1.89  

Total computational time 32 min 1h 26 min  

 

in the identification of the feasible region is acceptable and therefore the original 7-dimensional 

problem can be reduced to a 2-dimensional problem. If more accuracy is required, this has to 

be done by increasing the computational burden for the feasibility analysis. 

5.5.3 Results for case study #3 

This case study is a comprehensive practical exercise of design space identification for a 

continuous manufacturing pharmaceutical process. The step-by-step methodology was applied 

to this 6-dimensional problem, involving 40 inequality constraints for the model output. The 

“historical” dataset was generated using the original integrated flowsheet model by selecting 
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25 KSA calibration samples. A PLS model was then built for the overall process. The PLS 

diagnostics are presented in Table 5.6. 

Table 5.6. Case study #3. Diagnostics of the PLS model. 

LV # 𝑅𝑋
2(%) 𝑅𝑋,𝑐𝑢𝑚

2 (%) 𝑅𝑦
2 (%) 𝑅𝑦,𝑐𝑢𝑚

2  (%)  

1 62.12 62.12 36.45 36.45  

2 29.60 91.72 12.13 48.58  

3 4.12 95.84 11.16 59.74  

4 3.16 99.00 4.21 63.95  

5 0.17 99.17 4.01 67.96  

6 0.83 100.00 1.04 69.00  

 

Table 5.6 results illustrate that the PLS model is able to capture 91.72% of the 𝐗-variability and 

48.58 % of the 𝐲-variability with only two latent variables, thus giving scenario #2. The 

explained 𝐗-variability would increase to 95.84% if 3 latent variables were chosen. Considering 

𝑅𝑋,𝑐𝑢𝑚
2 = 91.72% a good projection accuracy, only 2 latent variables were used for this case 

study. Feasibility analysis was then performed on the reduced 2-dimensional problem with the 

new set of latent variables. A total of 25 = 52 samples were used to build the initial surrogate 

according to a rectangular grid sampling scheme. The increased scale factor discussed for case 

study #1 was also used. The adaptive sampling routine was apoplied and the surrogate RBF 

model onto the latent space after 100 iterations is shown in Figure 5.12b. The projection of the 

original function onto the latent space is shown in Figure 5.12a. It can be noticed that the 

adaptive sampling points clearly identifies the boundary of the feasible region (i.e. the DS) of 

the process. The values of the three metrics CF(%), CIF(%),NC(%) after 100 iterations are 

95.22, 97.95 and 1.13 respectively.  

According to the ICH Q8(R2) guideline, the DS of the process can be described as a 

“combination of variables such as components of a multivariate model” (ICH, 2009).  

Moreover, the DS “can be explained mathematically through equations describing relationships 

between parameters for successful operation” (ICH, 2009). Being the original process 

parameters linear combinations of the PLS scores [𝑡1, 𝑡2] of Figures 5.12a and 5.12b according 

to Eq. (5.1), the representation of the DS of Figure 5.12b fully complies with the regulatory 

requirements. However, from a practitioner’s point of view, describing the DS in terms of latent 

variables may be difficult to translate into input materials properties and process operating 

conditions.  
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(a)  

(b) 

Figure 12. Case study #3. (a) Projection of the original function onto the latent space. The 

grey-shaded area represents the projection of the feasible region. (b) RBF model after 100 

iterations. The blue dots represent the initial samples. The red circles represent the adaptive 

sampling points after 100 iterations. 

 

It must be recalled that each point of Figure 5.12 corresponds to a combination of the six input 

factors of Table 5.1, and the resulting DS can be easily translated into practical information for 

the user by applying the inverse of the linear transformation 𝐿𝑃𝐿𝑆 (step 6 of Figure 6). For 

example, let 𝐭𝑓 = [𝑡1
𝑓
, 𝑡2
𝑓
] be a point inside the feasible region identified the RBF model of 

Figure 12b. The corresponding 6-dimensional feasible operating condition 𝐱𝑓 can be obtained 

by applying the linear transformation (5.1) using the loadings of the PLS model (step 2 of Figure 

5.3). The procedure can be repeated for any desired number of points falling within, or at the 

boundary of, the feasible region identified by the RBF model (Figure 5.12b), thus translating 

the latent space results into practical operating conditions. As an example, let 𝐭𝑓 =

[−2.12, −3.18] be one of the points inside the feasible region of Figure 5.12b. The 

corresponding input combination that can be obtained by applying 𝐿𝑃𝐿𝑆
−1  is reported in Table 

5.7. The metrics CF2(%), CIF2(%) NC2(%) on the original 6-dimensional space were 

93.50, 97.20  and 2.30 respectively. These results show that more than 93% of the feasible 

region is correctly identified by the RBF model in the original input space, and the percent of 

overestimated feasible region is a little bit higher than 2%. A summary of the results is presented 

in Table 5.8. 
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Table 5.7. Case study #3. Example of feasible point expressed in terms of 

original input factors, given its coordinates on the latent space 𝑡𝑓 =
[−2.12, −3.18]. 

Original input factor 

combination 

Numerical value Measurement unit 

API flow rate 3.05 [kg/h] 

Excipient flow rate 26.925 [kg/h] 

Co-mill blade speed 1122 [RPM] 

Blender blade speed 253.2 [RPM] 

Tablet press fill depth 0.00998 [m] 

Tablet press thickness 0.002502 [m] 

 

Table 5.8. Case study #3. Surrogate accuracy onto the latent and original 

input space after 100 iterations. 

   Metric 

 

Latent space (2-D) 

 

Original input space (6-

D) 

 

 

CF(%) 95.22 93.50  

CIF(%) 97.95 97.20  

NC(%) 1.13 2.30  

 

The results are very satisfactory considering the dimensionality of the original problem. In a 

previous work, Wang et al. (2017) used a matrix of 2-dimensional feasibility plots to assess the 

accuracy of the results, without accounting for the multivariate correlation between the input 

factors. With the proposed methodology, a high accuracy in the prediction of the feasible region 

is obtained while fully taking into account the multivariate nature of the original problem.   

5.6 Conclusions 

In this work, a novel and systematic methodology to identify the feasible region of an integrated 

process by applying a linear transformation of the original input factors into a new set of PLS-

determined latent variables, and then applying feasibility analysis on this low dimensional 

problem was proposed. Given the original integrated flowsheet model, a PLS model was first 

built based on a simulated dataset obtained from the original flowsheet model. According to the 

amount of input and output variability explained by the PLS model for the chosen number of 

latent variables, three possible scenarios were identifed. In the first scenario, the methodology 

can be applied only if the number of latent variables can be increased while simultaneously 

maintaining the feasibility analysis computationally applicable. In the second scenario, the 

methodology can be directly used and can show its potential; in the latter scenario, feasibility 

analysis is not needed and the feasible region can be directly identified with the PLS model. 

The PLS model was used as a linear transformation between the original set of input variables 
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and the new set of latent variables, and RBF-based adaptive sampling feasibility analysis on the 

reduced latent space was performed. The quality and robustness of the results were assessed 

with three metrics, that describe how well the feasible and infeasible regions are identified by 

the RBF model, and how large is the portion of overestimated feasible region. The methodology 

was tested on three relevant case studies, the first two involving multiple unit test problems 

with 3 and 7 input factors respectively, and the last one involving a continuous manufacturing 

direct compaction process of a pharmaceutical powder. For all the case studies, the ability of 

the methodology to reduce the problem dimensionality while maintaining a good accuracy and 

robustness of the results was shown. It was also shown the ability of the methodology to give a 

simple and compact representation of the feasible regions for the process under investigation. 

For the second case study, it was proved how the choice of the number of latent variables must 

be done by finding a compromise between the desired accuracy and the reduction of the 

computational burden.
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Chapter 6 
 

Design space maintenance by online 

model adaptation in pharmaceutical 

manufacturing* 

 
In this Chapter, a model adaptation strategy that allows obtaining an up-to-date representation 

of the design space in the presence of process/model mismatch is proposed. First, the motivation 

and the problem statement are presented. Then, the state-of-the art for design space 

determination using classical feasibility analysis is briefly discussed, together with a critical 

review of its main limitations. The proposed methodology is then presented and tested on two 

simulated case studies. Finally, the results of the proposed design space adaptation strategy are 

shown and critically analyzed. 

6.1 Introduction 

Although not compulsory, a detailed description of the design space (DS) of a pharmaceutical 

product is a key step of the Quality by Design (QbD) paradigm advocated by the pharmaceutical 

regulatory agencies. The design space is defined as the multidimensional combination and 

interaction of raw materials properties and critical process parameters that have been 

demonstrated to meet assigned specifications on the critical quality attributes of the final 

product (ICH, 2009). If the submitted design space is approved, the manufacturing process can 

be run anywhere within the design space without initiating a regulatory post approval change 

procedure. This increases process flexibility, since manufacturers can decide to change the 

process parameters and/or the raw material characteristics within the approved design space 

without the need to obtain a new regulatory endorsement.  

The use of mathematical models has been extensively exploited to assist design space 

description during the last decade, both in academia and in industry. In the following, we will 

                                                           
* Bano G., Facco, P., Ierapetritou, M., Bezzo, F., Barolo, M. (2018) Design space maintenance by online model adaptation in 

pharmaceutical manufacturing. Submitted to: Comput. Chem. Eng. 
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refer to the prediction of the design space that can be obtained using a process model as to the 

model-based DS, to distinguish it from the actual (and unknown) DS. In the context of data-

driven models, the use of response surface methodologies (Chatzizacharia and Hatziavramidis, 

2014; Kumar et al., 2014), multivariate experimental design (Charoo et al., 2012), high-

dimensional model representations (Li et al., 2001; Boukouvala et al., 2010), kriging 

methodologies (Jia et al., 2009; Boukouvala et al., 2010) and latent-variable model inversion 

(Tomba et al., 2012) have been reported to support DS description, with application to the 

manufacture of drug substances, intermediates and drug products. With reference to first-

principles models (or semi-empirical ones), techniques such as Monte-Carlo simulations (Burt 

et al., 2011; Brueggemeier et al., 2012; Garcia-Munoz et al., 2015; Garcia- Munoz et al., 2018), 

surrogate-based feasibility analysis (Banerjee et al., 2010; Rogers and Ierapetritou, 2015; Wang 

et al., 2017a; Wang et al., 2017b; Bano et al., 2018) and operability analysis (Vinson and 

Georgakis, 2000; Uztürk and Georgakis, 2002) have been used to assist DS determination. 

Steady-state systems (Lima et al., 2010; Boukouvala and Ierapetritou, 2012) as well as dynamic 

systems (Garcia-Munoz et al., 2015; Rogers and Ierapetritou, 2015) have been considered. 

Whether data-driven or first-principles, DS description using a mathematical model requires 

prior knowledge of the uncertainty affecting the model and of the disturbances that may affect 

plant operation. However, neither all sources of uncertainty nor all disturbances can be modeled 

a priori. Additionally, it should be reminded that the behavior of an industrial production plant 

is typically the outcome of a complex interaction of physical phenomena, and is affected by 

downstream and upstream units, as well by the external environment (Pantelides, 2009). 

Laboratory or pilot-scale measurements often do not embed enough information about these 

interactions, and this may result in deficiencies in the plant model. Finally, drifts may occur 

during actual operation of the plant due to (typically slow) physical phenomena, such as 

equipment fouling, leaks, catalyst deactivation and the like (Pantelides and Renfro, 2013). All 

of the above occurrences can result in process-model mismatch, which impacts on the accuracy 

of the critical quality attributes predicted by the model, thus in turn undermining the 

appropriateness of the design space described by means of the model as originally developed. 

Process-model mismatch can sometimes be mitigated or even removed by adjusting some of 

the original model parameters in real time. This continuous model adaptation methodology is 

long known in process engineering (Lainiotis,1971; Cheng et al., 1993; Ogunnaike, 1994; 

Pantelides, 2009) and, following the regulatory parlance, may also be defined as online model 

maintenance. Maintenance of a process model also affects the DS described using that model, 

an issue that is also addressed by the regulatory agencies in the ICH Q8(R2) guideline (ICH, 

2009), where it is noted that “…for certain design spaces using mathematical models, periodic 

maintenance could be useful to ensure the model’s performance…” and that “...expansion, 

reduction or redefinition of the design space could be desired upon gaining additional process 

knowledge…”. The fact that a DS should be adapted during the product lifecycle has started 
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being acknowledged by the academic community (Herwig et al., 2017). However, no 

indications have been provided so far on how DS maintenance should be carried out and 

reported. This study is intended to offer a contribution to the development of a DS maintenance 

strategy. A discussion on the regulatory implications of DS maintenance is beyond of the scope 

of the study, and therefore this issue will not be addressed in this paper. 

In this Chapter, a methodology that allows continuous maintenance of the model-based 

representation of the DS using online model adaptation is proposed. The main focus is on 

pharmaceutical processes described by first-principles models or semi-empirical models, and 

the availability of plant measurements from online sensors is assumed. Recent advances in 

online applications of first-principles models (commonly referred to as tracking simulators; 

Patwardhan et al., 2012; Pantelides et al., 2016) are coupled with advances in the area of 

feasibility analysis and surrogate-based feasibility analysis for DS determination (Grossmann 

et al., 2014; Bhosekar and Ierapetritou, 2017). Specifically, a dynamic state estimator suitable 

for differential-algebraic equation (DAE) systems (Cheng et al., 1997) is exploited for online 

model adaptation, and an online update of the model-based DS representation using feasibility 

analysis techniques is obtained. Situations where the impact of process-model mismatch can be 

removed online by adjusting some of the original model parameters are analyzed. 

The proposed methodology is tested on two simulated case studies: the former involves the 

roller compaction of microcrystalline cellulose based on the model of Hsu et al. (2010), and the 

latter the fermentation of penicillin in a fed-batch bioreactor based on the model of Riascos and 

Pinto (2004).  

 

6.2 Methods 

 

In the following, the two modelling techniques that will be jointly exploited in this study are 

briefly reviewed. It is assumed that a first-principles model or semi-empirical model of the 

pharmaceutical unit or process under investigation is available. 

 

6.2.1 State estimator for DAE systems 

Most of the models describing a pharmaceutical system are governed by index-1 or higher-

index system of nonlinear DAEs of the form: 

 

[
�̇�1(𝑡)
𝟎
] = [

𝐟1(𝐱1(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)

𝐟2(𝐱1(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)
] + [

𝐰1(𝑡)

𝐰2(𝑡)
]   (6.1) 

subject to the initial conditions: 

 

𝐱1(0) = 𝐱1,0 +𝐰1(0)   (6.2) 
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where the 𝑁-dimensional system state 𝐱(𝑡) is split into an 𝑁1-dimensional differential state 

𝐱1(𝑡) and an 𝑁2-dimensional algebraic state 𝐱2(𝑡). The model error 𝐰(𝑡) is a zero-mean 

random process with unknown statistics that, in accordance with 𝐱(𝑡), can be split into the 𝑁1-

vector 𝐰1(𝑡) and the 𝑁2-vector 𝐰2(𝑡). The 𝐼-dimensional vector 𝐮(𝑡) is the control vector. 

Online measurements are assumed to be available at discrete sampling instants 𝑡𝑘 and are 

collected in the 𝑀-dimensional vector 𝐲(𝑡𝑘). The online observations are related to the state 

vector at time 𝑡𝑘 according to: 

 

 𝐲(𝑡𝑘) = 𝐡(𝐱1(𝑡𝑘), 𝐱2(𝑡𝑘), 𝑡𝑘) + 𝐯(𝑡𝑘); 𝑘 = 1,2, … , 𝐾    (6.3) 

where 𝐯(𝑡𝑘) is the 𝑀-dimensional vector of unknown measurement noise. Eq. (6.1) is the state-

space model of the system, while Eq. (3) is the observation model. 

In principle, index-1 DAE systems can always be reformulated in standard ODE form, and 

higher index DAEs can be reduced to 1-DAE systems e.g. using Pantelides’ algorithm 

(Pantelides, 1988) or dummy derivative index reduction (Mattsson and Söderlind, 1993). 

Therefore, standard state estimators based on pure ODE state-space models may be used for 

these systems. However, in practical applications, obtaining consistent initial conditions for the 

system state and the initial model error covariance for index-1 DAE systems can be very 

cumbersome. In this case, derivation of state estimators based on the original DAE form can be 

beneficial to overcome this issue. In this study we use the sequential state estimator proposed 

by Cheng et al. (1997), which is directly obtained from the original DAE formulation of the 

system.  

Given the discrete time measurements 𝐲(𝑡𝑘) in the time interval 0 ≤ 𝑡𝑘 ≤ 𝑇, it is required to 

estimate 𝐱1(𝑡) and 𝐱2(𝑡) at a given time 𝑡. The estimation criterion is the minimization of the 

least-squares error functional (Cheng et al., 1997): 

 

𝐼 =   
1

2
 [𝐱1(0) − 𝐱1,0]

T
 𝐏11
−1(0)[𝐱1(0) − 𝐱1,0] + 

+
1

2
∫ { [

�̇�1(𝑡)
0
] − [

𝐟1(𝐱1(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)

𝐟2(𝐱1(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)
]}
T

𝐐−1(𝑡) {[
�̇�1(𝑡)
0
]

𝑇

0

− [
𝐟1(𝐱1(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)

𝐟2(𝐱1(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)
]} d𝑡 + 

      +
1

2
∫ [𝐲(𝑡) − 𝐡(𝐱1(𝑡), 𝐱2(𝑡), 𝑡)]

T
𝑇

0

𝐑𝑑
−1(𝑡)[𝐲(𝑡) − 𝐡(𝐱1(𝑡), 𝐱2(𝑡), 𝑡)]d𝑡 (6.4) 

where the first term minimizes the square error of the initial estimate of 𝐱1(0), the second term 

minimizes the integral square model error and the third term minimizes the integral square 

measurement error. Although the three matrices 𝐏11
−1(0), 𝐐−1(𝑡), 𝐑−1(𝑡) do not have statistical 
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meaning, they can be tuned by the user to reflect the errors on the initial estimate of the 

differential state, the process model and the measurement device, respectively. Their meaning 

is analogous to the covariances of the initial state errors, the process noise and the measurement 

noise respectively of the linear Kalman filter (Kalman, 1960). Matrix 𝐑𝑑
−1(𝑡) can be computed 

according to: 

 

 𝐑𝑑
−1(𝑡) = ∑ 𝐑−1(𝑡𝑘)𝛿(𝑡 − 𝑡𝑘)Δ𝑘

𝐾
𝑘=1  (6.5) 

where  Δ𝑘 is the sampling interval at sample 𝑘 and 𝛿(𝑡 − 𝑡𝑘) is the Dirac delta function.  

Application of the calculus of variations to (6.4) allows obtaining a sequential solution to the 

estimation problem. The relevant equations that can be obtained are reported in Appendix A. 

The sequential estimator that can be obtained simplifies to the standard extended Kalman filter 

(EKF) (Ray, 1981) equations when the system is described by ordinary differential equations 

(ODEs). Therefore, the approach considered in this study can be considered as an extension of 

the standard EKF estimation to DAE systems. The robustness of this estimator has been recently 

proved to be satisfactory even with large (227 differential variables plus 14268 algebraic 

variables) high-order nonlinear DAE systems (Pantelides et al., 2016). 

 

6.2.2 Feasibility analysis for dynamical systems 

Feasibility analysis (Halemane and Grossman, 1983) is a mathematical technique that can be 

used to identify the subset of combinations of uncertain parameters that guarantee to satisfy all 

the relevant process constraints (e.g. quality constraints, production constraints, environmental 

constraints). These combinations represent the feasible region of the process. According to the 

standard terminology of feasibility analysis, the uncertain parameters collect three different 

sources of uncertainty (Dimidiatris and Pistikopulos, 1995): 

a) variability on external variables such as raw material properties (e.g., composition of 

available feedstock); 

b) variability on internal variables such as critical process parameters ( e.g., fluctuations 

of the flowrate of the inlet streams); 

c) uncertainty on  model parameters (e.g., heat/mass transfer coefficients, kinetic 

constants). 

These sources of uncertainty can potentially affect the key performance indicators (KPIs) of the 

process. 

From a general perspective, the physical behavior of a dynamic system can be described by the 

systems of DAEs of Eq. (1). This set of equations can be written in the implicit form: 

 

𝐅(𝐝, �̇�(𝑡), 𝐱(𝑡), 𝐮(𝑡), 𝛉(𝑡), 𝑡)= 0;     𝐱(0) = 𝐱0  (6.6) 
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where the vector collecting the design variables 𝐝 (which is fixed, since we assume that the 

process design is fixed) and the vector collecting the uncertain parameters 𝛉(𝑡) are shown 

explicitly. 

The key performance indicators of the process are subject to a set of constraints (e.g. quality 

constraints). These constraints can be path constraints, i.e. of the form: 

 

𝐠(𝐝, �̇�(𝑡), 𝐱(𝑡), 𝐮(𝑡), 𝛉(𝑡), 𝑡) ≤ 𝟎 (6.7) 

or a set of 𝑝 = 1,2, … , 𝑃 point constraints, i.e.: 

 

𝐠𝐩(𝐝, 𝐱(𝑡𝑝), 𝐮(𝑡𝑝), 𝛉(𝑡𝑝), 𝑡𝑝) ≤ 𝟎;    𝑝 = 1,…𝑃. (6.8) 

A common type of point constraints is the end-time point constraint: 

 

 𝐠end(𝐝, 𝐱(𝑡𝑒𝑛𝑑), 𝐮(𝑡𝑒𝑛𝑑), 𝛉(𝑡𝑒𝑛𝑑), 𝑡𝑒𝑛𝑑) ≤ 𝟎. (6.9) 

where 𝑡𝑒𝑛𝑑 may be, for example, the total duration of a batch or the total duration of a 

production campaign. The characterization the feasible region of the process can be obtained 

by solving a flexibility test problem (Halemane and Grossmann, 1983). The conventional 

formulation of the flexibility test problem, under the assumption that no control variables are 

manipulated (open-loop scenario), is as follows: 

 

                              𝜒(𝐝) = max
𝛉(𝑡)∈𝐓(𝑡)

Ψ(𝐝, 𝛉(𝑡)) 

      subject to:       Ψ(𝐝, 𝛉(𝑡)) = max
𝑖∈𝐼
(𝑔𝒊(𝐝, 𝐱(𝑡), 𝛉(𝑡), 𝑡)) , 𝑖 = 1,2, … , 𝐼.     

                              𝐅(𝐝, �̇�(𝑡), 𝐱(𝑡), 𝛉(𝑡), 𝑡) =  𝟎;   

                               𝐱(0) = 𝐱0 

                              𝐓(𝑡) = {𝛉(𝑡)|𝛉𝐿(𝑡) ≤ 𝛉(𝑡) ≤ 𝛉𝑈(𝑡)                                                     (6.10) 

where Ψ(𝐝, 𝛉(𝑡)) is the feasibility function, i.e. the maximum value of all the 𝐼 constraints on 

the process KPIs. The practical meaning of the feasibility function is straightforward: if 

Ψ(𝐝, 𝛉(𝑡)) > 0, there is at least one constraint that is being violated for the given design and 

the process is not feasible at the point in time considered. If Ψ(𝐝, 𝛉(𝑡)) < 0, the process is 

feasible at time 𝑡. If Ψ(𝐝, 𝛉(𝑡)) = 0, vector 𝛉(𝑡) identifies the boundary of the feasible region 

at the given point in time. We will refer to the feasible region of the process as to the set of 

uncertain parameter values that satisfies: 
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                            𝑅(𝑡) = {𝛉(𝑡)| Ψ(𝐝, 𝛉(𝑡)) ≤ 0}   ,                                                          (6.11) 

namely, the combinations of uncertain parameters 𝛉(𝑡) that satisfy all the constraints on the 

key performance indicators. 

The solution of the bi-level optimization problem (6.10) can be deterministic, i.e. by directly 

using the model equations (6.6), or can be obtained exploiting surrogate-based methods 

(Boukouvala and Ierapetritou, 2012).  

In the former case, the solution can be obtained by embedding a differential solver into the 

optimization algorithm or by converting the differential equations into algebraic equations, e.g. 

by means of the direct quadrature (DC) method (Adi and Chang, 2013). In both cases, the 

solution can be computationally very demanding if the process model is expensive to evaluate 

or in the presence of black-box constraints. In the latter case, a surrogate is used as a cheap 

approximation of the original process model, and the optimization problem (6.10) is solved 

using this surrogate. This clearly results in a lower computational cost at the expense of 

introducing an approximation error. A detailed surrogate-based approach for dynamical 

systems based on kriging regression was developed by Rogers and Ierapetritou (Rogers and 

Ierapetritou, 2015). 

 

6.3 Feasibility analysis for design space determination  

 

In the following, a systematic description of the application of feasibility analysis for design 

space determination is given. First, the terminology used in classical feasibility analysis 

formulation is adapted to the one used by the regulatory documents for design space 

determination. Secondly, the application of feasibility analysis for offline model-based DS 

identification is described. Thirdly, the typical procedure adopted for offline model-based DS 

identification is presented and the motivation that leads to an adaptive online model-based DS 

determination is discussed.  

6.3.1 Feasible region and design space  

The definition of feasible region as described by Eq. (6.11) is closely related to the definition 

of design space of a pharmaceutical product. To make the terminology adopted by the 

pharmaceutical regulatory documents consistent with the one adopted in the classical feasibility 

analysis formulation, it must be observed that: 

i) when applied to a design space identification, the constraints on the key performance 

indicators that need to be satisfied are the constraints on the critical quality attributes of 

the pharmaceutical product considered (e.g., mean particle size of a pharmaceutical 

granulate, ribbon density etc.). These constraints reflect the quality specifications that 

are imposed on the final product. 
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ii) The regulatory definition of design space strictly refers to the multidimensional 

combinations of critical process parameters and raw material properties (uncertainty 

sources of the types a) and b) of the previous section) that have been demonstrated to 

meet the specifications on the critical quality attributes of the product.. On the other 

hand, in the classical formulation of the feasibility region (6.11), the uncertainty vector 

𝛉(𝑡) also collects the uncertain parameters of the model that is used to describe the 

process behavior. This source of uncertainty is unrelated to the concept of design space 

and should therefore be considered separately from the other two sources. 

 In view of the above, the uncertainty vector 𝛉(𝑡) in two parts can be split according to: 

 

𝛉(𝑡) = [𝐪(𝑡); �̃�]                                                                                          (6.12) 

where 𝐪(𝑡) collects the raw material properties and critical process parameters that directly 

affect the product critical quality attribute (i.e. the input variables), whereas �̃� collects the subset 

of uncertain model parameters of the first-principles model describing the pharmaceutical 

process considered. The model-based DS (𝐷�̂�) can then be defined from a feasibility analysis 

perspective as: 

 

𝐷�̂� = {𝐳(𝑡)  |   Ψ(𝐝, 𝐪(𝑡), �̃�) ≤ 0}                                                                           (6.13)                                                               

where the feasibility function Ψ(𝐝, 𝐪(𝑡)) is, in this context, the maximum value of all the 

constraints imposed on the productcritical quality attributes.. The definition of design space as 

described by the feasibility analysis formulation (6.13) is now fully consistent with the 

regulatory definition. 

6.3.2 Limitations of existing model-based design space description 

methodologies 

Design space description using a mathematical model is typically performed as an offline 

activity following four sequential steps, namely: 

1) Parameter estimation and model validation. 

2) Design space determination. 

3) Uncertainty quantification on the estimated model parameters and uncertainty 

propagation to the predicted product critical quality attributes. 

4) Uncertainty back-propagation from the product critical quality attributes to the design 

space  obtained at step #2.  

During the parameter estimation and model validation step, the information available from 

designed laboratory or pilot-scale experiments is exploited to obtain an accurate estimate of the 

model parameters (Pantelides et al., 2012). Well-established techniques are available to 
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perform this activity for data-driven models as well as for first-principles models (Asprey and 

Macchietto, 2000). In the design space determination stage, a representation of the design space 

is obtained using one selected modeling strategy. In the uncertainty quantification step, a 

determination of the different sources of uncertainty (i.e., uncertainty on the model parameters, 

measurement error on the calibration dataset, external disturbances) that may affect the model-

based design space representation obtained at the previous step is obtained. Uncertainty can be 

quantified with frequentist (Zhang and Garcia-Munoz, 2009; Garcia-Munoz et al., 2010), or 

Bayesian (Peterson and Yahyah, 2009; Stockdale and Cheng, 2009; Bano et al., 2018a) 

methodologies. During the uncertainty back-propagation step, uncertainty is propagated from 

the output space (i.e. the space spanned by the product critical quality attributes) to the design 

space using suitable uncertainty back-propagation strategies (Facco et al., 2015; Bano et al, 

2017).  

If feasibility analysis is used, steps 2-4 are merged together and the uncertainty on the model 

parameters and modeled disturbances is expressed in terms of expected deviations from their 

nominal values (Pistikopoulos and Mazzucchi, 1990; Straub and Grossmann, 1990; Dimitriadis 

and Pistikopoulos, 1995; Pistikopoulos and Ierapetritou, 1995). The model-based DS is then 

computed accounting for these expected uncertainty ranges (Wang and Ierapetritou, 2017b). 

Despite uncertainty quantification, process-model mismatch may still exist due to the following 

reasons: 

1. Not all of the disturbances that may affect plant operation can be known and modeled a 

priori; 

2. Model calibration and validation (step #1) is typically performed on laboratory or pilot-

scale data. During a production campaign, the plant behavior is affected by the 

interaction of downstream and upstream units as well as of external environmental 

factors. Laboratory-scale (or pilot-scale) data typically do not include enough 

information to capture these phenomena and therefore affect the model-based 

representation of the design space obtained with the calibrated model of step#1. This 

source of uncertainty may, in principle, be included in the uncertainty quantification 

analysis (step #3) and therefore back-propagated to the model-based DS (step #4). 

However, this would require at least a qualitative understanding of these phenomena 

(Pantelides and Renfro, 2013) and how they can affect the model prediction of the 

product critical quality attributes. This is usually a very difficult task to implement in 

practice and requires a strong empirical reasoning. 

3. Some of the model parameters may drift during plant operation due to (typically slow) 

physical phenomena (e.g., catalyst deactivation, fouling, etc.). 

Since process-model mismatch can potentially affect the appropriateness of the design space 

described using the original model, maintenance of the model-based DS would be useful 
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whenever process-model mismatch is encountered. In the next section, we propose a 

methodology to tackle this problem. 

6.4 Design space maintenance by online model adaptation  

An extension to the offline model-based DS identification described in section 6.3.2 is here 

proposed. A 4-step systematic methodology is derived that performs sequentially: i) an offline 

model-based DS identification using feasibility analysis; ii) an online maintenance of the 

model-based DS by jointly exploiting the state estimator described in section 6.2.1 and 

feasibility analysis. 

Let us consider the production of a pharmaceutical product with a process with a fixed design 

and assume that a first-principles model (or semi-empirical model) describing the dynamic 

process is available. Mathematically, the model can be described by the DAE system (6.15) in 

its fully-implicit form, or by Eq. (6.1) (without the error terms) in its semi-explicit form. It is 

assumed that the raw material properties and critical process parameters (collected in the vector 

𝐪(𝑡)) and the product critical quality attributes have already been identified at a previous stage 

of the product development. Quality specifications are imposed on the product critical quality 

attributes in the form of single- and/or double-sided path inequality constraints or single- and/or 

double-sided point inequality constraints. In the former case, the quality constraints can be 

expressed in the implicit form of Eq. (6.7), whereas in the latter case they can be expressed in 

the implicit form of Eq. (6.8). Notice that double-sided inequality constraints can be decoupled 

into a system of two single-sided inequality constraints. The analysis will be focused only to 

end-time specifications imposed on the product critical quality attributes, but the methodology 

is general and can be applied to any type of quality specifications. In this scenario, quality 

specifications are expressed by Eq. (6.9).  

It is assumed that the first-principles model has been validated with laboratory experimental 

data and the nominal values of the model parameters have been estimated and/or taken from 

the literature accordingly. It is also assumed that a set of measurements 𝐲(𝑡𝑘), 𝑘 = 1,…𝐾  will 

be available online from the plant unit at each time instant 𝑡𝑘. In most situations, the product 

critical quality attributes are not measured online and therefore do not belong to 𝐲(𝑡𝑘). The 

methodology can be summarized in 4 steps, as schematically shown in Fig. 6.1. 
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Figure 6.1. Schematic representation of the online design space maintenance methodology. 

6.4.1. Proposed methodology 

The step-by-step methodology is summarized as follows. 

1. Step #1: offline model-based DS identification. Feasibility analysis is used to identify 

the design space of the process with the model whose parameters are set at their nominal 

values. The design space is determined as per the regulatory definition (6.13) by solving 

the optimization problem (6.10) and replacing 𝛉(𝑡) with 𝐳(𝑡). The model-based DS is 

predicted in a deterministic way directly from the first-principles model and does not 

account for the uncertainty on model parameters. 

2. Step #2: determination of the uncertain model parameters �̃� to be calibrated online. As 

discussed in section 3, the underlying assumption that we make is that the process-model 

mismatch can be removed online by simultaneously updating the system state and 

recalibrating some of the model parameters. If severe structural deficiencies are detected 

in the model, the methodology is not useful: the model should be corrected and the 

methodology re-started from step#1.  

The choice of the parameters to be calibrated online can be made following two criteria: 

a. if prior knowledge of the un-modeled physical phenomena or disturbances that 

may cause the process-model mismatch in the actual plant is available, the model 

parameters that are mostly affected by these disturbances can be determined by 

a qualitative preliminary diagnosis of the model;  

b. if case a) does not hold true, a preliminary sensitivity analysis can be performed 

offline in order to determine the model parameters that most affect the prediction 

of the product critical quality attributes. Since the main target is to remove the 

process-model mismatch affecting the prediction of the critical quality 
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attributes, only the most influential parameters will be calibrated during plant 

operation. 

3. Step #3: state estimation and online parameter recalibration. Given the online 

measurements 𝐲(𝑡𝑘), the state estimator described in section 6.2.1 is used to obtain, at 

each time 𝑡𝑘, both the current state vector of the system ,un up-to-date and an updated 

(recalibrated) model providing an accurate prediction of the product critical quality 

attributes. 

The online model recalibration is obtained through a state augmentation procedure 

(Ricker and Lee, 1995; Smith et al., 2013). The differential subset 𝐱1(𝑡) of the state 

vector is augmented with a new set of time-dependent parameters �̃�(𝑡), leading to the 

overall state vector: 

 

𝐱(𝑡) = [

𝐱1(𝑡)

�̃�(𝑡)

𝐱2(𝑡)
].                                                                                              (6.14) 

The system of equations (6.1) can then be re-written as: 

 

[
�̇�1(𝑡)

�̇̃�(𝑡)
𝟎

] = [
𝐟1(𝐱1(𝑡), �̃�(𝑡) , 𝐱2(𝑡), 𝐮(𝑡), 𝑡)

𝟎
𝐟2(𝐱1(𝑡), �̃�(𝑡), 𝐱2(𝑡), 𝐮(𝑡), 𝑡)

] + [

𝐰1(𝑡)

𝐰�̃�(𝑡)

𝐰2(𝑡)

]   (6.15) 

with initial conditions: 

 

𝐱1(0) = 𝐱1,0 +𝐰1(0)   (6.16) 

  �̃�(0) = �̅� + 𝐰�̃�(0)   (6.17) 

where �̅� is the vector collecting the nominal values of the parameters to be recalibrated 

(i.e., the ones obtained during the offline model calibration procedure); 𝐰�̃�(𝑡) is a 

random process with mean 0 representing the uncertainty on the parameters �̃�. Based on 

the augmented state (6.14), the estimation criterion and the sequential estimator 

equations are the same as in section 6.2.1 and Appendix A. It is important to notice that, 

with the above state augmentation procedure, the number of parameters that can be 

calibrated online cannot exceed the number of online measurements. The model can be 

updated with the same frequency of online measurements or at a user-defined time step 

Δ𝑡𝑘. 

4. Step #4: online model-based DS maintenance. Feasibility analysis is used to 

periodically update the design space prediction with the up-to-date model returned by 

the state estimator. The design space maintenance frequency Δ𝑡𝑚 must be compatible 
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with the computational time required to solve the optimization problem (6.10). In this 

regard, surrogate-based feasibility analysis provides a competitive advantage in terms 

of the total computational time (typically few seconds) required when complex models 

are used. The condition Δ𝑡𝑚 ≥ Δ𝑡𝑘 must hold true in any event. 

In order to quantify the accuracy of the model-based DS identification with respect to the actual 

DS (which is however unknown in practical applications), the three metrics proposed by Wang 

and Ierapetritou (2017b) are exploited, namely: 

(i) 𝐶𝐹(%) = percentage of the design space of the process that has been correctly 

estimated by the model; 

(ii) 𝐶𝐼𝐹 (%) = percentage of  the infeasible region (i.e. portion of the input domain that 

does not belong to the design space) that has been correctly estimated by the model; 

(iii) 𝑁𝐶(%) = percentage of design space predicted by the model that does not belong 

to the actual DS of the process. 

The closer 𝐶𝐹(%), 𝐶𝐼𝐹 (%) are to 100 and 𝑁𝐶(%) to 0, the better the accuracy in the design 

space identification. Details on the derivation of these metrics can be found in the cited 

reference. 

The feasibility analysis step can be solved using the classical formulation (i.e., by using 

deterministic NLP techniques) or surrogate-based approaches (e.g., by using kriging, or radial-

basis function, or other surrogates), based on the computational requirements for the online 

implementation. Notice that the methodology can be first tested offline once a set of 

measurements are collected in the plant and then implemented online once its robustness is 

assessed. 

The above methodology was implemented in MATLAB® and all simulations discussed in this 

study were performed on an Intel® Core™ I7-5600U CPU@2.60GHz processor with 16.0 GB 

RAM. A sequential quadratic programing (SQP) optimizer was used in all simulations. 

6.5 Case studies 

In the following, two simulated case studies are discussed to test the proposed methodology. 

The following notation will be used: 

1. the “process” denotes the set of equations used to generate synthetic measurements to 

be fed to the state estimator (i.e., the set of equations representing the actual plant 

behavior); 

2. the “model” denotes the set of equations used to simulate the plant behavior. 

Process-model mismatch was enforced as a parametric mismatch in Case study #1 and as a 

structural mismatch in Case study #2. 
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6.5.1 Case study #1: roller compaction of microcrystalline cellulose 

The first case study involves the roll compaction of microcrystalline cellulose grade Avicel 

PH102 and is based on the model proposed by Hsu et al. (2010a), which combines Johanson’s 

rolling theory (Johanson, 1965) with a dynamic material balance. The set of model equations is 

as follows: 

 

d

d𝑡
(
ℎ0
𝑅
) =

𝜔[𝜌𝑖𝑛 cos(𝜃𝑖𝑛) (1 +
ℎ0
𝑅 − cos(𝜃𝑖𝑛)) (

𝑢𝑖𝑛
𝜔𝑅) − 𝜌𝑒𝑥𝑖𝑡 (

ℎ0
𝑅 )]  

∫ 𝜌(𝜃)
𝜃𝑖𝑛
0

cos(𝜃) d𝜃
 (6.18) 

𝑃ℎ =
𝑊

𝐴

𝜎𝑒𝑥𝑖𝑡𝑅

(1 + sin(𝛿))
∫ [

ℎ0
𝑅

(1 +
ℎ0
𝑅 − cos(𝜃)) cos (𝜃) 

]

𝐾

cos(𝜃) d𝜃
𝛼

0

 (6.19) 

𝜎𝑒𝑥𝑖𝑡 = 𝐶1𝜌𝑒𝑥𝑖𝑡
𝐾 . (6.20) 

The product critical qualiy attributes are the ribbon density at the outlet 𝜌𝑒𝑥𝑖𝑡 and the ribbon 

thickness ℎ0. The roll pressure 𝑃ℎ, the roll speed 𝜔 and inlet feed speed 𝑢𝑖𝑛 are process 

parameters that affect the critical quality attributes. However, as proved by Hsu et al. (2010a), 

the roll pressure has a significantly stronger influence on the product quality than the other two 

factors. Therefore, the roll pressure was considered as a critical process parameter and the other 

two variables as control variables that can be manipulated in order to guarantee the product 

specifications. In this regard, Hsu et al. (2010a) proposed to simulate the actuator dynamics for 

the two control variables with a first-order dynamics: 

 

𝜏𝜔
d𝜔

d𝑡
+ 𝜔 =  𝜔𝑑 

(6.21) 

𝜏𝑢
d𝑢𝑖𝑛
d𝑡

+ 𝑢𝑖𝑛 = 𝑢𝑑 
(6.22) 

where 𝜏𝜔 and 𝜏𝑢 are the time constants, and 𝜔𝑑 and 𝑢𝑑 are the set-points for the roll speed and 

feed speed respectively. The inlet density of the bulk material 𝜌𝑖𝑛 is a raw material property 

that directly affects the critical quality attributes. The meaning and nominal values of all the 

variables and parameters of the model are reported in Table 6.1. An approximated analytical 

expression for the denominator of Eq. (19) can be found in the cited reference.  
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Table 6.1. Case study #1: list of model parameters for roll compaction process 

(taken from Hsu et al., 2010a). 

Parameter Definition Units Value 

𝛿 Effective angle of friction [rad] 0.7068 

𝑅 Roll radius [m] 0.125 

𝐴 Compact surface area [m2] 0.01 

𝑊 Roll width [m] 0.05 

𝐶1 Compression parameter [Pa/(kg m3)4.97] 7.5×10-8 

𝐾 Compression parameter #2 [-] 4.97 

𝛼 Nip angle [rad] 0.173 

𝜏𝜔 Time constant for 𝜔 [s] 6 

𝜏𝑢 Time constant for 𝑢𝑖𝑛 [s] 6 

𝜔𝑑 Set-point for 𝜔 [rad/s] 0.5236 

𝑢𝑑 Set-point for 𝑢𝑖𝑛 [m/s] 3.27×10-2 

 

The design space for this system can be defined as the multidimensional combinations of roll 

pressure (critical process parameter) and inlet bulk density (raw material property) that 

guarantee to meet the desired constraints on the product critical quality attributes (ribbon 

density and ribbon thickness). With reference to the dynamic model (18)-(22), the following 

issues deserve attention. 

 It has been pointed out (Hsu et al., 2010a; Hsu et al., 2010b) that the estimate of the inlet 

angle 𝜃𝑖𝑛 is affected by a high degree of uncertainty. Rogers and Ierapetritou (2015) 

showed that 𝜃𝑖𝑛 has a strong effect on the critical quality attributes and consequently on 

the prediction of the design space. For instance, a ±5° (0.09 rad) error on the inlet angle 

can result in a ±50% error in the inlet mass flow rate, thus causing a significant process-

model mismatch on the critical quality attributes. 

 The ribbon density 𝜌𝑒𝑥𝑖𝑡 can be measured online with near-infrared (NIR) spectroscopy 

at a minimum time frequency of 0.1s (Hsu et al., 2010b). 

 Since the roll compactor is meant to operate at steady state (continuous manufacturing), 

the dynamic model (6.18)-(6.22) describes transitions (e.g. start-up, set-point changes) 

between different steady-state operations of the unit. Fast process dynamics coupled 

with model computational complexity act as severe challenges towards online model 

applications (Hsu et al., 2010b). 

In view of the above, the “process” is denoted as the set of equations (6.18)-(6.22) where 

nominal values for 𝜃𝑖𝑛 and initial state vector are used. On the other hand, the “model” is given 

by the set of equations (6.18)-(6.22) with a wrong initial estimate of the system state and a 

wrong initial estimate of 𝜃𝑖𝑛 (parametric mismatch). Namely, a scenario is considered where 

the value of 𝜃𝑖𝑛 obtained during the offline validation procedure is wrongly estimated by 

± 30%, and the initial steady-state values of state variables 𝜌𝑒𝑥𝑖𝑡 and ℎ0 are wrongly estimated 

(by +5% with respect to the nominal values). The error in the initial estimate of 𝜃𝑖𝑛 is consistent 

with the uncertainty on the value of 𝜃𝑖𝑛 that is reported in the literature (Rogers and Ierapetritou, 
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2015). Note that this scenario represents a conservative worst-case one for the estimation of 

𝜃𝑖𝑛.  

6.5.2 Case study #2: penicillin fermentation 

In this case study, the fermentation of penicillin in a fed-batch bioreactor is considered. The 

simplified mechanistic model used by Riascos and Pinto (2004) complemented with the CO2 

production equation proposed by Birol et al., (2002) was used as the reference “model”. The 

model consists of 5 differential equations on the following differential states: volume 𝑉(𝑡), 

biomass concentration 𝐵(𝑡), substrate concentration 𝑆(𝑡), penicillin concentration 𝑃(𝑡), moles 

of CO2 produced per liter of broth [CO2]. The model equations are: 

 

d𝐵(𝑡)

d𝑡
= 𝜇(𝑡)𝐵(𝑡) − (

𝐵(𝑡)

𝑆𝐹𝑉(𝑡)
)𝑈 (6.23) 

d𝑃(𝑡)

d𝑡
= 𝜌(𝑡)𝐵(𝑡) − 𝐾deg𝑃(𝑡) − (

𝑃(𝑡)

𝑆𝐹𝑉(𝑡)
)𝑈 (6.24) 

d𝑆(𝑡)

d𝑡
= −𝜇(𝑡) (

𝐵(𝑡)

𝑌𝐵/𝑆
) − 𝜌(𝑡) (

𝐵(𝑡)

𝑌𝑃/𝑆
) − (

𝑚𝑆𝑆(𝑡)

𝐾𝑚 + 𝑆(𝑡)
)𝐵(𝑡) +

(1 −
𝑆(𝑡)
𝑆𝐹
)𝑈

𝑉(𝑡)
 (6.25) 

d𝑉(𝑡)

d𝑡
=
𝑈

𝑆𝐹
 (6.26) 

d[CO2](𝑡)

d𝑡
= 𝛼1

d𝐵(𝑡)

d𝑡
+ 𝛼2𝐵(𝑡) + 𝛼3 (6.27) 

with: 

𝜇(𝑡) = 𝜇𝑚𝑎𝑥 (
𝑆(t)

𝐾𝑋𝐵(𝑡) + 𝑆(𝑡)
) (6.28) 

𝜌(𝑡) = 𝜌𝑚𝑎𝑥 (
𝑆(𝑡)

𝐾𝑃 + 𝑆(𝑡) (1 +
𝑆(𝑡)
𝐾in

)
). (6.29) 

The nominal values of the model parameters and the initial conditions for the state variables are 

reported in Table 6.2.  
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Table 6.2. Case study #2: list of model parameters for the penicillin 

fermentation model (data from Riascos and Pinto (2004) and Birol et al. 

(2002)). 

 Parameter Definition Units Value 

𝜇max Maximum specific biomass growth rate  [h−1] 0.11 

𝜌max Maximum specific production rate [g𝑃/(g𝐵ℎ)] 0.0055 

𝐾𝑋 Saturation parameter for biomass growth [g𝑆/g𝐵] 0.006 

𝐾𝑃 Saturation parameter for production [g𝑆/L] 0.0001 

𝐾in Inhibition parameter for production [g𝑆/L] 0.1 

𝐾deg Product degradation rate [h−1] 0.01 

𝐾𝑚 Saturation parameter for maintenance consumption [g𝑆/L] 0.0001 

𝑚𝑆 Maintenance consumption rate [g𝑆/(g𝐵h)] 0.029 

𝑌𝐵/𝑆 Yield factor for substrate to biomass [g𝐵/g𝑆] 0.47 

𝑌𝑃/𝑆 Yield factor for substrate to product [g𝑃/g𝑆] 1.2 

𝛼1 Constant relating CO2to growth [mmol CO2/g𝐵] 0.143 

𝛼2 Constant relating CO2 to maintenance energy [mmol CO2/(g𝐵 h)] 4× 10−7 

𝛼3 Constant relating CO2 to penicillin production [mmol CO2/(Lh)] 10−4 

 

By plugging Eqs. (6.28)-(6.29) into Eqs (6.23)-(6.27), the original DAE system can be 

converted into a pure ODE system whose state vector is given by 𝐱1(𝑡) =

[𝐵(𝑡); 𝑃(𝑡); 𝑆(𝑡); 𝑉(𝑡); [CO2](𝑡)]. Note that in this scenario, the estimator of section 6.2.1 

simplifies to the standard EKF observer.  

The model described by Eqs. (6.23)-(6.27) is based on some assumptions and simplifications 

that do not hold true in industrial penicillin fermenters (structural mismatch). These 

assumptions and simplifications can be summarized as follows. 

 The effects of environmental factors, such as pH and temperature in the bioreactor, are 

not modeled. These variables actually play a key role in penicillin fermentation, having 

a direct impact primarily on the biomass growth rate and penicillin production rate. 

 The model assumes saturation conditions for the oxygen dissolved in the broth. 

However, in industrial applications, oxygen limitation is a key issue that directly affects 

the biomass growth rate and the penicillin production rate. 

 In industrial fermenters, a significant amount of the broth inside the reactor (up to ~10–

20 % in one week of operation, as observed by Birol et al., 2002) is lost due to 

evaporation. In addition, the volume inside the reactor is affected by addition of 

acid/base solutions to control the broth pH. The model does not account for any of these 

phenomena. 

A detailed set of equations that take into account all the phenomena described above in 

penicillin fermentation is the one proposed by Birol et al (2002), based on a previous work of  

Bajpai and Reuss (1980). A description of these equations is reported in the supplementary 

material. This set of equations was used as the reference “process”, from which synthetic 

measurements to be fed to the state estimator were generated. Summarizing: 
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1. the “process” is the set of equations proposed by Birol et al (2002) that can be found in 

the supplementary material. These equations account for all the relevant physical 

phenomena described above; 

2. the “model” is the set of equations (6.23)-(6.29), in which the phenomena described 

above are not explicitly considered in the model structure. 

 

 

6.6 Results and discussion 

6.6.1 Results and discussion for Case study #1 

6.6.1.1 Simulation set-up  

By plugging Eq. (6.20) into Eq. (6.19), and solving Eq. (6.19) with respect to the ribbon density 

𝜌𝑒𝑥𝑖𝑡, the dynamic model of the granulator is in the general DAE form of Eq. (6.1), where the 

only differential state is given by the ribbon thickness ℎ0(𝑡), the only algebraic state is 𝜌𝑒𝑥𝑖𝑡(𝑡), 

and the control vector is given by the inlet feed speed 𝐮(𝑡) = [𝜔(𝑡); 𝑢𝑖𝑛(𝑡)]. As remarked in 

section 6.5.1, the inlet angle 𝜃𝑖𝑛(𝑡) is the uncertain parameter that needs online recalibration. 

During normal operation of the roller compactor, measurements of the ribbon density can be 

obtained online through NIR spectroscopy. To the purpose of testing the proposed 

methodology, synthetic process measurements of  𝜌𝑒𝑥𝑖𝑡(𝑡𝑘) ( 𝑘 = 1,…𝐾) were generated at a 

frequency of 1 Hz and a nominal value �̅�𝑖𝑛 = 0.4 rad. White Gaussian noise (𝑡𝑘)~(0,0.9
2) , 

corresponding to a standard deviation of 0.1% of the nominal value �̅�𝑒𝑥𝑖𝑡 = 900 kg/m3, was 

added to the 𝜌𝑒𝑥𝑖𝑡 measurements. 

6.6.1.2. Offline model-based DS identification (step #1) 

Wrong identification of 𝜃𝑖𝑛 and of the initial state of the system causes a process-model 

mismatch that strongly impacts on the prediction of the product critical quality attributes, as 

shown in Fig. 6.2. 

In order to identify offline the model-based DS, the following upper (superscript up) and lower 

(superscript lo) specifications were assigned to the product critical quality attributes (𝜌𝑒𝑥𝑖𝑡 and 

ℎ0) for a new steady-state reached at time 𝑡𝑆𝑆: 

 

𝜌𝑒𝑥𝑖𝑡(𝑡𝑆𝑆) − 𝜌𝑒𝑥𝑖𝑡
𝑢𝑝 ≤ 0                                                      (6.30) 

  𝜌𝑒𝑥𝑖𝑡
𝑙𝑜 − 𝜌𝑒𝑥𝑖𝑡(𝑡𝑆𝑆)  ≤ 0                                                      (6.31) 

ℎ0
𝑙𝑜 − ℎ0(𝑡𝑆𝑆) ≤ 0                                                            (6.32) 
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ℎ0(𝑡𝑆𝑆) − ℎ0
𝑢𝑝 ≤ 0.                                                          (6.33) 

 
                                               (a)                                                                     (b) 

      
Figure 6.2. Case study #1: effect of process-model mismatch on (a) prediction of the ribbon thickness and 

(b) prediction of the ribbon density.                    
 

According to the feasibility analysis formulation (6.10), the model-based DS can be formulated 

as follows: 

 

𝜒(𝐝) = max
𝑃ℎ, 𝜌𝑖𝑛

Ψ(𝐝, 𝑃ℎ, 𝜌𝑖𝑛)                                                       (6.34) 

                                    s.t.       Ψ(𝐝, 𝑃ℎ, 𝜌𝑖𝑛) = max { 𝜌𝑒𝑥𝑖𝑡(𝑡𝑆𝑆) − 𝜌𝑒𝑥𝑖𝑡
𝑢𝑝 ≤ 0; 

                                                        𝜌𝑒𝑥𝑖𝑡
𝑙𝑜 − 𝜌𝑒𝑥𝑖𝑡(𝑡𝑆𝑆) ≤ 0; 

                                                              ℎ0
𝑙𝑜 − ℎ0(𝑡𝑆𝑆) ≤ 0; 

ℎ0(𝑡𝑆𝑆) − ℎ0
𝑢𝑝 ≤ 0};                                                                (6.35) 

d

d𝑡
(
ℎ0

𝑅
) −

𝜔[𝜌𝑖𝑛 cos(𝜃𝑖𝑛)(1+
ℎ0
𝑅
−cos(𝜃𝑖𝑛))(

𝑢𝑖𝑛
𝜔𝑅
)−𝜌𝑒𝑥𝑖𝑡(

ℎ0
𝑅
)]  

∫ 𝜌(𝜃)
𝜃𝑖𝑛
0 cos(𝜃)d𝜃

= 0                              (6.36) 

𝑃ℎ −
𝑊

𝐴

𝜎𝑒𝑥𝑖𝑡𝑅

(1+sin(𝛿))
∫ [

ℎ0
𝑅

(1+
ℎ0
𝑅
−cos(𝜃)) cos (𝜃) 

]

𝐾

cos(𝜃) d𝜃
𝛼

0
= 0                             (6.37) 

𝜎𝑒𝑥𝑖𝑡 − 𝐶1𝜌𝑒𝑥𝑖𝑡
𝐾 = 0                                                              (6.38) 

ℎ0(0) = ℎ0
𝑖𝑛                                                                     (6.39) 

𝜌𝑖𝑛 ∈ [𝜌𝑖𝑛
min; 𝜌𝑖𝑛

𝑚𝑎𝑥]                                                              (6.40) 
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𝑃ℎ ∈ [𝑃ℎ
𝑚𝑖𝑛; 𝑃ℎ

𝑚𝑎𝑥].                                                             (6.41) 

All the numerical values (initial conditions; product quality specifications; input variables 

domain) are reported in Table 6.3. In problem formulation (6.34)-(6.41), we assumed time-

invariant input variables 𝑃ℎ   and  𝜌𝑖𝑛; the control variables 𝜔(𝑡) and 𝑢𝑖𝑛(𝑡) do not appear 

because their trajectories are explicit functions of (𝑃ℎ,  𝜌𝑖𝑛). Notice that, although we steady-

state quality constraints were assigned and time-invariant input variables were considered, 

formulation (34)-(41) is inherently dynamic since it requires integration until the new steady-

state is reached. 

Table 6.3. Case study #1: values of the parameters appearing in problem 

formulation (34)-(41). 

 Parameter Units Value 

ℎ0
𝑖𝑛 [cm] 0.183 

ℎ0
𝑢𝑝

 [cm] 0.190 

ℎ0
𝑙𝑜 [cm] 0.170 

𝜌𝑒𝑥𝑖𝑡
𝑢𝑝

 [kg/m3] 950 

𝜌𝑒𝑥𝑖𝑡
𝑙𝑜  [kg/m3] 850 

𝜌𝑖𝑛
𝑚𝑎𝑥 [kg/m3] 550 

𝜌𝑖𝑛
𝑚𝑖𝑛 [kg/m3] 150 

𝑃ℎ
𝑚𝑎𝑥 [MPa] 1.1 

𝑃ℎ
𝑚𝑖𝑛  [MPa] 0.9 

 

The model was updated every Δ𝑡𝑘 = 1 𝑠, whereas the design space was updated every Δ𝑡𝑚 =

5 𝑠. Accordingly, a solution to the optimization problem (6.34)-(6.41) must be obtained within 

5 s. However, the optimization problem in its classical formulation can only be solved in a time 

frame 10 times larger than required, and classical feasibility analysis would therefore make the 

proposed methodology ineffective. As discussed in section 6.2.2, the approach proposed by 

Rogers and Ierapetritou (2015) was implemented, which builds a kriging surrogate as a cheap 

approximation of model (6.18)-(6.22).  

The ability of the surrogate approach to give a reliable representation of the actual DS with 

respect to the classical formulation approach was first tested offline. The boundary of the 

model-based DS obtained with the classical and kriging-based feasibility analysis are shown in 

Fig. 6.3. It can be noticed that the boundary of the model-based DS obtained with the kriging 

approach (obtained after 10 iterations) are in perfect agreement with the ones obtained with the 

classical formulation. However, the computational time with the kriging surrogate is 30 times 

faster than with the original model, thus making online implementation of the proposed 

methodology possible. 
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Figure 6.3. Case study #1: boundary of the model-based DS of the process obtained with the classical 

formulation (42) and with the kriging surrogate approach. 

 

Fig. 6.3 also shows that there is a direct relationship between the effect of the roll pressure and 

inlet bulk density with respect to the product critical quality attributes. The higher the roll 

pressure, the greater the inlet bulk density the process can tolerate to guarantee the final product 

specifications. This is in agreement with the experimental work of Hsu et al. (2010a). 

6.6.1.3 State estimation for online model adaptation (steps #2 and #3) 

The case study represents a situation where the model parameter that needs online re-calibration 

(i.e. 𝜃𝑖𝑛) is known a priori. Implementation of step #2 of the proposed methodology is therefore 

straightforward. 

With respect to step #3, the following conditions were set for the state estimator: 

 

 𝐏11(0) = (
0.012 0
0 12

);  𝐐 = (0.01
2 0

0 12
) ;   𝐑 = 0.92 ;   Δ𝑡𝑘 = 1s .                        (6.42) 

The value of the initial error covariance, model error covariance and measurement covariance 

were treated as tuning parameters. An alternative systematic procedure that can be used to set 

the values of these matrices is the one proposed by Schneider and Geoargakis (2012). Note that 

we used a model error for 𝜌𝑒𝑥𝑖𝑡 (= 12) slightly greater than its measurement error (= 0.92), in 

order to reflect the greater confidence that we have on the measured values of 𝜌𝑒𝑥𝑖𝑡 rather than 

their model prediction. 
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The results obtained with the state estimator for the two scenarios considered (± 30% 

estimation error on 𝜃𝑖𝑛, +5% error on initial state) are shown in Fig. 6.4. Note that this figure 

refers to a situation where 𝑃ℎ and 𝜌𝑖𝑛 are set at their nominal values and simply illustrates the 

estimator performance. 

It can be noticed that the state estimator quickly removes the effect of process-model mismatch 

from both 𝜌𝑒𝑥𝑖𝑡 (measured variable) and ℎ0 (inferred state variable, not available to measure). 

Additionally, the alignment of 𝜃𝑖𝑛 to its actual value occurs quickly.  

 

 
(a)                                                              (b) 

 
                                                                            (c)                               

Figure 6.4. Case study #1: state estimator predictions, process states and measurements. (a) Ribbon 

thickness. (b) Ribbon density. (c) Inlet angle. 

6.6.1.4 Online model-based DS maintenance (step #4) 

The online model-based DS maintenance can be formulated at each time-step 𝑡𝑚 using the 

kriging-based feasibility analysis as: 
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𝜒(𝐝) = min
𝑃ℎ,𝜌𝑖𝑛

𝑈𝑝,𝑚(𝑃ℎ, 𝜌𝑖𝑛, 𝜃𝑖𝑛(𝑡𝑚))                                                       (6.51) 

                                 s.t.       𝜌𝑖𝑛 ∈ [𝜌𝑖𝑛
min; 𝜌𝑖𝑛

𝑚𝑎𝑥]                                                              (6.52) 

𝑃ℎ ∈ [𝑃ℎ
𝑚𝑖𝑛; 𝑃ℎ

𝑚𝑎𝑥].                                                             (6.53) 

where 𝑈𝑝𝑚(⋅) is the surrogate (kriging) feasibility function with initial conditions for the state 

variables given by the up-to date state vector 𝐱(𝑡𝑚). The design space identification with 

formulation (6.51)-(6.53) is accurate (as proved in Fig. 6.3) and requires a short computational 

time (1.67 s in less than 10 iterations).  

The offline model-based DS that would be obtained with the –30% and +30% error on the 

estimate of 𝜃𝑖𝑛 are compared with the actual DS of the process in Fig. 6.5. The figure shows 

that a wrong estimate of 𝜃𝑖𝑛 strongly affects the model-based DS identification. Namely, 𝜃𝑖𝑛 

strongly influences the prediction of the variability of the inlet bulk density that the process can 

tolerate to guarantee the final product quality. 

 

Figure 6.5. Case study #1: comparison between the actual DS and the offline model-based DS with +30% 

and –30% estimate on the bulk inlet angle 𝜃𝑖𝑛 and 5% error on the initial state. 

 

The evolution of the model-based DS that can be obtained with the proposed online DS 

maintenance procedure is shown in Fig. 6.6. The figure refers to the scenario with a –30% 

wrong estimate on 𝜃𝑖𝑛 and +5% error on the initial state of the system. The results for the case 

with +30% error on 𝜃𝑖𝑛 are analogous and can be found in the supplementary material. The 

online model-based DS is shown after 0 (i.e., initial offline model-based DS), 5, 10, 15 and 35 

s (i.e., the time the process takes to reach its new steady-state) seconds. Consistently with Fig. 

6.6, it can be noticed that it takes less than 20 s for the model-based DS to be in complete 
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agreement with the actual DS. For this lab-scale roller compactor, the methodology is able to 

restore the correct model-based DS identification in less than half of the time the process needs 

to reach its new steady state. The values of the metrics 𝐶𝐹(%). 𝐶𝐼𝐹(%) and 𝑁𝐶(%) are 99.95, 

99.97 and 0.03 respectively, thus confirming the perfect agreement between the model-based 

DS and the actual DS. The total computational time required for the sequential state estimation 

step is 0.44 s, whereas the kriging-based feasibility step requires 1.67 s.  

 

 
(a)                                                                             (b) 

 
(c)                                                                                (d) 
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                                                                                        (e) 

 

Figure 6. Case study #1: up-to date model-based DS obtained after (a) 0 s, (b) 5 s, (c) 10 s, (d) 15 s  

and (e) 35 s. (= 𝑡𝑆𝑆) for a –30% deviation in the inlet angle estimate and +5% error in the initial state 

 

6.6.2 Results and discussion for Case study #2 

6.6.2.1 Simulation set-up 

A scenario was considered where a first principles model developed and calibrated at the 

laboratory scale (Eqs (6.23- 29)) fails to account for some physical phenomena that occur at a 

different scale and/or that were not observed during the offline model validation procedure 

(type 2 uncertainty as described in section 6.4). In industrial applications, two variables that can 

be measured online with little effort are the moles of CO2 in the outlet gas per liter of broth the 

volume (𝑦1), and the volume 𝑉(𝑡) (𝑦2). Therefore, synthetic process measurements were 

generated for these two variables with a measurement interval of Δ𝑡𝑘 = 10 min. These 

measurements were corrupted with white Gaussian noise 𝐯𝑘~𝑁(𝟎, 𝐑) with: 

 

𝐑 = (0.1
2 0
0 0.52

) .                                                                    (6.43) 

The concentration of penicillin 𝑃(𝑡) was considered as a product critical quality attribute , and 

the concentration of substrate 𝑠𝐹 in the feed as a raw material property. The critical process 

parameter that was taken into account was the inlet feed flowrate 𝑈. As in the previous case 

study, both variables were considered as time-invariant, but the analysis can be easily extended 

to time-varying inputs. 

A single end-point specification was set on the penicillin concentration for a batch duration of 

𝑡𝑒𝑛𝑑 = 200 h: 
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𝑃𝑙𝑜 − 𝑃(𝑡𝑒𝑛𝑑) ≤ 0 .                                                                  (6.44) 

6.6.2.2 Offline model-based DS identification (step #1) 

The model-based DS of this process can be described in terms of a feasibility analysis problem 

as: 

 

𝜒(𝐝) = max
𝑈,𝑠𝐹

Ψ(𝐝, 𝑈, 𝑠𝐹)                                                               (6.45) 

                                    s.t.       Ψ(𝐝, 𝑈, 𝑠𝐹) = 𝑃
𝑙𝑜 − 𝑃(𝑡𝑒𝑛𝑑) ≤ 0  ; 

                                                           eqs. (6.23) − (6.29)  

𝑈 ∈ [ 𝑈𝑙𝑜; 𝑈𝑢𝑝 ]                                                                    (6.46) 

𝑠𝐹 ∈ [𝑠𝐹
𝑙𝑜; 𝑠𝐹

𝑢𝑝 ] .                                                                   (6.47) 

The values of the parameters that appear in the formulation (6.45) are reported in Table 6.4. 

Table 6.4. Case study #2: values of the parameters appearing in the 

formulation (6.45). 

 Parameter Units Value 

𝑃𝑙𝑜 [g𝑆/L] 1.25 

𝑈𝑙𝑜 [L/h] 5 

𝑈𝑢𝑝 [L/h] 80 

𝑠𝐹
𝑙𝑜 [g𝑆/L] 300 

𝑠𝐹
𝑢𝑝

 [g𝑆/L] 900 

 

Fig. 6.7 shows that the un-modeled phenomena cause a strong process-model mismatch that 

impacts on the penicillin concentration (Fig 6.7c) as well as all other state variables. The plots 

of Fig. 6.7 refer to the initial conditions (assumed to be estimated correctly in the first principles 

model) and nominal values 𝑈 and 𝑠𝐹 reported in Table 6.4. Note that the model significantly 

overestimates the final concentration of penicillin of the actual process (Fig. 6.7c). 

The solution of the feasibility problem (6.45)-(6.47) requires the integration of the model 

equations (6.23)-(6.27) embedded in the optimization algorithm, and it takes 2.6 min to get a 

solution. However, since the process dynamics is very slow and the design space is updated 

every 24 h, the computational time for the solution of the feasibility problem (6.45)-(6.47) is 

consistent with online implementation. Therefore, surrogate-based approaches are not needed 

for this case study.  
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Table 6.5. Case study #2:initial conditions for the state variables and 

nominal values of the substrate feed concentration and feed flowrate. ). 

Variable Symbol Units Initial value Nominal value 

Biomass concentration 𝐵 [g𝐵/L] 0.1 [-] 

Substrate concentration 𝑆 [g𝑆/L] 15 [-] 

Penicillin concentration 𝑃 [g𝑃/L] 0 [-] 

Volume 𝑉 [L] 100 [-] 

CO2 concentration [CO2] [mmol/L] 0.5 [-] 

Feed flowrate 𝑈 [gS/h] [-] 27 

Substrate feed concentration 𝑠𝐹 [gS/L] [-] 600 

 

 
(a)                                                             (b) 

 
(c)                                                             (d) 
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     (e) 

Figure 6.7. Case study #2: impact of process-model mismatch for the penicillin fermenter on the (a) 

concentration of biomass, (b) concentration of substrate, (c) concentration of penicillin, (d) volume and 

(e) concentration of CO2. 

 

6.6.2.3 Identification of uncertain model parameters (step #2) 

According to step #2 of the proposed methodology, the parameters that need online 

recalibration should be identified in order to remove the process-model mismatch. Note that no 

more than two parameters can be recalibrated, since we assumed that only two online 

measurements are collected in the plant.  

Qualitatively, it is expected that the environmental factors (pH, temperature) and the dissolved 

oxygen concentration will have a remarkable effect on the biomass growth rate as well as on 

the penicillin production rate (Birol et al., 2002). Since these are not included explicitly in the 

model formulation, an adjustment parameter 𝜙𝜌(𝑡) was introduced in the expression of the 

penicillin production rate (i.e., the relevant critical quality attribute in this case) in order to 

account for this lack of the “model”: 

 

𝜌(𝑡) = 𝜌𝑚𝑎𝑥𝜙𝑝(𝑡) (
𝑆(𝑡)

𝐾𝑃+𝑆(𝑡)(1+
𝑆(𝑡)

𝐾in
)
)  .                                                      (6.48) 

𝜙𝑝(𝑡) is treated as an additional state that is used with the purpose of increasing the adaptive 

capability of the state estimator. Note that 𝜙𝑝(𝑡) was introduced without directly adjusting 𝜌𝑚𝑎𝑥 

in order to preserve its physical meaning. No claim is made on the physical meaning of 𝜙𝑝(𝑡). 

To account for broth evaporation, a second adjustment parameter 𝜙𝑉(𝑡) was introduced in the 

volume balance equation: 
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d𝑉(𝑡)

d𝑡
= (

𝑈

𝑆𝐹
) (1 − 𝜙𝑉(𝑡)).                                                                (6.49) 

The same considerations made for 𝜙𝑝(𝑡) hold true for 𝜙𝑉(𝑡). The initial (i.e., nominal) values 

of 𝜙𝑝 and 𝜙𝑉 are 1 and 0, respectively. 

6.6.2.4 State estimation for online model adaptation (step #3) 

State estimation techniques and control applications have been extensively studied for this 

process (Birol et al., 2002; Georgakis, 2013; Kager et al., 2018). The initial model error 

covariance and the model error covariance were tuned with a trial-and-error approach in order 

to obtain the best performance of the estimator. The following values were chosen (1=𝐵; 2=𝑃; 

3=𝑆; 4=𝑉, 5=[CO2], 6=𝜙𝑝, 7=𝜙𝑉): 

 

𝐏11(0) =

(

 
 
 
 

0.12 0 0 0 0 0 0
0 0.12 0 0 0 0 0
0 0 0.12 0 0 0 0
0 0 0 0.52 0 0 0
0 0 0 0 0.12 0 0
0 0 0 0 0 12 0
0 0 0 0 0 0 12)

 
 
 
 

; 𝐐 =

(

 
 
 
 

0.12 0 0 0 0 0 0
0 0.12 0 0 0 0 0
0 0 0.12 0 0 0 0
0 0 0 12 0 0 0
0 0 0 0 0.12 0 0
0 0 0 0 0 0.52 0
0 0 0 0 0 0 0.52)

 
 
 
 

. 

(6.50)  

The ability of the state estimator to remove the process-model mismatch is shown in Fig. 6.8 

for all the state variables considered (𝑈 and 𝑠𝐹 are set at their nominal values in these plots). 

Very good agreement between the estimator predictions and the simulated process profiles for 

the state variables is obtained. 

 

 
(a)                                                 (b)                                                    (c) 
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                                 (d)                                                      (e)                                                    (f)  

 
(g) 

Figure 6.8. Case study #2: state estimator predictions and process states and measurements. (a) CO2 

concentration. (b) Volume. (c) Concentration of biomass. (d) Concentration of substrate. (e) 

Concentration of penicillin. (f) Growth adjustment parameter. (g) Volume adjustment parameter. 

6.6.2.5 Online model-based DS maintenance (step #4) 

As discussed earlier, the update interval for the design space was set to Δ𝑡𝑚 = 24 h. The online 

model-based DS can be obtained by solving the feasibility problem (6.45)-(6.47) with the initial 

conditions given by the up-to-date state vector 𝐱1(𝑡𝑚) returned by the state estimator at time 

𝑡𝑚.The solution of the feasibility problem requires integration from time 𝑡𝑚 till the end of the 

batch (200 h). 

Fig. 6.9 shows the actual DS of the process and the evolution of the model-based DS after 0, 

48, 72, 96 and 120 h. 

The values of the three metrics 𝐶𝐹(%), 𝐶𝐼𝐹(%),𝑁𝐶(%) for all the time steps involved during 

the fermenter operation is reported in Table 6.6. Fig. 6.9a shows that the offline model-based 

DS (i.e., 𝑡 = 0 h) is significantly wider than the actual DS of the process. This is in agreement 

with Fig. 6.7c, which shows that the original model significantly overestimates the 

concentration of penicillin at the end of the batch, and it is confirmed by the value of the metric 

𝑁𝐶%), which is significantly greater than 0. The model-based DS keeps being significantly 

wider than the actual DS till the time step 𝑡𝑚 = 48 ℎ: this can be easily understood (Fig. 6.8c) 

with the fact that there is not a process-model mismatch impact on the concentration of 

penicillin during the first 48 h (penicillin is still not being produced). 
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(a)                                                             (b) 

 
      (c)                                                             (d) 

 

 
(e) 
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Consistently, the adjustment parameter 𝜙𝑝(𝑡) is not adjusted by the state estimator during this 

time frame. The accuracy of the model-based DS identification significantly increases after 72 

h, since a substantial adjustment of the system state and 𝜙𝑝(𝑡) is performed (Fig. 6.8f).  
 

Figure 6.9. Case study #2: actual DS of the process (red wavy region) and model-based DS (light gray 

regions) obtained after (a)0 h.,(b) 48 h., (c)72 h., (d) 96 h and (e) 120 h.  

Table 6.6. Case study #2: accuracy metrics for the DS maintenance tool. 

Time[h]  𝑪𝑭 (%) 𝑪𝑰𝑭 (%) 𝑵𝑪(%) 
0 100.0 15.3 81.25 

24 100.0 17.4 77.23 

48 100.0 21.2 72.5 

72 100.0 71.2 25.0 

96 100.0 99.1 0.22 

120 100.0 99.0 0.23 

144 100.0 99.1 0.21 

168 100.0 99.2 0.22 

192 100.0 99.0 0.21 

 

The DS identification accuracy stabilizes at satisfactory values (𝐶𝐹(%) ≅ 100.0, 𝐶𝐼𝐹(%) ≅

99.0, 𝑁𝐶(%) ≅ 0.2 ) after 96 h, and this accuracy is maintained throughout the entire fermenter 

operation. It is worth noticing the model-based DS obtained with the online maintenance tool 

is slightly conservative (𝑁𝐶(%) > 0), which is desirable in terms of operational flexibility.  

Summarizing, after the first 50 h (where penicillin is still not being produced and therefore the 

adaptive ability of the state estimator is still not exploited in terms of critical quality attributes 

prediction), the design space maintenance methodology quickly recovers the correct DS. Note 

that the DS updating frequency can be increased after the first 50 h of operation to obtain an 

even prompter DS adaptation.  

6.7. Conclusions 

In this study, a methodology was proposed for the maintenance of the design space of a 

pharmaceutical product using online model adaptation. By combining the predictions of a first-

principles model with measurements made available by plant sensors, the methodology exploits 

dynamic state estimation for online model adaptation and feasibility analysis to obtain an up-

to-date representation of the design space during plant operation.  

The effectiveness of the proposed methodology was proved on two simulated case studies, 

involving the roller compaction of microcrystalline cellulose and the fermentation of penicillin 

in a bioreactor. For both the case studies considered, the ability of the proposed approach to 

timely track the design space was proved. 

Applications of this up-to date design space include, but are not limited to:  
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(i) management of real-time raw materials variability;  

(ii) search of the optimum operation point within the design space by real-time dynamic 

optimization based on the up-to-date first-principles model;  

(iii) open-loop decision support within the boundary of the design space (e.g., manual 

intervention on critical process parameters’ set-points); 

(iv) closed-loop decision support within the boundary of the design space (e.g., definition 

of optimal set-points or set-point trajectories).  
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Chapter 7 
 

Model-based design of experiments in 

pharmaceutical freeze drying 
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All the numerical results reported in this Chapter have been normalized with non-disclosed numerical values due 
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from the reported results. 

 

In this Chapter, model-based design of experiments (MBDoE) techniques are exploited to 

design optimal experiments for the correct identification of the most critical parameters in a 

pharmaceutical freeze drying first-principles model. A preliminary analysis is carried out in 

order to identify the structural consistency and the most influential parameters of the model, 

and MBDoE is subsequently used to design an optimal experiment based on the results of the 

preliminary analysis. The designed experiment is first simulated in silico, then performed on a 

real small-scale equipment, and finally the model parameters are identified based on the 

experimentation. 

The Chapter is organized into six sections. In the first section, a brief description of the freeze 

drying process is given, with a specific focus on pharmaceutical applications. Section 7.1 

collects a detailed description of the primary drying step of the process, which is the focus of 

this Chapter. In section 7.2, a brief overview of the mathematical formulation of MBDoE 

techniques is presented. Section 7.3 thoroughly describes the mathematical model used for the 

description of the primary drying stage. In section 7.4, a preliminary assessment of the 

performance of this model is presented. Section 7.5 collects the results obtained with the 

MBDoE activity. Finally, in section 7.6 the final remarks and the future areas of research are 

discussed.   
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7.1 Freeze drying: process description  

Freeze drying (or lyophilization) is a process that is used to remove a solvent (typically water) 

from a frozen product, in order to (Pikal, 1980): 

1. guarantee product stability both in terms of its physicochemical properties and 

microbiological quality attributes; 

2. allow an easy reconstitution of the dried product by water addition (the dried product 

has a high surface area and can be easily re-hydrated). 

It is extensively used in pharmaceutical manufacturing to recover the active pharmaceutical 

ingredient (API) and the excipients from an aqueous solution, in all those situations where other 

simpler drying technologies cannot be applied. In pharmaceutical applications, the frozen 

product is typically processed in vials, placed over shelves in a drying chamber. A schematic 

representation of a typical freeze-dryer, with a short description of all its components, is shown 

in Fig. 7.1. 

 

 

 

Figure 7.1. Schematics of a freeze dryer and its components (Adapted from: http://www.gmpua.com). 

 

The process involves low temperatures and high vacuum, and can thus be considered an energy-

intensive one. A full drying cycle typically consists of seven steps, as schematically shown in 

Fig. 7.2: 

1. Loading. The vials are loaded on the shelves of the drying chamber. The loading can be 

full (i.e. all the shelves are loaded with vials) or partial (only one or more of the shelves 

are loaded). The loading level (i.e. partial or full) can affect the subsequent stages of the 

drying cycle. 
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2. Freezing. The product temperature is lowered below the solution freezing point at 

atmospheric pressure and the solvent freezes, forming ice crystals. The main physical 

mechanisms of this step are crystal nucleation and growth: in most situations, stochastic 

nucleation (i.e. non-controlled nucleation) is obtained. In this scenario, the freezing 

protocol strongly affects the crystal size (i.e., the product morphology), hence all the 

subsequent drying stages. Some freeze dryers allow keeping under control the 

nucleation of crystal sites (i.e., nucleation is not stochastic anymore). In this scenario, 

product morphology can be controlled and therefore the subsequent drying stages can 

be sped up. In both scenarios, part of the solvent can remain bounded to the product and 

must therefore be desorbed. The freezing stage typical involves 5-10% of the total 

duration of the drying cycle. 

3. Condenser cooling and evacuation. The condenser temperature is cooled down and 

vacuum is introduced in the drying chamber. This in intermediate step that is performed 

to prepare the system to the subsequent stage. 

4. Primary drying. In this step, ice sublimation occurs at low temperatures and high 

vacuum. The energy supply for ice sublimation is given by the heating fluid (typically 

a silicone oil) flowing through the coils inserted in the shelves of the drying chamber. 

Typical temperatures are in the range (–40)-(–10) °C, and typical operating pressures in 

the drying chamber are between 50-150 mT (milli Torr, where 1 Torr corresponds to 

133.322 Pa or 1/760 atm). This step is the most energy-intensive stage and involves 60-

80% of the total duration of the drying cycle. 

5. Secondary drying. After ice sublimation, the residuals particles of solvent that are 

bounded to the dried product are desorbed in order to lower the residual solvent content 

(defined as residual moisture content if the solvent is water) of the final product. This is 

achieved by increasing the temperature of the shelves (typical temperatures range 

between 20-40 °C) and (possibly) decreasing the chamber pressure. The desorption time 

strongly depends on the product morphology obtained after freezing, and typically 

involves 10-20% of the total duration of the drying cycle. 

6. Backfilling. The vacuum pump is stopped, and the drying chamber and the condenser 

are filled with an inert gas at an assigned pressure. A typical backfill operation is 

performed between 500-900 mbar of dry nitrogen. The advantage of backfilling is that 

oxidation of the dried product during storage is avoided. 

7. Stoppering. The shelves are closed by hydraulic means and the partially inserted 

stoppers are fully inserted in the vials.  

The most critical steps of a drying cycle are step # 2 (freezing), step #4 (primary drying) and 

step #5 (secondary drying). 
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Freezing is crucial since the freezing rate directly affects the morphology of the ice crystals and 

therefore all the subsequent drying steps. Primary drying involves the largest portion of the 

entire drying duration, and its optimization is therefore pivotal to reduce the overall cycle time.  

As regard secondary drying, a satisfactory removal of the residual moisture in the product is 

critical to guarantee its stability over its entire life cycle duration, thus making this step crucial 

for the entire drying operation. 

The focus of this Chapter is to parametrically identify a mathematical model to be subsequently 

used to optimize the behavior of the system during the primary drying operation, given its strong 

impact on the entire drying duration. A thorough description of the other two steps and the 

mathematical models that can be used to describe them can be found in Pikal, 1985 and Fissore 

et al., 2012. 

 

 

Figure 7.2. Schematics of the different steps of a freeze-drying cycle. 

7.1.1 Primary drying 

As described in Section 7.1, during primary drying the frozen product is subject to low 

temperature and high vacuum, and ice sublimation occurs at the interface between the frozen 

layer and the dried layer. The sublimation front progresses inwards as long as primary drying 

proceeds, leaving a layer of dried material behind. A schematic representation of the evolution 

of the dried layer with time is shown in Fig.7.3.  

 

 

 

Figure 7.3. Evolution of ice sublimation during primary drying. 
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In order to avoid product melting (i.e., solid/liquid transition), the partial pressure of water in 

the drying chamber (but not the total pressure in the chamber) is kept below the triple point of 

the solvent (6.63 mbar in case of water). Energy supply for ice sublimation at the sublimation 

interface is provided by the silicone oil flowing inside the shelves and involves different 

mechanisms of heat transfer, namely (Scutellà et al., 2017a):  

1. heat conduction through the gas in the drying chamber; 

2. heat conduction between “solids”; 

3. radiation. 

The first mechanism involves heat conduction through low-pressure water vapor in the gap 

between the vials and the metallic rails that are used to load the vials in the chamber. Recent 

studies (Pikal et al., 2016; Scutellà et al., 2018) have shown that this mechanism plays a key 

role in the overall heat transfer mechanism to the sublimation interface. 

The second mechanism involves heat transfer by conduction through solids, namely (i) heat 

transfer between the silicone oil and the shelf surface, (ii) heat transfer between the shelf surface 

and the vial bottom through direct contact points, and (iii) heat transfer between the vial bottom 

and the sublimation interface through the frozen layer. 

The third mechanism involves all the radiant effects that occur in the drying chamber. These 

effects are responsible for the drying heterogeneity between vials of the same shelf and between 

different shelves, and involve different phenomena such as: 

(a) radiation from top and bottom shelves with respect to the vial considered; 

(b) radiation from the chamber walls to the vials facing the walls or to the rails; 

(c) radiation from the top shelf to the rails; 

(d) radiation from the internal walls of the vials and the sublimation interface. 

The above considerations suggest that the description of the heat transfer mechanisms inside 

the drying chamber can be very complex and some simplifying assumptions are often 

considered to capture the overall behavior of the freeze dryer. These mechanisms are not the 

same for all the vials within a single shelf and within the vials of different shelves, and this 

results in a strong heterogeneity of the drying behavior between vials. As an example, vials that 

are close to the chamber walls are subject to higher sublimation rates than vials that are placed 

in internal positions within the shelf, due to heat radiation through the chamber walls and 

conduction through the gas in the drying chamber.  

Besides the issue of drying heterogeneity, the dryer operation during primary drying is affected 

by two constraints (related both to the equipment and to the product) that must be fulfilled.  

1. The product temperature must be kept below the glass transition temperature (for 

amorphous materials) or eutectic temperature (for crystalline materials) in order to avoid 

the “collapse”/”melting” of the product (i.e., irreversible alteration of the product 

morphology). Within a vial, the fraction of the product that is subject to a higher 

temperature is located at the vial bottom, since it is in contact with the heated shelf. 
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Monitoring of the vial bottom temperature is therefore critical to avoid the collapse of 

the cake. Moreover, vials that are close to the chamber walls or to the window (if 

present) of the freeze dryer, i.e. the so-called “edge” vials, are subject to higher 

temperatures and slower freezing rates than the internal vials, thus being potentially 

critical for product collapse. 

2. The sublimation rate must be compatible with the condenser capacity and choked flow 

must be avoided in the duct that connects the drying chamber to the condenser (Searles, 

2004). This prevents loss of pressure control inside the drying chamber, with related 

effects on both the product and the safety of the equipment operation. 

The presence of operational and quality constraints on the dried product, coupled with the 

complexity of heat transfer mechanisms occurring inside the drying chamber, make the 

mathematical description of primary drying very complex. Moreover, other factors such as 

equipment geometry, vials geometry, as well as duct, valve and condenser design can affect the 

drying operation and the final product quality (Pikal, 1985). Several modeling approaches have 

been proposed to describe the behavior of the system during primary drying. A short 

classification of these models, with focus on mono-dimensional lumped parameter models, is 

reported in the next section. 

7.2 Mathematical modeling of primary drying 

Several mathematical models have been proposed to describe the primary drying stage of 

freeze-drying. These models aim at predicting the key performance indicators of the system 

(e.g., vial bottom temperature, amount of water sublimated, etc…) and at describing how 

primary drying progresses with time. Model classification can be performed using different 

criteria, e.g. based on the modeling assumptions adopted (pseudo steady-state / dynamic 

models), based on the ways the system geometry is described (mono- and bi-dimensional 

models), or based on the type of model parameters involved (lumped/distributed parameter 

models). 

A rough classification of freeze-drying models involves the following categories: 

1. Mathematical models based on a detailed description of the multi-physics phenomena 

of the system, typically (but not necessarily) implemented on computationally fluid 

dynamics (CFD) software; 

2. Mathematical models involving distributed parameters, i.e. parameters that depend on 

the spatial position within the drying chamber; 

3. Mathematical models involving lumped parameters, i.e. parameters that do not depend 

on the spatial position within the drying chamber. 

The first class of models (Liapis and Bruttini, 1995; Mascarenhas et al., 1997; Sheehan and 

Liapis, 1998; Pisano et al., 2011; Ramšak et al., 2017) involves detailed CFD simulations and 
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high model complexity (i.e. large number of model equations and model parameters). This 

model complexity results in two notable drawbacks: 

 large computational time, that partially or totally prevents online use of these models 

for real-time parameter estimation or real-time process optimization; 

 large number of model parameters to be estimated. In most cases, the values of these 

parameters are taken from the literature and may have been obtained under different 

equipment configuration and/or different product formulation. 

The second class of models collects mono- and bi-dimensional models that aim at capturing the 

heterogeneous behavior within the drying chamber by introducing a spatial dependence on 

some of the model parameters. The model complexity is kept relatively low and the models can 

be used, under certain circumstances, for process simulation and control. However, their online 

use is still limited by identifiability issues (Brülls and Rasmuson, 2002; Tsinontides et al., 2004; 

Zhai et al., 2005 ; Hottot et al., 2006; Gieseler et al., 2007; Trelea et al., 2007; Duralliu et al., 

2018).  

The third class of models collects several mono-dimensional lumped-parameter models (e.g., 

Pikal, 1985; Millman et al., 1985; Sadikoglu and Liapis, 1997; Velardi and Barresi, 2008). 

involving few parameters and requiring small computational times. This is obtained at the 

expense of neglecting such phenomena as radial gradients of temperature and composition and 

heat transfer between the product and the side wall of the vial, as well as other radiation 

phenomena. Despite these limiting assumptions, it has been shown (Fissore et. al, 2010; Fissore 

et al., 2011a; Fissore et al., 2011b; Bosca et al., 2013; Bosca et al., 2015) that these models can 

capture the key performance indicators (KPIs) of the system during primary drying with 

reasonable accuracy, and therefore they represent a good starting point towards a macroscopic 

mechanistic description of the process. Moreover, the complexity of these models can be 

modulated by introducing and/or neglecting some (heat-transfer) phenomena that are 

considered to be relevant/irrelevant for the end purpose, thus providing some flexibility to the 

modeling framework. 

A simplified mono-dimensional lumped parameter model that has gained increasing attention 

is the one proposed by Velardi and Barresi (2008), based on a previous study (Pikal, 1985). 

This model is one-dimensional and collects the mass balance for the frozen layer and the 

macroscopic heat- and mass-transfer equations for the frozen product. The relevant model 

equations are as follows. 

The frozen product is heated by the silicone oil flowing through the shelf, and the driving force 

for heat transfer is given by the difference between the temperature 𝑇𝑓𝑙𝑢𝑖𝑑(𝑡) of the heating 

fluid and the temperature 𝑇𝐵(𝑡) at the bottom of the frozen layer. The heat flux 𝐽𝑞(𝑡)[W/m
2] 

between the silicone oil and the vial bottom can therefore be expressed as: 

 

𝐽𝑞 = 𝐾𝑣(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝐵)    , (7.1) 
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where 𝐾𝑣[W/(m
2K)] is the heat transfer coefficient. It is worth noticing that Eq. (7.1) only 

accounts for the heat transfer between the silicone oil and the vial bottom. However, as 

explained in section 7.1.1., other heat transfer mechanisms affect the overall energy supply to 

the frozen layer, but they are not taken into account explicitly in the heat flux formulation (7.1).  

The heat transfer coefficient of Eq. (7.1) strongly depends on the pressure 𝑝𝑐 [Pa] in the 

chamber. The dependence of 𝐾𝑣 with respect to 𝑝𝑐 is expressed as: 

 

𝐾𝑣 = 𝐶1 +
𝐶2𝑝𝑐

1 + 𝐶3𝑝𝑐
      , 

(7.2) 

 

where 𝐶1, 𝐶2, 𝐶3 are parameters to be estimated.  

Given the heat supply expressed by Eq. (7.1), the frozen product sublimates at the sublimation 

front and the sublimation flux 𝐽𝑤(𝑡)[kg/(m
2s)] can be expressed as: 

 

𝐽𝑤 =
1

𝑅𝑝
(𝑝𝑤,𝑖 − 𝑝𝑤,𝑐)     , 

(7.3) 

 

where 𝑝𝑤,𝑖[Pa] is the partial pressure of water at the sublimation front, 𝑝𝑤,𝑐[Pa] is the partial 

pressure of water in the chamber (which is typically assumed equal to the total pressure 𝑝𝑐 of 

the chamber ), and 𝑅𝑝[m/s] is the resistance to the mass transfer. 

The interpretation of Eq. (7.3) is straightforward: the driving force for the sublimation flux is 

the difference between the vapor partial pressure at the sublimation interface and the vapor 

partial pressure in the chamber, and the proportionality factor is the inverse of the mass transfer 

resistance to the vapor flow. The mass transfer resistance 𝑅𝑝 is a function of the thickness 

𝐿𝑓𝑟𝑜𝑧𝑒𝑛 of the frozen layer according to the expression: 

 

𝑅𝑝 = 𝑅0 +
𝑅1𝐿𝑓𝑟𝑜𝑧𝑒𝑛

1 + 𝑅2𝐿𝑓𝑟𝑜𝑧𝑒𝑛
   , 

(7.4) 

 

where 𝑅0, 𝑅1 and 𝑅 are parameters to be estimated. 

The partial pressure 𝑝𝑤,𝑖 of water at the sublimation interface is a function of the temperature 

𝑇𝑖[K] at the interface. This dependence can be expressed with the Goff-Gratch equation (Goff, 

1946); a simplified expression for the values of pressure and temperature that are typically 

involved during primary drying has been proposed by Fissore and Barresi (2011): 

 

𝑝𝑤,𝑖 = exp (−
6150.6

𝑇𝑖
+ 28.932)   . 

(7.5) 
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The heat that is exchanged between the oil flowing in the shelves and the product is assumed 

to be entirely used for ice sublimation. The energy balance at the sublimation interface can be 

written as: 

 

𝐽𝑤 =
1

Δ𝐻𝑠
 𝐽𝑞 =

1

Δ𝐻𝑠
 𝐾𝑣(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝐵)    , 

(7.6) 

 

where Δ𝐻𝑠[J/kg] is the heat of sublimation, which is dependent on the partial pressure of water 

in the chamber (the pressure dependency can often be neglected). Since no heat accumulation 

is assumed in the frozen layer, the energy balance for the frozen product can be written as: 

 

𝐾𝑣(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝐵) =
𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝑖

(
1
𝐾𝑣
+
𝐿𝑓𝑟𝑜𝑧𝑒𝑛
𝜆𝑓𝑟𝑜𝑧𝑒𝑛

)

   , 
(7.7) 

 

where 𝜆𝑓𝑟𝑜𝑧𝑒𝑛 [W/(mK)] is the thermal conductivity of the frozen layer. Eq. (7.7) can be 

rewritten as: 

 

𝑇𝐵 = 𝑇𝑓𝑙𝑢𝑖𝑑 −
1

𝐾𝑣
(
1

𝐾𝑣
+
𝐿𝑓𝑟𝑜𝑧𝑒𝑛

𝜆𝑓𝑟𝑜𝑧𝑒𝑛
)

−1

(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝑖)  , 
(7.8) 

 

which allows relating the temperature 𝑇𝐵 at the bottom of the vial (measurable variable) to the 

temperature 𝑇𝑖 at the sublimation interface (unmeasurable variable). 

The time evolution of the frozen layer thickness can be obtained by solving the material 

balance: 

 
d𝐿𝑓𝑟𝑜𝑧𝑒𝑛

d𝑡
=  −

1

𝜌𝑓𝑟𝑜𝑧𝑒𝑛 − 𝜌𝑑𝑟𝑖𝑒𝑑
 𝐽𝑤   , 

 (7.9) 

 

where 𝜌𝑓𝑟𝑜𝑧𝑒𝑛[kg/m
3] is the density of the frozen product, and 𝜌𝑑𝑟𝑖𝑒𝑑[kg/m

3] is the density of 

the dried product. 

The total amount 𝑀[kg] of water sublimated during primary drying can be computed from the 

sublimation flux 𝐽𝑤 according to the equation: 

 

 𝑀 = 𝐴𝑣∫ 𝐽𝑤(𝑡)
𝑡𝑑

0

d𝑡   , 
(7.10) 

 

where 𝑡𝑑 is the total duration of primary drying, and 𝐴𝑣 is the internal cross-sectional area of 

the vial.  
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The mono-dimensional model consists of Eq. (7.1)-(7.10). From a structural point of view, the 

model is a system of one differential equation (Eq. (7.9)), one integral equation and seven 

algebraic equations. The model inputs, outputs and parameters are listed in Table 1. 

Table 7.1. Input variables, output variables and model parameters for the 

mono-dimensional model (7.1)-(7.10). 

 ID Variable name Units Symbol Type 

Inputs     
1 Chamber pressure [Pa] 𝑝𝑐 Algebraic 

2 Heating fluid temperature [K] 𝑇𝑓𝑙𝑢𝑖𝑑  Algebraic 

     

Outputs     
1 Length of the frozen layer [m] 𝐿𝑓𝑟𝑜𝑧𝑒𝑛  Differential 

2 Cumulative amount of water sublimated [kg] 𝑀 Algebraic 

3 Heat flux [W/m2] 𝐽𝑞 Algebraic 

4 Sublimation flux [kg/(m2s)] 𝐽𝑤 Algebraic 

5 Vial bottom temperature [K] 𝑇𝐵 Algebraic 

6 Sublimation interface temperature [K] 𝑇𝑖  Algebraic 

7 Water partial pressure at the sublimation interface [Pa] 𝑝𝑤,𝑖 Algebraic 

     

Parameters     

1 Heat transfer coefficient - parameter #1 [W/(m2K)] 𝐶1 [-] 

2 Heat transfer coefficient - parameter #2 [W/(m2KPa)] 𝐶2 [-] 

3 Heat transfer coefficient - parameter #3 [W/(m2KPa)] 𝐶3 [-] 

4 Mass transfer resistance - parameter #1 [m/s] 𝑅0 [-] 

5 Mass transfer resistance - parameter #2 [1/s] 𝑅1 [-] 

6 Mass transfer resistance - parameter #3 [1/m] 𝑅2 [-] 

 

With reference to Table 7.1, some comments are in order. 

1. The two variables that can be manipulated during the dryer operation are the pressure 

in the chamber and the heating fluid temperature. These variables can be manipulated 

according to a time-invariant, piecewise constant or (only the heating fluid temperature) 

piecewise linear behavior. Additional details will be given in section 7.5. 

2. Among the output variables, one of the variables that can typically be measured during 

a drying cycle is the vial bottom temperature. This is done by placing a thermocouple 

inside the vial, and measurements can be obtained online with relatively low frequency 

Thermocouples are typically placed inside different vials located at selected positions 

within the dryer in order to account for their different thermal behaviors within the same 

shelf.  

3. The dryer operation is subject to both product constraints and equipment constraints. 

From a modeling perspective, the product constraints are imposed on the vial bottom 

temperature 𝑇𝐵, which must be kept below the critical temperature (glass transition or 

eutectic temperature) of the product for the entire drying operation. The equipment 

constraints are imposed on the sublimation flux 𝐽𝑤, that must be kept below a limiting 
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value to avoid choked flow through the duct linking the drying chamber to the 

condenser.  

In view of the above, obtaining good predicitions for the vial bottom temperature and 

sublimation flux from the model is crucial to guarantee product quality and safe 

operation. Therefore, 𝑇𝐵 and 𝐽𝑤 are considered as KPIs for the model. Moreover, the 

amount of water sublimated during primary drying can be considered as an additional 

KPI, since its value is directly related to the overall duration of the primary drying stage: 

obtaining a good predicition of M is therefore essential for process optimization. 

4. The model involves 6 parameters, that describe the dependency of the global heat 

transfer coefficient 𝐾𝑣 and the mass transfer resistance 𝑅𝑝 with respect to the chamber 

pressure and length of the frozen layer respectively. A good estimation of the values of 

these parameters is required in order to obtain reliable predictions for the KPIs described 

above. 

The step-by-step methodology that has been used to calibrate and validate the above model is 

reported in the next section. 

7.3 Model-based design of experiments (MBDoE): brief overview 

In the following, a short description of the mathematical background of model-based design of 

experiments (MBDoE) techniques is reported. A thorough mathematical formulation can be 

found in the work of Franceschini and Macchietto (2008) and Galvanin (2013). 

7.3.1 Design of an optimal experiment 

The goal of MBDoE is to find the optimal initial conditions, the optimal profile of manipulated 

inputs, the optimal sampling instants for the measured variables, and the optimal duration of a 

new experiment in order to maximize the information that can be extracted from the experiment 

for the purpose of model identification. 

Mathematically, given a dynamic system described by a system of differential and algebraic 

equations (DAEs) of the form: 

 

𝐟(�̇�(𝑡), 𝐱(𝑡), 𝐮(𝑡),𝐰, 𝛉, 𝑡) = 0 

𝐲(𝑡) = 𝐡(𝐱(𝑡)) 
(7.11) 

 

where 𝛉 [1 × Nθ] is the set of parameters to be estimated, 𝐱(𝑡) is the state vector, 𝐮(𝑡) and 𝐰 

are the time-dependent and time-invariant control variables respectively, 𝐲(𝑡) is the output 

vector, the target is to find the optimal value of the design vector: 

 

𝛗 = [𝐲0, 𝐮(𝑡), 𝐰, 𝐭
𝑠𝑝, 𝜏] (7.12) 
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that maximizes the information for the identification of 𝛉. Eq. (7.12) uses the following 

notation: 

 𝐲0 is the set of initial conditions for the measured variables; 

 𝐭𝑠𝑝 = [𝑡1, 𝑡2, … , 𝑡𝑠𝑝] is the vector collecting the different sampling times in which 

measurements are collected; 

 𝜏 is the total duration of the experiment. 

The time-dependent input variables 𝐮(𝑡) are typically approximated as piecewise constant or 

piecewise linear variables for a given set of intervals splitting the entire experiment duration. 

The optimal value of the design vector is found as the value that minimizes a given metric 𝛼 of 

the variance-covariance matrix of the model parameters 𝐕𝜃(𝛉,𝛗) according to: 

 

𝛗𝑜𝑝𝑡 = argmin {𝛼[𝐕𝜃(𝛉,𝛗)]}    . (7.13) 

 

The variance-covariance matrix 𝐕𝜃(𝛉,𝛗) is defined as: 

 

𝐕𝜃(𝛉,𝛗) = [𝐇𝜃
𝟎 + 𝐇𝜃(𝛉,𝛗)]

−1
   ,  (7.14) 

 

where 𝐇𝜃(𝛉,𝛗), defined as the dynamic information matrix, is a measure of the information 

that can be exploited from the experiment for the identification of 𝛉, while 𝐇𝜃
𝟎  is the initial 

(i.e., preliminary) value of this matrix. For a set of 𝑁exp experiments, 𝐇𝜃(𝛉,𝛗) is expressed as: 

 

𝐇𝜃(𝛉,𝛗) = ∑ ∑ ∑  𝑠𝑖𝑗|𝑘𝐐𝑖|𝑘
𝑇𝑁𝑦

𝑗=1
𝐐𝑗|𝑘

𝑁𝑦
𝑖=1

+ 𝐇𝜃
0  

𝑁𝑒𝑥𝑝
𝑘=1      , (7.15) 

 

where 𝐐𝑖|𝑘 is the dynamic sensitivity matrix of the 𝑖-th measured response in the 𝑘-th 

experiment, whose elements for the 𝑘-th experiment are given by: 

 

𝐐𝑖  = [
𝜕𝑦𝑖𝑙

𝜕𝜃𝑚
]      𝑙 = 1, 2, … , 𝑛𝑠𝑝 ; 𝑚 = 1, 2, … ,𝑁𝜃     ,     

(7.16) 

 

and 𝑠𝑖𝑗|𝑘 is the 𝑖𝑗-th element of the inverse matrix of the measurement errors in the 𝑘-th 

experiment. According to the metric 𝛼 that is optimized in Eq. (7.13), different design criteria 

can be identified: 

 A-optimal: 𝛼 is defined as the trace of the variance-covariance matrix; 

 E-optimal: 𝛼 is defined as the largest eigenvalue of the variance-covariance matrix; 

 D-optimal: 𝛼 is defined as the determinant of the variance-covariance matrix. 

Based on the design criterion adopted, the solution of optimization problem (7.13) allows 

obtaining all the information needed to perform a new optimal experiment for the system under 

investigation. 
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7.3.2 Additional MBDoE activities 

The design of a new experiment according to the formulation described in the previous section 

is followed by two sequential activities: 

1. Execution of the designed experiment on the experimental equipment; 

2. Estimation of parameters based on the data collected from the experiment. 

If the parameter estimation is statistically satisfactory, the MBDoE activity can be considered 

as concluded. On the other hand, if the parameter estimation is not satisfactory, a new 

experiment must be designed based on the updated estimates of the model parameters, and the 

overall procedure must be iterated. A schematic representation of the iterative procedure is 

shown in Fig. 7.4.  

 

 

 

Figure 7.4. Simplified flowsheet for a standard MBDoE activity. 

 

The stopping criterion for the MBDoE activity can be dictated by different (and often case-

dependent) occurrences, including: 

 attainment of a desired level of precision on the estimated values of the model 

parameters; 

 attainment of a desired level of model accuracy, to be intended as goodness of fit for 

the desired responses; 

 attainment of the maximum experimental budget, typically dictated by both operational 

and cost-dependent constraints. 

Once one or more of the above conditions is reached, the MBDoE activity is stopped. The final 

target is the attainment of a well-calibrated model to be used for decision-support scenarios. 

7.4 Preliminary assessment of freeze-drying model performance  

In order to facilitate a successful application of MBDoE techniques with the mono-dimensional 

model described in Section 7.2, two preliminary activities are required, namely: 

1. assessment of the adequacy of the model structure with respect to the experimental 

observations on the real equipment. In other words, it must be assessed if the (potential) 

mismatch between the model predictions and the experimental observations can be 

removed by adjusting (i.e., calibrating) the model parameters. Alternatively, structural 
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deficiencies (e.g., due to a lack of fundamental knowledge or to simplifying assumptions 

introduced during model development) may be identified in the original model. In the 

latter case, the model needs structural adjustments before using it for MBDoE purposes 

(yet, MBDoE can potentially be used also to discriminate among rival model structures). 

2. identification of reasonable preliminary values for the model parameters, in order to 

speed up the MBDoE activity (Fig. 7.4) and reduce the total number of experiments to 

be performed for model calibration. These values may be taken (if available) from the 

literature or estimated from historical data. 

For the case study reported in this Chapter, historical data of primary drying were available. A 

detailed description of each step, together with the organization of the available historical data, 

is reported in the next sections. 

7.4.1 Description of the historical datasets 

Five historical experimental datasets have been used to preliminarily calibrate and validate the 

model parameters. The datasets differ from each other for the product considered, the type of 

vials used during drying, the loading of the shelves in the freeze dryer, the number of 

measurements available, and the experimental protocol adopted. All experiments the datasets 

refer to were carried out in the same equipment, and this equipment is the same to be used 

within the current MBDoE activity. 

Three historical datasets (namely, datasets A, B and C) were used for model calibration. The 

remaining two datasets (D, E) were used to validate the model. A detailed description of each 

dataset is reported in the following. 

7.4.1.1 Calibration datasets 

The following three datasets were used to calibrate the model. 

 Dataset A: data refer to three incomplete primary drying experiments (i.e., the primary 

drying was stopped before reaching its completion) at three different values of chamber 

pressure, namely at 67%, 100% and 133% of its nominal value. Siliconized vials were 

used in each experiment. The vials were filled with 0.6 mL of microfiltered water and 

only one shelf out of five (i.e., 20% partial loading) was loaded. Two different vial 

frames were loaded for each shelf, as schematically shown in Fig. 7.6. From the same 

figure, it can be seen that the vial arrangement in each shelf has been partitioned in 12 

different zones, each of which with expected similar thermal behavior. Measurements 

of vial bottom temperature were collected by placing one thermocouple in one single 

vial for each zone (light blue-shaded vials in Fig. 7.6). In other words, the behavior of 

the vial inside which a thermocouple was placed is considered as representative of the 

behavior of all the vials within the same zone. This is a simplification dictated by 
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operational limits, and some studies (Pikal, 2000; Pikal et al., 2016) have also shown 

that the very presence of a thermocouple alters the thermal behavior of the vial with 

respect to the adjacent ones. 

 

 
 

Figure 7.6. Arrangement of the vials on the shelves. Vials tagged with a number were 

weighted before and after drying. Thermocouples were placed inside the vials shaded 

in light blue. The rectangular boxes indicate the logic partitioning of vials considered 

in each shelf. 

 

Measurements of chamber pressure (obtained with both a Pirani gauge and a capacitance 

manometer), heating fluid temperature at the inlet of the shelf and vial bottom 

temperature at the 12 locations described above were collected with a measurement 

interval of 30 s for the first two experiments, and of 20 s for the third experiment.  

Moreover, the vials tagged with a number in Fig. 7.6 were weighted at the beginning 

and at the end of the experiment, thus giving an additional measurement of the total 

amount of water sublimated during primary drying. The time profiles for the input 

variables (chamber pressure and heating fluid temperature) that were set during the 

experiments are reported in Table 7.2 
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Table 7.2.  Time profiles of the input variables for dataset A. 

Step # Interval duration [min] 𝒑𝐜 �̅�𝒄⁄ [−] 𝑻𝒇𝒍𝒖𝒊𝒅 �̅�𝒇𝒍𝒖𝒊𝒅⁄ [−] 

Experiment 1    

1 15 0.667 0.898 (constant) 

2 30 0.667 0.898-1.000 (linear) 

3 327 0.667 1.000 (constant) 

Experiment 2    

1 15 1 0.898 (constant) 

2 30 1 0.898-1.000 (linear) 

3 186 1 1.000 (constant) 

Experiment 3    

1 15 1.333 0.898 (constant) 

2 30 1.333 0.898-1.000 (linear) 

3 100 1.333 1.000 (constant) 

 

 Dataset B: the structure of this dataset is the same as for dataset A (with three 

experiments at three different pressures). The formulate is a 5% sucrose-based placebo 

and the vials used were non-siliconized. The same measurements collected for dataset 

A were collected also for this dataset. The time profiles of the input variables set during 

the three experiments are reported in Table 7.3. 

Table 7.3. Time profile of the input variables for dataset B. 

Step # Interval duration [min] 𝒑𝐜 �̅�𝒄⁄ [−] 𝑻𝒇𝒍𝒖𝒊𝒅 �̅�𝒇𝒍𝒖𝒊𝒅⁄ [−] 

Experiment 1    

 1 15 0.667 0.898 (constant) 

2 30 0.667 0.898-1.000 (linear) 

3 331 0.667 1.000 (constant) 

Experiment 2    

1 15 1 0.898 (constant) 

2 30 1 0.898-1.000 (linear) 

3 180 1 1.000 (constant) 

Experiment 3    

1 15 1.333 0.898 (constant) 

2 30 1.333 0.898-1.000 (linear) 

3 120 1.333 1.000 (constant) 

 

 Dataset C: as for the previous datasets, data refer to an incomplete drying cycle, but 

were obtained with a 5% sucrose-based formulation placebo at only one value for the 

chamber pressure (equal to its nominal value). The same vials format and the same 

thermocouple arrangement as in the previous datasets experiments were used, but vials 
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were in this case siliconized. As for the previous case, measurements of chamber 

pressure (Pirani and capacitance manometers), heating fluid temperature and vial 

bottom temperature were collected every 30 s. The tagged vials were weighted before 

and after drying in order to measure the total amount of water sublimated during primary 

drying. The recipe used for this experiment is reported in Table 7.4.  

Table 7.4. Time profiles of the input variables for dataset C. 

Step # Interval duration [min] 𝒑𝐜 �̅�𝒄⁄ [−] 𝑻𝒇𝒍𝒖𝒊𝒅 �̅�𝒇𝒍𝒖𝒊𝒅⁄ [−] 

 1 15 1 (constant) 0.898 (constant) 

2 30 1 (constant) 0.898-1.000 (linear) 

3 175 1 (constant) 1.000 (constant) 

 

7.4.1.2 Validation datasets 

The following two datasets have been used to validate the model. 

 Dataset D: data have been extracted from a dataset of a complete drying cycle (involving 

all the seven steps described in section 7.1.2) and refer to the primary drying step of this 

cycle. The dataset was obtained with a 5% sucrose-based formulation placebo using 

non-siliconized vials. Only one shelf (the central one) out of five was loaded with 238 

vials. Each vial was filled with 0.6 mL of placebo. Two thermocouples were placed to 

monitor the bottom temperature of two vials placed in the middle of the first row and 

last row of the first half of the central shelf, according to the schematic representation 

of Fig. 7.7. The time profile for the input variables (chamber pressure and heating fluid 

temperature) during primary drying is the one reported in Table 7.5. The dataset collects 

measurements of chamber pressure (obtained with a Pirani gauge and a capacitance 

manometer), heating fluid temperature at the inlet of the shelf and vial bottom 

temperature at the two locations described above with a measurement interval of 30 s. 

 
 

Figure 7.7. Arrangement of the thermocouples (numbered as 5 and 6) on the central 

shelf for dataset D. 



 
 

224 Chapter 7 

________________________________________________________ 
© 2018 Gabriele Bano, University of Padova (Italy) 

 

 

Table 7.5.  Times profile of the input variables for dataset D. 

Step # Interval duration [min] 𝒑𝐜 �̅�𝒄⁄ [−] 𝑻𝒇𝒍𝒖𝒊𝒅 �̅�𝒇𝒍𝒖𝒊𝒅⁄ [−] 

 1 15 1 (constant) 0.910 (constant) 

2 30 1 (constant) 0.910-1.000 (linear) 

3 990 1 (constant) 1.000 (constant) 

4 180         1 (constant) 1.237 (constant) 

 

 Dataset E: as for the previous dataset, data of primary drying have been extracted from 

a complete freeze-drying cycle of a 5% sucrose-based placebo. The dataset was obtained 

by loading 2380 siliconized vials (full loading) on all the five shelves placed in the 

drying chamber. Eleven thermocouples were inserted in 11 vials placed according to the 

schematic representation of Fig. 7.8. The filling volume was set to 0.6 mL as for the 

previous datasets. The recipe for the primary drying is reported in Table 7.6. The time 

profiles for the input variables are the same as for the previous dataset, with a significant 

increase in the duration of the third time interval. Measurements of chamber pressure 

(Pirani and capacitive), heating fluid temperature and vial bottom temperature for the 

11 locations described above were collected every 30 s. 

 
 

Figure 7.8.  Arrangement of the eleven thermocouples (numbers) on the five shelves 

for dataset E. 

Table 7.6.  Time profile of the input variables (i.e. “recipe”) for dataset E. 

Step # Interval duration [min] 𝒑𝐜 �̅�𝒄⁄ [−] 𝑻𝒇𝒍𝒖𝒊𝒅 �̅�𝒇𝒍𝒖𝒊𝒅⁄ [−] 

 1 15 1 (constant) 0.910 (constant) 

2 30 1 (constant) 0.910-1.000 (linear) 

3 2430 1 (constant) 1.000 (constant) 

4 180         1 (constant) 1.237 (constant) 
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The step-by-step methodology used for this preliminary analysis in shown in Fig. 7.5. 

 
 

Figure 7.5. Schematic of the different steps for the preliminary assessment of model 

performance. 

7.4.2 Step #1: gravimetric estimation of 𝐾𝑣 

In the first step of the proposed methodology, an estimation of the parameters 𝐶1, 𝐶2 and 𝐶3 for 

the heat transfer coefficient 𝐾𝑣 has been obtained through a standard gravimetric method 

(Fissore and Barresi, 2010). The purpose of this gravimetric estimation for the scope of this 

work is to facilitate the numerical solution of the maximum likelihood estimation of these 

parameters (step # 4), by assigning reasonable initial guesses to the estimator. In fact, it has 

been verified that bad initial guesses of 𝐶1, 𝐶2 and 𝐶3 may lead the estimator to diverge.  

The gravimetric method is a standard procedure adopted in the characterization of freeze drying 

equipment to estimate the heat transfer coefficient 𝐾𝑣. This coefficient is estimated from 

incomplete drying experiments (such as the ones collected for datasets A and B), given the 

availability of measurements of vial bottom temperature 𝑇𝐵(𝑡) and total amount of water 

sublimated 𝑀 for a given drying time 𝑡𝑑, according to: 

 

𝐾𝑣 =
𝑀 ΔHs

𝐴𝑣 ∫ (𝑇𝑓𝑙𝑢𝑖𝑑
𝑡𝑑
0

(𝑡) − 𝑇𝐵(𝑡))
    . (7.17) 
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As discussed in section 7.2, the 𝑇𝐵(𝑡) profile, as measured by a themocouple located inside a 

given zone, is typically assumed to be the same for all the vials within that zone. Therefore, Eq. 

(7.17) allows obtaining a different value of 𝐾𝑣 for each vial characterized by a measurement of 

M. This allows one to obtain a distribution of values of 𝐾𝑣 both within the same zone and 

between different zones of a given shelf. This in turn allows a quantitative characterization of 

the thermal behavior of each zone.  

If the experiment is repeated for at least three different values of chamber pressure, the values 

of 𝐶1, 𝐶2 and 𝐶3 of Eq. (7.2) can be obtained by simple fitting. It is worth noticing that the 

values of 𝐾𝑣 do not depend (in principle) on the product considered, but are affected by the type 

of vials (i.e. siliconized or non-siliconized in this study). In fact, the presence of a thin layer of 

silicone on the internal surface of a vial affects the overall heat transfer to the frozen product. 

Based on the previous considerations, a preliminary estimation of the heat transfer coefficient 

𝐾𝑣, as well as of the parameters 𝐶1, 𝐶2 and 𝐶3, have been obtained from the historical datasets 

A (siliconized vials) and C (non-siliconized vials). The results are presented in the next sections. 

7.4.2.1 Results for dataset A 

The distribution of the values of 𝐾𝑣 for each zone and between different zones is shown in Fig. 

7.9  for the three different values of chamber pressures described in section 7.4.1. The values 

of 𝐾𝑣 have been normalized with the value obtained for a vial placed at the same location (zone 

7) at 𝑝𝑐/�̅�𝑐 = 0.667. 

 

 

    (a)                                                                                   (b)                                                   
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      (c) 

 
Figure 7.9. Values of the heat transfer coefficient for the different vials on a shelf at three 

different chamber pressures. 

 

The mean values of (normalized) 𝐾𝑣 are reported in Tables 7.7-7.9 together with their standard 

deviations, for each zone and at the three pressures at which the experiments were carried out. 

Note that standard deviations are computed with respect to the normalized values of 𝐾𝑣, and 

that the mean values have been normalized with the same nominal values used for Fig 7.9. The 

vials have been divided into two categories, namely “edge” (the ones belonging to zones 1, 2, 

3, 5, 8, 10, 11) and “central” (the ones belonging to zones 4, 6, 7, 9), in order to reflect the 

geometric arrangement shown in Fig. 7.6. 

Table 7.7. Mean values of the heat transfer coefficient and standard deviations 

for dataset A at  𝑝𝑐/�̅�𝑐  = 0.667. 

Zone # Normalized mean value of 𝑲𝒗 [-] Standard deviation Vial type 

1 1.420 0.121 Edge 

2 1.089 0.090 Edge 

3 1.279 0.113 Edge 

4 1.036 0.154 Central 

5 1.192 0.138 Edge 

6 0.977 0.128 Central 

7 1.015 0.171 Central 

8 1.396 0.131 Edge 

9 0.888 0.142 Central 

10 1.627 0.242 Edge 

11 1.343 0.192 Edge 

12 2.286 0.299 Edge (window) 
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Table 7.8. Mean values of the heat transfer coefficient and standard deviations 

for dataset A at  𝑝𝑐/�̅�𝑐  = 1. 

Zone # Normalized mean value of 𝑲𝒗 [-] Standard deviation Vial type 

1 1.747 0.098 Edge 

2 1.255 0.066 Edge 

3 1.495 0.125 Edge 

4 1.134 0.097 Central 

5 1.390 0.087 Edge 

6 1.168 0.082 Central 

7 1.202 0.085 Central 

8 1.572 0.121 Edge 

9 1.052 0.113 Central 

10 1.765 0.204 Edge 

11 1.430 0.095 Edge 

12 2.988 0.164 Edge (window) 

 

Table 7.9. Mean values of the heat transfer coefficient and standard deviations 

for dataset A at  𝑝𝑐/�̅�𝑐  = 1.333. 

Zone # Normalized mean value of 𝑲𝒗 [-] Standard deviation Vial type 

1 1.690 0.122 Edge 

2 1.321 0.131 Edge 

3 1.563 0.139 Edge 

4 1.069 0.062 Central 

5 1.460 0.157 Edge 

6 1.211 0.141 Central 

7 1.338 0.185 Central 

8 1.810 0.359 Edge 

9 1.149 0.369 Central 

10 1.700 0.180 Edge 

11 1.697 0.133 Edge 

12 2.476 0.158 Edge (window) 

 

The numerical values of 𝐾𝑣 obtained with the gravimetric method suggest some considerations. 

1. As expected, the vial thermal behavior across different zones changes remarkably . 

Namely, vials at the edge of a shelf are characterized by greater values of 𝐾𝑣 with respect 

to the central ones. This results in larger sublimation rates (hence smaller drying times), 

but also in greater product temperatures. Product temperature control for these vials is 

therefore crucial to avoid irreversible alteration of the product morphology. 
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2. Vials directly exposed to the equipment window (zone 12) show considerable greater 

values of 𝐾𝑣 with respect to other vials. This is clearly related to the heat exchange 

through the window, which speeds up the sublimation process. Following the reasoning 

of the previous remark, this means that these vials are significantly exposed to the risk 

of product collapse/melting. 

3. The variability of 𝐾𝑣 across vials belonging to the same zone is not neglible, as the 

standard deviations of Tables 7.7-7.9 suggest. However, this variability is significantly 

smaller than the one that would be obtained by considering a single value of 𝐾𝑣 for all 

the vials placed on the shelf, as can be easily inferred from Table 7.10. In other words, 

whereas assuming a uniform thermal behavior for the vials belonging to a given zone is 

reasonable, the same cannot be said for all the vials located on the same shelf. This 

means that the mono-dimensional model (7.1)-(7.10) must be calibrated for each 

thermal zone, since significantly different values of 𝐾𝑣 are expected across zones. 

Table 7.10. Mean values and standard deviations of the “global” (i.e. 

computed  for all the 12 zones) heat transfer coefficient at the three different 

values of chamber pressure considered. 

Normalized chamber pressure [-] Normalized mean value of 𝑲𝒗 [-] Standard deviation 

0.667 1.347 0.765 

1 1.577 0.854 

1.333 1.614 0.895 

 

In view of the above considerations, the values of parameters 𝐶1, 𝐶2 and 𝐶3 of Eq. (7.2) can be 

computed for each zone. Although the numerical values of these parameters cannot be reported 

for confidentiality reasons, it was noted that: 

 the value of 𝐶1 significantly differs between the different zones. This is justified by the 

fact that, as proved by Pikal and coworkers (Pikal, 2000), this parameter primarily 

accounts for the radiation contributions from the top and bottom shelves, as well as from 

the chamber walls. These contributions change with the location in the freeze dryer 

(Tables 7.7-7.9). 

 The values of 𝐶2 and 𝐶3 do not significantly vary between zones. This is in agreement 

with the work of Pikal (Pikal, 2000), who justifies this behavior by noting that 𝐶3 mainly 

depends on the distance between the bottom of the vial and the shelf (that is constant in 

the equipment considered), whereas 𝐶2 mainly accounts for conductive effects through 

the sidewall of the vial (which are constant within the shelf) and through the gas 

entrapped between the vial bottom and the shelves. 

Based on the above observations, the twelve different values of 𝐶1 obtained with the gravimetric 

method have been used as initial guesses for the twelve different parameter (preliminary) 
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estimation exercises required at step #4 of the proposed methodology. On the other hand, 𝐶2 

and 𝐶3 have been used as fixed values. 

The procedure described above for dataset A was repeated for dataset C, in order to account for 

the different type of vials considered (siliconized vs. non-siliconized). The numerical results 

can be found in Appendix A. The results show that, surprisingly, the presence of the silicone 

layer does not significantly affect the values of the heat transfer coefficient, even though they 

significantly affect the values of the mass transfer resistance, as will be discussed in more detail 

in section 7.4.5. 

7.4.3. Step #2: sensitivity analysis for 𝐾𝑣 

As discussed in the previous section, due to the variability of the heat transfer coefficient 

between the different zones of a shelf, twelve different model calibrations are required in order 

to capture the relevant behavior of each zone of the shelf. It is worth noticing that, in principle, 

whereas parameter 𝐶1 requires to be estimated with the maximum likelihood estimator on each 

zone, parameters 𝐶2 and 𝐶3 need to be estimated for one zone only, since their values are 

expected to be the same for all zones.  

Notwithstanding this aspect, there would be at least one model calibration activity that would 

require the joint maximum likelihood estimation of parameters 𝐶1, 𝐶2 and 𝐶3, as well as of mass 

transfer resistance parameters 𝑅0, 𝑅1, 𝑅2. As discussed in section 7.4, it was verified that the 

joint estimation of these six parameters is affected by convergence issues due to the limited 

number of measured response variables (vial bottom temperature and end-point cumulative 

amount of water sublimated). This prevented the possibility of jointly estimating all parameters 

together. Therefore, the possibility to reduce the total number of parameters to be estimated 

was considered in order to facilitate the estimator convergence. 

Sensitivity analysis (Cruz and Perkins, 1964) can be used to understand the influence of model 

parameters with respect to the KPIs of the system. The greater the sensitivity of a given 

parameter with respect to a given KPI, the greater the impact of a wrong calibration of that 

parameter on the model prediction of the KPI. In other words, it is always desirable to obtain 

accurate estimations of the parameters with highest sensitivities with respect to the outputs of 

interest, since small variations on their values can significantly affect the model predictions. On 

the other hand, parameters with smaller sensitivities can be set to their nominal (e.g., literature) 

values without significantly impacting on the model performance. 

During primary drying, the KPIs of interest are the temperature 𝑇𝐵 at the bottom of the vials, 

the sublimation flux 𝐽𝑤, and the cumulative amount M of water sublimated during the drying 

stage. The first two KPIs are dynamic variables, while the third one is an end-point variable. 

Therefore, the sensitivities of 𝐶1, 𝐶2, 𝐶3 with respect to the first two KPIs are time-dependent 

(i.e., they are defined as dynamic sensitivities) and are given by: 
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𝑠𝑇,𝑖(𝑡) =
𝜕𝑇𝐵(𝑡)

𝜕𝐶𝑖
 ;   𝑠𝐽𝑤,𝑖(𝑡) =

𝜕𝐽𝑤(𝑡)

𝜕𝐶𝑖
    𝑖 = 1,2,3   , 

(7.18) 

 

while the sensitivities with respect to 𝑀 do not depend on time: 

  

𝑠𝑀,𝑖 =
𝜕𝑀

𝜕𝐶𝑖
;    𝑖 = 1,2,3    . 

(7.19) 

 

As regard the dynamic sensitivities, the maximum absolute values of their time profiles have 

been considered 

Table 7.11. Sensitivities of vial bottom temperature, sublimation flux and 

cumulative amount of water sublimated with respect to the three parameters 

𝐶1, 𝐶2, 𝐶3. The values refer to a +1% deviation on the nominal value of the Ci 

parameters and sensitivities are expressed as % of the nominal value of the 

KPI considered. Values in boldface indicate the strongest sensitivities. 

Parameter  |𝑠𝑇,𝑖
𝑚𝑎𝑥|[%] |𝑠𝐽𝑤,𝑖

𝑚𝑎𝑥|[%] |𝑠𝑀,𝑖|[%] Parameter |𝑠𝑇,𝑖
𝑚𝑎𝑥|[%] |𝑠𝐽𝑤,𝑖

𝑚𝑎𝑥|[%] |𝑠𝑀,𝑖|[%] 

 Zone 1    Zone 7    

𝐶1 0.752 5.789 26.96 𝐶1 0.512 4.874 24.12 

𝐶2 0.186 1.012 0.312 𝐶2 0.182 0.945 0.289 

𝐶3 0.163 0.198 0.059 𝐶3 0.158 0.164 0.045 

Zone 2    Zone 8     

𝐶1 0.645 5.124 26.12 𝐶1 0.647 5.478 27.56 

𝐶2 0.178 1.123 0.365 𝐶2 0.187 1.058 0.395 

𝐶3 0.166 0.201 0.062 𝐶3 0.159 0.241 0.056 

Zone 3    Zone 9    

𝐶1 0.654 5.212 26.54 𝐶1 0.403 3.215 23.11 

𝐶2 0.183 1.056 0.251 𝐶2 0.184 0.665 0.221 

𝐶3 0.169 0.195 0.069 𝐶3 0.163 0.121 0.039 

Zone 4    Zone 10     

𝐶1 0.478 4.786 25.13 𝐶1 0.785 5.632 27.89 

𝐶2 0.184 0.996 0.354 𝐶2 0.184 1.026 0.397 

𝐶3 0.157 0.164 0.044 𝐶3 0.161 0.226 0.055 

Zone 5     Zone 11    

𝐶1 0.612 5.478 27.14 𝐶1 0.635 5.124 27.56 

𝐶2 0.179 1.047 0.321 𝐶2 0.183 1.023 0.378 

𝐶3 0.164 0.212 0.065 𝐶3 0.162 0.225 0.074 

Zone 6     Zone 12    

𝐶1 0.496 4.324 25.56 𝐶1 1.245 6.451 29.23 

𝐶2 0.180 0.987 0.276 𝐶2 0.201 1.451 0.452 

𝐶3 0.168 0.156 0.048 𝐶3 0.189 0.321 0.087 
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. The results obtained with a +1% deviation on nominal values (obtained by the gravimetric 

method) of the parameters are reported in Table 7.11 for all the twelve groups of vials19 

considered. The values reported in Table 7.11 have been computed with the model inputs set at 

their nominal values, i.e. 𝑝𝑐/�̅�𝑐 =1 and 𝑇𝑓𝑙𝑢𝑖𝑑/�̅�𝑓𝑙𝑢𝑖𝑑 = 1. The general trend of the sensitivities 

is the same independently of the values set for these inputs. 

The results of Table 7.11 show that parameter 𝐶1 has the strongest influence on all the three 

KPIs of interest. In particular, the total amount of water sublimated show a very strong 

sensitivity with respect to 𝐶1 (values are highlighted in bold), whereas very limited sensitivities 

with respect to 𝐶2 and 𝐶3.  

Based on these results, it was decided to set the values of 𝐶2 and 𝐶3 at their nominal 

(gravimetric) values, and to perform a maximum likelihood estimation of 𝐶1 for each zone. The 

estimation results are discussed in detail in section 7.4.6. 

7.5.4 Step #3: sensitivity analysis for 𝑅𝑝 

Once 𝐶1 has been identified as the most relevant parameter to be estimated for an accurate 

description of the heat transfer coefficient, an estimation of the mass transfer resistance 𝑅𝑝 must 

be obtained in order to complete the preliminary model calibration activity.  

The resistance to the vapor flow during ice sublimation is the sum of three main contributions, 

namely: 

1. the resistance to the vapor flow due to the dried layer, whose thickness increases as the 

ice sublimation progresses; 

2. the resistance to the vapor flow exerted by the elastomeric stoppers that are partially 

inserted in the neck of the vials during the drying process. These stoppers can have 

different opening configurations to allow the vapor flow during drying operation and 

are fully inserted at the end of the overall drying cycle to guarantee product sterility; 

3. the resistance to the vapor flow due to path from the drying chamber to the condenser.  

Several experimental studies (Pikal, 2000; Rambhatla et al., 2004; Pikal et al., 2016) have 

shown that the first contribution accounts for more than 80% of the total mass transfer 

resistance, whereas the stoppers and chamber-to-condenser contributions account for no more 

than 3-6% each. Therefore, the latter contributions are typically neglected and the mass transfer 

resistance reported in Eq. (7.3) only accounts for the contribution of the growing dried layer. 

The dependence of 𝑅𝑝 with respect to the thickness 𝐿𝑓𝑟𝑜𝑧𝑒𝑛 of the dried layer is typically 

expressed by Eq. (7.4), and the three parameters appearing in this equation, which need to be 

estimated, are 𝑅0, 𝑅1 and 𝑅2. 

                                                           
19 Note that the fact that 𝐶2 and 𝐶3 are the same for each zone does not mean that their sensitivities are the same, since their 

values are affected by the nominal value of 𝐶1 (which is different for each zone).  
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𝑅0 is the mass transfer resistance at the beginning of the ice sublimation process and depends 

on the product formulation. The interpretation of this parameter has been attributed to the mass 

transfer resistance of the top layer of the frozen product, but a rigorous physical explanation is 

still missing (Rambhatla et al., 2004). 𝑅1 describes the “speed” at which the mass transfer 

resistance increases with the dried layer thickness. The contribution of 𝑅2 is sometimes 

neglected (Pikal, 2000), and the dependence of 𝑅𝑝 with respect to 𝐿𝑓𝑟𝑜𝑧𝑒𝑛 is expressed as a 

linear relationship. 

Some experimental studies (Pikal, 2000; Rambhatla et al., 2004) have shown that the evolution 

of the mass transfer resistance during ice sublimation strongly depends on the product 

morphology, which is in turn affected by the freezing protocol adopted. In fact, the greater the 

nucleation temperature and degree of supercooling during the freezing step, the greater the size 

of ice crystals and dried pores inside the product, the smaller the mass transfer resistance to the 

vapor flow during ice sublimation. Different techniques (e.g., controlled ice nucleation and 

introduction of an annealing step during freezing) can be used to increase the dimensions of the 

ice crystals and therefore to reduce the value of 𝑅𝑝 during primary drying. 

The estimation of the parameters 𝑅0, 𝑅1 and 𝑅2 is typically performed with ad-hoc experimental 

techniques that all suffer from several limitations. The typical procedure consists of two 

sequential steps. 

1. First, the mass transfer resistance 𝑅𝑝 is determined experimentally using the 

relationship: 

 

𝑅𝑝 =
𝐴𝑣(𝑝𝑖 − 𝑝𝑐)

𝐽𝑤
    . 

(7.20) 

 

The sublimation flux 𝐽𝑤 can be obtained experimentally by inserting a weighing device 

inside the drying chamber (Fissore et al., 2010), by performing a pressure rise test 

(Fissore et al., 2010), or by using a non-invasive spectroscopic method called tunable 

diode laser absorption spectroscopy (Cassidy and Reid, 1982). However, the 

experimental values of 𝐽𝑤 (hence of 𝑅𝑝) obtained with these methods are only “local” 

values (i.e., valid for a single vial in the case of the weighing device) or “global” values 

(i.e., a single value of the mass transfer resistance is obtained for all the vials inside the 

drying chamber, in the case of pressure rise test and tunable diode laser absorption 

spectroscopy ). Additionally, these values do not account for the different mass transfer 

behavior of the vials inside the drying chamber. Note also that the application of Eq. 

(7.20) also requires measurements of the temperature at the bottom of the vials, since 

temperature 𝑇𝑖 at the sublimation interface can be inferred from them according to Eq. 

(7.8); after that, also 𝑝𝑖 can be inferred, according to Eq. (7.5). As will be shown in 

section 7.6, this is a serious (and still not resolved) limitation of these methods, since 
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the estimation of the mass transfer resistance depend on the estimation of the heat 

transfer coefficient. A wrong estimation of 𝐾𝑣 (which is typically obtained with the 

gravimetric method described in section 7.4.1) would result in a wrong estimation of 

𝑅𝑝, and, most importantly, the (possible) presence of a high correlation between those 

two parameters would completely invalidate the ability of these experimental methods 

(gravimetric for 𝐾𝑣 together with experimental identification of 𝑅𝑝) to correctly identify 

the model parameters. 

2. Parameters 𝑅0, 𝑅1 and 𝑅2 are then estimated by looking for the best fit between a 

reference curve and the experimental values of 𝑅𝑝 vs. the dried layer thickness 𝐿𝑑𝑟𝑖𝑒𝑑 

that can be obtained with one of the experimental strategies described above. 

Despite the aforementioned experimental techniques, which all suffer from some limitations, 

the parameters of the mass transfer resistance 𝑅𝑝 equation can also be estimated directly with 

the maximum likelihood estimator once measurements of vial bottom temperature and total 

amount of water sublimated are available. In other words, 𝑅0, 𝑅1 and 𝑅2 can be estimated 

together with the heat transfer parameter 𝐶1 at step #4 (Fig. 7.5) of the proposed methodology. 

For the same reasons discussed in the previous section, it is always desirable to study if some 

of these parameters can be set to their nominal values without affecting the overall model 

performance, so as to facilitate the estimation. To this purpose, a sensitivity analysis for the 

system KPIs with respect to 𝑅0, 𝑅1 and 𝑅2 was performed. 

The nominal values of these parameters are reported in the literature for the same formulation 

(5% sucrose-based placebo) that was used in the historical experiments. In this study, the values 

reported by Mortier et al. (2016) were used as nominal values for 𝑅0, 𝑅1 and 𝑅2. Note that these 

values are assumed to be the same for all the vials, and therefore sensitivity analysis can only 

be performed by assuming a “global” behavior of the mass transfer resistance (i.e., “global” 

nominal values are available for 𝑅𝑝, whereas “local” nominal values were available for 𝐾𝑣 

thanks to the gravimetric measurements). However, in this work, 𝑅𝑝 was not assumed to have 

the same values for all zones: instead, a value of 𝑅𝑝 was determined for each zone through the 

maximum likelihood estimator. As a consequence, since the results of the sensitivity analysis 

are only available on a “global” level, it is implicitly assumed that the sensitivities of the KPIs 

with respect to the three mass transfer parameters are not significantly affected by their “local” 

nominal values. 

The results of the sensitivity analysis are shown in Table 7.12. These values refer to the same 

drying recipe used for the sensitivity analysis on 𝐾𝑣 and were obtained by keeping 𝐾𝑣  constant 

and equal to the gravimetric value. 
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Table 7.12. Sensitivities for the vial bottom temperature, sublimation flux and 

cumulative amount of water sublimated with respect to the three parameters 

𝑅0, 𝑅1, 𝑅2. The values refer to a +1% deviation on the nominal value of the 

parameters and sensitivities are expressed as % of the nominal value of the 

KPI considered. The strongest sensitivity value is shown in boldface. 

Parameter  |𝑠𝑇,𝑖
𝑚𝑎𝑥|[%] |𝑠𝐽𝑤,𝑖

𝑚𝑎𝑥|[%] |𝑠𝑀,𝑖|[%] 

𝑅0 0.020 0.009 0.000 

𝑅1 0.076 1.321 0.199 

𝑅2 0.024 0.000 0.000 

 

From the results shown in Table 7.12, it can be concluded that: 

 𝑅2 has a negligible impact on all the KPIs of interest and can therefore be neglected (as 

confirmed by several experimental studies); 

 𝑅1 has a stronger influence on the KPIs of interest than 𝑅0, especially on the sublimation 

flux and the total amount of water sublimated (as one would expect). Therefore, accurate 

estimation of this parameter is crucial to obtain a reliable prediction of the sublimation 

flux and duration of the ice sublimation. 

In view of the above, parameter 𝑅0 was set to its nominal value, and 𝑅1 was treated as an 

additional model parameter to be preliminarily estimated. Note that the nominal value of 𝑅0 

depends on the product formulation; therefore, if its value cannot be found in the literature for 

the product under investigation, this parameter needs to be calibrated together with 𝐶1 and 𝑅1 

at the next step of the proposed methodology. 

7.4.5 Step #4: parameter estimation 

Based on the analyses performed in the previous steps, the  maximum likelihood estimation of 

the parameters of model (7.1)-(7.10) is reduced to a joint estimation of: 

 the heat transfer parameter 𝐶1, with initial guess set as the corresponding gravimetric 

value determined during step #1; 

 the mass transfer parameter 𝑅1, with initial guess set as the corresponding literature 

value. 

The two parameters 𝐶1, 𝑅1 must be estimated for each one of the 12 zones, with the other 

parameters 𝐶2, 𝐶3, 𝑅0, 𝑅2 set at their nominal values.  

The estimation activity has to be repeated for dataset B (non-siliconized vials) as well as dataset 

C (siliconized vials). The results of the parameter estimation activity for all the 12 zones 

considered is reported in Table 7.13 for dataset B. The results for dataset C can be found in 

appendix A. Note that the values of the parameters are reported as % of their nominal (i.e. initial 

guess) values.  
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Table 7.13. Maximum likelihood parameter estimation for the 12 zones 

considered. Dataset B (non-siliconized vials). 

Parameter 

% 

nominal 

value 

95% 

 t-value 

Reference 

t-value 
Parameter 

% 

nominal 

value 

95% 

t-value 

Reference 

 t-value 

 Zone 1    Zone 7    

𝐶1 103.65 74.41 1.65 𝐶1 103.12 78.12 1.65 

𝑅1 104.13 63.58 1.65 𝑅1 103.89 66.32 1.65 

Zone 2    Zone 8     

𝐶1 109.14 75.87 1.65 𝐶1 106.82 77.52 1.65 

𝑅1 102.12 66.41 1.65 𝑅1 104.82 65.56 1.65 

Zone 3    Zone 9    

𝐶1 102.45 77.89 1.65 𝐶1 107.74 74.52 1.65 

𝑅1 105.69 69.45 1.65 𝑅1 106.16 63.56 1.65 

Zone 4    Zone 10     

𝐶1 106.23 67.89 1.65 𝐶1 104.56 78.98 1.65 

𝑅1 109.12 62.12 1.65 𝑅1 102.12 67.85 1.65 

Zone 5     Zone 11    

𝐶1 112.25 70.25 1.65 𝐶1 102.31 75.65 1.65 

𝑅1 103.64 64.12 1.65 𝑅1 106.14 66.32 1.65 

Zone 6     Zone 12    

𝐶1 121.53 72.14 1.65 𝐶1 108.12 71.21 1.65 

𝑅1 114.73 65.9 1.65 𝑅1 114.56 59.87 1.65 

 

Table 7.13 shows that the two parameters can be identified by the maximum-likelihood 

estimator with high precision20, since their 95% t-values are significantly greater than the 

reference t-value. The good agreement between the experimental data and the model prediction 

is shown in Fig. 7.10 for 𝑝𝑐/�̅�𝑐 = 0.667. Similar results have been obtained for the other values 

of chamber pressure. Although these plots refer to the model calibrated for  zone # 6 of the 

batch of vials, similar results have been obtained for all the other 11 zones.  

 

                                                           
20 Note that a high precision on the parameter estimation does not necessarily mean a high accuracy on the estimated values. 
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Figure 7.10. Comparison between experimental observations (light blue markers) and model 

predictions (red lines) for zone 6 and 
𝑝

�̅�𝑐
= 0.667. 

 

A good fit of the historical experimental data is obtained with the available model. Particularly, 

the prediction of the end-point value of the cumulative amount of water sublimated is in good 

agreement with the experimental value (the model prediction is 0.87% smaller than the 

averaged experimental value). Moreover, the model is slightly underestimating this variable, 

which provides a conservative prediction of the total time needed to complete the ice 

sublimation. The state variables profiles predicted by the calibrated model in the zone 6 of the 

shelf are shown in Fig. 7.11. 
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Figure 7.11. Time profiles of the (a) length of the frozen layer, (b) sublimation flux, and (c) 

heat flux as predicted by the calibrated model for zone #6. 

 

7.4.6 Step #5: model validation 

Once the model has been preliminarily calibrated, the model performance can be assessed using 

a dataset that was not used for model calibration. Two validation datasets have been used to 

this purpose, namely dataset D for non-siliconized vials, and dataset E for siliconized vials.  

The ability of the model to give a reliable estimation of the KPIs of interest has been 

investigated. A slight complication to this model validation activity is due to a difference in the 

location of the thermocouples between the calibration and validation datasets, as well as the 

different loading between the calibration and validation datasets that could impact on the 

temperature dynamics. 
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For example, for non-siliconized vials, the validation dataset D collects measurements of 

product temperature for two vials placed in the middle of the first and last row of the first half 

of the shelf. According to Fig. 7.7, these locations should correspond, in principle, to zone 12 

and zone 7 (respectively) of the calibration dataset. Therefore, the model calibrated for these 

two zones should be used to challenge the model predictions against the experimental 

observations. However, since the position of the thermocouple itself is different between the 

two datasets, the models calibrated for zones adjacent to zones 12 and 7 have also been used to 

test the performance. Note that the only measurement available in the validation datasets is the 

vial bottom temperature, and the accuracy of the model prediction can therefore be assessed 

only for this variable. 

The comparison between the experimental values for the two temperature measurements of 

dataset D and the relevant model predictions is shown in Fig. 7.12. 

 

 
(a)                                                                              (b) 

 

Figure 7.12. Model validation for (a) thermocouple #5 and (b) thermocouple #6 of the 

validation dataset D. 

 

The first important remark to be made is on the experimental profile of the vial bottom 

temperature. This profile (black dots) is characterized by an abrupt inflection at around half of 

the total duration of primary drying, due to the transition of the frozen layer through the bottom 

of the vial. In principle, if the thermocouple touches the bottom of the vial, the inflection should 

correspond to the end of the ice sublimation process. Starting from this instant, the heating flow 

from the shelf is used to significantly increase the product temperature, but it is still not large 

enough to promote a significant water desorption (Pikal, 2000). From a practical point of view, 

it is difficult to guarantee a complete adherence between the thermocouple and the vial bottom, 

and the very presence of the thermocouple affects the vial behavior during ice sublimation. For 
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these reasons, the inflection on the product temperature profile can only be considered as a 

qualitative indication that the sublimation process is close to the end. 

The mono-dimensional model (7.1)-(7.10) only accounts for the ice sublimation process, and 

is therefore not suitable to describe the vial behavior when ice sublimation ends. Therefore, the 

behavior of the product temperature after the inflection cannot be captured by the available 

model. This behavior can be described by introducing a desorption model in the original 

formulation (Fissore et al., 2012). 

Due to the different geometry configurations between the calibration and validation datasets, it 

is not possible to describe the experimental profile with the model calibrated for a specific zone. 

However, Fig 7.12 shows that the model predictions of zones adjacent to the one where a 

temperature measurement is available are able to bracket the relevant behavior of the system 

during ice sublimation21. A better representation of the system could be obtained by developing 

an integrated multi-vial model accounting for the different thermal behaviors between the vials. 

Such a model is still an open research area that will be investigated in the future. 

Summarizing, the following conclusions to this preliminary analysis can be drawn: 

1. the model (7.1)-(7.10) is structurally consistent with the experimental observations as 

ice sublimation progresses. However, the different behaviors of the vials placed at 

different locations on the shelf cannot be captured by this model. The model can only 

be used to capture the behavior of each zone (assuming that all the vials of the same 

zone behave in the same way), and therefore its applicability to different configurations 

is limited. 

2. In the experimental conditions used for this study, the number of parameters that need 

to be identified by MBDoE is only two: one involving the heat transfer coefficient (𝐶1), 

the other involving the mass transfer resistance (𝑅1). These parameters can be identified 

from historical data with high precision (high t-values), but their accuracy is not 

guaranteed. However, if a different freeze-dryer geometry configuration, different vial,  

different formulation or different loading system (e.g., in frames or not) is used, 

optimally designed experiments are still needed to maximize their information in order 

to assist the parameter estimation activity. 

The latter issue is thoroughly discussed in the next section. 

7.5 Model-based design of experiments for primary drying 

The preliminary analysis described above showed that the two most influential model 

parameters 𝐶1 and 𝑅1 can be estimated from historical data with good precision. However, their 

values are affected by factors (such as system geometry and type of formulation) that are not 

                                                           
21 In absolute values, the prediction of the vial bottom temperature is bracketed within a ± 2°C accuracy by the model 

predictions. 
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taken into account explicitly in the model structure. Therefore, a new estimation of these 

parameters is required whenever the system configuration changes or a different formulate is 

used. In order to maximize the information that can be obtained from a new identification 

experiment, MBDoE techniques can be used to design optimal experiments based on the mono-

dimensional model (7.1)-(7.10). 

The objective of this section is to design a new experiment in order to maximize the precision 

that can be obtained for the estimation of 𝐶1 and 𝑅1. The same system configuration as the 

previous preliminary analysis will be kept, and a comparison between the precision on the 

estimated values of 𝐶1 and 𝑅1 that can be obtained with or without the new designed experiment 

will be discussed. Note that, in practical applications where both the system configuration and 

the type of formulation change, a reasonable estimate of the other model parameters 

(𝐶2, 𝐶3, 𝑅0, 𝑅2) is required. These estimates can be obtained with the same considerations 

described in the previous section, with the only difference that the value of 𝑅0 may not be 

available in the literature. In this scenario, 𝑅0 should be taken into account in the MBDoE 

activity as an additional parameter that must be estimated. 

7.5.1 Problem statement 

The design of a new optimal experiment, based on the model (7.1)-(7.10), requires the following 

information: 

1. initial conditions of the system, namely initial thickness of the frozen layer; 

2. assignment of the control variables whose profile need to be optimized, namely total 

chamber pressure and heating fluid temperature; 

3. time profile of the control (i.e., manipulated) inputs, which can be assumed to be time-

invariant, piecewise constant or piecewise linear. If a time-varying profile is chosen, the 

number of intervals and the upper and lower bounds of the control variables for each 

interval must be specified. For the system considered, a piecewise linear behavior for 

𝑇𝑓𝑙𝑢𝑖𝑑 and a piecewise constant behavior for 𝑝𝑐 have been chosen; 

4. assignment of the measurements that have to be collected and sampling frequency. For 

the system under investigation, the only variable that can be measured is the vial bottom 

temperature TB at specific locations within the freeze dryer, and a sampling interval of 

30 s was set; 

5. constraints on the state variables that need to be satisfied over the entire experiment or 

at the end of the experiment. As discussed in section 7.1.2, the two constraints that need 

to be satisfied during primary drying are (i) product temperature below the glass 

transition/eutectic temperature of the product, and (ii) sublimation flux lower than the 

maximum allowable flux to avoid choked flow. Both constraints were assumed to be 

time-invariant interior-point constraints to be satisfied over the entire drying operation; 
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6. model parameters that need to be estimated from the designed experiment, namely 𝐶1 

and 𝐴.  

The results of the MBDoE activity are: 

1. total duration of the experiment. Note that this variable can also be set to a fixed value 

depending on the type of experiment desired; 

2. length of the switching intervals for the manipulated inputs; 

3. profile (for 𝑇𝑓𝑙𝑢𝑖𝑑) or value (for 𝑝𝑐) of the control inputs within each switching interval. 

The MBDoE activity was performed based on the following assumptions and operational 

constraints for the experimental equipment: 

a. the model originally calibrated for zone #6 (central vials) was used as the reference 

model for the MBDoE. This is because central vials represent the majority of the vials 

within the freeze dryer, and therefore the experiment is optimized based on the behavior 

of the majority of the vials within the system. Note that this may cause the edge vials to 

not fulfill the constraint on the maximum allowable product temperature; 

b. a maximum normalized product temperature �̅�𝐵
𝑚𝑎𝑥 = 1.32 and a maximum normalized 

sublimation flux 𝐽�̅�
𝑚𝑎𝑥 = 1.26 were set based on the type of formulation and machine 

considered. 

c. the maximum allowable number of intervals was set equal to 13 due to limitations in 

the recipe implementation on the machine. 

The results of the MBDoE activity are reported in the next section. 

7.5.2 Designed experiment: “in silico” results 

The experiment was designed using the D-optimal criterion (section 7.3) and the total duration 

of the experiment was set to 990 min (16.5 h). The optimal profiles of the control inputs are 

shown graphically in Fig. 7.13 and numerically in Table 7.14. 

 

 
 

Figure 7.13. Control input profiles for the optimal experiment designed using MBDoE. 
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Notice that, although a piecewise linear profile was looked for, the heating fluid temperature is 

kept constant in each interval, and is characterized by an initial decrease followed by a slight 

increase of temperature towards the end of the experiment. With respect to the chamber 

pressure, only one meaningful switch is required from ∼ 50 mT to 75 mT after ~380 min. 

The designed experiment can be simulated in silico in order to study how the precision in the 

estimation of parameters 𝐶1 and 𝐴 improves with respect to the historical (non-designed) 

experiments.  

The results of the parameter estimation activity using the in-silico designed experiment are 

summarized in Table 7.15. For the designed experiment, two scenarios are analyzed, namely 

one where both the designed experiment and the historical datasets are used to estimate the 

parameters, and one where only the designed experiment is used to this purpose. It is worth 

noticing that whereas the designed experiment collects measurements of vial bottom 

temperature only, the historical data collect measurements of vial bottom temperature and 

cumulative amount of water sublimated. As can be seen, in both designed scenarios the 

precision of the estimation increases (much larger t-values are obtained) than when only 

historical experiments are used. 

Table 7.14. Numerical values of the control inputs for each interval of the 

optimally designed experiment of Figure 7.13. 

Interval # 
Interval duration 

[min] 

Normalized heating 

fluid temperature [-] 

Normalized chamber 

pressure [-] 

1 61.0 1.025 0.667 

2 61.0 1.019 0.667 

3 79.8 1.011 0.667 

4 83.5 1.005 0.667 

5 84.5 1.001 0.667 

6 84.6 1 0.667 

7 84.3 1.001 0.667 

8 83.5 1.002 1 

9 82.0 1.004 1 

10 79.5 1.007 1 

11 74.3 1.009 1 

12 60.9 1.011 1 

13 70.7 1.014 1 
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Table 7.15. Final values and estimate precision for parameters C1 and A 

using historical and optimal (in silico) experiments 

Parameter 
95% t-value (only 

historical data) 

95% t-value 
(historical data + 

designed experiment) 

95% t-value 
(only designed 

experiment) 

Reference t- 

value 

𝐶1 73.62 111.7 81.12 1.645 

𝐴 59.6 72.6 63.21 1.645 

 

It is worth noticing, however, that the two parameters are strongly correlated between, as 

confirmed by the following correlation matrices (index 1 = 𝐶1, index 2 = 𝑅1): 

 

          Only historical data:                   (
1 −0.932

−0.932 1
),    (7.21) 

 

Historical data+ designed exp. : (
1 −0.993

−0.993 1
), (7.22) 

 

Only designed exp.:                     (
1 −0.974

−0.974 1
). (7.23) 

 

This may have a potential effect on the accuracy of the estimates of the two parameters, since 

their values are jointly dependent on each other. This issue is still under investigation and is not 

covered in this Dissertation 

 

7.6 Final remarks and future work 

In this Chapter, a methodology to design a new experiment for the primary drying stage of a 

pharmaceutical freeze dryer has been proposed.  

First, a step-by-step approach has been developed in order to assess the structural consistency 

and the most influential parameters of a mono-dimensional model available in the literature. 

The methodology allowed to reduce the number of parameters to be estimated to only two 

parameters, related to heat and mass transfer. Moreover, a systematic approach to identify the 

nominal values of the other parameters has been proposed. 

Secondly, a new optimal experiment has been designed using MBDoE according to a D-optimal 

criterion. The designed experiment has been simulated in silico and promising results have been 

obtained for the parameter estimation activity, with a significant increase of the precision of the 

parameter estimates over the one that could be achieved using historical (non-designed) 

experiments. A significant correlation between the two parameters has also been identified at 

this stage. 
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Future work involves the implementation of the designed experiment on the real equipment. 

Moreover, the issue related to the high correlation of the two parameters will be tackled by 

considering re-parameterization techniques and different parameter estimation activities. 

Finally, further improvements to the available model will be implemented in order to capture 

the behavior of the partial pressure of water in the chamber in a more detailed fashion.
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Conclusions and future perspectives 
 

The description of the design space (DS) of a new pharmaceutical product is one of the most 

important activities that has been introduced within the Quality by Design (QbD) framework. 

An approved DS can represent a competitive advantage for the applicant company, since the 

process can be run anywhere within the DS without requiring any additional regulatory 

approvals. This translates into an enhanced process flexibility, which in turn translates into an 

increase of profitability.  

Different activities related to DS description are involved during the lifecycle of a 

pharmaceutical product. In pharmaceutical development, design space determination and 

uncertainty quantification (i.e., quantification of “assurance” of quality for the final product) 

represent two fundamental steps that companies should implement in order to prepare a 

submission for a new drug approval to the relevant regulatory bodies (e.g. Food and Drug 

Administration, FDA). During the technology transfer phase, design space scale-up and design 

space scale-out allows transferring the DS obtained at the laboratory scale to the commercial 

plant scale, or across different manufacturing sites. Finally, during commercial manufacturing, 

design space maintenance allows obtaining a continuous update of the DS as more information 

about the manufacturing process is gained through plant operation. 

Model-based approaches play a key role to tackle all the aforementioned activities related to 

DS description. Models can be used to link the raw material properties and critical process 

parameters of the manufacturing process to the critical quality attributes of the final product, 

thus allowing determination of the DS of the product. Moreover, models can be used to assist 

technology transfer activities related to DS description, as well as to assist DS maintenance 

during plant operation. 

 

In this Dissertation, advanced modeling strategies for the description and maintenance of the 

design space of new (or existing) pharmaceutical products have been developed. The proposed 

approaches aim at utterly fulfilling the definitions and requirements defined by the regulatory 

documents, in terms of both demonstration of the DS (i.e., rigorous scientific explanation of 

the methodology adopted for DS determination) and of quantification of assurance of quality 

(i.e., probability that the product will meet its quality specifications). Specifically, the following 

four different research areas were investigated: 

1. development of rigorous methodologies and metrics for the quantification of the 

assurance of quality for the final product; 
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2. development of computationally feasible and user-friendly (to be intended as ease of 

interpreting the results) methodologies for design space description; 

3. development of a methodology to adapt and maintain the model-based representation 

of a DS as process operation progresses; 

4. exploitation of model-based design of experiments (MBDoE) techniques for the 

identification of first-principles models to be used for DS description. 

Table C.1 summarizes the main achievements of this Dissertation, with indication of example 

applications, type of data used, and references where the results have been discussed. 

In Chapter 1, a thorough review of the methodologies that have been proposed in the literature 

to assist the description of a design space during product/process development, technology 

transfer and commercial manufacturing has been given. 

With reference to the issue of the quantification of “assurance” of quality, in Chapter 3 and 

Chapter 4 two methodologies have been proposed. The methodology presented in Chapter 3 is 

derived with concepts of frequentist statistics and suited for situations where a projection onto 

latent structures (PLS) model is to be used for DS description. The methodology presented in 

Chapter 4 is built upon concepts of Bayesian statistics and jointly exploits PLS modeling and 

Bayesian multivariate linear regression model to obtain a probabilistic representation of the 

design space. 

In more detail, in Chapter 3 two frequentist models were developed to back-propagate the 

uncertainty from the space of product quality (output space from a modeling perspective) to the 

space of raw material properties and process parameters (input space) of a pharmaceutical 

process. The backpropagation models were obtained for situations where a PLS model (built 

on historical manufacturing data of products “similar” to the one under development) is used 

to relate the raw material properties and process parameters to the product quality 

characteristics. It was shown how PLS model inversion, together with uncertainty back-

propagation, allows identifying a restricted portion of the original input domain (called 

experiment space) where the design space of the new product is expected to lie with a given 

degree of confidence. The experiment space can then be used to tailor an experimental 

campaign within this restricted set of input combinations, with advantages in terms of reduction 

of the duration and cost of the experimental campaign. The effectiveness of the methodology 

was tested on five case studies involving typical unit operations of the pharmaceutical industry, 

such as dry/wet granulation and roll compaction, involving both simulated and real 

experimental data. For all the case studies considered, the predicted experiment space 

effectively bracketed the actual design space of the pharmaceutical product under investigation. 

In Chapter 4, a methodology was proposed to exploit Bayesian multivariate regression together 

with PLS modeling in order to quantify the assurance of quality for the final product. The metric 

used to this purpose is the probability (to be intended according to its Bayesian interpretation) 

that the product will meet its quality specification, given the historical data available. The 
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proposed methodology combines: (i) a PLS model to reduce the dimensionality of the original 

input space for an easier discretization and interpretation; (ii) Markov-chain Monte-Carlo 

techniques to reconstruct the posterior probability distribution (PPD) of the product quality 

attributes for each input combination considered. The PPD obtained for all the combinations of 

the input domain allows identifying a probabilistic (or Bayesian) design space, defined as the 

set of input combinations for which the probability that the product will meet its specifications 

is greater than an assigned threshold. The DS obtained according to this approach is fully 

consistent with the regulatory requirements, since it contains a quantitative metric of the risk 

that the product may not reach its quality targets. The final outcome is a step-by-step 

methodology that companies may decide to use in design space submission to the regulatory 

agencies. The effectiveness of the proposed approach was tested on three case studies involving 

real experimental data (taken from the literature) of pharmaceutical unit operations. 

 

With respect to the issue of design space determination, a methodology was proposed in 

Chapter 5 to obtain a computationally feasible and user-friendly representation of the DS. The 

methodology was obtained by combining two different modeling strategies: (i) a PLS model to 

reduce the dimensionality of the input space; (ii) surrogate-based feasibility analysis to identify 

the DS on the latent representation of the input space obtained with the PLS model. It was 

shown how a cubic radial-basis function surrogate can be used to obtain a computationally 

cheap approximation of the original process model, and how an adaptive sampling strategy can 

be used to determine the DS boundary on the latent space identified by the PLS model. The 

methodology effectiveness was tested on a continuous line for pharmaceutical tablet 

manufacturing, and the computational benefits (~80% reduction of the overall computational 

time) were presented together with the improvements in terms of ease of DS representation (a 

single two-dimensional latent plot can be used to represent a six-dimensional design space). 

Moreover, the robustness of the methodology was tested with other strongly nonlinear 

mathematical examples. 

 

The problem of design space maintenance during plant operation was discussed in Chapter 6, 

where a methodology was proposed to obtain a continuous adaptive refinement of the 

representation of the DS that can be obtained using a first-principles model. Given the available 

measurements coming from plant sensors, the methodology jointly exploits (i) a dynamic state 

estimator and (ii) surrogate-based feasibility analysis to perform continuous adaption of the DS 

as process operation progresses. It was shown how the state estimator can be used to adjust in 

real time a small subset of the model parameters in order to compensate for process/model 

mismatch, and obtain an up-to-date representation of the state of the system. Feasibility analysis 

were then used to identify the DS boundary based on the up-to-date model returned by the state 

estimator
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Table C.1. Summary of the main achievements of this Dissertation, with indication of their relevant applications, the original of the 

data used and the related references. 

Chapter Main achievement       Application Data origin Reference 

Chapter 1 Review on methodologies 

for design space 

description 

             (-) (-) Bano, G., Facco, P., Bezzo, F., Barolo M. (2018) Design space 

description in pharmaceutical development and manufacturing: a review. 

In preparation.  

               (-)   

Chapter 3 Development of two 

uncertainty back-

propagation models for 

PLS model inversion in 

pharmaceutical product 

development  

 Roll compaction 

 High-shear wet     

   granulation 

 Dry granulation 

Simulated and 

laboratory 

Bano, G., Meneghetti, N., Facco, P., Bezzo, F., Barolo M. (2017) 

Uncertainty back-propagation in PLS model inversion for design space 

determination in pharmaceutical product development. Comput. Chem. 

Eng. 101, 110-124.  

 

Facco, P., Bano, G., Bezzo, F., Barolo M. (2017) Multivariate statistical 

approaches to aid pharmaceutical processes: product development and 

process monitoring in a Quality-by-design perspective. EuroPACT 2017. 

May 10-12, Potsdam (Germany).  

 

 

Bano, G., Meneghetti, N., Facco, P., Bezzo, F., Barolo, M. (2017) 

Determinazione dello spazio di progetto di un nuovo prodotto 

farmaceutico: caratterizzazione dell’incertezza. Convegno GRICU 2017: 

gli orizzonti dell’ingegneria chimica. September 24-29, Anacapri (NA; 

Italy). 

 

 
Chapter 4 Joint Bayesian/latent 

variable approach for the 

quantification of the 

“assurance” of quality of a 

new pharmaceutical 

product 

 Roll compaction 

 High-shear wet     

   granulation 

 Dry granulation 

 

Simulated and 

laboratory 

Bano, G., Facco, P., Bezzo, F., Barolo, M. (2018) Probabilistic design 

space determination in pharmaceutical development: a Bayesian/latent 

variable approach. AIChE J. 64, 2438-2449. 

 

Bano, G., Facco, P., Bezzo, F., Barolo, M (2017) Handling parametric 

and measurement uncertainty for design space determination in 

pharmaceutical product development: a Bayesian approach. Presented 
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at: World Congress of Chemical Engineering WCCE10. October 1-5, 

Barcelona (Spain). 

 
Chapter 5 General methodology to 

describe the design space 

of a pharmaceutical 

product through a joint 

PLS/feasibility analysis 

approach 

 Continuous direct  

   compaction  

          manufacturing line 

Simulated Bano, G., Wang, Z., Facco, P., Bezzo, F., Barolo, M., Ierapetritou, M. 

(2018) A novel and systematic approach to identify the design space of 

pharmaceutical processes. Comput. Chem. Eng. 115, 309-322. 

 

Bano, G., Z. Wang, P. Facco, F. Bezzo, M. Barolo, M. Ierapetritou 

(2018). Dimensionality reduction in feasibility analysis by latent variable 

modeling. In: Computer-Aided Chemical Engineering 44, Proc. of the 

13th International Symposium on Process Systems Engineering – PSE 

2018, July 1-5 2018 (M.R. Eden, M.G. Ierapetritou, G.P. Towler, Eds.), 

Elsevier, Amsterdam (The Netherlands), 1477-1482. 

 

 
Chapter 6  Systematic methodology 

for online maintenance of 

the design space 

 Dry granulation 

 Penicillin       
   fermentation 

Simulated Bano, G., Facco, P., Ierapetritou, M., Bezzo, F., Barolo, M. (2018) 

Design space maintenance by online model adaptation in pharmaceutical 

manufacturing. Submitted to: Comput. Chem. Eng.  

 
Chapter 7  Design of optimal 

experiments for 

pharmaceutical freeze 

drying 

 Pharmaceutical  

   freeze drying 

Industrial (-) 
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The methodology was tested with two case studies, the former involving the granulation of a 

pharmaceutical formulate, the latter involving the fermentation of penicillin in pilot scale 

bioreactor. In both situations, the ability of the proposed approach to timely track the DS was 

proven. The methodology was tested on two case studies, the former involving the granulation 

of a pharmaceutical formulate, the latter involving the fermentation of penicillin in pilot scale 

bioreactor. In both situations, the ability of the proposed approach to continuously track the DS 

was proven. 

 

With respect to the issue of the design of optimal experiments for the identification of first-

principles models to be used for DS description, in Chapter 7 it was shown how model-based 

design of experiments (MBDoE) techniques can be exploited to reach this target. MBDoE was 

used to design a new experiment in order to extract the maximum amount of information for 

the identification of the most influential parameters of a mechanistic model of an experimental 

pharmaceutical freeze dryer. A preliminary analysis was first performed based on historical 

data in order to assess the structural consistency of the model and to determine its most 

influential parameters (with respect to the key performance indicators of the system). A new 

experiment was then designed using MBDoE in order to extract the maximum amount of 

information for the identification of the two most influential model parameters. Significant 

improvements were obtained in terms of precision in the parameter estimates, both in silico and 

in the experiment performed on the real equipment.  

 

Some areas of further investigation can be discussed at this point.  

 Validation of the methodologies presented in Chapter 3 through Chapter 6 was carried 

out using laboratory or simulated data. It would be very useful if industrial data could 

be used instead. Chapter 7 has started considering the use of industrial datasets, but more 

work needs to be done in this direction. 

 The methodology proposed in Chapter 3 could be extended to situations where 

multivariate quality specifications are imposed on the product quality. The current 

methodology can only handle univariate quality specifications, due to a lack of proper 

prediction uncertainty models for PLS. The identification of such models is still an open 

research area that could be investigated and integrated with the uncertainty back-

propagation approach presented in Chapter 3. 

 The methodology presented in Chapter 4 could be extended to nonlinear models (data-

driven or mechanistic) in order to handle strong process nonlinearities, where the 

proposed linear approach is deemed to fail in most practical situations. The application 

of Bayesian methodologies on complex nonlinear models poses some (still unresolved) 

issues in terms of both computational demand and choice of the prior distributions of  
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the parameters. The solution to these problems could be beneficial in terms of 

probabilistic DS description for complex process models. 

 The methodology presented in Chapter 5 could be extended to surrogates other than the 

cubic radial basis function one, and a comparison between the performance of the 

different surrogates could be performed. Moreover, there is still a need to develop new 

metrics to link the projection error of the PLS model to the accuracy metrics of the 

surrogate-based feasibility analysis step. 

 Areas of future research for the methodology presented in Chapter 6 could be the 

extension to other state estimation algorithms (e.g., particle filters), as well as the 

development of more sophisticated methodologies to identify the parameters to be 

adjusted in real time during plant operation. Moreover, a validation with real plant data 

could be beneficial to test the robustness of the methodology. 

 The work presented in Chapter 7 is still ongoing and different areas of investigation are 

currently being considered. First, the possibility of performing some improvements 

(from a structural point of view) to the mechanistic model are being studied. These 

improvements include a better representation of the dynamics of water partial pressure 

within the drying chamber, as well as a better representation of the drying heterogeneity 

within the vials. With respect to the MBDoE activity, other experiments considering 

different types of operational constraints and different experimental settings are 

currently being designed.  

.
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Appendix A 
 

Penicillin fermentation model 
 

 

 

This Appendix collects a detailed description of the penicillin fermentation model proposed by 

Birol et al. (2002) that has been used in Chapter 6 to simulate the pilot plant behavior. The 

relevant model equations, as well as all the relevant model parameters, are reported. 

A.1 Model equations 

The model equations are reported below. These equations were implemented in MATLAB™ 

2017b. 

 

Biomass growth: 

d𝐵

d𝑡
= 𝜇𝐵 − (

𝐵

𝑆𝐹𝑉
)𝑈                                                                      (A.1) 

with:  

𝜇 = [
𝜇𝑥

1+
𝐾1
[H+]

+
[H+]

𝐾2

]
𝑆

𝐾𝑏𝐵+𝑆

𝐶𝐿

𝐾𝑜𝑥𝐵+𝐶𝐿
{[𝑘𝑔 exp (−

𝐸𝑔

𝑅𝑇
)] − [𝑘𝑑 exp (−

𝐸𝑑

𝑅𝑇
)]}.                  (A.2) 

Substrate utilization: 

d𝑆

d𝑡
= −𝜇 (

𝐵

𝑌𝐵/𝑆
) − 𝜇𝑝𝑝 (

𝐵

𝑌𝑃/𝑆
) − 𝑚𝐵𝐵 +

𝑈𝑆𝐹

𝑉
−
𝑆

𝑉

d𝑉

d𝑡
                                         (A.3) 

Effect of pH: 

d[H+]

d𝑡
= 𝛾 (𝜇𝐵 −

𝑈𝐵

𝑉
) + [

 
 
 −𝛿+√(𝛿2+4⋅10−14)

2
−[𝐻+]

]
 
 
 

Δ𝑡
                                           (A.4) 

with: 
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 𝛿 = [
10−14

[𝐻+]
− [𝐻+]] 𝑉 −

𝐶𝑎/𝑏(𝐹𝑎+𝐹𝑏)Δ𝑡

𝑉+(𝐹𝑎+𝐹𝑏)Δ𝑡
.                                                 (A.5) 

Dissolved oxygen material balance: 

d𝐶𝐿

d𝑡
=

𝜇

𝑌𝐵/𝑜
𝐵 −

𝜇𝑝𝑝

𝑌𝑃/𝑜
𝐵 −𝑚𝑜𝐵 + 𝐾𝑙𝑎(𝐶𝐿

∗ − 𝐶𝐿) −
𝐶𝐿

𝑉

d𝑉

d𝑡
                                 (A.6) 

with 

𝐾𝑙𝑎 = 𝛼√𝑓𝑔 (
𝑃𝑤

𝑉
)
𝛽

.                                                                    (A.7)  

Penicillin production: 

d𝑃

d𝑡
= 𝜇𝑝𝑝𝐵 − 𝐾𝑃 −

𝑃

𝑉
 
d𝑉

d𝑡
                                                                (A.8) 

with 

𝜇𝑝𝑝 = 𝜇𝑝𝑝
𝑚𝑎𝑥 𝑆

𝐾𝑝+𝑆+
𝑆2

𝐾1

 
𝐶𝐿

𝐾𝑜𝑝𝐵+𝐶𝐿
 .                                                          (A.9) 

Volume change: 

d𝑉

d𝑡
=

𝑈

𝑠𝐹
+ 𝐹𝑎/𝑏 − 𝐹𝑙𝑜𝑠𝑠                                                                 (A.10) 

with  

𝐹𝑙𝑜𝑠𝑠 = 𝑉𝜆(𝑒
5(𝑇−𝑇0)

𝑇𝑣−𝑇0 −1) .                                                             (A.11) 

Heat generation: 

d𝑄𝑟

d𝑡
= 𝑟𝑞1

d𝐵

d𝑡
𝑉 + 𝑟𝑞2𝐵𝑉.                                                             (A.12) 

Energy balance: 

d𝑇

d𝑡
=

𝑈

𝑠𝐹
(𝑇𝑓 − 𝑇) +

1

𝑉𝜌𝑐𝑝
 [𝑄𝑟 −

𝑎𝐹𝑐
𝑏+1

𝐹𝑐+(
𝑎𝐹𝑐
𝑏

2𝜌𝑐𝑝𝑐
)

].                                          (A.13) 

CO2 evolution: 

d[CO2]

d𝑡
= 𝛼1

d𝐵

d𝑡
+ 𝛼2𝐵 + 𝛼3.                                                     (A.14) 
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The state variables involved in the model (A.1)-(A.14) are collected in Table A.1. A full list of 

the initial conditions that have been used for the simulations presented in Chapter 6, as well as 

a full list of all the model parameters with their respective values are reported in Table A.2 and 

Table A.3 respectively. 

Table A.1.  List of state variables involved in the process of Birol 

 Symbol Definition 

𝐵 Biomass concentration  

𝑆 Substrate concentration 

𝑃 Penicillin concentration 

𝐶𝐿 Dissolved oxygen concentration 

[H+] Concentration of hydrogen ions 

𝑉 Volume 

𝑄𝑟  Heat generation power 

𝑇 Temperature 

[CO2] Concentration of CO2 produced 

 

Table A.2.  List of initial conditions for the state variables 

State variable Initial value Units 

Biomass concentration  0.1 [gB/L] 

Substrate concentration 15 [gS/L] 

Penicillin concentration 0 [gP/L] 

Dissolved oxygen concentration 1.16 [go/L] 

Volume 100 [L] 

CO2 concentration 0.5 [mmol/L] 

Hydrogen ion concentration 10−5.1 [mol/L] 

Temperature 297 [K] 

Heat generation 0 [cal] 
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Table A.3. List of parameters for the penicillin fermentation model of Birol et 

al. (2002). 

Parameter Definition Units Value 

𝜇x Maximum specific biomass growth rate  [h−1] 0.092 

𝐾𝑥 Contois saturation constant  [g/L] 0.15 

𝑌𝐵/𝑆 Yield constant [gB/gS] 0.45 

𝑌𝐵/𝑜 Yield constant [gB/go] 0.04 

𝑌𝑃/𝑆 Yield constant [gP/gS] 0.90 

𝑌𝑃/𝑜 Yield constant [gP/go] 0.20 

𝐾1 Constant for 𝜇 [mol/L] 10−10 

𝐾2 Constant for 𝜇 #2 [mol/L] 7 × 10−5 

𝑚𝑥 Maintenance coefficient on substrate [h-1] 0.014 

𝑚𝑜 Maintenance coefficient on oxygen [h-1] 0.467 

𝛼1 Constant relating CO2 to growth [mmol CO2/𝑔𝐵] 0.143 

𝛼2 Constant relating CO2 to maintenance energy [mmol CO2/(𝑔𝐵h)] 4 × 10−7 

𝛼3 Constant relating CO2 to penicillin production [mmol CO2/(L h)] 10−4 

𝐾𝑜𝑥 , 𝐾𝑜𝑝 Oxygen limitations constants (no limitation) [-] 0 

𝐾𝑜𝑥 , 𝐾𝑜𝑝 Oxygen limitations constants (with limitation) [-] 2 × 10−2, 5 × 10−4 

𝜇𝑝𝑝
𝑚𝑎𝑥 Specific rate of penicillin production [h-1] 0.005 

𝐾𝑝 Inhibition constant [g/L] 0.0002 

𝐾𝐼  Inhibition constant for product formation [g/L] 0.10 

𝑝 Constant [-] 3 

𝐾 Penicillin hydrolysis rate constant [h-1] 0.04 

𝑘𝑔 Arrhenius constant for growth [-] 7 × 10−3 

𝐸𝑔 Activation constant for growth [cal/mol] 5100 

𝑘𝑑 Arrhenius constant for cell death [-] 1033 

𝐸𝑑 Activation energy for cell death [cal/mol] 50000 

𝜌𝑐𝑝 Density × heat capacity of the medium [cal/(°C L)] 1/1500 

𝜌𝑐𝑝𝑐 Density × heat capacity of the cooling liquid [cal/(°C L)] 1/2000 

𝑟𝑞1 Yield of heat generation [cal/𝑔𝐵] 60 

𝑟𝑞2 Constant in heat generation [cal/𝑔𝐵  ℎ] 1.6783× 10−4 

𝑎 Heat transfer coefficient [cal/h °C] 1000 

𝑏 Constant [-] 0.60 

𝛼 Constant for 𝐾𝑙𝑎 [-] 70 

𝛽 Constant for 𝐾𝑙𝑎 [-] 0.4 

𝜆 Constant in 𝐹𝑙𝑜𝑠𝑠 [h-1] 2.5 × 10−4 

𝛾  Proportionality constant [mol [H+]/𝑔𝐵] 10−5 

𝑇𝑓 Feed temperature of substrate [K] 298 
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Appendix B 
 

Additional numerical results for the 

freeze-drying process 
 

In this Appendix, the results that have been obtained for dataset C (siliconized vials) of the 

process described in Chapter 7 are presented. The results are shown following the same 

structure that has been used for dataset A (non-siliconized vials) in Chapter 7. 

B.1 Gravimetric estimation of 𝑲𝒗 for dataset C 

Table B.1 – B-3 collect the esimates of the heat transfer coefficient obtained with the 

gravimetric method. Similar results to the ones for dataset A have been obtained, thus 

suggesting that the heat transfer coefficient is not sensibly affected by the presence of the 

silicone layer on the internal surface of the vials. 

Table B.1.  Mean values of the heat transfer coefficient and standard 

deviations for dataset C at  𝑝𝑐/�̅�𝑐   = 0.667. 

Zone # Normalized mean value of 𝑲𝒗 [-] Standard deviation Vial type 

 1 1.413 0.129 Edge 

2 1.081 0.082 Edge 

3 1.225 0.121 Edge 

4 1.041 0.133 Central 

5 1.187 0.145 Edge 

6 0.972 0.122 Central 

7 1.019 0.154 Central 

8 1.346 0.124 Edge 

9 0.868 0.122 Central 

10 1.611 0.296 Edge 

11 1.299 0.201 Edge 

12 2.212 0.287 Edge (window) 
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Table B.2.  Mean values of the heat transfer coefficient and standard 

deviations for dataset A at  𝑝𝑐/�̅�𝑐   = 1. 

Zone # Normalized mean value of 𝑲𝒗 [-] Standard deviation Vial type 

 1 1.715 0.094 Edge 

2 1.213 0.086 Edge 

3 1.455 0.135 Edge 

4 1.124 0.095 Central 

5 1.341 0.083 Edge 

6 1.119 0.087 Central 

7 1.201 0.085 Central 

8 1.513 0.112 Edge 

9 1.050 0.122 Central 

10 1.746 0.264 Edge 

11 1.422 0.101 Edge 

12 2.974 0.196 Edge (window) 

 

Table B.3.  Mean values of the heat transfer coefficient and standard 

deviations for dataset A at  𝑝𝑐/�̅�𝑐   = 1.333. 

Zone #0 Normalized mean value of 𝑲𝒗 [-] Standard deviation Vial type 

 1 1.642 0.113 Edge 

2 1.310 0.125 Edge 

3 1.542 0.145 Edge 

4 1.055 0.055 Central 

5 1.412 0.142 Edge 

6 1.200 0.133 Central 

7 1.322 0.194 Central 

8 1.848 0.368 Edge 

9 1.136 0.341 Central 

10 1.697 0.145 Edge 

11 1.655 0.193 Edge 

12 2.412 0.166 Edge (window) 

 

The “global” heat transfer coefficient that would be obtained by averaging all the values within 

the drying chamber is reported in Table B.4, together with its standard deviation. 
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Table B.4.  Mean values and standard deviations of the “global” (i.e. 

computed  for all the 12 zones) heat transfer coefficient at the three different 

values of chamber pressure considered. 

Normalized chamber pressure [-] Normalized mean value of 𝑲𝒗 [-] Standard deviation 

 0.667 1.341 0.793 

1 1.552 0.892 

1.333 1.601 0.889 

 

B.2 Maximum likelihood parameter estimation for dataset C 

Table B.5 collects the resulta of the MLE activity for dataset C. The results suggest a strong 

effect of the silicone layer on the mass transfer resistance, while only a slight effect on the heat 

transfer coefficient (as already suggested by the gravimetric estimates). 

Table B.5.  Maximum likelihood parameter estimation for the 12 zones 

considered. Dataset C (siliconized vials). 

Parameter 

% 

nominal 

value 

95% 

 t-value 

Reference 

t-value 
Parameter 

% 

nominal 

value 

95% 

t-value 

Reference 

 t-value 

 Zone 1    Zone 7    

𝐶1 103.44 74.41 1.65 𝐶1 103.10 68.11 1.65 

𝑅1 112.11 69.18 1.65 𝑅1 121.79 46.22 1.65 

Zone 2    Zone 8     

𝐶1 109.00 72.11 1.65 𝐶1 108.40 65.41 1.65 

𝑅1 109.12 57.14. 1.65 𝑅1 107.92 50.12 1.65 

Zone 3    Zone 9    

𝐶1 101.16 75.82 1.65 𝐶1 111.61 71.46 1.65 

𝑅1 118.32 62.12 1.65 𝑅1 101.12 48.57 1.65 

Zone 4    Zone 10     

𝐶1 106.21 64.59 1.65 𝐶1 103.12 68.92 1.65 

𝑅1 107.56 52.13 1.65 𝑅1 107.11 65.16 1.65 

Zone 5     Zone 11    

𝐶1 112.14 68.26 1.65 𝐶1 112.30 71.25 1.65 

𝑅1 113.12 60.12 1.65 𝑅1 108.19 56.25 1.65 

Zone 6     Zone 12    

𝐶1 121.41 68.59 1.65 𝐶1 109.10 61.12 1.65 

𝑅1 119.71 61.92 1.65 𝑅1 119.51 44.32 1.65 
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