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Abstract

Multivariate categorical data are routinely collected in several applications, including

epidemiology, biology, and sociology, among many others. Popular models dealing with

these variables include log-linear and tensor factorization models, with these lasts having

the advantage of flexibly characterizing the dependence structure underlying the data.

Under such framework, this Thesis aims to provide novel approaches to define compact

representations of the dependence structures and to introduce new inference possibil-

ities in tensor factorization approaches. We introduce a new class of GROuped Tensor

(GROT) factorizations, which have superior performance in terms of data compression

if compared to standard Parafac approach, using relatively few components to represent

the joint probability mass function of the data. While popular Parafac factorizations rely

on mixing together independent components, GROT mixes together grouped factoriza-

tions, equivalent to replacing vector arms in Parafac with low-dimensional tensor arms.

We consider a Bayesian approach to inference with Dirichlet priors on the mixing weights

and arm components, to obtain a combined low-rank and sparse structure, while facil-

itating efficient posterior computation via Markov chain Monte Carlo. Motivated by an

application on malaria risk assessment, we also introduce a novel multivariate general-

ization of mixed membership models, which allows identification of correlated profiles

related to different domains corresponding to separate groups of variables. We consider

as a case study the Machadinho settlement project in Brazil, with the aim of defining sur-

vey based environmental and behavioral risk profiles and studying their interaction and

evolution. To achieve this goal, we show that the use of correlated multiple membership

vectors leads to interpretable inference requiring a lower number of profiles compared to

standard formulations while inducing a more compact representation of the population

level model. We propose a novel multivariate logistic normal distribution for the mem-

bership vectors, which allows easy introduction of auxiliary information in the member-

ship profiles leveraging a multivariate latent logistic regression. A Bayesian approach to

inference, relying on Pólya gamma data augmentation, facilitates efficient posterior com-

putation via Markov chain Monte Carlo. The proposed approach is shown to outperform

the classical mixed membership model in simulations, and the malaria diffusion appli-

cation.





Sommario

I dati categoriali multivariati sono raccolti e utilizzati per una vasta gamma di appli-

cazioni, comprendenti, tre le molte altre, epidemiologia, biologia e sociologia. Tra gli

approcci più usati nell’analisi di queste variabili troviamo i modelli log-lineari e quelli

per la fattorizzazione tensoriale, dove questi ultimi hanno il vantaggio di rappresentare

in maniera flessibile la struttura di dipendenza sottostante i dati. Muovendosi in questo

contesto, la tesi si propone di presentate nuovi approcci atti a definire in maniera com-

patta la struttura di dipendenza e ad introdurre nuove metodologie inferenziali nell’am-

bito della fattorizzazione tensoriale. Si introduce una nuova classe di fattorizzazione ten-

soriale raggruppata (GROT), che presenta proprietà migliori in termini di compressione

rispetto agli approcci standard, quali la Parafac, utilizzando meno componenti per rapp-

resentare la funzione di massa di probabilità dei dati. Mentre la più nota fattorizzazione

di tipo Parafac associa componenti indipendenti, GROT associa fattorizzazioni raggrup-

pate, che equivale a sostituire i vettori costituenti le componenti della Paracac, con ten-

sori a ridotte dimensioni. Si considera un approccio bayesiano all’inferenza basandosi

su priori coniugate di tipo Dirichlet sia sulle componenti di mistura, che sulle compo-

nenti della fattorizzazione, in modo da ottenere simultaneamente una rappresentazione

sparsa e a rango ridotto, e facilitare la stima del modello tramite catene di Markov Monte

Carlo. Partendo da un’applicazione sulla diffusione della malaria, si introduce, inoltre,

una nuova generalizzazione multivariata dei modelli di tipo Mixed Membership, consen-

tendo l’identificazione di profili correlati a diversi domini che corrispondono a gruppi di

variabili distinti. Come caso studio si considera il progetto di insediamento di Machad-

inho in Brasile, con lo scopo di identificare profili di rischio ambientali e comportamen-

tali basati su sondaggi, e di studiarne l’evoluzione e interazione. Per il conseguimento

di questo obiettivo si mostra che l’uso di profili di rischio correlati da luogo a risultati

interpretabili richiedendo un minor numero di profili latenti e introducendo una rapp-

resentazione parsimoniosa del modello a livello di popolazione. Si propone una nuo-

va distribuzione logit-normale multivariata per i vettori di appartenenza, che consente

di introdurre informazione aggiuntive facendo leva su regressioni logistiche latenti. Un

approccio bayesiano alla stima dei parametri, basato sulla distribuzione Pólya gamma

facilità la simulazione dalla a posteriori tramite MCMC. Si mostra come il metodo pro-

posto migliora la formulazione standard in simulazioni nell’applicazione proposta sulla

diffusione della malaria.
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Introduction

Overview

Multivariate categorical data are present in many fields of study, including psychol-

ogy (e.g. Muthen and Christoffersson, 1981), social science (e.g. Santos et al., 2015) and

epidemiology (e.g. Landis et al., 1988), among others. When dealing with this kind of

variables many inferential tasks can be accomplished by modeling the probability mass

function (p.m.f.) and its functionals.

Let X = (X1, . . . , Xp )T , be a vector of categorical random variables, where X j ∈ {1, . . . , d j }
for j = 1, . . . , p . The sample space corresponding to the random variable X is the product

space Ω = {1, . . . , d1} × · · · × {1, . . . , dp }, having cardinality |Ω| =
∏p

j=1 d j . We can imme-

diately notice that the cardinality of such a space increases at an exponential rate with

the number of variables p . Formally, the p.m.f. underlying the random variable X is de-

fined as a function p(ω) : Ω→ [0, 1] for all ω ∈ Ω, satisfying
∑

ω∈Ωp(ω) = 1. Without any

assumption we would have a parametric space Θ having cardinality |Θ|= |Ω| − 1. Clearly

p(ω) can be parameterized by means of functions defined on a lower dimensional space.

To accomplish such a goal arguably one of the most popular class of procedures is repre-

sented by log-linear models (e.g. Agresti, 2013) which directly parameterize the logarithm

of the p.m.f. as a linear function encompassing the (conditional) dependence structure

of the considered variables.

Log-linear models are a useful tool, but they require the specification of the depen-

dence structure of the considered data. Learning such a structure is still feasible in small

problems, but when the number of variables p increases the number of possible interac-

tions that can be included in the model explodes. Sparsity can be explicitly incorporated,

for example, Ntzoufras et al. (2000) and Nardi et al. (2012) proposed a Bayesian stochastic

search and a group-lasso algorithm for model selection respectively. However, when p is

moderate to large, these procedures require restrictions for computational tractability,

1



2 Main contributions of the thesis

potentially affecting flexibility. As a result, inference in log-linear models can be a cum-

bersome task in high-dimensional settings, where the dimension of the model space is

huge.

By construction the p.m.f. {p(ω);ω ∈Ω} can be viewed as a probability tensor defined

on a simplex S of dimension |Ω|−1. A probability tensor is then a tensor πwhose entries

are non negative and sum up to 1. In view of this consideration, recent literature avoids

pre-specifying the graphical dependence structure in the multivariate categorical data by

means of tensor factorization.

Tensor factorization models represent a class of procedures to define low-rank ap-

proximations of multivariate tensor, not relying on highly restrictive parametric assump-

tions. These methods can be used to reconstruct p(ω) and its functional, relying on the

low dimensional structures provided by tensor decomposition itself.

Among tensor factorization models, one of the most popular is the so called Parafac (e.g.

Dunson and Xing, 2009) which defines the probability mass function for a multivariate

categorical random vector as a mixture of products of multinomial distributions. This

factorization provides a flexible and computationally tractable representation, but might

lead to unsatisfactory characterization of the p.m.f. when the sample size is moderate to

low compared to the number of variables. Tucker (Bhattacharya and Dunson, 2012) and

C-Tucker (Johndrow et al., 2017) factorizations mitigate such issue introducing a multi-

variate latent variable for the mixture weights, however, these lasts are computationally

intensive to estimate, while subsequent inference is cumbersome if compared to the one

provided by Parafac.

Tucker decomposition is intimately connected with Mixed Membership (MM) mod-

els (e.g. Airoldi et al., 2014), whose main goal is to derive properties of individuals based

on results of multivariate measurements, making use of subject-specific weights in a mix-

ture model. MM or admixture models have been extensively used in many fields, and

they received a particular attention in text mining for topic discovery analysis (e.g. Blei

et al., 2003). In this field different generalizations have been proposed, including effi-

cient estimation methods through variational approximations (e.g. Mimno et al., 2012)

and different choices of the mixture weights distribution (e.g. Lafferty and Blei, 2006),

however considerations on how to interpret models parameters have been for the most

part ignored.

Main contributions of the thesis

In the context of Bayesian models for categorical variables this thesis aims to provide
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novel tools devoted to define: (i) compact representations of the dependence structure

underlying the data; (ii) interpretable models exploiting new inference possibilities for

tensor factorization.

In considering such goals, in the following Chapters, we introduce two new tensor fac-

torization models, having different properties and goals. Specifically, in Chapter 1 , we

introduce some basic definitions and properties of tensors and tensors algebra, mostly

used in the subsequent models. In Chapter 2 we introduce a grouped tensor factoriza-

tion which produces a flexible characterization of the dependence structure underlying

the data, leading to a more compact representation in term of latent classes if compared

to standard Parafac model. In Chapter 3, exploiting the connection between Tucker de-

composition and MM models, we introduce a novel multivariate generalization of mixed

membership models, which allows identification of correlated profiles related to different

conceptual domains corresponding to separate groups of variables.

We show some theoretical properties of all the proposed approaches, highlighting

their flexibility in simulations and real data applications.

Grouped tensor factorization

Parafac model is one of the preferred tensor factorization approach for categorical

data, due to its simplicity and flexibility. The main advantage of this model is in relying

on a simple functional form, being a mixture of independent multinomial distributions,

which grants flexibility in many applications. Despite its generality, the simple assump-

tion underlying Parafac models may lead to poor representation of the p.m.f., in particu-

lar when a block dependence structure is present in the data.

To overcome this issue, in Chapter 2 , we developed a new tensor factorization hav-

ing m-way tensor arms (i.e. m-dimensional kernels in a mixture representation) with

m ≥ 1 . We refer to this factorization as GROuped Tensor (GROT) reflecting the group-

ing of the variables in the tensor arms of the decomposition. GROT decomposition pro-

duces a flexible characterization of the dependence structure underlying the data, lead-

ing to a more compact representation in term of latent classes if compared to standard

Parafac model. The main idea underlying this factorization model is to use a partition of

the set of indices representing the observed variables, having blocks with low cardinal-

ity, and to represent the dependence structure in each block by means of simple models

(e.g. Dirichlet-multinomial). The residual across blocks dependence is characterized by

means of an univariate discrete latent variable, as in Parafac, and the induced model for

the element of the p.m.f. is a mixture of multinomial distributions, but jointly for some
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of the variables in this case. Parafac model can be obtained as a special case where par-

titions’ blocks have all cardinality one.

In Section 2.1 we formalize the model, proving its generality, flexibility, and compact-

ness in representing the dependence structure with respect to Parafac factorization. The

partition used to define a structure for tensor arms is usually unknown, hence in Section

2.2 we introduce a suitable prior on the space of partition based on product partition

models (e.g. Hartigan, 1990) to learn such a structure directly from the data. We evaluate

empirical performances of the proposed approach in challenging simulation scenarios,

comparing the obtained results with standard Parafac factorization (Section 2.3). Finally,

in Section 2.4 we consider an application to nucleotide sequences with the main aim be-

ing in identifying promoter sequences and contact bases for such process. We show that

our proposed methodology produces interpretable results, and comparable predictive

performances compared to commonly used statistical learning tools.

Multivariate Mixed Membership model

Exploiting the connection between Tucker decomposition and MM models, we in-

troduce a novel multivariate generalization of mixed membership models, which allows

identification of correlated profiles related to different conceptual domains correspond-

ing to separate groups of variables. We show that the use of correlated multiple member-

ship vectors leads to interpretable inference requiring a lower number of profiles com-

pared to standard formulations, inducing a more compact representation of the popula-

tion level model while allowing interpretable inference at subject-specific level.

Starting from multivariate observations, general MM models can be used to estimate

subject-specific latent scores corresponding to the weights in a discrete mixture model.

The key idea is that the population is composed of H pure types, or profiles, and that each

subject is endowed with a vector λi = (λi 1, . . . ,λi H )T , such that λi h ∈ [0, 1] and
∑H

h=1λi h =

1, indicating the degree of similarity of subject i with each of the H profiles. The vectorλi

induces a soft clustering of the subjects across the multiple profiles, which is particularly

appealing when an exact grouping is difficult if not impossible to obtain, as for example

in identification of disease risks (e.g. Chuit et al., 2001; Castro et al., 2006) or political

ideology (e.g. Gross and Manrique-Vallier, 2012). In many situations interpretability is

one of the most important features; hence it is desirable to employ a small number of

profiles, ideally H = 2.

To overcome these issues, in Section 3.2, we specify a class of multivariate mixed mem-

bership models (MMM) that explicitly includes the classification of blocks of variables



Introduction 5

corresponding to distinct subject matter domains and the cross-domain correlation struc-

ture. We address this goal by linking group-specific MM models through dependence in

the membership scores. To effectively model multivariate membership scores, in Sec-

tion 3.3 we propose a novel distribution defined on a product space composed of sim-

plices, which allows easy introduction of auxiliary information in the membership pro-

files leveraging a multivariate latent regression. We shows the basic property of this dis-

tribution and consider a Bayesian approach to inference. In Section 3.5 we study the

performance of our model under different simulation scenarios, and in Section 3.6 we

apply the model to survey information concerning malaria diffusion in the Machadinho

area.





Chapter 1

Tensors and their decomposition

In this Chapter we briefly review some mathematical notions and definitions in the

field of tensors and tensor algebra. Tensors will be the one of the most used mathematical

tool for the remaining of this Thesis, but their application goes far beyond what presented

here. For this reason, Sections 1.1,1.2 and 1.3 are deliberately general in introducing ten-

sors and some related algebra, and not targeted to the methodologies proposed in the

next Chapters. Some models designed for categorical variables are instead discussed in

Sections 1.4 and 1.5. The reader interested in a more formal and detailed introduction in

tensor algebra can referrer to Kolda and Bader (2009) and references therein.

1.1 Mathematical definitions and basic properties

A tensor is a multidimensional array, or more precisely an element of a product space

defined as the tensor product of p vector spaces. Formally, we can define a tensorA =
{ac1...cp

; c j = 1, . . . , d j ; j = 1, . . . , p} ∈ C, where C = C1 ⊗ . . .⊗ Cp and d j indicates the di-

mension of the space C j . The spaces C j composing the tensor product do not need to

be homogeneous, meaning that each C j can have its own coordinate system, and can

be a general subset of the natural, real or complex numbers. To simplify the exposition,

however, we consider the spaces to be homogeneous, although with possible different

dimensions, which is equivalent in considering the spaces C j =C d j for j = 1, . . . , p .

Some of the main characteristics of a tensor includes: the mode also known as dimen-

sion or order. A tensor of order one is a vector, a tensor of order 2 is a matrix, and tensors

which order is greater than 2 are referred as higher order tensors. Fibers are defined by

fixing every index but one, a matrix column is a mode-1 fiber and a matrix row is a mode-2

fiber. Third-order tensors have column, row, and tube fibers. Fibers are always assumed

7
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to be oriented as column vectors. Slices are two-dimensional sections of a tensor, defined

by fixing all but two indices.

One of the most used norm in the tensor case is the Frobenious norm, also referred as

tensor norm, and it is defined as the square root of the sum of the square of the element

of a tensor. Formally:

||A ||F =

√

√

√

√

d1
∑

c1=1

· · ·
dp
∑

cp=1

a 2
c1...cp

. (1.1)

As in the vectors case, this norm can be used to evaluate distances between tensors

defined on the same space.

An important sub-class of tensors is represented by the cubic tensors. Cubic tensors

can be considered as a generalization of square matrices, and they are defined as tensors

having all modes of the same dimensions. In our case d1 = . . .= dp = d .

Another special case is represented by symmetric tensors, sometime referred to as

super-symmetric. These are the direct generalization of symmetric matrices in tensor al-

gebra. Formally, given a vector of indices h= (h1, . . . , hp )T and defining Sh to be the space

of all permutation of h, we have that ah = aσ(h) for allσ ∈Sh. This definition implies that

just H p̄/p ! elements out of the H p are distinct, where H p̄ =H (H+1) · · · (H−p−1) is the ris-

ing factorial. It is easy to see that in 2-dimensional space the previous definition reduces

to the usual symmetric matrix (i.e. equal to its transpose) and that H 2̄/2!=H (H +1)/2.

An important notion is represented by the concept rank-one tensor, that is to say a

tensor that can be written as outer product of vectors. Specifically, let a ( j ) ∈ C d j be a

collection of vectors for j = 1, . . . , p ,A ∈ C is a rank-one tensor if it can be expressed as

A = a (1) ⊗ . . .⊗ a (p ). This implies that each element of the tensor is the product of the

corresponding vector elements ac1...cp
= a (1)c1

· · ·a (p )cp
.

Unlike matrices, however, there is not a uniquely defined notion of rank of a tensor,

and consequently there are multiple definition of low-rank approximations.

1.2 Parafac rank and Parafac decomposition of a tensor

An appealing possibility is in expressing a tensor as a finite sum of low dimensional ob-

jects, such as vectors, matrices and small tensors. These representations allow compress

storage of a tensor while simplifying several statistical tasks including, among others: re-

gression, missing data imputation and dependence testing.
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Such representations can be obtained, for example, by means of a low-rank approxi-

mations of the original tensor, given a certain definition of rank. A widely used definition

of rank is the smallest number of rank-one tensors that can be used to rewrite the starting

tensor. Formally:

rank(A ) =

¨

min H :A =
H
∑

h=1

λh

p
⊗

j=1

a ( j )h

«

. (1.2)

This rank is also known as Parafac rank because of the related tensor decomposition

which expresses a general tensor as a finite sum of rank-one tensors

A =
H
∑

h=1

Ah , Ah =
p
⊗

j=1

a ( j )h .

This form of a tensor is mostly referred to as Parafac (parallel factor); alternative names

used in the literature includes: Polyadic form of a tensor and CanDecomp or CP for canon-

ical decomposition.

It is sometime useful to normalize to length one the rank-one tensors composing the

previous sum, by introducing a weight vector λ = (λ1, . . . ,λH )T . In this case Parafac can

be expressed as a weighted sum of rank-one tensors

A =
H
∑

h=1

λh

p
⊗

j=1

a ( j )h . (1.3)

A
= + + . . .+

a (1)1

a (2)1

a (3)1

a (1)2

a (2)2

a (3)2

a (1)H

a (2)H

a (3)H

λ1 λ2 λH

FIGURE 1.1: Parafac decomposition of a 3-dimensional cubic tensor.

Definition (1.2) implies that Parafac can be considered as an alternative way of writing

a tensorA , and open the possibility of approximating it with a smaller number of terms

H̄ <H . The obtained decomposition is akin to the low-rank approximation of a matrix.

In this latter case, Eckart and Young (1936) showed that the best H -rank approximation

of a matrix can be obtained relying on the first H factors of the Singular Value Decom-

position (SVD). This formulation implies that low-rank decomposition of order H − 1 is

obtained by omitting the last component out the H -rank decomposition. Hence, all the

decomposition of a matrix can be computed at once, relying on the SVD. Unfortunately,
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this property is not shared, in general, by higher order tensors, and the elements com-

posing the (H̄ −1)-rank decomposition are not related to the ones composing the H̄ -rank

one.

Let us assume the tensorA to be an observed tensor, the best H -rank approximation

of this tensor can be computed solving the following minimization problem

min
Â
||Â −A ||F , such that Â =

H
∑

h=1

λh a (1)h ⊗ · · ·⊗a (p ), (1.4)

where || · ||F is the Frobenious norm defined in (1.1).

The most intuitive way of obtaining a numerical solution for minimization problem (1.4)

is by using an alternate least square procedure. In fact, by fixing all elements of the de-

composition but one, the problem is a simple least square minimization, having an an-

alytic solution. A step by step pseudo-code for the algorithm can be found in Figure 3.3

of Kolda and Bader (2009). Many alternatives to least squares have been proposed over

the years, for an overview of these methods we refer again to Kolda and Bader (2009) and

related bibliography.

1.3 Tucker decomposition and compression

One of main aim of a tensor decomposition is in expressing a tensor in a compressed

form. In this context, the idea of compression is related to storing an high-dimensional

object by means of low dimensional ones, which occupy less physical memory. Although

Parafac decomposition can be used in such a way, alternative tensor decompositions can

produce a better compression.

Tucker decomposition (Tucker, 1963) is an alternative to Parafac consisting in a lower

dimensional core tensor multiplied by a matrix along each mode, as exemplified in Fig-

ure 1.2.

A = a (1)

a (2)

a (3)

G

FIGURE 1.2: Tucker decomposition of a 3-dimensional cubic tensor.

Tucker decomposition can be expressed as
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A =

(

ac1...cp
=

H1
∑

h1=1

· · ·
Hp
∑

hp=1

gh1...hp

p
∏

j=1

a ( j )h j c j
, c j = 1, . . . d j ; j = 1, . . . , p

)

. (1.5)

Equation (1.5) is based on a different definition of rank compared to Parafac, namely

the multi-rank of the tensor A . The multi-rank of a tensor is the collection of the n-

ranks respect to all its modes. The n-rank is defined as the dimension of the vector space

spanned by the mode-n fiber. If one or more of the element of the multi-rank (H1, . . . , Hp )

in equation (1.5) is smaller than the corresponding n-rank ofA we have a low-rank ap-

proximation of the original tensor.

Parafac and Tucker decompositions are closely related, in fact we can see Parafac as

a special case of Tucker where the core tensor G is super-diagonal, i.e. gh1...hp
= λh if

h1 = . . .= hp = h and 0 otherwise, and cubic, i.e. H1 = · · ·=Hp =H .

Wang and Ahuja (2005) and Kim and Choi (2007) empirically noted that Tucker achieves

better data compression than Parafac decomposition. This is easier to understand by

considering the way a tensor decomposed using Tucker can be reparametrize in Parafac

form, expressed in Proposition 1.

Proposition 1. It is always possible to reparametrize a tensor expressed in Tucker form (1.5)

in its equivalent Parafac form (1.3).

Proof. Letting ḡ = vec(G ) = (g1...1, g1...2, . . . , gH1...Hp
)T we can rewrite expression (1.5) as

{
∑H̄

h=1 ḡhAh c1...cp
; c j = 1, . . . , d j ; j = 1, . . . , p}, whereAh c1...cp

= ah1c1
· · ·ahp cp

for h = 1, . . . , H̄ =

H1 · · ·Hp .

Form Proposition 1 we can notice how the Parafac rank can be considerably higher

than the n-rank composing the Tucker multi-rank, that for this reason can produce a

more compact approximation. As in the case of Parafac, for a sufficiently high value of

the rank, Tucker is a way of re-expressing the original tensor.

Since the introduction different algorithms have been proposed to compute the ele-

ments of the Tucker decomposition, and arguably the most famous is the so called Higher

Order Singular Value Decomposition (HOSVD), which consists in iteratively computing

the left singular value of the matrix form of the starting tensor, obtained by fixing all the

modes but one. The details of the procedure are highlighted in Figure 4.3 of Kolda and

Bader (2009).
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1.4 Categorical variables and probabilistic tensors

Tensor data may occur in many different statistical applications including physics,

chemistry and neuroscience. For example, RGB images can be seen as 3-dimensional

tensors, and the previously described low-rank approximations can be naturally used to

fulfill modelistic tasks such as classification and regression.

However, tensor factorizations are useful tools also in other fields of statistical re-

search, where a notable example is represented by models for multivariate categorical

variables. Let X = (X1, . . . , Xp )T , be a vector of categorical random variables, where X j ∈
{1, . . . , d j } for j = 1, . . . , p . We can notice that the sample space Ω = {1, . . . , d1} × · · · ×
{1, . . . , dp } is huge, and that it increases at an exponential rate with the number of vari-

ables p . Figure 1.3 gives an idea of the log-dimension of the space when d1 = . . .= dp = d .

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10
p

lo
g|

Ω
| linear

exponential
d = 4
d = 5
d = 10

FIGURE 1.3: Log-cardinality of the sample space |Ω| for different values of p , in the case
d1, . . . , dp = d . Linear and exponential rates have been added for comparison.

From a probabilistic perspective random variable X is described by means of a p.m.f.

p(ω) : Ω → [0, 1] for all ω ∈ Ω, satisfying
∑

ω∈Ωp(ω) = 1. By construction the p.m.f. of

a categorical random vector can be viewed as a probability tensor defined on the space

C =Ω. A probability tensor is a tensor π which entries are non negative and add up to 1,

or in other words π is defined on the (|Ω| − 1)-dimensional simplex. Clearly the p.m.f. of

the random variable X can be parametrized by means of a function defined on a low di-

mensional space. This goal can be achieved, for example using log-linear models, which

directly parametrize the logarithm of the p.m.f. as a linear function. The selected lin-

ear function directly includes the conditional dependence structure underlying the data.

Tensor factorization methods however do not rely on highly restrictive assumptions, and

directly reconstruct p(ω) or some of its functional exploiting the low dimensional struc-

tures composing tensor decomposition itself.

It is worth noticing that in any model devoted to learn the p.m.f. of a vector of cate-

gorical variables, we necessarily have to make some assumptions since we are practically
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always trying to solve a dense problem by means of sparse observations, since we rarely

are able to have a sample size of the order of |Ω|.

1.5 Low-rank approximations of probabilistic tensors

In this section we review some statistical approaches for large contingency tables which

rely on the tensor factorization models presented above.

1.5.1 Latent class analysis and Parafac

In general dealing with non-ordered categorical data is a challenging problem, and

the use of low-rank decompositions is an appealing alternative to log-linear models.

One of the first attempt to deal with this data was made by Lazarsfeld during the

1940s, and published for the first time in his contribution to Studies in Social Psychology

in World War II (Lazarsfeld, 1950). The proposed model, mostly known as Latent Class

Analysis (LCA), was intended as an alternative to factor analysis to deal with categorical

data. Factor analysis, in fact, postulates the existence of factors to explain the correlations

among a set of continuous variables. LCA models, on the other hand, explicitly apply to

the discrete variables that are created from responses to questionnaire items.

From a tensor algebra perspective, LCA is a low-rank Parafac approximation of the

p.m.f. underlying the observed data. The used Parafac decomposition, is slightly different

from the one described in (1.3), since it should produce a probability tensor.

To obtain a probability tensors from expression (1.3), different constraint might be

considered. However, by letting the mixture weights λ and the tensor arms ψ(j )
h

for j =

1, . . . , p and h = 1, . . . , H , be defined on simplicies of appropriate dimension, we get a dis-

crete mixture model representation. Such representation is the one originally proposed

in defining LCA while, to the best of our knowledge, a formal connection with Parafac was

made many years later in Dunson and Xing (2009).

The main assumption of this latent variable representation is that the observed data

derive from a composite population having H sub-populations. Each of the observed

subject i , for i = 1, . . . , n , is hence endowed with an indicator variable Zi ∈ {1, . . . , H }, ex-

pressing to which sub-population the individual i belongs to. The random variable Zi

is indeed not observed and its values can be considered as missing or latent, and “pre-

dicted” using the available data.
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An additional hypothesis is that, within each sub-population observed variables are

independent. This hypothesis correspond to express each p.m.f. conditional on the la-

tent indicator as a product of univariate p.m.f., hence rank-one probability tensors.

Formally, we can define pr(X i 1 = x1, . . . , X i p = xp | Zi = h ) = ψ(1)h x1
· · ·ψ(p )h xp

. Letting

pr(Zi = h ) = λh , and marginalizing out the latent variable Zi respect to its distribution,

the global p.m.f. can be expressed as:

pr(X i 1 = xp , . . . , X i p = xp |Ψ,λ) =
H
∑

h=1

λh

p
∏

j=1

ψ
( j )
h x j

. (1.6)

Equation (1.6) is basically identical to Equation (1.3) with the only difference being in

the space in which the tensor is defined and in the imposed constraints on tensor arms

and weights.

The parameters λ in the aforementioned factorization are latent factors, and can be

considered either as unknown parameters, or as random variable in a Bayesian frame-

work. We follow this latter approach, hence all the p.m.f. involving the latent factors are

defined conditional to them. This is not, however, a formal requirement and the symbol

“|” can be substituted with “;”.

Equation (1.6) is the contribution to the likelihood for subject i , and to estimate its pa-

rameters, at first method of moments was proposed (e.g. Lazarsfeld and Henry, 1968). A

major drawback with this approach is that the subset of moments used in the procedure

has to be chosen a priori. Usually E[X j ] and E[X j Xk ] for some j , k ∈ {1, . . . , p} are used.

This procedure was initially preferred to the maximum likelihood because of the com-

plexity of likelihood function evaluation and numerical maximization through Newton-

Raphson algorithm. This maximization was indeed too demanding for the computers

back in 70s. Goodman (1974) proposed an efficient iterative proportional fitting algo-

rithm to maximize the likelihood deriving from (1.6) solving the computational issues

linked to the standard Newton-Raphson procedure. Nowadays a more efficient alterna-

tive is provided by the Expectation Maximization (EM) (Dempster et al., 1977) algorithm

which directly uses the incomplete data structure provided by the latent variable rep-

resentation in order to maximize the likelihood. A recent development on this thread,

concerning LCA estimation in presence of covariates is given in Durante et al. (2019).

However, likelihood maximization approaches, without imposing any additional con-

straint, tends to be unstable, mostly because of the presence of many local modes. Addi-

tionally, the uniqueness of the solution is not guaranteed in general cases.

The rank of the decomposition H is usually fixed in the maximization process, and
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treated as a tuning parameter selected relying on information criteria such as AIC/BIC or

by means of cross validation.

Dunson and Xing (2009) overcame the rank selection problem recasting LCA in a Baye-

sian setting, learning the rank directly from the data through a Dirichlet process prior on

the mixture weights of the decomposition. The proposed prior can be induced through

the following specification:

π =
∞
∑

h=1

λhψh , ψh =ψ
(1)
h ⊗ · · ·⊗ψ

(p )
h ,

ψ
(p )
h ∼ P0 j , indipendently for j = 1, . . . , p ,

h = 1, . . . ,∞, (1.7)

λ ∼ Q ,

where P0 j are probability measure on the (d j − 1)-dimensional simplex and Q is a prob-

ability measure on the countably infinite probability simplex. In the original proposal

Dunson and Xing (2009) suggest the use of finite Dirichlet for P0 j and a Dirichlet process

for Q .

They show that the prior induced by formulation (1.7) gives rise to many desirable

statistical proprieties. Specifically, leveraging the duality with Parafac tensor decomposi-

tion, Corollary 1 in Dunson and Xing (2009) states that LCA can express any possible mul-

tivariate categorical data distribution. More importantly, Theorem 2 proves full support

in Frobenius norm of the proposed prior which also implies full support for the posterior,

since we are dealing with finitely many parameters.

The infinite dimensional prior for the mixing weights used in specification (1.7) can

be approximated by means of a finite Dirichlet distribution. In particular, by choosing a

symmetric Dirichlet prior with parameter H −1, we obtain a finite dimensional approxi-

mation of the Dirichlet process through prior truncation (Ishwaran and Zarepour, 2008).

This choice has the effect of enhancing computational flexibility, moreover, as noted in

Rousseau and Mengersen (2011) the choice of small hyperparameters in finite mixture

models allow deletion of redundant components. In most applications the difference in

posterior inference is almost always negligible, hence this last strategy might be preferred.

Additionally, provided that H is a sensible upper bound theoretical proprieties of model

formulation (1.7) remain valid.

The introduction of Bayesian LCA inspired several papers dealing with flexible model-

ing of multivariate categorical variables in different contexts. In this branch of literature
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we find, among many others: a model to deal with time variant categorical data (Kuni-

hama and Dunson, 2013); an alternative prior specification for the Parafac decomposi-

tion inducing shrinkage towards independence (Zhou et al., 2015); a Bayesian non para-

metric model for retrospective likelihood in case/control studies (Zhou et al., 2016); a

variable selection approach to directly exclude from the factorization the independent

variables (Papathomas and Richardson, 2016); a method to test group differences in high

dimensional categorical data (Russo et al., 2018).

1.5.2 Subject-specific inference and soft clustering in Tucker decom-

position

Tucker decomposition has been extensively used in statistics as implicit parametriza-

tion for the p.m.f. underlying multivariate categorical variables, however, as in the case

of LCA and Parafac such connection was made just in recent years. Again, as the case

of Parafac, the model has been introduced leveraging a discrete mixture representation.

Specifically, a generative mechanism producing a p.m.f. having a Tucker decomposition

form may be obtained as product of conditionally independent mixture models, having

subject-specific mixture weights. The resulting model has a nice interpretation both in

term of characteristic of the underlying population, expressed by tensor arms, than, from

a subject-specific perspective. Indeed, the subject-specific mixture weights can be inter-

preted as a proximity measure of each subject respect to the estimated population char-

acteristics.

This conditional model representation has been used, with some differences in the

underlying hypothesis, at least in four different statistical problems and their general-

ization, namely: (i) Grade of Membership models (GoM) (e.g. Woodbury et al., 1978); (ii)

Admixture models (Pritchard et al., 2000); (iii) Latent Dirichlet Allocation (LDA) (e.g. Blei

et al., 2003); (iv) Mixed Membership models (MM) (e.g. Erosheva and Fienberg, 2005).

All previous models are deeply connected even if proposed independently for dif-

ferent purposes. In particular, (i) was the first to be used, while (iv) is a more general

class including (ii) and (iii), which have been introduced to fulfill substantially different

goals. GoM are based on likelihood framework while (iii)–(iv) rely on a Bayesian perspec-

tive. Despite their differences in generative mechanism, application and estimation tech-

niques, all the proposed models share the common aim of allowing subject-specific in-

ference in a multivariate categorical variables context. In all the aforementioned models,

subject-specific mixture weights induce a soft, or fuzzy, clustering giving rise to a more

compact representation of the p.m.f. if compared to standard mixture models.
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Given a collection of categorical random variables (X i 1, . . . , X i p )T for i = 1, . . . , n and j =

1, . . . , p such that X i j ∈ {1, . . . , d j }, a mixed membership model can be defined as follows:

X i j | Zi j = h ,ψ( j )h ∼ Cat(ψ( j )h1, . . . ,ψ( j )hd j
),

Zi j |λi ∼ Cat(λi 1, . . . ,λi H ), (1.8)

λi ∼ P,

where P is the distribution of the membership score vectors associated with each obser-

vation i . The distribution P is defined on the (H − 1)-dimensional simplex and popular

choices for its specification include Dirichlet (Blei et al., 2003) and logistic normal (Laf-

ferty and Blei, 2006). From model (1.8) we can immediately notice that there is a popu-

lation level assumption, i.e. the population is composed of H sub-populations, and an

individual level assumption, for which each subject has a degree of similarity with the

type h expressed by λi h . The vector λi informs how subject i varies from other individu-

als in the population.

Leveraging the local independence assumption in formulation (1.8) the probability

distribution for the generic subject i can be expressed, integrating out the latent variable

Z i = (Zi 1, . . . , Z1p )T , as

pr(X i 1 = x1, . . . , X i p = xp |λi ,ψ) =
p
∏

j=1

H
∑

h=1

λi hψ
( j )
h x j

=

�

H
∑

h1=1

λi h1
ψ(1)h1 x1

�

· · ·

 

H
∑

hp=1

λi hp
ψ
(p )
hp xp

!

(1.9)

=
H
∑

h1=1

· · ·
H
∑

hp=1

p
∏

j=1

λi h j
ψ
( j )
h j x j

,

which is a product of conditional independent mixture models. The population model

can be retrieved integrating out the random effect λi with respect to its distribution P

pr(X1 = x1, . . . , Xp = xp |ψ) =
H
∑

h1=1

· · ·
H
∑

hp=1

ah1...hp

p
∏

j=1

ψ
( j )
h j x j

, (1.10)

where ah1...hp
= EP [λi h1

· · ·λi hp
] is the expectation of the product of the score vector el-

ements over P . Depending on the choice of P , the expectation ah1...hp
may or may not

have a closed form expression.

Equation (1.10) is an instance of Tucker tensor decomposition defined in Equation (1.5),
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and it is possible to show that it is a flexible representation for the probability mass func-

tion of unordered categorical random variables, since there always exists an H such that

any probability mass function can be characterized as in (1.10). This is a direct con-

sequence of the fact that any tensor can be expressed in Tucker form, for a sufficiently

high rank. Additionally, representation (1.10) is more compact than a standard discrete

mixture model representation for the p.m.f. (see for example Bhattacharya and Dunson,

2012).

Leveraging Proposition 1, equation (1.10) can be interpreted as a constrained discrete

mixture model with H p latent components. In fact, the core tensor A = {ah1,...,hp
; h j =

1, . . . , H ; j = 1, . . . p} is specified to be a cubic symmetric tensor, defined in Section 1.1.

From modelistic perspective, such constraints derive from the exchangeability as-

sumption for the profiles probability in model (1.8) (e.g. Erosheva et al., 2007). The result-

ing constraint Tucker is a less compact representation than an unconstrained decompo-

sition, meaning that the dimension of the core tensor needed to reach a certain approx-

imation of the p.m.f. is expected to be larger than in (1.5). This might not represent an

issue when the number of pure types is chosen adaptively but, when a small H is fixed a

priori, this representation may lead to an unsatisfactory approximation of the probability

mass function.

As briefly mentioned above, members of the class of MM models can be estimated in

many different frameworks, leading to alternative algorithms and techniques for model

inference. It is worth noticing that model (1.10) is a generative mechanism, not a Bayesian

specification, hence after choosing a specific distribution for P we can obtain maximum

likelihood estimate of the parameters through numeric optimization. This approach was

followed in many application, especially in the case of GoM and its extension (e.g. Berk-

man et al., 1989; Castro et al., 2006). In this context, Manton et al. (1987) propose to opti-

mize the likelihood conditioning on the score distribution P . This proposal also justifies,

from a generative perspective, the first algorithm used in Woodbury et al. (1978), who

considered the scores λi directly as model parameters, deriving their values jointly with

the profiles parameters using a Newton-Raphson style approach.

Both admixture and mixed membership models were directly introduced following a

Bayesian specification. Model formulation are slightly different to accomodate the dif-

ferent application, however, in both Pritchard et al. (2000) and Erosheva et al. (2007), a

Dirichlet distribution is used for P . The hyperparameters of the distribution P roughly

express the proportion of subject in each profiles, which is usually unknown. Such hy-

perparameters can be learned directly from the data by means of a suitable hyperprior

(e.g. Dirichlet), which parameters are updated through a Metropolis step. In some cases,
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unfortunately, this method might be slow to converge, mostly because of the correlation

of the Dirichlet parameters.

In the context of topic discovery, because of the high dimension of the document data

involved, the preferred methods is usually Variational Bayes (VB) approximation of the

posterior. Details on how to estimate model parameters using VB can be found in Blei

et al. (2003) for the Dirichlet case, and in Lafferty and Blei (2006) for the case of logit

normal.

As in the case of LCA a critical issue is in the choice of the dimension of the latent

space H . This is usually done by comparing alternative models by means of information

criteria or cross validation, after choosing an appropriate loss function (e.g. Airoldi et al.,

2010; White et al., 2012). Alternatively, it is possible to include inference on the value of

H directly in the model by adapting priors on the dimension of the latent space. These

approaches require sampling in spaces with changing dimensionality across MCMC iter-

ations. In this class we find the reversible jump approaches as the one described in Lopes

and West (2004), and nonparametric latent factor models priors such as Knowles and

Ghahramani (2011) and Bhattacharya and Dunson (2011).

Tucker decomposition is however not just confined to Mixed Membership models

and finds its place in many other statistical applications. Some recent examples include:

Schein et al. (2016),Yang and Dunson (2016), Johndrow et al. (2017) and Xiong et al. (2018).





Chapter 2

Grouped Tensor Factorization

In this Chapter we consider a new class of GROuped Tensor (GROT) factorizations,

which have superior compression performance if compared to standard Parafac approach,

using relatively few components to represent the joint probability mass function of the

data. While popular Parafac factorizations rely on mixing together independent compo-

nents, GROT mixes together grouped factorizations, equivalent to replacing vector arms

in Parafac with low-dimensional tensor arms. We consider a Bayesian approach to infer-

ence with Dirichlet priors on the mixing weights and arm components, to obtain a com-

bined low-rank and sparse structure, while facilitating efficient posterior computation

via Markov chain Monte Carlo. In Section 2.1 we introduce the model, highlighting some

key properties, and providing an algorithm for posterior computation. In Section 2.2 we

propose a prior on the space of partitions to effectively learn GROT arm structure from

the data. In Section 2.3 we analyze simulated data presenting different dependence struc-

tures, highlighting the improved performances in low sample size scenarios. Finally, in

Section 2.4 we apply our proposed approach to classify and identify starting bases of Es-

cherichia Coli promoter nucleotide sequences.

2.1 Model specification and properties

Parafac factorization introduced in 1.7 is a popular model which theoretical propri-

eties have been studied in the literature, and partially summarized in Chapter 1. How-

ever, in some practical applications the p.m.f. is poorly characterized by this model.

This usually occurs when the dependence structure is dense (e.g. presence of cliques)

and the available sample size is low. Intuitively, Parafac model deals with dependence

only through marginalization of a categorical latent variable. Such a “naive” assumption

21
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strongly simplifies estimation and inference, and works well in sparse contexts, but it

might be over-simplistic in other cases.

A possible solution to overcome this issue is to induce a more refined characteriza-

tion of the dependence in tensor arms, in such a way that part of the dependence is di-

rectly modeled, instead of just induced through marginalization. To include such struc-

ture in the model we generalize Parafac allowing tensor arms to have (variable) dimen-

sion greater than 1, as exemplified in Figure 2.1. Note that the p.m.f. is not necessarely

decomposed by rank one tensor as in Parafac case.

π
= + + . . .+

ψ
(1,2)
1

ψ
(3)
1

ψ
(1,2)
2

ψ
(3)
2

ψ
(1,2)
H

ψ
(3)
H

λ1 λ2 λH

FIGURE 2.1: GROT tensor decomposition of a 3-dimensional tensor, having structure
{{1, 2},{3}}.

Let B1, . . . , BG be a partition of the set of indices {1, . . . , p}, i.e. B j ∩ Bl = ∅ and B1 ∪
· · · ∪ BG = {1, . . . , p}, and {X i j : j ∈ Bl } = (X l

i 1, . . . , X l
i pl
)T where X l

i j ∈ {1, . . . , d l
j } for j =

1, . . . , pl = |Bl | and i = 1, . . . , n . By convention we arrange the variable in each partition

following their indices in increasing order. We propose the following specification for the

joint probability density function

πc1,...,cp
=

H
∑

h=1

λh

G
∏

l=1

Ψ (l )
h (c l

1 ,...,c l
pl
)
, (2.1)

where each arm Ψ (l )h = {Ψ
(l )
h (c1,...,cpl

), c1 = 1, . . . , d l
1 , . . . , cpl

= 1, . . . , d l
pl
} is a probability tensor of

dimension ⊗{ j : j∈Bl }d j .

We can notice that each cell of the probability tensorπ is modeled as mixture of multi-

nomial distributions as in the Parafac case, that is obtained when |Bl |= 1 for l = 1, . . . ,G .

Model specified in (2.1) shares flexibility in representation of Parafac and Tucker decom-

positions, as assured by Proposition 2.1.

Proposition 2.1. Given a partition B1 ∪ · · · ∪BG = {1, . . . , p}, having B j ∩Bl =∅, any prob-

ability tensor π, defined on the (
∏p

j=1 d j − 1)-dimensional simplex can be represented as

(2.1).

Proof. The proposition can be proved by showing that equation (2.1) can be rewritten in

Parafac form. Let ϕ (l )h = vec(Ψ (l )h ) be the vectorization of the l -th tensor-arm having ele-

ment stacked from the last mode, then the p.m.f. derived from the GROT factorization
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can be expressed as π =
∑H

h=1λh

⊗G
l=1ϕ

(l )
h . Last expression is an instance of Parafac de-

composition, hence by corollary one in Dunson and Xing (2009) there exist an H such

that we can characterize any possible dependence among the G groups of variables.

Proposition 2.1 is not necessarily restricted to probability tensors, and is indeed ap-

plicable in general to any form of tensor data and, more importantly, it grants that the

choice of the partition, to be used in tensor arms, does not affect flexibility of represen-

tation (2.1).

Additionally, as stated in theorem (2.2), model (2.1) has the key benefit of giving a more

parsimonious representation in term of latent classes respect to Parafac decomposition,

while retaining its simplicity in estimation and posterior inference.

Theorem 2.2. The number of latent classes H needed to fully characterize a probability

tensor using GROT (2.1) is lower or equal than the one needed using Parafac (1.3). Equality

is reached iff all the variables in the same partition are independent.

Proof. To prove the first part of the theorem we rewrite the probability tensor deriving

from expression (2.1) in a Parafac form. By defining the tensors Φh = {
∏G

l=1Ψ
(l )
h c l

1 ...c l
p

: c l
j =

1, . . . , d j , j = 1, . . . dpl
, l = 1, . . . ,G } for h = 1, . . . , H , we can write π =

∑H
h=1λhΦh . Note

that the tensors Φh are defined on the (
∏p

j=1 d j − 1)-dimensional simplex, and can have

Parafac rank greater that one. Hence, there exist a sequence of ranks K1, ..., KH with Kh ≥ 1

such that the following equalities hold

π=
H
∑

h=1

λhΦh =
H
∑

h=1

λh

�

Kh
∑

k=1

ν(h )k

p
⊗

j=1

ϑ
( j )
hk

�

=
H̄
∑

h=1

λ̄h

p
⊗

j=1

ϑ̄
( j )
h ,

where λ̄1 = λ1ν
(1)
1 , λ̄2 = λ1ν

(1)
2 , . . . , λ̄H̄ = λHν

(H )
KH

, and ϑ̄
( j )
1 = ϑ

( j )
11 , . . . , ϑ̄

( j )
H̄ = ϑ

( j )
H KH

, for j =

1, . . . , p . Last expression is the Parafac reparametrization of (2.1), and since H̄ ≥
∑H

h=1 Kh ,

the first part of the theorem is proved. For the “only if” part it suffices to notice that a

necessary condition for the equality to holds is that Kh = 1 for h = 1, . . . , H , which is true

just if the variable in the same block of the partition are independent.

The fact that GROT model is more parsimonious than Parafac from a latent class per-

spective does not imply that it is uniformly better in any application, since the perfor-

mances would strongly depend on the “true” unknown dependence structure. In fact, by

construction GROT model exploits a group structure to improve over standard Parafac

factorization. When several groups of variables are present in the data, even with moder-

ate across groups dependence, GROT is expected to perform better than standard Parafac,

since the combined effect of multivariate kernels and latent variables is more effective
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in characterizing the dependence than simple marginalization. The presence of a block

dependence is very common in the context of categorical variables, however, there are

exceptions. A notable one is when, although some groups of dependent variables are

present, the groups are partially overlapped, for example following a small order autore-

gressive model. These dependences might be effectively learned by a Parafac model with

a small rank, and the additional number of parameters introduced in the multivariate

kernels of GROT might not compensate for the reduction in the number of latent classes.

In non-degenerate cases, however, this problem does not represent a real issue, and the

loss of performances of GROT should be negligible.

Model (2.1) aims to provide a compact representation of π. This aim is similar in

spirit to the one motivating the use of Tucker (e.g. Bhattacharya and Dunson, 2012) and

C-Tucker (Johndrow et al., 2017), but has the advantage of bearing a simpler functional

form forπ and its functionals provided by Parafac. A latent variable representation of the

aforementioned decompositions is presented in Figure 2.2.

Z

X2 X1 X3

(A) Parafac

Z

X2X1 X3

B1 B2

(B) GROT

Z1

Z2Z3

X2

X1

Y3

(C) Tucker

Z2

Y2

Z1

Y1 Y3

(D) C-Tucker

FIGURE 2.2: Graphical representation of different tensor decompositions.

Although C-Tucker model shares a similar motivation to the proposed GROT decom-

position, the two approaches produce advantages respect to standard Parafac in different

settings. In fact, C-Tucker model complexity is dominated by Parafac when many small

dependent groups are present. By contrast, the proposed GROT still needs a moderate to
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high number of latent classes when the underlying truth can be represented by means of

marginally independent cliques of variables, having high cardinality. Both models, how-

ever, theoretically improve over standard Parafac whenever some non-sparse structured

dependence is present in the data.

2.1.1 Posterior Computation

Once that the partition % = {B1, . . . , BG } has been fixed, model (2.1) can be seen as an

instance of Parafac decomposition, i.e. a mixture of multinomial distributions. Hence

in specifying conditionally conjugate Dirichlet priors for the tensor arms, and a finite

Dirichlet prior for the mixture weights, we have an easy to implement Gibbs sampler.

The model can be expressed in the following hierarchical form:

{X i j : j ∈ Bl } | Zi = h ∼ Multinomial
�

{(1, . . . , 1), . . . , (d l
1 , . . . , d l

pl
)}, (ψ(l )h ,(1...1), . . . ,ψ(l )

h ,(d l
1 ...d l

pl
)
)
�

,

Ψ (l )h ∼ Dirichlet
�

αl
11...1, . . . ,αl

d l
1 ,...,d l

pl

�

for l = 1, . . . ,G ; h = 1, . . . , H ,

Zi ∼ Multinomial ((1, . . . , H ),λ1, . . . ,λh ) ,

(λ1, . . . ,λH )
T ∼ Dirichlet (1/H , . . . , 1/H ) . (2.2)

Model specification (2.2) leads to the Gibbs sampler sketched in Algorithm 1.

Algorithm 1: Posterior GROT factorization with fix partition (2.2)

for r in 1:n_iterations do

[1] update tensor arms for h in 1 : H & l in 1 : G do

Ψ (l )h | − ∼Dirichlet
�

αl
1,...,1+n l

h ,(1,...,1), . . . ,αl
d l

1 ,...,d l
pl

+n l
h ,(d l

1 ,...,d l
pl
)

�

,

where n l
h ,(c1,...,cpl

) =
∑

i :zi=h 1{x l
i 1 = c l

1 , . . . , x l
i pl
= c l

pl
} is the number or subject in

class h presenting a certain configuration;

[2] update zi for i in 1 : n do
sample from the multinomial full conditional with

pr(zi = h | −) =
λh

∏G
l=1Ψ

(l )
h (x l

i 1,...,x l
i pl
)

∑H
k=1λk

∏G
l=1Ψ

(l )
k (x l

i 1,...,x l
i pl
)

, for h = 1, . . . H ;

[3]Update the mixture weights from their full conditional

λ | − ∼Dirichlet(n1+1/H , . . . , nH +1/H ),

where nh =
∑H

i=1 1{zi = h} is the number of subjects allocated in latent class h .
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2.2 Group detection using product of partition models

In many real data applications we do not have concrete knowledge to chose a partition

% in model (2.1), hence it would be appealing to learn this structure directly from the data.

Algorithm 1 also requires to simulate from Dirichlet distributions of size corresponding

to the blocks partition. For this reason, in enhancing computational tractability and nu-

merical stability, we define an upper bound m for the cardinality of the partition blocks.

To the best of our knowledge – the problem of inferring groups structure with an upper

bound on the cardinality of the groups has not been considered in the literature. This is

not surprising since the presence of such bound is not typical in clustering applications.

We propose here a Bayesian solution to this problem leveraging a model on the space of

partitions.

Product Partition Models (PPM) (Hartigan, 1990; Barry and Hartigan, 1993; Crowley,

1997) have been deeply studied in literature, with a great focus on Dirichlet product mix-

ture models, and applied in several tasks including density estimation/regression and

clustering (e.g. Park and Dunson, 2010; Müller et al., 2011). In clustering, the main goal

is usually in contemporary detecting number and composition of the groups of subjects.

With similar spirit we make use of a PPM to detect partitions in the variable space, taking

into account uncertainty in their composition.

The basic idea of PPM is that the joint probability mass (or density) function can be

expressed as a product. Dealing with categorical random variable, once we define a par-

tition % = {B1, . . . , BG } the density of a PPM can be expressed as pr(X1 = x1, . . . , Xp = xp ) =
∏G

l=1 pr({X j = x j : j ∈ Bl }).
To take into account uncertainty about the partition %, a prior can be induced by

means of a cohesion function, expressing the prior probability for each possible block

composing a partition.

PPM prior leads to a conjugate model, meaning that the posterior is still in the class

of PPM, having expression pr(% | −) = K
∏G

l=1 c (Bl )pr({X j = x j : j ∈ Bl }), where c (·) is the

cohesion function. Theoretically, the normalization constant K is available in a simple

analytic form, however, it implies a sum over the space of partition whose dimension

is huge even for a small number of elements. Just think that if we have 12 objects the

cardinality of the partition space exceeds 4 millions. However, inference for PPM can still

be carried on by means of Monte Carlo methods.

PPM are very general and do not preclude any model specification for the probability

mass function over each partition. Enhancing simplicity, we focus on the easiest model

for categorical data, i.e. using a multinomial distribution on each possible partition.
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Considering n independent replicates of X , we indicate with (X l
i 1, . . . , X l

i pl
)T = {X i j :

j ∈ Bl }, where X l
i j ∈ {1, . . . , d l

j } for j = 1, . . . , pl and i = 1, . . . , n . By convention we order the

variables in each block Bl , following their indices in increasing order, however, the order

is not important for estimation purposes.

For each block we have a multinomial likelihood with parameterΨ (l ) = (ψ(l )1...1, . . . ,ψ(l )
d l

1 ...d l
pl

)T ,

having generic element ψ(l )(c1,...,cpl
) = pr(X l

1 = c1, . . . , X l
pl
= cpl

). For the parameters Ψ (l )

we consider conjugate Dirichlet priors having parameter αl = (α1,...,1, . . . ,αd l
1 ,...,d l

pl
)T . This

choice for the prior allows for analytic integration of the parameter Ψ (l ) leveraging the

Dirichlet-multinomial conjugacy. Indicating withα0 =
∑d l

1
c1=1 · · ·

∑d l
pl

cpl
=1αc1,...,cpl

and n l
c l

1 ,...,c l
pl

=
∑n

i=1 1{x l
i 1 = c l

1 , . . . , x l
i pl
= c l

pl
}, the counts for the category (c l

1 , . . . , c l
pl
)where c l

j ∈ {1, . . . , d l
j },

and 1{·} is the indicator function, the corresponding posterior distribution for the model

is given by

pr(% | −) = K
G
∏

l=1







c (Bl )
Γ (α0)
Γ (α0+n )

d l
1

∏

c1=1

· · ·
d l

pl
∏

cpl
=1

Γ (αc1,...,cpl
+n l

c l
1 ,...,c l

pl

)

Γ (αc1,...,cpl
)







. (2.3)

Expression (2.3) can be further simplified considering a symmetric Dirichlet distribu-

tion as prior, which is a sensible choice in absence of any concrete prior knowledge. As

already mention computation of the normalizing constant K is prohibitive even in mod-

erate dimension, however we can obtain approximate samples from (2.3) adapting algo-

rithms for Bayesian non parametric priors (e.g. Neal, 2000). Steps to obtain approximate

samples from the posterior are highlighted in Algorithm 2.

Algorithm 2: Posterior sampling for multinomial PPM (2.3)

To initialize the algorithm we need a starting partition %(0) = {B (0)1 , . . . , B (0)G (0)} having

positive probability according to (2.3). A possible default choice is in starting with

the singleton partition (e.g. |Bl |= 1 for l = 1, . . . ,G , and G = p ).

for r in 1:n_iterations do
Set R = {1, . . . , p} and %(r ) =%(r−1).

while |R| > 0 do
[1] Sample j ∈R with uniform probability 1/|R |;
[2] compute %(− j ) as the partition obtained by removing variable j from %(r );

[3] if |B (− j )
l |> 0 for l = 1, . . . ,G (− j ) then G (− j ) =G (− j )+1, with BG (− j ) = {∅};

[4] for l in 1:|%− j | do

set %∗ =%− j , B ∗l = {B
− j
l ∪ j }, and store in p ∗l the value of (2.3) for %∗,

omitting the normalizing constant;

[5] assign j to B ∗l with probability proportional to p ∗l ;

[6] set %(r ) =%∗/{∅}, G (r ) = |%(r )| and R =R/{ j }.



28 Section 2.2 - Group detection using product of partition models

At each iteration, Algorithm 2 involves a random number of simple operations, namely

p×G , for G ∈ {1, . . . , p}, to update the state of the partition. The computational cost might

become prohibitive in ultra-high dimensional contexts. In such cases, instead of scan-

ning all the possible groups, a single metropolis proposal can be used, adapting, for exam-

ple, the split-and-merge algorithm (Green and Richardson, 2001; Jain and Neal, 2004)or

the Chaperon algorithm (Miller et al., 2015).

2.2.1 Choice of the cohesion function

The choice of a cohesion function has a deep impact on posterior inference, since it

determines the clustering behavior. Intuitively, this prior sensitivity can be attributable to

the huge dimension of the partition space, where the likelihood can support many possi-

ble configurations with equal probability. For some choices of the cohesion function,

we obtain popular non parametric priors, such as Dirichlet process (Ferguson, 1973),

Pitman-Yor (Pitman and Yor, 1997), and the more general class of Gibbs-type priors (Gnedin

and Pitman, 2006; Blasi et al., 2015).

Arguably, the most used prior belonging to this class is the Dirichlet process. Dirichlet

process prior is characterized by the so called richer-get-richer property, leading to the

detection of few big clusters which size decreases exponentially. This characteristic might

be convenient in many applications, particularly when the main goal is in allowing local

borrowing strength, in our context, however, we aim to find partitions with many small

groups, supported by the data.

In accomplishing such a goal, we define a cohesion function giving the same proba-

bility to all the partitions having cardinality lower than a predefined upper bound m .

The proposed cohesion function can be expressed as:

c (Bl )∝







1 if |Bl |<m ,

0 if |Bl | ≥m .
, for l = 1, . . . ,G . (2.4)

Prior specification (2.4) has the main advantage of not enforcing a richer-get-richer

behavior, while directly excluding partition with cardinality bigger that m . Equation (2.4)

is a generalization of the uniform process, that can be obtained letting m→∞. Wallach

et al. (2010) pointed out that uniform process is a suitable prior when the number of clus-

ter is expected to be high with respect to the number of available objects. The proposed

cohesion function shares the lack of exchangeability of the uniform process from which it
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derives, this however raises no concerns in our application where, the aim is in detecting

constraint partitions.

In detecting dependence structure, ideally, we would like m to be larger than the max-

imum cardinality of the larger “true” block, however, this is often not feasible in practice.

High dimensional dependence, in fact, are in general not easily detected, mainly when

we have a very low sample size. In such contexts smaller sub-partitions are more easily

identified, and might represent a good proxy of the real dependence structure.

Additionally, by putting a threshold parameter m we exclude usually unrealistic mod-

els such as all variable clustered together, while enhancing computational flexibility, since

the choice of a small m deeply simplify partition updates, by reducing the cardinality of

the correspondent space. Specifically by selecting a small m we reduce the space of ad-

missible partitions in step [4] of Algorithm 2.

Although very simple the proposed partition model can give important insights on

the dependence structures, successfully identifying subset of dependent variables that

can be used for finer level inference at a second stage.

2.2.2 Learning arm structure in GROT factorization

The introduced PPM can be used per se as a learning techniques, for detecting struc-

tures and screening independent variables, however, it may lack the necessary flexibility

in complex scenarios. We can leverage a PPM prior with cohesion function (2.4) to take

into account uncertainty in the arm structure of model (2.2). This prior choice just in-

troduce a small modification of Algorithm 1 to sample from the posterior. By using the

same prior setting of model (2.2) we can, in fact, sample from the posterior relying on

Algorithm 3
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Algorithm 3: Posterior sampling for GROT factorization with unknown arm structure

To initialize the algorithm we need a starting partition %(0) = {B (0)1 , . . . , B (0)G (0)}. A

possible default choice is in starting with the singleton partition (e.g. |Bl |= 1 for

l = 1, . . . ,G , and G = p ).

for r in 1:n_iterations do
[1]—[3] conditionally on the current partition %(r ) update Ψ, λ, and zi for

i = 1, . . . , n , following Algorithm 1;

[4] update the current partition %(r ), following the step in Algorithm 2, using the

following conditional posterior in step [4]

p ∗l =
H
∏

h=1

∏

{v :|Bv |<m}











Γ (α0)
Γ (α0+nh )

∏d v
1

c1=1 · · ·
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cpv =1 Γ
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1 ,...,c v
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pv
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,

where α0 =
∑d v

1
c1=1 · · ·

∑d v
pv

cpv =1αc1,...,cpv
and

n v
h (c v

1 ,...,c v
pv )
=
∑

i :zi=h 1{x v
i 1 = c v

1 , . . . , x v
i pv
= c v

pv
}.

2.3 Simulation study

With the aim of testing the empirical performances of the proposed multinomial PPM

and GROT factorization models, we consider two simulation studies, with an empha-

sis on learning dependence structures in the data. We focus on pairwise dependences,

which are the easiest to characterize/interpret and, usually, the main object of infer-

ence in categorical variable applications. We highlight differences in performances with

Parafac decomposition that represents the main competitor.

To effectively measure pairwise dependences a common strategy is in computing the

discrepancy between the joint distribution and the product of the involved marginals,

i.e. the joint distribution under independence assumption. When the two distributions

are very similar we can conclude that there is high evidence of independence. Clearly,

any distance can be used to measure such discrepancy, notable examples include model

based Cramer V (e.g. Dunson and Xing, 2009; Dobra and Lenkoski, 2011) and normalized

mutual information (e.g. Bhattacharya and Dunson, 2011).

The aforementioned distances have the main property of being defined in the (0, 1)

interval, leading to a more clear interpretation of the strength of the dependence, how-

ever their computation might be subject to numerical instability when some components

of the marginal probabilities are near zero. This instability is a known problem when

measure of discrepancy for categorical variable are considered, for example when using

the Pearson chi-square independence test, and consequently the Cramer V, (e.g. Agresti,
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2013). To avoid such an issue in comparing models, we rely on L1-distance between the

joint distribution and its equivalent under independence assumption.

2.3.1 Simulation settings

In a first simulation setting we focus on a scenario with p = 30 variables and, in order

to introduce group dependence structure, we let the true p.m.f. to be decomposable in

the following G = 23 blocks, B (0)1 = {1, 2, 3, 4}, B (0)2 = {5, 6, 7}, B (0)3 = {7, 8}, B (0)4 = {9, 10},
B (0)5 = {11, 12}, B (0)b = {b } for b = 1, . . . ,G . Variables assigned to distinct blocks are con-

sidered as independents. We also fix the number of categories, d1, . . . , dp = d = 4 for all

variables.

Inside each block we consider different generative mechanisms, specifically, for B (0)1

pr(X1 = X1 = X3 = X4 = d ) = 0.0375, we redistribute the residual of the 0.85 of the proba-

bility among other 5 random combination of the involved variables. For variables in B (0)2

we induce conditional dependence by letting X5 ⊥⊥ X6 | X7. Probabilities to simulate vari-

ables in blocks B (0)2 , B (0)3 and B (0)4 are presented in Figure 2.3. All the remaining variables

are generated from discrete uniforms over {1, . . . , d }.
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FIGURE 2.3: Probability distributions for the variables belonging to blocks B (0)2 , B (0)3 and

B (0)4 . Higher values have darker shade.

Theoretically, with the possible exception of the multinomial PPM, the considered

models are able to retrieve any possible dependence structure in the data, provided that

the sample size is large enough. Hence, we focus on scenarios with very low sample size

compared to the effective number of parameters, namely n = {40, 100}, to test how these

models behave in recovering the dependence structure in these challenging settings.

In a second setting we consider sparse dependence induced by a Markovian structure

of the simulated variables. We let X j for j = 2, 3, 4, have the following transition prob-

abilities pr(X j+1 | X j = 1) = (0.3, 0.7, 0, 0)T , pr(X j+1 | X j = 2) = (0.2, 0.1, 0.7, 0)T , pr(X j+1 |
X j = 3) = (0, 0.2, 0.1, 0.7)T and pr(X j+1 | X j = 4) = (0, 0, 0.7, 0.3)T , with initial distribution

pr(X1) = (0.5, 0.2, 0.2, 0.1)T . Variable with indices from j = 5, . . . , p = 30 are instead gener-

ated from a discrete uniform over {1, 2, 3, 4}.
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The described scenario induces marginal dependence just in variable with indices j =

1, 2, 3, 4, decaying with the distance of the indices. This kind of dependence may occur

in practice when the variables’ indices have some specific meaning, i.e. time or space.

Again we consider a low sample size scenario, letting n = 100.

2.3.2 Prior settings

For the multinomial PPM model we make use of the cohesion function defined in 2.4.

We set the upper bound m = 3 in such a way that it is lower than the highest cardinality

of the groups composing the p.m.f., we use a symmetric Dirichlet prior with an small

hyperparamter α= 0.01, to favor sparsity. For the Parafac model we use the same setting

proposed Dunson and Xing (2009), but we substitute the DP prior with a finite Dirichlet

prior having hyperparamter 1/H , setting the upper bound H = 15. For the GROT model

we rely on Algorithm 3, using symmetric Dirichlet priors with hyperparamter set to 1/d

for the tensor arms, fixing the upper bounds H = 5 and m = 3. For all the estimated

models, we run the correspondent Gibbs sampling for 5000 iterations, discarding the first

2500 as burnin. In all cases trace plots inspection suggests convergence has been reached.

2.3.3 Simulation results

L1-distances between the bivariate distributions and the product of the correspond-

ing marginals are shown in Figure 2.4, where the first row is for n = 40 while the second

for n = 100. We can notice that, when there are very few data points, the multinomial

PPM works well in identifying marginal dependence structures. The Parafac model, in-

stead, fails to retrieve the correct structure in this example. This failure is probably due

to the challenging scenario we proposed, and the model is expected to regain its flexibil-

ity when n increases. GROT model also fails to reconstruct the dependence structure in

the first case. When n = 100, instead, we can notice that just variables sharing the same

block present an L1-norm grater than 0. The model is perfectly able to detect the inde-

pendent variables, that always present a L1-distance from the independence hypothesis

approximately equal to 0.

Considering multinomial PPM and GROT models, we can also use as a proxy of the

pairwise dependence the number of times variable share the same group. When using

the GROT model groups are not necessarily index of the dependence since this last can

be taken into account also by means of latent classes. Nevertheless, we empirically noted

that strongly dependent variables are often in the same cluster. Results are shown in Fig-

ure 2.5.
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Dunson & Xing (2009)

0.15 0.20 0.25 0.30

GROT

0.06 0.08 0.10 0.12

Multinomial PPM

0.0 0.2 0.4 0.6

Dunson & Xing (2009)

0.2 0.4 0.6

GROT

0.00 0.02 0.04 0.06

FIGURE 2.4: Posterior mean of L1-norm between joint bivariate distributions and the one
obtained under independence assumption. First row is for sample size n = 40 and second
row is for n = 100.
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FIGURE 2.5: Proportion of time pair of variables are in the same clusters for multinomial
PPM and GROT model. Value on the diagonal represent the number of times variables
are in a singleton block. First row is for n = 40, second for n = 100
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From Figure 2.5 we can notice that PPM models works amazingly well in identifying

the dependence structure, including singleton blocks, even in cases where the sample

size is very low. GROT factorization also produces a good proxy of the dependence block

structure of the data, since dependent variables are clustered together with high proba-

bility. The model, however, fails to detect blocks with cardinality 1, that are grouped with

other variables almost randomly.

Multinomial PPM

0.00 0.25 0.50 0.75

Dunson & Xing (2009)

0.05 0.07 0.09 0.11

GROT

0.000 0.005 0.010 0.015 0.020

FIGURE 2.6: Posterior mean of L1-norm between joint bivariate distributions and the one
obtained under independence assumption in the case of Markovian dependence.

When a well defined block dependence structure is present, the PPM model seems to

have better screening ability than GROT factorization, since it is able to correctly iden-

tify the marginal dependence structure, including independent variables. This behavior

is probably due to the fact that PPM proposal relies on a lower number of parameters

than its competitors. Although the model is able to take into account dependence across

blocks of the partition through prior (2.4), this approach may fail in correctly character-

izing the dependence when it is due only to sparse subset of variables in a block. This

behavior is indeed present in the second simulation scenario, in which PPM model to-

tally misses association between some pairs of variables, e.g (X2, X3). All pairs of variable

(X j , Xk ) for j 6= k ∈ {1, 2, 3, 4} are expected to be dependent, and correctly identified by

GROT factorization, which produce L1-distance from the independence hypothesis dif-

ferent from 0 just for these variables (Figure 2.6). We can also notice how Parafac model

gives some information on the dependence in the data, but results are noisy and there

are many false positive.

We want to stress that we are considering scenarios with a very low signal to noise ratio,

in fact when increasing the sample size (not shown) all models perform well in retrieving

pairwise dependences.
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2.4 Application to Promoter Data

In this Section we analyze the promoter data, publicly available at the UCI machine

learning repository (Asuncion and Newman, 2007). A promoter is a genetic region which

initiates the first step in the expression of a gene, known as transcription. The available

data consist of n = 106 sequences of nucleotides A, C, G, T, observed at p = 57 locations,

along with a binary response indicating if the sequence is a promoter or not. We can

notice that the sample size is not very high compared to the length of the sequences,

motivating the application of a compact model for the probability mass function.

In the data, there are 53 promoter and 53 non-promoter sequences of Escherichia coli,

and the main aim is in identifying, if possible, the contact bases for the RNA polymerase,

the enzyme responsible for starting the transcription, and in discriminating the promoter

sequences.

Although the proposed model is introduced in an unsupervised fashion, to achieve

such a goal we estimate the joint density of the binary response Yi ∈ {0, 1}, assuming

value of 1 if the sequence i is a promoter, and the nucleotides sequence X i , obtaining an

estimate of pr(Yi , Xi), and consequently the conditional p.m.f. pr(Yi | Xi). This approach

has already been used in tensor factorization (e.g. Bhattacharya and Dunson, 2011) and

it is akin to density regression in Bayesian nonparametric joint model for response and

covariates (e.g. Wade et al., 2014).

For posterior inference we consider the same setting of Section 2.3.2. In determining

which locations can be a starting points for transcription, we measure the association be-

tween being a promoter and each of the 57 locations, computing the L1-distances from

the independence assumption. Indeed, starting locations are expected to present simi-

lar nucleotide pattern across the sequences. Results are shown in Figure 2.7, indicating

that nucleotides in position j = 15, 16, 17 are highly different in promoter and non pro-

moter sequences respect to all other locations. In particular, pr(X j = T |Yi = 1)≈ 0.406 for

j = 15, 16 and pr(X17 =G |Yi = 1) ≈ 0.396, while the same probabilities for non promoter

sequences are all approximately 0.1. Hence, these bases are mainly preserved across the

promoter sequences. This results is in accordance with the literature on this data, indi-

cating that 17 and 16-base pair of basis, and the one in he immediate neighborhood, as

possible staring points (O’Neill, 1989).

To test for predictive ability of our proposed approach, we compare the classification

errors with the ones obtained trough standard classification models, namely Random for-

est and logistic lasso, implemented in R packages randomForest and glmnet, respec-

tively. We also implement Dunson and Xing (2009) model as a direct competitor of our
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FIGURE 2.7: L1-norm between joint bivariate distribution of being promoter or not Y and
each of the p = 57 locations X j for j = 1, . . . , p , and the one obtained under independence
assumption.

approach, relying on the same settings of Section 2.3.2.

For the comparison we make use of a 5 fold cross validation. While a pure Bayesian

would undertake model assessment strictly on the basis of the posterior probabilities of

competing Bayesian models, cross validation provides a practical way to compare Bayesian

and non-Bayesian analyses of a particular data set. For a more theoretical justification of

the use cross validation in a Bayesian settings one can refer to Alqallaf and Gustafson

(2001).

We divided the dataset in 5 parts using in turn 4 for training the model and the remain-

ing one to compute the out of sample classification errors. Classification errors from all

the proposed models are shown in Table 2.1.

TABLE 2.1: 5 fold cross validation mean and standard deviation classification error for
promoter sequences. First column is Total classification error, second is False Positive
and third False negative.

Model T Err. FP Err. FN Err.

Random Forest 0.056(0.019) 0.035(0.049) 0.070(0.068)
Lasso 0.094(0.066) 0.058(0.054) 0.118(0.120)
Parafac 0.321(0.189) 0.398(0.422) 0.164(0.200)
GROT 0.114(0.093) 0.204(0.207) 0.015(0.034)

We can notice that Random Forest produces the best classification error, with the ex-

ception of the false negative one. Our approach is close to lasso, if we consider the to-

tal classification error, but sensibly worse in terms of false positives. GROT factorization

is uniformly better than the standard Parafac in this application. It is also worth notic-

ing that our proposed method does not present dramatically worse performances than

statistical learning tools, specifically designed for classification, while producing easily

interpretable results.



Chapter 3

Multivariate mixed membership

modeling: Inferring domain-specific risk

profiles

In this Chapter we propose a novel multivariate generalization of mixed membership

models, introduced in Chapter 1, which allows identification of correlated profiles re-

lated to different domains corresponding to separate groups of variables. Although we

provide a broad new class of mixed membership models, which can be used in several

contexts, we are initially motivated by the definition of survey based environmental and

behavioral malaria risk profiles. Diffusion of malaria is a complex phenomenon evolving

over time and space, driven by biological, behavioral and environmental factors acting

together. We consider as a case study the Machadinho settlement project in Brazil, with

the aim of defining survey based environmental and behavioral risk profiles and studying

their interaction and evolution. To achieve this goal, we show that the use of correlated

multiple membership vectors leads to interpretable inference requiring a lower number

of profiles compared to standard formulations, while inducing a more compact repre-

sentation of the population level model. We propose a novel multivariate logistic normal

distribution for the membership vectors, which allows easy introduction of auxiliary in-

formation in the membership profiles leveraging a multivariate latent logistic regression.

A Bayesian approach to inference, relying on Pólya gamma data augmentation, facilitates

efficient posterior computation via Markov chain Monte Carlo. The proposed approach

is shown to outperform the classical mixed membership model in simulations, and the

malaria diffusion application.

In Section 3.2 we introduce our novel multivariate generalization of MM models, dis-

cussing some properties. Section 3.3 introduces a multivariate distribution defined on

37
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a product space of simplicies. In Section 3.4 we provide technical details on posterior

computation. In Section 3.5 we study the performances of our model under different

simulation scenarios, and in Section 3.6 we apply the model to the Machadinho malaria

data.

3.1 Introduction and motivation

Malaria infection risk is largely driven by human behavior, especially in the later stages

of disease diffusion, and its evaluation requires consideration of biological and econom-

ical aspects juxtaposed with behavioral and environmental factors. We focus on these

lasts two aspects, with the aim of identifying social survey profiles, studying their evolu-

tion in time and space and their association with malaria diffusion. We consider the case

of the Machadinho Settlement Project, located in the Rondônia state, Western Brazilian

Amazon. The project was approved in 1982, with occupation starting in late 1984. The

area was previously a forest sparsely inhabited by rubber tappers (Castro et al., 2006).

Malaria became a problem in the area soon after occupation, with the proliferation of

the Anopheles Darlingi mosquito, which is the principal vector for malaria diffusion in the

Amazon area. Spread of malaria in frontier settlements is a complex phenomenon that

can profoundly impact the ecosystem at different levels, including economic growth (Gallup

and Sachs, 2001), land occupation (Zhang et al., 2011), resource dilapidation due to di-

rect costs of malaria prevention and treatment (e.g. Ettling and Shepard, 1991; Leighton

and Foster, 1993), and labor productivity through working days lost to illness (Nur, 1993;

Sauerborn et al., 1995). Moreover, early childhood exposure to malaria can have long

term consequences on physical and cognitive development (Jukes et al., 2006).

For these reasons, the identification of risk profiles is very important in defining effec-

tive prevention and mitigation strategies to malaria diffusion. Crude measures of malaria

risk (e.g. number of malaria cases reported in the households) are usually adopted to

determine risk profiles through regression models. However, for the Machadinho set-

tlement these indicators can lead to misleading results because of the presence of tran-

sient individuals, responsible for high malaria rates in zones presenting low risk condi-

tions (see for example Castro et al., 2006). Correcting for this effect would require inte-

gration of external ethnographic information and conjectures on land occupation, since

highly migratory individuals are typically not included in the analysis, being not possi-

ble to trace. Unsupervised profiles based only on household features are not affected by

this phenomenon, and can be linked to malaria risk, leading to more reliable findings for

targeted stable populations in the settlement project.
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Taking into account the distinction between behavioral variables (e.g. use of insecti-

cide and presence/absence of crops in the settlement) and environmental variables (e.g.

quality of roof, walls and housing), profiles are identified leveraging on a novel Multi-

variate Mixed Membership Model (MMM) which allows modeling different and possibly

correlated latent traits.

Mixed membership models are used in a variety of contexts including for text anal-

ysis (Blei et al., 2003), medicine (Erosheva et al., 2007) and relational data (Airoldi et al.,

2005), among others. An extensive review can be found in Airoldi et al. (2014). Starting

from multivariate observations, these admixture models can be used to estimate subject-

specific latent scores corresponding to the weights in a discrete mixture model. The key

idea is that the population is composed of H pure types, or profiles, and that each sub-

ject is endowed with a vector λi = (λi 1, . . . ,λi H )T , such that 0 < λi h < 1 and
∑H

h=1λi h = 1,

indicating the degree of similarity of subject i with each of the H profiles. The vector λi

induces a soft clustering of the subjects across the multiple profiles, which is particularly

appealing when an exact grouping is difficult if not impossible to obtain, as for exam-

ple in identification of disease risks (e.g. Chuit et al., 2001; Castro et al., 2006) or political

ideology (e.g. Gross and Manrique-Vallier, 2012).

In many situations, interpretability is one of the most important features; hence it is

desirable to employ a small number of profiles, ideally H = 2. For example, in epidemi-

ology applications for H = 2, we can consider two profiles as corresponding to idealized

healthy and unhealthy behavior, respectively. The weight vector λi then corresponds to

values in (0, 1) summarizing the healthiness of subject i ’s behavior overall. This leads to

a simple summary of risk. For example, in our malaria application in an unsupervised

manner we can identity low and high risk profiles, can examine the differences in these

profiles and also assign each household a risk score.

However, to accurately characterize the dependence structure in the data, usually a

higher number of profiles is needed. Goodness-of-fit and interpretability are conflict-

ing factors and, as noted in Singer and Castro (2014), when interpretability is the main

concern, using separate models for different groups of variables might provide better in-

sights. For example, one may define low and high risk profiles separately for behavioral

and environmental variables; however, this simple approach ignores dependence across

groups.

Our MMM framework addresses this issue by linking group-specific MM models through
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dependence in the membership scores. We show that this leads to a more compact rep-

resentation of the joint probability mass function underlying the data, relaxing the con-

straints of the standard mixture membership model formulation. Additionally, we pro-

pose a novel joint distribution defined on a product space composed of simplices, lead-

ing to an easy-to-implement Gibbs sampler for posterior computation, based on Pólya

gamma data augmentation (Polson et al., 2013). The proposed framework allows sim-

ple inclusion of subject and group-specific covariates leveraging multiple latent logistic

regression.

Motivated by the malaria risk application, we use the proposed framework to study

environmental and behavioral membership scores evolving in time and space. The data

consist of a 4 waves household survey conducted in Machadinho in 1985, 1986, 1987 and

1995. An occupied plot was defined as one at least partially cleared, or where settlers lived

at least part-time. In 1985 70% of such plots were included in the survey, while in the re-

maining years 100% of such plots were considered; hence we do not take into account

survey weights in the analysis. A core of 30 variables remained common to all the years,

while some other questions were gradually added over time. Household spatial locations

are also available and will be considered in the analysis. Although the survey was carefully

administrated, the composition of the resulting data is highly heterogeneous across time

and includes missing data. This is essentially due to the settlement process that was tak-

ing place in Machadinho, and the consequence of high mobility of the stable population

in the area.

3.2 Multivariate mixed membership model

Considering the study of malaria risk profiles, standard application of the mixed mem-

bership model, briefly reviewed in Chapter 1, would fix H = 2 in order to have an easy to

interpret model for the household risks. As discussed above, in this setting the use of

standard mixed membership models, having a single score vector for all the variables,

can lead to an unsatisfactory representation of the probability mass function due to the

exchangeability assumption at the population level. Moreover, in the malaria context,

the use of a single risk vector can mask the distinction between environmental and be-

havioral conditions, which can have a very different impact on spatio-temporal evolution

of malaria diffusion (see for example Sawyer, 1992).

Motivated by these considerations, we generalize model (1.8), relaxing the exchange-

ability assumption by allowing group-specific mixed membership scores. We consider

settings in which variables are naturally divided in advance into groups corresponding to



Chapter 3 - Multivariate mixed membership modeling 41

different domains. Let g = (g1, . . . , gp )T be an indicator vector of variable groups, where

g j ∈ {1, . . . ,G } for j = 1, . . . , p . Each subject is endowed with G membership score vec-

tors (λ(1)i

T
, . . . ,λ(G )i

T
)T such that

∑H
h=1λ

(g )
i h = 1 for g = 1, . . . ,G . Note that the sum of the

membership scores for the different domains is not equal to 1, i.e.
∑G

g=1λ
(g )
i 6= 1.

The proposed model can be expressed in the following hierarchical form:

X i j | Zi j = h ,ψ( j )h ∼ Cat(ψ( j )h1, . . . ,ψ( j )hd j
),

Zi j |λ
(g j )
i ∼ Cat(λ

(g j )
i 1 , . . . ,λ

(g j )
i H ), (3.1)

(λ(1)i

T
, . . . ,λ(G )i

T
)T ∼ P.

As in model (1.8), representation (3.1) relies on conditional independence of the ob-

served variables given the profile labels; in fact the latent variables Zi j are conditionally

independent given the mixed membership scores (λ(1)i , . . . ,λ(G )i )
T :

pr(X i 1 = x1, . . . , X i p = xp |λ
(1)
i , . . . ,λ(G )i ) =

H
∑

h1=1

· · ·
H
∑

hp=1

λ
(g1)
i h1
· · ·λ(gp )

i hp

p
∏

j=1

ψ
( j )
h j x j

. (3.2)

Integrating out the scores from equation (3.2), we obtain the population level model:

pr(X1 = x1, . . . , Xp = xp |ψ) =
H
∑

h1=1

· · ·
H
∑

hp=1

āh1...hp

p
∏

j=1

ψ
( j )
h j x j

. (3.3)

Although equation (3.3) seems identical to equation (1.10), the elements of the core

tensors are different, as are the imposed constraints. The core tensor Ā = {āh1,...,hp
, h j =

1, . . . H ; j = 1, . . . , p} is not a symmetric tensor, but it has some equality constraints on the

elements. Specifically, given the vector of indices h = (h1, . . . , hp )T , and a group indicator

vector g = (g1, . . . , gp )T , we can define a group preserving permutation spaceSg
h such that

the effect of σ̄ ∈Sg
h is to permute the elements of a vector within the groups, leaving the

group structure unchanged. It immediately follows that Sg
h is a well defined group since

it is closed to composition, while also respecting associativity, identity and invertibility

properties (e.g. Artin, 1991).

The core tensor Ā can be defined as a group symmetric tensor, meaning that given a

multivariate index h we have āh = āσ̄(h ), for all σ̄ ∈ S
g
h . Note that a symmetric tensor,

defined 1.1, can be viewed as group symmetric with only one group, or can be defined

such that it is group symmetric for any possible group configuration g .

The number of distinct elements in Ā is given by
∏G

g=1 H p̄g /pg !, which is considerably

larger than in the symmetric tensor case, as can be seen from Figure 3.1.



42 Section 3.3 - Multivariate Logistic Normal Distribution

FIGURE 3.1: Logarithm of the number of distinct elements in a cubic tensor of dimension
H 10, for symmetric and group symmetric tensors for all configurations of two groups.

Moreover, as a consequence of Theorem 3.1, equation (3.3) is a closer approximation

of the ‘true’ probability mass function generating the data than equation (1.10) for any

fixed H .

Theorem 3.1. Let π0 be a probability tensor of dimension d1× . . .×dp , πgsym and πsym be,

respectively, the best group symmetric and symmetric multi-rank H approximations ofπ0.

Then ‖π0−πgsym‖F ≤ ‖π0−πsym‖F , where ‖ · ‖F denote the Frobenius norm.

Proof. The proof immediately follows after noticing that πgsym by definition minimizes

‖π0−πgsym‖F under the constraint āh = āσ̄(h ) for all σ̄ ∈Sg
h , and thatπsym can be obtained

by solving the same problem with additional equality constraints to the element of the

core tensor Ā such that, āh = āh ′ if h =σ(h ′) for aσ ∈S.

Theorem 3.1 implies that incorporating group-specific membership scores provides

a more compact representation of the true probability mass function π0 generating the

data, for any fixed H . Hence, if we fix H = 2 for interpretability, we will tend to produce

a better fit to the data in using group-specific scores than in modeling a single global

score vector. To complete a specification of the MMM model, it remains to choose an

appropriate distribution P .

3.3 Multivariate Logistic Normal Distribution

Letting SH = {x ∈ [0, 1]H :
∑H

h=1 xh = 1} denote the H −1 probability simplex, we aim to

define a joint distribution on the product space S = SH1
⊗· · ·⊗SHG

. To achieve this goal, we
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start from a distribution on R
∑G

g=1(Hg−1), mapping to S via an appropriate transformation.

Potentially any continuous multivariate distribution can be used, but we focus on the

multivariate Gaussian distribution to retain simplicity and flexibility.

Normal distribution, as linear regression, have been extensively used to parsimoniously

model relationships in tensor data elements in different frameworks. Notable examples

include Hoff (2015) in which he introduces a general multilinear tensor having Kronecker-

structured regression parameters along with a separable covariance model; Guhaniyogi

et al. (2017), that consider instead, a Bayesian approach to tensor regression, having a

scalar response. A more general inference framework has been recently introduced in Lock

(2018), in which he proposes a general tensor on tensor regression framework that in-

cludes several of the previous tensor regression models as special cases. We follow their

lead to introduce a flexible distribution defined on the product of simplicies space S .

Specifically, let Y = (Y (1)T , . . . , Y (G )T )T be a multivariate normal distribution of dimen-

sion
∑G

g=1(Hg −1)with mean vector µ= (µ(1)T , . . . ,µ(G )
T )T , where µ(g ) ∈RHg−1, and covari-

ance matrix Σ. We consider the transformed vector X = (X (1)T , . . . , X (G )
T )T , whose ele-

ments can be defined as X (g )h = exp{Y (g )h }[1+
∑H g−1

k=1 exp{Y (g )k }]−1 for h = 1, . . . , Hg − 1 and

g = 1, . . . ,G , with X (g )Hg
= [1+

∑H g−1
k=1 exp{Y (g )k }]−1.

It is easy to show that X ∈ S and that the Jacobian matrix of the transformation is

block diagonal having determinant given by [
∏G

g=1

∏Hg

h=1 X (g )h ]
−1. The probability density

function of the resulting distribution is

fX (x ;µ,Σ) =
exp

�

− 1
2 (x

?−µ)TΣ−1(x ?−µ)
	

(2π)
∑G

g=1(Hg−1)/2|Σ|1/2
∏G

g=1

∏Hg

h=1 x (g )h

, (3.4)

where x ? = conc
�¦

log(x (g )h /x g
Hg
), for h = 1, . . . , (Hg −1); g = 1, . . . ,G

©�

. Each of the group

marginals X (v ) has a logistic normal distribution with parametersµ(v ) andΣ(v ), whereΣ(v )

is the block of the matrix Σ corresponding to the v -th group; for this reason, we refer

to (3.4) as the Multivariate Logistic Normal Distribution (MLND). Distribution (3.4) can

be alternatively derived as a compound distribution from a collection of independent lo-

gistic normal distributions and a multivariate normal for the concatenation of the means,

as stated in Proposition 2.

Proposition 2. Let X = (X (1)T , . . . , X (G )
T )T ∈ S such that X (g ) |µ(g ) ∼ LogitNormal(µ(g ),Σ(g ))

independently for g = 1, . . . ,G , and let µ = (µ(1)T , . . . ,µ(G )
T ) ∼ N (µ0,Σ0). Then X ∼

MLND(µ0, Σ̃), where Σ̃=Σ0+block(Σ(1), . . . ,Σ(G )).

Following Aitchison and Shen (1980), we consider a class of distribution preserving
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transformations, useful to maintain some invariance properties of the induced distribu-

tion. According to our problem, we additionally restrict our attention to the sub-class of

group preserving transformations (e.g. group permutation defined in Section 3.2).

Proposition 3. Let X = (X (1)T , . . . , X (G )
T )T ∼MLND(µ,Σ) and B a Q ×

∑G
g=1(Hg − 1) block

diagonal matrix, having diagonal blocks B (g ) of dimension qg × (Hg − 1) for g = 1 . . . ,G ,

then the Q ×G dimensional vector X′ whose elements are defined as

x ′(g )q =
Hg−1
∏

h=1

 

x (g )h

x (g )Hg

!b
(g )
q h



1+
qg
∑

k=1

Hg−1
∏

h=1

 

x (g )h

x (g )Hg

!b (g )k h




−1

, q = 1, . . . , qg , g = 1, . . .G ,

has distribution X ′ ∼MLND
�

Bµ, BΣB T
�

.

The diagonal block structure of matrix B in Proposition 3 assures that the transforma-

tion preserves the same group structure of the original vector, and it can be structured to

accommodate changes of the baseline category, permutation of the labels, and merging

of one or more categories within groups.

The proposed MLND distribution has finite moments, but these moments in general

do not have a simple analytic form. However, we can obtain simple expressions for mo-

ments related to log-odds and odds ratios both between and across the groups.

For example, letting

ml (h , g ; h ′, g ′) =E



log

 

X (g )h /X (g )Hg

X (g
′)

h ′ /X (g
′)

Hg ′

!



 and mo (h , g ; h ′, g ′) =E





 

X (g )h /X (g )Hg

X (g
′)

h ′ /X (g
′)

Hg ′

!



 ,

we have

ml (h , g ; h ′, g ′) = µ
(g )
h −µ

(g ′)
h ′ ,

mo (h , g ; h ′, g ′) = exp
§

µ
(g )
h −µ

(g ′)
h ′ +

1

2

�

Σ
(g )
hh +Σ

(g ′)
h ′h ′ −2Σ(g ,g ′)

hh ′

�

ª

, (3.5)

where with an abuse of notation we indicate with Σ(g ,v )
hk the element in position (h , k ) of

the non diagonal block corresponding to the groups g and v . Higher order moments can

also be computed relying on normal and log-normal distribution properties.

From equation (3.5) we can notice that the log-odds of the elements in different groups

are linearly related. Moreover, when applied to multivariate mixed membership models

with Hg = 2, log-odds and odds ratios give important insights on which group is more

important in characterizing high and low risk conditions.
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Although having a simple expression, the proposed MLND adapt to different scenar-

ios, characterizing many possible dependence structure across the profiles. Figure 3.2

shows contour plots of four different MLND distributions with G = 2 and H1 = H2 = 2,

highlighting how for different values of the parameter the distribution changes.
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FIGURE 3.2: Bivariate MLND p.d.f. for different values of the parameters.

3.4 Posterior Computation

We propose an algorithm to simulate from the posterior of model (3.1), with

(λ(1)i

T
, . . . ,λ(G )i

T
)T ∼MLND(µ,Σ) defined in (3.4).

Following the detailed motivation earlier in the Chapter, we focus on the special case

in which Hg = 2, for g = 1, . . . ,G . Generalization to more pure types can be obtained iter-

ating the proposed Pólya gamma data augmentation on all the conditional log-odds (Pol-

son and Scott, 2011), or alternatively relying on the stick breaking parametrization of the

multinomial likelihood introduced in Linderman et al. (2015).

Enhancing computational flexibility, we specify conjugate prior distributions for

all the parameters in the model. Specifically, for the kernel probabilities ψ(j )
h
∼
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Dir(α( j )1 , . . . ,α( j )d j
), and for the hyperparameter µ∼N (µ0,Σ0), and for the variance and co-

variance matrix Σ ∼ I W (ν0,Ψ0). Parameters can be updated iterating the steps in Algo-

rithm 4.
Algorithm 4: Posterior computation for the MMM model

for r in 1:n_iterations do
[1]Update the kernel probabilities

for j in 1 : p & h in 1 : 2 do

ψ
(j )
h
| − ∼Dir

�

α
( j )
1 +

∑

i :zi j=h

1{xi j = 1}, . . . ,α( j )d j
+

∑

i :zi j=h

1{xi j = d j }
�

,

where 1{·} is the indicator function;

[2] Considering the model pr(Zi j = 2 |λ(g j )
i ) =λ

(g j )
i , we can sample the profile

indicator with probability

for i in 1 : n & j in 1 : p do

pr(Zi j = 2 | −) =
λ
(g j )
i ψ

( j )
2xi j

(1−λ(g j )
i )ψ

( j )
1xi j
+λ

(g j )
i ψ

( j )
2xi j

.

[3]We make use of Pólya gamma data augmentation to retrieve conjugacy

between binomial and logistic normal distributions. We consider the augmented

variables

for i in 1 : n & g in 1 : G do

ω
(g )
i | − ∼ PG(pg , logit(λ(g )i )),

where pg =
∑p

j=1 1{g j = g } is the number of variables in g -th group for

g = 1, . . . ,G .

[4]We define k (g )i =
∑pg

j=1 1{Zi j = 2}−pg /2, and we have that the vector

(k i /ωi ) = (k
(1)
i /ω

(1)
i , . . . , k (G )i /ω(G )i )

T |λi ∼N (logit(λi ), diag(1/ω(1)i , . . . , 1/ω(G )i )) and

we can update the membership scores from

for i in 1 : n do

λi |µ∼MLND(µ?,Σ?),

where Σ? =
�

diag(ω(1)i , . . . ,ω(G )i ) +Σ
−1
�−1

and µ? =Σ?(Σ−1µ+k i ).

[5]We can update the vector µ integrating out the membership scores vectors λi ,

we have that the vector (k i /ωi ) |µ∼N (µ,Υ −1
i
), where

Υ −1
i
= (diag(1/ω(1)i , . . . , 1/ω(G )i ) +Σ), and hence the full conditional is given by

µ | − ∼N (µ∗,Σ∗),

where Σ∗ =
�∑n

i=1Υi +Σ−1
0

�−1
and µ∗ =Σ∗

�∑n
i=1Υi k i /ωi +Σ−1

0 µ0

�

.

[6]We finally update the covariance matrix and its parameters from the full

conditional

Σ | − ∼ I W
�

ν0+n ,Ψ0+
n
∑

i=1

(logit(λi )−µ)(logit(λi )−µ)T
�

.
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In step 5 we update the mean vector of a multivariate Gaussian distribution; this step

can be substituted with a multivariate regression in order to take into account covariate

effects.

Potentially, for our MMM model, as in other MM models and more broadly for mixture

models, we may encounter label switching. This occurs when the external profiles change

their meaning across the MCMC iterations. In such a case post processing should be used

to appropriately align the MCMC samples (see for example Stephens, 2002). However,

such post processing was not applied in any of the simulated data or malaria analysis we

report below, as there was no evidence of label switching in the MCMC samples.

3.5 Simulation study

We analyze different simulation scenarios in evaluating the empirical performance of

our proposed approach. We consider different probability distribution functions for the

membership scores P , relying on hierarchical representation (3.1) to generate the data.

The goal in defining these scenarios is to assess whether the proposed model can charac-

terize generative mechanisms having broadly different properties. We compare our re-

sults with the standard admixture formulation implemented in the R package mixedMem,

using separate models for each group. We initially assume that Hg = 2 is the ‘true’ num-

ber of extreme profiles, presenting four different scenarios, while in a second section we

consider the misspecified case Hg > 2.

3.5.1 Number of profiles correctly specified

We consider G = 2 groups, n = 1000 subjects, pg = 5 categorical variables, having

d j = d = 4 modalities and Hg = 2 profiles for g = 1, 2. We simulate data from categor-

ical distributions, whose probabilities are drawn from a Dirichlet distribution with pa-

rameters ϕ(g )h having values ϕ(1)1 = (10, 3, 2, 1)T , ϕ(1)2 = (1, 1, 1, 11)T , ϕ(2)1 = (5, 5, 1, 0)T and

ϕ(2)2 = (1, 1, 1, 8)T .

In the first simulation scenario, we let the probability density function for the joint

distribution of the score vectors (λ(1)i ,λ(2)i )
T be a bivariate truncated normal distribution

over the unit square, having parameter µ = (0.5, 0.5)T and vec(Σ) = (Σ11,Σ21,Σ12,Σ22)T =

(0.05, 0.02, 0.02, 0.05)T . This formulation induces positive dependence between the two

scores with their distribution having ellipsoid contours truncated at the borders. In the

second simulation scenario, we consider the distribution proposed in Section 3.3 with
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µ= (−1.2, 1)T and vec(Σ) = (3.0,−2.4,−2.4, 3.5)T . In the third scenario, we rely on the gen-

erative mechanism (1.8), having profile distribution shared by all variables; we generate

this profile from a uniform distribution. Finally, in the fourth simulation scenario, we

consider P to be the product of two independent uniforms, forcing independence in the

variables belonging to different groups, which translates into the case in which two sep-

arate models for the groups represents the correctly specified model.

We perform posterior inference under the proposed model (3.1) with priors defined

in Section 3.4, setting α( j )1 = . . . ,α( j )d j
= 1/d j for j = 1, . . . , p , we consider µ0 = (0, 0)T , Σ0 = I ,

ν0 = 2 and Ψ0 = I . We maintained these default hyperparameters in all our simulation

cases, collecting 5000 Gibbs samples from Algorithm 4. Trace plots suggest convergence

is reached by a burn-in of 1000.

FIGURE 3.3: 1000 samples from estimated membership scores distribution from
model (3.1) (blue dots) and mixedMem (orange crosses). Grey area represents the con-
tour of the true profiles distribution.

Figure 3.3 shows the estimated profiles distribution P for all simulated scenarios,

comparing results with the use of two separate MM models. Despite the challenging sce-

narios and the misspecification of the profile distribution, our proposed approach is able

to reconstruct the latent mechanism underlying the profiles in a satisfactory way.

In evaluating subject-specific estimates of the scores (λ(1)i ,λ(2)i ) , we rely on mean

square error relative to the ‘true’ value. We obtain good results in retrieving the ‘true’
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membership vectors in all simulation scenarios (Table 3.1) as the proposed approach al-

ways produces better or comparative results compared to the standard mixed member-

ship model implemented in the package mixedMem.

TABLE 3.1: Mean square error for predicting individual membership scores (λ(1)i ,λ(2)i ) in
all simulation scenarios.

SCENARIO 1 SCENARIO 2 SCENARIO 3 SCENARIO 4

MMM g = 1 0.026(0.035) 0.027(0.035) 0.021(0.028) 0.038(0.046)
MMM g = 2 0.025(0.033) 0.027(0.045) 0.021(0.031) 0.036(0.051)
mixedMem g = 1 0.029(0.035) 0.034(0.046) 0.036(0.044) 0.041(0.046)
mixedMem g = 2 0.030(0.041) 0.037(0.050) 0.034(0.050) 0.036(0.048)
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FIGURE 3.4: True values of the estimated profilesψ
( j )
h for h = 1, 2 of a representative vari-

able in group g j = 1. Bars represent 0.1 and 0.9 posterior quantiles for our MMM model
and bootstrap 0.8 confidence intervals for the MM model estimated with the MixedMem
package.

Figures 3.4 and 3.5 show posterior estimates and credible intervals for the kernel pa-

rameters ψ( j )h for selected variables in both scenarios. We notice that our proposed ap-

proach robustly estimates kernels in the different proposed scenarios. Contrarily in some

cases, the MM model underestimates variability. This behavior is evident in the lower part

of Figures 3.4 where MM produces confidence intervals forψ( j )21 ,ψ( j )22 ,ψ( j )23 collapsing to 0

inappropriately.
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SCENARIO 1 SCENARIO 2 SCENARIO 3 SCENARIO 4
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FIGURE 3.5: True values of the estimated profilesψ
( j )
h for h = 1, 2 of a representative vari-

able in group g j = 2. Bars represent 0.1 and 0.9 posterior quantiles for our MMM model
and bootstrap 0.8 confidence intervals for the MM model estimated with the MixedMem
package.

3.5.2 Misspecification: more than two pure types

In this Section we consider a scenario in which generative model (3.1) has more than

2 pure types, while retaining the proposed inference model with Hg = 2 for g = 1, 2.

The key idea is to understand how the model is able to approximate the profiles in a

lower dimensional space, and compare this approximation with that for the standard

MM model. Specifically we consider as generative mechanism a G = 2 group model

with H 0
1 = 4. Kernels for the first group are fixed as ϕ(1)1 = (0.85, 0.05, 0.05, 0.05)T , ϕ(1)2 =

(0.05, 0.85, 0.05, 0.05)T , ϕ(1)3 = (0.05, 0.05, 0.85, 0.05)T and ϕ(1)4 = (0.05, 0.05, 0.05, 0.85)T ,

while membership scores (λ(1)i 1 , . . .λ(1)i 4 )
T ∼ Dirichlet(0.25, 0.25, 0.25, 0.25). For the second

group we consider instead the same mechanism used in scenario 4 with H 0
2 = 2, enforc-

ing no dependence in the scores distribution. This scenario is constructed to favour the

use of two separate MM models, having no dependence across the groups and a Dirichlet

distribution for the profiles.

Figure 3.6 shows the relations between each component of the ‘true’ unknown

λ(1)i 1 , . . . ,λ(1)i 4 and the estimates from our proposed approach. As expected, the estimated

score for both models is strongly correlated with more ‘true’ profiles. Some individ-

ual variability is lost in the process as we are projecting a 3-dimensional space to a 1-

dimensional one.

By reducing the dimensionality we obtain ‘mixed’ pure types that can be considered as

averages of the ‘true’ ones. For example, MMM model profile 2 is composed of subjects
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FIGURE 3.6: Estimated (x-axis) and ‘true’ (y-axis) values for the score vectors, relying on
MMM and MixedMem models for g = 1.

with high values of λ(1)i 3 and λ(1)i 4 , and low values of λ(1)i 1 and λ(1)i 2 , while in the MM model

profile 2 is composed of high values of λ(1)i 2 and λ(1)i 3 and low values of λ(1)i 1 and λ(1)i 4 . This

can be assessed by looking at the estimated kernels for a representative variable in group

1 (see Table 3.2).

TABLE 3.2: Estimated kernels for MMM and MM model for variable 1 in group g1 = 1.
Numbers in parenthesis are the 0.1 and 0.9 quantiles.

1 2 3 4

MMMψ(1)1 0.487(0.453;0.521) 0.491(0.458;0.523) 0.008(0.000;0.024) 0.013(0.000;0.037)
1/2(ϕ (1)1 +ϕ

(1)
2 ) 0.450 0.450 0.050 0.050

MixedMemψ(1)1 0.504 0.000 0.000 0.496
1/2(ϕ (1)1 +ϕ

(1)
4 ) 0.450 0.050 0.050 0.450

MMMψ(1)2 0.026(0.000;0.059) 0.011(0.000;0.032) 0.449(0.412;0.484) 0.515(0.478;0.550)
1/2(ϕ (1)3 +ϕ

(1)
4 ) 0.050 0.050 0.450 0.450

MixedMemψ(1)1 0.000 0.533 0.467 0.000
1/2(ϕ (1)2 +ϕ

(1)
3 ) 00450 0.450 0.450 0.050

To additionally evaluate model performance, we compute the Frobenius norm be-

tween the ‘true’ probability tensor π(1)0 = {pr(X1 = x1, . . . , Xp1
= xp1

); for x j = 1, . . . 4, j =

1, . . . , p1}, and π(1)
MM

and π(1)
MMM

, denoting the estimates from the MMM and MM model, re-

spectively. Leveraging equations (1.10) and (3.3), for MM we have a closed form expres-

sion of the core tensor, while for MMM we use 105 Monte Carlo replicates for estimation.

To estimate uncertainty in the MM case, we rely on 1000 bootstrap replicates. We obtain

a posterior mean of 0.131 for ‖π(1)0 −π(1)MMM
‖F with a standard deviation of 0.048, and a boot-

strap mean 0.133 for ‖π(1)0 −π(1)MM
‖F with standard deviation 0.029. For comparison, we also
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estimate the Frobenius norm considering a correctly specified model with H1 = 4 profiles

for group 1, leading to a bootstrap mean of 0.089 with standard deviation of 0.032. This

slightly improvement in estimation accuracy does not justify the greater complexity of

interpretation in using the larger Hg value.

3.6 Application to malaria risk assessment

We apply the proposed approach to the survey described in Section 3.1, with some

modification to accommodate the structure of the data, and to consider space and time

evolution. The composition of the considered data is summarized in Table 3.3.

TABLE 3.3: Distribution of the number of subjects and variables included in the analysis.

Year # Subjects # Behavioral variables # Environmental variables # variables

1985 269 14 28 42
1986 575 16 24 40
1987 802 14 29 33
1995 1108 19 36 55

Total 2704 63 117 180

Missing data were considered informative for this application; hence we defined a

missing category for each variable so that the missingness pattern can inform the analysis

results.

To take into account space and time effects, we leverage the multivariate Gaussian

model in step 5 of Algorithm 4 in Section 3.4. Different multivariate spatio-temporal

models can be considered (see for example Banerjee et al., 2014), and we rely on a separa-

ble model for time and space, assuming no interaction. This assumption leads to a simple

and computationally efficient latent model, while accommodating non regular observa-

tions in space and time. Space-time dependence can be included in distribution (3.4) by

letting

(λ(B)i ,λ(E)i )
T ∼ MLND(βt i

+ζt (s i ),Σt ), (3.6)

where ti ∈ {1985, 1986, 1987, 1995}, and s i = (si 1, si 2)T , are respectively a time indicator

and observed longitude and latitude for subject i .

We account for time dependence through a multivariate Gaussian hierarchical model

with common hyperprior. Specifically, βt = (β
(B)
t ,β (E)t ) ∼N (β ,Σ), β ∼N (β0,Σ0) and Σ ∼
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IW(νβ ,Ψβ ). This model does not impose a rigid time evolution, allowing borrowing of

information across different years.

For the spatial effect ζt (s i ) we specify a bivariate spatial model. A simple possi-

bility would be to rely on a separable structure for the spatial cross covariance of the

process (e.g. Banerjee et al., 2000). However, this model would imply the same spa-

tial effect for both the environmental and behavioral domain. We expect that behav-

ioral and environmental profiles can have a very different spatial evolution, and for

this reason we rely on a conditional Gaussian process p (ζ|Σt ) for the components of

ζt (s i ) = (ζ
(B)
t (s i ),ζ

(E)
t (s i ))T . Specifically we consider Σt = L t L t

T , where L t is a lower tri-

angular matrix obtained through Cholesky decomposition, and we let ζ̃t (s i ) = L−1
t ζt (s i )

and ζ̃
(g )
t ∼ GP(0, K (g )

t ). This formulation enforces no dependence across time and space

for the spatial effect components.

Since we are considering standardized data, we parameterize the Gaussian processes

in terms of correlation functions K (g )
t (s i , s i ′), obtained by normalizing the square expo-

nential form exp{−1/2
∑2

d=1γ
(g )
t d d2(si d , si ′d )}+τ1{i = i ′}, whereγ(g )t d are length scale param-

eters, d(·, ·) is the Euclidean distance and τ is a nugget effect to limit numerical instabil-

ity. The considered prior induces independent spatial effects for each domain and time,

while leading to a computationally efficient model, since small matrices are involved in

the Gaussian process computation.

The model can be easily implemented adapting Gibbs sampler Algorithm 4, with up-

dating of the length scale parameters γ(g )t d relying on a Metropolis step.

3.6.1 Model checking

We assess goodness-of-fit of the assumed model to the observed data. We are partic-

ularly interested in whether the assumption of Hg = 2 leads to significant lack o fit.

One possibility is to compute posterior distributions for some statistics of the consid-

ered data and compare them with the corresponding empirical quantities (e.g. Gelman

et al., 2013). We consider as statistics the marginal and bivariate distributions, that can

be obtained as:

π( j )x j
= pr(X j = x j | −) =

H
∑

h=1

ā
(g j )
h ψ

( j )
h x j

,

π( j ,k )
x j ,xk

= pr(X j = x j , Xk = xk | −) =
H
∑

h j=1

H
∑

hk=1

ā
(g j ,gk )
h j hk

ψ
( j )
h j x j
ψ(k )hk xk

, (3.7)

for j = 1, . . . , p and k 6= j , and where ā
(g j )
h =E[λ(g j )

h ] and ā
(g j ,gk )
h j hk

=E[λ(g j )
h j
λ
(gk )
hk
].



54 Section 3.6 - Application to malaria risk assessment

●●● ●●●● ●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●● ●●●●●● ●●●●● ●●●●● ●●● ● ●●●●●●●●● ● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●● ●●●●● ●●● ●●●●●●● ●●●●●●●● ●●●

●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ●●●●●● ●●●●●

●●●●●● ●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●

●●● ●● ●●●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●●

● ●● ●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●● ● ●●●●●●●● ●●

●●●●● ●●● ●●●●●●●●● ●●● ●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●

● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●

●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●

●● ●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●●●●●●● ●●●

●●● ●●●●●●●● ●●●●●

DDT IS USED HAS THE SURROUNDING AREA 
 BEING CLEARED?

HOUSE HAS
 MORE THAN 4 ROOMS OWN A CHAINSAW

1985
1986

1987
1995

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4 0.6 0.8

NO

YES

MISS

NO

YES

MISS

NO

YES

MISS

NO

YES

MISS

FIGURE 3.7: Box-plots of marginal distributions for 4 representative variables over the
years. The ‘x’s and errors bands above the box-plots are the sample proportions and 0.95
Wald-type confidence intervals.

Figure 3.7 shows estimated marginal distributions from the proposed model obtained

from 2500 Gibbs samples for 4 representative variables across the years, together with the

sample proportion with the 0.95 level Wald type confidence interval. All the estimated

marginals are compatible with the observed ones. We additionally estimated the poste-

rior mean of the L1-norm between the empirical frequencies f̂ j c = n−1
∑n

i=1 1{X i j = c }
and the estimated ones π̂ j c obtained averaging 2500 MCMC samples of the expression

in 3.7. The L1-norm has expression
∑d j

c=1 |π̂ j c − f̂ j c | and belongs to the interval (0, 2).

Considering all the variables, we have an average L1-norm of about 0.071, and 0.1 and

0.9 quantiles of (0.024,0.14). These quantities also suggest a strong adherence of the esti-

mated marginals with the empirical ones, comparing with the maximum attainable value

of 2.

Figure 3.8 shows posterior distribution and quantiles for 2 bivariate distributions. Also

in this case we observe a satisfactory adherence of the estimated quantities and the em-

pirical ones.
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FIGURE 3.8: Posterior mean and quantiles for 2 bivariate distributions, compared with
the empirical frequencies in the data.

As with the marginals we compute the L1-norm between the empirical bivariate dis-

tributions and the estimated ones. We focus on pairs of variables in the same year. We

obtain good results also in this case with a mean of 0.13 and 0.1 and 0.9 quantiles of 0.11

and 0.18.

As general tendency we observed that variables that are sensibly different across the

estimated profiles are generally better reconstructed. These are also the most interesting

from an interpretation point of view since they characterize the profiles.

3.6.2 Relation with malaria rate and prediction

Our estimated scores define simple and interpretable risk measures with respect to

correlated latent traits for behavioral and environmental conditions at the household

level. Being not directly based on malaria risk measures that are just used as external

variables, the obtained scores do not suffer from the bias discussed in Section 3.1. We

expect, however, that household classified as high behavioral and or environmental risk

presentes in average higher malaria rates. We first inspect parameters trace plots, finding

no evidence of label switching across MCMC iterations. Although our analysis is unsu-

pervised we post process the classes so that the second pure profile is more reasonably

viewed as corresponding to high risk. In this way we can consider λ(B)i and λ(E)i as high risk

scores.
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To asses the relationship between malaria risk and the estimated profiles, for each

MCMC sample of each year, we assign households into low, moderate and high behav-

ioral and environmental risk groups using tertiles, and we compute the average malaria

rate for the obtained 9 groups. Posterior median and quantiles of the malaria rate distri-

bution for the considered clusters are shown in Table 3.4. A similar strategy using tertiles

of separate MM models has been used to determine risk profiles for Chagas disease-risk

in northern Argentina (Chuit et al., 2001). We expect the obtained distribution to be or-

dered in such a way that higher malaria rates corresponds to high environmental and

behavioral risk clusters. Formally, considering a table as 3.4, having low risk clusters in

the upper left corner, we expect the resulting table to be a double-gradient one, meaning

that each row should be non decreasing from left-to-right and each column should be

non decreasing from top-to-bottom.

TABLE 3.4: Median, 0.1 and 0.9 posterior quantiles of the malaria rates for low, median
and high environmental and behavioral profiles. Groups are computed leveraging scores

λ(B)i and λ(E)i tertiles. Values at bottom and right side of the table are obtained considering
just behavioral or environmental scores respectively. Light grey values indicates violation
in median of the double-gradient assumption, while dashes indicates that there are not
enough subjects in the cluster to compute the median and the quantiles.

1985

Low B Med B High B
Low E 0.000(0.000;0.000) 0.045(0.000;0.197) —– 0.000(0.000;0.000)
Med E 0.067(0.000;0.310) 0.101(0.050;0.143) 0.115(0.000;0.250) 0.106(0.067;0.129)
High E —– 0.115(0.000;0.356) 0.117(0.100;0.125) 0.117(0.100;0.125)

0.000(0.000;0.000) 0.091(0.050;0.125) 0.117(0.100;0.125)

1986

Low B Mod B High B
Low E 0.228(0.206;0.250) 0.231(0.139;0.327) —– 0.228(0.206;0.250)
Mod E 0.238(0.167;0.299) 0.250(0.200;0.279) 0.232(0.000;0.658) 0.250(0.206;0.273)
High E —– 0.250(0.200;0.302) 0.250(0.250;0.286) 0.250(0.250;0.279)

0.229(0.211;0.250) 0.250(0.217;0.275) 0.250(0.250;0.286)

1987

Low B Mod B High B
Low E 0.167(0.133;0.180) 0.216(0.140;0.458) —– 0.167(0.133;0.180)
Mod E 0.177(0.146;0.207) 0.190(0.167;0.215) 0.180(0.082;0.243) 0.183(0.167;0.200)
High E —– 0.200(0.171;0.250) 0.201(0.193;0.227) 0.201(0.197;0.219)

0.167(0.150;0.180) 0.197(0.181;0.209) 0.201(0.193;0.227)

1995

Low B Mod B High B
Low E 0.028(0.021;0.042) —– —– 0.028(0.021;0.042)
Mod E 0.028(0.024;0.028) —– —– 0.028(0.024;0.028)
High E 0.028(0.024;0.033) 0.033(0.030;0.036) 0.036(0.029;0.042) 0.033(0.031;0.033)

0.028(0.028;0.028) 0.033(0.030;0.036) 0.036(0.029;0.042)

From Table 3.4 we notice that in defining groups with either environmental or behav-

ioral scores we obtain groups sharing almost the same rate. However, a more detailed
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classification can be obtained leveraging both domains at the same time. In general, we

observe higher malaria median rates in high behavioral and environmental risk zones,

with only two violation of the expected double gradient assumption if we consider the

median, in both cases, however upper quantiles are still increasing as expected.

We additionally consider an external validation of our model, checking its predictive

ability with respect to the malaria rate. We rely on 5-fold cross validation, comparing the

results with random forest and lasso prediction on the raw data, implemented in the R

packages randomForest and glmnet, respectively.

Crude malaria rate and behavioral and environmental profiles measure different risks,

hence although they are expected to be related, they might be not identical, nor expressed

in the same scale. To overcome this issue, we rely on a simple model, assessing propor-

tionality between malaria rate ri , and behavioral and environmental risks. Formally we

suppose:

ri = c1λ̂
(B)
i + c2λ̂

(E)
i ,

where λ̂(B)i and λ̂(E)i are the posterior mean of the behavioral and environmental risks from

our model, and we estimate c1 and c2 via least squares on a training sample. Clearly,

more refined prediction models can be used, but simplicity and transparency are impor-

tant in this application. To select tuning parameters and avoid over fitting we also in-

clude, for both lasso and random forest methods, a second cross validation layer for each

fold. Moreover, since the response variable ri belongs to the (0, 1) interval, we build all

models for logit(ri )mapping the prediction back via inverse transformation. Model per-

formances are evaluated using Mean Square Error (MSE). Results are shown in Table 3.5.

TABLE 3.5: 5 fold cross validation mean square prediction error.

1985 1986 1987 1995

Random Forest 0.104(0.026) 0.131(0.023) 0.108(0.011) 0.021(0.006)
lasso regression 0.104(0.026) 0.169(0.017) 0.123(0.005) 0.021(0.006)
MMM 0.099(0.024) 0.148(0.015) 0.105(0.003) 0.021(0.006)

Based on Table 3.5, our multivariate mixed membership model has comparable out-

of-sample predictive performance to black box machine learning algorithm such as ran-

dom forests. The ML algorithms and other supervised approaches are subject to the se-

lection bias issue mentioned in Section 3.1. This result, combined with the goodness-of-

fit assessment of Section 3.6.1, gives evidence that a model with 2 profiles for each group

provides a reasonable low dimensional representation in our contest.
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3.6.3 Time and space domain evolution

Leveraging equation (3.5) we can compute the distribution of the odds ratios of being

high risk in behavioral and environmental domains. Specifically, for each iteration of the

MCMC algorithm, we can compute the quantity exp{β (B)t −β
(E)
t +1/2(Σt 11+Σt 22−2Σt 12)},

where (Σt 11,Σt 22,Σt 12) are the elements of the covariance matrixΣt in equation (3.6). Box-

plots summarizing their distribution are shown in Figure 3.9.

FIGURE 3.9: Odds ratios between environmental and behavioral risk scores. Numbers at
the bottom of the plots are the value of the median.

We notice an increasing trend in the odds ratios across the years; specifically, in

1985 environmental and behavioral risks coexist, while starting from 1986 behavioral risk

starts to gain more and more importance, as is evident from the fact that the posterior

odds ratio is not significantly above one in 1985 and then it gradually increases. These

results are in accordance with current literature on malaria risk, reporting that the risk

is initially driven by favorable environmental conditions for malaria vectors to prolifer-

ate (e.g. Castro et al., 2006). Soon after human settlement, there is a phase lasting for

about 8 or 10 years, in which environmental risk is high but human behavior is starting

to gradually become the predominant risk factor. In the last stage, called the endemic

phase, the risk is far more related to behavioral causes.

From a spatial perspective, we can consider the posterior predictive distribution of

the ζt evaluated over a regular grid of values (Figure 3.10). We notice that the behavioral

risk distribution is constant both across time and space; hence the spatial variability is

driven by environmental conditions. Environmental risk zones can be mostly explained

in term of geographical characteristics of the area; in fact higher risk zones correspond to

the forest fringe and the Machadinho river path.
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FIGURE 3.10: Spatial risk predictions for the Machadinho area, for both behavioral and
environmental domain. Values are expressed on the probability scale.

3.6.4 Risk conditions

Studying the distribution ofψ( j )h , we can have a general idea of behavioral and envi-

ronmental risk profiles, their evolution in time and their similarity with malaria literature.

Some conditions are indeed very stable while others can assume different meaning in dif-

ferent time periods. To select the most relevant variables composing the profiles, we rely

on the notion of admissibility (Singer, 1989). The basic idea is to define a level of vari-

able admissible for a given profiles, if such level occurs with probability close to 1 for the

given profile. Such definition is however too restrictive to be applied in practice and can

be replaced by considering as admissible a condition whose probability is substantially

larger that the observed one. In the proposed Bayesian framework we can easily compute

the posterior probability of being admissible as pr[(ψ( j )h c − f̂ ( j )c )/ f̂ ( j )c > K ], where f̂ ( j )c is the

empirical frequency. We use as threshold K = 0.70 if f̂ ( j )c < 0.50 and K = 0.35 otherwise,

defining as admissible the conditions which posterior probability is greater than 0.50. Es-

timated posterior medians and 90% credible intervals of these parameters are shown in

the Appendix 3.6.4. Variables have been divided into environmental and behavioral do-

mains, and the order is such that the variables whose L1 norms across the profiles differs
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the most are on top of the tables, while admissible profiles are highlighted in grey.

As a general tendency, we find stable results in the first 3 years, while variation occurs

in 1995. This is not surprising given the number of years gap, the general evolution of

the settlement project and of malaria diffusion, which is starting its endemic phase in

the last year. Generally we find environmental conditions to be more stable across time,

especially variables concerning house conditions, distance from a water source and forest

and topography of the area. High risk environmental profiles are well characterized by

house conditions and composition, i.e. small houses with bad condition of walls and

roof. This effect of housing condition on malaria risk infection has been considered in

very few studies, a recent exception is Dlamini et al. (2017).

In 1985 the high risk group includes settlers who just arrived in Machadinho not own-

ing proper tools for plantation and land clearance. This might reflect the fact that, at the

beginning of the project, many settlers lacked the capacity to clear large areas thereby

leaving them in close proximity to A. Darlingi habitats for many months. In 1986 and

1987 low risk profiles reflect the work done to clear the land and make the place livable

and inhospitable for the malaria vector. These households are characterized by the pres-

ence of cultivations, use of DDT, and the owning of certain goods as planters and chain-

saws. In 1995 we observe the opposite behavior, in fact planted and cleared areas are

considered high risk zones. This might have been caused by different factors, including

deforestation and changes in the plant life. Canonical epidemiological understanding of

the deforestation effect is, in fact, that it increases malaria risk in Africa and the Americas

and diminishes it in Southeast Asia (e.g. Guerra et al., 2006).

The plantation effect has also been highlighted in several studies. For example, the

negative effect of rice on malaria diffusion in Africa was noted by Ijumba and Lindsay

(2001) who reported that malaria prevalence was four times lower in children living near

irrigated rice, and that in Gambia there was less malaria near the rice fields than in other

rural communities. We encountered a similar behavior in 1986, while in 1995 rice pres-

ence seems more related to high risk conditions. The reason for such a change, is not

clear, but may be the ecological transformation occurring.

Another relevant behavioral condition is the time the settler has spent in the cur-

rent house. Specifically, newcomers have been included in the high risk group, which

is also coherent with malaria development, in fact, a stable population is more likely to

develop premunition that protect them from successive infections (e.g. Bereczky et al.,

2007; Males et al., 2008).

Although closeness to planted areas is a relevant risk condition, somehow surpris-

ingly closeness to pasture areas does not seem to impact risk. It is indeed expected that
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the presence of live stock can influence malaria transmission. Presence of animals may

divert the blood-seeking mosquito vectors from humans, thereby decreasing the biting

on people, on the other hand, livestock can provide an additional blood-source, which

can increase vector survival and density (e.g. Franco et al., 2014).





Discussion and future directions of

research

In the context of tensor factorization models, this Thesis introduced two novel factor-

izations dealing with multivariate categorical variables, with main goal being in defining

parsimonious representations, in terms of latent space. In Chapter 2, we propose a class

of grouped tensor factorization, that generalizes popular Parafac decomposition, by al-

lowing tensor arm to have dimension greater than one. To learn the unknown arm struc-

ture directly from the data, we leverage a product partition model prior, having an ad hoc

cohesion function that enhances computational tractability. We show that the proposed

factorization retains flexibility of the standard Parafac, while leading to a more effective

characterization of the dependence structure, especially in applications with low sample

size. We applied the proposed factorization to promoter DNA sequence data, showing

how the model is able to identify potential starting point for the transcription.

In Chapter 3, we introduced a novel multivariate generalization of mixture member-

ship models to deal with domain specific membership scores. We showed that when

fixing the number of profiles we gain a better characterization of the probability mass

function in linking different MM models, if compared to the standard approaches. Em-

pirical finding highlighted robustness respect to misspecification of the profile distribu-

tion, showing that kernels estimates do not drastically change under different scenarios.

When a higher number of profiles would be needed to explaining the phenomenon un-

der exam, the use of H = 2, in many application, might still be a valid approximation

leading to important finding, provided that coherence with the observed data is carefully

checked.

We applied the proposed approach to survey data collected during the Machadinho

settlement project in Brazil, showing that the obtained profiles retain important informa-

tion, and can accurately predict malaria rate. We also highlighted that profiles identified

as low/high risks, as well as their space and time evolution, match several epidemiolog-

ical studies. The proposed approach is however much more general and can be applied

63
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in several contexts in which variable domain knowledge is available.

A promising direction for both models would be to extend the proposed unsupervised

approaches to the case of density regression with many categorical predictors. In this

framework, a nice adaptation of Tucker decomposition, in the case of classification, is

provided by Yang and Dunson (2016). Their approach works amazingly well in setting

where just a sparse subset of the predictors have effect on the response variable. Exploit-

ing the group structure of our GROT and/or MMM models, however, we can efficiently

learn the effect of separate groups of categorical predictors and their interactions on the

response variable.

Another important direction is in developing new efficient algorithms for posterior

inference, to substitute MCMC steps. This would allow application of the proposed

methodologies to high and ultra-high dimensional tensor data, provided, for example,

by new DNA sequences technologies and neuroimaging data. Possible solutions are to

adapt online variational methods (Hoffman et al., 2010), or a generalized method of mo-

ments, as the one provided for Dirichlet latent variable models in Zhao et al. (2018).

An interesting extension of GROT model would be in replacing Dirichlet-multinomial

kernels for tensor arms with more parsimonious representations, in order to accommo-

date sparse group structures. For example, one can reparametrize tensor arms in the

corresponding log-linear model form, and includes a subset of the interactions up to the

second or third order (e.g. Massam et al., 2009).

A sensible generalization of MMM model would be in including continuous and/or

mixed type variables, while retaining a simple representation in the profile space, this

can be accomplished recasting the proposed framework in the alternative class of Partial

Membership Models (e.g. Heller et al., 2008).



Malaria risk conditions

TABLE A.1: 1985: posterior median and 0.1 and 0.9 quantiles for behavioral and environ-
mental variables.

Behavioral ψ
( j )
1 ψ

( j )
2

Plant Cassava: NO 0.042(0.006;0.107) 0.990(0.965;0.999)
Plant Cassava: YES 0.933(0.869;0.972) 0.003(0.000;0.025)
Plant Cassava: MISSING 0.021(0.004;0.045) 0.003(0.000;0.017)
Lavoura branca: NO 0.105(0.042;0.178) 0.993(0.977;0.999)
Lavoura branca: YES 0.888(0.814;0.950) 0.002(0.000;0.014)

Lavoura branca: MISSING 0.005(0.000;0.021) 0.002(0.000;0.013)
DDT is used: NO 0.296(0.211;0.383) 0.952(0.910;0.976)
DDT is used: YES 0.687(0.598;0.774) 0.007(0.000;0.049)
DDT is used: MISSING 0.013(0.002;0.040) 0.035(0.016;0.060)
Plan to build a new house within a year: NO 0.562(0.470;0.658) 0.006(0.000;0.040)

Plan to build a new house within a year: YES 0.343(0.246;0.439) 0.976(0.936;0.997)
Plan to build a new house within a year: MISSING 0.092(0.052;0.141) 0.011(0.000;0.038)
Arrived in Machadino before 1985: NO 0.655(0.564;0.745) 0.034(0.003;0.093)
Arrived in Machadino before 1985: YES 0.345(0.255;0.436) 0.966(0.907;0.997)
Own a planter: NO 0.138(0.059;0.230) 0.743(0.674;0.810)

Own a planter: YES 0.862(0.770;0.941) 0.257(0.190;0.326)
Do you own other proprieties: NO 0.316(0.213;0.411) 0.761(0.694;0.827)
Do you own other proprieties: YES 0.684(0.589;0.787) 0.239(0.173;0.306)
Lived in current house for more that 1m: NO 0.580(0.502;0.653) 0.986(0.963;0.997)
Lived in current house for more that 1m: YES 0.412(0.339;0.488) 0.002(0.000;0.020)

Lived in current house for more that 1m: MISSING 0.003(0.000;0.024) 0.009(0.001;0.024)
Knowledge of malaria vector: NO 0.726(0.627;0.819) 0.330(0.261;0.401)
Knowledge of malaria vector: YES 0.231(0.147;0.330) 0.495(0.425;0.569)
Knowledge of malaria vector: MISSING 0.029(0.000;0.096) 0.172(0.125;0.223)
Plant cocoa: NO 0.636(0.559;0.702) 0.998(0.987;1.000)

Plant cocoa: YES 0.364(0.298;0.441) 0.002(0.000;0.013)
Own more the 4 goods: NO 0.153(0.072;0.242) 0.514(0.445;0.589)
Own more the 4 goods: YES 0.847(0.758;0.928) 0.486(0.411;0.555)
Plant coffee: NO 0.662(0.585;0.728) 0.993(0.979;0.999)
Plant coffee: YES 0.332(0.267;0.407) 0.001(0.000;0.009)

Plant coffee: MISSING 0.002(0.000;0.017) 0.004(0.000;0.014)
Do you often go to surrounding cities: NO 0.003(0.000;0.035) 0.328(0.274;0.383)
Do you often go to surrounding cities: YES 0.975(0.940;0.992) 0.669(0.613;0.723)
Do you often go to surrounding cities: MISSING 0.017(0.004;0.038) 0.001(0.000;0.009)
HH has high level of education: NO 0.682(0.581;0.784) 0.411(0.338;0.487)

HH has high level of education: YES 0.302(0.199;0.403) 0.558(0.480;0.630)
HH has high level of education: MISSING 0.010(0.000;0.042) 0.029(0.010;0.053)
Own chickens and/or porks: NO 0.681(0.590;0.765) 0.929(0.876;0.981)
Own chickens and/or porks: YES 0.311(0.227;0.401) 0.067(0.015;0.120)
Own chickens and/or porks: MISSING 0.005(0.000;0.021) 0.002(0.000;0.012)

HH wife has high level of education: < 4 yr 0.551(0.451;0.655) 0.452(0.380;0.524)
HH wife has high level of education: > 4 yr 0.279(0.190;0.375) 0.476(0.407;0.549)
HH wife has high level of education: NO-WIFE 0.013(0.000;0.062) 0.036(0.006;0.065)
HH wife has high level of education: MISSING 0.141(0.075;0.208) 0.028(0.000;0.078)
More than 4 people in the house: NO 0.652(0.545;0.753) 0.418(0.344;0.491)

More than 4 people in the house: YES 0.348(0.247;0.455) 0.582(0.509;0.656)
Spray insecticide: NO 0.647(0.553;0.738) 0.841(0.779;0.897)
Spray insecticide: YES 0.353(0.262;0.447) 0.159(0.103;0.221)
Get malaria from dirty water: NO 0.333(0.240;0.430) 0.472(0.399;0.546)
Get malaria from dirty water: YES 0.590(0.496;0.689) 0.427(0.351;0.497)

Get malaria from dirty water: MISSING 0.070(0.031;0.124) 0.100(0.064;0.143)
Use plant to cure malaria: NO 0.700(0.604;0.794) 0.634(0.564;0.705)
Use plant to cure malaria: YES 0.088(0.013;0.171) 0.235(0.175;0.302)
Use plant to cure malaria: MISSING 0.206(0.138;0.287) 0.127(0.081;0.180)
Own a chainsaw: NO 0.650(0.558;0.736) 0.770(0.705;0.828)

Own a chainsaw: YES 0.350(0.264;0.442) 0.230(0.172;0.295)
Use a bednet: NO 0.847(0.758;0.934) 0.762(0.695;0.823)
Use a bednet: YES 0.136(0.048;0.222) 0.220(0.162;0.286)
Use a bednet: MISSING 0.014(0.000;0.044) 0.015(0.001;0.034)
Use repellent: NO 0.984(0.940;0.999) 0.862(0.820;0.900)

Use repellent: YES 0.016(0.001;0.060) 0.138(0.100;0.180)
Part of family did not come: NO 0.653(0.561;0.752) 0.640(0.568;0.711)
Part of family did not come: YES 0.317(0.222;0.409) 0.351(0.280;0.422)
Part of family did not come: MISSING 0.026(0.002;0.055) 0.004(0.000;0.027)
Do you ever go to urban area?: NO 0.003(0.000;0.027) 0.090(0.062;0.124)

Do you ever go to urban area?: YES 0.979(0.949;0.995) 0.905(0.869;0.934)
Do you ever go to urban area?: MISSING 0.013(0.001;0.034) 0.002(0.000;0.015)
Arrived in Rondonia before 1985: NO 0.943(0.897;0.984) 0.975(0.940;0.994)
Arrived in Rondonia before 1985: YES 0.002(0.000;0.013) 0.005(0.000;0.016)
Arrived in Rondonia before 1985: MISSING 0.053(0.013;0.097) 0.017(0.001;0.051)

Before coming was your occupation rural: NO 0.001(0.000;0.008) 0.001(0.000;0.006)
Before coming was your occupation rural: YES 0.994(0.975;1.000) 0.982(0.963;0.994)
Before coming was your occupation rural: MISSING 0.003(0.000;0.020) 0.016(0.005;0.034)
Are there rubber tree: NO 0.982(0.960;0.995) 0.998(0.988;1.000)
Are there rubber tree: YES 0.018(0.005;0.040) 0.002(0.000;0.012)

Environmental ψ
( j )
1 ψ

( j )
2

Roof has good quality: NO 0.135(0.031;0.273) 0.982(0.947;0.996)
Roof has good quality: YES 0.856(0.720;0.960) 0.005(0.000;0.040)
Roof has good quality: MISSING 0.003(0.000;0.022) 0.009(0.001;0.023)
Walls have good quality: NO 0.207(0.080;0.315) 0.983(0.952;0.996)
Walls have good quality: YES 0.785(0.678;0.911) 0.004(0.000;0.034)

Walls have good quality: MISSING 0.003(0.000;0.022) 0.009(0.001;0.023)
House has more than 4 rooms: NO 0.235(0.118;0.350) 0.987(0.949;0.999)
House has more than 4 rooms: YES 0.765(0.650;0.882) 0.013(0.001;0.051)
Has the surrounding area being cleared: NO 0.109(0.018;0.213) 0.736(0.674;0.801)
Has the surrounding area being cleared: YES 0.885(0.782;0.972) 0.246(0.180;0.308)

Has the surrounding area being cleared: MISSING 0.002(0.000;0.017) 0.016(0.006;0.033)
Good water source available: NO 0.422(0.316;0.528) 0.886(0.812;0.961)
Good water source available: YES 0.571(0.463;0.676) 0.103(0.026;0.177)
Good water source available: MISSING 0.003(0.000;0.022) 0.009(0.001;0.024)
Do you have close neighbours (<500mt): NO 0.620(0.510;0.730) 0.203(0.136;0.273)

Do you have close neighbours (<500mt): YES 0.380(0.270;0.490) 0.797(0.727;0.864)
More that 100mt from a forest: NO 0.412(0.317;0.518) 0.755(0.688;0.817)
More that 100mt from a forest: YES 0.582(0.474;0.676) 0.239(0.178;0.305)
More that 100mt from a forest: MISSING 0.003(0.000;0.017) 0.004(0.000;0.014)
Distant from stagnant water(no culvert): NO 0.010(0.000;0.059) 0.187(0.143;0.236)

Distant from stagnant water(no culvert): YES 0.982(0.934;0.999) 0.775(0.724;0.825)
Distant from stagnant water(no culvert): MISSING 0.002(0.000;0.017) 0.035(0.018;0.057)
More than 600mt from a culvert: NO 0.033(0.001;0.098) 0.167(0.122;0.218)
More than 600mt from a culvert: YES 0.959(0.892;0.995) 0.791(0.736;0.841)
More than 600mt from a culvert: MISSING 0.003(0.000;0.022) 0.040(0.022;0.065)

More than 600mt from a river: NO 0.498(0.393;0.606) 0.571(0.496;0.642)
More than 600mt from a river: YES 0.492(0.384;0.595) 0.420(0.349;0.496)
More than 600mt from a river: MISSING 0.006(0.000;0.030) 0.007(0.000;0.022)
Anybody cleared the area before HH: NO 0.981(0.946;0.997) 0.878(0.838;0.912)
Anybody cleared the area before HH: YES 0.006(0.000;0.040) 0.119(0.085;0.158)

Anybody cleared the area before HH: MISSING 0.007(0.000;0.025) 0.001(0.000;0.011)
More that 10km from an hospital: NO 0.055(0.005;0.134) 0.151(0.101;0.201)
More that 10km from an hospital: YES 0.945(0.866;0.995) 0.849(0.799;0.899)
Sealing has good quality: NO 0.910(0.859;0.944) 0.987(0.970;0.997)
Sealing has good quality: YES 0.083(0.052;0.130) 0.001(0.000;0.011)

Sealing has good quality: MISSING 0.003(0.000;0.023) 0.009(0.001;0.024)
Good bathing place is available: NO 0.979(0.940;0.998) 0.974(0.950;0.992)
Good bathing place is available: YES 0.012(0.000;0.049) 0.014(0.001;0.034)
Good bathing place is available: MISSING 0.003(0.000;0.022) 0.010(0.001;0.024)
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TABLE A.2: 1986: posterior median and 0.1 and 0.9 quantiles for behavioral and environ-
mental variables.

Behavioral ψ
( j )
1 ψ

( j )
2

Plant coffee: NO 0.115(0.068;0.161) 0.957(0.915;0.977)
Plant coffee: YES 0.882(0.837;0.930) 0.005(0.000;0.052)
Plant coffee: MISSING 0.001(0.000;0.006) 0.031(0.017;0.050)
Cultivate rice: NO 0.007(0.000;0.041) 0.743(0.661;0.835)
Cultivate rice: YES 0.988(0.956;0.999) 0.213(0.115;0.294)

Cultivate rice: MISSING 0.001(0.000;0.009) 0.044(0.026;0.068)
Own a planter: NO 0.060(0.008;0.111) 0.710(0.624;0.805)
Own a planter: YES 0.940(0.889;0.992) 0.290(0.195;0.376)
Own chickens and/or porks: NO 0.001(0.000;0.012) 0.566(0.498;0.635)
Own chickens and/or porks: YES 0.997(0.985;1.000) 0.408(0.338;0.479)

Own chickens and/or porks: MISSING 0.001(0.000;0.006) 0.023(0.011;0.041)
DDT is used: NO 0.024(0.005;0.042) 0.022(0.001;0.061)
DDT is used: YES 0.969(0.948;0.991) 0.399(0.321;0.467)
DDT is used: MISSING 0.003(0.000;0.020) 0.574(0.508;0.650)
More than 4 people in the house: NO 0.723(0.671;0.772) 0.148(0.062;0.239)

More than 4 people in the house: YES 0.277(0.228;0.329) 0.852(0.761;0.938)
Own more the 4 goods: NO 0.032(0.002;0.078) 0.601(0.522;0.693)
Own more the 4 goods: YES 0.968(0.922;0.998) 0.399(0.307;0.478)
Plant cocoa: NO 0.424(0.379;0.468) 0.971(0.930;0.989)
Plant cocoa: YES 0.573(0.529;0.619) 0.006(0.000;0.052)

Plant cocoa: MISSING 0.001(0.000;0.007) 0.017(0.006;0.033)
Are there rubber tree: NO 0.528(0.485;0.570) 0.980(0.960;0.993)
Are there rubber tree: YES 0.469(0.428;0.512) 0.001(0.000;0.015)
Are there rubber tree: MISSING 0.001(0.000;0.008) 0.016(0.005;0.031)
Before coming was your occupation rural: NO 0.820(0.770;0.871) 0.364(0.283;0.449)

Before coming was your occupation rural: YES 0.176(0.127;0.227) 0.633(0.548;0.714)
Before coming was your occupation rural: MISSING 0.002(0.000;0.007) 0.001(0.000;0.008)
Do you own other proprieties: NO 0.401(0.350;0.455) 0.851(0.773;0.926)
Do you own other proprieties: YES 0.599(0.545;0.650) 0.149(0.074;0.227)
Lived in current house for more that 1m: NO 0.524(0.478;0.571) 0.931(0.863;0.964)

Lived in current house for more that 1m: YES 0.473(0.427;0.519) 0.024(0.000;0.095)
Lived in current house for more that 1m: MISSING 0.001(0.000;0.007) 0.041(0.025;0.063)
Plan to build a new house within a year: NO 0.689(0.635;0.740) 0.267(0.183;0.354)
Plan to build a new house within a year: YES 0.268(0.219;0.320) 0.627(0.540;0.716)
Plan to build a new house within a year: MISSING 0.041(0.010;0.074) 0.103(0.053;0.162)

HH wife has high level of education: < 4 yr 0.525(0.474;0.575) 0.235(0.150;0.316)
HH wife has high level of education: > 4 yr 0.454(0.405;0.506) 0.348(0.264;0.429)
HH wife has high level of education: NO-WIFE 0.010(0.000;0.022) 0.008(0.000;0.034)
HH wife has high level of education: MISSING 0.003(0.000;0.029) 0.406(0.343;0.471)
Working in the plot from more than 1 month: NO 0.001(0.000;0.014) 0.392(0.335;0.453)

Working in the plot from more than 1 month: YES 0.966(0.945;0.983) 0.568(0.504;0.630)
Working in the plot from more than 1 month: MISSING 0.030(0.014;0.048) 0.037(0.012;0.072)
Part of family did not come: NO 0.750(0.698;0.799) 0.348(0.265;0.432)
Part of family did not come: YES 0.247(0.199;0.299) 0.570(0.487;0.654)
Part of family did not come: MISSING 0.001(0.000;0.007) 0.081(0.057;0.109)

Own a chainsaw: NO 0.540(0.488;0.594) 0.888(0.813;0.963)
Own a chainsaw: YES 0.460(0.406;0.512) 0.112(0.037;0.187)
Spray insecticide: NO 0.549(0.496;0.601) 0.795(0.709;0.874)
Spray insecticide: YES 0.444(0.391;0.496) 0.192(0.109;0.279)
Spray insecticide: MISSING 0.007(0.000;0.017) 0.011(0.001;0.029)

Knowledge of malaria vector: NO 0.472(0.421;0.523) 0.386(0.305;0.469)
Knowledge of malaria vector: YES 0.298(0.251;0.346) 0.406(0.329;0.488)
Knowledge of malaria vector: MISSING 0.229(0.186;0.273) 0.206(0.140;0.275)
Arrived in Machadino before 1985: NO 0.228(0.191;0.270) 0.085(0.032;0.147)
Arrived in Machadino before 1985: YES 0.772(0.730;0.809) 0.915(0.853;0.968)

Get malaria from dirty water: NO 0.417(0.369;0.467) 0.332(0.252;0.409)
Get malaria from dirty water: YES 0.535(0.486;0.583) 0.639(0.562;0.721)
Get malaria from dirty water: MISSING 0.047(0.027;0.068) 0.025(0.001;0.058)
Arrived in Rondonia before 1985: NO 0.860(0.833;0.889) 0.884(0.838;0.918)
Arrived in Rondonia before 1985: YES 0.001(0.000;0.006) 0.096(0.070;0.128)

Arrived in Rondonia before 1985: MISSING 0.137(0.110;0.165) 0.014(0.000;0.057)
Use plant to cure malaria: NO 0.814(0.770;0.858) 0.918(0.847;0.989)
Use plant to cure malaria: YES 0.177(0.134;0.219) 0.076(0.006;0.147)
Use plant to cure malaria: MISSING 0.009(0.002;0.017) 0.002(0.000;0.015)
HH has high level of education: NO 0.522(0.472;0.570) 0.428(0.350;0.505)

HH has high level of education: YES 0.473(0.424;0.523) 0.559(0.481;0.636)
HH has high level of education: MISSING 0.003(0.000;0.014) 0.011(0.000;0.028)

Environmental ψ
( j )
1 ψ

( j )
2

House has more than 4 rooms: NO 0.043(0.001;0.097) 0.991(0.970;0.999)
House has more than 4 rooms: YES 0.940(0.888;0.983) 0.002(0.000;0.022)
House has more than 4 rooms: MISSING 0.015(0.006;0.027) 0.003(0.000;0.016)
Walls have good quality: NO 0.003(0.000;0.015) 0.891(0.818;0.964)
Walls have good quality: YES 0.997(0.985;1.000) 0.109(0.036;0.182)

Roof has good quality: NO 0.020(0.001;0.071) 0.763(0.696;0.829)
Roof has good quality: YES 0.980(0.929;0.999) 0.237(0.171;0.304)
Good water source available: NO 0.183(0.126;0.242) 0.864(0.778;0.946)
Good water source available: YES 0.815(0.755;0.872) 0.132(0.050;0.218)
Good water source available: MISSING 0.001(0.000;0.006) 0.002(0.000;0.009)

Anybody cleared the area before HH: NO 0.982(0.945;0.997) 0.498(0.441;0.558)
Anybody cleared the area before HH: YES 0.009(0.000;0.048) 0.484(0.426;0.541)
Anybody cleared the area before HH: MISSING 0.005(0.000;0.017) 0.016(0.003;0.033)
Do you have close neighbours (<500mt): NO 0.630(0.567;0.692) 0.301(0.220;0.384)
Do you have close neighbours (<500mt): YES 0.370(0.308;0.433) 0.699(0.616;0.780)

Far from permanent water: NO 0.439(0.376;0.496) 0.735(0.663;0.812)
Far from permanent water: YES 0.544(0.488;0.607) 0.261(0.184;0.333)
Far from permanent water: MISSING 0.016(0.007;0.028) 0.001(0.000;0.013)
More that 100mt from a forest: NO 0.691(0.650;0.732) 0.977(0.932;0.997)
More that 100mt from a forest: YES 0.307(0.266;0.347) 0.020(0.000;0.064)

More that 100mt from a forest: MISSING 0.001(0.000;0.007) 0.002(0.000;0.009)
Is topography bottom: NO 0.659(0.596;0.717) 0.406(0.323;0.482)
Is topography bottom: YES 0.335(0.277;0.399) 0.566(0.490;0.647)
Is topography bottom: MISSING 0.003(0.000;0.014) 0.027(0.013;0.044)
Has the surrounding area being cleared: NO 0.722(0.679;0.767) 0.956(0.905;0.981)

Has the surrounding area being cleared: YES 0.276(0.231;0.319) 0.019(0.000;0.071)
Has the surrounding area being cleared: MISSING 0.001(0.000;0.008) 0.022(0.011;0.037)
Near big planted area: NO 0.832(0.799;0.864) 0.957(0.927;0.978)
Near big planted area: YES 0.161(0.132;0.193) 0.006(0.000;0.033)
Near big planted area: MISSING 0.003(0.000;0.019) 0.033(0.015;0.053)

Sealing has good quality: NO 0.879(0.854;0.903) 0.995(0.980;1.000)
Sealing has good quality: YES 0.114(0.092;0.139) 0.002(0.000;0.015)
Sealing has good quality: MISSING 0.005(0.000;0.012) 0.001(0.000;0.009)
More that 10km from an hospital: NO 0.149(0.110;0.189) 0.045(0.008;0.093)
More that 10km from an hospital: YES 0.851(0.811;0.890) 0.955(0.907;0.992)

Good bathing place is available: NO 0.871(0.838;0.903) 0.967(0.929;0.992)
Good bathing place is available: YES 0.127(0.095;0.160) 0.024(0.001;0.061)
Good bathing place is available: MISSING 0.001(0.000;0.005) 0.007(0.002;0.017)
Far from temporary water: NO 0.903(0.868;0.933) 0.943(0.903;0.977)
Far from temporary water: YES 0.087(0.059;0.118) 0.031(0.004;0.069)

Far from temporary water: MISSING 0.009(0.000;0.027) 0.023(0.003;0.044)
Near big pasture area: NO 0.994(0.979;0.999) 0.963(0.944;0.980)
Near big pasture area: YES 0.002(0.000;0.009) 0.005(0.000;0.014)
Near big pasture area: MISSING 0.002(0.000;0.017) 0.031(0.014;0.048)
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TABLE A.3: 1987: posterior median and 0.1 and 0.9 quantiles for behavioral and environ-
mental variables.

Behavioral ψ
( j )
1 ψ

( j )
2

Plant coffee: NO 0.002(0.000;0.014) 0.883(0.799;0.936)
Plant coffee: YES 0.994(0.981;0.999) 0.043(0.001;0.132)
Plant coffee: MISSING 0.002(0.000;0.009) 0.068(0.042;0.099)
Plant banana: NO 0.001(0.000;0.008) 0.664(0.588;0.756)
Plant banana: YES 0.998(0.990;1.000) 0.248(0.145;0.328)

Plant banana: MISSING 0.000(0.000;0.004) 0.088(0.062;0.121)
Own more the 4 goods: NO 0.002(0.000;0.012) 0.750(0.669;0.833)
Own more the 4 goods: YES 0.998(0.988;1.000) 0.250(0.167;0.331)
Own a chainsaw: NO 0.206(0.174;0.242) 0.944(0.833;0.995)
Own a chainsaw: YES 0.792(0.756;0.824) 0.051(0.001;0.161)

Own a chainsaw: MISSING 0.002(0.000;0.006) 0.003(0.000;0.015)
More than 4 people in the house: NO 0.621(0.590;0.652) 0.004(0.000;0.041)
More than 4 people in the house: YES 0.298(0.267;0.331) 0.990(0.953;0.999)
More than 4 people in the house: MISSING 0.080(0.066;0.095) 0.001(0.000;0.014)
Plan to build a new house within a year: NO 0.822(0.787;0.858) 0.219(0.115;0.324)

Plan to build a new house within a year: YES 0.172(0.136;0.208) 0.740(0.634;0.843)
Plan to build a new house within a year: MISSING 0.004(0.000;0.014) 0.042(0.014;0.071)
Own chickens and/or porks: NO 0.001(0.000;0.005) 0.413(0.351;0.478)
Own chickens and/or porks: YES 0.999(0.994;1.000) 0.399(0.323;0.471)
Own chickens and/or porks: MISSING 0.000(0.000;0.002) 0.187(0.147;0.231)

HH wife has high level of education: < 4 yr 0.570(0.533;0.607) 0.088(0.002;0.190)
HH wife has high level of education: > 4 yr 0.398(0.365;0.434) 0.309(0.217;0.398)
HH wife has high level of education: NO-WIFE 0.001(0.000;0.008) 0.051(0.027;0.077)
HH wife has high level of education: MISSING 0.027(0.003;0.054) 0.547(0.462;0.629)
Plant cocoa: NO 0.452(0.421;0.483) 0.942(0.914;0.962)

Plant cocoa: YES 0.547(0.516;0.577) 0.002(0.000;0.015)
Plant cocoa: MISSING 0.000(0.000;0.004) 0.053(0.034;0.078)
Do you go often to urban area: NO 0.429(0.393;0.468) 0.802(0.695;0.892)
Do you go often to urban area: YES 0.535(0.496;0.573) 0.108(0.009;0.215)
Do you go often to urban area: MISSING 0.035(0.021;0.050) 0.090(0.048;0.138)

Do you own other proprieties: NO 0.487(0.453;0.523) 0.887(0.798;0.971)
Do you own other proprieties: YES 0.513(0.477;0.547) 0.113(0.029;0.202)
Arrived in Rondonia before 1985: NO 0.956(0.934;0.976) 0.574(0.496;0.656)
Arrived in Rondonia before 1985: YES 0.023(0.006;0.044) 0.369(0.293;0.451)
Arrived in Rondonia before 1985: MISSING 0.020(0.009;0.032) 0.053(0.019;0.094)

DDT is used: NO 0.091(0.066;0.119) 0.419(0.335;0.508)
DDT is used: YES 0.907(0.880;0.933) 0.560(0.471;0.646)
DDT is used: MISSING 0.000(0.000;0.004) 0.019(0.006;0.036)
Before coming was your occupation rural: NO 0.800(0.765;0.836) 0.452(0.354;0.555)
Before coming was your occupation rural: YES 0.200(0.164;0.235) 0.548(0.445;0.646)

Use plant to cure malaria: NO 0.448(0.410;0.485) 0.782(0.676;0.884)
Use plant to cure malaria: YES 0.538(0.499;0.576) 0.198(0.099;0.307)
Use plant to cure malaria: MISSING 0.015(0.005;0.024) 0.011(0.000;0.049)
Use protective clothes: NO 0.855(0.823;0.884) 0.514(0.412;0.603)
Use protective clothes: YES 0.137(0.108;0.167) 0.294(0.211;0.392)

Use protective clothes: MISSING 0.005(0.000;0.021) 0.190(0.137;0.245)
Spray insecticide: NO 0.603(0.569;0.640) 0.917(0.815;0.991)
Spray insecticide: YES 0.397(0.360;0.431) 0.083(0.009;0.185)
Are there rubber tree: NO 0.693(0.667;0.719) 0.942(0.913;0.963)
Are there rubber tree: YES 0.306(0.280;0.331) 0.001(0.000;0.013)

Are there rubber tree: MISSING 0.000(0.000;0.004) 0.054(0.035;0.079)
Part of family did not come: NO 0.639(0.603;0.674) 0.359(0.260;0.458)
Part of family did not come: YES 0.358(0.324;0.394) 0.612(0.515;0.711)
Part of family did not come: MISSING 0.001(0.000;0.006) 0.027(0.013;0.048)
Use a bednet: NO 0.789(0.755;0.822) 0.559(0.462;0.657)

Use a bednet: YES 0.204(0.172;0.238) 0.250(0.151;0.342)
Use a bednet: MISSING 0.004(0.000;0.018) 0.192(0.140;0.243)
Plant guarana: NO 0.769(0.745;0.792) 0.916(0.886;0.941)
Plant guarana: YES 0.229(0.206;0.253) 0.001(0.000;0.011)
Plant guarana: MISSING 0.000(0.000;0.004) 0.081(0.056;0.110)

HH has high level of education: NO 0.631(0.596;0.667) 0.415(0.313;0.513)
HH has high level of education: YES 0.365(0.329;0.400) 0.524(0.428;0.626)
HH has high level of education: MISSING 0.002(0.000;0.012) 0.059(0.029;0.091)
Get malaria from dirty water: NO 0.467(0.429;0.503) 0.289(0.189;0.393)
Get malaria from dirty water: YES 0.497(0.460;0.536) 0.655(0.548;0.755)

Get malaria from dirty water: MISSING 0.035(0.021;0.051) 0.054(0.014;0.102)
Do you ever go to city through BR364: NO 0.576(0.538;0.612) 0.602(0.503;0.698)
Do you ever go to city through BR364: YES 0.407(0.370;0.444) 0.287(0.187;0.380)
Do you ever go to city through BR364: MISSING 0.017(0.003;0.032) 0.110(0.065;0.168)
Arrived in Machadino before 1985: NO 0.168(0.144;0.191) 0.025(0.002;0.084)

Arrived in Machadino before 1985: YES 0.832(0.809;0.856) 0.975(0.916;0.998)
Knowledge of malaria vector: NO 0.504(0.466;0.540) 0.452(0.348;0.550)
Knowledge of malaria vector: YES 0.327(0.292;0.360) 0.332(0.243;0.430)
Knowledge of malaria vector: MISSING 0.169(0.141;0.197) 0.215(0.139;0.294)
Worked in rural area for more tha 1 year: NO 0.032(0.006;0.049) 0.059(0.011;0.141)

Worked in rural area for more tha 1 year: YES 0.967(0.950;0.993) 0.892(0.807;0.942)
Worked in rural area for more tha 1 year: MISSING 0.000(0.000;0.003) 0.047(0.029;0.071)
Lived in rural area for more than 1 year: NO 0.028(0.003;0.045) 0.046(0.001;0.129)
Lived in rural area for more than 1 year: YES 0.972(0.954;0.997) 0.902(0.819;0.953)
Lived in rural area for more than 1 year: MISSING 0.000(0.000;0.002) 0.049(0.030;0.074)

Own a planter: NO 0.656(0.619;0.691) 0.698(0.596;0.799)
Own a planter: YES 0.343(0.308;0.380) 0.297(0.198;0.397)
Own a planter: MISSING 0.000(0.000;0.003) 0.004(0.000;0.014)

Environmental ψ
( j )
1 ψ

( j )
2

House has more than 4 rooms: NO 0.089(0.049;0.132) 0.905(0.851;0.954)
House has more than 4 rooms: YES 0.841(0.799;0.884) 0.003(0.000;0.024)
House has more than 4 rooms: MISSING 0.069(0.043;0.095) 0.086(0.042;0.137)
Walls have good quality: NO 0.166(0.123;0.213) 0.916(0.836;0.987)
Walls have good quality: YES 0.832(0.785;0.875) 0.082(0.011;0.163)

Walls have good quality: MISSING 0.001(0.000;0.005) 0.001(0.000;0.006)
Roof has good quality: NO 0.003(0.000;0.026) 0.671(0.603;0.743)
Roof has good quality: YES 0.995(0.971;0.999) 0.325(0.253;0.394)
Roof has good quality: MISSING 0.001(0.000;0.004) 0.002(0.000;0.009)
Near big planted area: NO 0.542(0.507;0.577) 0.698(0.641;0.749)

Near big planted area: YES 0.444(0.411;0.478) 0.001(0.000;0.018)
Near big planted area: NO-PLOT 0.012(0.000;0.030) 0.091(0.055;0.128)
Near big planted area: MISSING 0.000(0.000;0.002) 0.204(0.168;0.246)
Good water source available: NO 0.241(0.200;0.282) 0.647(0.558;0.724)
Good water source available: YES 0.758(0.717;0.799) 0.349(0.271;0.438)

Good water source available: MISSING 0.000(0.000;0.003) 0.003(0.000;0.010)
Do you have close neighbours (<500mt): NO 0.666(0.619;0.718) 0.305(0.208;0.396)
Do you have close neighbours (<500mt): YES 0.334(0.282;0.381) 0.695(0.604;0.792)
Has the surrounding area being cleared: NO 0.950(0.927;0.978) 0.618(0.544;0.685)
Has the surrounding area being cleared: YES 0.048(0.022;0.072) 0.345(0.282;0.416)

Has the surrounding area being cleared: MISSING 0.000(0.000;0.004) 0.035(0.021;0.053)
Is topography bottom: NO 0.435(0.395;0.478) 0.152(0.080;0.222)
Is topography bottom: YES 0.528(0.485;0.570) 0.801(0.722;0.875)
Is topography bottom: MISSING 0.036(0.021;0.054) 0.047(0.018;0.081)
Near big pasture area: NO 0.950(0.934;0.965) 0.721(0.667;0.769)

Near big pasture area: YES 0.048(0.034;0.064) 0.010(0.000;0.044)
Near big pasture area: NO-PLOT 0.000(0.000;0.005) 0.051(0.034;0.072)
Near big pasture area: MISSING 0.000(0.000;0.002) 0.210(0.172;0.253)
More that 100mt from a forest: NO 0.803(0.778;0.829) 0.960(0.924;0.980)
More that 100mt from a forest: YES 0.194(0.168;0.220) 0.009(0.000;0.048)

More that 100mt from a forest: MISSING 0.002(0.000;0.008) 0.026(0.013;0.043)
Sealing has good quality: NO 0.836(0.813;0.857) 0.993(0.977;0.999)
Sealing has good quality: YES 0.164(0.142;0.185) 0.002(0.000;0.017)
Sealing has good quality: MISSING 0.000(0.000;0.003) 0.003(0.000;0.010)
Distance from coop >200mt: NO 0.990(0.976;0.999) 0.895(0.860;0.929)

Distance from coop >200mt: YES 0.005(0.000;0.019) 0.065(0.035;0.094)
Distance from coop >200mt: MISSING 0.002(0.000;0.011) 0.040(0.023;0.061)
More that 10km from an hospital: NO 0.128(0.103;0.152) 0.030(0.002;0.072)
More that 10km from an hospital: YES 0.872(0.848;0.897) 0.970(0.928;0.998)
Good bathing place is available: NO 0.925(0.909;0.940) 0.994(0.978;0.999)

Good bathing place is available: YES 0.073(0.059;0.089) 0.003(0.000;0.018)
Good bathing place is available: MISSING 0.001(0.000;0.004) 0.001(0.000;0.008)
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TABLE A.4: 1995: posterior median and 0.1 and 0.9 quantiles for behavioral and environ-
mental variables.

Behavioral ψ
( j )
1 ψ

( j )
2

Planted Corn: NO 0.969(0.949;0.980) 0.041(0.003;0.087)
Planted Corn: YES 0.002(0.000;0.018) 0.958(0.912;0.996)
Planted Corn: MISSING 0.027(0.018;0.038) 0.000(0.000;0.002)
Plant Cassava: NO 0.951(0.932;0.967) 0.090(0.046;0.137)
Plant Cassava: YES 0.001(0.000;0.012) 0.906(0.859;0.951)

Plant Cassava: MISSING 0.045(0.030;0.062) 0.002(0.000;0.010)
Plant banana: NO 0.942(0.876;0.966) 0.187(0.147;0.232)
Plant banana: YES 0.015(0.000;0.085) 0.812(0.767;0.852)
Plant banana: MISSING 0.038(0.027;0.052) 0.000(0.000;0.003)
Cultivate rice: NO 0.740(0.670;0.823) 0.001(0.000;0.005)

Cultivate rice: YES 0.231(0.144;0.304) 0.999(0.994;1.000)
Cultivate rice: MISSING 0.027(0.018;0.040) 0.000(0.000;0.002)
Planted Bean: NO 0.967(0.951;0.978) 0.330(0.287;0.370)
Planted Bean: YES 0.001(0.000;0.009) 0.669(0.629;0.711)
Planted Bean: MISSING 0.030(0.020;0.044) 0.001(0.000;0.004)

Own a chainsaw: NO 0.947(0.869;0.998) 0.298(0.250;0.346)
Own a chainsaw: YES 0.053(0.002;0.131) 0.702(0.654;0.750)
Active in community organization: NO 0.990(0.965;0.998) 0.401(0.359;0.438)
Active in community organization: YES 0.005(0.000;0.030) 0.597(0.561;0.640)
Active in community organization: MISSING 0.003(0.000;0.009) 0.001(0.000;0.004)

More than 4 people in the house: NO 0.167(0.091;0.249) 0.681(0.634;0.730)
More than 4 people in the house: YES 0.833(0.751;0.909) 0.319(0.270;0.366)
Own a planter: NO 0.461(0.410;0.517) 0.001(0.000;0.007)
Own a planter: YES 0.539(0.483;0.590) 0.999(0.993;1.000)
Plant coffee: NO 0.403(0.355;0.457) 0.001(0.000;0.006)

Plant coffee: YES 0.566(0.511;0.617) 0.999(0.993;1.000)
Plant coffee: MISSING 0.029(0.019;0.042) 0.000(0.000;0.002)
HH wife has high level of education: < 4 yr 0.148(0.077;0.210) 0.468(0.428;0.505)
HH wife has high level of education: > 4 yr 0.503(0.438;0.572) 0.502(0.462;0.540)
HH wife has high level of education: NO-WIFE 0.008(0.001;0.016) 0.001(0.000;0.005)

HH wife has high level of education: MISSING 0.343(0.279;0.407) 0.027(0.000;0.061)
Own more the 4 goods: NO 0.340(0.300;0.385) 0.001(0.000;0.008)
Own more the 4 goods: YES 0.660(0.615;0.700) 0.999(0.992;1.000)
Plant cocoa: NO 0.965(0.946;0.977) 0.660(0.630;0.688)
Plant cocoa: YES 0.002(0.000;0.017) 0.339(0.312;0.370)

Plant cocoa: MISSING 0.030(0.021;0.043) 0.000(0.000;0.002)
Are there rubber tree: NO 0.975(0.959;0.985) 0.680(0.652;0.707)
Are there rubber tree: YES 0.002(0.000;0.016) 0.319(0.293;0.348)
Are there rubber tree: MISSING 0.020(0.012;0.031) 0.000(0.000;0.002)
Arrived in Rondonia before 1985: NO 0.543(0.476;0.605) 0.839(0.803;0.876)

Arrived in Rondonia before 1985: YES 0.396(0.334;0.461) 0.150(0.117;0.184)
Arrived in Rondonia before 1985: MISSING 0.063(0.034;0.089) 0.009(0.000;0.026)
Use plant to cure malaria: NO 0.853(0.795;0.918) 0.577(0.536;0.617)
Use plant to cure malaria: YES 0.145(0.080;0.203) 0.422(0.382;0.463)
Use plant to cure malaria: MISSING 0.001(0.000;0.006) 0.001(0.000;0.003)

Plant guarana: NO 0.979(0.942;0.998) 0.737(0.709;0.766)
Plant guarana: YES 0.021(0.002;0.058) 0.263(0.234;0.291)
DDT is used: NO 0.822(0.758;0.881) 0.613(0.575;0.652)
DDT is used: YES 0.149(0.092;0.215) 0.386(0.347;0.424)
DDT is used: MISSING 0.027(0.017;0.040) 0.000(0.000;0.003)

Do you own other proprieties: NO 0.784(0.712;0.851) 0.565(0.522;0.611)
Do you own other proprieties: YES 0.216(0.149;0.288) 0.435(0.389;0.478)
Got a loan for pasture: NO 0.963(0.947;0.974) 0.788(0.765;0.809)
Got a loan for pasture: YES 0.001(0.000;0.009) 0.211(0.189;0.234)
Got a loan for pasture: MISSING 0.034(0.024;0.049) 0.000(0.000;0.003)

Planted Nut: NO 0.947(0.920;0.964) 0.801(0.776;0.824)
Planted Nut: YES 0.003(0.000;0.026) 0.197(0.174;0.221)
Planted Nut: MISSING 0.046(0.032;0.063) 0.001(0.000;0.006)
Own chickens and/or porks: NO 0.188(0.158;0.221) 0.001(0.000;0.003)
Own chickens and/or porks: YES 0.812(0.779;0.842) 0.999(0.997;1.000)

Knowledge of malaria vector: NO 0.310(0.240;0.379) 0.461(0.419;0.504)
Knowledge of malaria vector: YES 0.573(0.504;0.645) 0.474(0.430;0.516)
Knowledge of malaria vector: MISSING 0.117(0.072;0.163) 0.064(0.041;0.091)
Planted Pepper: NO 0.975(0.962;0.984) 0.842(0.822;0.861)
Planted Pepper: YES 0.001(0.000;0.008) 0.157(0.138;0.178)

Planted Pepper: MISSING 0.022(0.014;0.033) 0.000(0.000;0.002)
Get malaria from dirty water: NO 0.507(0.433;0.582) 0.379(0.335;0.421)
Get malaria from dirty water: YES 0.462(0.388;0.535) 0.602(0.560;0.645)
Get malaria from dirty water: MISSING 0.028(0.007;0.055) 0.020(0.006;0.033)
Got a loan for agriculture: NO 0.963(0.948;0.975) 0.855(0.835;0.872)

Got a loan for agriculture: YES 0.001(0.000;0.006) 0.144(0.127;0.164)
Got a loan for agriculture: MISSING 0.034(0.023;0.049) 0.000(0.000;0.003)
Spray insecticide: NO 0.850(0.789;0.909) 0.712(0.674;0.749)
Spray insecticide: YES 0.148(0.089;0.210) 0.286(0.250;0.324)
Spray insecticide: MISSING 0.001(0.000;0.005) 0.001(0.000;0.003)

Do you go often to urban area: NO 0.492(0.405;0.580) 0.618(0.567;0.666)
Do you go often to urban area: YES 0.497(0.409;0.582) 0.380(0.332;0.431)
Do you go often to urban area: MISSING 0.010(0.003;0.019) 0.001(0.000;0.006)
Lived in rural area for more than 1 year: NO 0.140(0.101;0.191) 0.038(0.013;0.059)
Lived in rural area for more than 1 year: YES 0.847(0.797;0.888) 0.960(0.939;0.986)

Lived in rural area for more than 1 year: MISSING 0.011(0.004;0.021) 0.000(0.000;0.004)
Arrived in Machadino before 1985: NO 0.001(0.000;0.013) 0.096(0.081;0.112)
Arrived in Machadino before 1985: YES 0.968(0.943;0.991) 0.891(0.870;0.910)
Arrived in Machadino before 1985: MISSING 0.028(0.007;0.051) 0.012(0.001;0.026)
Use a bednet: NO 0.880(0.835;0.920) 0.963(0.941;0.984)

Use a bednet: YES 0.104(0.068;0.146) 0.029(0.008;0.048)
Use a bednet: MISSING 0.014(0.001;0.033) 0.008(0.000;0.018)
Have another rural plot: NO 0.839(0.779;0.898) 0.763(0.727;0.800)
Have another rural plot: YES 0.159(0.100;0.218) 0.236(0.200;0.272)
Have another rural plot: MISSING 0.001(0.000;0.006) 0.001(0.000;0.003)

HH has high level of education: NO 0.392(0.313;0.462) 0.441(0.401;0.486)
HH has high level of education: YES 0.597(0.527;0.675) 0.557(0.513;0.597)
HH has high level of education: MISSING 0.010(0.003;0.020) 0.001(0.000;0.005)
Go to main urban area from treatment: NO 0.199(0.131;0.277) 0.165(0.122;0.206)
Go to main urban area from treatment: YES 0.790(0.711;0.859) 0.834(0.794;0.877)

Go to main urban area from treatment: MISSING 0.010(0.004;0.017) 0.000(0.000;0.002)
Go to secondary urban area from treatment: NO 0.829(0.753;0.898) 0.829(0.789;0.871)
Go to secondary urban area from treatment: YES 0.158(0.089;0.233) 0.170(0.129;0.211)
Go to secondary urban area from treatment: MISSING 0.013(0.006;0.022) 0.000(0.000;0.002)
Got a loan for equipment: NO 0.963(0.949;0.975) 0.981(0.973;0.987)

Got a loan for equipment: YES 0.000(0.000;0.005) 0.018(0.012;0.025)
Got a loan for equipment: MISSING 0.036(0.024;0.049) 0.000(0.000;0.003)

Environmental ψ
( j )
1 ψ

( j )
2

House has more than 4 rooms: NO 0.923(0.781;0.969) 0.001(0.000;0.010)
House has more than 4 rooms: YES 0.024(0.000;0.184) 0.996(0.988;1.000)
House has more than 4 rooms: MISSING 0.040(0.013;0.072) 0.001(0.000;0.006)
More that 10km from an hospital: NO 0.568(0.432;0.710) 0.007(0.000;0.024)
More that 10km from an hospital: YES 0.432(0.290;0.568) 0.993(0.976;1.000)

Anybody cleared the area before HH: NO 0.006(0.000;0.050) 0.332(0.311;0.354)
Anybody cleared the area before HH: YES 0.697(0.609;0.779) 0.667(0.645;0.687)
Anybody cleared the area before HH: MISSING 0.285(0.212;0.370) 0.001(0.000;0.004)
Has the surrounding area being cleared: NO 0.673(0.576;0.760) 0.996(0.990;0.999)
Has the surrounding area being cleared: YES 0.006(0.000;0.031) 0.002(0.000;0.005)

Has the surrounding area being cleared: MISSING 0.316(0.232;0.407) 0.001(0.000;0.007)
Do you have close neighbours (<500mt): NO 0.427(0.234;0.615) 0.661(0.630;0.690)
Do you have close neighbours (<500mt): YES 0.367(0.188;0.551) 0.309(0.280;0.339)
Do you have close neighbours (<500mt): MISSING 0.205(0.095;0.324) 0.030(0.016;0.046)
Is topography bottom: NO 0.937(0.799;0.997) 0.688(0.664;0.711)

Is topography bottom: YES 0.057(0.001;0.193) 0.305(0.283;0.329)
Is topography bottom: MISSING 0.002(0.000;0.018) 0.007(0.004;0.011)
Is road quality good: NO 0.005(0.000;0.047) 0.094(0.082;0.107)
Is road quality good: YES 0.534(0.330;0.730) 0.644(0.612;0.677)
Is road quality good: MISSING 0.452(0.257;0.646) 0.261(0.231;0.291)

Near big pasture area: NO 0.801(0.735;0.858) 0.998(0.994;1.000)
Near big pasture area: YES 0.010(0.000;0.029) 0.001(0.000;0.003)
Near big pasture area: MISSING 0.187(0.131;0.251) 0.000(0.000;0.005)
Distant from stagnant water: NO 0.796(0.708;0.873) 0.975(0.965;0.984)
Distant from stagnant water: YES 0.002(0.000;0.024) 0.018(0.013;0.024)

Distant from stagnant water: MISSING 0.196(0.122;0.278) 0.006(0.000;0.016)
More than 600mt from a river: NO 0.558(0.345;0.772) 0.635(0.602;0.667)
More than 600mt from a river: YES 0.363(0.149;0.580) 0.365(0.332;0.397)
More than 600mt from a river: MISSING 0.076(0.048;0.116) 0.000(0.000;0.002)
Roof has good quality: NO 0.200(0.120;0.282) 0.008(0.001;0.019)

Roof has good quality: YES 0.800(0.718;0.880) 0.992(0.981;0.999)
Sealing has good quality: NO 0.499(0.291;0.686) 0.641(0.609;0.671)
Sealing has good quality: YES 0.501(0.314;0.709) 0.359(0.329;0.391)
Distance from coop >200mt: NO 0.802(0.719;0.860) 0.908(0.895;0.922)
Distance from coop >200mt: YES 0.013(0.000;0.083) 0.091(0.078;0.104)

Distance from coop >200mt: MISSING 0.174(0.126;0.233) 0.000(0.000;0.003)
Walls have good quality: NO 0.387(0.211;0.598) 0.262(0.232;0.290)
Walls have good quality: YES 0.613(0.402;0.789) 0.738(0.710;0.768)
Distant from to well: NO 0.852(0.689;0.929) 0.878(0.860;0.900)
Distant from to well: YES 0.052(0.001;0.218) 0.120(0.099;0.138)

Distant from to well: MISSING 0.085(0.049;0.130) 0.001(0.000;0.005)
Good water source available: NO 0.217(0.049;0.400) 0.210(0.184;0.238)
Good water source available: YES 0.777(0.593;0.945) 0.789(0.761;0.815)
Good water source available: MISSING 0.003(0.000;0.016) 0.000(0.000;0.002)
More that 100mt from a forest: NO 0.917(0.809;0.962) 0.854(0.836;0.871)

More that 100mt from a forest: YES 0.031(0.000;0.145) 0.146(0.128;0.164)
More that 100mt from a forest: MISSING 0.045(0.024;0.075) 0.000(0.000;0.002)
Good bathing place is available: NO 0.985(0.924;0.999) 0.873(0.857;0.888)
Good bathing place is available: YES 0.015(0.001;0.076) 0.127(0.112;0.143)
More than 500mt from health unit: NO 0.086(0.016;0.181) 0.037(0.024;0.049)
More than 500mt from health unit: YES 0.914(0.819;0.984) 0.963(0.951;0.976)
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