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Riassunto

Questa Tesi esplora la capacità dei modelli additivi di descrivere i prezzi nei mercati energetici,
concentrandosi in particolare sul caso specifico dell’elettricità e del gas naturale. Nel Capitolo
1 studiamo un problema di ottimizzazione dinamica di portafoglio per il trading di energia
elettrica su mercati intraday. Nel Capitolo 2 introduciamo un framework trattabile e privo di
arbitraggio basato sull’approccio di Heath-Jarrow-Morton per mercati a termine energetici
multicommodity. Il Capitolo 3 si occupa di uno studio empirico approfondito di un modello a
due fattori derivato dal framework del Capitolo 2, con un’applicazione al mercato a termine
elettrico tedesco. Infine, nel Capitolo 4 discutiamo il prezzaggio di opzioni per modelli fattoriali
additivi con metodi di trasformata di Fourier. Introduciamo un modello di prezzi futures a
due fattori con salti al fine di catturare lo smile delle volatilità implicite di opzioni Europee
sull’elettricità. Viene presentata un’applicazione al mercato European Energy Exchange Power
Derivatives.
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Abstract

This Dissertation explores the capability of additive models to describe prices in energy
markets, by focusing in particular on the specific case of electricity and natural gas. In
Chapter 1 we study a dynamic portfolio optimization problem designed for intraday electricity
trading. In Chapter 2 we introduce a no-arbitrage tractable framework based on the Heath-
Jarrow-Morton approach for a multicommodity energy forward market. Chapter 3 deals with
a thorough empirical study of a two-factor model derived by the framework of Chapter 2,
with an application to the German power futures market. Finally, in Chapter 4 we discuss
option pricing for additive factor models by Fourier transform methods. We introduce a
two-factor futures price model with jumps in order to capture the implied volatility smile
of European electricity options. An application to the European Energy Exchange Power
Derivatives market is presented.
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Introduction

The first stochastic model for stock prices has been introduced in 1900 by Bachelier [10], who
models a stock price by an arithmetic Brownian motion. Since the Brownian motion attains
arbitrarily large negative values with positive probability, the Bachelier model generates
negative prices. In 1965 Samuelson [116] pointed out that this is economically unrealistic and
leads to anomalous results in pricing long-term options and proposed to use an arithmetic
Brownian motion to describe the random fluctuations of log-prices (geometric model) rather
than prices as Bachelier (additive model). In such a way, the price stays positive and follows
a geometric Brownian motion.1 Following the pivotal work of Black and Scholes [39] and
Merton [98], geometric models have become the benchmark approach for modeling prices in
Mathematical Finance.

In more recent years, the main objection to additive models seems to be founded on the
lack of economic sense of negative prices. However, while this argument is true for the stock
market, this is not the case for some commodity markets. Indeed, since recently, energy-related
markets have been showing negative prices.2 For instance, in Europe, a negative threshold
for prices was introduced at the European Energy Exchange (EEX) in 2007 and the first
transaction with negative price occurred the next year (and many others followed [61, 122]);
negative prices were also observed in natural gas markets in Western Canada in 2015 [68],
2017 and 2018 [60].

Energy markets are commodity markets related to the production of energy: for example,
oil, coal, natural gas, power, CO2 certificates, weather derivatives. In addition to negative
prices, energy-related commodity prices show empirical features that are not common to
classical financial markets. In order not to stray from the scope of this Dissertation, we will
outline the most relevant ones and will focus on the case of power and natural gas (cf. e.g.
[32, 44]). Prices in physical (or spot) markets are determined according to the equilibrium
of supply and demand. Since demand depends on temperature, sunlight and even national
habits3, power and natural gas prices follow seasonal patterns at different time scales. This
implies that prices tend to oscillate around a seasonally varying equilibrium level. Uncertainty
in prices comes from the supply-side as well. For example, unexpected power plant outages or
intermittent renewable energy sources (RES) generation can move the price up. Empirically,
this may result in upward jumps in prices (positive spikes), even of considerable size, followed

1In order to underline the positivity property, Samuelson calls the geometric Brownian motion economic

Brownian motion.
2A negative price means that the seller delivers the commodity and pays the buyer. In this case, halting

production is more costly than paying someone else to consume. This happens because of the physical nature
of these commodities, and can be due, for instance, to a lack of infrastructure, transportation constraints and
high cost (or impossibility) of storage facilities.

3For example, in UK there is a peak in power consumption around 5 p.m. when people turn on the cooker
to boil water for tea.
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viii Introduction

by a fast decrease to a “normal” level as soon as the shock is absorbed by the network. On
the other hand, especially since the introduction in the power grid of RES, the combination
of low demand with particularly favorable weather conditions (e.g. strong wind and/or strong
sun radiation) causes the opposite effect of sharp downward movements (negative spikes) that
may drive the prices below zero.

These stylized features imply that spot prices exhibit mean-reversion, seasonality (in both
level and volatility) and jumps. To some extent, these empirical features transfer also to other
segments. In fact, besides a physical (or spot) market, there are several other exchanges that
regulate energy trading. In the case of power and natural gas, there are, for instance, intraday
and derivative markets.

Intraday electricity markets open after the closure of the spot (day-ahead) market and
are often based on continuous trading. Their main purpose consists in allowing market
participants to adjust their day-ahead position, i.e. agents can trade power for each hour of
the next day (until 45 or 30 minutes prior to delivery). The continuous nature of this market
allows the activity of purely financial traders. In view of this, we will study in Chapter 1 a
portfolio optimization problem for a speculative agent trading in the intraday market.

Regarding the derivative markets, a substantial amount of regulated trading takes the
form of futures contracts. Futures are fundamental hedging instruments for producers and
consumers, as well as trading instruments for financial speculators, that consider them as an
alternative asset class. Power and gas futures contracts prescribe a delivery period for the
commodity, rather than a shipping date (as other commodities). This requires a non-standard
set of arbitrage relations that must hold among contracts with overlapping delivery periods.
For example, one can buy a futures for delivery of power over the first quarter of the year, i.e.
January, February and March, and construct a portfolio with the same value by buying three
monthly futures for delivery over each corresponding month. Obviously, the same no-arbitrage
considerations transfer to options written on futures. In Chapter 2 we will introduce a
no-arbitrage framework capable to include these relations for very general stochastic dynamics,
while in Chapter 3 we will present a thorough empirical study of a submodel applied to EEX
power futures. Chapter 4 is devoted to the pricing of options on futures by Fourier transform
methods and an application to EEX power vanilla options.

As already mentioned, in this Dissertation we will address some modeling problems in
derivatives (futures and options written on these) and intraday electricity markets. Notably,
futures and options constitute almost the total of regulated derivative trading, while intraday
markets give flexibility to power producers by allowing to adjust their production schedule
on a hourly basis, thus playing an important role in the equilibrium of power systems. The
main ingredient of our analysis will be a stochastic process for modeling futures and intraday
prices. From the empirical considerations outlined above, we introduce additive models based
on mean-reverting Lévy processes with seasonal coefficients (i.e. depending on time and,
in the case of derivatives, parameters representing the delivery period). These models are
flexible enough to reproduce the observed empirical features of both futures, options and
intraday prices while, in pricing delivery-based derivatives, they have the unique advantage
over their geometric counterpart of preserving tractability when dealing with no-arbitrage
considerations. In order to handle these models, we will use techniques mainly from Stochastic
Analysis and Stochastic Optimal Control for Lévy processes (e.g. [50, 51, 69, 104, 117]). We
contribute to literature by proving some theoretical results that are interesting also from a
purely mathematical perspective. Part of our work will be devoted to calibration procedures
and empirical considerations based on MATLAB™ code.

We now give a detailed overview of each chapter.
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Overview of Chapter 1

This chapter is based on a joint work [111] with Tiziano Vargiolu.

In this chapter we study a dynamic portfolio optimization problem designed for intraday
electricity trading. These markets play an important role in the equilibrium of power grids,
since both electricity producers and consumers are allowed to optimize their positions and
reduce the risk of imbalance, which entails fees to be paid to system operators. Our study
arises as the natural generalization of [57] and takes the perspective of a small agent interested
in exploiting the stylized features of intraday prices in order to maximize her expected terminal
gains.

We propose a stochastic model for the continuously traded electricity price and formulate
an expected profit maximation problem in the language of Stochastic Optimal Control. The
agent maximizes the expected utility of her portfolio over a certain set of trading strategies,
i.e. she studies the quantity

sup
π

E[U(X(T ))],

where U is the utility function representing the risk profile of the investor, X = Xπ denotes
the portfolio value associated to the strategy π and T is the trading closure time. Furtherly,
we assume that the investor trades each hour separately, so to keep the analysis within a
one-dimensional framework.

We assume a non-Gaussian Ornstein-Uhlenbeck (OU) process (with possibly time-dependent
deterministic coefficients) to drive the power prices, being able to reproduce the stylized
features of price movements:

dS(t) = −λS(t) dt+ dL(t), 0 < t ≤ T,

where L is an additive process of the form

dL(t) = b(t) dt+ σ(t) dW (t) + ψ(t)

∫

y∈R
y N(dy, dt),

with regular deterministic coefficients. This class is highly flexible and capable to reproduce
both the mean-reverting and the spiky behavior of observed time series. Since we do not
perform a logarithmic transformation of the price, negative prices can be reproduced by our
model. Motivated by positivity constraints on X (and in line with general theoretical results
[85]), we write the portfolio dynamics as

dX(t) = π̄(t)X(t) dS(t), 0 < t ≤ T,

being π(t) = π̄(t)X(t) the amount of power traded at time t. The range of admissible values
of π̄ depends on the support of the Lévy measure ν, that is the jump size (and sign) of L. We
will assume the range of π̄ to be compact.

Our approach is based on the dynamic programming method and the study of the associated
Hamilton-Jacobi-Bellman (HJB) integro-differential equation. The problem of finding the
value function is not straightforward from the formulation of the HJB equation. We study
the case of logarithmic utility in order to disentangle the terms depending on both the wealth
process and the strategy, from the ones depending on time and price. We reduce the fully
nonlinear HJB equation to a linear partial integro-differential equation (PIDE) by means of
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an exponential transform H(t, s, x) = U(xeg(t,s)). Maximizing the generalized Hamiltonian
provides us with a representation for an optimal strategy:

π̄∗(t) = π̄∗(t, S(t−)),

where, for fixed t ∈ [0, T ] and s ∈ R, π̄∗ = π̄∗(t, s) solves the integral equation

b(t)− λs− σ(t)2π̄∗ −
∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy) = 0. (1)

Even though the optimal strategy is given implicitly, we are able to show that it is well-defined
and satisfies sufficiently regular properties.

We prove the existence of a classical solution to the HJB equation in two cases of interest:

1. time-inhomogeneous compound Poisson processes with non-degenerate Brownian com-
ponent,

2. additive pure-jump processes of (possibly) infinite variation.

This is done in the first case relying on a result by [108], while in the second case via Feynman-
Kač representations. In the latter approach, we follow the idea of [20] and generalize it
to time-inhomogeneous processes with possibly infinite variation. In particular, Danskin’s
theorem [54] allows us to prove that the forcing term of the HJB equation, which is defined as
the composition of non-differentiable functions, is actually differentiable. Then, by applying a
verification theorem, we prove H to be equal to the value function of the original problem.

We then study two easy and convenient ways to compute the optimal strategy by approxi-
mation, based on the Taylor expansion of the numerical integral equation in (1). The first
one (à la Merton [96]) is

π̄∗1(t, s) =
b(t)− λs

σ(t)2 + σL(t)2
,

where σL(t)2 := ψ(t)2
∫
y∈R y

2 ν(dy) corresponds to the local variance of the jump component
of L. The second one is defined for compound Poisson processes and solves

(b(t)− λs)− σ(t)2π̄∗2(t, s)−
π̄∗2(t, s)ψ(t)

2µ2F
1 + π̄∗2(t, s)ψ(t)µF

i = 0,

where µF is the mean of the jump size and i the jump intensity. We also derive some estimates
of the approximation error based on the moments of the jump component.

We test our results on a popular electricity price model, namely the factor model introduced
by [18]. Though this model is designed for day-ahead markets, we use it as example for
mainly two reasons. Firstly, the stylized features of intra-day markets are similar to the
ones observed in the day-ahead price series. Secondly, the factor model is based on a Lévy
Ornstein-Uhlenbeck process of the same family as our model. Our main finding here is that
Merton’s ratio performs poorly in comparison to our jump-based approximation, which is
rather close to the exact one instead. This suggests that optimal trading in Lévy-driven
markets seems not well described by Merton-type strategies, at least for the specific case of
additive mean-reverting prices.
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Overview of Chapter 2

This chapter is based on a joint work [26] with Fred Espen Benth and Tiziano Vargiolu.

This paper aims at developing a consistent and tractable framework for a multicommodity
energy forward market.4 We apply the Heath-Jarrow-Morton paradigm [76], which consists
in describing forward prices as stochastically evolving functions of time and delivery dates,
across different markets. We propose an Ornstein-Uhlenbeck-type of model with deterministic
coefficients parameterized over delivery times. By formulating the model under the market
probability measure P, we can represent the stylized empirical behavior of observed prices,
such as mean-reversion and seasonalities. Let f(t, T ) denote the vector of futures prices at
time t for instantaneous delivery at time T for possibly many commodities. Analogously, for
any T1 < T2, let F (t, T1, T2) be the vector of futures prices at time t for delivery over [T1, T2].
Under the physical measure P we assume the following stochastic dynamics:

df(t, T ) = (c(t, T )− λ(t)f(t, T )) dt+ σ(t, T ) dW (t) + ψ(t, T ) dJ(t),

dF (t, T1, T2) = (C(t, T1, T2)− λ(t)F (t, T1, T2)) dt

+Σ(t, T1, T2) dW (t) + Ψ(t, T1, T2) dJ(t).

The dynamics above is additive, meaning that we do not perform a logarithmic transforma-
tion of prices. Furthermore, this multicommodity framework allows to build models where
commodities have various kinds of dependencies, like correlations among the driving processes
W and J or cointegration/price couplings among them.

We want to design a forward market model with the same philosophy of [23], where it is
theoretically possible to trade contracts with any delivery period and no-arbitrage relations
must hold among them. For this reason, we impose the following condition:

F (t, T1, T2) =

∫ T2

T1

ŵ(T, T1, T2)f(t, T ) dT, (2)

for any t ≤ T1 and T2 > T1 > 0, where ŵ is a matrix-valued weight function and represents
the time value of money. This will depend in general on the risk-free rate and can differ from
contract to contract according to how settlement takes place (see Equation 4.2 in [23]).

As pointed out in [23], specifying a stochastic evolution for the forward curve and then
deriving the swap price as the average over the delivery times has the disadvantage of losing
desirable distributional features and, in some cases, even the Markov property. This results
in non-tractable models, which inherit a complex probabilistic structure. Consequently, we
express forward prices as affine transformations of a universal source of randomness, the latter
being independent of the delivery date, i.e.

f(t, T ) = α(t, T )X(t) + β(t, T ),

for some multi-dimensional stochastic process X that we characterize and given deterministic
matrix/vector-valued functions α and β. In view of the no-arbitrage condition (2), we define
the swap price process F (t, T1, T2) by

F (t, T1, T2)
def
=

∫ T2

T1

ŵ(T, T1, T2)f(t, T ) dT.

4We do not make distinctions between forwards and futures, since the results are the same in the case of
deterministic interest rate, as we assume here. We reserve the name forward to contracts with delivery at a
fixed future time, while agreements to deliver the commodity over a period (e.g. month or year) are called
swaps.
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This simplifying assumption allows both to preserve Markovianity and to describe consis-
tently the related swap price processes. Most importantly, this is crucial in order to prove
the existence of equivalent martingale measures Q, that in turn implies that the model is
arbitrage-free. In fact, besides the static arbitrage opportunities that arise from trading
in contracts with overlapping delivery periods, we need to ensure that our framework is
free of arbitrage also in the classical “dynamic” sense. The main mathematical difficulty
in doing this originates from the presence of mean-reversion. In this regard, we prove the
martingale property of stochastic exponentials where the Lévy part is of Esscher-type, while
the Girsanov kernel of the Brownian component is affine in the state variable and thus, in
particular, stochastic. Then, we give a different proof in the case of continuous density and
continuous kernel, by applying a weak Novikov-type condition on the series representation
of the exponential function. The proof of this result relies on the asymptotic properties of
Gaussian moments. As we move on to consider more general Lévy kernels, we see that the
same technique can not be applied. This is shown to be related to the fact that various
examples of infinitely divisible distributions, except the Gaussian distribution, do not satisfy
the needed moments asymptotics.

After validating the theoretical framework, we move to specifying two exemplary models.
The first is a generalization of the additive two-factor Lucia-Schwartz model [95]. We extend
it by introducing a mean-reverting arbitrage-free forward dynamics, which is capable to
describe a finer volatility term structure. This allows us to account for seasonal effects in
price variations, as is typically observed, for instance, in power or gas markets. A calibration
procedure and an empirical application to the German power futures market is carried out in
Chapter 3. Furtherly, we introduce a multidimensional model for a mean-reverting cointegrated
forward market that respects the no-arbitrage constraints in (2). In particular, we see how
these constraints imply certain conditions on the mean-reversion coefficients of the futures
curve dynamics.

Overview of Chapter 3

This chapter is based on a joint work [93] with Luca Latini and Tiziano Vargiolu.

The purpose of this chapter is to introduce a suitable model for power and gas futures
prices by specifying a tractable dynamics from the framework developed in Chapter 2. In
particular, our model is capable to hold together mean-reversion and arbitrage theory. In
addition, we develop an ad hoc calibration procedure and perform an empirical application to
the EEX power futures market.

As we already mentioned, power and gas, differently from other commodities, are delivered
as a given intensity over a certain time interval (e.g. a month, quarter or year). In financial
terms, this means that energy forward contracts prescribe a delivery period for the underlying,
rather than a maturity date. The market mechanism is described in Figure 1. Since futures
“overlap”, suitable no-arbitrage conditions are needed when developing pricing models. Given
a set of overlapping contracts, their futures prices must satisfy:

F (t, T1, Tn) =
1

Tn − T1

n−1∑

i=1

(Ti+1 − Ti)F (t, Ti, Ti+1). (NA)

Furthermore, price series exhibit mean-reversion and strong seasonality, which drives also
prices’ volatility (see Figure 2).
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Cal-17

↓ ↓ ↓ ↓
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A/17 M/17 J/17 Q3/17 Q4/17

...
...

Figure 1: Cascade unpacking mechanism of forward contracts. For each given calendar year, as time
passes forwards are unpacked first in quarters, then in the corresponding months. It may happen that
the same delivery period is covered in the market by different contracts, e.g. one simultaneously finds
quotes for Jan/17, Feb/17, Mar/17 and Q1/17.
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Figure 2: Realized volatilities of Phelix Base Futures (German power futures) from January 4, 2016
to May 23, 2017. The Samuelson effect (=volatility increasing as time approaches delivery) is not
sufficient to explain this term structure.

We adopt the Heath-Jarrow-Morton methodology (vs. spot price based models), which
consists in describing the whole forward curve by parametric SDEs. The theoretical framework
is constructed as follows (see also Chapter 2). Let f(t, T ) denote the forward price at time t
for instantaneous delivery at time T . Analogously, for any T1 < T2, let F (t, T1, T2) be the
forward price at time t for delivery period [T1, T2]. Futures prices evolve under the real-world
probability measure P by

df(t, T ) =
(
c(t, T )− λ(t)f(t, T )

)
dt+ θ(t, T ) dW (t),

dF (t, T1, T2) =
(
C(t, T1, T2)− λ(t)F (t, T1, T2)

)
dt+Σ(t, T1, T2) dW (t),

where all the coefficients are deterministic. Since we have not performed a logarithmic
transformation of the price, the dynamics are additive. In power and gas markets the
instantantaneous forwards do not exist. However, they play the role of building blocks for the
dynamics of traded forwards:

F (t, T1, T2)
def
=

1

T2 − T1

∫ T2

T1

f(t, u) du,

for all t ≤ T1 and T1 < T2. This relation implies all the no-arbitrage constraints of type (NA)
(no static arbitrage). Furthermore, this relation identifies the structure of the coefficients in
the equation of F (t, T1, T2) in terms of the coefficients of f(t, T ).
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Dynamic arbitrage opportunities are prevented by constructing an equivalent martingale
measure for the market, i.e. a probability Q equivalent to P such that

df(t, T ) = θ(t, T ) dWQ(t),

dF (t, T1, T2) = Σ(t, T1, T2) dW
Q(t),

for some Q-Brownian motion WQ. As already discussed in the overview of Chapter 2, this is
not trivial due to the affine form of the drift. For this reason we introduce the key assumption:

f(t, T ) = α(t, T )X(t) + β(t, T ),

where X is a universal source of randomness and α and β are deterministic coefficients. This
is not observable, but its coefficients do not appear explicitly in the resulting dynamics.

This class of models is not void: the well-known Lucia-Schwartz model [95] turns out to
be of this kind:

df(t, T ) = λ(t)
(
φ(T )− f(t, T )

)
dt

+ e−κ(T−t)σ1 dW1(t) + σ2 dW2(t),

dF (t, T1, T2) = λ(t)

(
1

T2 − T1

∫ T2

T1

φ(T ) dT − F (t, T1, T2)

)
dt

+ σ1 e
κt (e

−κT1 − e−κT2)

κ(T2 − T1)
dW1(t) + σ2 dW2(t).

However, the volatility coefficients succeed only in reproducing the so-called Samuelson effect5

as an exponential decay but they are not able to capture a finer term structure (cf. Figure 2).
In this chapter we propose a modification of the Lucia-Schwartz model such that both price
level and volatility are allowed to have a non-trivial term structure:

df(t, T ) = λ(t)
(
φ(T )− f(t, T )

)
dt

+ e−κ(T−t)σ1 dW1(t) + ψ(T ) dW2(t),

dF (t, T1, T2) = λ(t)
(
Φ(T1, T2)− F (t, T1, T2)

)
dt

+ eκt Γ(T1, T2) dW1(t) + Ψ(T1, T2) dW2(t),

where

Φ(T1, T2) :=
1

T2 − T1

∫ T2

T1

φ(u) du

Γ(T1, T2) :=
1

T2 − T1

∫ T2

T1

σ1e
−κu du =

σ1(e
−κT1 − e−κT2)

κ(T2 − T1)
,

Ψ(T1, T2) :=
1

T2 − T1

∫ T2

T1

ψ(u) du.

From this model, we can recover various stylized facts typical of energy markets. The mean-
reversion speed λ(t) can be time-dependent (but not maturity-dependent in this formulation),
and the long-term mean φ(T ) is exactly the seasonal component of the spot price. The same

5The Samuelson effect is an observed feature of prices volatilities, common to many commodity markets,
consisting of increasing volatility of prices as time approaches maturity [115].
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for F (·, T1, T2), where the long-term mean is the maturity-average of φ(T ), T ∈ [T1, T2]. We
have a Samuelson effect in both the instantanteneous (non-traded) forward prices f(·, T ) and
the traded forward prices F (·, T1, T2). Also, the second factor describes the volatility term
structure in an arbitrage-free way. Finally, forward prices with shorter delivery periods are
more volatile than forward prices with longer delivery periods. For instance, being equal the
time to maturity, monthly contracts are more volatile than quarters (3 months) or calendars
(1 year).

Estimation is performed directly on the market time series of traded forwards F (·, T1, T2)
and no forward curve smoothing procedure is needed. For the volatility this task is not trivial,
since the term structure is also maturity-dependent.We apply a method based on quadratic
variation/covariation of price processes, which allows to estimate the diffusion coefficients.
Then, in order to estimate the mean-reversion speed and level, since the covariance matrix of
joint returns is singular, we first calibrate the parameters on the single contract. Afterwards,
we take into account the no-arbitrage constraints (NA) that must hold among overlapping
contracts (e.g. 3 months/1 quarter). This is done by combining maximum likelihood estimation
(MLE) with Lagrange multipliers. For example, with the convention that ΦQ2/17 denotes the
parameter Φ(T1, T2) corresponding to the contract Q2/17, then

ΦQ2/17 = uApr/17ΦApr/17 + uMay/17ΦMay/17 + uJun/17ΦJun/17,

where the weights ui are defined according to the number of days in the month/quarter (e.g.
uApr/17 = 30/91).

We apply this estimation technique on the Phelix Base Futures market. We consider all
the daily closing prices of each monthly, quarterly and calendar forward contract traded from
January 4, 2016 to May 23, 2017. We first estimate the diffusion coefficients by introducing
in the second factor a classical seasonal component, which takes into account a possible
non-seasonal long-run volatility trend, i.e. a linear combination of trigonometric functions
plus a linear component in maturity. Then, we compare it to a nonparametric volatility shape,
where the second factor is a free parameter for each “atomic” forward. In this way we manage
to reproduce in a fairly genuine way the finer (co-)volatility term structure observed.

We then do a simulation study and assess the performance of the model. Firstly, we
compare simulated paths of some exemplary futures contracts to the corresponding observed
trajectories, so to discuss the qualitative behavior of model simulations. Secondly, we compute
fundamental statistics of the model by averaging the results of a set of simulations and
compare them to our data. The model reproduces in a satisfactory way the trajectorial and
statistical features of our dataset. In particular, in terms of moments, a Gaussian distribution
seems reasonable.

Overview of Chapter 4

This chapter is based on a joint work [110] with Maren Diane Schmeck and Tiziano Vargiolu.

In this chapter we introduce an additive two-factor model for futures prices based on
Normal Inverse Gaussian Lévy processes and compute European option prices by Fourier
transform methods. We introduce a calibration procedure and fit the model to EEX power
option settlement prices.

First, we introduce a general framework for multifactor additive futures prices in the
same spirit of Chapter 2 (see also [32]) and, from this, we focus on a two-factor model that
generalizes the one presented in Chapter 3. This two-factor model will be then calibrated and
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fitted to market data. We assume that the stochastic evolution of F (·, T1, T2) from t to T is
given by

F (T, T1, T2) = F (t, T1, T2) +

∫ T

t
Γ1(u, T1, T2) dJ1(u) + Γ2(T1, T2)(J2(T )− J2(t)), (3)

where

Γ1(u, T1, T2) :=
1

T2 − T1

∫ T2

T1

γ1e
−µ(τ−u) dτ =

γ1(e
−µ(T1−u) − e−µ(T2−u))

µ(T2 − T1)
,

Γ2(T1, T2) :=
1

T2 − T1

∫ T2

T1

γ2(τ) dτ.

Differently from Chapters 2 and 3, this dynamics is described directly under a risk-neutral
measure Q.6 The coefficients modulate the variability of the two stochastic processes J1
and J2, which are both centered (i.e. zero-mean) versions of NIG Lévy processes. This
model arises as a natural generalization of its Gaussian counterpart introduced in Chapter
3. The first factor has a delivery-averaged exponential behavior, meant to reproduce the
Samuelson effect. The second factor is independent of time, but varies for contracts with
different delivery in a seasonal and no-arbitrage way (see Chapters 2 and 3) and accounts for
a finer reproduction of the term structure of futures volatilities. This function can be specified
either in a parametric or nonparametric fashion. In order to apply the Fourier transform
approach, we then compute the characteristic function of F (T, T1, T2). By introducing
Z(t, T, T1, T2) := F (T, T1, T2)−F (t, T1, T2), we denote its characteristic function (as a function
of v ∈ R) by

Ψ(t, T, T1, T2, v) = E

[
eivZ(t,T,T1,T2) |Ft

]
.

Then, we move to considering the pricing of European vanilla options written on futures
contracts. We discuss the method for call options, being the case of puts completely analogous.
Let C(t;T,K, T1, T2) be the price at time t of a call option, with strike price K and exercise
time T , that is written on a futures contract with delivery period [T1, T2]. By no-arbitrage,

C(t;T,K) = E [(F (T )−K)+ |Ft ] , (4)

where F (T ) is the price of the underlying futures at the option exercise and Ft represents the
information at time t.7 We follow the classical approach of [45], which consists, roughly speak-
ing, in computing the Fourier transform of (4) as a function of K (after proper manipulations)
so to recover the option value by inverse tranform. The starting point is the observation that,
as K goes to −∞, C(t;T,K) → ∞, so that in particular C(t;T,K) is not integrable as a
function of K for large negative values. This means that the option value C(t;T,K) does not
satisfy the assumptions required for computing its Fourier transform. In order to overcome
this, [45] suggest two approaches that we recall and apply to the case of additive models. The
first approach is based on the use of an exponential damping factor eaK in order to make the
option value integrable. Instead, the second approach consists in substracting the time value
of the option. In this way we derive semi-analytical expressions (analytical up to integration)
for the option prices, that depend on the characteristic function of the underlying.

We discuss a calibration methodology that we will apply in our empirical study. First, we
discretize the option value that is given in integral form (being it represented as inverse Fourier

6The absence of the drift follows from the fact that, by no-arbitrage, futures prices must be martingales
under Q.

7We do not write the dependence on the delivery period in order to ease the notation.
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transform) in the domain of integration. Secondly, we select a finite grid of strike prices, that
consists in practice of the listed options available in the market for a given underlying. The
calibration happens statically, in the sense that we fix a trading date and observe the market
option prices for different strikes and underlyings. We then find the parameters that minimize
an objective function representing the distance from theoretical to model implied volatilities
(IVs). In the same way, one can alternatively use option prices instead of IVs. The futures
model under consideration is defined in a such a way that there is no possibility of arbitrages
from trading in overlapping delivery periods. No-arbitrage implies certain relations on the
coefficients, that translate into parameter constraints (cf. the calibration procedure presented
in Chapter 3). In order to highlight this, we present the objective function and the parameters
set for the following three cases: single maturity, many maturities but non-overlapping delivery
periods, and general case of possibly overlapping delivery periods.

The contracts that we consider in our application are European-styled vanilla options
written on the Phelix Base Index traded at EEX. The underlying assets are futures contracts
that prescribe the delivery of 1 MW per hour, for each hour of each day of a month, a quarter
or a year. Since there is not enough liquidity in the market in order to extract information on
the IV surface from traded market quotes, we consider the settlement prices, that are available
for a sufficiently large range of strike prices. Though settlement prices do not represent trades
that really take place in the market, they contain information on the market expectations.
We observe the market for a representative day: Monday, March 5, 2018. For each option, we
consider the strike prices in the range 90%-110% of the current price of the underlying. At
this date, the listed options with available settlement prices are five for monthly contracts, six
for quarterly contracts and three for calendars.

We perform the calibration procedure described above, first, for the one-factor model
derived by (3) by setting the first coefficient to 0, i.e. Γ1(u, T1, T2) ≡ 0 and, then, for the
general two-factor model. We compare the IVs of both models to the empirical IVs and the
one (constant across strikes) generated by Black’s model. For the sake of comparison we
choose to minimize for all the three models the error on option prices (that is a faster method
to apply in practice than the one based on IVs) and use the modified time value approach (for
the one-factor and the two-factor). We find that, in general, the optimization routine falls into
local minima. However, by selecting a starting condition that is “sufficiently close” to observed
IVs, the minimization converges to a realistic set of parameters (cf. [52] for well-posedness of
this kind of problems). As a by-product from the estimation of the one-factor model, we derive
that, under the risk-neutral measure, futures prices are leptokurtic and have significantly
positive skewness. This is reflected also into the shape of empirical IVs, which display a
forward skew (i.e. higher IVs for out-of-the-money calls). This can be interpreted as a “risk
premium” paid by option buyers for securing supply. Generally, the two-factor model fit is
rather accurate for all the strikes and maturities available in the market. However, the “smile”
of model IVs of closest to maturity options is slightly more pronounced than what observed.
There is a clear improvement of fit from the one-factor to the two-factor model, since, for
instance, IVs of out-of-the-money calls are underestimated by the one-factor model (and not
from the two-factor one). Also, there is a slight anomaly in some at-the-money IVs, that we
believe it is due to numerical instability of the Fourier method for K = F (t) (cf. [45]).
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CHAPTER 1

Optimal portfolio in intraday electricity markets

modelled by Lévy-Ornstein-Uhlenbeck processes

We study an optimal portfolio problem designed for an agent operating in intraday electricity
markets. The investor is allowed to trade in a single risky asset modelling the continuously
traded power and aims to maximize the expected terminal utility of his wealth. We assume
a mean-reverting additive process to drive the power prices. In the case of logarithmic
utility, we reduce the fully non-linear Hamilton-Jacobi-Bellman equation to a linear parabolic
integro-differential equation, for which we explicitly exhibit a classical solution in two cases
of modelling interest. The optimal strategy is given implicitly as the solution of an integral
equation, which is possible to solve numerically as well as to describe analytically. An analysis
of two different approximations for the optimal policy is provided. Finally, we perform a
numerical test by adapting the parameters of a popular electricity spot price model.

1.1 Introduction

After power markets have been deregulated worldwide, this financial sector is experiencing
profound structural changes. Several interesting issues have triggered a growing interest in
models for energy markets. A rigorous mathematical approach may be useful for practitioners
and at the same time stimulate the advance in academic research. In this work we consider
markets structured as the European Power Exchange (EPEX), which regulates electricity spot
trading in Central and Western Europe. In many exchanges, short-term trade is organized in
mainly two markets: day-ahead and intraday. While the day-ahead market trades electricity
for each hour (or block of hours) to be delivered the next day and is auction-based, the
intraday market, which opens after the day-ahead closure, offers the participants the possibility
to trade continuously until short time prior to delivery. The intraday market is especially
important for renewable energy producers, who can adjust their day-ahead positions due to
changes of weather forestcasts [88].

In this work we study a dynamic portfolio optimization problem designed for intraday
electricity trading. These markets play an important role in the equilibrium of power grids,
since both electricity producers and consumers are allowed to optimize their positions and
reduce the risk of imbalance, which entails fees to be paid to system operators. Since the
increasing penetration of renewable sources, modelling intraday trading has become particularly
important, as well as mathematically interesting. Literature related to this problem is very
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recent: one of the first paper in this direction is [77], where the author studies how a wind
power producer may benefit from trading in intraday markets by taking into account the
risk of forecast production errors. [71] study an optimal trade execution problem in order to
compensate forecast errors on wind or photovoltaic power production. [3] consider a producer
who aims to minimimize the imbalance cost of his residual demand (which is stochastic) by
controlling his flexible power production (thermal plants) and his position on the intraday
market. Another recent paper [66] studies a stochastic multiperiod portfolio optimization
problem in discrete time for hydroassets management and derives, in particular, an optimal
intraday trading strategy. In [88] the authors investigate the impact of intraday updated
forecasts of wind and photovoltaic on the bidding behavior of market participants, while
[126] compare the price drivers in both the EPEX day-ahead and intraday electricity markets.
Also, [46] study cross-border effects in intraday prices between interconnected locations and
[123] consider a wind energy producer who trades in forward, spot, intraday and adjustment
markets and derive optimal trading policies taking into account that his forecast production
is imperfect. Our study arises as natural generalization of [57] and takes the perspective
of a small agent interested in exploiting the stylized features of intraday prices in order to
maximize his expected terminal gains.

We propose a stochastic model for the continuously traded electricity price and formulate an
expected profit maximation problem in the language of stochastic control. The price is modeled
by additive non-Gaussian Ornstein-Uhlenbeck (OU) processes. Power spot prices are usually
described by either geometric [48, 73] or additive mean-reverting processes [18, 26, 90, 93, 95].
In the context of intraday markets, our model choice generalizes both [57], where the authors
model the price by Gaussian OU processes, and [88], where the intraday price is an AR(1)
process (with regime-switching that we do not consider), which is the discrete time version of
the OU process. This class is highly flexible and capable to reproduce both the mean-reverting
and the spiky behavior of observed time series. Since we do not perform a logarithmic
transformation of the price, as is usually done, negative prices can be reproduced by our
model: this is consistent with what has been recently observed since the introduction of
renewable energy sources in the power mix (see [61]).

Following the pioneering work of Merton [96, 97], optimal portfolio management has
become one of the most popular problems in mathematical finance and has been addressed
in several different frameworks. For a general treatment we refer the reader to [104]. Our
approach is based on the dynamic programming method and the study of the associated
Hamilton-Jacobi-Bellman (HJB) integro-differential equation. Some related works include
e.g. [19], where the price evolves as an exponential Ornstein-Uhlenbeck process, known as the
Schwartz model, which is ubiquitous in commodity prices modelling. In [85] the authors model
the risky assets with exponential Lévy processes and [107] generalize to exponential additive
processes. We are inspired by [109, 128] when introducing a transformation for solving the HJB
equation. Also, [20] study the same optimization problem for the Barndorff-Nielsen-Shephard
model [14], where the volatility is a superposition of non-Gaussian OU processes driven by
subordinators.

The problem of finding the value function is not straightforward from the formulation of
the HJB equation. We study the case of logarithmic utility in order to disentangle the terms
depending on both the wealth process and the strategy, from the ones depending on time and
price. This simplification was also observed by [1] for a certain class of jump-diffusion processes.
A theoretical study of optimal portfolios in the case of logarithmic utility is performed in [74]
and furtherly generalized in [75], where the authors apply martingale methods (see [74, 75]
and references therein for details on this approach) to a general semimartingale framework.
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However, although their analysis provides a characterization of an optimal strategy and its
uniqueness, the study of its analytical properties is not explicitly addressed. We reduce
the fully nonlinear HJB equation to a linear partial integro-differential equation (PIDE) by
applying a logarithmic transformation as in [109]. Even though the optimal strategy is given
implicitly as the solution of an integral equation, we are able to show that it is well-defined
and satisfies sufficiently regular properties in order to apply the Verification Theorem.

We prove the existence of a classical solution to the HJB equation in two cases of interest:
time-inhomogeneous compound Poisson processes with non-degenerate Brownian component
and additive pure-jump processes of (possibly) infinite variation. This is done in the first case
relying on a result by [108], while in the second case via Feynman-Kač representations. In the
latter approach, we follow the idea of [20] and generalize it to time-inhomogeneous processes,
which we do not assume to be of finite variation as in [20]. In particular, Danskin’s theorem
[54] allows us to prove that the forcing term of the HJB equation, which is defined as the
composition of non-differentiable functions, is actually differentiable.

Partial integro-differential equations (PIDE) are in itself of interest and arise across
different fields of mathematics. In our paper we consider classical solutions, obtained via
probabilistic representations, partly as extensions or complementary contributions of various
earlier works. A classical reference for this type of problems is [15], where some existence
results are stated under strong regularity assumptions on the coefficients of the equation.
In proving the existence of a regular solution for finite Lévy measures with non-degenerate
Brownian component, we apply a result of [108]. Nevertheless, this approach is based on
classical smoothness results from PDE theory for linear second-order differential equations
(cf. [70]), which require the finiteness of the jump measure. Consequently, for more general
jump-processes we instead follow [20], where the Feynman-Kač formula yields a candidate,
which is proven to be a classical solution of a PIDE very similar to ours. Unfortunately, this
approach works only in the first-order case, i.e. with no Brownian component. However, as
observed by [53], in order to generate realistic price trajectories, it is sufficient to consider
financial models which are either finite activity jump processes combined with a diffusion
part, or infinite activity pure-jump models, since the latter behave in a “diffusive” way when
frequent small jumps occur.

We then study an approximation of the optimal strategy based on the Taylor expansion
of the first-order condition, which is a numerical integral equation. In the case of compound
Poisson processes, the center of the polynomial is chosen as the mean jump size. We compare
it to the classical Merton ratio [96], which is shown to correspond to a Taylor expansion
around zero. This approximation has been studied also in [8, 28, 105, 107] for stochastic
volatility price models with jumps. Nevertheless, in their approach the authors start by
approximating the HJB equation directly, while we work on the first-order condition. We
derive some estimates of the approximation error and perform a numerical test on a power spot
price model, specifically the factor model in [21]. Our main finding here is that Merton’s ratio
performs poorly in comparison to our jump-based approximation, suggesting that optimal
trading in Lévy-driven markets is not well described by this economically meaningful quantity,
at least for the specific case of additive mean-reverting prices.

The paper is structured as follows. In Section 2 we introduce the intraday price dynamics
and set our stochastic control problem. In Section 3 we describe the properties of our optimal
strategy and study the reduced HJB equation for a logarithmic utility. In particular, two
existence results of classical solutions to PIDE are given. We conclude this section by applying
the Verification Theorem. The approximation study of the optimal strategy is contained in
Section 4, while Section 5 presents an exemplary numerical test on the policy approximations.
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Appendix A includes auxiliary propositions for the existence of a PIDE solution in the
first-order case, while in Appendix B we collect some of the most technical proofs.

1.2 The optimal portfolio problem

We follow the dynamic programming strategy for solving our stochastic optimal control
problem (see, for instance, [69]). The purpose is maximizing the expected utility of our
portfolio over a set of trading strategies, that is to study the quantity

sup
π

E[U(X(T ))], (1.1)

where U : R → R is a utility function representing the risk profile of the investor, X = Xπ

denotes the portfolio value associated to the strategy π and T is the trading closure time.
Let us introduce the stochastic dynamics driving the market. Denote by L a real-valued

additive process (for details see e.g. [51, Section 14.1]) defined on the complete filtered
probability space (Ω,F , (Fu)u≥0,P) by

dL(u) = b(u) du+ σ(u) dW (u) + ψ(u)

∫

R

y N(dy, du), u ∈ (0, T ], (1.2)

where σ, b, ψ : [0, T ] → R are continuously differentiable functions, such that 0 ≤ ψ1 ≤ ψ(u) ≤
ψ2 for any u ∈ [0, T ] and σ(u) and ψ(u) do not vanish at the same time. The process W
is a standard Brownian motion and N(dy, du) := N(dy, du)− ν(dy) du is the compensated
Poisson random measure associated to a Lévy measure ν, i.e. a Radon measure on R \ {0}
such that

∫
R
(1 ∧ y2) ν(dy) <∞. In particular, if b, σ and ψ are constant, with ψ ≡ 1, then L

is a Lévy process. In order to deal with processes with finite second moment, we furtherly
assume that ν satisfies the following integrability condition:

∫

|y|≥1
y2 ν(dy) <∞. (1.3)

Observe that L can be decomposed in a deterministic drift part, a Brownian motion with
time-varying volatility and a square integrable pure-jump martingale component. We also
introduce the following convention.

Remark 1.2.1 (Jump measure support). It holds that supp ν ⊂ [m,M ] for −∞ ≤ m ≤M ≤
+∞. We interpret the case m = M = 0 formally as the diffusive case, i.e. when L has no
jump component. If, for instance, m = −∞, we mean [m,M ] := (−∞,M ].

We are in a market with one asset (i.e. the continuously traded intraday price of electricity,
expressed in Euros per MWh), whose market value S = St,s evolves in time according to the
stochastic differential equation

dS(u) = −λS(u) dt+ dL(u), u ∈ (t, T ], (1.4)

given the initial condition St,s(t) = s for some t ∈ [0, T ) and s ∈ R. The constant λ is positive
and represents the mean-reversion rate of S. In particular, for any additive process L there
exists a unique (strong) solution S such that in general P(S(u) < 0) > 0 for some u ≥ t, i.e.
the price may assume negative values. Nevertheless, if L can have only positive jumps and
there is no Brownian component, i.e. it is a time-inhomogeneous subordinator (see e.g. [51]),
then a nonnegative initial condition s ≥ 0 naturally implies that S(u) is a.s. nonnegative for
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each u ≥ t. Therefore, it is possible to consider additive processes taking both positive and
negative values, according to one’s modelling preferences. The unique solution of (1.4), with
starting condition St,s(t) = s, can be explicitly written as

St,s(u) = se−λ(u−t) +

∫ u

t
e−λ(u−v) dL(v). (1.5)

Since L has finite second moment by (1.3), S has finite second moment as well.
If π(u) represents the amount of shares of the stock (i.e. the amount of energy in MWh),

owned by the agent at time u, the associated self-financing portfolio dynamics X = Xt,s,x;π is
described by

dX(u) = π(u) dS(u), u ∈ (t, T ], (1.6)

X(t) = x, (1.7)

where S = St,s and x > 0. We are assuming that there is an implicit cash position, i.e. a
risk-free asset, with zero interest rate (even in the case that the interest rate is nonzero, it
would not affect trading because of the short time interval). We also assume that π(T ) = 0,
so that the agent liquidates the position at the terminal time T ; in other words, we are in
a pure trading context (see [57, Remark 3.1]). We then define the set of admissible trading
strategies and the value function.

Definition 1.2.2 (Admissible controls). We call A([t, T ]) the set of admissible controls, which
are defined as real-valued predictable processes π on [t, T ] (in the sense of [80, Definition 3.3])
such that the following conditions hold:

1. Equations (1.4) and (1.6) admit a unique strong solution (S,X) = (St,s,x, Xt,s,x;π) for
each initial condition S(t) = s,X(t) = x, with t ∈ [0, T ) and (s, x) ∈ R× R+.

2. The associated wealth process is positive, i.e. Xt,s,x;π(u) > 0, P-a.s. for each u ∈ (t, T ]
and the final net position is zero: π(T ) = 0.

Definition 1.2.3 (Value function). If (St,s,x, Xt,s,x;π) denotes the controlled Markov process
starting from (s, x) at time t and evolving as in (1.4) and (1.6), we define the value function
by

V (t, s, x) = sup
π∈A([t,T ])

J(t, s, x;π),

where J is the objective function:

J(t, s, x;π) = E[U(Xt,s,x;π(T ))].

The function U : R+ → R represents the investor’s utility and is concave, increasing, and
bounded from below.

Following the dynamic programming principle, the Hamilton-Jacobi-Bellman (HJB) equa-
tion associated to this optimization problem is

∂

∂t
H(t, s, x) + sup

π
AπH(t, s, x) = 0, (t, s, x) ∈ [0, T )× R× R+, (1.8)

H(T, s, x) = U(x), (s, x) ∈ R× R+. (1.9)
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According to (1.4) and (1.6), the infinitesimal generator Aπ of the controlled process (St,s,x,
Xt,s,x;π) acts on a sufficiently regular function H(t, s, x) as follows

AπH(t, s, x) = (b(t)− λs)(πHx(t, s, x) +Hs(t, s, x))

+
1

2
π2σ(t)2Hxx(t, s, x) + πσ(t)2Hsx(t, s, x) +

1

2
σ(t)2Hss(t, s, x)

+

∫

R2

[H(t, s+ y2, x+ πψ(t)y1)−H(t, s, x)

− (πHx(t, s, x)ψ(t)y1 +Hs(t, s, x)ψ(t)y2)] ν̃t(dy1dy2),

where ν̃t is the jump measure associated to the two-dimensional process (S,X). Since this is
a singular two-dimensional measure which coincides with the one-dimensional jump measure
ν(dy) on the line y1 = y2, we can rewrite the integral term as

AπH(t, s, x) = (b(t)− λs)(πHx(t, s, x) +Hs(t, s, x))

+
1

2
π2σ(t)2Hxx(t, s, x) + πσ(t)2Hsx(t, s, x) +

1

2
σ(t)2Hss(t, s, x)

+

∫

R

[H(t, s+ ψ(t)y, x+ πψ(t)y)−H(t, s, x)− (πHx(t, s, x) +Hs(t, s, x))ψ(t)y] ν(dy).

To link the HJB equation to the control problem, we formulate a Verification Theorem in the
version of [69, Theorem III.8.1]. The basic tool is the well-known Dynkin formula (see [69,
p.122]), which here applies to the controlled process (S,Xπ):

Et,s,x[f(T, S(T ), Xπ(T ))]− f(t, s, x) = Et,s,x
[∫ T

t
Aπ(u)f(u, S(u), Xπ(u)) du

]
, (1.10)

where Et,s,x denotes the conditional expectation given S(t) = s, Xπ(t) = x and f : [0, T ]×
R× R+ → R is any function for which the expression makes sense.

Theorem 1.2.4 (Verification Theorem). Define the set

D = {f ∈ C1,2([0, T )× R× R+) so that (1.10) holds for each π ∈ A([t, T ])}.

Let H ∈ D be a classical solution of (1.8) which respects the terminal condition (1.9). Then it
holds, for each (t, s, x) ∈ [0, T ]× R× R+,

1. H(t, s, x) ≥ J(t, s, x;π) for each admissible control π ∈ A[t, T ];

2. if there exists an admissible control π∗ ∈ A[t, T ] such that

π∗(u) ∈ argmax
π

AπH(u, S(u), Xπ(u)) P-a.s. for u ∈ [t, T ]

then H(t, s, x) = J(t, s, x;π∗) = V (t, s, x), i.e. π∗ is an optimal strategy.

Proof. The proof is classical and follows directly from the Dynkin formula in (1.10).

1.3 Optimal control and value function for a logarithmic utility

In this section we solve the optimization problem in the case of a logarithmic utility, i.e. when
the utility function in (1.1) is U(x) = log(x). Specifically, we find an explicit solution for
the HJB equation by means of a logarithmic transform. First, we reduce the fully nonlinear
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HJB equation to a linear parabolic integro-differential equation for which, under certain
assumptions, the existence of a regular solution can be proven. By applying the Verification
Theorem of the previous section, we prove it to be equal to the value function of the original
maximization problem (Theorem 1.3.13). We also state the existence and give a representation
of an optimal strategy, which is shown to solve an integral equation.

1.3.1 Optimal strategy

By the properties of logarithmic utility, it holds that, if an optimal strategy π∗ exists, it takes
the form

π∗(u) = π̄∗(u)X(u−), (1.11)

where π̄∗ is a predictable process that can be implicitly defined in terms of the semimartingale
characteristics of St,s, i.e. on the local behavior of the price process (see [74, Theorem 3.1]).
This implies that we may explicitly characterize the strategies for which the wealth process X
is positive. In fact, for an admissible strategy π(u) := π̄(u)X(u−) we can rewrite (1.6) as

dX(u) = X(u−) π̄(u) dS(u). (1.12)

This allows us to have for general π̄ an explicit formula for X, since it takes the form of a
stochastic exponential (cf. [51, Section 8.4]). By Itô’s formula,

X(u) = x · eπ̄(u)S(u)− 1

2

∫ u

t
σ2(v)π̄2(v) dv

∏

t<v≤u

(1 + π̄(v)∆S(v))e−∆S(v), P-a.s.

Proposition 1.3.1 (Positivity of the portfolio value). If π(u) = π̄(u)X(u−), it holds
Xt,s,x;π(u) > 0, P-a.s., ∀u ∈ [t, T ], if and only if

π̄(u)ψ(u)y > −1 P-a.s., ν-a.e. y ∈ R, for all u ∈ [t, T ].

Proof. From (1.6), if the jump measure at time t of S, regarded as an additive process, is
denoted by νSt , then it holds that supp νSt = supp ν. Then, {π̄(u)∆S(u) > −1 P-a.s., ∀u ≤ T}
if and only if {π̄(u)∆L(u) > −1 P-a.s., ∀u ≤ T}, which is equivalent to {π̄(u)ψ(u)y > −1
P-a.s., ν-a.e. y ∈ R, ∀u ≤ T}.

Therefore, the portfolio is positive for each strategy of the form π(u) = π̄(u)X(u−) such
that π̄ takes values in a suitably chosen set. This sums up in the following characterization of
admissible controls.

Definition 1.3.2. Let Π = Πν,ψ be a compact set such that

Πν,ψ ⊂ Π̂ν,ψ := {π̄ ∈ R s.t. π̄ψy > −1 for each y ∈ [m,M ] and ψ ∈ [ψ1, ψ2]}.

A predictable process π̄ : [t, T ] → Π is called normalized admissible strategy if there exists an
admissible strategy π ∈ A([t, T ]) such that

π(u) = π̄(u)X(u−)

for all u ∈ [t, T ], P-a.s.

Remark 1.3.3. According to the support of the measure ν, the set Π̂ := Π̂ν,ψ consists of

case A Π̂ = (− 1
Mψ2

,− 1
mψ2

) if m < 0 and M > 0 (both positive and negative jumps),
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case B Π̂ = (− 1
Mψ2

,+∞) if 0 ≤ m ≤M and M 6= 0 (only positive jumps),

case C Π̂ = (−∞,− 1
mψ2

) if m ≤M ≤ 0 and m 6= 0 (only negative jumps),

case D Π̂ = R if m =M = 0 (no jumps),

by consistently interpreting where necessary: for instance if M = +∞, (− 1
Mψ2

,+∞) :=

[0,+∞). Observe that in all cases we have 0 ∈ Π̂. If m = −∞ and M = ∞, then Π̂ = {0}
which makes the problem trivial. Therefore, in order to get rid of this situation, we may
assume from now on that at least one between m and M is finite.

Remark 1.3.4. The set Π̂ = Π̂ν,ψ is defined according to the jump features of the process L (cf.
the analogous notion of neutral constraints in [75, Section 2]). On the other hand, we have a
certain freedom in the definition of Π, as we only require that it is a compact subset of Π̂.
Intuitively, we are restricting the range of possible trading strategies so that the instantaneous
portfolio value can not jump to (or below) zero for any admissible (normalized) position π̄.

In order to find a solution to the HJB equation, we make the following ansatz:

H(t, s, x) = U(x eg(t,s)) = log(x) + g(t, s).

This transform, which has been introduced in [57] for the specific case of Gaussian processes,
is analogous to the one employed in [109], with the main difference due to the arithmetic
nature of our spot price dynamics. We start from the static maximization problem, namely
the maximization of the generalized Hamiltonian over all possible values of the strategies
π. As usual in this approach (see the discussion in [69]) a candidate optimal policy π ∈
A[t, T ] can be found by computing π∗(t, s, x) = argmaxπ A

πH(t, s, x) and defining π∗(t) :=
π∗(t, S(t−), X(t−)). It is common to refer to the deterministic function π∗(t, s, x) as the
optimal Markov control policy. Since we are in the case of logarithmic utility (cf. (1.11)), we
can write π∗(t, s, x) = π̄∗(t, s) · x. Simple computations yield

AπH(t, s, x) = (b(t)− λs)
(π
x
+ gs(t, s)

)
− 1

2
σ(t)2

π2

x2
+

1

2
σ(t)2gss(t, s) (1.13)

+

∫

R

[
log(x+ πψ(t)y) + g(t, s+ y)− log(x)− g(t, s)−

(
πψ(t)

x
+ gs(t, s)

)
y
]
ν(dy).

Neglecting the terms which do not depend on π, we have

argmax
π

AπH(t, s, x) = argmax
π

(b(t)− λs)
π

x
− 1

2
σ(t)2

π2

x2
+

∫

R

[
log

(
1 +

πψ(t)

x
y

)
− πψ(t)

x
y

]
ν(dy)

= x · argmax
π̄∈Π

f(π̄; t, s),

where the function f : Π× [0, T ]× R → R is defined as

f(π̄; t, s) := (b(t)− λs)π̄ − 1

2
σ(t)2π̄2 +

∫

R

[log (1 + π̄ψ(t)y)− π̄ψ(t)y] ν(dy). (1.14)

The expression to be maximized with respect to the variable π̄ reads as the sum of three
terms: a linear term, a strictly concave function and the integral of a strictly concave function.
Therefore we are maximizing an overall strictly concave function on a compact set Π. This
ensures the existence of a unique maximizer

π̄∗ = π̄∗(t, s) := argmax
π̄∈Π

f(π̄; t, s). (1.15)
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Remark 1.3.5. By adopting this notation we are revealing in advance that π∗ corresponds to
an optimal strategy, but we have not given a proof yet. The optimality of this candidate will
be derived in Theorem 1.3.13 by applying the Verification Theorem of the previous section.

Recalling that π∗(t, s, x) = π̄∗(t, s) · x, we can write the HJB equation in reduced form

∂

∂t
H(t, s, x) +Aπ

∗(t,s,x)H(t, s, x) = 0,

that is, consistently with our guess H(t, s, x) = log(x) + g(t, s),

gt(t, s) + (b(t)− λs) (π̄∗(t, s) + gs(t, s))−
1

2
σ(t)2π̄∗(t, s)2 +

1

2
σ(t)2gss(t, s)

+

∫

R

[
log (1 + π̄∗(t, s)ψ(t)y)− π̄∗(t, s)ψ(t)y + g(t, s+ ψ(t)y)− g(t, s)− gs(t, s)ψ(t)y

]
ν(dy) = 0,

After the terms with g are collected, the equation reads

gt(t, s) + (b(t)− λs)gs(t, s) +
1

2
σ(t)2gss(t, s)

+

∫

R

[g(t, s+ ψ(t)y)− g(t, s)− gs(t, s)ψ(t)y] ν(dy) = −f∗(t, s), (1.16)

with terminal condition g(T, s) = 0, where we define f∗ : [0, T ]× R → R by

f∗(t, s) := f(π̄∗(t, s); t, s). (1.17)

If we interpret (1.16) as an equation in the only unknown g, it takes the form of a linear
parabolic partial integro-differential equation (PIDE). The analysis of such an equation is
typically a delicate task and, to the best of our knowledge, there are not many existence
results for regular solutions in literature for this class of problems (see [15, 53, 56, 108] and
references therein). Under certain assumptions, we are able to prove the existence and a
probabilistic representation formula: we will do this in Propositions 1.3.11 and 1.3.12. It
is crucial noticing that in the logarithmic case we can solve the HJB equation directly by
disentangling the problem of finding π̄∗(t, s) and the function g(t, s). This has been verified
by the authors not to be the case for a general CARA or CRRA utility, which makes the issue
of solving the HJB equation more difficult as well as interesting (see also [1]). Nevertheless, an
approximation of the HJB equation has been proposed in an analogous stochastic framework
for CRRA utility in [8, 105].

In order to solve the PIDE, we first have to study the properties of the strategy defined
implicitly in (1.15). A straightforward application of the dominated convergence theorem
and the finiteness of the second moment of L assure that f(·; t, s) is differentiable for any
t ∈ [0, T ] and s ∈ R. Therefore, if the maximizer π̄∗ = π̄∗(t, s) is a internal point, it is the
unique solution of the first order condition

f ′(π̄∗; t, s) = b(t)− λs− σ(t)2π̄∗ −
∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy) = 0. (1.18)

We remark that this is the explicit deterministic counterpart of the third condition appearing
in [74, Theorem 3.1].

In the two upcoming propositions, we sum up the properties of the candidate (normalized)
optimal policy and of the function f∗ appearing in the HJB equation.
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Proposition 1.3.6. Assume that Π is a compact interval containing 0. The static optimization
problem in (1.14) and (1.15) admits a unique maximizer π̄∗ : [0, T ]×R → Π with the following
properties:

1. For each t ∈ [0, T ], it holds π̄∗
(
t, b(t)λ

)
= 0.

2. The map π̄∗ : [0, T ] × R → Π is continuous and then, in particular, measurable and
bounded.

3. For each t ∈ [0, T ], there exists an open interval Σ(t) such that the restrictions π̄∗(t, ·)|Σ(t)

are strictly decreasing and smooth, where

case A Σ(t) = (s1(t), s2(t)),

case B Σ(t) = (−∞, s2(t)),

case C Σ(t) = (s1(t),+∞),

case D Σ(t) ≡ R.

Moreover, for any t ∈ [0, T ] the derivatives of π̄∗(t, ·)|Σ(t) can be extended to Σ(t).

4. For each t ∈ [0, T ], the map π̄∗(t, ·) : R → Π is decreasing on the whole real line and, in
particular,

case A there exist s1, s2 such that, for any t ∈ [0, T ], we have −∞ < s1 ≤ b(t)
λ ≤ s2 <

∞ and

π̄∗(t, s) ≡
{
maxΠ, if s ≤ s1,

minΠ, if s ≥ s2.

case B there exists s2 such that, for any t ∈ [0, T ], we have b(t)
λ ≤ s2 < ∞ and

π̄∗(t, s) ≡ minΠ for s ≥ s2 .

case C there exists s1 such that, for any t ∈ [0, T ], we have −∞ < s1 ≤ b(t)
λ and

π̄∗(t, s) ≡ maxΠ for s ≤ s1.

case D we can write down the maximizer explicitly as

π̄∗(t, s) =
b(t)− λs

σ(t)2
,

for each t and s such that the above quantity is well-defined and belongs to Π.

5. In particular, for all t ∈ [0, T ] the maps π̄∗(t, ·) are Lipschitz continuous uniformly in
t ∈ [0, T ] (i.e. with Lipschitz constant L independent of t).

Proof. See Appendix B.

Remark 1.3.7. In the notation of Proposition 1.3.6, for case A,B,C, we can write more
explicitly

s1(t) = lim
π̄→π̄2

s∗(t, π̄) =
1

λ

(
b(t)− σ(t)2π̄2 −

∫

R

π̄2ψ(t)
2y2

1 + π̄2ψ(t)y
ν(dy)

)
,

s2(t) = lim
π̄→π̄1

s∗(t, π̄) =
1

λ

(
b(t)− σ(t)2π̄1 −

∫

R

π̄1ψ(t)
2y2

1 + π̄1ψ(t)y
ν(dy)

)
,

and
s1 = min

t∈[0,T ]
s1(t), s2 = max

t∈[0,T ]
s2(t).
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Remark 1.3.8. In order to interpret the results of Proposition 1.3.6, let us suppose for example
to be in case A. Recall that in this case we can have both upward and downward jumps in
prices (see Remark 1.3.3) and that the normalized position π̄(t, s(t)) can take also negative
values, so that short-selling is allowed. At each time t, a trader who executes optimally
takes a net zero position if price s(t) reaches the (time-dependent) “equilibrium” level b(t)/λ.
Furtherly, he goes long if price goes above this level and, accordingly, he goes short when
the price is below. The trading allocation increases (with sign) as price decreases and vice
versa. Also, s1 (resp. s2) consists of a lower (resp. upper) price threshold at which the
trader, independently of the time instant, takes the longest (resp. shortest) position possible
according to the trading constraints prescribed in Π.

Proposition 1.3.9. The function f∗ : [0, T ]× R → R in (1.17) is continuously differentiable
and Lipschitz continuous, with partial derivatives

∂

∂t
f∗(t, s) = b′(t)π̄∗(t, s)− σ(t)σ′(t)π̄∗(t, s)2 − ψ(t)ψ′(t)π̄∗(t, s)2

∫

R

y2

1 + π̄∗(t, s)ψ(t)y
ν(dy),

∂

∂s
f∗(t, s) = −λπ̄∗(t, s).

Furthermore, it grows as a linear function of s uniformly in t, i.e.

|f∗(t, s)| ≤ C(1 + |s|),

being C dependent only on λ, T, ‖b‖∞, ‖σ‖∞, ‖ψ‖∞.

Proof. Recall that by definition

f(π̄; t, s) = (b(t)− λs)π̄ − 1

2
σ(t)2π̄2 +

∫

R

[log (1 + π̄ψ(t)y)− π̄ψ(t)y] ν(dy),

which is a continuously differentiable function in the variable (t, s) for any π̄ ∈ Π, since b, σ
and ψ are continuously differentiable. Then, by Danskin’s theorem [54, Theorem 1],

f∗(t, s) = max
π̄∈Π

f(π̄; t, s)

is differentiable with partial derivatives

∂

∂t
f∗(t, s) =

∂

∂t
f(π̄; t, s)|π̄=π̄∗(t,s),

∂

∂s
f∗(t, s) =

∂

∂s
f(π̄; t, s)|π̄=π̄∗(t,s).

Since they are bounded continuous functions, it follows that f∗ ∈ C1([0, T ]×R) and Lipschitz
continuous. The linear bound is direct consequence of the definition of f and the boundedness
of π̄∗(t, s).

1.3.2 Probabilistic representation and existence of regular solutions

After studying the regularity properties of the forcing term of the reduced HJB equation
(1.16), we move on to the problem of existence of solutions. First of all, we clarify the
natural notion of classical solution for such a class of integro-differential equations. Tracing
through [50, Section 17.4], we say that a function g : [0, T ] × R → R belongs to the set
C1,2
ν,ψ = C1,2

ν,ψ([0, T )×R), if it is once continuously differentiable in its first argument and twice
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continuously differentiable in its second and, furtherly, the following integrability condition
holds true: for every t ∈ [0, T ) and s ∈ R,

∫

R

|g(t, s+ ψ(t)y)− g(t, s)− gs(t, s)ψ(t)y| ν(dy) <∞. (1.19)

Then, a classical solution of the HJB equation is a function g : [0, T ]× R → R belonging to
C1,2
ν,ψ([0, T )× R) and satisfying the integro-differential equation (1.16).

We now present three results. Firstly, we recall a version of the Feynman-Kač theorem,
which gives the probabilistic representation of regular solutions. Then, we state two existence
results for classical solutions: the first is valid for additive processes without diffusion
part, while the second works for compound Poisson processes and uniformly non-degenerate
Brownian component.

Theorem 1.3.10 (Feynman-Kač formula). Assume that g is a C1,2
ν,ψ([0, T )×R)∩C([0, T ]×R)

solution of (1.16), satisfying the growth condition:

max
t∈[0,T ]

|g(t, s)| ≤ K (1 + s2), for s ∈ R.

If, moreover, there exists ε > 0 such that
∫

|y|≥1
|y|2+ε ν(dy) <∞,

then we can represent g in the following Feynman-Kač type form

g(t, s) = E

[∫ T

t
f∗(u, St,s(u)) du

]
. (1.20)

Proof. The proof is classical: see [50, Theorem 17.4.10].

In the upcoming proposition we prove the existence of a classical solution to (1.16) in the
case that there is no Brownian component.

Assumption 1. The diffusion component in (1.2) is identically zero, i.e. σ ≡ 0.

We follow the idea of [20], where a guess is constructed via the Feynman-Kač formula. Let
us remark that we generalize the result in [20] by proving the existence of a classical solution
for time-inhomogeneus Lévy processes and possibly infinite variation square integrable Lévy
measure. More in detail, we prove that

G(t, s) := E

[∫ T

t
f∗(u, St,s(u)) du

]
(1.21)

is a well-defined regular function and solves the PIDE in the classical formulation. We need
some preliminary propositions, which are collected in Appendix A.

Proposition 1.3.11 (Pure-jump case). Under Assumption 1, the function G(t, s) is con-
tinuously differentiable in t for all s ∈ R and solves the following partial integro-differential
equation:

Gt(t, s) + (b(t)− λs)Gs(t, s) +

∫

R

[G(t, s+ ψ(t)y)−G(t, s)−Gs(t, s)ψ(t)y] ν(dy) = −f∗(t, s),

with terminal condition G(T, s) = 0. In particular, G ∈ C1,1
ν,ψ([0, T ) × R) ∩ C([0, T ] × R).

Furthermore, for all t ∈ [0, T ) and s ∈ R the following integrability condition holds:

E

[∫ T

t

∫

R

[
G(u, St,s(u−) + ψ(u)y)−G(u, St,s(u−))

]2
ν(dy) du

]
<∞.
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Proof. Fix t ∈ [0, T ), h > 0 and apply Itô’s Lemma to G(t+ h, S(·)) from t to t+ h. Then,
we have

G(t+ h, S(t+ h)) = G(t+ h, S(t)) +

∫ t+h

t
(b(u)− λS(u))∂sG(t+ h, S(u)) du

+

∫ t+h

t

∫

R

[G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))− ∂sG(t+ h, S(u))ψ(u)y]ν(dy)du

+

∫ t+h

t

∫

R

[G(t+ h, S(u−) + ψ(u)y)−G(t+ h, S(u−))]N(dy, du).

Now, divide by h and take expectation Et,s. Fubini’s theorem gives that

1

h

(
Et,s[G(t+ h, S(t+ h))]−G(t+ h, s)

)
(1.22)

=
1

h

∫ t+h

t
Et,s[(b(u)− λS(u))∂sG(t+ h, S(u))] du

+
1

h

∫ t+h

t

∫

R

Et,s[G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))− ∂sG(t+ h, S(u))ψ(u)y] ν(dy)du

+
1

h
Et,s

[∫ t+h

t

∫

R

(
G(t+ h, S(u−) + ψ(u)y)−G(t+ h, S(u−))

)
N(dy, du)

]
.

By the mean value theorem, since the map u 7→ Et,s[(b(u) − λS(u))∂sG(t + h, S(u))] is
continuous, we have for a uh ∈ [t, t+ h] that

1

h

(∫ t+h

t
Et,s[(b(u)− λS(u))∂sG(t+ h, S(u))] du

)
= Et,s[(b(uh)− λS(uh))∂sG(t+ h, S(uh))],

(1.23)

which converges to (b(t)− λs)Gs(t, s) as h approaches 0. Analogously, for the second term it
holds that

1

h

∫ t+h

t

∫

R

Et,s[G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))− ∂sG(t+ h, S(u))ψ(u)y]ν(dy)du

=

∫

R

Et,s[G(t+ h, S(uh) + ψ(uh)y)−G(t+ h, S(uh))− ∂sG(t+ h, S(uh))ψ(uh)y]ν(dy),

for a uh ∈ [t, t+ h]. Since all the maps in the expectation are continuous, as h tends to zero
(cf. Lemma 1.6.4), the last term converges to

∫

R

[G(t, s+ ψ(t)y)−G(t, s)−Gs(t, s)ψ(t)y] ν(dy).

Moreover,

Et,s
[∫ t+h

t

∫

R

(
G(t+ h, S(u−) + ψ(u)y)−G(t+ h, S(u−))

)
N(dy, du)

]
= 0.

Finally, the left-hand side can be written as

1

h

(
Et,s[G(t+ h, S(t+ h))]−G(t, s)

)
+

1

h
(G(t, s)−G(t+ h, s)) .
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By the Markov property and the tower rule,

Et,s[G(t+ h, S(t+ h))] = E

[
E

[∫ T

t+h
f∗(u, St+h,S

t,s(t+h)(u)) du

]]

= E

[
E

[∫ T

t+h
f∗(u, St,s(u)) du

∣∣∣∣Ft+h
]]

= E

[∫ T

t+h
f∗(u, St,s(u)) du

]
.

Therefore,

1

h

(
Et,s[G(t+ h, S(t+ h))]−G(t, s)

)

=
1

h

(
E

[∫ T

t+h
f∗(u, St,s(u)) du

]
− E

[∫ T

t
f∗(u, St,s(u)) du

])

= −1

h
E

[∫ t+h

t
f∗(u, St,s(u)) du

]
,

which converges to −f∗(t, s) as h goes to zero. Then, we have found that the limit of
− 1
h (G(t+ h, s)−G(t, s)) exists and is equal to

(b(t)− λs)Gs(t, s) +

∫

R

[G(t, s+ ψ(t)y)−G(t, s)−Gs(t, s)ψ(t)y] ν(dy) + f∗(t, s),

so that Gt(t, s) exists and it is continuous, being the right-hand term continuous. Also, we
get from this expression that G solves the integro-differential equation of the statement.

For the last point, as in Lemma 1.6.4, it is sufficient observe that

E

[(
G(u, St,s(u) + ψ(u)y)−G(u, St,s(u))

)2] ≤ sup
z∈R

Gs(u, z)
2ψ(u)2y2 ≤ Ce2λuy2,

since G is Lipschitz continuous in z uniformly in u.

In the last proposition, a result by [108] is applied to prove existence and uniqueness
in the case that the second-order operator is uniformly elliptic and the jump part of L is a
compound Poisson process.

Assumption 2. Assume in (1.2) that σ(t) > 0 for all t ∈ [0, T ] and ν is a finite Lévy
measure.

Proposition 1.3.12 (Finite Lévy measure). Under Assumption 2, the function

G(t, s) := E

[∫ T

t
f∗(u, St,s(u)) du

]

is the unique C1,2
ν,ψ([0, T ) × R) ∩ C([0, T ] × R) solution of (1.16). Moreover, the following

integrability conditions hold:

E

[∫ T

t

∫

R

[
G(u, St,s(u−) + ψ(u)y)−G(u, St,s(u−))

]2
ν(dy) du

]
<∞,

E

[∫ T

t
σ(u)2Gs(u, S

t,s(u))2 du

]
<∞.
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Proof. First of all, observe that, since ν is the Lévy measure associated to a compound
Poisson process, the spaces C1,2

ν,ψ([0, T )× R) and C1,2([0, T )× R) coincide (cf. [50, Definition
17.4.9]). Therefore, we only need to verify if the assumptions of [108, Proposition 5.3] are
fulfilled. Notice that (H6) there corresponds to assuming that the Lévy jump component is a
compound Poisson process. Then, in order to apply [108, Proposition 5.3] it remains to prove
that f∗ : [0, T ]× R → R is Lipschitz continuous, which follows from Proposition 1.3.9. The
integrability conditions can be proved as in Lemma 1.6.3.

Finally, we apply the Verification Theorem and state the main results of this section.

Theorem 1.3.13. Let g be a C1,2
ν,ψ([0, T )× R) ∩ C([0, T ]× R) solution of (1.16) and assume

that, for any t ∈ [0, T ) and s ∈ R, we have the following conditions

E

[∫ T

t

∫

R

[
g(u, St,s(u−) + ψ(u)y)− g(u, St,s(u−))

]2
ν(dy) du

]
<∞,

E

[∫ T

t
σ(u)2 gs(u, S

t,s(u))2 du

]
<∞,

where S = St,s is the solution of

dS(u) = −λS(u) du+ dL(u), u ∈ (t, T ],

S(t) = s.

Then, the function π∗(t, s, x) := π̄∗(t, s) · x, with π̄∗ as in Proposition 1.3.6, is an optimal
Markov control policy, i.e. it induces an admissible strategy in the sense of Definition 1.2.2
and, for each t ∈ [0, T ), s ∈ R, x ∈ R+, we get that J(t, s, x;π∗) = V (t, s, x) = log(x) + g(t, s).

Proof. See Appendix C.

Corollary 1.3.14. Assume either Assumption 1, or Assumption 2 and define

G(t, s) = E

[∫ T

t
f∗(u, St,s(u)) du

]
.

Then, π∗(t, s, x) := π̄∗(t, s) · x, as in Proposition 1.3.6, is an optimal Markov control policy
and J(t, s, x;π∗) = V (t, s, x) = log(x) +G(t, s).

1.4 Estimating the optimal strategy: the Merton ratio and

Taylor approximations

After proving the existence and describing the analytical properties of the optimal strategy,
we now study simple ways to compute it by approximation.

1.4.1 Definition and intuition

In his seminal work on portfolio selection [96], Merton studies the optimal allocation of the
investor’s wealth when the risky asset follows a geometric Brownian motion:

dS(t) = µS(t) dt+ σS(t) dW (t), t ∈ (0, T ],
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and finds that the optimal allocation for a log-utility is1

π∗M =
µ

σ2
,

which consists of the ratio of the excess return over the local variance of the log-price. Instead,
in our framework the price dynamics are

dS(t) = (b(t)− λS(t)) dt+ σ(t) dW (t) + ψ(t)

∫

R

y N(dy, dt), t ∈ (0, T ].

Here, the local variance at time t is the sum of the variance of the continuous component σ(t)2

and that of the jump part σL(t)2 := ψ(t)2
∫
R
y2 ν(dy). Then, in this context, it is natural to

define the analogue of Merton’s Ratio π∗M as

π̄∗1(t, s) :=
b(t)− λs

σ(t)2 + σL(t)2
. (1.24)

This ratio appears naturally when applying a Taylor approximation to (1.18). Recall that the
optimal normalized strategy π̄∗ is defined as

π̄∗(t, s) = argmax
π̄∈Π

f(π̄; t, s),

where

f(π̄; t, s) = (b(t)− λs)π̄ − 1

2
σ(t)2π̄2 +

∫

R

[log (1 + π̄ψ(t)y)− π̄ψ(t)y] ν(dy).

If the maximum is attained at an interior point (cf. Proposition 1.3.6), then π̄∗ satisfies the
integral equation

b(t)− λs− σ(t)2π̄ −
∫

R

π̄ψ(t)2y2

1 + π̄ψ(t)y
ν(dy) = 0. (1.25)

If we replace the integrand by the second-order Taylor expansion around zero, the integral
equation becomes

b(t)− λs− σ(t)2π̄ − π̄ψ(t)2
∫

R

y2 ν(dy) = 0, (1.26)

whose unique solution is exactly the strategy à la Merton π̄∗1(t, s) that we defined in (1.24).
A similar Taylor truncation has been introduced in [28] to study approximations of Lévy
processes and tested numerically in [107]. Also, [8, 105] arrive at an analogous approximated
strategy for stochastic volatility models with jumps, however they start by approximating
the HJB directly. The idea is to treat the small jumps as an additional Brownian component
(very much in the spirit of [9]) and neglect larger jumps.

Let us now introduce a more accurate approximation in the finite activity case. We assume
that ν([m,M ] \ {0}) <∞, i.e. the jump component of (1.4) is, in fact, a compound Poisson
process, which is often the most interesting case for application purposes. Therefore, the
Lévy measure takes the form ν(dy) = η F (dy), where η is the jump intensity and F (dy) the
jump size distribution. Thanks to our standing assumptions, the distribution F admits finite
expectation µF and variance σ2F . We remind that the optimal policy is defined through the
first order condition in (1.25). Let us write the Taylor polynomial of the integrand around

1Consistently with our setting, we are assuming that the risk-free interest rate r is zero and there is no
consumption during the trading period.



1.4 Estimating the optimal strategy: the Merton ratio and Taylor approximations 17

an arbitrary (finite) point y0 ∈ [m,M ] \ {0}. So, we set φ(y) := π̄y2

1+π̄ψ(t)y and compute its
derivatives. Writing down its expansion up to the first order, we have

φ(y) =
π̄y20

1 + π̄ψ(t)y0
+

2π̄y0 + π̄2y20ψ(t)

(1 + π̄ψ(t)y0)2
(y − y0) + o(y − y0). (1.27)

Then, (1.25) becomes

b(t)−λs−σ(t)2π̄− π̄ψ(t)2y20
1 + π̄ψ(t)y0

ν([m,M ]\{0})− 2π̄ψ(t)2y0 + π̄2ψ(t)3y20
(1 + π̄ψ(t)y0)2

∫

R

(y−y0) ν(dy) = 0.

(1.28)
From this expression it is clear that a significant simplification is given by the choice

y0 :=
1

ν([m,M ] \ {0})

∫

R

y ν(dy),

since in this case the first-order term just disappears. Besides, by writing the Lévy measure
with respect to F , we see that y0 corresponds to the mean value of the jump size:

y0 =
1

η
∫
R
F (dy)

η

∫

R

y F (dy) = µF . (1.29)

We are essentially replacing the integrand with its linear approximation around the integral
mean, or, from another point of view, we are approximating a function of the jumps with
respect to the jump size mean value. Since here we take into account the jump measure
specifications, this is a slightly different approach from the first approximation π̄∗1 (where
the Taylor polynomial was centered in zero). Hence, from (1.28) we have the following
approximated equation for π̄:

−σ(t)2ψ(t)µF π̄2 + (µFψ(t)(b(t)− λs)− σ(t)2 − µ2Fψ(t)
2η)π̄ + b(t)− λs = 0. (1.30)

In the case σ(t)ψ(t) 6= 0, it is a second order polynomial in the variable π̄. Consequently,
for each t ∈ [0, T ] we have two (generally) different solutions. However, only one of them
is admissible, meaning that π̄∗2(t, s) ∈ Π for every possible value of s. Since the ambiguity
comes from the definition domain of the logarithm, we just need to impose the condition
1 + π̄∗2ψ(t)µF > 0. This leads to

π̄∗2(t, s) :=





p1(t,s)+
√
p1(t,s)2+4p2(t,s)

2p3(t,s)
, if µF > 0,

p1(t,s)−
√
p1(t,s)2+4p2(t,s)

2p3(t,s)
, if µF < 0,

where

p1(t, s) = µFψ(t)(b(t)− λs)− µ2Fψ(t)
2η − σ(t)2,

p2(t, s) = µF (b(t)− λs)σ(t)2ψ(t),

p3(t, s) = µFψ(t)σ
2.

On the other hand, in a pure jump context (σ(t) ≡ 0), we get simply

π̄∗2(t, s) = − b(t)− λs

ψ(t)µF
(
b(t)− λs− ηψ(t)µF

) , (1.31)

for any µF 6= 0 and for each t and s such that π̄∗2(t, s) is well defined and takes values into Π.



18
Optimal portfolio in intraday electricity markets modelled by Lévy-Ornstein-Uhlenbeck

processes

1.4.2 Error bounds

To estimate the approximation error, we compute the difference between the optimal normalized
strategy π̄∗ and the approximated ones π̄∗1 and π̄∗2.

Proposition 1.4.1. Assume that Π contains 0 and the finiteness of the third moment of the
jumps, that is ∫

|y|≥1
|y|3 ν(dy) <∞,

and denote σ21 = min[0,T ] σ
2(t), σ2ν =

∫
R
y2 ν(dy). If we are not in case D (no jumps) of

Remark 1.3.3, then for each t ∈ [0, T ] it holds that

|π̄∗(t, ·)− π̄∗1(t, ·)| ≤ C

∫

R

|y|3 ν(dy),

where C is a constant which depends on δ :=dist(Π, ∂Π̂), maxΠ, minΠ, m, M, ψ2, σ21 and
σ2ν according to the following different cases:

case A

C =





C0

min{1,δψ2M,−δψ2m} if m 6= −∞,M 6= +∞,
C0

min{1,δψ2M} if m = −∞,M 6= +∞,
C0

min{1,−δψ2m} if m 6= −∞,M = +∞.

case B

C =

{
C0

min{1,δψ2M} if M 6= +∞,

C0 if M = +∞.

case C

C =

{
C0

min{1,−δψ2m} if m 6= −∞,

C0 if m = −∞,

where C0 :=
ψ3
2

σ2
1
+ψ2

2
σ2
ν
maxπ∈Π π

2.

Proposition 1.4.2. Let us assume that we are not in case D of Remark 1.3.3. Moreover,
we suppose 0 ∈ Π and that σ(t)2 and µF are not both identically 0. Then for each t ∈ [0, T ] it
holds that

|π̄∗(t, ·)− π̄∗2(t, ·)| ≤
ηψ2

2 C1 σF
σ21 + η ψ2

2 C2 µ2F
,

where σ21 = min[0,T ] σ
2(t), σF is the square root of the variance of the random jump size and

C1, C2 are constants depending on δ := dist(Π, ∂Π̂), maxΠ, minΠ, m, M, ψ2 according to
the following different cases:

case A

C1 =





max{1, 1
(δψ2M)2

, 1
(δψ2m)2

}+max{1, 1
δψ2M

, 1
−δψ2m

}, if m 6= −∞,M 6= +∞,

max{1, 1
(δψ2M)2

}+max{1, 1
δψ2M

}, if m = −∞,M 6= +∞,

max{1, 1
(δψ2m)2

}+max{1, 1
−δψ2m

}, if m 6= −∞,M = +∞.

C2 =

{
1

(1+maxΠψ2 µF )2
if µF > 0,

1
(1+minΠψ1 µF )2

if µF < 0.
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case B

C1 =

{
max{1, 1

(δψ2M)2
}+max{1, 1

δψ2M
}, if M 6= +∞,

1 if M = +∞.

C2 =
1

(1 + maxΠψ2 µF )2
.

case C

C1 =

{
max{1, 1

(δψ2m)2
}+max{1, 1

−δψ2m
}, if m 6= −∞,

1 if m = −∞.

C2 =
1

(1 + minΠψ1 µF )2
.

1.5 Numerical example

In this section we test our trading strategies on one of the most popular electricity price
models, namely the factor model in [21]. There, the authors conduct a critical comparison of
three different spot price models for electricity in the context of day-ahead markets. In fact,
this is typically an auction market in which the electricity price is fixed for the subsequent day,
so that daily averaged prices are taken into account, over a timeline of years. Consequently,
our setting concerns different market and price definitions. To recall, we instead take the
point of view of an agent in the intraday market, which is the exchange where the electricity
is traded continuously for 8-27 hours (depending on the contract) generally in the form of
quarterly or hourly forward contracts. However, we aim to exploit the analysis in [21], where
the model is calibrated to Nord Pool Spot market data, for mainly two reasons. Firstly,
the stylized features of intraday markets are of similar nature as the ones observed in the
day-ahead price series, such as spike behavior, high volatility, leptokurtosis (for a more detailed
empirical study see, for instance, [57, 88]). Secondly, the factor model is based on a Lévy
Ornstein-Uhlenbeck process of the same family as the one in (1.4).

We consider the factor model as in [21], which was originally introduced for electricity
price modelling in [18]. The price dynamics are written as

S(t) = eQ(t)Z(t),

where

Z(t) =

n∑

i=1

wi Yi(t)

is the deseasonalized price and Q(t) is the seasonal component. The wi are positive weights
while the factors Yi (i = 1, ..., n) are independent non-Gaussian Ornstein-Uhlenbeck processes
described by

dYi(t) = −λi Yi(t) dt+ dLi(t), Yi(0) = yi, i = 1, ..., n,

being Li independent càdlàg pure jump additive processes with increasing paths.
As the authors calibrate the model in [21], by comparing the theoretical autocorrelation

function to the empirical one, they set the optimal number of factors to n = 2. The estimated
speeds of mean reversion are λ1 = 0.0087 and λ2 = 0.3333. In the paper these two values
are interpreted as, respectively, the base (slowest) and the spike (fastest) signal. We start
from here to define our equations. Specifically, their data series ranges from 13/07/2000 to
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7/08/2008, which comprises, excluding the weekends, 2099 days. The time unit for t is 1 day.
So, in order to adapt it to our timeline, which covers hours of intraday transactions, first
we set one hour as our time unit, that is we do the time variable change u = 24 · t . Then,
denoting C := 24, we set our mean reversion speed λ in our own model by rescaling in time
the spike speed (λ2 = 0.3333), i.e. we take λ = λ2/C = 0.0139. The driving process L is a
compound Poisson process where the jump intensity, originally adopted in the paper by [73],
is seasonally dependent. Also, the jump size distribution is a Pareto(α,z0), with α = 2.5406,
z0 = 0.3648 and density function f(y) =

αzα
0

yα+1 . Therefore, we are in the case of positive
jumps: with the notation of previous sections, supp(ν) = [z0,+∞), i.e. m = z0, M = +∞,
Π̂ = [0,+∞) and F (dy) = f(y)dy. The set Π can be any compact subset of Π̂ containing 0.

For our own problem to make sense, another issue to address is to deseasonalize the jump
intensity. In details, the form of the intensity is the following

e(t) = θ · s(t) = θ ·
(

2

1 + | sin(π t−τk )| − 1

)d

where θ = 14.0163 represents the expected number of spikes per time unit at a spike-clustering
time, whereas the seasonal parameters are set by the authors’ calibration procedure k = 0.5,
τ = 0.42, d = 1.0359. We then decide to compute the integral mean of e(t) over its time
periodicity, that is 2k, obtaining µ := 3.7249, so that, after rescaling, we have our intensity
η := µ/C = 0.1552.

To summarize, the electricity price in our hourly intraday market is described by

dS(t) = (b(t)− λS(t)) dt+ dL(t), (1.32)

where λ = λ2/C = 0.0139 is the mean reversion speed and L is a compound Poisson process
with jump intensity η = µ/C = 0.1552 and jump size distribution a Pareto law of parameters
α = 2.5406 and z0 = 0.3648. Therefore, there is no Brownian component in the jumps and
the coefficient of the jump volatility is normalized to 1 (σ2 ≡ 0 and ψ ≡ 1). In particular it is
important to notice that L is a subordinator, which keeps the price positive. The drift value
b cannot be derived directly from [21], being not part of the spike signal and for this reason it
will be discussed later.

Let us write the equation for the exact normalized strategy π̄∗ = π̄∗(t, s), defined in the
integral equation (1.18), i.e.

(b(t)− λs)− η

∫

R

π̄∗y2

1 + π̄∗y
f(y) dy = 0,

or, expressing it in terms of the price level s,

s =
b(t)

λ
− η

λ
·
∫ ∞

z0

π̄∗y2

1 + π̄∗y
f(y) dy, (1.33)

where f(y) = αzα
0

yα+1 is the density of a Pareto law and η the jump intensity of L. By using a
software to integrate exactly the above expression (we used Mathematica™) and inserting the
estimated parameters inside the integral, we get

s =
b(t)

0.0139
− 6.7233 · 2F1

(
1, 1.5406; 2.5406;−2.7412

π̄∗

)
,

where 2F1(a, b; c; z) is the hypergeometric function. This explicit formula states the value
of the price s with respect to the optimal strategy π̄∗. The inverse relation s 7→ π̄∗ can be
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computed numerically. As already observed, if we are interested in plotting the functions
above, we need to set a value for the drift b(t), being not consistently computable from the
analysis in [21]. A quick study of the last expression yields the following.

Proposition 1.5.1. Let us recall the definition of the jump measure mean

µL =

∫

R

y ν(dy) = η

∫

R

y f(y) dy = η µF ,

where µF is the mean of the jump size distribution f(y)dy. For each t ∈ [0, T ], if the drift b(t)
in the price equation (1.32) is nonpositive, then π̄∗(t, s) ≡ 0 for any s ∈ R+. Furthermore,
if the drift b(t) is greater than or equal to µL for t ∈ [0, T ], then π̄∗(t, s) ≡ maxΠ for any
s ≤ s∗(t,maxΠ), where s∗(t, ·) denotes the inverse function of π̄∗(t, ·) (within its range of
invertibility).

Proof. On one hand, the admissible values of the strategy belong to Π, which is any compact
subset of Π̂ = [0,+∞) containing 0. On the other hand, the price s can take only positive
values by construction (recall that L is a subordinator). In (1.33) the function π̄∗ 7→
η
∫∞
z0

π̄∗y2

1+π̄∗y f(y) dy is increasing on the positive real line and it holds

lim
π̄∗→0

η

∫ ∞

z0

π̄∗y2

1 + π̄∗y
f(y) dy = 0,

lim
π̄∗→+∞

η

∫ ∞

z0

π̄∗y2

1 + π̄∗y
f(y) dy = µL > 0.

Therefore, the first order condition in (1.33) is not satisfied for admissible values of s and π̄∗

whenever b(t) ≤ 0 since

s =
1

λ

(
b(t)− η ·

∫ ∞

z0

π̄∗y2

1 + π̄∗y
f(y) dy

)
< 0.

This means that the maximum in (1.15) is attained at the boundary of Π and more exactly
when π̄∗ = minΠ = 0 (cf. Proposition 1.3.6). The case b(t) ≥ µL can be proven along exactly
the same reasonings.

Now, we write from (1.24) the first approximated strategy:

π̄∗1(t, s) =

{
b(t)−λs
σ2
L

, if π̄∗1(t, s) ∈ Π,

0, if π̄∗1(t, s) 6∈ Π,

A straightforward computation yields σ2L =
∫M
m y2 ν(dy) = η ·

∫∞
z0
y2 f(y) dy = η · 0.6254 =

0.0971. Observe that, in order that condition π̄∗1(t, s) ∈ Π holds, b(t) must be non-negative.
Having chosen any Π compact subset of Π̂ = [0,+∞) containing [0, b(t)

σ2
L

] for any t ∈ [0, T ],
this reads

π̄∗1(t, s) =

{
λ
σ2
L

·
(
b(t)
λ − s

)
, if 0 ≤ s ≤ b(t)

λ ,

0, if s > b(t)
λ .

Finally, from (1.31) we get the second approximation of the optimal strategy:

π̄∗2(t, s) =

{
− η
µL

b(t)−λs
b(t)−λs−µL

, if 0 ≤ s ≤ b(t)
λ ,

0, if s > b(t)
λ ,
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(d) b = 20% of µL.

Figure 1.1: Blue line: (exact value) π̄∗, orange line: π̄∗1, red line: π̄∗2.
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still with the condition that π̄∗2(t, s) ∈ Π (cf. Proposition 1.5.1).
We now plot the different strategies: the exact and the two approximations. In view of

Proposition 1.5.1 we do it for the following values of the drift b = 150, 80, 50, 20% of µL. In
such a way we can understand their behavior in the most representative cases (see Figure 1.1).
Remind that if s ≥ b

λ , then π̄∗, π̄∗1 and π̄∗2 are all identically equal to 0. We observe from our
numerical results the following facts:

1. The order among the strategies: π̄∗1 ≤ π̄∗ ≤ π̄∗2 holds.

2. As b approaches (and exceeds) µL, the second approximation π̄∗2 gets much better, until
it becomes almost indistinguishable from the exact strategy, while if b approaches 0, the
(considerable) error between the first approximation π̄∗1 and the exact value decreases.
In both cases, the shapes of the two approximations are similar to the one of π̄∗. For
instance, in the latter case the optimal strategy flattens out and looks like a straight
line.

3. The bad performance of π̄∗1 may be explained from the fact that it does not satisfy the
requirements for the estimate in Proposition 1.4.1. This happens because the Pareto
law estimated by [21] has parameter α = 2.5406 < 3, which means that it admits
finite second moment but not finite third moment (see assumptions of Proposition
1.4.1). Moreover, this approximation is natural for processes with small jumps, whereas
the second one, i.e. π̄∗2, is more consistent with general jump processes since it is
constructed around the jump measure mean µL. What is particularly interesting is that
an economically meaningful quantity as the Merton Ratio, that we translated into π̄∗1
(see Equation 1.24), performs generally much worse than the Taylor approximation.

4. As we already mentioned, essentially the same approximation π̄∗1 is numerically investi-
gated in [107]. What the authors found there is that it works rather well for three popular
price models. The difference from our setting, which could even explain why we observe
such an unsatisfactory performance, is that they are in the context of exponentially
additive models, while our price dynamics are purely additive and mean-reverting.

1.6 Appendix

1.6.1 Auxiliary results

The following lemmas are auxiliary results for Proposition 1.3.11. Let us recall that S = St,s

is described by

dS(u) = (b(u)− λS(u)) du+ ψ(u)

∫

R

y N(dy, du), u ∈ (t, T ],

S(t) = s,

and can be written explicitly as

St,s(u) = se−λ(u−t) +

∫ u

t
e−λ(u−v)b(v) dv +

∫ u

t

∫

R

e−λ(u−v)ψ(v)y N(dy, dv).

Furthermore, the candidate solution for the PIDE in Proposition 1.3.11 is defined as

G(t, s) = E

[∫ T

t
f∗(u, St,s(u)) du

]
. (1.34)
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Lemma 1.6.1. For all t ∈ [0, T ] and s ∈ R, it holds that

E

[∫ T

t
|St,s(u)| du

]
<∞.

Proof. For u ∈ [t, T ], we have

E
[
|St,s(u)|

]
≤ |s|e−λ(u−t) +

∣∣∣∣
∫ u

t
e−λ(u−v)b(v) dv

∣∣∣∣ +E

[∣∣∣∣
∫ u

t

∫

R

e−λ(u−v)ψ(v)y N(dy, dv)

∣∣∣∣
]

Since

(
E

[∣∣∣∣
∫ u

t

∫

R

e−λ(u−v)ψ(v)y N(dy, dv)

∣∣∣∣
])2

≤ E

[(∫ u

t

∫

R

e−λ(u−v)ψ(v)y N(dy, dv)

)2
]

=

∫ u

t

∫

R

e−2λ(u−v)ψ(v)2y2 ν(dy)dv

≤ ψ2
2

(∫

R

y2 ν(dy)

)(
1− e−2λ(u−t)

2λ

)

and ∣∣∣∣
∫ u

t
e−λ(u−v)b(v) dv

∣∣∣∣ ≤
∫ u

t
e−λ(u−v)|b(v)| dv ≤ C

(
1− e−λ(u−t)

λ

)

we find that ∫ T

t
E
[
|St,s(u)|

]
du <∞.

We conclude by Tonelli’s Theorem.

Lemma 1.6.2. The function G : [0, T ] × R → R in Equation (1.34) is well defined. In
particular,

E

[∫ T

t
|f∗(u, St,s(u))| du

]
<∞.

Proof. Just observe that

|G(t, s)| ≤ E

[∫ T

t
|f∗(u, St,s(u))| du

]
≤ C

(
1 + E

[∫ T

t
|St,s(u)| du

])
,

which is finite by Lemma 1.6.1.

Lemma 1.6.3. The function G : [0, T ]× R → R defined in (1.34) is continuous in the time
variable for any fixed s ∈ R and continuously differentiable in s for any fixed time t ∈ [0, T )
with bounded derivative. Specifically,

∂sG(t, s) = E

[
−
∫ T

t
λe−λ(u−t)π̄∗(u, St,s(u)) du

]
.

Furthermore, ∂sG(t, s) is Lipschitz continuous in the variable s uniformly in t ∈ [0, T ].
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Proof. For the continuity observe that

G(t+ h, s)−G(t, s) = E

[∫ T

t+h
f∗(u, St+h,s(u)) du

]
− E

[∫ T

t
f∗(u, St,s(u)) du

]

= E

[∫ T

t+h
[f∗(u, St+h,s(u))− f∗(u, St,s(u))] du

]
− E

[∫ t+h

t
f∗(u, St,s(u)) du

]
.

As h tends to zero, the second term vanishes by the dominated convergence theorem (cf.
Lemma 1.6.2). For the first term observe that

∫ T

t+h
E

[
|f∗(u, St+h,s(u))− f∗(u, St,s(u))|

]
du ≤ L

∫ T

t+h
E

[
|St+h,s(u)− St,s(u)|

]
du.

Hence,

E[|St+h,s(u)− St,s(u)|] ≤ E[(St+h,s(u)− St,s(u))2]

≤ 3s2e−2λ(u−t)(eλh − 1)2 + 3

(∫ t+h

t
e−λ(u−v)b(v) dv

)2

+ 3

(∫

R

y2 ν(dy)

)(∫ t+h

t
e−2λ(u−v)ψ(v)2dv

)
,

which is Lebesgue-integrable for u ∈ [t, T ] and approaches zero as h tends to zero. Then, by
the dominated convergence theorem, it holds that

∫ T

t+h
E

[
|St+h,s(u)− St,s(u)|

]
du

vanishes and that G(·, s) is continuous.
In order to prove differentiability, we apply the classical theorem about differentiation

under the integral sign. First, define

F (t, s) :=

∫ T

t
f∗(u, St,s(u)) du.

Since f∗(u, St,s(u)) is continuously differentiable for each u with partial derivative dominated
by an integrable function:

∂sf
∗(u, St,s(u)) = −λe−λ(u−t)π̄∗(t, St,s(u)) ≤ C e−λ(u−t),

we have

∂sF (t, s) = −λ
∫ T

t
e−λ(u−t)π̄∗(t, St,s(u)) du.

With the same argument, since
G(t, s) = E [F (t, s)] ,

where F (t, s) is differentiable with dominated derivative, we get the statement.
Fix t ∈ [0, T ]. Since

∂sG(t, s) = E

[
−
∫ T

t
λe−λ(u−t)π̄∗(u, St,s(u)) du

]
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and π̄∗(t, ·) is uniformly Lipschitz continuous (cf. Proposition 1.3.6), we have

|∂sG(t, s+ h)− ∂sG(t, s)| =
∣∣∣∣E
[∫ T

t
λe−λ(u−t)(π̄∗(u, St,s+h(u))− π̄∗(u, St,s(u))) du

]∣∣∣∣

≤E

[∫ T

t
λe−λ(u−t)

∣∣∣π̄∗(u, St,s+h(u))− π̄∗(u, St,s(u))
∣∣∣ du

]

≤LE

[∫ T

t
λe−λ(u−t)

∣∣∣St,s+h(u)− St,s(u)
∣∣∣ du

]

=C|h|
(∫ T

t
λe−2λ(u−t) du

)

=C|h|,
where C is a constant depending only on T , λ and the Lipschitz constant L of π̄∗(u, ·) (which
is independent of u).

Lemma 1.6.4. For each s ∈ R, t ∈ [0, T ) and h > 0, it holds that
∫ t+h

t

∫

R

Et,s
[(
G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))

)2]
ν(dy)du

and
∫ t+h

t

∫

R

Et,s[|G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))− ∂sG(t+ h, S(u))ψ(u)y|]ν(dy)du

are finite.

Proof. For the first term it is sufficient to observe that

Et,s
[(
G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))

)2] ≤ sup
z∈R

Gs(t+ h, z)2ψ(u)2y2 ≤ Ce2λuy2.

For the second part of the statement, recall from Lemma 1.6.3 that ∂sG(t, s) is Lipschitz
continuous in s uniformly in t. Let us denote by φ(t, s) the weak derivative of ∂sG(t, s) (which
is bounded). Therefore, we can write the Taylor expansion of G(t+ h, ·) in s+ ψ(u)y around
the center s with integral remainder:

G(t+ h, s+ ψ(u)y) = G(t+ h, s) + ∂sG(t+ h, s)ψ(u)y +

∫ s+ψ(u)y

s
φ(t+ h, ξ)(s+ ψ(u)y − ξ)dξ.

Hence, for all s ∈ R, we have that

|G(t+ h, s+ ψ(u)y)−G(t+ h, s)− ∂sG(t+ h, s)ψ(u)y|

≤
∫ s+ψ(u)y

s
|φ(t+ h, ξ)||s+ ψ(u)y − ξ|dξ

≤ C

∫ s+ψ(u)y

s
|s+ ψ(u)y − ξ|dξ = C ψ(u)2y2

≤ C y2.

As a consequence,
∫ t+h

t

∫

R

Et,s[|G(t+ h, S(u) + ψ(u)y)−G(t+ h, S(u))− ∂sG(t+ h, S(u))ψ(u)y|]ν(dy)du

≤ C

∫

R

y2ν(dy),

which is finite by our standing assumptions on the Lévy measure ν.
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1.6.2 Technical proofs

In this Appendix we collect some of the most technical proofs.

Proof of Proposition 1.3.6

We prove it for case A, the other cases being analogous. Let us denote π̄1 = minΠ,
π̄2 = maxΠ. We already observed, due to the concavity of the function f(·; t, s) in (1.14),
that the map π̄∗ : [0, T ]× R → [π̄1, π̄2] is well defined. Also, from (1.18) we immediately get

that π̄∗
(
t, b(t)λ

)
= 0.

The continuity of the function π̄∗ : [0, T ]× R → Π relies on a general argument based on
the concavity of f(π̄; t, s). If z = (t, s) ∈ [0, T ] × R, then π̄∗ = π̄∗(z) = argmaxπ̄∈Π f(π̄; z).
Take a sequence (zk)k ⊂ [0, T ]× R such that zk → z0 as k → ∞. Then the statement follows
from proving that π̄∗(zk) → π̄∗(z0). This is equivalent to saying that each subsequence of
π̄∗(zk) admits a subsequence which converges to π̄∗(z0). Take any subsequence of π̄∗(zk) and
denote it by π̄∗(zk) (i.e. we do not rename the indexes). Since π̄∗(zk) ⊂ Π, which is compact,
it admits a subsequence π̄∗(zkh) converging to a limit π̄0 ∈ Π as h→ ∞. Observe that, for
any π̄ ∈ Π,

f(π̄0; z0) = lim
h→∞

f(π̄∗(zkh); zkh) ≥ lim
h→∞

f(π̄; zkh) = f(π̄; z0).

By definition of π̄∗, we have that π̄0 = π̄∗(z0), which implies that π̄∗(zkh) → π̄∗(z0). Since
this argument is valid for an arbitrary subsequence of π̄∗(zk), we obtain that π̄∗(zk) itself
must converge to π̄∗(z0) as k → ∞.

Now, fix a t ∈ [0, T ]. Then, the first order condition can be inverted in the following sense:

s∗(t, π̄) :=
1

λ

(
b(t)− σ(t)2π̄ −

∫

R

π̄ψ(t)2y2

1 + π̄ψ(t)y
ν(dy)

)
,

so to define the inverse function of π̄∗(t, ·) from (π̄∗(t, ·))−1
(
(π̄1, π̄2)

)
to (π̄1, π̄2). By the

Inverse Function Theorem (cf. [62, Appendix C.5]), since

∂s∗(t, π̄)

∂π̄
=

1

λ

(
−σ(t)2 −

∫

R

ψ(t)2y2

(1 + π̄ψ(t)y)2
ν(dy)

)
< 0,

we get that, for a fixed t ∈ [0, T ], π̄∗(t, ·) is strictly decreasing and continuously differentiable
for any s ∈

(
π̄∗(t, ·)

)−1(
(π̄1, π̄2)

)
. Observe, in particular, that

(
π̄∗(t, ·)

)−1(
(π̄1, π̄2)

)
must be

an interval, which we denote by (s1(t), s2(t)). Also, since s∗(t, ·) is smooth by Lebesgue’s
dominated convergence theorem, with n-th derivative

∂ns∗(t, π̄)

∂π̄n
= (−1)n

n!

λ

∫

R

ψ(t)n+1yn+1

(1 + π̄ψ(t)y)n+1
ν(dy), (1.35)

then π̄∗(t, ·) : (s1(t), s2(t)) → (π̄1, π̄2) is smooth. The boundedness of the derivatives of π̄∗(t, ·)
follows from (1.35) and the fact that, by definition, 1 + π̄ψ(t)y ≥ δ > 0 for each t ∈ [0, T ] and
π̄ ∈ Π.

Since f ′(π̄; t, s) → ∓∞ as s → ±∞, uniformly with respect to π̄ ∈ Π and t ∈ [0, T ],
there exist s1, s2 independent from π̄ and t such that, for any t ∈ [0, T ] and π̄ ∈ [π̄1, π̄2],
−∞ < s1 ≤ b(t)

λ ≤ s2 <∞ and
{
f ′(π̄; t, s) > 0, if s ≤ s1,

f ′(π̄; t, s) < 0, if s ≥ s2.
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By monotonicity of f , it follows that

π̄∗(t, s) ≡
{
π̄2, if s ≤ s1,

π̄1, if s ≥ s2,

which proves the fourth statement.
The Lipschitz continuity of π̄∗(t, ·) follows from the fact that its derivative in [s1(t), s2(t)]

is bounded uniformly in t and that π̄∗(t, ·) is constant outside [s1(t), s2(t)] (and the constant
is independent of t).

Proof of Theorem 1.3.13

The admissibility of π∗(u, S(u−), X(u−)) = π̄∗(u, S(u−))X(u−) is immediate consequence
of Proposition 1.3.6. In order to apply the Verification Theorem (Theorem 1.2.4), which
allows us to conclude, we need to prove that H(u, s, x) = log(x) + g(u, s) satisfies the Dynkin
formula (1.10). By Itô’s lemma, for each admissible strategy π, we get

dH(u, S(u), X(u)) =Hu(u, S(u), X(u)) +AπH(u, S(u), X(u))

+ σ(u)

(
π(u)

X(u)
+ gs(u, S(u))

)
dW (u)

+

∫

R

[
log(X(u−) + π(u)ψ(u)y)− log(X(u−))

]
N(dy, du)

+

∫

R

[
g(u, S(u−) + ψ(u)y)− g(u, S(u−))

]
N(dy, du).

Since π(u) = π̄(u, S(u−))X(u−), we can rewrite it as

dH(u, S(u), X(u)) =Hu(u, S(u), X(u)) +AπH(u, S(u), X(u))

+ σ(u) (π̄(u, S(u)) + gs(u, S(u))) dW (u)

+

∫

R

log(1 + π̄(u, S(u−))ψ(u)y)N(dy, du)

+

∫

R

[
g(u, S(u−) + ψ(u)y)− g(u, S(u−))

]
N(dy, du).

Then the validity of Dynkin’s formula boils down to the martingale property of the process

dZ(u) :=σ(u) (π̄(u, S(u)) + gs(u, S(u))) dW (u)

+

∫

R

log(1 + π̄(u, S(u−))ψ(u)y)N(dy, du)

+

∫

R

[
g(u, S(u−) + ψ(u)y)− g(u, S(u−))

]
N(dy, du).

Sufficient conditions are

E

[∫ T

t
σ(u)2 π̄(u, St,s(u))2 du

]
<∞,

E

[∫ T

t

∫

R

[log(1 + π̄(u, S(u))ψ(u)y)]2 ν(dy) du

]
<∞,

E

[∫ T

t

∫

R

[
g(u, St,s(u) + ψ(u)y)− g(u, St,s(u))

]2
ν(dy) du

]
<∞,

E

[∫ T

t
σ(u)2 gs(u, S

t,s(u))2 du

]
<∞.
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The first two follow from the definition of Π (the range of π̄) and the boundedness of σ,
while the last conditions depend on g and are assumed valid in the statement. By standard
integrability reasonings (see e.g. [107, Section 3.1] for an argument), we get that Z is a
martingale, and then the result.

Proof of Proposition 1.4.1

We follow the same lines of reasoning as in Section 4 of [28]. First, let us write from (1.26) for
π ∈ Π̊ and fixed t ∈ [0, T ] and s ∈ R:

h(π) := h(π; t, s) = b(t)− λs− πσ(t)2 − ψ(t)2
∫

R

πy2 ν(dy),

observing that

h(π̄∗1) = 0,

h(π̄∗) = ψ(t)2
∫

R

π̄∗y2

1 + π̄∗ψ(t)y
ν(dy)− ψ(t)2

∫

R

π̄∗y2 ν(dy) = −
∫

R

ψ(t)3(π̄∗)2y3

1 + π̄∗ψ(t)y
ν(dy).

Hence,

π̄∗1 = h−1(0), π̄∗ = h−1

(
−
∫

R

ψ(t)3(π̄∗)2y3

1 + π̄∗ψ(t)y
ν(dy)

)
.

Now,

|π̄∗ − π̄∗1| =
∣∣∣∣h

−1

(
−
∫

R

ψ(t)3(π̄∗)2y3

1 + π̄∗ψ(t)y
ν(dy)

)
− h−1(0)

∣∣∣∣ .

By applying the Mean Value Theorem, since π̄∗ takes values in Π = Πν,ψ, a compact set
whose distance from the boundary of Π̂ is a certain δ > 0 and |(h−1(z))′| = 1

σ(t)2+σL(t)2
, we

finally get the above estimate

|π̄∗ − π̄∗1| ≤
1

σ(t)2 + σL(t)2

∣∣∣∣
∫

R

ψ(t)3(π̄∗)2y3

1 + π̄∗ψ(t)y
ν(dy)

∣∣∣∣ ≤
ψ3
2

σ21 + ψ2
2σ

2
ν

∫

R

(π̄∗)2

1 + π̄∗ψ(t)y
|y|3 ν(dy)

≤ C

∫

R

|y|3 ν(dy),

where C is the constant in the statement.

Proof of Proposition 1.4.2

Define for π̄ ∈ Π̊ and fixed t ∈ [0, T ] and s ∈ R:

h(π̄) := h(π̄; t, s) = b(t)− λs− π̄σ(t)2 − π̄ψ(t)2µ2F
1 + π̄ψ(t)µF

η,

being η = ν([m,M ] \ {0}). Then,

h(π̄∗2) = 0,

h(π̄∗) =

∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy)− π̄∗ψ(t)2µ2F

1 + π̄∗ψ(t)µF
η,

and

π̄∗2 = h−1(0), π̄∗ = h−1

(∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy)− π̄∗ψ(t)2µ2F

1 + π̄∗ψ(t)µF
η

)
.
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Coming back to (1.27), observe that

∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy)− π̄∗ψ(t)2µ2F

1 + π̄∗ψ(t)µF
η = ψ(t)2

∫

R

(φ(y)− φ(µF ))ν(dy).

By applying the Mean Value Theorem to φ:

|φ(y)− φ(µF )| ≤ sup
z∈[m,M ]∩R

|φ′(z)||y − µF | ≤ C1|y − µF |,

with, for instance in case A, C1 = max{1, 1
(δψ2M)2

, 1
(δψ2m)2

} + max{1, 1
δψ2M

, 1
−δψ2m

}, since
(cf. Proposition 1.4.1)

|φ′(z)| = |π̄z|(2 + π̄ψ(t)z)

(1 + π̄ψ(t)z)2
=

|π̄z|
(1 + π̄ψ(t)z)2

+
|π̄z|

(1 + π̄ψ(t)z)
.

Therefore, we have found the following estimate:
∣∣∣∣
∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy)− π̄∗ψ(t)2µ2F

1 + π̄∗ψ(t)µF
η

∣∣∣∣ ≤ ψ2
2 C1

∫

R

|y − µF | ν(dy).

Now,

|π̄∗ − π̄∗2| =
∣∣∣∣h

−1

(∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy)− π̄∗ψ(t)2µ2F

1 + π̄∗ψ(t)µF
η

)
− h−1(0)

∣∣∣∣ .

Before applying the Mean Value Theorem again, let us compute

h′(π̄) = −σ(t)2 − ψ(t)2µ2F η

(1 + π̄ψ(t)µF )2
,

which is negative for each π̄ ∈ Π, so that

|h′(π̄)| = σ(t)2 +
µ2Fψ(t)

2η

(1 + π̄ψ(t)µF )2
.

Finally, denoting z = h(π̄), since (h−1(z))′ = 1
h′(h−1(z))

= 1
h′(π̄) ,

|π̄∗ − π̄∗2| ≤ sup
z∈[m,M ]∩R

|(h−1(z))′|
∣∣∣∣
∫

R

π̄∗ψ(t)2y2

1 + π̄∗ψ(t)y
ν(dy)− π̄∗ψ(t)2µ2F

1 + π̄∗ψ(t)µF
η

∣∣∣∣

≤ ψ2
2 C1

σ(t)2 +
µ2
F
ψ2
2
η

supπ̄∈Π(1+π̄ψ(t)µF )2

∫

R

|y − µF | ν(dy) ≤
ψ2
2 C1

σ21 + µ2F ψ
2
2 η C2

∫

R

|y − µF | ν(dy)

≤ ψ2
2 C1 η σF

σ21 + µ2F η ψ
2
2 C2

,

where σF is the square root of the variance of the jump size and C1, C2 are the constants in
the statement.



CHAPTER 2

Additive energy forward curves in a

Heath-Jarrow-Morton framework

One of the peculiarities of power and gas markets is the delivery mechanism of forward
contracts. The seller of a futures contract commits to deliver, say, power, over a certain period,
while the classical forward is a financial agreement settled on a maturity date. Our purpose is
to design a Heath-Jarrow-Morton framework for an additive, mean-reverting, multicommodity
market consisting of forward contracts of any delivery period. Even for relatively simple
dynamics, we face the problem of finding a density between a risk-neutral measure Q, such
that the prices of traded assets like forward contracts are true Q-martingales, and the real
world probability P, under which forward prices are mean-reverting. By assuming that forward
prices can be represented as affine functions of a universal source of randomness, we can
completely characterize the models which prevent arbitrage opportunities. In this respect, we
prove two results on the martingale property of stochastic exponentials. The first allows to
validate measure changes made of two components: an Esscher-type density and a Girsanov
transform with stochastic and unbounded kernel. The second uses a different approach and
works for the case of continuous density. We show how this framework provides an explicit
way to describe a variety of models by introducing, in particular, a generalized Lucia-Schwartz
model and a cross-commodity cointegrated market.

2.1 Introduction

Since their deregulations, which took place in many countries over the last few decades, energy
markets are rapidly evolving sectors and are bringing to the attention of practitioners and
researchers challenging problems from the modeling perspective. The most active segment
is often the forward market and, as such, the most liquid derivative products are forward
contracts. We do not make distinctions between forwards and futures, since the results are the
same in the case of deterministic interest rate, as we assume here. Throughout this paper, we
adopt the same terminology as [23], and reserve the name forward to contracts with delivery
at a fixed future time, while agreements to deliver the commodity over a period are called
swaps. The latter category is important especially in modeling electricity and natural gas
markets, where the commodity is exchanged, either physically or financially, over a certain
time period (e.g. a day, month or a whole year). A thorough study of mathematical models
for these markets, together with a description of their most salient empirical features, can be
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found, for instance, in [32, 121].

This paper aims at developing a consistent and tractable framework for a multicommodity
energy forward market by applying the Heath-Jarrow-Morton paradigm [76]. Intuitively, this
consists in describing forward prices as stochastically evolving functions of time and delivery
dates, across different markets. To the best of our knowledge, the first work to apply this
idea to energy-related commodities is [49] and since then many other works have followed,
among others [90, 79, 43, 89]; for a review of HJM models in power and gas markets and
further references see [32, Chapter 6]. In this paper, we want to design a realistic forward
market model with the same philosophy of [23], where it is theoretically possible to trade
contracts with any delivery period and no-arbitrage relations must hold among them. We
propose a mean-reverting stochastic process (indeed, an Ornstein-Uhlenbeck-type of model
parameterized over delivery times) for the forward and swap price dynamics. By formulating
the model under the market probability measure P, we can represent the stylized empirical
behavior of observed prices. The no-arbitrage constraints among forwards and swaps are
established via explicit relations between the parameters in the respective dynamics. As
pointed out in [23], specifying a stochastic evolution for the forward curve and then deriving
the swap price as the average over the delivery times has the disadvantage of losing desirable
distributional features and, in some cases, even the Markov property. This results in non-
tractable models, which inherit a complex probabilistic structure. Therefore, in that paper
the authors argue in favor of a swap market model, where only the so-called atomic swaps
are directly modeled. Though prices of non-atomic swaps can be reconstructed by arbitrage
arguments, it is not possible to use all the available information in the market when fitting the
model on real data. These facts motivate us to look for a HJM market model general enough
to include both forwards and swaps, still preserving tractability of the resulting stochastic
structure.

In this paper we study dynamical models which are additive, meaning that we do not
perform a logarithmic transformation of prices (see Section 2 for more details). Recently,
additive models have gained popularity, especially for describing power spot prices, e.g.
[18, 65, 57, 78, 88, 93]. This is due to their ability of reproducing rather well the stylized
features of electricity prices, including the empirical evidence of negative spot prices, and
providing explicit formulas for derivative pricing. Generally the problem, when these models
are used for commodities other than power, is that negative prices can occur. Nevertheless,
according to one’s modeling preferences, it is possible e.g. to resort to subordinators (see
[18]). The multi-commodity setting has not been extensively studied for energy forward
markets applications (see, however, the spot-based models by [67, 83, 106]). With the gradual
integration of power markets, say, there is a need for cross-commodity dynamical models
which can describe the price evolutions in different power markets simultaneously, such as
the Nordic NordPool power and the German EEX market. In fact, our multicommodity
framework allows us to develop models where commodities have various kinds of dependencies,
like correlations among the driving processes or cointegration/price couplings among them
(see Section 5). In addition, it opens the way for computing in a more realistic way the prices
of multicommodity derivative assets, as dark or spark spreads written either on spot or futures
prices and, on the risk management side, implementing consistently risk measures like PaR
and VaR on multicommodity portfolios.

Our main idea is to express forward prices as affine transformations of a universal source
of randomness, the latter being independent of the delivery date (see Assumption 6). This
simplifying assumption allows both to preserve Markovianity and to describe consistently the
related swap price processes. Most importantly, this will be the key to proving the existence
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of equivalent martingale measures Q, ensuring arbitrage-free models. In fact, the presence
of mean-reversion compels us to face non-trivial mathematical hurdles. In this regard, we
prove in Theorem 2.3.5 the martingale property of stochastic exponentials where the Lévy
part is of Esscher-type, while the Girsanov kernel of the Brownian component is affine in the
state variable and thus, in particular, stochastic. Then, we give a different proof in the case
of continuous density and continuous kernel, by applying a weak Novikov-type condition on
the series representation of the exponential function (cf. Theorem 2.3.6). The proof of this
result relies on the asymptotic properties of Gaussian moments. As we move on to consider
more general Lévy kernels, we see that the same technique can not be applied. This is shown
to be related to the fact that various examples of infinitely divisible distributions, except the
Gaussian distribution, do not satisfy the needed moments asymptotics.

We demonstrate the utility of our theoretical framework by specifying two exemplary
models. The first, which is presented in Section 4, is a generalization of the additive two-factor
Lucia-Schwartz model [95]. We extend it by introducing a mean-reverting arbitrage-free
forward dynamics, which is capable to describe a finer volatility term structure. This allows
us to account for seasonal effects in price variations, as is typically observed, for instance, in
power or gas markets. A calibration procedure and an empirical application to the German
power futures market of a version of this model has been carried out in a parallel work by [93].
Furtherly, we introduce a multidimensional model for a mean-reverting cointegrated forward
market that respects the no-arbitrage constraints. In particular, we see how these constraints
imply certain conditions on the mean-reversion coefficients of the futures curve dynamics (see
Section 5).

The paper is structured as follows. Section 2 describes our application of the HJM approach
to a multicommodity, additive, energy forward market. In Section 3 we study how our main
assumption identifies the dynamics of the processes and the set of equivalent martingale
measures. Then, we prove the two main results on the martingale property of stochastic
exponentials. A generalization of the two-factor Lucia-Schwartz model [95] is presented in
Section 4. Finally, in Section 5 we develop a cross-commodity model with cointegrated
dynamics. In Section 6 we make some final remarks. Appendix A contains the proof of
Theorem 2.3.5, while the proof of Theorem 2.3.6 is presented in Appendix B.

2.2 A HJM-type market for energy forward contracts

In this section we introduce the general structure of our forward market by applying the
Heath-Jarrow-Morton approach to energy forward curves. As already mentioned, we assume
that it is possible to trade contracts for one or more commodities in the form of forwards
with instantaneous maturity and swaps with arbitrary delivery period. In this way we are
able to introduce a sufficiently general framework to be applied to energy-related markets in
a consistent way. Both the forward and swap dynamics are described by means of stochastic
differential equations and the relations among them follow from natural no-arbitrage conditions.
We extend the analysis by [23, Sections 3 and 4] to a multidimensional framework. Furthermore,
we introduce a (deterministic) volatility modulated pure-jump Lévy component in the price
dynamics. We start from their setting and investigate how to specify a flexible, yet sufficiently
tractable, multivariate additive mean-reverting model. We emphasize that our dynamics are
described under the empirical probability measure P.

Let us first introduce the stochastic basis underlying our framework.

Assumption 3. Let (Ω,F ,F,P) be a filtered probability space satisfying the usual hypotheses
(see [87]). Let W be a multidimensional Brownian motion and N(dt, dy) := N(dt, dy)−dt ν(dy)
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denote the compensated Poisson random measure associated to a centered square-integrable
pure-jump Lévy process

J(t) =

∫ t

0

∫

R

y N(ds, dy) (2.1)

where the Lévy measure ν(dy) is assumed square-integrable in the sense that
∫
Rk ‖y‖2 ν(dy) <

∞.1 The processes W and J are both of dimension k and independent of each other.

Assume that we are in a market with n commodities. Fix a time horizon T for our economy
and define the sets AT

1 = {(t, T ) ∈ [0,T]2 : t ≤ T} and AT
2 = {(t, T1, T2) ∈ [0,T]3 : t ≤ T1 <

T2}. For each (t, T ) ∈ AT
1 , let f(t, T ) denote the n-dimensional vector of forward prices at

time t for n forward contracts with instantaneous delivery at time T . Analogously, for any
(t, T1, T2) ∈ AT

2 , let F (t, T1, T2) be the n-dimensional vector of swap prices at time t of the
n corresponding contracts with delivery period [T1, T2]. Let c : AT

1 → Rn, λ : AT
1 → Rn×n,

σ : AT
1 → Rn×k, ψ : AT

1 → Rn×k, C : AT
2 → Rn, Λ : AT

2 → Rn×n, Σ : AT
2 → Rn×k,

Ψ : AT
2 → Rn×k be deterministic, measurable vector/matrix fields satisfying the following

technical assumptions.

Assumption 4. • For any T ∈ [0,T], t 7→ c(t, T ) is integrable on [0, T ], i.e.
∫ T
0 ‖c(t, T )‖dt

is finite.

• For any T1, T2 ∈ [0,T] such that T1 < T2, t 7→ C(t, T1, T2) is integrable on [0, T1], i.e.∫ T1
0 ‖C(t, T1, T2)‖dt is finite.

• For each T ∈ [0,T], t 7→ σ(t, T ) and t 7→ ψ(t, T ) are square integrable on [0, T ], i.e.∫ T
0 ‖σ(t, T )‖2dt and

∫ T
0 ‖ψ(t, T )‖2dt are finite.

• For any T1, T2 ∈ [0,T] such that T1 < T2, t 7→ Σ(t, T1, T2) and t 7→ Ψ(t, T1, T2) are
square integrable on [0, T1], i.e.

∫ T1
0 ‖Σ(t, T1, T2)‖2dt and

∫ T1
0 ‖Ψ(t, T1, T2)‖2dt are finite.

• For each T ∈ [0,T], the matrix field t 7→ λ(t, T ) is continuous on [0, T ].

• For any T1, T2 ∈ [0,T] such that T1 < T2, the matrix field t 7→ Λ(t, T1, T2) is continuous
on [0, T1].

We assume the following dynamics:

df(t, T ) = (c(t, T )− λ(t, T )f(t, T )) dt+ σ(t, T ) dW (t) + ψ(t, T ) dJ(t), (2.2)

dF (t, T1, T2) = (C(t, T1, T2)− Λ(t, T1, T2)F (t, T1, T2)) dt

+Σ(t, T1, T2) dW (t) + Ψ(t, T1, T2) dJ(t). (2.3)

The initial conditions f(0, T ) and F (0, T1, T2) are deterministic Borel measurable functions in
T ≤ T and T1 < T2 ≤ T, respectively.

1This assumption can be relaxed to
∫
Rk(‖y‖

2 ∧ 1) ν(dy) < ∞ and we could derive analogous results in

this section by defining a non-compensated Lévy process J̃(t) :=
∫ t

0

∫
‖y‖<1

y N(ds, dy) +
∫ t

0

∫
‖y‖≥1

y N(ds, dy).
However, since we want to ease the mathematical discussion and to focus on the modeling intepretation, we
assume the stronger condition

∫
Rk ‖y‖2 ν(dy) < ∞, that in particular implies that J (as defined in Assumption

3) is a square-integrable martingale component of the SDEs in (2.2) and (2.3). Let us remark that for some of
the results treated in this paper, we will need even stronger assumptions on ν (cf. Section 3.2), which makes it
somehow unprofitable to start here with more general assumptions.
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Remark 2.2.1. We would like to have an explicit representation for the solutions of (2.2) and
(2.3). To simplify the upcoming discussion, consider the T -independent continuous version of
(2.2):

df(t) = −λ(t)f(t) dt+ σ(t) dW (t), (2.4)

where f(0) is the identity matrix, c ≡ 0 and λ, σ are assumed sufficiently regular so that there
exists a unique solution f . Let us introduce the following definition.

Definition 2.2.2 (Commutative property). We say that a square matrix-valued continuous
function A(t) satisfies the commutative property (CP) if, for any pair of time values t1 and t2,
A(t1)A(t2) = A(t2)A(t1).

If λ(t) satisfies (CP), the unique solution U of the matrix ODE

dU(t) = λ(t)U(t) dt,

can be written as
U(t) = e

∫ t

0
λ(u)du

by introducing the matrix exponential eA :=
∑∞

k=0
Ak

k! (see e.g. [40]). In particular, since U(t)
is invertible and its inverse satisfies

dU−1(t) = −λ(t)U−1(t) dt, (2.5)

we also have that λ(t)U(t) = U(t)λ(t).2 These results do not hold in general when λ does not
satisfy (CP), due to the non-commutativity of the matrix product. Now, apply Itô’s Lemma
to U(t)f(t):

d (U(t)f(t)) = λ(t)U(t) f(t) dt+ U(t) df(t) (2.6)

= (λ(t)U(t)− U(t)λ(t)) f(t) dt+ U(t)σ(t) dW (t) (2.7)

= U(t)σ(t) dW (t). (2.8)

By integrating the above equality, we derive that if λ(t) satisfies (CP), then f(t) can be
written explicitly as

f(t) = e−
∫ t

0
λ(u)du

∫ t

0
e
∫ s

0
λ(u)duσ(s)dW (s). (2.9)

In view of Remark 2.2.1, we introduce the following assumption.

Assumption 5. The matrix-valued functions λ(·, T ) and Λ(·, T1, T2) satisfy (CP) for all
T ≤ T and T1 < T2 ≤ T.

In particular, let us remark that (CP) is fulfilled by any matrix constant in time and any
time-dependent diagonal matrix. Assumption 4 ensures that (2.2) and (2.3) admit a unique
square-integrable solution (cf. also [23, Appendix A]). Moreover, Assumption 5 (see Remark
2.2.1) guarantees that the solution of (2.2) can be expressed explicitly as

f(t, T ) = e−
∫ t

0
λ(s,T )dsf(0, T ) +

∫ t

0
e−

∫ t

s
λ(u,T )duc(s, T )ds

+

∫ t

0
e−

∫ t

s
λ(u,T )duσ(s, T )dW (s) +

∫ t

0
e−

∫ t

s
λ(u,T )duψ(s, T )dJ(s)

2This property follows from (2.5), by observing that 0 = d(U(t)U−1(t)) = dU(t)U−1(t) + U(t)dU−1(t) =
λ(t)U(t)U−1(t)− U(t)λ(t)U−1(t) = λ(t)− U(t)λ(t)U−1(t).
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and, analogously, the solution of (2.3) can be written as

F (t, T1, T2) = e−
∫ t

0
Λ(s,T1,T2)dsF (0, T1, T2) +

∫ t

0
e−

∫ t

s
Λ(u,T1,T2)duC(s, T1, T2)ds

+

∫ t

0
e−

∫ t

s
Λ(u,T1,T2)duΣ(s, T1, T2)dW (s) +

∫ t

0
e−

∫ t

s
Λ(u,T1,T2)duΨ(s, T1, T2)dJ(s).

These processes are also linked among themselves by no-arbitrage. In fact, in this
continuous time setting, a limit argument (see, for instance, [37]) leads to the following
no-arbitrage condition among each swap and the corresponding family of forwards: for any
t ≤ T1 and T2 > T1 > 0

F (t, T1, T2) =

∫ T2

T1

ŵ(T, T1, T2)f(t, T ) dT, (2.10)

where ŵ : AT
2 → Rn×n is a weight function and represents the time value of money. This can

differ from contract to contract according to how settlement takes place (see Equation 4.2
in [23]). For example, in the one-dimensional case we could have ŵ(T, T1, T2) = 1

T2−T1
or,

by assuming a continuously compounded constant risk-free rate r, ŵ(T, T1, T2) = e−rT

∫ T2
T1

e−rT dT
.

Thus, if we generalize in a straightforward way to a multidimensional market, then we could
define, for instance,

ŵ(T, T1, T2) =
1

T2 − T1
In or ŵ(T, T1, T2) =

e−rT
∫ T2
T1
e−rT dT

In,

with In being the identity matrix of dimension n. We may further enrich this setting by
interpreting in a wider sense the role of one, or more, components of f(t, T ) and, consequently,
the role of ŵ as well. For example, the last component of f(t, T ) may represent some
forward stochastic factor with dynamics governed by (2.2), which affects the value of the swap
contracts F (t, T1, T2) through (2.10). However, we do not want to look into this matter at the
present time, leaving the possibility to investigate it to future work. In view of its modeling
intepretation, we define the weight function in the following way.

Definition 2.2.3. A matrix-valued map ŵ : AT
2 → Rn×n is called a weight function if, for

any T1 < T2, it is integrable with respect to T on [T1, T2] and

∫ T2

T1

ŵ(T, T1, T2) dT = In.

In the next proposition we state how the no-arbitrage condition in (2.10) determines the
coefficients appearing in the dynamics (2.2) and (2.3). Let us observe that, in order to do
this, we assume that the mean-reversion speeds λ and Λ are independent of delivery.

Proposition 2.2.4. For all T ≤ T and T1 < T2 ≤ T, let f(·, T ) and F (·, T1, T2) be the unique
solutions of (2.2) and (2.3) for given coefficients satisfying Assumption 4, where, in addition,
the mean-reversion coefficients are independent of delivery:

Λ(t, T1, T2) = λ(t, T ) := λ(t). (2.11)
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Let us assume that the no-arbitrage relation (2.10) holds for a given weight function ŵ
satisfying the following integrability conditions: for all T1 < T2,

∫ T1

0

∫ T2

T1

‖ŵ(T, T1, T2)σ(t, T )‖2 dT dt <∞,

∫ T1

0

∫ T2

T1

‖ŵ(T, T1, T2)ψ(t, T )‖2 dT dt <∞,

∫ T1

0

∫ T2

T1

‖ŵ(T, T1, T2) c(t, T )‖ dT dt <∞,

∫ T2

T1

‖ŵ(T, T1, T2) f(0, T )‖ dT <∞,

∫ T1

0

∫ T2

T1

‖ŵ(T, T1, T2)λ(t) f(t, T )‖2 dT dt <∞, a.s.

If the matrix ŵ(T, T1, T2) commutes with λ(t) for every T ≤ T1 < T2 and t < T , then

C(t, T1, T2) =

∫ T2

T1

ŵ(T, T1, T2)c(t, T ) dT, (2.12)

Σ(t, T1, T2) =

∫ T2

T1

ŵ(T, T1, T2)σ(t, T ) dT, (2.13)

Ψ(t, T1, T2) =

∫ T2

T1

ŵ(T, T1, T2)ψ(t, T ) dT. (2.14)

Proof. The proof is an application of the stochastic Fubini Theorem (cf. e.g. [113, Theorem
64]) and follows by comparing the coefficients of (2.2) to (2.3) after integrating against ŵ.
From (2.2) we can write

∫ T2

T1

ŵ(T, T1, T2)f(t, T ) dT =

∫ T2

T1

ŵ(T, T1, T2)f(0, T ) dT

+

∫ T2

T1

∫ t

0
ŵ(T, T1, T2)(c(u, T )− λ(u)f(u, T )) du dT

+

∫ T2

T1

∫ t

0
ŵ(T, T1, T2)σ(u, T ) dW (u) dT +

∫ T2

T1

∫ t

0
ŵ(T, T1, T2)ψ(u, T ) dJ(u) dT.

After observing that

∫ t

0
ŵ(T, T1, T2)λ(u)f(u, T ) du =

∫ t

0
λ(u)ŵ(T, T1, T2)f(u, T ) du,

we change the order of integration in the last equation (recalling (2.10)) so to obtain

F (t, T1, T2) = F (0, T1, T2) +

∫ t

0

(∫ T2

T1

ŵ(T, T1, T2)c(u, T ) dT − λ(u)F (u, T1, T2)

)
du

+

∫ t

0

∫ T2

T1

ŵ(T, T1, T2)σ(u, T ) dT dW (u) +

∫ t

0

∫ T2

T1

ŵ(T, T1, T2)ψ(u, T ) dT dJ(u).

Then, the result follows from the uniqueness of representation of solutions by comparing the
coefficients of the last equation to the respective ones in (2.3).

We finish this section by noticing that, under sufficient regularity assumptions on the
evolution of forward prices, we can write down the implied dynamics of the spot price, defined
as S(t) = f(t, t).
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Proposition 2.2.5. In addition to Assumption 4, let us assume that c(t, T ), σ(t, T ), ψ(t, T )
and f(t, T ) are differentiable with respect to T for any t ≤ T , with bounded partial derivatives
cT (t, T ), σT (t, T ), ψT (t, T ) and fT (t, T ).Then, the spot price follows the dynamics

dS(t) = (c(t, t) + ζ(t)− λ(t)S(t)) dt+ σ(t, t)dW (t) + ψ(t, t)dJ(t),

where

ζ(t) := fT (0, t) +

∫ t

0
(cT (u, t)− λ(u)fT (u, t)) du+

∫ t

0
σT (u, t) dW (u) +

∫ t

0
ψT (u, t) dJ(u).

Proof. The proof is an application of the stochastic Fubini Theorem and follows the same
steps of Proposition 11.1.1 in [100].

Naturally, when starting out with a mean-reverting dynamics for swaps and forwards, the
implied spot price dynamics will also become mean-reverting. Indeed, we observe that spot
prices follow a multidimensional Lévy Ornstein-Uhlenbeck process with time-dependent speed
of mean-reversion λ(t) and volatility σ(t, t). It mean-reverts towards a time-dependent level
λ(t)−1(c(t, t)+ ζ(t)) (whenever λ(t) is invertible). This opens for including seasonal variations
into the model, which is very relevant in energy markets.

2.3 A mean-reverting model consistent with no-arbitrage

Now we describe how to construct, under a suitable assumption, a HJM-type forward market
as in the previous section. We state how this naturally leads us to characterize the model,
firstly in terms of its dynamical behavior, and secondly in relation to the existence of equivalent
martingale measures and, therefore, arbitrage. In this regard, we show two crucial results about
the martingale property of stochastic exponentials. The main result (Theorem 2.3.5) allows
us to validate general measure changes with Esscher-type jump component and stochastic
kernel in the diffusive part. Then, a different approach is proposed for the specific case of
stochastic exponential of Brownian integrals of continuous kernels, so that, in particular, the
density process is continuous. Finally, we discuss why this technique does not apply to the
case of general Lévy kernels and how this fact is related to asymptotic properties of even
moments of infinitely divisible distributions.

Let us begin with our main modeling assumption. We consider the same stochastic basis
as in Assumption 3.

Assumption 6. Take an integer m ∈ N. Assume that the following stochastic differential
equation

dX(t) = b(t,X(t))dt+ ν(t,X(t))dW (t) + η(t,X(t−))dJ(t) (2.15)

admits a unique solution X taking values in Rm, for a drift b : [0,T]×Rm → Rm and volatility
coefficients ν, η : [0,T]×Rm → Rm×k. The forward prices f(t, T ) have an affine representation

f(t, T ) = α(t, T )X(t) + β(t, T ), (2.16)

for some deterministic matrix/vector-valued functions α : AT
1 → Rn×m, β : AT

1 → Rn, which
we assume to be bounded on AT

1 and continuously differentiable in t ∈ [0, T ], for all T ≤ T.
In view of the no-arbitrage condition (2.10), we define the swap price process F (t, T1, T2) by

F (t, T1, T2) =

∫ T2

T1

ŵ(T, T1, T2)f(t, T ) dT, (2.17)

where ŵ is a weight function as in Definition 2.2.3.
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The process X can be interpreted as a stochastic state variable underlying the forward
curves for all maturities T . This might be related to the spot price, which is the case, for
instance, of the models that we propose in Sections 4 and 5. Observe, in particular, that the
stochastic processes f(·, T ) and F (·, T1, T2) are Markovian. The question of Markovianity
for this class of models has been discussed also in [23, Equation 4.8], where the authors
show that even simple log-normal specifications of the forward dynamics lead, in general,
to non-Markovian swap price processes (unless interpreted as infinite-dimensional stochastic
processes). Instead, Assumption 6 allows us to preserve the Markov property of our models
and, thus, analytical tractability.

2.3.1 Dynamics

Since we want a dynamical behavior of mean-reverting type for f and F (see (2.2) and (2.3)),
the affine structure of forward prices assumed in (2.16) determines in a rather natural way
the corresponding functional form of the coefficients expected in (2.15). In this regard, we
have two symmetrical results.

Proposition 2.3.1. Assume in (2.15) that the coefficients b, ν and η take the following affine
form

b(t,X(t)) = θ(t) + Θ(t)X(t), (2.18)

ν(t,X(t)) = v(t), (2.19)

η(t,X(t)) = z(t), (2.20)

where θ : [0,T] → Rm is integrable, v : [0,T] → Rm×k and z : [0,T] → Rm×k are square-
integrable and Θ : [0,T] → Rm×m is bounded. If there exists a continuous matrix-valued
function λ : [0,T] → Rn×n such that

λ(t)α(t, T ) = −αt(t, T )− α(t, T )Θ(t), (2.21)

then, by defining

c(t, T ) := λ(t)β(t, T ) + βt(t, T ) + α(t, T )θ(t), (2.22)

σ(t, T ) := α(t, T )v(t), (2.23)

ψ(t, T ) := α(t, T )z(t), (2.24)

the stochastic process f(t, T ) is the unique solution of

df(t, T ) = (c(t, T )− λ(t)f(t, T )) dt+ σ(t, T )dW (t) + ψ(t, T )dJ(t).

Furthermore, if ŵ satisfies the assumptions of Proposition 2.2.4, F (t, T1, T2) is the unique
solution of

dF (t, T1, T2) = (C(t, T1, T2)− λ(t)F (t, T1, T2)) dt+Σ(t, T1, T2) dW (t) + Ψ(t, T1, T2) dJ(t),

where C,Σ,Ψ are defined in (2.12),(2.13), (2.14).

Proof. Let us apply Itô’s Lemma to

f(t, T ) = α(t, T )X(t) + β(t, T ).
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Hence,

df(t, T ) = (βt(t, T ) + α(t, T )θ(t)+αt(t, T )X(t) + α(t, T )Θ(t)X(t))dt

+ α(t, T )v(t)dW (t) + α(t, T )z(t)dJ(t). (2.25)

Since, by assumption, there exists a function λ : [0,T] → Rn×n satisfying

αt(t, T ) + α(t, T )Θ(t) = −λ(t)α(t, T )

whereas c(t, T ), σ(t, T ) and ψ(t, T ) satisfy, by definition,

βt(t, T ) + α(t, T )θ(t) = c(t, T )− λ(t)β(t, T ),

α(t, T )v(t) = σ(t, T ),

α(t, T )z(t) = ψ(t, T ),

the statement for f follows after substituting these expressions into (2.25). The result for F
can be proven along the same lines of Proposition 2.2.4.

The following proposition can be seen as the converse of the previous one.

Proposition 2.3.2. If f(t, T ) is the unique solution of

df(t, T ) = (c(t, T )− λ(t)f(t, T )) dt+ σ(t, T )dW (t) + ψ(t, T )dJ(t), (2.26)

for c, σ, ψ and λ satisfying Assumption 4, then b, ν and η in (2.15) take the following affine
form

α(t, T )b(t,X(t)) = θ̃(t, T ) + Θ̃(t, T )X(t) (2.27)

α(t, T )ν(t,X(t)) = σ(t, T ), (2.28)

α(t, T )η(t,X(t)) = ψ(t, T ), (2.29)

with

θ̃(t, T ) = c(t, T )− λ(t)β(t, T )− βt(t, T ), (2.30)

Θ̃(t, T ) = −λ(t)α(t, T )− αt(t, T ). (2.31)

Proof. As in the proof of Proposition 2.3.1, the statement is direct consequence of Itô’s Lemma
applied to

f(t, T ) = α(t, T )X(t) + β(t, T ),

which gives that

df(t, T ) = (βt(t, T ) + αt(t, T )X(t) + α(t, T )b(t,X(t)))dt

+ α(t, T )ν(t,X(t))dW (t) + α(t, T )η(t,X(t−))dJ(t).

It is then sufficient to compare the coefficients of the last equation to the ones of (2.26).
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2.3.2 Arbitrage

We now investigate the question of arbitrage in the context of our HJM-type forward model.
A sufficient condition for an arbitrage-free market, together with (2.17), is the existence of an
equivalent martingale measure, which is a probability measure Q equivalent to P such that
the discounted price processes of all traded contracts are Q-martingales. Notice that forwards
and swaps are costless to enter, so their price processes should be Q-martingale without
any discounting. We also mention that the well-known HJM drift condition for forward rate
models in interest rate theory is not present in our context, as forward contracts are tradeable
assets unlike the forward rates, which model in a nonlinear way the bond price dynamics.

Firstly, we introduce the candidate density processes.

Assumption 7. We assume that N(ds, dy) is the Poisson random measure of a Lévy process
J with independent components Jj, for j = 1, . . . , k. We indicate by Nj(ds, dyj) the Pois-
son random measure of Jj and by N j(ds, dyj) = Nj(ds, dyj)− ds νj(dyj) the corresponding
compensated version.

Let φ = (φ(j))j=1,...,k and ξ = (ξ(j))j=1,...,k be k-dimensional adapted processes such that

E

[∫ T

0
‖φ(s)‖2ds

]
<∞, E

[∫ T

0
‖ξ(s)‖2ds

]
<∞, (2.32)

and define, for t ∈ [0,T], the process Z as the unique strong solution of

dZ(t) = Z(t−) dH(t), (2.33)

such that Z(0) = 1, where

H(t) :=

∫ t

0
φ⊺(s)dW (s) +

∫ t

0

∫

Rk

ξ⊺(s−) y N(ds, dy),

=

k∑

j=1

(∫ t

0
φ(j)(s)dWj(s) +

∫ t

0

∫

R

ξ(j)(s−) yj N j(ds, dyj)

)
. (2.34)

If the processes φ and ξ satisfy (2.32), H is a well-defined square-integrable martingale. The
process Z is called the stochastic or Doléans-Dade exponential of H and is sometimes indicated
as

Z(t) = E(H)(t).

More explicitly, it can be written as (cf. for instance [113, Theorem II.37])

Z(t) = eH(t)− 1

2

∫ t

0
‖φ(s)‖2 ds

∏

0<s≤t

(1 + ∆H(s)) e−∆H(s). (2.35)

If Z is a strictly positive martingale, we can introduce an equivalent probability measure Q

defining its Radon-Nikodym derivative as

dQ

dP
:= Z(T). (2.36)

Define the stochastic process

WQ(t) :=W (t)−
∫ t

0
φ(s) ds, (2.37)
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the random measure
N

Q
(dt, dy) := N(dt, dy)− ξ(t)⊺y ν(dy)dt (2.38)

and the jump process

JQ(t) :=

∫

Rk

y N
Q
(dt, dy) = J(t)−

∫ t

0
K ξ(s)ds, (2.39)

where

K = diag(κ), κ = (κj)j=1,...,k, κj =

∫

R

y2 νj(dy).

The next two propositions identify the subfamily of models admitting the existence of
an equivalent martingale measure. In the remainder of this paper, we assume the same
assumptions of Proposition 2.3.1, so that, in particular, X evolves as

dX(t) =
(
θ(t) + Θ(t)X(t)

)
dt+ v(t)dW (t) + z(t)dJ(t). (2.40)

Proposition 2.3.3. If f satisfies

df(t, T ) = σ(t, T ) dWQ(t) + ψ(t, T ) dJQ(t),

then

α(t, T )
(
v(t)φ(t) + z(t)K ξ(t)

)
= Φ1(t, T )X(t) + Φ0(t, T ), (2.41)

for Φ0 and Φ1 denoting

Φ1(t, T ) = −αt(t, T )− α(t, T )Θ(t), (2.42)

Φ0(t, T ) = −βt(t, T )− α(t, T )θ(t). (2.43)

In particular, if

φ(t) = φ1(t)X(t) + φ0(t), (2.44)

ξ(t) = ξ1(t)X(t) + ξ0(t), (2.45)

then

Φ1(t, T ) = α(t, T )
(
v(t)φ1(t) + z(t)K ξ1(t)

)
, (2.46)

Φ0(t, T ) = α(t, T )
(
v(t)φ0(t) + z(t)K ξ0(t)

)
. (2.47)

Finally, α and β satisfy the following linear ordinary differential equations:

αt(t, T ) = −α(t, T )γ1(t), (2.48)

βt(t, T ) = −α(t, T )γ0(t), (2.49)

where γ0 and γ1 are

γ1(t) = v(t)φ1(t) + z(t)K ξ1(t) + Θ(t), (2.50)

γ0(t) = v(t)φ0(t) + z(t)K ξ0(t) + θ(t). (2.51)
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Proof. Itô’s Lemma applied to f(t, T ) = α(t, T )X(t) + β(t, T ) gives

df(t, T ) = (βt(t, T ) + α(t, T )θ(t) + αt(t, T )X(t) + α(t, T )Θ(t)X(t))dt

+ α(t, T )v(t)dW (t) + α(t, T )z(t)dJ(t).

By replacing W and J with WQ and JQ, we get

df(t, T ) =
(
βt(t, T ) + α(t, T )θ(t) + αt(t, T )X(t) + α(t, T )Θ(t)X(t)

+ α(t, T )v(t)φ(t) + α(t, T )z(t)K ξ(t)
)
dt+ α(t, T )z(t)dJQ(t) + α(t, T )v(t)dWQ(t).

In order to have zero drift, (2.41) must hold for Φ0 and Φ1 as in (2.42) and (2.43). In
particular, the last equation holds if φ and ξ take the affine form (2.44) and (2.45) with Φ0

and Φ1 defined by (2.46) and (2.47), so that

αt(t, T ) + α(t, T )Θ(t) + α(t, T )v(t)φ1(t) + α(t, T )z(t)K ξ1(t) = 0,

βt(t, T ) + α(t, T )θ(t) + α(t, T )v(t)φ0(t) + α(t, T )z(t)K ξ0(t) = 0,

which yield (2.48) and (2.49).

The converse result holds as well.

Proposition 2.3.4. Assume that the following conditions are fulfilled:

• α and β satisfy, for some continuous functions γ0 : [0,T] → Rm and γ1 : [0,T] → Rm×m,
the linear ordinary differential equations (2.48) and (2.49);

• there exist adapted processes φ(t) and ξ(t) satisfying (2.32) of the form

φ(t) = φ1(t)X(t) + φ0(t),

ξ(t) = ξ1(t)X(t) + ξ0(t),

where φ0, φ1, ξ0 and ξ1 are in relation with γ0 and γ1 by (2.50) and (2.51);

• the process Z defined in (2.33) is a strictly positive P-martingale on [0,T].

Then, by defining dQ
dP = Z(T), it holds that WQ in (2.37) is a Brownian motion under Q and

N
Q
(dt, dy) defined in (2.38) is the Q-compensated Poisson random measure of N in the sense

of [104, Theorem 1.35]. Also, we have

df(t, T ) = σ(t, T ) dWQ(t) + ψ(t, T ) dJQ(t),

dF (t, T1, T2) = Σ(t, T1, T2) dW
Q(t) + Ψ(t, T1, T2) dJ

Q(t),

with the same coefficients as in Proposition 2.3.1 and, in particular, the processes f(·, T ) and
F (·, T1, T2) are Q-martingales for all T and T1 < T2.

Proof. By similar arguments as in Proposition 2.3.3, it is enough to apply Itô’s Lemma to
f(t, T ) = α(t, T )X(t) + β(t, T ), which gives

df(t, T ) = σ(t, T ) dWQ(t) + ψ(t, T ) dJQ(t).

Since F (t, T1, T2) =
∫ T2
T1
ŵ(T, T1, T2)f(t, T ) dT , we easily obtain that

dF (t, T1, T2) = Σ(t, T1, T2)dW
Q(t) + Ψ(t, T1, T2) dJ

Q(t).

As, by assumption, Z is a P-martingale, the measure Q is an equivalent probability measure
and we can conclude by Girsanov’s Theorem (e.g. [104, Theorem 1.35]).
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In Proposition 2.3.4 we assumed that Z is a strictly positive P-martingale on [0,T], which
implies that Z(T) defines the Radon-Nikodym derivative of an equivalent probability measure
Q. As a consequence of Proposition 2.3.4, Q is in fact a martingale measure for the market.
However, in general Z is only a local martingale. Thus, the interesting question is under
which conditions we can prove that Z is a strictly positive true martingale. Tracing through
Propositions 2.3.3 and 2.3.4, it is natural to have martingale measure kernels in affine form:

φ(t) = φ1(t)X(t) + φ0(t), (2.52)

ξ(t) = ξ1(t)X(t) + ξ0(t). (2.53)

The first condition to check is the positivity. From the representation in (2.35) we see that Z
is strictly positive if and only if ∆H > −1 a.s. This boils down to verify that

∆H(t) = ξ⊺(t−)∆J(t) > −1, for every t ∈ [0,T], a.s.,

which holds under the following assumption.

Assumption 8. The jump risk parameter ξ is a bounded and deterministic vector function
on [0,T] (i.e. ξ1 ≡ 0 in (2.53)) such that ξ⊺(t) y > −1 for ν-a.e. y ∈ Rk and each t ≥ 0.

Observe that, in order to define a positive density process, we assume that the jump kernel
ξ is deterministic.

Since a positive local martingale is a supermartingale, in order to prove that Z is a true
martingale it is sufficient to verify that E[Z(T)] = 1. Let us then state the main result of this
section.

Theorem 2.3.5. Let us assume that there exist bounded measurable deterministic functions φ0 :
[0,T] → Rk, φ1 : [0,T] → Rk×m. Define the Girsanov kernels φ(t) := φ1(t)X(t) + φ0(t) and ξ
as in Assumption 8. Assume, furtherly, that ν has fourth moment, that is

∫
Rk ‖y‖4 ν(dy) <∞.

Then, the process Z defined by (2.33) is a strictly positive true martingale.

Proof. See Appendix A.

In the next theorem we state the martingale property of the stochastic exponential in the
case we have no jumps in the dynamics, that is ν ≡ 0, in an alternative way. The Novikov
condition ([103]) is a standard way to prove it in the case of continuous density process, i.e.
H(t) =

∫ t
0 φ

⊺(s)dW (s). However, applying the Novikov condition for our state-dependent φ
will yield a valid measure change only for a restricted interval of time t ∈ [0, τ ], where τ will
depend on the parameters in the model (inspect the proof in Appendix B to see this). Thus,
the Novikov condition may fail to validate a martingale measure for all times in question and
we cannot conclude that the dynamics are arbitrage-free for t ≥ τ . Therefore, we apply a
weaker Novikov-type criterion, which relies on asymptotic properties of Gaussian moments.
We remark in passing that a nice account of the literature related to this problem can be
found in the introduction of [86].

Theorem 2.3.6. Assume that Θ : [0,T] → Rm×m is a bounded measurable function satisfying
(CP), θ : [0,T] → Rm is integrable and v : [0,T] → Rm×k is square-integrable. Let φ0 : [0,T] →
Rk, φ1 : [0,T] → Rk×m be measurable fields such that φ1(t) is bounded and

∫ T

0 ‖φ0(s)‖2ds <∞.
Define the Girsanov kernel

φ(t) = φ1(t)X(t) + φ0(t),
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where X is the unique solution of

dX(t) = (θ(t) + Θ(t)X(t))dt+ v(t)dW (t).

Then

Z(t) = exp

(∫ t

0
φ⊺(s)dW (s)− 1

2

∫ t

0
‖φ(s)‖2ds

)
(2.54)

is a (strictly positive) P-martingale on [0,T].

Proof. See Appendix B.

We will now show that the same technique employed in the proof of Theorem 2.3.6 fails
when adding the jump component in the dynamics of X, even if the density process Z is still
continuous, i.e. ξ ≡ 0. We need that the pure-jump Lévy component J satisfies the following
property related to the asymptotics of even moments of stochastic integrals with respect to
Lévy processes, which does not hold in very simple cases.

Definition 2.3.7. We say that a Lévy process J(t) :=
∫ t
0

∫
Rk y N(ds, dy) satisfies the property

(P ) if, for any t ∈ [0,T] and bounded measurable function h : [0,T] → Rm×k, it holds that

lim sup
n→∞

1

n

E

[
‖
∫ t
0

∫
Rk h(s) y N(ds, dy)‖2n

]

E

[
‖
∫ t
0

∫
Rk h(s) y N(ds, dy)‖2n−2

] ≤ C, (2.55)

where C = C(t,T, h) is a constant possibly depending on t,T and the function h.

Let us consider, for simplicity, the one dimensional case, i.e. k = 1, and fix h ≡ 1,
t = T = 1. Then, property (P) becomes

lim sup
n→∞

1

n

E
[
J(1)2n

]

E [J(1)2n−2]
≤ C. (2.56)

Thus, it boils down to the asymptotic behavior of the moments of infinitely divisible distribu-
tions. In general, explicit formulas are available for moments of Lévy processes in terms of
cumulants, but involve rather complicated combinatorial quantities, which do not allow to
interpret in a straightforward way the growth behavior with respect to n (see e.g. [112] or
[42, Lemma 2.2, Proposition 2.3]). In the upcoming examples we show that, for very common
distributions, the property in (2.56) is actually not verified.

Example 2.3.8 (Poisson process). The moments of the Poisson process N(t) with intensity
parameter λ can be expressed in terms of the so-called Touchard polynomials :

E[N(1)n] = Tn(λ) =
n∑

k=0

{
n
k

}
λk,

where
{
n
k

}
is the Stirling number of second kind, namely the number of ways to partition a

set of n labelled objects into k nonempty unlabelled subsets. Observe that here the cumulants
are represented by λ. If we take, for instance, λ to be equal to 1, then

E[N(1)n] = Tn(1) =
n∑

k=0

{
n
k

}
=: Bn,
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where we denote by Bn the n-th Bell number (cf. [114]). By computing the ratio in (2.56)
numerically, it turns out that the growth of such Bell numbers is actually faster, in the sense
that

lim sup
n→∞

1

n

E
[
N(1)2n

]

E [N(1)2n−2]
= lim sup

n→∞

1

n

B2n

B2n−2
= ∞.

Example 2.3.9 (Gamma and Poisson subordinators). A popular way to construct Lévy-based
models in financial modeling is Brownian subordination (cf. e.g. [51, Section 4.4]). This
consists in changing the time of a Brownian motion by an independent subordinator, i.e.
a increasing Lévy process. Let W be a Brownian motion and U a subordinator, mutually
independent. Then, a classical result is that L(t) :=W (U(t)) is a Lévy process. The moments
of L can be computed in terms of the ones of W and U by the following:

E[L(t)2n] = E[W (U(t))2n] = E[E[W (U(t))2n|U ]] = E[U(t)n]E[W (1)2n].

Thus,
E
[
L(1)2n

]

E [L(1)2n−2]
=

E[U(1)n]E[W (1)2n]

E[U(1)n−1]E[W (1)2n−2]
≤ C0 n

E[U(1)n]

E[U(1)n−1]
,

thanks to the properties of Gaussian moments. Consequently, the asymptotic condition in
(2.56) boils down to the following requirement for the moments of the subordinator:

lim sup
n→∞

E[U(1)n]

E[U(1)n−1]
≤ C. (2.57)

However, if U is a Poisson subordinator, then (see previous example)

E[U(1)n]

E[U(1)n−1]
=

Bn
Bn−1

,

which numerically turns out to be unbounded as n tends to infinity. Also, if U is a Gamma
subordinator, i.e. U(1) is Gamma distributed, then

E[U(1)n]

E[U(1)n−1]
≈ C1

n!

βn
βn−1

(n− 1)!
≈ C2 n,

so that, even in this case, property (P) is not satisfied.

2.3.3 Risk premium

We close this section by discussing very briefly the risk premium, which represents a relevant
quantity in commodity markets (see e.g. [72]). It is defined as the difference between the
forward price and the spot price prediction at delivery, which means, in mathematical terms,

RPf (t, T ) = f(t, T )− E[f(T, T )|Ft], (2.58)

with the spot price being S(T ) := f(T, T ). As f(t, T ) is a vector, the risk premium is defined
as a vector as well. Observe that, under the assumptions of Theorem 2.3.5, we can also write
for a martingale measure Q:

RPf (t, T ) = EQ[f(T, T )|Ft]− E[f(T, T )|Ft]. (2.59)

The economic interpretation of the risk premium is particularly important and has been
studied both empirically and theoretically in the context of energy markets by several authors:
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see, for instance, [47] for the UK gas market, [31, 17, 34] for power markets and [91] for various
energy exchanges. As our present purpose is just to identify it in our model, we refer to the
literature above for a more detailed description of the financial and mathematical features of
the risk premium.

It is natural to extend the definition of the risk premium to swaps as the difference between
the swap price and the expected value of the spot price weighted over the delivery period:

RPF (t, T1, T2) = F (t, T1, T2)− E

[∫ T2

T1

ŵ(T, T1, T2)f(T, T ) dT

∣∣∣∣Ft
]
. (2.60)

Let us omit the mathematical justifications in order to keep this discussion at a simple level.
As a direct consequence of (2.58) and (2.60) (cf. also [31]), we have the following relation:

RPF (t, T1, T2) =
∫ T2

T1

ŵ(T, T1, T2)RPf (t, T ) dT.

This means that the risk premium of a swap is the weighted average of the forward risk
premium RPf (t, T ) over the delivery period [T1, T2]. By writing (2.2) in integral form, we
have

RPf (t, T ) =
∫ T

t
λ(s)E[f(s, T )|Ft] ds−

∫ T

t
c(s, T ) ds,

which becomes, after using (2.10),

RPf (t, T ) = (In − e−
∫ T

t
λ(u)du)f(t, T )−

∫ T

t
e−

∫ T

s
λ(u)duc(s, T ) ds,

Finally, since ŵ commutes with all the matrices of the same size, the swap risk premium can
be written as

RPF (t, T1, T2) =
∫ T2

T1

(In − e−
∫ T

t
λ(u)du) ŵ(T, T1, T2) f(t, T ) dT

−
∫ T2

T1

ŵ(T, T1, T2)

∫ T

t
e−

∫ T

s
λ(u)duc(s, T ) ds dT.

In commodity markets, especially power, the behavior of the observed risk premium is
rather involved (see e.g. [125, 17]). Therefore, in order to suitably describe these stylized
facts, a stochastic specification has been postulated. To our knowledge, several models studied
in literature, with (at least) the exceptions of [25, 84], imply a deterministic structure of
risk premium. Indeed, what we have in the present modeling framework is a stochastically
sign-changing (in each component) and affine risk premium.

2.4 A generalization of the Lucia-Schwartz model

A classical approach in the literature of energy markets consists in modeling directly the
spot price dynamics: see, for instance, [18, 48, 73, 95] and many others. This line of research
has some advantages: e.g. in order to represent the forward price it is sufficient to take the
discounted expected value of the spot under any equivalent probability measure, called the
pricing measure. In this section we see a one-dimensional example of spot price dynamics
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which gives forward prices of type (2.16). We start with the original Lucia-Schwartz model and
then present a generalization based on a finer representation of the volatility term structure.

The two-factor Lucia-Schwartz [95] model consists of two state variables and a seasonal
component. If S(t) denotes the spot price at time t, then S(t) = s(t) +X1(t) +X2(t), with
s(t) seasonal deterministic component and

dX1(t) = −κX1(t) dt+ v1 dW
Q
1 (t), (2.61)

dX2(t) = µdt+ v2 dW
Q
2 (t), (2.62)

where WQ
1 and WQ

2 are two Brownian motions under a pricing measure Q. Then, we have,
for a time t and a maturity date T ≥ t,

S(T ) = s(T )+e−κ(T−t)X1(t)+v1

∫ T

t
e−κ(u−t)dWQ

1 (u)+X2(t)+µ(T−t)+v2(WQ
2 (T )−WQ

2 (t)).

(2.63)
Denoting X(t) = (X1(t), X2(t))

⊺, the value of a forward contract at time t with delivery at
time T is given by

f(t, T ) = EQ[S(T )|Ft] = α(t, T )X(t) + β(t, T ),

with
α(t, T ) = (e−κ(T−t), 1), β(t, T ) = s(T ) + µ(T − t).

By comparing these identities to (2.48) and (2.49), we see that this corresponds in our model
to

γ0(t) ≡ γ0 :=

(
0
µ

)
, γ1(t) ≡ γ1 :=

(
−κ 0
0 0

)
.

The relations among the P-dynamics of X in (2.40) and the Girsanov kernel of Q are embedded
in (2.50) and (2.51). In this model, since

v(t) ≡ v :=

(
v1 0
0 v2

)
,

we have that

vφ1(t) = γ1 −Θ(t), (2.64)

vφ0(t) = γ0 − γ1θ(t), (2.65)

where φ1(t),Θ(t) are 2× 2 matrices and φ0(t), θ(t) are two-dimensional column vectors. By
writing them down explicitly, we have

φ1(t) =



−κ+Θ11(t)

v1
−Θ12(t)

v1

−Θ21(t)
v2

−Θ22(t)
v2


 , φ0(t) =

(
κ θ1(t)/v1
µ/v2

)
.

Then, the coefficients of the P-dynamics of f(t, T ) are determined by (2.21)–(2.23), which
yield

λ(t)α(t, T ) = α(t, T )(γ1(t)−Θ(t)) = α(t, T )v(t)φ1(t),

c(t, T ) = λ(t)β(t, T ) + α(t, T )(θ(t)− γ0(t)),

σ(t, T ) = α(t, T )v(t).
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We immediately observe that α(t, T ) admits a right inverse for each T and there are infinitely
many λ(t) satisfying the first relation. For instance, we could take (by assuming that
Θ12 = Θ21 = 0)

λ(t) = −κ−Θ11(t),

c(t, T ) = λ(t)(s(T ) + µ(T − t)) + θ1(t)e
−κ(T−t) + θ2(t)− µ,

σ(t, T ) = (e−κ(T−t)v1, v2).

In view of this analysis, we now present a two-factor model which can be seen as a
generalization of [95], where we add a term structure for the volatility. An empirical study of
this model has been performed in a companion paper by [93].

By reformulating (2.61) and (2.62), we define

dX1(t) = −κX1(t) dt+ v1 dW
Q
1 (t), (2.66)

dX2(t) =
v′2(t)

v2(t)
X2(t) dt+ v2(t) dW

Q
2 (t), (2.67)

where v2(t) is now a differentiable function of time such that v2(t) > 0 for all t and that
v′
2
(t)

v2(t)
6= −κ (otherwise, the model collapses into a 1-factor model). In other words, X1 is a

mean-reverting Ornstein-Uhlenbeck process, while X2(t)/v2(t) can be shown to be a Brownian
motion. While in the Lucia-Schwartz model X2 is a Brownian motion with drift as v2 is
constant, here the variance of X2 is varying in time, which allows to have seasonality in the
volatility of S as well as in the price level. Thus we can regard v2 as the seasonality factor
for the volatility and s as the seasonality factor for the price. By computations analogous to
those before, we derive that

S(T ) = s(T )+e−κ(T−t)X1(t)+v1

∫ T

t
e−κ(u−t)dWQ

1 (u)+
v2(T )

v2(t)
X2(t)+v2(T )(W

Q
2 (T )−WQ

2 (t)).

Notice that, within this new formulation, the processes X1 and X2 are stationary in mean (i.e.,
E[X1(t)] = X1(0) and E[X2(t)] = X2(0) for all t). Thus, if we start with X1(0) = X2(0) = 0,
then s(T ) is also the expectation of S(T ) (under the risk-neutral measure Q).

The value at time t of a forward contract with delivery at time T is

f(t, T ) = EQ[S(T )|Ft] = α(t, T )X(t) + β(t, T ),

where now

α(t, T ) =

(
e−κ(T−t),

v2(T )

v2(t)

)
, β(t, T ) = s(T ).

This implies
df(t, T ) = e−κ(T−t)σ1 dW

Q
1 (t) + σ2(T ) dW

Q
2 (t), (2.68)

so that, in particular, σ(t, T ) = (e−κ(T−t)σ1, σ2(T )). This model allows for the instantaneous
forward contracts f(t, T ) to have a term structure of the volatility which accounts both for
the Samuelson effect (volatility increasing as t → T ) in the term e−κ(T−t)σ1, as well as a
potentially complex seasonality with respect to the absolute maturity in the term σ2(T ).
From this, by specifying a choice of the weight function ŵ and using (2.13), we can obtain the
dynamics of F (t, T1, T2) for all (t, T1, T2) ∈ AT

2 . For example, if ŵ ≡ 1
T2−T1

, we have that

dF (t, T1, T2) = −e
−κ(T2−t) − e−κ(T1−t)

κ(T2 − T1)
σ1 dW

Q
1 (t) +

∫ T2
T1
σ2(T ) dT

T2 − T1
dWQ

2 (t).
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If we want that, under the empirical measure, f follows a mean-reverting process as in
(2.2), we have to relate the coefficients of X in its P-dynamics (2.40) to (2.21)–(2.23). We
already know that, both under P as under Q, we have

v(t) =

(
v1 0
0 v2(t)

)
.

Similarly to what we did before for the Lucia-Schwartz model, we can make a parsimonious
choice and put θ(t) ≡ 0 and Θ12(t) = Θ21(t) ≡ 0. This gives us

c(t, T ) = λ(t)s(T )

and

Θ(t) =

(
Θ11(t) 0

0 Θ22(t)

)
=

(
−κ− λ(t) 0

0
v′
2
(t)

v2(t)
− λ(t)

)
.

Regarding the market price of risk we observe that

γ0(t) ≡ 0 =

(
0
0

)
, γ1(t) =

(
−κ 0

0
v′
2
(t)

v2(t)

)

and
v(t)φ1(t) = γ1(t)−Θ(t) = λ(t)I2,

where I2 is the 2 × 2 identity matrix. This, together with (2.51), gives

φ1(t) =

(
λ(t)

v1
,
λ(t)

v2(t)

)
, φ0(t) ≡ 0.

We now follow Theorem 2.3.6 to determine if the process φ obtained above gives a martingale.
By the sufficient conditions there, if we impose that Θ is bounded, i.e. that λ and v′

2

v2
are

bounded, and that φ1 is bounded, i.e. that λ
v2

is bounded, then Z is a martingale, and Q is an
equivalent martingale measure. Thus, the Q-dynamics in (2.68) corresponds to a P-dynamics

df(t, T ) = λ(t)(s(T )− f(t, T )) dt+ e−κ(T−t)σ1 dW1(t) + σ2(T ) dW2(t) (2.69)

and, if for example ŵ ≡ 1
T2−T1

, we also have that

dF (t, T1, T2) = λ(t)

(∫ T2
T1
s(T ) dT

T2 − T1
− F (t, T1, T2)

)
dt (2.70)

− e−κ(T2−t) − e−κ(T1−t)

κ(T2 − T1)
σ1 dW1(t) +

∫ T2
T1
σ2(T ) dT

T2 − T1
dW2(t). (2.71)

From this model, we can recover various stylized facts typical of energy markets.

• The dynamics of forward prices f(·, T ) under the real-world probability measure P

is mean-reverting. The mean-reversion speed λ(t) can be time-dependent (but not
maturity-dependent in this formulation), and the long-term mean s(T ) is exactly the
seasonal component of the spot price S. The same can be said about the swap dynamics
F (·, T1, T2), where this time the long-term mean is the maturity-average of the long-term
mean s(T ), T ∈ [T1, T2].
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• We have a generalized Samuelson effect in the forward prices f(·, T ), which is quite
evident, and also in the swap prices F (·, T1, T2). About this latter, denote the diffusion
vector of F (t, T1, T2) as Σ(t, T1, T2) = (eκtΓ(T1, T2),Ψ(T1, T2)), with

Γ(T1, T2) :=
1

T2 − T1

∫ T2

T1

σ1e
−κu du =

σ1(e
−κT1 − e−κT2)

κ(T2 − T1)
,

Ψ(T1, T2) :=
1

T2 − T1

∫ T2

T1

σ2(u) du.

then the function t → ‖Σ(t, T1, T2)‖ is increasing in t: as time to maturity decreases,
the volatility increases.

• Swap prices with shorter delivery periods are more volatile than swap prices with longer
delivery periods. In fact, |Γ(T1, T2)| is decreasing in the second variable. This means
that, for all T1 < T2 < T3, we have |Γ(T1, T2)| > |Γ(T1, T3)|. For instance, being equal
the time to maturity, monthly contracts are more volatile than quarters (lasting 3
months) or calendars (lasting 1 year). This is in line with empirical findings, see e.g.
[23], where the authors perform an empirical analysis of electricity contracts traded on
Nord Pool.

In conclusion, here we have shown that a natural extension of Lucia and Schwartz could
be to allow for a specific time-dependent speed of mean-reversion in the second factor, such
that X2/v2(t) is a Brownian motion, as well as for a time-dependent speed of mean reversion
of forward prices. Also, we worked out the ingredients for this model in our framework, so
that the derived dynamics is arbitrage free.

2.5 A two-commodity cointegrated market

Cointegration is a well-known concept in econometrics and indicates a phenomenon observed
in several energy-related markets (see, for instance, [4, 55]). Let us introduce an arbitrage-free
cross-commodity model with mean-reversion, which accounts for cointegrated price movements.
We present it in the case of two commodities for the sake of simplicity, as generalizations
are straightforward. We are inspired by the spot price model presented in [16]. After
specifying the spot price dynamics under a martingale measure Q, we will derive forward
prices by the conditional expectation. The focus in this example is to explore the possibility
to have mean-reverting cointegration, which will be shown to lead to some interesting model
restrictions.

Let Sk(t) denote the spot price at time t of commodity k for k = 1, 2 and set

Sk(t) = sk(t) + Yk(t) + akL(t), (2.72)

with sk(t) seasonal deterministic component, ak ∈ R\{0} for k = 1, 2. We assume that, under
a martingale measure Q, the dynamics of these factors are

dL(t) = σdW (t) + ψdJ(t),

dY1(t) = −µ1Y1(t) dt+ σ1 dW1(t) + ψ1dJ1(t),

dY2(t) = −µ2Y2(t) dt+ σ2 dW2(t) + ψ2dJ2(t),

where σ, ψ, µk, σk, ψk ∈ R for k = 1, 2. The process (W,W1,W2) is a three-dimensional
Brownian motion independent from (J, J1, J2), which is a three-dimensional zero-mean pure-
jump Lévy process with independent components. The Lévy measures associated are denoted
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by ν, ν1 and ν2 and satisfy the integrability assumptions in Theorem 2.3.5. Since S2(t)/a2 −
S1(t)/a1 = s2(t)/a2 − s1(t)/a1 + Y2(t)/a2 − Y1(t)/a1, we say that S1 and S2 are cointegrated
around the seasonality function s2(t)/a2 − s1(t)/a1 (cf. [16]).

Consistently with the notation in Section 3, we have that κ =
∫
R
y2 ν(dy) and κi =∫

R
y2 νi(dy), i = 1, 2, and

v(t) ≡ v :=



σ 0 0
0 σ1 0
0 0 σ2


 , z(t) ≡ z :=



ψ 0 0
0 ψ1 0
0 0 ψ2


 , K =



κ 0 0
0 κ1 0
0 0 κ2


 .

Then, the value of a forward contract for the commodity k at time t with delivery at time T
is given by the conditional expectation

fk(t, T ) = EQ[Sk(T )|Ft] = sk(T ) + e−µk(T−t)Yk(t) + akL(t).

We denote S(t) = (S1(t), S2(t))
⊺, f(t, T ) = (f1(t, T ), f2(t, T ))

⊺, X(t) = (L(t), Y1(t), Y2(t))
⊺,

so that
f(t, T ) = EQ[S(T )|Ft] = α(t, T )X(t) + β(t, T ),

with

α(t, T ) =

(
a1 e−µ1(T−t) 0

a2 0 e−µ2(T−t)

)
, β(t, T ) =

(
s1(T )
s2(T )

)
. (2.73)

Besides, by comparing (2.73) to (2.48) and (2.49), we have

γ0(t) ≡
(
0
0

)
, γ1(t) ≡ γ1 :=



0 0 0
0 −µ1 0
0 0 −µ2


 .

Following Proposition 2.3.4 and Theorem 2.3.5, the martingale measures Q are determined by
the kernels φ(t) = φ1(t)X(t) + φ0(t) and ξ(t) = ξ0(t), where φ1, φ0 and ξ satisfy

γ1 = vφ1(t) + Θ(t),

0 = vφ0(t) + zKξ(t) + θ(t).

The deterministic functions φ1(t),Θ(t) are 3 × 3 matrices and φ0(t), ξ(t), θ(t) are three-
dimensional column vectors. The coefficients of the P-dynamics of f(t, T ) are determined
by

λ(t)α(t, T ) = α(t, T )(γ1 −Θ(t)) = α(t, T )vφ1(t),

c(t, T ) = λ(t)β(t, T ) + α(t, T )θ(t) = λ(t)β(t, T )− α(t, T )(vφ0(t) + zKξ(t)),

σ(t, T ) = α(t, T )v

ψ(t, T ) = α(t, T )z.

In particular, in view of Proposition 2.3.1, we must verify under which conditions it is possible
to define a 2× 2 matrix

λ(t) :=

(
λ11(t) λ12(t)
λ21(t) λ22(t)

)
,

satisfying (CP) (Definition 2.2.2), such that, independently from T ,

λ(t)α(t, T ) = α(t, T )M(t), (2.74)
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where we denote M(t) = vφ1(t). From (2.74) we get the following system of equations:

a1λ11(t) + a2λ12(t) = a1M11(t) + e−µ1(T−t)M21(t),

e−µ1(T−t)λ11(t) = a1M12(t) + e−µ1(T−t)M22(t),

e−µ2(T−t)λ12(t) = a1M13(t) + e−µ1(T−t)M23(t),

a1λ21(t) + a2λ22(t) = a2M11(t) + e−µ2(T−t)M31(t),

e−µ1(T−t)λ21(t) = a2M12(t) + e−µ2(T−t)M32(t),

e−µ2(T−t)λ22(t) = a2M13(t) + e−µ2(T−t)M33(t),

which admits a unique solution if and only if

µ1 = µ2 (2.75)

and
λ11(t) +

a2
a1
λ12(t) =

a1
a2
λ21(t) + λ22(t). (2.76)

Furthermore, for the market price of risk parameters we have

φ1(t) =




a1λ11(t)+a2λ12(t)
a1v

0 0

0 λ11(t)
v1

λ12(t)
v1

0 λ21(t)
v2

λ22(t)
v2


 ,

while φ0(t) and ξ(t) must satisfy

vφ0(t) + zKξ(t) = −θ(t).

Consequently, if we start with a spot dynamics as in (2.72), with µ := µ1 = µ2 and
a matrix λ satisfying the condition in (2.76) and (CP), then we can build the following
mean-reverting, arbitrage-free, cointegrated P-dynamics for the two forwards:

df1(t, T ) = (c1(t, T )− λ11(t)f1(t, T )− λ12(t)f2(t, T )) dt

+a1σdW (t) + a1ψdJ(t) + e−µ(T−t)σ1dW1(t) + e−µ(T−t)ψ1dJ1(t),

df2(t, T ) = (c2(t, T )− λ21(t)f1(t, T )− λ22(t)f2(t, T )) dt

+a2σdW (t) + a2ψdJ(t) + e−µ(T−t)σ2dW2(t) + e−µ(T−t)ψ2dJ2(t).

These features are naturally inherited by the swap contracts F (t, T1, T2):

dF1(t, T1, T2) = (C1(t, T1, T2)− λ11(t)F1(t, T1, T2)− λ12(t)F2(t, T1, T2)) dt

+a1σdW (t) +
σ1(e

−µT1 − e−µT2)

µ(T2 − T1)
dW1(t) +

ψ1(e
−µT1 − e−µT2)

µ(T2 − T1)
dJ1(t),

dF2(t, T1, T2) = (C2(t, T1, T2)− λ21(t)F1(t, T1, T2)− λ22(t)F2(t, T1, T2)) dt

+a2σdW (t) +
σ2(e

−µT1 − e−µT2)

µ(T2 − T1)
dW2(t) +

ψ2(e
−µT1 − e−µT2)

µ(T2 − T1)
dJ2(t),

where we made the choice ŵ ≡ 1
T2−T1

I2.

Remark 2.5.1. The structural Equation (2.76) for the mean-reversion coefficients λij allows to
have much flexibility for modeling. For example, in such a setting, one could model the price
of the first commodity with a Markovian dynamics (i.e. λ12(t) ≡ 0) and preserve in the drift
of commodity 2 the dependence on commodity 1. To cite an example of application, this can
reproduce the behavior of oil (commodity 1) and gas (commodity 2) prices.
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This model shows how to incorporate cointegration into an arbitrage-free, mean-reverting
forward market with two commodities. It is interesting to observe that the no-arbitrage
constraints imply a structural condition on the shape of the volatility term structure (2.75)
and a linear relation among the mean-reversion coefficients (2.76). We furthermore remark
that a similar approach allows to design more flexible market models, as well as accounting
for more than two commodities, still preserving the mean-reverting and arbitrage-free traits.

2.6 Conclusions

By adapting the Heath-Jarrow-Morton idea to energy forward curves in additive models,
we have introduced an arbitrage-free framework capable of producing flexible and tractable
market models, which exhibit mean-reversion in the dynamics of forward prices under the
real-world probability measure.

Our main assumption on the functional form of the forward price processes has allowed
to solve several issues. The fundamental requirement for no-arbitrage is the existence of an
equivalent martingale measure. Generally, finding it is not a trivial task, since valid measure
changes must be independent of the delivery parameters. Mean-reversion naturally requires
affine Girsanov kernels, which are in particular stochastic and unbounded. We have been
able to validate under minimal assumptions rather general density processes, with stochastic
kernels for the Brownian components and Esscher-type factors for the pure-jump part. In
addition, swaps and forwards have to satisfy an integral relation, which in general leads to
losing analytical tractability, and in particular the Markov property. We succeed in preserving
them by introducing simple relations among the coefficients of the dynamics.

Passing to the applications, first we have shown that the well-known Lucia-Schwarz model
was already included in the class of models that we here characterized. We have also presented
an extension of it, capable to model seasonality in forward’s volatilities, besides the price
seasonality component already present in the original model.

We then presented a multidimensional market model, which has enabled us in particular
to reproduce cointegration effects. As the energy-related markets are strongly interconnected
for physical reasons, the possibility of modeling dependence relations more sophisticated than
correlation is particularly important for our application purposes.

Looking ahead to future research, since the additive dynamics produce tractable price
processes, we believe to have opened the way for analytical formulas for complex derivatives,
multicommodity portfolios and risk measures.

2.7 Appendix

2.7.1 Proof of Theorem 2.3.5

Part of this proof will be presented in a simpler version than the one developed in an earlier
draft of this work, thanks to the useful suggestions of an anonymous referee. Introduce the
sequence of stopping times τn := inf{t ≥ 0 : ‖X(t)‖ ≥ n}. Set f(y) := (1 + y) log(1 + y)− y
and define the process:

B(t) :=
1

2

∫ t

0
‖φ(s)‖2 ds+

∫ t

0
f(ξ(s)⊺y) ν(dy),
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which is the predictable compensator of

1

2
〈Hc, Hc〉+

∑

t≤·

f(∆H(t)).

In particular, observe that, for every n ∈ N, the stopped process Bτn(t) := B(t ∧ τn) is
bounded. From [94, Theorem III.1] it follows that Zτn is a uniformly integrable martingale.
Define the probability measure Qn by setting

dQn

dP
:= Zτn(T).

Then, we have

E[Z(T)] ≥ E[Z(T)✶τn>T] = E[Zτn(T)✶τn>T] = Qn(τn > T)

= 1−Qn

(
sup
t∈[0,T]

‖X(t)‖ ≥ n

)
≥ 1−

EQn

[
supt∈[0,T] ‖X(t)‖

]

n
.

If we show that

EQn

[
sup
t∈[0,T]

‖X(t)‖
]
≤ C, (2.77)

for a constant C independent on n, then E[Z(T)] ≥ 1−C/n for all n ∈ N, which implies that
E[Z(T)] = 1. As a consequence, in order to conclude the proof it is sufficient to verify (2.77).

By Girsanov’s Theorem, it holds that

dX(s) =
(
θ(s) + v(s)φ0(s)✶[0,τn](s) + z(s)K ξ(s)✶[0,τn](s) + Θ(s)X(s)

+ v(s)φ1(s)X(s)✶[0,τn](s)
)
ds+ v(s)dWn(s) + z(s)

∫

Rk

yN
n
(ds, dy),

where, under the measure Qn, Wn(s) =W (s)−
∫ s
0 ✶[0,τn](u)φ(u) du is a Brownian motion and

N
n
(ds, dy) = N(ds, dy) − ✶[0,τn](s) ξ(s)

⊺y ν(dy)ds is the Qn-compensated Poisson random
measure of N (see [104, Theorem 1.35]). Hence, for each t ∈ [0,T], (set w.l.o.g. X(0) = 0)

EQn

[
sup
s∈[0,t]

‖X(s)‖2
]

≤ 4

(
EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0

(
θ(u) + v(u)φ0(u)✶[0,τn](u) + z(u)K ξ(u)✶[0,τn](u)

)
du

∥∥∥∥
2
]

+ EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0

(
Θ(u) + ✶[0,τn](u)v(u)φ1(u)

)
X(u) du

∥∥∥∥
2
]

+ EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0
v(u)dWn(u)

∥∥∥∥
2
]
+ EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0

∫

Rk

z(u) y N
n
(du, dy)

∥∥∥∥
2
])

.
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Firstly, by integrability assumptions on the coefficients, we have

EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0

(
θ(u) + v(u)φ0(u)✶[0,τn](u) + z(u)K ξ(u)✶[0,τn](u)

)
du

∥∥∥∥
2
]

+ EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0

(
Θ(u) + ✶[0,τn](u)v(u)φ1(u)

)
X(u) du

∥∥∥∥
2
]

≤ TEQn

[∫ T

0

∥∥θ(u) + v(u)φ0(u)✶[0,τn](u) + z(u)K ξ(u)✶[0,τn](u)
∥∥2 du

]

+ TEQn

[∫ t

0

∥∥Θ(u) + ✶[0,τn](u)v(u)φ1(u)
∥∥2 ‖X(u)‖2 du

]

≤ C1 + C2

∫ t

0
EQn

[
sup
v∈[0,u]

‖X(v)‖2
]
du,

for some constants C1, C2 independent of n. For the martingale part, we apply Doob’s
L2-inequalities (e.g. [50, Theorem 5.1.3]). As v is square-integrable, the first term yields

EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0
v(u)dWn(u)

∥∥∥∥
2
]
≤ TEQn

[∫ T

0
‖v(s)‖2ds

]
= TC3.

For the second term, since the Lévy measure ν admits fourth moment, ξ is bounded and z is
square-integrable, we have that

EQn

[
sup
s∈[0,t]

∥∥∥∥
∫ s

0

∫

Rk

z(u) y N
n
(du, dy)

∥∥∥∥
2
]

≤ TEQn

[∫ T

0

∫

Rk

∥∥z(s) y + ✶[0,τn](s) z(s) y ξ(s)
⊺y
∥∥2 ν(dy)ds

]

≤ TC4

(∫

Rk

‖y‖2ν(dy) +
∫

Rk

‖y‖4ν(dy)
)
,

with C3, C4 independent of n. Finally, all the bounds together give

EQn

[
sup
s∈[0,t]

‖X(s)‖2
]
≤ C5 + C6

∫ t

0
EQn

[
sup
v∈[0,u]

‖X(v)‖2
]
du,

again with constants independent of n. We conclude by Gronwall’s lemma that

EQn

[
sup
t∈[0,T]

‖X(t)‖2
]
≤ C5 e

C6T,

which implies (2.77). This concludes the proof.

2.7.2 Proof of Theorem 2.3.6

The proof is based on the same idea of Proposition 5.1 in [27], where a weak Novikov-type
condition is applied to the series representation of the exponential. In view of [87, Corollary
5.14] it is sufficient to prove that there exists an increasing sequence of positive real numbers
(tk)k∈N diverging to +∞ such that, for all k ∈ N,

E

[
exp

(
1

2

∫ tk+1

tk

‖φ(t)‖2dt
)]

<∞, (2.78)
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where
φ(t) = φ1(t)X(t) + φ0(t)

and
dX(t) = (θ(t) + Θ(t)X(t))dt+ v(t)dW (t). (2.79)

Since Θ satisfies (CP) (see Definition 2.2.2), we can write the unique solution of (2.79) as

X(t) = e
∫ t

0
Θ(s)dsX(0) +

∫ t

0
e
∫ t

s
Θ(u)duθ(s)ds+

∫ t

0
e
∫ t

s
Θ(u)duv(s)dW (s).

Now, we start to estimate the quantity in (2.78) by

1

2
‖φ(t)‖2 ≤ ‖φ1(t)X(t)‖2 + ‖φ0(t)‖2.

The second term is deterministic, so as to prove (2.78) we can neglect it. Hence, we move to
consider the first one. Let us denote U(t) := e

∫ t

0
Θ(s)ds. Then,

‖φ1(t)X(t)‖2 ≤ 3‖φ1(t)U(t)X(0)‖2 + 3

∫ t

0
‖φ1(t)U(t)U(s)−1θ(s)‖2ds

+ 3

∥∥∥∥
∫ t

0
φ1(t)U(t)U(s)−1v(s)dW (s)

∥∥∥∥
2

≤ 3‖φ1(t)U(t)‖2
(
‖X(0)‖2 +

∫ t

0
‖U(s)−1θ(s)‖2ds+

∥∥∥∥
∫ t

0
U(s)−1v(s)dW (s)

∥∥∥∥
2
)
.

As φ1 and Θ are bounded, we are essentially left with

E

[
exp

(
1

2

∫ tk+1

tk

‖φ(t)‖2dt
)]

≤ C1E

[
exp

(
C2

∫ tk+1

tk

∥∥∥∥
∫ t

0
U(s)−1v(s)dW (s)

∥∥∥∥
2

dt

)]
,

where C1, C2 are constants.
Let us introduce the matrix-valued function g(s) := U(s)−1v(s). Now, by Lebesgue’s

theorem

E

[
exp

(
C2

∫ tk+1

tk

∥∥∥∥
∫ t

0
g(s)dW (s)

∥∥∥∥
2

dt

)]
=

∞∑

n=0

Cn2
n!

E

[(∫ tk+1

tk

∥∥∥∥
∫ t

0
g(s)dW (s)

∥∥∥∥
2

dt

)n]
.

(2.80)
Next, from Jensen’s inequality,

E

[(∫ tk+1

tk

∥∥∥∥
∫ t

0
g(s)dW (s)

∥∥∥∥
2

dt

)n]
≤ (tk+1 − tk)

n−1

∫ tk+1

tk

E

[∥∥∥∥
∫ t

0
g(s)dW (s)

∥∥∥∥
2n
]
dt.

Notice that, since
∫ t
0 ‖g(s)‖2ds < ∞, the random variable

∫ t
0 g(s)dW (s) is equal in law to(√∫ t

0 ‖g(s)‖2ds
)
Z, where Z is a standard normal vector. Therefore, since g is square-

integrable,

E

[∥∥∥∥
∫ t

0
g(s)dW (s)

∥∥∥∥
2n
]
=

(∫ t

0
‖g(s)‖2ds

)n
E(‖Z‖2n) ≤ Cn3 E(‖Z‖2n),
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for a constant C3.
Finally, exploiting the last two estimates, we find that (2.80) is bounded by

E

[
exp

(
C2

∫ tk+1

tk

∥∥∥∥
∫ t

0
g(s)dW (s)

∥∥∥∥
2

dt

)]
≤

∞∑

n=0

(C2C3)
n(tk+1 − tk)

n

n!
E(‖Z‖2n).

A well-known property of Gaussian moments is the following

E(‖Z‖2n) ≤ C4nE(‖Z‖2(n−1)).

By applying the ratio test for series we get that, if we choose (tk)k such that C2C3C4(tk+1 −
tk) < 1, then

∞∑

n=0

(C2C3C4)
n(tk+1 − tk)

n

n!
E(‖Z‖2n) <∞,

which implies (2.78) and, therefore, the statement.



CHAPTER 3

Mean-reverting no-arbitrage additive models for

forward curves in energy markets

In this paper we present an additive no-arbitrage model for energy forward markets capable
to exhibit mean-reversion. The model naturally incorporates term structures for both the
mean-reversion level and the volatility of forward prices and it is able to reproduce the
seasonalities empirically observed in gas and power markets. We also present a method to
estimate the model parameters, based on quadratic variation/covariation for the volatility
and on constrained maximum-likelihood estimation for the mean-reversion speed and level.
We apply this technique to time series of Phelix Base forward products.

3.1 Introduction

Standard models for energy markets usually incorporate mean-reversion in the dynamics of
spot [18, 21, 88, 99] and forward [92] prices. Less standard is the requirement that these
markets are arbitrage free. This can be relevant especially in natural gas and power markets,
which cannot be delivered at a given instant but is rather delivered over a certain time period,
e.g. a month (M), a quarter (Q) or a whole calendar year (Cal). In these forward markets,
one can find at the same time several forwards covering the same time period (e.g. a quarter
covered by the corresponding contract as well as the three corresponding monthly contracts).
However, these contracts are not all present in the markets at the same time. In fact, usually
only the shortest-maturity months are present, while the other months are still packed in
quarterly or calendar contracts. As time passes, these long contracts are unpacked in a cascade
mechanism as in Figure 3.1.

In these situations, one must seek models which avoid the possibility of arbitrages. More
in detail, at each given time t the following relations must hold:

• the value of a forward contract, which gives the obligation to buy a quantity of energy
at the marginal price K for a period [T1, Tn] must be the sum of the values of forward
contracts with the same price K for the subperiods [T1, T2], [T2, T3], . . . , [Tn−1, Tn];

• the forward price, i.e. the price K = F (t, T1, Tn) which makes the price of the above
contract zero, must be such that

F (t, T1, Tn) =
1

Tn − T1

n−1∑

i=1

(Ti+1 − Ti)F (t, Ti, Ti+1). (3.1)

59
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Cal-16

↓ ↓ ↓ ↓
Q1/16 Q2/16 Q3/16 Q4/16

↓ ↓ ↓ ↓ ↓ ↓
J/16 F/16 M/16 Q2/16 Q3/16 Q4/16

↓ ↓ ↓ ↓ ↓
A/16 M/16 J/16 Q3/16 Q4/16

...
...

Figure 3.1: Cascade unpacking mechanism of forward contracts. For each given calendar year,
as time passes forwards are unpacked first in quarters, then in the corresponding months. It
may happen that the same delivery period is covered in the market by different contracts, e.g.
one simultaneously finds quotes for Jan/16, Feb/16, Mar/16 and Q1/16.

Since forward contracts are the most liquid products traded in energy markets, in organized
markets usually forward prices are quoted and traded continuously. In this situation, one must
also avoid models which allow for dynamic arbitrages. This latter (dynamic) no-arbitrage
assumption is ensured by the Heath-Jarrow-Morton (HJM) paradigm, which prescribes that
in diffusion models the drift and the diffusion coefficients of forward prices satisfy certain
relations. These depend on the dynamics of theoretical objects called “instantaneous forward
contracts", which are usually not present in the market if forward contracts which deliver over
a period are traded. However, it is difficult to achieve this with multiplicative models, where
one models the log-prices being e.g. Gaussian or non-Gaussian mean-reverting processes, in
both cases ending up with non-Markovian models (see e.g. [32, Chapter 6]).

For these reasons, we choose to work with an arithmetic model, i.e. we model directly the
forward prices as Gaussian mean-reverting processes, in line with a growing recent literature
[18, 26, 57, 65, 88]. The mathematical convenience is that, with this choice, the HJM relations
are satisfied in a very natural way. In principle, we expose ourself to the possibility of negative
prices, which would seem in contrast with economic intuition. However we argue that, given
the increasing presence of negative spot prices in current power markets (see e.g. [57, 65] and
the references therein), there is the theoretical possibility of observing a negative price also in
some forward contract, though with a very small probability. For this reason, our model is
perfectly suited for power forward markets and, for a suitable choice of coefficients, also for
natural gas forward markets.

The final result is that, in general, a forward contract is mean-reverting with respect to an
infinite linear combination of instantaneous forward contracts, thus making the model infinite-
dimensional. To solve this conundrum, we make the key assumptions that instantaneous
(non-traded) forward prices (and, as a consequence, also the traded ones) depend linearly on a
finite number of (hidden) state variables, and that the mean-reversion speed is at each given
time the same for all contracts in the market. In order not to have to deal with models with
incomplete information, we impose that these hidden factors do not appear explicitly in the
forward prices’ dynamics. It turns out that this requirement is equivalent to the fact that the
coefficients satisfy suitable linear algebraic conditions.

We also show that this class is not void, since the well known Lucia-Schwartz model [95],
if we compute the forwards’ dynamics, turns out to be of this kind. This model describes the
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spot price as the sum of two hidden state variables plus a deterministic seasonal component.
Also, it is quite flexible in mean price levels, by incorporating the spot’s seasonal component,
but the volatility succeeds only in reproducing the Samuelson effect as an exponential decay,
without being able to reproduce more complex term structures. This fact can be observed
for example in Figure 3.2, where the Samuelson effect alone is not sufficient to explain the
complex patterns of the realized volatilities of the different forward prices.

Jan16 Jan17 Jan18 Jan19 Jan20

Delivery Period
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0.4

0.6
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ti
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Figure 3.2: Realized volatilities of forward prices present in the Phelix Base market from
January 4, 2016 to May 23, 2017. For forward contracts maturing before May, 2017 we have
either all the market quotes or the most recent ones. It is clear that the term structure of
volatilities cannot be explained simply by the Samuelson effect. More in detail, the snapshot
of calendar contracts’ volatilities exhibit a decreasing pattern which cannot be modeled by an
exponential component, which is the typical way of modeling the Samuelson effect (see [58]
and references therein). Also quarterly contracts have a term structure of volatility which
present a yearly seasonality, while the monthly term structure volatility exhibits an even more
complicated term structure.

To overcome this rigidity, we propose a modification of the Lucia-Schwartz model which
is free of arbitrages in the way discussed above, where the prices of forward contracts are
mean-reverting and where both price level and volatility are allowed to have a non-trivial
term structure. As in the Lucia-Schwartz model, the mean-reversion level of forward contracts
corresponds to the seasonal component of spot prices, and the prices are moved by two
Brownian motions, possibly correlated. However, while one Brownian component takes into
account the short-term movements and reproduces a Samuelson-like term structure, which
decays exponentially with time to maturity, the other Brownian component is able to model
more complex term structures of volatility with respect to absolute maturities. The model also
predicts a well-observed phenomenon, i.e. the fact that contracts with shorter delivery periods
(e.g. months) are more volatile than contracts with longer delivery periods (e.g. quarters or
calendars).

We then present a technique for estimating the parameters of this model based on market
time series of forward prices, which are the most liquid market quotes. For the volatility,
this task is not trivial: in fact, if we postulate that the term structure of volatility is also
maturity-dependent as above, we cannot employ the well-known technique of rolling time
series to estimate volatilities of contracts having the same relative maturity (see e.g. [5]).
Instead, we use a technique already present in [58] based on quadratic variation/covariation
of forward time series, and in this way we estimate the volatility term structure. After having
estimated the volatility coefficients, we pass to the mean-reversion speed and levels in a
non-parametric way, so that we can replicate any functional behavior of the forward long-term
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mean, which takes into account the no-arbitrage requirements among forwards covering the
same time period.

We apply this estimation technique on a time series for the Phelix Base forward market
from January 4, 2016 to May 23, 2017, considering each monthly, quarterly and calendar
forward contract traded in that time window (we do not consider shorter period contracts
or semesters). Since our model is able to reproduce complex volatility shapes, we first try
with a popular choice for seasonal component, i.e. a linear combination of trigonometric
functions (see e.g. [32, Chapter 8.6]) plus a linear component in maturity, which takes into
account a possible non-seasonal long-run volatility trend across the calendar years. We then
compare it with a fully non-parametric volatility shape, where the second factor is a free
parameter for each atomic forward. After having estimated the volatility, we pass to estimate
the mean-reversion speed and level. More in detail, we assume that this latter quantity
depends on the single contract, but that overall no-arbitrage HJM relations must hold among
contracts spanning the same period (e.g. 3 months / 1 quarter). This is done by using
maximum likelihood estimation (MLE) with the technique of Lagrange multipliers to take
into account no-arbitrage constraints.

The paper is structured as follows. In Section 2 we present an overview of models for
energy forward curves based on the HJM paradigm. In Section 3 we show how mean-reversion
for forward contracts can be introduced into the HJM paradigm, with the Lucia-Schwartz
model as an example. In Section 4 we present our generalization of the Lucia-Schwartz model,
and describe stylized facts which are reproduced by our model. In Section 5 we present an
estimation technique which can be used in our framework, and is applied in Section 6 to the
Phelix Base power market. Section 7 concludes.

3.2 HJM-based models

Since in energy markets many forward contracts for a single commodity are traded at the
same time, it is important to ensure that the price comovements of these contracts do not
allow for arbitrages. A classical methodology to ensure that this is not possible has been, for
interest rates models used in fixed income markets, the one introduced by Heath, Jarrow and
Morton (HJM) in [76]. Since the energy forward markets share many similarities with fixed
income markets, the idea of imposing no-arbitrage in forward markets has been implemented
using a HJM methodology, for the first time in [23]. Here we informally recall this approach,
sending the reader interested in technical details (assumptions on required integrability of
involved processes, etc.) to that paper.

Assume that a “instantaneous forward price" exists on the market for each maturity T > t,
whose evolution under the real-world probability P is given by

df(t, T ) = µ(t, T ) dt+

d∑

i=1

θi(t, T ) dWi(t), (3.2)

where W = (W0, . . . ,Wd) is a d-dimensional P-Brownian motion. These contracts may or
may not exist on the market if the futures with delivery over intervals are traded, this being a
characteristics of each commodity. For instance, the power futures markets trade contracts
with “thin” granularity, i.e. daily, so that one can interpret them as instantaneous delivery
contracts. For natural gas, instead, usually the shortest delivery period available on the market
is monthly. Nevertheless, when formulating our model, we are introducing instantaneous
forwards as theoretical building blocks for traded contracts. This will be more clear in the
following, when we will introduce the other class of contracts.
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The assumption that no arbitrages are present in the market is equivalent to the existence
of a martingale measure Q ∼ P such that

df(t, T ) =
d∑

i=0

θi(t, T ) dW
Q
i (t)

under Q, where WQ is a d-dimensional Q-Brownian motion, linked to W by the so-called
market price of risk Λ, such that

dWQ(t) = dW (t) + Λ(t) dt.

The spot price is S(t) = f(t, t), we have that

dS(t) = ∂2f(t, t) dt+
d∑

i=1

θi(t, t) dW
Q
i (t) (3.3)

under Q, and that f(t, T ) = EQ[S(T ) | Ft]. Notice that, in electricity and gas markets, the
spot price S is typically not traded, even if a common proxy for the spot price in power
market is assumed to be the day-ahead price of electricity. The day-ahead price is however
settled above forward contracts with hourly granularity, which again is not a spot price in the
mathematical sense above.

Under this model, the forward price is given by1

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, u) du.

This naturally implies the no-arbitrage additive relation (3.1) among forward contracts. As
discussed earlier, in this definition we are introducing the contracts f as building blocks for
the contracts F , in order to satisfy the no-arbitrage constraints in a natural way. Also, we
have the dynamics

dF (t, T1, T2) = Σ(t, T1, T2) dW
Q(t)

under Q, with

Σ(t, T1, T2) =

∫ T2
T1
θ(t, u) du

T2 − T1

and

dF (t, T1, T2) =

∫ T2
T1
µ(t, u) du

T2 − T1
dt+Σ(t, T1, T2) dW (t) (3.4)

under P.

1 More generally, one has

F (t, T1, T2) =

∫ T2

T1

ŵ(u, T1, T2)f(t, u) du

where ŵ is a weight function which represents the time value of money [23], depending on how settlement
takes place. To fix the ideas, we assume the simplest case, i.e. ŵ(u, T1, T2) = 1

T2−T1

, and we just remark
that different settlement rules, i.e. different choices of ŵ, would imply a different no-arbitrage condition in
Equation (3.1).
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3.3 Mean reversion consistent with no-arbitrage

In many popular models, under the real-world probability measure P, energy prices are either
exponentials of Gaussian mean-reverting processes [21, 48, 73] or additive mean-reverting
processes driven by Gaussian [57] or non-Gaussian [18, 21, 22, 95] noise. This is usually done
on spot prices, which however are not traded liquidly in energy markets, the most liquid
contracts traded being forwards of the form f(·, T ) or of the form F (·, T1, T2), depending on
the particular commodity.

Our aim here is to formulate mean-reversion models both for f(t, T ) and F (·, T1, T2) for
every maturity period [T1, T2], which are Markovian with respect to the same state variable,
i.e. respectively with the dynamics

df(t, T ) = (−λ(t, T )f(t, T ) + c(t, T )) dt+ θ(t, T ) dW (t),

dF (t, T1, T2) = (−λ(t, T1, T2)F (t, T1, T2) + C(t, T1, T2)) dt+Σ(t, T1, T2) dW (t),

in such a way that they are also consistent with the no-arbitrage relation in Equation (3.1).
This is not trivial at all. In fact, given the dynamics in Equation (3.4), we should have

−λ(t, T1, T2)F (t, T1, T2) = −
∫ T2
T1
λ(t, u)f(t, u) du

T2 − T1
.

Should this not happen, we would have

dF (t, T1, T2) =

(
−
∫ T2
T1
λ(t, u)f(t, u) du

T2 − T1
+ C(t, T1, T2)

)
dt+Σ(t, T1, T2) dW (t),

which is a relation which involves the infinite number of factors f(·, T ), T ∈ [T1, T2]. This is
similar to what happens with geometric models [32], where even the volatility of F (t, T1, T2)
under the risk-neutral measure depends on all the contracts F (t, T1, u) with u ∈ [T1, T2].
Here we do not have this complication for the risk neutral dynamics, but for the real
world dynamics. The problem is that the dynamics above is non-Markovian in F (t, T1, T2),
and is time-consuming to simulate due to the dependence on all forward contracts with
shorter delivery periods, and hard to use to estimate market parameters. In principle, one
could consider it as a Markovian evolution in infinite dimensions, which would require more
advanced techniques even for the well-posedness of the dynamics above (see e.g. [?]). For
the reasons explained above, we avoid seeking the utmost generality and consider, with the
next assumption, a subclass of models which will allow for a much more efficient modeling of
forward prices.

We make this key assumption.

Assumption 9. Assume that

f(t, T ) = α(t, T )X(t) + β(t, T ),

where X is a vector of state variables and α, β are suitable deterministic functions.

This assumption implies that also F (t, T1, T2) are functions of the same state variables X:

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, u) du =

∫ T2
T1
α(t, u) du

T2 − T1
X(t) +

∫ T2
T1
β(t, u) du

T2 − T1
. (3.5)
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It is thus natural to assume here that the market price of risk Λ is given by

Λ(t) = A(t)X(t) + b(t), (3.6)

with A, b deterministic. Since it must hold µ(t, T ) = θ(t, T )Λ(t) by Equation (3.2), we impose

−λ(t, T )f(t, T ) + c(t, T ) = θ(t, T )(A(t)X(t) + b(t)).

This implies the relation

−λ(t, T )(α(t, T )X(t) + β(t, T )) + c(t, T ) = θ(t, T )(A(t)X(t) + b(t)).

By equating the terms with respect to X(t), we obtain
{

−λ(t, T )α(t, T ) = θ(t, T )A(t),
c(t, T ) = θ(t, T )b(t) + λ(t, T )β(t, T ).

Thus, apart from seasonalities in t, the mean-reversion coefficient of the forward contract
maturing in T is proportional to its volatility coefficient. This effect propagates to contracts
F (t, T1, T2): in fact, the drift in Equation (3.4) is

∫ T2
T1
µ(t, u) du

T2 − T1
=

∫ T2
T1
θ(t, u)Λ(t) du

T2 − T1
=

∫ T2
T1
θ(t, u)(A(t)X(t) + b(t)) du

T2 − T1
dt =

= −
∫ T2
T1
λ(t, u)α(t, u) du

T2 − T1
X(t) +

∫ T2
T1

−λ(t, T )β(t, T ) + c(t, T ) du

T2 − T1
.

Unfortunately, if λ(t, T ) depends on T then we cannot simplify furtherly. Instead, if we
postulate that λ does not depend on T , then we obtain

∫ T2
T1
µ(t, u) du

T2 − T1
= −λ(t)

∫ T2
T1
α(t, u) du

T2 − T1
X(t) +

∫ T2
T1

−λ(t)β(t, T ) + c(t, T ) du

T2 − T1

= −λ(t)
(
F (t, T1, T2)−

∫ T2
T1
β(t, u) du

T2 − T1

)
+

+

∫ T2
T1

−λ(t)β(t, u) + c(t, u) du

T2 − T1
= −λ(t)F (t, T1, T2) + C(t, T1, T2)

with 



λ(t)α(t, T ) = θ(t, T )A(t),

C(t, T1, T2) =

∫ T2
T1
c(t, u) du

T2 − T1
.

To conclude, let us remark that first we have described a framework where a forward
F (·, T1, T2) is written as an infinite linear combination of instantaneous forwards f(·, T ).
Later, in order to simplify a highly intractable probabilistic setting, we have introduced a
modeling assumption on the functional form of f(t, T ). On the technical side, we are working
under the assumptions that the stochastic differential equations admit a unique solution for
each maturity and delivery period. When imposing the affine dependence of the instantaneous
forwards on the underlying process X, we need similar assumptions for its dynamics. Moreover,
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as we have presented above, certain relations must hold among the coefficients of all the
equations. It can be shown that one of the mathematical characterizations is that X is a
mean-reverting process. We do not want to go in deep into this kind of discussion in this
paper, since a general rigorous study of this framework and, in particular, of the link between
the integral relation and the affine assumption on f is detailed in [26]. On the other side,
looking from a modeling perspective, we first assume to have a stochastic description of a
market made of any forward contract (in the sense of delivery period), by imposing an integral
relation among them by arbitrage arguments. Then, we focus on a subfamily of models,
described by a tractable representation and where the coefficients are assumed to satisfy
simple linear relations.

The upcoming example is built from the Lucia-Schwartz model [95] and generates forward
prices satisfying the affine representation mentioned above.

Example 3.3.1 (Lucia-Schwartz model). Assume that S(t) = φ(t) +X1(t) +X2(t), with φ
deterministic seasonal component and

dX1(t) = −κX1(t) dt+ σ1 dW
Q
1 (t),

dX2(t) = µ dt+ σ2 dW
Q
2 (t),

where WQ
1 and WQ

2 are two Brownian motions under Q, with possible mutual correlation ρ.
Then

S(T ) = φ(T ) + e−κ(T−t)X1(t) + σ1

∫ T

t
e−κ(u−t) dWQ

1 (u) +

+X2(t) + µ(T − t) + σ2(W
Q
2 (T )−WQ

2 (t))

and
F (t, T ) = EQ[S(T ) | Ft] = α(t, T )X(t) + β(t, T )

with
α(t, T ) := (e−κ(T−t), 1), β(t, T ) := φ(T ) + µ(T − t).

Also,
df(t, T ) = e−κ(T−t)σ1 dW

Q
1 (t) + σ2 dW

Q
2 (t),

so that θ(t, T ) = (e−κ(T−t)σ1, σ2). This means that the dynamics of traded forwards F (·, T1, T2)
are

dF (t, T1, T2) = −e
−κ(T2−t) − e−κ(T1−t)

κ(T2 − T1)
σ1 dW

Q
1 (t) + σ2 dW

Q
2 (t).

Now, if we want a mean-reversion coefficient λ(t) for the forward under P, we must impose

−λ(t)(e−κ(T−t), 1) = (e−κ(T−t)σ1, σ2)A(t) = (e−κ(T−t), 1)

(
σ1 0
0 σ2

)
A(t)

Since (e−κ(T−t), 1) is the only thing depending on T , we must require that

−λ(t)Id2 =
(
σ1 0
0 σ2

)
A(t),

where Id2 is the 2 × 2 identity matrix. Finally

A(t) := −λ(t)
(

1/σ1 0
0 1/σ2

)
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and

c(t, T ) = θ(t, T )b(t) + λ(t)β(t, T ) =

= (e−κ(T−t)σ1, σ2)b(t) + λ(t)(φ(T ) + µ(T − t)).

Thus, under P we obtain the dynamics

df(t, T ) = [λ(t)(φ(T ) + µ(T − t)− f(t, T )) + (e−κ(T−t)σ1, σ2)b(t)] dt+

+e−κ(T−t)σ1 dW1(t) + σ2 dW2(t),

from which we get that f(t, T ) has a reversion of its mean towards φ(T ) + µ(T − t), plus
a correction term due to b. If we impose that µ and b are zero, we get the much simpler
dynamics

df(t, T ) = λ(t)(φ(T )− f(t, T )) dt+ e−κ(T−t)σ1 dW1(t) + σ2 dW2(t),

where the long-term mean of f(t, T ) is exactly the seasonal component φ(T ). Thus, the
function φ(T ) can be seen as a seasonal component both for the (future) spot price S(T ) and
for the forward price f(t, T ).

3.4 A two-factor model

Now we present a generalization of the Lucia-Schwartz model with two factors. Assume that
S(t) = φ(t) +X1(t) +X2(t), with φ deterministic seasonal component and with Q-dynamics
for X = (X1, X2) given by

dX1(t) = −κX1(t) dt+ σ1 dW
Q
1 (t), (3.7)

dX2(t) =
ψ′(t)

ψ(t)
X2(t) dt+ ψ(t) dWQ

2 (t), (3.8)

with κ > 0, σ1 > 0 and ψ deterministic function of time such that

ψ′(t)

ψ(t)
6= −κ (3.9)

(otherwise, the model collapses into a 1-factor model). These two state variables can be
explicitly represented in terms of their initial conditions as

X1(t) = e−κtX1(0) + σ1

∫ t

0
e−κ(t−s)dWQ

1 (s),

X2(t) = ψ(t)

(
X2(0)

ψ(0)
+WQ

2 (t)

)
.

In other words, X1 is a mean-reverting Ornstein-Uhlenbeck process, and X2

ψ is a Brownian
motion. The idea here is to have a mean-reverting component X1 for short periods and a
non-stationary component X2 for longer periods, possibly correlated with X1. While in the
Lucia-Schwartz model ψ is constant, so that X2 is essentially a Brownian motion, here its
variance is time-varying, which allows to have seasonality in the volatility as well as in the
price level. Thus, we can regard ψ as the seasonality factor for the volatility, while φ is the
seasonality factor for the price.
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Then the spot price is given by

S(T ) = φ(T ) + e−κ(T−t)X1(t) + σ1

∫ T

t
e−κ(u−t) dWQ

1 (u) +

+
ψ(T )

ψ(t)
X2(t) + ψ(T )(WQ

2 (T )−WQ
2 (t))

and the instantaneous forward price f(t, T ) can be computed as

f(t, T ) = EQ[S(T ) | Ft] = α(t, T )X(t) + β(t, T ),

with

α(t, T ) :=

(
e−κ(T−t),

ψ(T )

ψ(t)

)
, β(t, T ) := φ(T ).

The dynamics of f(t, T ) under the risk-neutral measure Q are

df(t, T ) = e−κ(T−t)σ1 dW
Q
1 (t) + ψ(T ) dWQ

2 (t),

thus θ(t, T ) = (e−κ(T−t)σ1, ψ(T )) in the notation of Sections 2–3.
This model allows for the instantaneous forward contracts f(t, T ) to have a term structure

of the volatility which accounts both for the Samuelson effect (volatility increasing as t→ T )
in the term e−κ(T−t)σ1, as well as a potentially complex seasonality with respect to the
absolute maturity in the term ψ(T ). A popular choice is to represent the seasonality function
ψ as a truncated Fourier series with a drift term

ψ(T ) := σ2 + µT +

a∑

j=1

(
α2j cos(ωjT ) + α2j+1 sin(ωjT )

)
, (3.10)

with ω = 2π/365, a ∈ N, µ ∈ R, (σ2, α2, . . . , α2a+1) ∈ R2a+1.
Now we want to choose the market price of risk Λ as in Equation (3.6) in order to have

a mean-reversion dynamics for the forward prices. We also impose b ≡ 0 in order to avoid
overparameterizations in the dynamics (recall that we already have the seasonal component φ
in the spot price). If we want a mean-reversion coefficient λ(t), we must impose

−λ(t)
(
e−κ(T−t),

ψ(T )

ψ(t)

)
=

(
e−κ(T−t),

ψ(T )

ψ(t)

)(
σ1 0
0 ψ(t)

)
A(t).

Since this relation must hold for all T > t and the components of (e−κ(T−t), ψ(T )ψ(t) ) are linearly
independent by Equation (3.9), we must impose that

−λ(t)Id2 =
(
σ1 0
0 ψ(t)

)
A(t)

where Id2 is the 2 × 2 identity matrix, and finally

A(t) := −λ(t)
(

1/σ1 0
0 1/ψ(t)

)
.

With this specification for the market price of risk, the dynamics of X under P turn out to be
(recall that b ≡ 0):

dX1(t) = −(λ(t) + κ)X1(t) dt+ σ1 dW1(t),

dX2(t) = −
(
λ(t) +

ψ′(t)

ψ(t)

)
X2(t) dt+ ψ(t) dW2(t)
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and also

c(t, T ) = λ(t)β(t, T ) = λ(t)φ(T ).

Finally,

C(t, T1, T2) =

∫ T2
T1
c(t, u) du

T2 − T1
= λ(t)

∫ T2
T1
φ(u) du

T2 − T1

so that the dynamics of f(t, T ) under the real-world probability measure P is

df(t, T ) = λ(t)(φ(T )− f(t, T )) dt+ θ(t, T ) dW (t)

and the dynamics of F (t, T1, T2) is

dF (t, T1, T2) = λ(t)

(∫ T2
T1
φ(u) du

T2 − T1
− F (t, T1, T2)

)
dt+Σ(t, T1, T2) dW (t).

Here, the global diffusion vector of F (t, T1, T2) is Σ(t, T1, T2) = (eκtΓ(T1, T2),Ψ(T1, T2)), with

Γ(T1, T2) :=
1

T2 − T1

∫ T2

T1

σ1e
−κu du =

σ1(e
−κT1 − e−κT2)

κ(T2 − T1)
, (3.11)

Ψ(T1, T2) :=
1

T2 − T1

∫ T2

T1

ψ(u) du. (3.12)

If, for example, ψ is as in Equation (3.10), then

Ψ(T1, T2) = σ2 + µ (T1 + T2) +
1

T2 − T1

a∑

j=1

(
α2j

ωj
(sin(ωjT2)− sin(ωjT1))

− α2j+1

ωj
(cos(ωjT2)− cos(ωjT1))

)
. (3.13)

From this model, we can recover various stylized facts typical of energy markets.

Remark 3.4.1. The mean-reversion speed λ(t) in the dynamics of forward prices f(t, T ) under
the real-world probability measure P can be time-dependent (but not maturity-dependent
in this formulation), and the long-term mean φ(T ) is exactly the seasonal component of the
spot price S. The same can be said about the dynamics of F (·, T1, T2), where this time the
long-term mean is the maturity-average of the long-term mean φ(T ), T ∈ [T1, T2].

Remark 3.4.2. We have a generalized Samuelson effect in the instantaneous (non-traded)
forward prices f(·, T ), which is quite evident, and also in the traded forward prices F (·, T1, T2).
About this latter, denoting the diffusion vector of F (t, T1, T2) as Σ(t, T1, T2) = (eκtΓ(T1, T2),Ψ(T1, T2))
as above, then the function t→ ‖Σ(t, T1, T2)‖ is increasing in t: as time to maturity decreases,
the volatility increases.

Remark 3.4.3. This model postulates that prices are regulated by two hidden factors, X1

and X2. This is in line with many models present in literature (e.g. [18, 21, 23, 48, 58, 89,
95, 99, 120]), and the common interpretation is that the first factor (here X1) is stationary
mean-reverting and models the short-term movements of the price curve, while the second
factor (here X2) is nonstationary and models the long-term movements. This dynamics are
usually assumed under the pricing measure Q, under which our factor X1 is a stationary
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Ornstein-Uhlenbeck process, while X2 is a Brownian motion scaled by the function ψ. However,
the common use of these models in the literature above is that these two factors stay hidden
and are not identified with e.g. macroeconomic variables. This use is robust especially
when the factors X1 and X2 do not appear explicitly in the dynamics of the observed prices
F (t, T1, T2), as is also the case here. The main novelty of our model is that this phenomenon
is also present in the P-dynamics, where we succeeded in building a model where the observed
prices F (t, T1, T2) are mean-reverting and Markov by themselves, and their dynamics do not
have an explicit dependence on X1 and X2. However, the effects of the interpretation above
of X1 and X2 can be still traced in the model’s behaviour. First, we observe in our model
that forward prices with shorter delivery periods are more volatile than forward prices with
longer delivery periods. In fact, |Γ(T1, T2)| is decreasing in the second variable. This means
that, for all T1 < T2 < T3, we have |Γ(T1, T2)| > |Γ(T1, T3)|. For instance, being equal the
time to maturity, monthly contracts are more volatile than quarters (lasting 3 months) or
calendars (lasting 1 year). Furthermore, the second factor Ψ(T1, T2) is able to capture both a
seasonal pattern and long-run movements. Therefore, the parameter Γ(T1, T2) incorporates
most of the short-term variability of futures’ prices, whereas Ψ(T1, T2) accounts for longer
periods as well. By coming back to the definition of the spot price dynamics in (3.7)-(3.8), we
see that this component is inherited by the volatility of the long-term factor of the spot price.
This means that the no-arbitrage construction of this model, if applied to both markets, links
the volatility of spot and futures in such a way. Analogously, the short-run futures volatility
Γ(T1, T2) is ruled by the parameter κ, which coincides with the mean-reversion speed of the
short-term factor of the spot.

In conclusion, we have shown that a natural extension of Lucia and Schwartz could allow
for a specific time-dependent speed of mean-reversion in the second factor, such that X2

ψ (t) is
a Brownian motion, as well as for a time-dependent speed of mean-reversion of forward prices.
Also, we worked out the ingredients for this model in our framework, so that the derived
dynamics is arbitrage free.

3.5 Calibration of a forward market

Assume that we have an energy commodity market (typically, electricity in a given country,
but possibly natural gas) and that its instantaneous spot price (possibly non-traded) satisfies
a model like the one of Section 4, with (hidden) state variables X = (X1, X2), driven by
the Brownian motions W1, W2, with correlation ρ. Assume also for simplicity that the
mean-reversion function λ(t) is constant in t. If N forward contracts are traded in the market
with maturity intervals [Ti,1, Ti,2], i = 1, . . . , N , respectively, then the corresponding forward
prices Fi(t) := F (t, Ti,1, Ti,2) will have the dynamics

dFi(t) = λ
(
Φi − Fi(t)

)
dt+ Γie

κtdW1(t) + ΨidW2(t) (3.14)
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with t < Ti,1, where the quantities Φi := Φ(Ti,1, Ti,2), Γi := Γ(Ti,1, Ti,2), Ψi := Ψ(Ti,1, Ti,2) do
not depend on t and are given by

Φ(Ti,1, Ti,2) =

∫ Ti,2
Ti,1

φ(u) du

Ti,2 − Ti,1
, (3.15)

Γ(Ti,1, Ti,2) =
σ1(e

−κTi,1 − e−κTi,2)

κ(Ti,2 − Ti,1)
, (3.16)

Ψ(Ti,1, Ti,2) =

∫ Ti,2
Ti,1

ψ(u) du

Ti,2 − Ti,1
, (3.17)

with σ1 ∈ R, k ∈ R+ and some deterministic functions φ and ψ, for all i = 1, . . . , N .
In order to calibrate this model to market data, we will follow a procedure already used

by one of the authors in [58]. First, we will calibrate the parameters starting from those of
the diffusion coefficient (which will be calibrated with realized covariation estimators) and
then we will pass to the mean-reversion parameters.

3.5.1 Calibration of the diffusions of the forward contracts

We now start by estimating the diffusion coefficients of all the forward contracts. Two different
approaches are studied: in the first, we model ψ by a truncated Fourier series with a linear
term as in Equation (3.10), while in the second we do not specify its functional form, thus
estimating directly the values Ψ(Ti,1, Ti,2), for i = 1, . . . , N .

Assume to observe N forward prices with delivery periods [Ti,1, Ti,2], i = 1, . . . , N , in
the observation period [t0, t], with t0 ≤ Ti,1 for all i = 1, . . . , N . Let also [τi,1, τi,2] be the
trading period of Fi in the interval [t0, t]. Then, if [τi,1, τi,2] ∩ [τj,1, τj,2] 6= ∅, the maximum
interval contained in [t0, t] where we can define the quadratic covariation between Fi and Fj
is [τij,1, τij,2], with

τij,1 := max(τi,1, τj,1), τij,2 := min(τi,2, τj,2).

It is possible to express the quadratic covariations as functions of the model parameters.

Proposition 3.5.1. Let i, j ∈ {1, . . . , N} be fixed, then the quadratic covariation of Fi and
Fj from τij,1 to τij,2 is given by

〈
Fi, Fj

〉τij,2
τij,1

= Aij +Bij + (Cij +Dij)ρ, (3.18)

where τ1 := τij,1, τ2 := τij,2,

Aij =
ΓiΓj
2κ

(e2κτ2 − e2κτ1), Bij = ΨiΨj(τ2 − τ1),

Cij =
ΓiΨj

κ
(eκτ2 − eκτ1), Dij =

ΨiΓj
κ

(eκτ2 − eκτ1).

Proof. The proof is a standard integration exercise, and is thus omitted.

Now we want to choose the parameters such that the model quadratic covariations above
are as near as possible to the realized quadratic covariations. If ψ is specified as in Equation
(3.10), then, for all i = 1, . . . , N , Ψi depends on the parameters µ, σ2, α2, . . . , α2a+1 (cf.
Equation (3.13)). Thus, in this case we define the diffusion parameter to be estimated as
p = (ρ, κ, µ, σ1, σ2, α2, . . . , α2a+1) ∈ R2a+5 and the constraint set is P = [−1, 1]×R+×R2a+3.
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On the other hand, if ψ is not given in parametric form, we directly estimate the values
Ψ1,Ψ2, . . . ,ΨN . We also have to take into account the following fact. By Equation (3.12),
the parameters Ψi satisfy the following constraints

Ψi = Ψ(Ti,1, Ti,2) =
n∑

j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Ψ(Tj,1, Tj,2) =
n∑

j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Ψj (3.19)

whenever [Ti,1, Ti,2] is the union of disjoint intervals [Tj,1, Tj,2] for j = 1, . . . , n, i.e. for all the
forwards with overlapping delivery. Therefore, we call atomic, with the same terminology as
[?], the contracts whose delivery period can not be partitioned by the delivery periods of other
forwards. In other words, we suppose that m forwards F1, . . . , Fm have disjoint delivery periods
[T1,1, T1,2], . . . , [Tm,1, Tm,2] and such that other forwards’ delivery periods can be expressed as
union of the former. For instance, suppose to observe in the chosen calibration window the
prices of Jan/17, Feb/17, Mar/17, Apr/17, Q1/17, Q2/17, Cal-17. On one hand, Q1/17 is
not atomic, since it can be “splitted” into Jan/17, Feb/17 and Mar/17. On the other hand,
Q2/17 turns out to be atomic, even if Apr/17 is already traded, as May/17 and Jun/17 are
not observed (being still not traded in the market). For the same reason, Cal-17 is considered
atomic as well. Then, in this example, if Ψ1, . . . ,Ψ7 denote the corresponding parameters,
we have that Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ7 are free parameters, as they refer to atomic contracts,
whereas to determine Ψ5 we use Equation (3.19). Consequently, in the second approach the
vector parameter to estimate is p = (ρ, κ, σ1,Ψ1,Ψ2, . . . ,ΨN ) ∈ P = [−1, 1] × R+ × RN+2

subject to the constraints given by Equation (3.19). For example, with the convention that
ΨQ2/17 denotes the parameter Ψi corresponding to the contract Q2/17, then

ΨQ2/17 = uApr/17ΨApr/17 + uMay/17ΨMay/17 + uJun/17ΨJun/17, (3.20)

where the weights ui are defined according to the number of days in the month/quarter (e.g.
for Apr/17 we have uApr/17 = 30/91).

To this purpose, after having chosen a calibration window [t0, t] as said before, we assume
to observe forward prices at discrete dates π = {t0 < t1 < . . . < tn = t}. Then, for all forward
contracts’ couples Fi, Fj , let us now denote with lij,1 and lij,2 the indexes of the partition π
such that tlij,1 = τij,1 and tlij,2 = τij,2, for all i, j = 1, . . . , N . If [τi,1, τi,2] ∩ [τj,1, τj,2] = ∅, we
let τij,1 = τij,2 = lij,1 = lij,2 = 0. From now on, in order to distinguish the random variables
from their realizations we use uppercase and lowercase letters, respectively. In particular,
we indicate with Fi the random variables relative to the i-th forward price, and with fi its
realization.

Definition 3.5.2. Let i, j ∈ {1, . . . , N}. Define the realized quadratic covariation of the
forwards Fi and Fj from τij,1 to τij,2 as

[
Fi, Fj

]τij,2
τij,1

:=

lij,2∑

l=lij,1+1

(
fi(tl)− fi(tl−1)

)(
fj(tl)− fj(tl−1)

)
.

Define also the realized quadratic variation of the forward Fi from τi,1 to τi,2 as
[
Fi
]τi,2
τi,1

:=
[
Fi, Fi

]τii,2
τii,1

.

It is a standard result [14] that these estimators are unbiased and consistent provided that
the forward contracts’ drifts are zero. Here this is not the case, but it is possible to prove,
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by adapting results in [14], that these estimators are biased (but with the bias depending on
the drift only on third order), consistent and asymptotically Gaussian. Thus, the realized
quadratic covariations approximate the model quadratic covariations, and this approximation
improves as the partition π becomes finer. Ideally, we wish that our model would be such that

[
Fi, Fj

]τij,2
τij,1

=
〈
Fi, Fj

〉τij,2
τij,1

, for all i, j = 1, . . . , N.

However, the right-hand sides of this system depend only on the parameters p of the model,
which are 2a + 5 in the truncated Fourier series approach and N + 3 in the general one.
Keeping into account the symmetry of quadratic covariations, this system has N(N + 1)/2
independent equations, and in general will be overdetermined. For this reason, we define a
nonlinear least squares estimator as follows.

Definition 3.5.3. Define the estimator p̂ as the vector which solves

min
p∈P

N∑

i=1

i∑

j=1

wij

([
Fi, Fj

]τij,2
τij,1

−
〈
Fi, Fj

〉τij,2
τij,1

)2
, (3.21)

possibly with some nonnegative weigths wij .

We observe that the quadratic covariations depend linearly on ρ, bilinearly on µ, σ1, σ2, α2, . . . , α2a+1

(respectively σ1,Φ1, . . . ,ΦN ), and in a nonlinear way on κ. Thus, even if least squares are
a classical tool in Statistics, it is difficult here to prove properties like unbiasedness and
consistency of the estimator p̂. On the other hand, in order to calibrate the parameters p, it
is not possible to obtain explicit estimators with good properties using standard techniques
(like maximum likelihood). Thus, the compromise on the choice of p̂ is to use nonlinear least
squares without proving whether p̂ has or not the classical properties of estimators.

3.5.2 Calibration of the mean-reversion coefficients

Now that we estimated the parameters of the diffusion part, we have to estimate the mean-
reversion coefficient λ and the long-term means Φi, for i = 1, . . . , N , in Equation (3.15).

We start from the dynamics of the i-th forward price Fi under P, as given by Equation
(3.14), where Γi and Ψi have already been estimated in Section 5.1. Under P the forward
price follows an Ornstein-Uhlenbeck process, with explicit solution

Fi(T ) = e−λ(T−t)Fi(t) +

∫ T

t
λΦie

−λ(T−s) ds

+

∫ T

t
Γie

κse−λ(T−s) dW1(s) +

∫ T

t
Ψie

−λ(T−s) dW2(s).

Notice that the processes F (T ) := (F1(T ), · · · , FN (T ))⊺ are not independent among each
other, as they are driven by the same two-dimensional Brownian motion. In particular, F (T )
conditioned to Ft is Gaussian:

F (T )|Ft ∼ N
(
e−λ(T−t)F (t) +Φ

(
1− e−λ(T−t)

)
,Σ(t, T )

)
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where Φ := (Φ1, · · · ,ΦN )⊺ and Σ(t, T ) :=
(
Σij(t, T )

)
i,j=1,...,N

, with

Σij(t, T ) :=

∫ T

t

(
ΓiΓje

2κs + ρeκs(ΓiΨj + ΓjΨi) + ΨiΨj

)
e−2λ(T−s) ds =

=
ΓiΓj

(
e2κT − e2κt−2λ(T−t)

)

2(κ+ λ)
+

(ΓiΨj + ΓjΨi)
(
eκT − eκt−2λ(T−t)

)
ρ

(κ+ 2λ)

+
ΨiΨj

(
1− e−2λ(T−t)

)

2λ

We can then use the following approximation: if T − t ≃ 0, then

Σij(t, T ) ≃
ΓiΓje

2κt
(
1 + 2κ(T − t)− 1− 2λ(T − t)

)

2(κ+ λ)
+

+
ρ(ΓiΨj + ΓjΨi)e

κt
(
1 + κ(T − t)− 1− 2λ(T − t)

)

κ+ 2λ

+
ΨiΨj

(
1− 1 + 2λ(T − t)

)

2λ
= (T − t)(ΓiΓje

2κt + (ΓiΨj + ΓjΨi)ρe
κt +ΨiΨj).

Thus, at first order, the variance depends only on parameters which are already known, while
in the mean the only quantities still not known are e−λ(T−t) and Φ(T1, T2).

Let us now assume to have daily observations, at times π = {t0 < t1 < . . . < tn = t}, with
tl = tl−1 + 1, l = 1, . . . , n. Then for tl ∈ π, by applying the previous approximation on the
variance Σ, we obtain

F (tl)− F (tl−1)|Ftl−1
∼ N

((
1− e−λ

)(
Φ− F (tl−1)

)
,Σ(tl−1)

)
(3.22)

where Σ(t) :=
(
Σij(t)

)
i,j=1,...,N

with

Σij(t) := ΓiΓje
2κt + (ΓiΨj + ΓjΨi)ρe

κt +ΨiΨj .

Since, by definition, Φi = 1
Ti,2−Ti,1

∫ Ti,2
Ti,1

φ(u) du, we are in the same situation as in the
calibration of the volatility component Ψ. Then we have essentially two approaches to perform
a parametric estimation of the vector Φ. The first consists in representing φ as an element
of an arbitrarily chosen parameterized family of functions. The second consists in regarding
Φ1, . . . ,ΦN as free parameters. Here, we adopt directly the latter, being the most general
approach.

Let us denote the parameter vector to estimate by p := (q,Φ) ∈ (0, 1) × RN+ , with
Φ := (Φ1, . . . ,ΦN ) and q := 1 − e−λ. It would be immediate to introduce the maximum
(log-)likelihood estimator for p, but we cannot apply it to the multidimensional vector of
returns F (tl) − F (tl−1). The problem is that, since the dynamics of all the forward curve
is driven by a two-dimensional Brownian motion, the covariance matrix of the returns in
Equation (3.22) has rank two, so it is singular as soon as we have more than two contracts.
Thus, the returns are normally distributed but do not admit a multivariate density. As a
consequence, in order to find p we compute the likelihood estimator for a single-forward time
series fi(t), for i = 1, . . . , N .

Definition 3.5.4. Define the estimator p̂i = (q̂i, Φ̂i) as the 2-dimensional vector which solves

max
(q,Φ)∈(0,1)×R+

n∑

l=2

logϕ
(
fi(tl)− fi(tl−1), q

(
Φ− fi(tl−1)

)
, σ2i (tl−1)

)
,
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where σ2i (t) := Σii(t) = Γ2
i e

2κt + 2ΓiΨiρe
κt +Ψ2

i and ϕ(x, µ, σ2) is the density of a Gaussian
random variable N (µ, σ2).

We compute these estimators in Appendix A.1. Observe that we have N different
estimators q̂1, . . . , q̂N for the same parameter q (since we are assuming in the model the
same mean-reversion speed for all the contracts). Generally, this leads to different statistical
estimates for the same parameter q or, equivalently, λ. Therefore, after computing q̂1, . . . , q̂N
from Equation (3.29), we define

q̂ :=

N∑

i=1

wi q̂i, (3.23)

with arbitrary weights wi, provided that q̂ ∈ (0, 1). Thus, the estimated mean-reversion speed
is λ̂ = − log(1− q̂).

A naive procedure now would be to define an estimator of Φi, for all i = 1, . . . , N , using
Equation (3.28), which was derived in Appendix A.1, by replacing qi with q̂. However, as
we already discussed for the function Ψ in Section 5.1, the parameters Φi satisfy the same
no-arbitrage constraints as in Equation (3.19). Therefore, we introduce a new estimator for
each Φi by redefining properly the one in Definition 3.5.4.

Definition 3.5.5. Let q̂ ∈ (0, 1) represent the estimated reparameterized mean-reversion
speed in Equation (3.23). Define the estimator p̃ = (Φ̃1, . . . , Φ̃N ) as the vector which solves

max
(Φ1,...,ΦN )∈RN

+

N∑

i=1

n∑

l=2

logϕ
(
fi(tl)− fi(tl−1), q̂

(
Φi − fi(tl−1)

)
, σ2i (tl−1)

)
,

subject to the constraints given by the no-arbitrage relation (3.19).

3.6 Empirical analysis

Our database includes closing prices of Phelix Base futures traded at EEX from January 4,
2016 until May 23, 2017. We consider monthly, quarterly and yearly contracts.

3.6.1 Calibration results

We start by estimating the diffusion coefficients, firstly, in the case that Ψ is given in the
parametric form of Equation (3.13) and, secondly, with the non-parametric approach (see
Section 5.1). We use the estimators introduced in Definition 3.5.3. In order to perform the
first calibration, we set the number of seasonal components to a = 5, so to capture potential
asymmetric seasonal variations. Since contracts with different delivery length contain a
different amount of market information, we weight each term of the sum in Equation (3.21)
with wij = wiwj , where wi = 1 if the contract Fi is monthly, wi = 3 if Fi is a quarter and
wi = 12 if it is a calendar. These different weights are motivated by the fact that the forward
price for a calendar contract fixes the price for a period which is about 12 times longer
than the one of a monthly contract (analogously for a quarterly contract). To estimate the
coefficients Ψi in the second calibration, we need to add the no-arbitrage constraints described
by Equation (3.20). For the calibration of the monthly contracts from Apr/16 to Dec/16 and
the corresponding quarters Q2/16, Q3/16 and Q4/16, we have constraints of the type

Ψ4 = u1Ψ1 + u2Ψ2 + u3Ψ3. (3.24)
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Analogously, for the contracts Jan/17, . . . , Jun/17, Q1/17,. . . , Q4/17, Cal-17 we have

Ψ7 = u1Ψ1 + u2Ψ2 + u3Ψ3,

Ψ8 = u4Ψ4 + u5Ψ5 + u6Ψ6, (3.25)

Ψ11 = u7Ψ7 + u8Ψ8 + u9Ψ9 + u10Ψ10.

Observe that, even if Jul/17 is present in our calibration window, it does not play any role
in the last constrained problem, because we are not observing Aug/17 and Sep/17. The
parameters for the first calibration are in Table 3.1, while for the second one are in Table
3.2 and Figure 3.3. The norm residual is 99138.69 for the first approach and significantly
decreases to 35890.78 with the non-parametric approach.

In both cases we observe that the correlation coefficient ρ among the two Brownian motions
driving the dynamics is significantly far from −1 and 1. This means that a single factor would
have not been sufficient to describe the variance of prices. Also, for the first calibration, the
parameter µ turns out to be slightly negative, meaning that there is an overall decreasing
trend in volatility in the time window considered.

κ σ1 σ2 ρ µ
0.0086 0.7322 0.4357 -0.3634 -0.0100

α1 α2 α3 α4 α5

0.0844 0.0727 0.1501 -0.0046 0.1110
α6 α7 α8 α9 α10

-0.0086 -0.0438 0.0156 -0.1732 -0.0315

Table 3.1: Calibrated diffusion parameters with the truncated Fourier series (a = 5).

ρ κ σ1
0.3185 0.0167 0.9793

Table 3.2: Calibrated diffusion parameters in the second calibration.
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Figure 3.3: Coefficients Ψi for the second calibration.

In Figure 3.3 we notice that the coefficient Ψi relative to the first contracts take values very
close to zero (if not equal). This is in line with what observed from the realized volatilities in
Figure 3.2. In particular, in this way we can reproduce the volatility behavior which is not
explained by the Samuelson effect. Also, the calendar contracts exhibit a decreasing volatility,
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while the quarters exhibit, besides this decreasing component over the years, a slight seasonal
pattern with the volatility having the highest value in Q1 (cold period), and the lowest in
Q3 (warm period): this is an empirical fact, well reproduced by our model. The model also
partially reconstructs the finer term structure for monthly contracts, even if for each one of
those we have less observations. We find out that the seasonality here is not so apparent,
both from the data as well as from our model.

In order to better understand the meaning of the other parameters, we may compare
theoretical and historical quadratic covariations. However, they depend on the interval length
over which they are computed. For this reason, let us introduce two new quantities: theoretical
and historical covolatilities.

Definition 3.6.1. Let i, j ∈ {1, . . . , N}. Denote by [τi,1, τi,2] the trading time interval of the
i-th contract. If [τi,1, τi,2] ∩ [τj,1, τj,2] 6= ∅, define the historical covolatility of the forwards Fi
and Fj as

Σij :=
1

τij,2 − τij,1

[
Fi, Fj

]τij,2
τij,1

.

In analogy, define the theoretical covolatility of the forwards Fi and Fj as

Σij :=
1

τij,2 − τij,1

〈
Fi, Fj

〉τij,2
τij,1

.

If i = j, Σij and Σij are positive. We call historical volatility and theoretical volatility of
the forward Fi, respectively, the quantities Σi :=

√
Σii and Σi :=

√
Σii. Since this calibration

has been performed by matching not only model and realized variation/volatility of each
contract, we represent all their possible historical and theoretical covolatilities. We plot the
results of the non-parametric case in Figure 3.4, being the one that performed better in
terms of residuals. We observe the peculiar dependence structure of energy forwards, with
highly volatile months (especially the winter period) and relatively lower codependence among
contracts with distant delivery.

Figure 3.4: Historical and theoretical covolatilities of all the contracts, which are numbered
as follows: months from Mar/16 to Jul/17 (1-17), quarters from Q2/16 to Q1/18 (18-25),
calendars from Cal-17 to Cal-19 (26-28).
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Let us now estimate the drift parameters, i.e. the mean-reversion speed λ and the long-
term mean vector Φ := (Φ1, . . . ,ΦN ). We first compute the estimators p̂i = (q̂i, Φ̂i) for
i = 1, . . . , N , which were introduced in Definition 3.5.4. As we already discussed in Section
5, since we have different estimators we get different estimates for the same parameter λ.
Therefore, in Equation (3.23) we choose the weights with the same philosophy of the case
of the diffusion coefficients (cf. Section 5.1) and compute q̂ = 0.0683. This turns out to
be consistent with the model, in the sense that q̂ ∈ (0, 1). Then, we define the estimated
mean-reversion speed as λ̂ = − log(1 − q̂) = 0.0708. Let us just naively replace Φ̂i, for all
i = 1, . . . , N , with the solution of Equation (3.28) (see Appendix A.1), with q̂i replaced by q̂.
The results are in Figure 3.5.
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Figure 3.5: Long-term means with q̂i ≡ q̂, but still without taking into account the no-arbitrage
relation (3.19).

However, let us recall that the no-arbitrage relations of Equation (3.19) must hold (see
Definition 3.5.5). If we compare the estimator Φ̂i for Jan/17, Feb/17, Mar/17 and Q1/17,
this relation fails. This distortion is solved by adding into the optimization in (3.19) the same
costraints we used to perform the calibration of the diffusion coefficients Ψi (cf. Equations
(3.24) and (3.25)). Here we use the Lagrange multipliers technique to solve these constrained
optimization problems (see Appendix A.2). The results are illustrated in Figure 3.6, where
we can see that now the no-arbitrage relation (3.19) holds for all the relevant contracts.
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Figure 3.6: Long-term means with q̂i ≡ q̂ and the constraints in Equation (3.19).
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3.6.2 Simulation and model assessment

In this section we do a simulation study and assess the performance of the model in terms of
reproducibility of both the EEX data under investigation and the stylized features of energy
futures markets. Firstly, we compare simulated paths of some exemplary futures contracts to
the corresponding observed trajectories, in order to assess the qualitative behavior of model
simulations. Then, we compute fundamental statistics of the model by averaging the results
of a set of simulations and compare them to our data.

In order to simulate the trajectory of a certain contract, we use the dynamics in Equation
(3.14). We define it for given input parameters in MATLAB via the sdemrd class, specifically
designed for mean-reverting equations. Then, the function simByEuler discretizes the SDE
and computes the price for each day by following an Euler scheme for stochastic differential
equations, with the parameters which have been estimated in Section 5. For all futures
we have the same averaged mean-reversion speed λ̂, while each contract (indexed by i) has
its own parameter Ψi in the long-term volatility coefficient and Φ̂i for the drift component.
Since we are interested in the simulation of a single contract, we compute the long-term
means from the single-forward time series calibration described in Appendix A.1. Finally, the
diffusion parameters are computed with the non-parametric procedure, being this the case
that performed better in terms of residuals (cf. Section 5).

For a given contract we plot the historical daily prices observed during its trading time
interval and run a single simulation for the sake of qualitative comparison. We take as
examples two contracts for each delivery period of the EEX data considered: calendar, quarter,
month. Specifically, we plot Cal-18 and Cal-19 in Figures 3.7 and 3.8, which are, respectively,
the longest traded one and the last one in our observation period. In Figures 3.9 and 3.10,
Q2/16 and Q1/18 are compared, being the first and last observed quarter. Finally, we plot in
Figures 3.11 and 3.12 the prices of the two monthly futures Jan/17 (cold month) and Jul/17
(warm month). Together with price trajectories, we indicate the long-term mean of the model
by a dotted line.

From a visual perspective, the simulated paths mimic the observed movements reasonably
well, being capable to follow different trends for different periods as well. This is particularly
encouraging, if we consider that the overall observation window is long about one year and a
half and, moreover, we observe contracts with heterogeneous delivery periods and trading
lives, some of which are traded for less than 40 days, such as Jul/17 (see Figure 3.12). The
mean-reversion effect is generally evident and well reproduced by our model, especially if we
focus on the mean-trend described by the dotted line. However, if we move from this line, in
some cases the simulations seem not to take into account certain idiosyncratic movements.
This can be noticed in Figure 3.7 (Cal-18) and Figure 3.10 (Q1/18). One explanation could
be related to the mean-reversion rate of decay, which determines the excursions from the
long term equilibrium. Recall that, by arbitrage, the parameter λ must be equal for all
traded futures, but if we calibrate it for each contract separately we observe different values in
practice. This assumption of course reflects on the accuracy in reproducing the single contract
prices pathwise, but it is required by our no-arbitrage arguments.

For a more rigorous discussion of the fitting quality, we investigate the statistical features
of the model and make a comparison with the historical data. A standard way to do it is
by computing moments. In Table 3.3 we report the values of the first four moments, the
minimum and the maximum of both empirical and simulated returns, i.e. the daily price
increments, of all contracts. For the simulated returns, we run 1000 simulations and then
average the results over all samples. The values are classified among different delivery periods
in order to distinguish different behaviors (if present) among them.
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The general performance is quite satisfactory. The mean is positive but very close to zero,
both in the model as for the observed prices, with the notable exception of the calendars,
where the model reproduces the data’s positive trend very well. The standard deviation is
adequately captured for all delivery periods with a small error for the monthly contracts,
which prove to be the most difficult to model also looking at the other statistics: let us remark
that, in these markets, monthly contracts are available for trading for relatively short periods.
Regarding the skewness, the results are very good, since both the model and the observed
returns are statistically not skewed. Let us recall that the standard error of the skewness
estimator is approximately

√
6/n, where n is the number of daily observations per contract.

In our case, n approximately ranges from 40 to 65 for monthly contracts, from 60 to 250 for
the quarters and from 40 to 270 for the calendars. This means that, for example, in the case
of some quarter and calendar contracts, where we have the highest number of observations
(n = 270), the standard error is about 0.15. Then, roughly speaking, any value between −0.3
and 0.3 is not statistically different from zero with a 5% significance level, as it is observed
from the market even for the monthly contracts (which have much less trading days). With
the same procedure, a similar computation can be done for the kurtosis, which gives results
still within the confidence interval.

To conclude, our framework seems capable to describe fairly well the main stylized features
of power futures contracts, which are of different nature, in a comprehensive way. In other
words, this assessment analysis suggests that the model adequately reproduces the main
trajectorial and statistical properties of the Phelix Base futures prices. Specifically, in the
statistic study presented in Table 3.3, we have not found evidence of non-normality in futures’
daily price increments. Most importantly, this study has been carried out by calibrating the
model directly on the observed prices of the traded contracts, i.e. without introducing artificial
forward curves or ex post estimated risk premium, besides working under the no-arbitrage
assumption.
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Figure 3.7: Historical (red) and simulated (blue) path of the contract Cal-18. The dotted line
represents in both plots the estimated long-term mean of the contract.



3.7 Concluding remarks 81

320 325 330 335 340 345 350 355 360

Days

27

28

29

E
u

r/
M

W
h

CAL19

320 325 330 335 340 345 350 355 360

Days

27

28

29

E
u

r/
M

W
h

Figure 3.8: Historical (red) and simulated (blue) path of the contract Cal-19. The dotted line
represents in both plots the estimated long-term mean of the contract.

3.7 Concluding remarks

In many models for gas and power markets, mean-reversion is a common feature of spot and
forward dynamics. However, it is less common to address explicitly the question of arbitrage.
This issue is particularly important in energy markets, where one simultaneously finds different
forwards covering the same time period. In these situations, one must seek models which
avoid the possibility of both static and dynamic arbitrages. This is ensured by the HJM
paradigm, which prescribes that in diffusion models the drift and the diffusion coefficients of
forward prices satisfy certain relations, which boil down to coefficients of the longest contracts
being again suitable averages of those of the smaller contracts. This is difficult to achieve
with multiplicative models, where one ends up with non-Markovian models. Instead with
arithmetic models, the HJM relations are satisfied in a very natural way.

We here propose a model where forward prices are affine functions of hidden random

Mean Std. Dev. Skewness Ex. Kurt. Min. Max.
Phelix Base (M) 0.04 0.58 0.25 0.83 −1.32 1.62
Phelix Base (Q) 0.02 0.44 0.19 1.17 −1.36 1.44
Phelix Base (Cal) 0.03 0.41 −0.18 0.74 −1.35 1.26
Model (M) 0.00 0.67 0.01 1.71 −1.86 1.88
Model (Q) 0.00 0.43 0.06 1.87 −1.44 1.47
Model (Cal) 0.02 0.39 0.08 1.13 −1.25 1.32
Phelix Base 0.03 0.52 0.19 0.92 −1.33 1.53
Model 0.00 0.57 0.03 1.69 −1.68 1.70

Table 3.3: Empirical vs. simulated statistics (first four normalized moments, minimum and
maximum) of the daily returns of all the contracts aggregated by delivery period. Model
statistics are computed by averaging the results of the estimators over 1000 simulations, first,
for each contract and, second, among contracts grouped by delivery period. The last two rows
show the overall results for all the contracts.
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Figure 3.9: Historical (red) and simulated (blue) path of the contract Q2/16. The dotted line
represents in both plots the estimated long-term mean of the futures price.

factors, which we impose not to appear explicitly in the forward prices’ dynamics in order
not to have to deal with models with incomplete information. Once we postulate that all
the forward contracts in the market have the same mean-reversion speed, it turns out that
this requirement is equivalent to the fact that the coefficients satisfy suitable linear algebraic
conditions. We also show that the well known Lucia-Schwartz model belongs to the class of
these models. The Lucia-Schwartz model is quite flexible in mean price levels, while instead it
is able to reproduce only certain term structures of volatility.

To overcome this rigidity, we propose a modification of the Lucia-Schwartz model which
is free of arbitrages in the way discussed above, where the prices of forward contracts are
mean-reverting and where both price level and volatility are allowed to have a non-trivial
term structure. As in the Lucia-Schwartz model, the mean-reversion level of forward contracts
corresponds to the seasonal component of spot prices, and the prices are moved by two
Brownian motions, possibly correlated. However, while one Brownian component takes into
account the short-term movements and reproduces a Samuelson-like term structure decaying
exponentially with the time to maturity, the other Brownian component is able to model more
complex term structures of volatility with respect to absolute maturities. The model also
predicts a well-observed phenomenon, i.e. contracts with shorter delivery periods (e.g. months)
are more volatile than contracts with longer delivery periods (e.g. quarters or calendars).

We then present a technique for estimating the parameters of this model based on market
time series. More in detail, first we estimate the volatility coefficients by using a technique
based on quadratic variation/covariation of all the considered time series. Then we estimate
the mean-reversion speed and levels in a non-parametric way, so that we can replicate any
functional behavior of the forward long-term mean, which takes into account the no-arbitrage
requirements among forwards covering the same time period.

We apply this estimation technique on a time series for the Phelix Base forward market
from January 4, 2016 to May 23, 2017, considering each monthly, quarterly and calendar
forward contract traded in that time window. Since our model is able to reproduce complex
volatility shapes, we first try with a popular choice for seasonal component, i.e. a linear
combination of trigonometric functions plus a linear component in the maturity, and we
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Figure 3.10: Historical (red) and simulated (blue) path of the contract Q1/18. The dotted
line represents in both plots the estimated long-term mean of the futures price.

compare it with a fully non-parametric volatility shape, where the second factor is a free
parameter for each atomic forward. It turns out that the fully non-parametric version fits the
empirical volatility structure much better than the parametric model. Besides, we observe
that the Samuelson effect is not enough to explain the observed volatility term structure
and that our model can capture also complex seasonal behaviors. More in detail, we find
a decreasing (concave) trend in calendar contracts’ volatility and a seasonal pattern in the
quarters’ term structure. The model also partially reconstructs the finer term structure for
monthly contracts, even if for those we have less observations.

We then estimate the mean-reversion speed and level. We assume that this latter quantity
depends on the contract in exam, but that overall no-arbitrage relations must hold among
contracts spanning the same period (e.g. 3 months / 1 quarter): this is done using MLE with
the technique of Lagrange multipliers to take into account no-arbitrage constraints.

Finally, we perform a model assessment study, where we simulate paths of futures prices
and compare them to the corresponding observed trajectories, for an eye test of model
simulations, which proves to be satisfactory. We then compute estimated statistics over a
set of simulated returns and compare them to the empirical ones. From a distributional
perspective, the results seem to validate the model.

Future work is aimed at extending the present framework to multicommodity markets, to
assess whether codependencies are present among the dynamics of different commodities, and
to the case when jumps are present in the dynamics. Two of the authors are already laying
out the theory in this direction [26], while the estimation technique is left for future research.
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Figure 3.11: Historical (red) and simulated (blue) path of the contract Jan/17. The dotted
line represents in both plots the estimated long-term mean of the futures price.

3.8 Appendix

3.8.1 Drift coefficient estimators

Estimation of q and Φi from a single-forward time series

We have
n∑

l=2

logϕ
(
fi(tl)− fi(tl−1), q

(
Φ− fi(tl−1)

)
, σ2i (tl−1)

)

= (n− 1)
n∑

l=2

log
1√

2πσ2i (tl−1)
−

n∑

l=2

1

2

(
fi(tl)− fi(tl−1)− q(Φ− fi(tl−1))

)2

σ2i (tl−1)
.

Maximizing the above expression with respect to p corresponds to minimizing
n∑

l=2

(
fi(tl)− fi(tl−1)− q(Φ− fi(tl−1))

)2

σ2i (tl−1)
.

Let us adopt the notation fl := fi(tl) and σ2l := σ2i (tl), being the index i fixed in this
computation.

By differentiating with respect to q and Φ, we get the first order conditions (FOC)

−2
n∑

l=2

(
fl − fl−1 − q(Φ− fl−1)

)
(Φ− fl−1)

σ2l−1

= 0, (3.26)

−2q ·
n∑

l=2

(
fl − fl−1 − q(Φ− fl−1)

)

σ2l−1

= 0. (3.27)

Being q 6= 0, from Equation (3.27) we have
n∑

l=2

(fl − fl−1)

σ2l−1

= q ·
n∑

l=2

(Φ− fl−1)

σ2l−1

,
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Figure 3.12: Historical (red) and simulated (blue) path of the contract Jul/17. The dotted
line represents in both plots the estimated long-term mean of the futures price.

that is

n∑

l=2

(fl − fl−1)

σ2l−1

= q ·
(

n∑

l=2

1

σ2l−1

Φ−
n∑

l=2

fl−1

σ2l−1

)
.

By denoting

an =

n∑

l=2

1

σ2l−1

, bn =

n∑

l=2

fl−1

σ2l−1

, cn =

n∑

l=2

(fl − fl−1)

σ2l−1

,

it follows that

Φ =
1

an

(
cn
q

+ bn

)
. (3.28)

Then, by multiplying Equation (3.27) by Φ/q and subtracting it from Equation (3.26), we
obtain

n∑

l=2

(fl − fl−1 − q(Φ− fl−1))fl−1

σ2l−1

= 0

which, by defining also

dn =
n∑

l=2

f2l−1

σ2l−1

, en =
n∑

l=2

(fl − fl−1)fl−1

σ2l−1

,

can be written as
en − q(Φbn − dn) = 0

By plugging Equation (3.28) here, we obtain

en −
bncn
an

− b2n
an
q + dnq = 0,



86 Mean-reverting no-arbitrage additive models for forward curves in energy markets

which finally gives the MLE for q as

q̂i =
bncn − anen
andn − b2n

. (3.29)

Replacing (3.29) in (3.28), we have the solution also for Φ:

Φ̂i =
cndn − bnen
bncn − anen

.

Estimation of the Φi under the no-arbitrage constraints

In order to solve the optimization problem in Definition 3.5.5 for m contracts fi subject to
constraints of the kind

Φk =

rk∑

j=1

wkjΦkj ,

for k = 1, . . . , p, we use the technique of Lagrange multipliers. In analogy with the uncon-
strained problem’s equations, we have to minimize

m∑

i=1

n∑

l=2

(
fi(tl)− fi(tl−1)− q̂(Φi − fi(tl−1))

)2

σ2i (tl−1)
+

p∑

k=1

λk


Φk −

rk∑

j=1

wkjΦkj


 .

Hence, imposing the FOC and differentiating with respect to the multipliers λk, we obtain a
linear system of m+ p equations of the kind of Equation (3.27) and m+ p unknowns (p of
them are the multipliers), which have a unique solution p̃ = (Φ̃1, . . . , Φ̃m).



CHAPTER 4

Capturing the power options smile by an additive

two-factor model for futures prices

In this chapter we introduce a no-arbitrage additive two-factor model for futures prices based
on Normal Inverse Gaussian Lévy processes and compute European option prices by Fourier
transform methods. We introduce a specific calibration procedure that takes into account
no-arbitrage constraints and fit the model to the European Energy Exchange (EEX) power
option settlement prices. We show that our model is able to reproduce the different levels and
shapes of the implied volatility (IV) profiles displayed by options with different deliveries.

4.1 Introduction

Trading in electricity derivatives is living a significant expansion in Europe. In June 2018,
the European Energy Exchange increased volumes on its power derivatives markets by 28%
from 181.2 TWh (June 2017) to 231.1 TWh [59]. In particular, the trading volume in power
options experienced a boost of 45%. These markets possess a variety of characteristics that
need to be considered for appropriate pricing and risk management. In this paper we propose
a method to compute European-styled vanilla option prices that accounts for some important
stylized features of electricity markets.

There is a growing literature [7, 11, 118, 119] that considers e.g. seasonality, stochastic
volatility and Samuelson-like effects in commodity option pricing. However, power markets
present some peculiar issues that have not been completely addressed yet. Usually, the most
liquid exchange-traded options are written on futures contracts that prescribe the delivery
of power over different periods. For instance, the ones that we consider in our application
are written on the Phelix Base Index traded at EEX [81], and the delivery is over a month,
a quarter or a year. In order to build no-arbitrage models, in addition to working in a risk
neutral setting where traded contracts are martingales, one must take into account possible
arbitrages arising from trading futures with different delivery periods (cf. Chapter 3). The first
paper that takes into account this fact is [89], where the authors apply an approach based on
LIBOR market models [41]. To the best of our knowledge, this is also the first attempt to fit
a consistent option pricing model for power markets. However, the LIBOR approach allows to
model directly only shortest delivery, i.e. monthly, contracts, while resorting to approximation
to the distribution of longest delivery futures. Also [101] address commodity option price
models, but again only single delivery contracts can be considered in their framework. The

87
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two-factor model of [89] has been generalized by [44, Section 5] to Lévy models, allowing to
describe the IV surface of option prices. Furthermore, a more general approximation procedure
is proposed, but the results, though accurate for single deliveries, are partially satisfactory
for longest maturity contracts, probably due to the required approximations. Among recent
contributions in power options modeling, we mention [127], who uses a structural model that
explains the formation of IV skews, and [102], who develop an extensive sensitivity analysis
of IV patterns. However, differently from our setting, both papers consider options written
on electricity spot prices. Another characteristic that we want to reproduce in our model is
prices seasonality, in the sense of dependence on the delivery of the underlying futures. This
has been addressed by [64], though in a Gaussian setting, which does not allow to capture the
different IV levels displayed by options with different strikes.

In order to compute option prices, we introduce an arbitrage-free two-factor additive model
for futures prices. In contrast to spot-based models, where the futures prices are computed
by taking the discounted expectation of spot prices under a pricing measure, we start by
specifying the stochastic dynamics of futures prices under a risk-neutral measure Q. This is
known to literature as the Heath-Jarrow-Morton approach applied to commodity markets
(see e.g. [63] for a literature review in the case of electricity). Since the parameters of our
model will be estimated from the option market, this approach has several advantages as
already pointed out e.g. by [89]. For instance, we do not need to choose a pricing measure,
or, equivalently, estimate the market price of risk that determines how the stochastic model
changes from the physical measure to the risk-neutral measure under which the options are
priced in the market. In fact, we can call our risk neutral measure Q, the risk-neutral measure,
since this is implicitly and univocally determined by the option prices observed in the market.
We refer to [30] for an empirical discussion on pricing measures for electricity derivatives.

Since it is based on Lévy processes, our futures price model allows to capture the implied
volatility profile described by options with different strikes. The dynamics arises as the
natural generalization of its Gaussian counterpart introduced in Chapter 3. It assumes that
futures prices are stirred by two stochastic factors built on Normal Inverse Gaussian (NIG)
Lévy processes modulated by deterministic coefficients depending both on time and delivery
period. The NIG distribution is a flexible family of distributions that is very popular in
financial modeling (see e.g. [13] for general applications of NIG processes to finance, [33] for
an electricity spot price NIG model and [6] for modeling electricity forwards). The first factor
has a delivery-averaged exponential behavior, meant to reproduce the Samuelson effect [82].
The second factor is independent of time, but varies for contracts with different delivery in a
seasonal and no-arbitrage way (cf. Chapters 2 and 3) and accounts for a finer reproduction of
the term structure of futures volatilities. The term additive means that we do not consider
the log-prices, but, instead, we model directly the prices. This class of models, as opposed
to geometric models, has recently gained an increasing attention in literature due to many
modeling advantages (see, for example, [18, 24, 26, 57, 88]). In the context of option pricing,
[24] exploit the additive structure of their spot dynamics for pricing Asian and spread options
by fast Fourier techniques. In our case, the additivity property will allow us to fit our model
consistently to all the delivery periods traded in the market. Instead, the calibration results
of [44, Section 5], where the author studied a geometric version of our model (still based on
two NIG factors) were satisfactory only partially. As already mentioned at the beginning, this
is likely due to the necessity to introduce an approximation procedure for the distribution of
longest maturity contracts. In our case, by considering an additive model, we do not need to
introduce such approximations.

For pricing options, we follow the classical method of [45], which consists, roughly speaking,
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in computing the Fourier transform of (a suitable modification of) the call price as a function
of the strike price so to recover the option value by inverse transform. We recall from [45] two
different approaches, that we adapt to the case of additive models. The first approach is based
on the use of an exponential damping factor in order to make the option value integrable
on the whole real line. Instead, the second approach consists in substracting the time value
of the option. In this way we derive semi-analytical expressions (analytical up to numerical
integration) for the option prices, that depend on the characteristic function of the underlying
(see also [32]).

We discuss a calibration methodology that we will apply in our empirical study. The
calibration happens statically, in the sense that we fix a trading date and observe the market
option prices for different strikes and deliveries. We then find the parameters that minimize an
objective function representing the distance from theoretical to model IVs. In the same way,
one can alternatively use option prices instead of IVs. The futures model under consideration
is defined in a such a way that there is no possibility of arbitrages from trading in overlapping
delivery periods. Because no-arbitrage implies certain relations on the coefficients, this
translates into parameter constraints (cf. the calibration procedure presented in Chapter 3).

Since there is not enough liquidity in the market in order to extract information on the
IV surface from traded market quotes, we consider the options settlement prices, that are
available for a sufficiently large range of strike prices. Though settlement prices do not
necessarily represent trades that take place in the market, they contain information on the
market expectations. We perform the calibration procedure described above, first, for a
one-factor model derived by the two-factor one by setting one coefficient to 0 and, then, for
the general two-factor model. We compare the IVs of both models to the empirical IVs and
the one (constant across strikes) generated by Black’s model [29, 38]. As a by-product from
the estimation of the one-factor model, we derive that, under the risk-neutral measure, futures
prices are leptokurtic and have significantly positive skewness. This is reflected also into the
shape of empirical IVs, which display a forward skew (i.e. higher IVs for out-of-the-money
calls). This can be interpreted as a “risk premium” paid by option buyers for securing supply
(cf. [36, 124]). Finally, we show that the two-factor model is able to reproduce in a satisfactory
way the different levels and shapes of the IV profiles displayed by all the deliveries traded in
the market, by outperforming both the Black and the one-factor model.

4.2 Model

Let F (t, T1, T2) denote the price at a given day t of a futures contract which delivers a fixed
intensity of electricity over the period [T1, T2]. The delivery period [T1, T2] can be a month, a
quarter or a year and, since contracts expire right before delivery starts, we have that t ≤ T1.
We introduce a general framework for multifactor additive futures prices (as, for example, in
[32]) and, from this, we focus on a two-factor model inspired by [93], that will be of interest
for application. More in detail, we introduce a stochastic differential equation, parametrized
by the delivery period (i.e. depending, in addition to the trading day t, also on T1, T2), driven
by independent Lévy factors. We also compute the corresponding characteristic functions,
that will constitute the main ingredients in the computation of option prices (see Section 4.3).
We will assume throughout this work that the risk-free interest rate is zero (similar arguments
apply in the case of deterministic flat interest rate after discounting, see [93]).
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4.2.1 Multifactor additive futures-based models

In the rest of the paper, we will consider European options written on futures contracts and
we will denote by T the exercise date of these options. Therefore, for convenience we express
the futures price at time T . We assume that, for any time t before the exercise of the option,
i.e. 0 ≤ t < T , the futures prices F (T, T1, T2) are given by the following stochastic differential
equation (here given in integral form)

F (T, T1, T2) = F (t, T1, T2) +

p∑

k=1

∫ T

t
Σk(u, T1, T2) dWk(u) +

n∑

j=1

∫ T

t
Γj(u, T1, T2) dJj(u)

(4.1)

where Wk are independent Brownian motions for k = 1, . . . , p and Jj(u) =
∫ u
0

∫
R
y Ñj(dy, dv)

are independent, pure-jump, centered Lévy processes such that
∫
|y|>1 y

2 νj(dy) < ∞ for
each j = 1, . . . , n. This integrability assumption on the Lévy measure implies that Jj are
square-integrable martingales with zero expectation (for background on Lévy processes see e.g.
[52]). We assume that all the stochastic factors are independent, so that, in particular, the n
Poisson random measures are independent of the p Brownian components. The dynamics are
described under a risk-neutral measure Q. The absence of the drift follows from the fact that,
by no-arbitrage, futures prices must be martingales under Q (see e.g. [35]).

In order to apply the Fourier transform approach to option pricing, we need the charac-
teristic function of the underlying process. By introducing Z(t, T, T1, T2) := F (T, T1, T2)−
F (t, T1, T2) and its characteristic function (as a function of v ∈ R)

Ψ(t, T, T1, T2, v) = E

[
eivZ(t,T,T1,T2) |Ft

]
,

we have that (see e.g. [32])

logΨ(t, T, T1, T2, v) = −1

2
v2

p∑

k=1

∫ T

t
Σ2
k(u, T1, T2) du+

n∑

j=1

ψj(t, T ; vΓj(·, T1, T2)). (4.2)

The function ψj(t, T ; θ(·)) denotes

ψj(t, T ; θ(·)) =
∫ T

t
ψ̃j(θ(u)) du =

∫ T

t

∫

R

(eiθ(u)z − 1− iθ(u)z) νj(dz) du,

where ψ̃j(θ) is the cumulant of the Lévy process Jj computed in θ ∈ R, i.e.

ψ̃j(θ) = logE
[
eiθJj(1)

]

and νj is the Lévy measure of Jj .

4.2.2 A two-factor model based on Normal Inverse Gaussian processes

In this section we consider a two-factor model of the type (4.1) based on the Normal Inverse
Gaussian (NIG) distribution. This is motivated by the framework [26] and arises as a
natural generalization of [93]. The model assumes that futures prices are stirred by two
stochastic factors built on Normal Inverse Gaussian Lévy processes modulated by deterministic
coefficients. The first factor has a delivery-averaged exponential behavior, meant to reproduce
the so-called Samuelson effect. The Samuelson effect is an observed feature of prices volatilities,
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common to many commodity markets, consisting of increasing volatility of prices as time
approaches maturity [82]. The second factor is independent of time, but varies for contracts
with different delivery in a seasonal and no-arbitrage way (see [26, 93]) and accounts for a
finer reproduction of the term structure of futures volatilities. We remark that, since our
model is additive, by “volatility” we mean the parameter (or function of parameters) that
determines the variability of prices and not of log-prices as in geometric models.

Building upon (4.1), we assume that the stochastic evolution of F (·, T1, T2) from t to T is
described by

F (T, T1, T2) = F (t, T1, T2) +

∫ T

t
Γ1(u, T1, T2) dJ1(u) + Γ2(T1, T2)(J2(T )− J2(t)), (4.3)

where

Γ1(u, T1, T2) :=
1

T2 − T1

∫ T2

T1

γ1e
−µ(τ−u) dτ =

γ1(e
−µ(T1−u) − e−µ(T2−u))

µ(T2 − T1)
, (4.4)

Γ2(T1, T2) :=
1

T2 − T1

∫ T2

T1

γ2(τ) dτ. (4.5)

By focusing our attention to the first component, the parameter γ1 ∈ R+ models the base
volatility, that is the volatility of contracts with distant delivery i.e. T1 − t → ∞. This
coefficient has an exponential rate given by µ ∈ R+, which determines an increase of volatility
as time approaches delivery i.e. T1 − t→ 0. This effect is averaged over the delivery period
for no-arbitrage arguments (as explained in [93]) and mimics the Samuelson effect. Regarding
the second component, the function γ2 : [0,∞) → R+ models the general seasonal behavior of
volatility (it takes high values in periods of high volatility and low values for periods of low
volatility). This function can be specified either in a parametric or nonparametric fashion.
For instance, one can have

γ2(τ) := γ2 + bτ +
m∑

j=1

(
a2j cos(ωjτ) + a2j+1 sin(ωjτ)

)
,

with ω = 2π/365, m ∈ N, b ∈ R (for capturing possible deterministic linear trends),
(γ2, a2, . . . , a2m+1) ∈ R2m+1.

The coefficients in (4.4) and (4.5) modulate the variability of the two stochastic processes
J1 and J2, which are both defined as centered versions of NIG Lévy processes. Let us recall
that a Lévy process is called Normal Inverse Gaussian with parameters (α, β, δ, µ) if its
characteristic triplet is (χ, 0, ν) with

χ = m+
2αδ

π

∫ 1

0
sinh(βx)K1(αx) dx, (4.6)

ν(dy) =
αδ

π|y|K1(α|y|)eβy dy, (4.7)

where K1 is the modified Bessel function of the third kind with index 1 (in the terminology
of [2, Section 9.6]), 0 ≤ |β| < α and δ > 0, m ∈ R (see [12]). Given a NIG process L, the
random variable L(1) is NIG distributed with parameters (α, β, δ, µ). The NIG distribution
is a subclass of a very flexible family, the Generalized Hyperbolic distributions, and it can
accomodate heavy-tails and skewness. The parameter α rules the tail heaviness of the
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distribution, β determines the skewness, δ is a scale parameter and µ indicates the location of
the distribution.

In general, a NIG process is not centered. Therefore, in order to define J1 and J2 we
subtract from two general NIG processes L1, L2 the corresponding expected value (multiplied
by time). For j = 1, 2, let Lj be a NIG Lévy process with parameters (αj , βj , δj ,mj) and
characteristic triplet (χj , 0, νj) and set

Jj(t) = Lj(t)− E[Lj(t)] = Lj(t)− t

(
χj +

∫

|y|≥1
y νj(dy)

)
.

Then, Jj is a centered NIG process. In particular, it can be easily shown (cf. the char-
acteristic function of Jj in (4.32) to see this) that Jj is a NIG process with parameters(
αj , βj , δj ,− δjβj

√

α2
j−β

2
j

)
.

As already mentioned, in order to compute the option prices, we will need the characteristic
function of F (T, T1, T2). This in turn reduces to finding the characteristic function of
Z(t, T, T1, T2) := F (T, T1, T2)− F (t, T1, T2). We compute it in the appendix in order not to
make the presentation unnecessarily heavy.

4.3 Option pricing for additive models by Fourier transform

methods

We consider the pricing of European vanilla options written on futures contracts of the type
introduced in the previous section. We discuss the method for call options, being the case of
puts completely analogous. Let C(t;T,K, T1, T2) be the price at time t (the observation date)
of a call option, with strike price K and exercise time T , that is written on a futures contract
with delivery period [T1, T2]. By no-arbitrage (see, for instance, [35]),

C(t;T,K) = E [(F (T )−K)+ |Ft ] , (4.8)

where F (T ) is the price of the underlying futures at the option exercise as in (4.1) and Ft
represents the filtration at time t, i.e. the information flow up to time t. In order to ease
the notation, sometimes we will not write the dependence on the delivery period, which
does not come into play in this discussion. We recall that the expectation is taken under
the risk-neutral measure Q, even though it is not explicitly indicated, and throughout this
work Q will be the only probability measure we will deal with. By applying the definition of
conditional expectation, we can write

C(t;T,K) =

∫ +∞

K
(s−K) qt,T (s) ds, (4.9)

where qt,T is the (risk-neutral) density function of F (T ) conditioned up to time t. This formula
yields an expression for the option value, for instance, when the distribution of the underlying
F allows for an explicit formula for the density, that, moreover, can be integrated against
the payoff function in a tractable way (as it is the case in the Black model [38], where the
underlying follows a geometric Brownian motion).

We follow the alternative approach of [45], which consists, roughly speaking, in computing
the Fourier transform of (4.8) as a function of K (after proper manipulations) so to recover the
option value by inverse transform. This has been studied by several authors and it has been
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shown to be a very convenient way to compute option prices in the case that the characteristic
function of the underlying is known explicitly, while the density is not. The starting point of
the above mentioned approach is the observation that, as K goes to −∞, C(t;T,K) → ∞,
so that in particular C(t;T,K) is not integrable as a function of K for large negative values.
This means that the option value C(t;T,K) does not satisfy the assumptions required for
computing its Fourier transform. In order to overcome this, we follow [45], who suggest two
approaches that we here recall and apply to the case of additive models.

4.3.1 First approach: modified option value

Following [45], define for arbitrary a > 0 the modified option value (as a function of the strike
price K ∈ R) by

zMO
t,T (K) := eaKC(t;T,K), (4.10)

and, if it is square-integrable, compute its Fourier transform for v ∈ R:

ξMO
t,T (v) :=

∫ +∞

−∞
eivK zMO

t,T (K) dK. (4.11)

Since, by definition,

zMO
t,T (K) =

∫ +∞

K
eaK (s−K) qt,T (s) ds,

where qt,T is the density function of F (T ) conditioned up to time t, we can express ξMO
t,T with

respect to the characteristic function of the underlying using integration by parts (that can
be used under the assumptions of Proposition 4.3.1):

ξMO
t,T (v) =

∫ +∞

−∞
eivKeaK

∫ +∞

K
(s−K) qt,T (s) ds dK

=

∫ +∞

−∞
qt,T (s)

∫ s

−∞
e(a+iv)K (s−K) dK ds (4.12)

=

∫ +∞

−∞
qt,T (s)

e(a+iv)s

(a+ iv)2
ds,

that finally yields

ξMO
t,T (v) = e(a+iv)s(t)

Ψ(t, T, v − ia)

(a+ iv)2
, (4.13)

where, for any t ∈ [0, T ], s(t) := F (t) and Ψ(t, T, v) is the characteristic function of
Z(t, T, T1, T2) as in (4.2).

If ξMO
t,T is integrable, by the Fourier inversion theorem, the option value in (4.10) can be

recovered by inverting again (4.13):

C(t;T,K) =
e−aK

2π

∫ +∞

−∞
e−iKv ξMO

t,T (v) dv. (4.14)

Since zt,T (K) is a real-valued function, we have that ξt,T (v) = ξt,T (−v). This gives us that
ξt,T has even real part and odd imaginary part and so we can simplify (4.14) to

C(t;T,K) =
1

π

∫ +∞

0
Re
(
e−iKv ξMO

t,T (v)
)
dv. (4.15)

In order to apply this formula, we need to justify the interchange of integrals operated in
(4.19) under the following integrability assumptions on the futures price process.
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Proposition 4.3.1. If Z(T, T1, T2) is exponentially integrable with finite exponential moment
of order a, i.e. E

[
eaZ(T,T1,T2)

]
<∞, then

ξt,T (v) =

∫ +∞

−∞
eivK

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds dK

=

∫ +∞

−∞
qt,T (s)

∫ s

s(t)
eivK (s−K) dK ds.

Proof. It is enough to show that the integral of the absolute value of the integrand with
respect to K, i.e. ∫ +∞

−∞
eaK |s−K| |1s>K − 1s(t)>K | dK

can be integrated in s against the density qt,T (s). Since this is equal to

∫ s

s(t)
eaK(s−K) dK =

eas(t)(a(s(t)− s)− 1) + eas

a2
≈ min(eas, |s|),

at infinity, the integrability with respect to the density is given by the exponential integrability
of Z(t, T, T1, T2).

4.3.2 Second approach: modified time value

The first approach is based on the use of an exponential damping factor eaK in order to make
the option value integrable. Instead, the second approach, that we are going to outline below,
consists in substracting the time value of the option. The arguments and the steps are similar
to the first approach, but we rewrite them for the sake of clarity. Still following [45] (see also
[51]), define the modified time value of the option (as a function of the strike K ∈ R) by

zMT
t,T (K) = C(t;T,K)− (F (t)−K)+, (4.16)

and, if it is square-integrable, compute its Fourier transform

ξMT
t,T (v) =

∫ +∞

−∞
eivK zMT

t,T (K) dK. (4.17)

If ξMT
t,T is integrable, by the Fourier inversion theorem, the modified time value of the option

can be recovered by inverting again the last equation:

zMT
t,T (K) =

1

2π

∫ +∞

−∞
e−iKv ξMT

t,T (v) dv. (4.18)

Now, observe that, by the martingale property of F (·),

(F (t)−K)1F (t)>K = E [(F (T )−K) |Ft ] 1F (t)>K .

Then, we can write from (4.9)

zMT
t,T (K) =

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds



4.3 Option pricing for additive models by Fourier transform methods 95

where, for any t ∈ [0, T ], s(t) := F (t) and qt,T is the density function of F (T ) conditioned
up to time t. As a consequence, if the interchange of integrals holds (see Proposition 4.3.2),
(4.17) can be written as

ξMT
t,T (v) =

∫ +∞

−∞
eivK

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds dK

=

∫ +∞

−∞
qt,T (s)

∫ s

s(t)
eivK (s−K) dK ds (4.19)

=

∫ +∞

−∞
qt,T (s)

{
eivKs

iv

∣∣∣∣
s

K=s(t)

−
∫ s

s(t)
K eivK dK

}
ds

=

∫ +∞

−∞
qt,T (s)

{
−e

ivs(t)s

iv
+
eivs(t)s(t)

iv
− eivs

v2
+
eivs(t)

v2

}
ds

= − 1

v2

∫ +∞

−∞
qt,T (s) e

ivs ds+
eivs(t)

v2
− eivs(t)

iv

∫ +∞

−∞
qt,T (s)(s− s(t)) ds.

Since F is a martingale,

∫ +∞

−∞
qt,T (s)(s− s(t)) ds = E [(F (T )− F (t)) |Ft ] = 0

and, by definition of characteristic function (see also (4.2)),

∫ +∞

−∞
qt,T (s) e

ivs ds = E

[
eivF (T ) |Ft

]
= eivs(t)Ψ(t, T, v),

where Ψ(t, T, v) is the characteristic function of Z(t, T ). Then, we finally arrive to

ξMT
t,T (v) = eivF (t) 1−Ψ(t, T, v)

v2
. (4.20)

In analogy to the modified option approach, we have that ξMT
t,T has even real part and odd

imaginary part and so

zMT
t,T (K) =

1

π

∫ +∞

0
Re
(
e−iKv ξMT

t,T (v)
)
dv. (4.21)

Finally, by recalling (4.16), the option value is computed from (4.21) by

C(t;T,K) = zMT
t,T (K) + (F (t)−K)+.

In order to apply this formula, we need to justify the interchange of integrals operated in
(4.19) under the following integrability assumptions on the futures price process.

Proposition 4.3.2. If Z(T, T1, T2) is square-integrable, then

ξt,T (v) =

∫ +∞

−∞
eivK

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds dK

=

∫ +∞

−∞
qt,T (s)

∫ s

s(t)
eivK (s−K) dK ds.
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Proof. It is enough to show that the integral of the absolute value of the integrand with
respect to K, i.e. ∫ +∞

−∞
|s−K| |1s>K − 1s(t)>K | dK

can be integrated in s against the density qt,T (s). Since this is equal to

∫ s

s(t)
(s−K) dK =

1

2
(s− s(t))2,

the integrability with respect to the density is equivalent to the existence of the second
moment of Z(t, T, T1, T2).

4.4 Calibration procedure

As we have derived in the previous section semi-analytical expressions (analytical up to
integration) for the option prices, we now move to discussing a calibration methodology that
we are going to apply in our empirical study. First, we discretize the option value that is
given in integral form in (4.15) (first approach: modified option value) and (4.21) (second
approach: modified time value) in the domain of integration. Then, we select a finite grid of
strike prices, that consists in practice of the listed options available in the market for a given
underlying. This procedure reduces the valuation problem to the computation of a finite sum
of vectors, where each component is the option price for a given strike. Then we introduce a
least squares problem designed to find the parameters that minimize an error function (for
a discussion about the choice of the error function, we refer to [44, Section 5.4]). We can
compute it for two possible quantities, the model error on option prices and on the IV given
by Black’s formula. By minimizing on IVs rather than option prices, we weight at the same
way contracts with different maturity. However, minimizing on prices is preferable in terms of
speed of computation, as it does not require the inversion of Black’s formula at each step. We
separate the calibration routine in three cases, of increasing generality, in order to discuss the
presence of different constraints case-by-case.

4.4.1 Discretization of model option prices

The quantities that we have to discretize, (4.15) and (4.21), take the following form:

zt,T (K) =
φ(K)

π

∫ +∞

0
Re
(
e−iKv ξt,T (v)

)
dv, (4.22)

where

φ(K) =

{
1 MT value

e−aK MO value

First, we choose an upper limit A ∈ R+ in the above integration (see [45, Section 3.1] for a
discussion on how to do this optimally). Then, if we apply a simple Euler rule to the truncated
integral, we find an expression of the form

zt,T (K) ≈ φ(K)

π

N∑

j=1

Re
(
e−ivjK ξt,T (vj)

)
η, (4.23)
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where N ∈ N, η := A/N and vj := η(j − 1) is the integration step. Given M ∈ N different
strikes with granularity κ > 0, we compute the function in (4.23) for the following values of
K:

Ku := K + κ(u− 1), for u = 1, . . . ,M,

being K the lowest strike price traded. By plugging this in (4.23), we get for u = 1, . . . ,M

zt,T (Ku) ≈ wt,T (Ku) :=
φ(Ku)

π

N∑

j=1

Re
(
e−iκη(j−1)(u−1)e−iKη(j−1) ξt,T (η(j − 1))

)
η. (4.24)

As pointed out in [45], this formula is suitable for the application of the fast Fourier
transform (FFT) algorithm. In order to do this, one must impose that the number of strike
prices considered is equal to the number of integration nodes, i.e. M = N (which is typically
chosen as a power of 2). Moreover, it must hold that

κη =
2π

N
,

which consists of a trade-off between the grid for the integration and the granularity of strike
prices. In particular, since in practice the granularity κ is given, this equality univocally
defines the integration grid as a function of N . However, in our application we will not make
use of the FFT algorithm and so, in particular, we will not impose the above restrictions on
N,M, κ, η. This is motivated by the fact that we do not have a significant advantage in the
computational complexity of the problem, being the number of strikes consistently lower than
N . Furthermore, the focus of our work is not on the speed-up of the calibration procedure,
but rather on the empirical results, so that we do not exclude the possibility to apply the
FFT algorithm, being still possible from a theoretical point of view.

4.4.2 Parameters estimation

Since we have at disposal formulas in discrete form that can be readily implemented, we
can now discuss how to fit the two-factor model to market data. The calibration happens
statically, taking a snapshot of the market, in the sense that we fix a trading date and observe
the market option prices for that date. From these prices we compute the IVs, with respect to
the different listed strikes and underlyings, both for market and model prices. We then find
the parameters that fit a certain distance from theoretical to model IVs best. As mentioned
at the beginning of this section, one can alternatively use option prices instead of IVs. The
futures model under consideration is defined in a such a way that there is no possibility
of arbitrages, also in the case of overlapping delivery periods. No-arbitrage implies certain
relations on the coefficients, that translate into parameter constraints. In order to highlight
this, we present the objective function and the parameters set for the following three cases:
single underlying, many underlyings but non-overlapping delivery periods, and general case of
possibly overlapping delivery periods.

Black’s Formula

The first and most used in practice model for option prices written on futures is the Black
model [38]. It assumes that the underlying follows a geometric Brownian motion as in the
Black-Scholes formula. Also, the expression for the call price is very similar to the Black-
Scholes one, with the futures price replacing the stock price, but with different discounting.
Since we are assuming that the risk-free rate is zero, the Black-Scholes and the option price
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given by the Black model are actually the same in our case. We recall the Black formula here
because, in addition to use it as a benchmark in the upcoming empirical application, we use
it to compute the implied volatility of both market and model prices:

CBS(t;T,K) = F (t, T )N(d1)−KN(d2), (4.25)

where N denotes the cumulative distribution function of a standard Normal random variable
and

d1 =
log F (t)

K + 1
2σ

2(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

The implied volatility of a given option with price P and strike K is defined as the only
(positive) number σ such that the Black formula for a strike K and volatility σ (all other
quantities being equal) gives the price P . The two-factor model aims to reproduce the IV
profile of market option prices, that is the plot of σ with respect to K. Black’s formula yields
constant implied volatility with respect to K, while real option prices usually display smiles
or smirks (i.e. the IV is not constant and shows a certain convexity).

Single contract

Assume that we observe at a certain date t < T the prices c∗(t, T, T1, T2,Ku) of a call option
for M different strike prices Ku, with exercise at time T written on a futures with delivery
over [T1, T2]. We compute the IV of c∗(t, T, T1, T2,Ku) by inverting Black’s formula, obtaining
a function of the M strikes σimp∗ (t, T, T1, T2,Ku), for u = 1, . . . ,M . To fit the model to the
observe IVs we search for the parameters that minimize a certain error function. Specifically,
we introduce the following least-squares problem:

θ̂ := argmin
θ∈Θ

M∑

u=1

|σimp(t, T, T1, T2,Ku)− σimp∗ (t, T, T1, T2,Ku)|2, (4.26)

where σimp(t, T, T1, T2,Ku) is the IV computed on the prices generated by the model. The set
Θ contains all the parameters appearing in the approximation formula C(t, T, T1, T2,Ku) ≈
c(t, T, T1, T2,Ku) where

c(t, T, T1, T2,Ku) :=

{
wt,T (Ku) + (F (t, T1, T2)−Ku)+ MT value

wt,T (Ku) MO value
(4.27)

where wt,T (Ku) for u = 1, . . . ,M is the discrete function in (4.24).
If we assume that F (T, T1, T2) is given by a two-factor pure-jump model of the form (4.3)

where Γi are defined in (4.4) and (4.5) and Ji is a centered NIG Lévy process with parameters
(αi, βi, 1), then Θ = {θ = (α1, α2, β1, β2, µ, γ1,Γ2(T1, T2)) ∈ (R+)2 × (R+

0 )
4 × R+ : 0 ≤ |βj | <

αj}. We do not need to indicate the parameter m of the original NIG Lévy process Li (see
Section 3.2) since it does not appear in the centered version. Also, the parameter δ is assumed
to be 1 without here because of the presence of the multiplying factors Γ1(u, T1, T2) and
Γ2(T1, T2), thanks to the property that, given a NIG(α, β, δ) distributed random variable X,
for a constant γ > 0, γX is distributed as a NIG(α/γ, β/γ, δγ). This means that letting δ vary
in the parameters set would result in an overparametrization of the minimization problem.
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Non-overlapping futures

Let us assume that we are at time t and observe I call options written on futures contracts
with non-overlapping delivery periods [Ti,1, Ti,2] (for example Jan/YY, Feb/YY, Mar/YY),
exercise at Ti and Mi strike prices

Ki
u := Ki + κi(u− 1),

for u = 1, . . . ,Mi and i = 1, . . . , I. In the case of more than one contract, we introduce the
following least-squares problem:

θ̂ := argmin
θ∈Θ

I∑

i=1

Mi∑

u=1

|σimp(t, Ti, Ti,1, Ti,2,Ki
u)− σimp∗ (t, Ti, Ti,1, Ti,2,K

i
u)|2. (4.28)

where Θ is now the set of parameters {θ = (α1, α2, β1, β2, µ, γ1, {Γi}Ii=1) ∈ (R+)2 × (R+
0 )

4 ×
(R+)I : 0 ≤ |βj | < αj}. For I = 1 we recover exactly the previous case.

Whole market

In general options traded in power markets are written on I futures contracts with different
delivery length and possibly overlapping. For example, one can have Apr/YY, May/YY,
Jun/YY, Jul/YY, Q2/YY, Q3/YY, Cal-YY. As explained in [93], in order to estimate the
parameters in a consistent, i.e. arbitrage-free, way, we have to take into account additional
constraints on the parameters. From Equation (4.5), it can be shown that the parameters Γi
satisfy the following constraints

Γi = Γ2(Ti,1, Ti,2) =

n∑

j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Γ2(Tj,1, Tj,2) =

n∑

j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Γj (4.29)

whenever [Ti,1, Ti,2] is the union of disjoint intervals [Tj,1, Tj,2] for j = 1, . . . , n, i.e. for all the
forwards with overlapping delivery. Let us call atomic, the contracts whose delivery period can
not be partitioned by the delivery periods of other futures. In other words, we suppose that
m forwards F1, . . . , Fm have non-overlapping delivery periods [T1,1, T1,2], . . . , [Tm,1, Tm,2] and
such that the delivery periods of the other contracts traded in the market can be expressed as
union of the former. For example, assume that we observe in the chosen calibration window
the option prices for futures contracts delivering over Apr/YY, May/YY, Jun/YY, Jul/YY,
Q2/YY, Q3/YY, Cal-YY. On one hand, Q2/YY is not atomic, since it can be “splitted”
into Apr/YY, May/YY and Jun/YY. On the other hand, Q3/YY turns out to be atomic,
even if Jul/YY is already traded, as Aug/YY and Sep/YY are not observed. For the same
reason, Cal-YY is considered atomic as well. Then, in this example, if Γ1, . . . ,Γ7 denote
the corresponding parameters, we have that Γ1,Γ2,Γ3,Γ4,Γ5,Γ7 are free parameters, as they
refer to atomic contracts, whereas to determine Γ5 we use Equation (4.29). Consequently, we
define the same statistics as in (4.28) but where now the vector of parameters is subject to
the additional constraints given by Equation (4.29). For example, with the convention that
ΓQ2/YY denotes the parameter Γi corresponding to the contract Q2/YY, then

ΓQ2/YY = uApr/YYΓApr/YY + uMay/YYΓMay/YY + uJun/YYΓJun/YY, (4.30)

where the weights ui are defined according to the number of days in the month/quarter (e.g.
for Apr/YY we have uApr/YY = 30/91).
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4.5 Empirical results

We describe our dataset, compute and discuss the empirically observed IV implied by settlement
prices. Finally, we compare the performance of three models: the Black formula, the one-factor
model (being a special case of the two-factor one) and the general two-factor model.

4.5.1 Data description

The contracts that we consider in our application are European-styled call options traded
at the EEX Power Derivatives market. The underlying assets are futures contracts that
prescribe the delivery of 1 MW per hour, for each hour of each day of a month, a quarter
or a year. More specifically, we will consider call options written on the Phelix Base index
of the German/Austrian area. These options are called Phelix Base Month/Quarter/Year
Options and the EEX official product codes are O1BM, O1BQ, O1BY. The term Base refers
to Base Load, because the delivery of electricity takes place for each hour of the day, in
contrast to Peak Load contracts, that instead prescribe the delivery only for the hours from 8
to 20. Usually, the exercise of the options under consideration is few trading days before the
start of delivery. Since recently, yearly options are now available for four different exercise
dates. We consider in our dataset only the ones with expiration few days before delivery,
in analogy to quarterly and monthly contracts. Since there is not enough liquidity in the
market in order to extract information on the IV surface from traded market quotes, we
consider the settlement prices, that are available for a sufficiently large range of maturities
and strikes. Though settlement prices do not represent trades that really take place in the
market, they contain information on the market expectations. We observe the market for a
representative day: Monday, March 5, 2018. For each option, we consider the strike prices
in the range 90%-110% of the underlying current price (as, for example, in [7, 11]). At this
date the listed options with available settlement prices are the ones written on five monthly
(Apr/18, May/18, Jun/18, Jul/18, Aug/18), six quarterly (Q2/18, Q3/18, Q4/18, Q1/19,
Q2/19, Q3/19) and three yearly (Cal-19, Cal-20, Cal-21) futures.

4.5.2 Model comparison

We perform the calibration procedure described in Section 3.4.3, first, for the one-factor model
derived by (4.3) by setting the first coefficient to 0, i.e. Γ1(u, T1, T2) ≡ 0 and, then, for our
general two-factor model. We compare both models to the empirical IVs and the one (constant
across strikes) generated by Black’s model, that we estimate with the same procedure of the
other models (except the computation of the price, which can be computed analytically for
the Black model). We show the results for the minimization on market prices (see Section
4.4), since the calibration is faster and, even though the case of IVs yields by definition a
lower residual, it gives very similar results. The IVs of market and model prices are plotted in
Figures 4.1–4.3.

We use the second approach (modified time value) because it has the advantage that we
do not have to choose the damping parameter a in (4.10). Also, as stated in Proposition 4.3.1,
additional integrability assumptions are needed, that translate, in the case of the two-factor
NIG model, into other constraints on the parameters. We have tested the modified option
value approach on the one-factor model and found analogous performance to the case of the
modified time value, but, as explained, we needed to add more constraints on the parameter
set so that the implementation was more involved. After numerical experiments with test
parameters, the integral in (4.22) has been truncated at A = 10 and computed by an adaptive
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Simpson quadrature rule already implemented in MATLAB (as in [102]), which takes into
account the oscillatory behavior of the integrand (cf. [45]).

We find that, in general, the optimization routine falls into local minima. However, by
selecting a starting condition that is “sufficiently close” to the observed IVs, the minimization
converges (cf. [52] for well-posedness of this kind of problems). As a by-product from the
estimation of the one-factor model, we derive that, under the risk-neutral measure, futures
prices are leptokurtic and have significantly positive skewness. This is reflected also into the
shape of empirical IVs, which display a forward skew (i.e. higher IVs for out-of-the-money
calls). This can be interpreted as a “risk premium” paid by option buyers for securing supply.

Generally, the two-factor model fit is rather accurate for all the strikes and maturities
available in the market. However, the “smile” of model IVs of closest to maturity options
is slightly more pronounced than what observed. There is a clear improvement of fit from
the one-factor to the two-factor model, since, for instance, IVs of far from maturity out-of-
the-money calls are underestimated by the one-factor model (and not from the two-factor
one). Also, there is a slight anomaly in some at-the-money IVs, that we believe it is due to
numerical instability of the Fourier method for K = F (t) (cf. [45]).

4.6 Appendix

4.6.1 Characteristic function of the two-factor NIG model

As already stated in Section 4.2 for general multifactor additive models, the characteristic
function of two-factor NIG model is defined as a function of v ∈ R by

Ψ(t, T, T1, T2, v) = E

[
eivZ(t,T,T1,T2) |Ft

]
,

where Z(t, T, T1, T2) := F (T, T1, T2)− F (t, T1, T2), and it can be shown to be equal to

logΨ(t, T, T1, T2, v) = ψ1(t, T ; yΓ1(·, T1, T2)) + ψ2(t, T ; yΓ2(T1, T2)). (4.31)

First, we need to compute the cumulant function ψ̃j(θ) of Jj (j = 1, 2), that can be
computed from the corresponding cumulant ψ̃Lj

(θ) of Lj as follows. From the definition of Jj
we know that

ψ̃j(θ) = ψ̃Lj
(θ)− iθ

(
χj +

∫

|y|≥1
y νj(dy)

)
,

where
ψ̃Lj

(θ) = δ
(√

α2
j − β2j −

√
α2
j − (βj + iθ)2

)
+ iθmj .

Moreover, since Lj(1) is a NIG distributed random variable, its expected value is

E[Lj(1)] =

(
χj +

∫

|y|≥1
y νj(dy)

)
= mj +

δjβj√
α2
j − β2j

,

so that, by replacing it in the expression above, we find that

ψ̃j(θ) = δj



√
α2
j − β2j −

√
α2
j − (βj + iθ)2 − iθ

βj√
α2
j − β2j


 . (4.32)
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Figure 4.1: Implied volatility for the Black, one-factor and two-factor model compared to the
empirical implied volatilities of all the options listed at March 5, 2018 (the corresponding
underlying current price is indicated above each plot).
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Figure 4.2: Implied volatility for the Black, one-factor and two-factor model compared to the
empirical implied volatilities of all the options listed at March 5, 2018 (the corresponding
underlying current price is indicated above each plot).
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Figure 4.3: Implied volatility for the Black, one-factor and two-factor model compared to the
empirical implied volatilities of all the options listed at March 5, 2018 (the corresponding
underlying current price is indicated above each plot).

In particular, we observe that Jj(1) is a NIG distributed random variable with parameters
(αj , βj , δj ,− δjβj

√

α2
j−β

2
j

). Now, we can compute the two jump components of the cumulant

function in (4.31), by inserting the corresponding expressions of ψ̃j(θ) from (4.32) and Γj as
in (4.4)–(4.5) for j = 1, 2. The second coefficient can be directly computed as

ψ2(t, T ; yΓ2(T1, T2)) = (T − t) δ2

(√
α2
2 − β22 −

√
α2
2 − (β2 + iyΓ2(T1, T2))2

− iyΓ2(T1, T2)
β2√

α2
2 − β22

)
, (4.33)

while the first requires an integration in time:

ψ1(t, T ; yΓ1(·, T1, T2)) = (T − t) δ1

√
α2
1 − β21

− δ1

∫ T

t

√
α2
1 − (β1 + iyΓ1(u, T1, T2))2 du

− iy
δ1β1√
α2
1 − β21

∫ T

t
Γ1(u, T1, T2) du. (4.34)

Let us recall that, if ζ := Γ2(T1, T2) is positive, by the properties of the NIG distri-
bution (see e.g. [12]), ζ · J2(1) is a NIG distributed random variable with parameters
(α2/ζ, β2/ζ, δ2ζ,− δ2ζβ2√

α2
2
−β2

2

). Consequently, it is easy to see that we can assume without loss

of generality that δ2 = 1, so that

ψ2(t, T ; yΓ2(T1, T2)) = (T − t)
(√

α2
2 − β22 −

√
α2
2 − (β2 + iyΓ2(T1, T2))2

− iyΓ2(T1, T2)
β2√

α2
2 − β22

)
, (4.35)
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For the same reason we can assume that δ1 = 1. By replacing Γ1(u, T1, T2) = eµu γ1(e−µT1−e−µT2 )
µ(T2−T1)

:=

eµu Γ̃1(T1, T2) in (4.34) and integrating, we get

ψ1(t, T ; yΓ1(·, T1, T2)) = (T − t)
√
α2
1 − β21 − η(c(y, T )) + η(c(y, t))

− iy Γ̃1(T1, T2)β1(e
µT − eµt)

µ
√
α2
1 − β21

, (4.36)

where

η(w) :=
1

µ

(√
α2
1 + w2 − iβ1 arcsinh

w

α1

−
√
α2
1 − β21 log

2α2
1

(
α2
1 − iβ1w +

√
α2
1 − β21

√
α2
1 + w2

)

(w + iβ1)(α2
1 − β21)

3

2


 , (4.37)

c(v, u) := v Γ̃1(T1, T2) e
µu − iβ1. (4.38)

Finally, the cumulant function of Z is explicitly given by

logΨ(t, T, T1, T2, y) = ψ1(t, T ; yΓ1(·, T1, T2)) + ψ2(t, T ; yΓ2(T1, T2))

= (T − t)

{√
α2
1 − β21 +

√
α2
2 − β22

− iy

(
Γ̃1(T1, T2)β1

µ
√
α2
1 − β21

(eµT − eµt)

T − t
+

Γ2(T1, T2)β2√
α2
2 − β22

)

− η(c(y, T ))− η(c(y, t))

T − t
−
√
α2
2 − (β2 + iyΓ2(T1, T2))2

}
.

with η(·) and c(·, ·) as in (4.37)–(4.38).
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