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Abstract

Variational approximations are approximate inference techniques for complex statis-

tical models providing fast, deterministic alternatives to conventional methods that,

however accurate, take much longer to run. We extend recent work concerning vari-

ational approximations developing and assessing some variational tools for likelihood

based and Bayesian inference. In particular, the first part of this thesis employs a Gaus-

sian variational approximation strategy to handle frequentist generalized linear mixed

models with general design random effects matrices such as those including spline basis

functions. This method involves approximation to the distributions of random effects

vectors, conditional on the responses, via a Gaussian density. The second thread is

concerned with a particular class of variational approximations, known as mean field

variational Bayes, which is based upon a nonparametric product density restriction on

the approximating density. Algorithms for inference and fitting for models with elab-

orate responses and structures are developed adopting the variational message passing

perspective. The modularity of variational message passing is such that extensions to

models with more involved likelihood structures and scalability to big datasets are rel-

atively simple. We also derive algorithms for models containing higher level random

effects and non-normal responses, which are streamlined in support of computational

efficiency. Numerical studies and illustrations are provided, including comparisons with

a Markov chain Monte Carlo benchmark.





Sommario

Le approssimazioni variazionali sono tecniche di inferenza approssimata per modelli sta-

tistici complessi che si propongono come alternative, più rapide e di tipo deterministico,

a metodi tradizionali che, sebbene accurati, necessitano di maggiori tempi per l’adatta-

mento. Vengono qui sviluppati e valutati alcuni strumenti variazionali per l’inferenza

basata sulla verosimiglianza e per l’inferenza bayesiana, estendendo dei risultati recenti

in letteratura sulle approssimazioni variazionali. In particolare, la prima parte della

tesi impiega una strategia basata su un’approssimazione variazionale gaussiana per la

funzione di verosimiglianza di modelli lineari generalizzati misti con matrici di disegno

degli effetti casuali generiche, includenti, per esempio, funzioni di basi spline. Que-

sto metodo consiste nell’approssimare la distribuzione del vettore degli effetti casuali,

condizionatamente alle risposte, con una densità gaussiana. Il secondo filone concerne

invece una particolare classe di approssimazioni variazionali nota come mean field varia-

tional Bayes, che impone un prodotto di densità come restrizione non parametrica sulla

densità approssimante. Vengono sviluppati algoritmi per l’inferenza e l’adattamento di

modelli con risposte elaborate, adottando la prospettiva del variational message pas-

sing. La modularità del variational message passing è tale da consentire estensioni a

modelli con strutture di verosimiglianza più complesse e scalabilità a insiemi di dati di

grandi dimensioni con relativa semplicità. Vengono inoltre derivati in forma esplicita

degli algoritmi per modelli contenenti effetti casuali su più livelli e risposte non norma-

li, introducendo semplificazioni atte a incrementare l’efficienza computazionale. Sono

inclusi studi numerici e illustrazioni, considerando come riferimento per un confronto il

metodo Markov chain Monte Carlo.





To my family





Acknowledgements

Words are simply not enough to express my deepest thank you to my supervisor

and co-supervisor in Padova, Nicola and Alessandra, who patiently transmitted all their

passion for rigorous scientific research to me.

I extend my sincere gratitude to my co-supervisor in Sydney, Matt, who spent many

hours guiding me with helpful advice throughout a great part of my PhD journey and

from whom I learnt dedication and determination to achieve gratifying results.

Thank you to the people who dedicated some of their time for discussing my research

during my PhD studies, including Ruggero Bellio, Carlo Gaetan, Francis Hui, and John

Ormerod, as well as to the reviewers for their insightful comments.

I am always and forever grateful to my family, to Mum and Dad, Simone, my lovely

grandparents, aunts, uncles and cousins for raising me or giving me all the support I

needed.

Finally, I would like to thank my friends, especially my PhD colleagues in Padova

and Sydney who have shared with me one of my life most beautiful experiences.

November, 30 2018





Notational conventions

Lower-case Roman and Greek letters in boldface denote vectors whose entries are

subscripts. For example, x denotes a n× 1 vector containing x1, . . . , xn. All vectors are

column vectors. Upper-case Roman and Greek letters in boldface denote matrices. For

example, X denotes a m×n matrix containing n vectors of dimension m×1, x1, . . . ,xn.

R The set of real numbers.

Rn The set of real vectors of dimension n.

Rn×m The set of real matrices with n rows and m columns.

T Transpose symbol for vectors and matrices.

(·, . . . , ·) Lists of scalars, vectors and matrices within round brackets are con-

catenated vertically (vertical concatenation), e.g. a = (a1, . . . , an) is a

column vector.

[·, . . . , ·] Lists of scalars, vectors and matrices within square brackets are concate-

nated horizontally (horizontal concatenation), e.g. a = [a1, . . . , an] is a

row vector. In addition, (a1, . . . ,an) =
[
aT1 , . . . ,a

T
n

]T
.[

aij
1≤i≤n

]
1≤j≤m

Matrix with n rows and m columns or vector with n rows if m = 1.

(a)i or ai The element in ith position of a vector a.

(A)ij or Aij The element in (i, j)th position of a matrix A.

diag (a) For a vector a ∈ Rn, diagonal matrix of size n× n such that

diag (a) =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · an

 .
dg (A) For a square matrix A ∈ Rn×n, a vector of length n whose entries corre-

spond to the diagonal elements of A such that

dg




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann



 = (A11, A22, . . . , Ann) .

0 or O An appropriately-sized vector or matrix of zeroes.



1 An appropriately-sized vector or matrix of ones.

ei An appropriately-sized vector of zeros, except the ith value which is 1.

I An appropriately-sized identity matrix.

a� b The element-wise multiplication of vectors a, b ∈ Rn, that is,

(a1b1, . . . , anbn).

a/b The element-wise division of vectors a, b ∈ Rn, that is, (a1/b1, . . . , an/bn).

f (x) Univariate function f : R → R of a vector x ∈ Rn such that f (x) =

(f (x1) , . . . , f (xn)).

‖a‖ Vector 2−norm of a vector a ∈ Rn such that ‖a‖ = (
∑n

i=1 a
2
i )

1/2
.

tr (A) The trace of the matrix A.

|A| The determinant of the matrix A.

A−1 The inverse matrix of the matrix A.

A⊗B The Kronecker product of matrices A ∈ Rn×m and B ∈ Rp×q, that is,

the np×mq matrix defined by [aijB]1≤i≤n,1≤j≤m.

A�B The element-wise multiplication of matrices A,B ∈ Rn×m, that is, the

n×m matrix defined by [aijbij]1≤i≤n,1≤j≤m.

vec (A) For a square matrix A ∈ Rn×m, the nm × 1 vector obtained by stack-

ing the columns of A underneath each other in order from left to right

(vectorization) such that

vec (A) = (A11, . . . , An1, A12, . . . , An2, . . . , A1m, . . . , Anm).

vec−1
n×m (a) For a vector a ∈ Rnm, the n × m matrix A formed from listing the

entries of a in a column-wise fashion in order from left to right, such

that vec (A) = a; if the subscript is not specified, a ∈ Rn2
and A is of

size n× n.

vech (A) For a symmetric matrix A ∈ Rn×n, the n (n+ 1) /2× 1 vector obtained

by vectorizing only the lower triangular part of A (halph-vectorization)

such that

vech (A) =
(
A11, . . . , An1, A22, . . . , An2, . . . , A(n−1)(n−1), An(n−1), Ann

)
.

vech−1 (a) For a vector a ∈ Rn(n+1)/2, the n × n symmetric matrix A whose lower

triangular part is formed from listing the entries of a in a column-wise

fashion in order from left to right such that vech (A) = a.

Dn For a symmetric matrix A ∈ Rn×n, the duplication matrix of order

n and size n2 × n (n+ 1) /2 containing all zeroes and ones such that

Dnvech (A) = vec (A).

D+
n For a duplication matrix of order n, Dn, and a symmetric matrix

A ∈ Rn×n, the Moore–Penrose inverse D+
n ≡

(
DT

nDn

)−1
DT

n such that

D+
n vech (A) = vec (A).



blockdiag
1≤i≤d

(Ai) For matrices Ai ∈ Rni×mi , 1 ≤ i ≤ d, a matrix of size
∑d

i=1 ni ×∑d
i=1mi such that

blockdiag1≤i≤d(Ai) ≡


A1 O · · · O

O A2 · · · O
...

...
. . .

...

O O · · · Ad

 .
stack
1≤i≤d

(Ai) For matrices Ai ∈ Rni×m, 1 ≤ i ≤ d, a matrix of size
∑d

i=1 ni ×m
such that

stack1≤i≤d(Ai) ≡


A1

...

Ad

 .
I (x) Indicator variable, which takes the value 1 if x is true and 0 other-

wise.

φ (x) Density function of a standard normal distributed random variable

x.

Φ (x) Cumulative distribution function of a standard normal distributed

random variable x.

o (·) For f and g real valued functions, both defined on some unbounded

set of real positive numbers and g (x) strictly positive for all large

enough values of x, f (x) = o (g (x)) as x→∞ if for every positive

constant ε there exists a constant N such that |f (x)| ≤ εg (x) for

all x ≥ N .

O (·) For f and g real valued functions, both defined on some unbounded

set of real positive numbers and g (x) strictly positive for all large

enough values of x, f (x) = O (g (x)) as x→∞ if and only if there

exist a positive real number M and a real number x0 such that

|f (x)| ≤Mg (x) for all x ≥ x0.
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Introduction

“Far better an approximate answer to the right question, which is often vague,

than an exact answer to the wrong question, which can always be made precise.”

John W. Tukey1, 1915 – 2000

Overview

The rapid growth of information has revolutionized the concept of data analysis and

the instruments for handling data. In some cases, the amount of data to store has grown

so much that standard computer memory is unable to manage such a large volume. This

gives a new impulse to engineering research on new data processing technologies. In a

similar manner, the celerity of processing information in recent years has motivated

researchers and practitioners to develop and employ faster data analysis techniques in

lieu of conventional methods whose running time does not match practical requirements.

This big data revolution encourages the start of new research threads in statistics

and, in the same spirit, is the drive behind this thesis. Specifically, the thesis focuses

on the development and assessment of variational approximation methods for statistical

inference and fitting problems from both likelihood based and Bayesian perspectives.

Variational approximations are a class of techniques for making approximate deter-

ministic inference for complex statistical models. The name derives from the mathe-

matical discipline of variational calculus, since the approximation is obtained from the

optimization of a functional over a class of density functions on which that functional

depends. Now part of conventional computer science methodology concerning elaborate

problems such as natural language processing, speech recognition, document retrieval,

genetic linkage analysis, computational biology, computational neuroscience, computer

vision and robotics, variational approximations are finding a growing presence in statis-

tics. However, much of the mainstream literature on variational approximations uses

1See Tukey (1962).
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terminology, notation, and examples from computer science rather than statistics. An

introduction to the topic from a mere statistical perspective is contained in Ormerod

and Wand (2010), that, in turn, refer to Jordan et al. (1999), Jordan (2004), Tittering-

ton (2004), and Bishop (2006, Chapter 10) for summaries of variational approximations.

Teschendorff et al. (2005), McGrory and Titterington (2007) and McGrory et al. (2009)

are cited as works about variational approximation methodology for particular appli-

cations, while Hall et al. (2002) and Wang and Titterington (2006) as references about

the statistical properties of estimators obtained via variational approximation. Addi-

tionally, a description of variational approximations as a machine learning method for

approximating probability densities is included in Wainwright and Jordan (2008). A

more recent reference, Blei et al. (2017), provides an exhaustive overview on varia-

tional inference specifically addressed to statisticians. Particular emphasis is placed on

the popular stochastic variational inference methodology (Hoffman et al., 2013), which

scales variational inference to large datasets using stochastic optimization (Robbins and

Monro, 1951).

Blei et al. (2017) also assert that the development of variational techniques, initially

for Bayesian inference, followed two parallel, yet separate, tracks. Peterson and Ander-

son (1987) describe presumably the first variational procedure for a particular model,

a neural network. Their article, in connection with some intuitions from statistical me-

chanics (Parisi, 1988), brought to the flowering of variational inference procedures for

a wide class of models. In parallel, a variational algorithm for a similar neural network

model was proposed in Hinton and Van Camp (1993).

Though the theory around variational inference is not growing at the same speed as

the methodology, there are several threads of research that prove theoretical guarantees

of variational approximations. References are given in Section 5.2 of Blei et al. (2017).

Additional results on asymptotic properties are included in Wang and Blei (2018) and

Zhang and Gao (2018).

Variational approximations find application in both likelihood based and Bayesian

inference problems. However, their use in the literature is far more widespread for

Bayesian inference, where intractable calculus abounds and where they provide fast, de-

terministic alternatives to Monte Carlo methods. The idea behind this methodology is to

first propose a family of densities in the integral of interest and then to find the member

of that family which is closest to the target density. In the standard version of varia-

tional approximations the approximating density produces a lower bound and closeness

is measured by Kullback–Leibler divergence (Kullback and Leibler, 1951). Nevertheless,

not all variational approximations fit within the Kullback–Leibler divergence framework.
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Another variety are what might be called tangent transform variational approximations

since they are based on tangent-type representations of concave and convex functions

(e.g. Jordan et al., 1999; Ormerod and Wand, 2010, Section 3). This thesis is concerned

with the first type of variational approximations to which we refer as density transform

approach. For sake of completeness, Wainwright and Jordan (2008) emphasized that

any inferential procedure that uses optimization and alternative divergence measures

to approximate a density can be named “variational inference”. This includes methods

such as expectation propagation (Minka, 2001), belief propagation (Yedidia et al., 2001)

or even the Laplace approximation.

The essence of the density transform variational approach is to provide an approxi-

mation which is derived from a lower bound that is more tractable than the likelihood

function. Tractability is enhanced by restricting the approximating density to a more

manageable class of densities. The most common restrictions are:

(a) the approximating density is a member of a parametric family of density functions;

(b) the approximating density factorizes as a product of densities according to a par-

tition of the set of parameters.

Note that (b) represents a type of nonparametric restriction since the product form

is the only assumption being made. Restriction (b) produces the so-called mean field

approximation, whose roots are in statistical physics (e.g. Parisi, 1988). The term varia-

tional Bayes has become commonplace for approximate Bayesian inference under prod-

uct density restrictions. More recently, Wand (2017) reviseted mean field variational

Bayes, with a focus on semiparametric regression, working with an approach known as

variational message passing (Winn and Bishop, 2005). This approach has the advan-

tage that the algorithms it generates are amenable to modularization and extension to

arbitrarily large models via the notion of factor graph (Frey et al., 1998) fragments.

Main contributions of the thesis

This thesis is developed around Kullback–Leibler-based variational methodologies

that employ the restrictions (a) and (b) mentioned above, the former in frequentist

settings, the latter for Bayesian inference. Specifically, the parametric restriction (a)

is applied as a strategy for fitting generalized linear mixed models with general de-

sign matrices, following the framework established in Ormerod and Wand (2012). The

approach, named Gaussian variational approximations, consists in approximating the

distribution of random effects vectors, conditional on the responses, with a Gaussian
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density chosen to minimize a variational lower bound on the model likelihood func-

tion. Our contribution lies in exposing Gaussian variational approximations as a fast

and effective alternative to more widely used inference methods such as, for instance,

penalized quasi likelihood or generalized cross-validation. Recently, Hui et al. (2018)

have investigated the use of Gaussian variational approximations for generalized additive

models. However, their approach puts emphasis on the penalty parameter estimation

which in our formulation may arise as an outcome of the optimization problem and

their optimization strategy is structured in a different way. Furthermore they get rid

of a residual integration step still present in the variational lower bound for Bernoulli

models by creating a second lower bound of the initial lower bound, while we prefer a

fast and more accurate route with numerical integration.

The second part of the thesis is concerned with the nonparametric restriction (b)

and the so called mean field variational Bayes methodology under the variational mes-

sage passing perspective for factor graph fragments. We extend the work contained in

McLean and Wand (2018) to accommodate additional elaborate likelihood fragments.

The modularity of variational message passing permits relatively simple extensions to

more complicated scenarios in such a way that, for instance, semiparametric regression

models can be handled using factor graph fragments. Extension to arbitrarily large

models is guaranteed by algorithm updates that are based on natural parameters and

sufficient statistics of exponential family densities. Our practical implementations of

variational algorithms employ factorised approximating posteriors and priors that be-

long to the conjugate-exponential families, making the required integrals tractable.

Furthermore, we present explicit algorithms to implement streamlined variational

inference for two-level non-normal response models. The algorithms take advantage of

the sparse matrix results presented in Nolan et al. (2018) and are part of a framework

which is prone to extension to high-level random effects models. Scalability for large

datasets also benefits of the streamlined variational message passing approach.

The present thesis is organized in the following way. Chapter 1 defines the set-

tings for the variational approximations methodology under consideration. A broader

overview on variational inference techniques and some references to theoretical results

are also provided. Details on semiparametric regression via O’Sullivan penalized splines

(O’Sullivan, 1986) and the generalized linear model formulation through general design

matrices are also provided.

Chapter 2 is dedicated to Gaussian variational approximations. In detail, Poisson and

binomial response models with nonparametric and additive structures are considered.
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Inference and confidence interval construction are easily derived from the estimated ap-

proximating Gaussian density. Results are then compared to those obtained via classical

fast estimation methods and good overall performances in terms of estimation time and

inferential properties are observed. Issues involving the lower bound optimization are

also investigated. Furthermore, the settings for fitting geoadditive models as an example

of application to generalized linear mixed models with spatial structures are described.

Each subsection of Chapter 3 develops variational algorithms catered to a particu-

lar likelihood fragment. Three likelihood fragments, including Pareto random sample,

support vector regression and skew t regression are explored. For the skew t case, we

also investigate how various auxiliary random variable representations of the likelihood

impact the variational approximating results. The response likelihoods are re-expressed

in terms of auxiliary variables and more common distributions to avoid numerically in-

tractable steps. As a drawback, we show that such a reparametrization may introduce

strong posterior dependence among variables which is hard to capture with simple forms

of approximating densities.

In Chapter 4 we develop fast variational algorithms for fitting and inference in mixed

models, where all algorithmic updates are available in closed form. The centrepieces for

Chapter 4 are streamlined variational algorithms for fast and memory efficient fitting and

inference in large two-level Bayesian random effects models with Poisson and Binomial

responses.

The probability distributions used in the thesis are displayed in Appendix A. The rest

of the Appendix reflects the structure of main chapters and essentiallyv complements

derivations and computational steps.

All the numerical analyses appearing in this thesis are supported by a comparison

with Markov chain Monte Carlo, which provides our benchmark for assessing variational

approximation performances.





Chapter 1

Variational inference

1.1 Density transform variational approximations

The class of variational approximations contains a wide range of techniques for determin-

istic approximate inference. In the present thesis, the variational approximation meth-

ods under consideration refer to the most common variant, known as density transform

approach, according to the classification of Ormerod and Wand (2010). This method

involves approximation of conditional distributions of interest or posterior densities by

other densities that minimize the divergence to the densities of interest and for which

inference is more tractable. We describe these concepts more in detail with an example

in the Bayesian setting. The following illustration easily extends to variational inference

for frequentist models.

Consider a generic Bayesian model with parameter vector θ, parameter space Θ and

observed data vector y, where, for simplicity, we assume that both the random vectors

are continuous. Bayesian inference is concerned with the posterior density function

p (θ |y) =
p (y,θ)

p (y)
,

where p (y,θ) is the joint density of y and θ, and p (y) is known as the marginal

likelihood or model evidence in the computer science literature on variational approx-

imations. Given an arbitrary density function q defined over Θ, the logarithm of the

7



8 Section 1.1 - Density transform variational approximations

marginal likelihood satisfies

log p (y) = log p (y)

∫
q (θ) dθ

=

∫
q (θ) log

{
p (y,θ) /q (θ)

p (θ |y) /q (θ)

}
dθ

=

∫
q (θ) log

{
p (y,θ)

q (θ)

}
dθ +

∫
q (θ) log

{
q (θ)

p (θ |y)

}
dθ (1.1)

≥
∫
q (θ) log

{
p (y,θ)

q (θ)

}
dθ. (1.2)

Note that the second integral on the right hand side of (1.1) is the Kullback–Leibler

divergence between q and p (θ |y),

KL {q (θ) ‖ p (θ |y)} =

∫
q (θ) log

{
q (θ)

p (θ |y)

}
dθ, (1.3)

which is non-negative for all densities q, with equality arising if and only if q (θ) =

p (θ |y). This gives the inequality (1.2) and a lower bound p (y; q) on the marginal

likelihood

p (y) ≥ p (y; q) = exp

∫
q (θ) log

{
p (y,θ)

q (θ)

}
dθ. (1.4)

Maximization of p (y; q) is equivalent to minimization of the Kullback–Leibler diver-

gence between q (θ) and p (θ |y) and may provide an alternative approach to the direct

optimization of the marginal likelihood. The new maximization problem consists in

finding the optimal approximating density in terms of Kullback–Leibler divergence that

approximates the posterior density function.

The lower bound (1.4) can be also obtained via the Jensen’s inequality, if renouncing

to quantify the gap between p (y) and p (y; q) (e.g. Jordan et al., 1999).

The whole idea behind this approach is to propose an approximation of the posterior

density p (θ|y) by a q (θ) for which p (y; q) is more tractable than p (y). Tractability is

achieved by restricting q (θ) to a more manageable class of densities. As described in

the previous chapter, the two common restrictions are:

(a) q (θ) is a member of a parametric family of density functions;

(b) q (θ) factorizes as
∏M

i=1 qi (θi), for some partition {θ1, . . . ,θM} of θ.

Depending on the model at hand, both restrictions can have minor or major impacts

on the approximation performances in terms of accuracy.

An approximation based on the parametric restriction (a) is named Gaussian vari-

ational approximation (GVA) whenever the approximating density q (θ) is assumed to
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be within the family of Gaussian densities. Section 1.2 provides a brief description of

GVA.

Also known as mean field approximation in Bayesian statistics, the product density

form in case (b) is the only assumption being made and represents a type of nonpara-

metric restriction. Restricting q to a subclass of product densities gives rise to explicit

solutions to the optimization problem for each product component in terms of the others

and, in turn, leads to an iterative scheme to obtain the simultaneous solutions which

is known as mean field variational Bayes (MFVB). Variational message passing (VMP)

is a prescription for obtaining mean field variational Bayes (MFVB) approximations to

posterior density functions that allows for modularization and extension to arbitrarily

large models. Both the MFVB and VMP perspectives are treated in Section 1.3.

Section 1.4 contains a concise review of early references on the mean field methodol-

ogy and a glance at the class of message passing algorithms.

Section 1.5 provides some references to the theory of variational approximations that

present connections with the methods considered in this thesis.

Finally, Section 1.6 is dedicated to an accessory but recurrent topic in the present

thesis, that is, semiparametric regression. In particular, the mixed model representation

of semiparametric regression models facilitates variational approximate inference under

both restrictions above.

1.2 Gaussian variational approximations

Nontrivial frequentist examples where an explicit solution arises by applying the product

density methodology are not known. On the other hand, restricting the approximating

density to be part of a parametric family of density functions may lead to effective

variational approximation strategies.

Frequentist models that stand to benefit from variational approximations are those

for which specification of the likelihood involves conditioning on a vector of latent vari-

ables u. Given a vector of observed data y, the log-likelihood of the model parameter

vector θ takes the form

` (θ) = log p (y;θ) = log

∫
p (y |u;θ) p (u;θ) du,

and

θ̂ = argmax
θ

` (θ)

is the maximum likelihood estimate of θ.
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For some statistical models, the log-likelihood ` (θ) may not be available in a closed

form because of analytically intractable integration. In such a context, variational ap-

proximations can provide a more tractable approximation in replacement of the original

optimization problem, depending on the forms of p (y |u;θ) and p (u;θ).

In this context, the auxiliary function q is a density of the latent variable u. Suppose

to restrict q to a parametric family of densities {q (u; ξ) : ξ ∈ Ξ}, where ξ is a vector of

variational parameters. Then a log-likelihood lower bound

` (θ, ξ; q) =

∫
q (u; ξ) log

{
p (y,u;θ)

q (u; ξ)

}
du (1.5)

can be derived, as shown for the Bayesian counterpart (1.2). The new maximization

problem over the model parameters θ and the variational parameters ξ(
θ̂, ξ̂
)

= argmax
θ,ξ

` (θ, ξ; q)

is the set-up for variational approximate inference and GVA, when the q (u; ξ) is chosen

to be a family of normal densities. The vector θ̂ is a variational approximation to

the maximum likelihood estimate θ̂. Estimated standard errors can be obtained by

plugging in θ̂ for θ and ξ̂ for ξ in the variational approximate Fisher information matrix

arising from replacement of ` (θ) by ` (θ, ξ; q) and the corresponding Hessian matrix (e.g.

Ormerod and Wand, 2012).

1.3 Mean field variational approximations

Variational message passing is an approach to variational Bayes approximate inference

that allows modularization through the notions of factor graphs and message passing.

According to a factor graph message passing approach (e.g. Minka and Winn, 2008,

Appendix A), calculations only need to be performed once for a particular fragment

and can be integrated with other fragments to construct inference engines for arbitrarily

large models.

A mean field variational approximation q∗ (θ) to p (θ |y) is the minimizer of the

Kullback–Leibler divergence (1.3) subject to a product density restriction, or mean field

restriction,

q (θ) =
M∏
i=1

q (θi) , (1.6)
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where {θ1, . . . ,θM} is some partition of θ. It can be shown (e.g. Ormerod and Wand,

2010, Section 2.2) that the optimal q-density functions satisfy

q∗ (θi) ∝ exp
{
Eq(θ\θi) log p (y,θ)

}
, 1 ≤ i ≤M, (1.7)

or, alternatively,

q∗ (θi) ∝ exp
{
Eq(θ\θi) log p (θi |y,θ\θi)

}
, 1 ≤ i ≤M, (1.8)

where θ\θi denotes the entries of θ with θi omitted and the distribution p (θi |y,θ\θi)
is known as full conditional density function. The previous expression gives rise to the

MFVB iterative scheme for obtaining the optimal density functions q∗ (θi). A listing of

such an algorithm is provided, for instance, in Ormerod and Wand (2010). Alternatively,

optimization may be performed via a message passing algorithmic approach for mean

field approximation (VMP), which is limited to conjugate exponential family models

(Winn and Bishop, 2005).

When expectation steps appearing in algorithm updates require evaluation of definite

integrals that do not admit analytic solutions or easily manageable analytic solutions,

univariate quadrature schemes may be considered. The trapezoidal rule is a simple and

effective quadrature approach, whose accuracy arbitrarily improves by increasing the

number of trapezoidal elements. If the integral is over an infinite or semi-infinite region,

rather than a compact interval, it is important to define the effective support of the

integrand function to guarantee accurate computation. Attention is necessary to avoid

overflow and underflow issues concerning the application of the trapezoidal rule.

1.3.1 Coordinate ascent mean field variational Bayes

Expression (1.7) gives rise to a conceptually simple coordinate ascent algorithm. First,

initialize q (θ1) , . . . , q (θM). Then cycle

qi (θi)←−
exp

{
Eq(θ\θi) log p (y,θ)

}∫
exp

{
Eq(θ\θi) log p (y,θ)

}
dθi

,

for each 1 ≤ i ≤M , until the increase in the lower bound on the marginal log-likelihood

log p (y; q) = Eq(θ) {log p (y,θ)− log q (θ)} (1.9)

is negligible. The optimal q∗i (θi) densities are obtained at convergence. The←− symbol

means that the function of θi on the left-hand side is updated according to the expression



12 Section 1.3 - Mean field variational approximations

on the right-hand side; multiplicative factors not depending on θi can be ignored. The

expressions containing such a symbol are technically named “updates”.

The term Eq(θ) {log q (θ)} in (1.9) is the so called entropy of the density function q (θ).

Boyd and Vandenberghe (2004) use convexity properties to show that convergence to at

least a local optimum is guaranteed. In fact, the MFVB scheme is basically interpretable

as a generalisation of the expectation-maximisation (EM) approach (Chappell et al.,

2009).

In presence of conjugacy with priors, one may take advantage of the optimal form

(1.8) and associate the q∗ (θi)s to recognizable density families. Then the optimization

procedure reduces to updating parameters in the q∗ (θi) family.

Directed acyclic graph (DAG) representations of Bayesian models are very useful

when deriving the optimal q-densities formulated as (1.8). In detail, DAGs yield sub-

stantial benefits to MFVB schemes for large models taking advantage of an important

probabilistic concept, namely the Markov blanket theory. For each node on a proba-

bilistic DAG, the conditional distribution of the node given the rest of the nodes is the

same as the conditional distribution of the node given its Markov blanket (Dechter and

Pearl, 1988), whose definition is provided in the exemplification below. In the Bayesian

models considered here this implies

p (θi |y,θ\θi) = p (θi |Markov blanket of θi) .

It follows that (1.8) simplifies to

q∗ (θi) ∝ exp
{
Eq(θ\θi) log p (θi |Markov blanket of θi)

}
, 1 ≤ i ≤M. (1.10)

This is known as the locality property of DAGs. For large DAGs, this property produces

considerable algebraic benefits. Such a result means that determination of the required

full conditionals involves only a series of local calculations on the DAG. In particular, it

shows that the q∗ (θi)s require only local calculations on the models DAG. We explain

this concept with an elementary graphical example.

Consider the following hierarchical Bayesian model similar to the exemplification

provided in Wand et al. (2011):

y | θ1, θ2, θ3 ∼ p (y | θ1, θ2, θ3) ,

θ1 | θ4 ∼ p (θ1 | θ4) , θ2 | θ4, θ5 ∼ p (θ2 | θ4, θ5) , θ3 | θ6 ∼ p (θ3 | θ6) indep.,

θ4 ∼ p (θ4) , θ5 ∼ p (θ5) , θ6 ∼ p (θ6) indep.,

(1.11)
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where y is the observed data vector and θ1, . . . , θ6 are model parameters. Figure 1.1

Figure 1.1: Directed acyclic graph corresponding to model (1.11). The six param-
eters (hidden nodes) are associated with circles. The shaded node y corresponds to
the obsered data (evidence node). The dashed line indicates the Markov blanket for
θ2.

shows the directed acyclic graph representation of model (1.11). The θis, 1 ≤ i ≤ 6,

are represented by open circles named hidden nodes and the data vector y, the evidence

node, is portrayed by a shaded circle. The arrows indicate conditional dependence

relationships among the model random variables. A DAG can be interpreted as a

family tree in which each directed edge conveys a parent-child relationship between the

associated nodes. For instance, the node θ2 is pointed by the arrow-heads departing

from nodes θ4 and θ5, therefore θ2 is a child of the parent nodes θ4 and θ5. The nodes

θ1 and θ3 are co-parents of node θ2 since they all have a common child, y. The Markov

blanket of a node, say θ2, is the set including the parents, co-parents and children nodes

(θ1, θ3, θ4, θ5 and y) of that particular node, as displayed by the dashed line in Figure

1.1. Briefly, the Markov blanket of a node separates that node from the remainder of

the graph and has a probabilistic interpretation known as locality property. Because of

(1.10), q∗ (θ2) depends on particular q-density moments of θ1, θ3, θ4 and θ5 but not on

their distribution. Therefore changing, for example, the distributional assumptions on

p (θ1 | θ4) will not affect the form of q∗ (θ2).

The locality property of MFVB ensures that attention can be restricted to the sim-

plest versions of the models of interest and in particular to the response distribution,

knowing that the forms of the optimal densities preserve the same structure also in

larger models. This property and the factor graph fragment perspective employed in

variational message passing have motivated our focus on the simplest forms of likelihood

fragments described in Chapter 3.
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1.3.2 Variational message passing on factor graphs

Variational message passing arrives at variational Bayes approximation via message

passing on an appropriate factor graph. A factor graph is a graphical representation of

the argument groupings of a real-valued function. Consider, for example, the regression

model

y |β, σ2 ∼ N
(
Xβ, σ2I

)
, β ∼ N (µβ,Σβ) ,

σ2 | a ∼ Inverse-χ2 (1, 1/a) , a ∼ Inverse-χ2
(
1, 1/A2

)
,

(1.12)

where y is an n× 1 vector of response data and X is an n× d design matrix. The d× 1

vector µβ, the d×d covariance matrix Σβ and A > 0 are user-specified hyperparameters.

A factor graph representation of this model based on the product density restriction

q
(
β, σ2, a

)
= q (β) q

(
σ2
)
q (a) (1.13)

is that of Figure 1.2.

p(β) β p(y|β,σ2) σ2 p(σ2|a) a p(a)

Figure 1.2: Factor graph for the regression model in (1.12) and restriction (1.13).

Each factor graph has a corresponding graphical representation based on nodes con-

nected by edges. The word node is used for both a stochastic node θi, 1 ≤ i ≤ M ,

and a factor fj, 1 ≤ j ≤ N . In detail, the shaded squares correspond to factors, which

are single product components of the real-valued function. The unshaded circles are

called stochastic nodes and refer to parameters expressing product dependencies in the

approximating density. An edge connects a factor to the stochastic nodes included in

that factor. Two nodes are neighbors of each other if they are joined by an edge. In Fig-

ure 1.2, stochastic nodes β and σ2 are neighbors of the factor p (y |β, σ2), for instance.

We denote by neighbors (j) the θi indices connected to the jth factor.

Rather than using result (1.8), the VMP procedure is founded upon the notion of

messages passed between any two neighboring nodes, which are a particular function

of the stochastic node that either sends or receives the message. Among the several

variants of VMP in the literature, we follow the approach of Minka (2005), which is

described in Section 2.5 of Wand (2017). The approach is here briefly summarized.
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Let N be the number of factors. For each 1 ≤ i ≤ M and 1 ≤ j ≤ N , the VMP

stochastic node to factor message updates are

mθi→fj (θi)←−
∏

j′ 6=j:i∈neighbors(j′)

mf
j
′→θi (θi) (1.14)

and the factor to stochastic node message updates have form

mfj→θi (θi)←− exp
[
Efj→θi

{
log fj

(
θneighbors(j)

)}]
, (1.15)

with Efj→θi denoting expectation with respect to the density function∏
i′∈neighbors(j)\{i}mfj→θi′

(θi′ )mθ
i
′→fj (θi′ )∏

i′∈neighbors(j)\{i}
∫
mfj→θi′

(θi′ )mθ
i
′→fj (θi′ ) dθi′

. (1.16)

If neighbors (j) \ {i} = ∅, then the expectation in (1.15) can be dropped and the right-

hand side of (1.15) is proportional to fj
(
θneighbors(j)

)
. In general, the optimal q-densities

are obtained from

q∗ (θi) ∝
∏

j:i∈neighbors(j)

m∗fj→θi (θi) , (1.17)

where m∗fj→θi (θi) are the optimal messages at convergence. Formally, convergence of

the message updates may be assessed by monitoring at each iteration the lower bound

of the marginal log-likelihood

log p (q;y) =
M∑
i=1

Eq(θi) {log q (θi)}+
N∑
j=1

Eq(θi) {log (fj)} ,

where the first component is known as the entropy or differential entropy. In practice,

derivation of the lower bound expression may be cumbersome when the approximating

densities q (θi)s belong to non-standard exponential families. Alternatively, convergence

may be determined tracking the parameters of the approximating densities. In the

present thesis, we choose the latter strategy.

We also define the notation

ηf↔θ = ηf→θ + ηθ→f

for any natural parameter η, factor f and stochastic node θ, in support of Chapters 3

and 4. Natural parameters arise from the theory of exponential families described in

Section A.2.1 of Appendix A.



16 Section 1.4 - Variational approximations and message passing

1.4 Variational approximations and message pass-

ing

One way to orient oneself inside the vast literature on variational approximations is to

understand the physical interpretation of variational methods. Starting from the original

concepts of mean field approximations derived in statistical physics, we contextualize

the variational message passing approach inside a broader class of message passing

algorithms.

1.4.1 The origins of mean field approximations

Peterson and Anderson (1987) describe what is arguably the first variational procedure

for a particular model, a neural network. The mean field approximation has its roots

in physics, where it is known as mean field theory. Later, it was then extended to

inference in graphical models (e.g. Jordan et al., 1999; Attias, 1999). Subsequently,

it gradually penetrated into conventional statistical literature (e.g. Teschendorff et al.,

2005; McGrory and Titterington, 2007).

Parisi (1988) is usually cited in the statistics literature as a key reference to the

origins of mean field theory in physics. The book treats statistical field theory and is

built upon the principles of statistical mechanics, nevertheless it includes interesting

analogies with statistics that we highlight here.

Statistical mechanics is involved with deriving thermodynamic properties of macro-

scopic bodies starting from a description of the motion of microscopic components such

as atoms, electrons, etc. Classical mechanics would approach this problem by defining

a Hamiltonian system that describes the evolution of the dynamic physical system and

initial conditions. Since this problem formulation concerning the physical system is par-

ticularly complex, probabilistic methods are introduced. The problem can be treated in

two steps:

(1) finding the probability distribution of the microscopic components in thermal equi-

librium, for example, after a sufficiently long time;

(2) compute the macroscopic properties of the system given the microscopic proba-

bility distribution.

For the rest of this subsection, we preserve some of the classic physics notation and

terminology to convey the main concepts and maintain a direct reference to original

sources such as Parisi (1988) and Yedidia et al. (2005).
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Consider a system of N particles, each having a state xi. The overall state of the

system x = {x1, . . . , xN} has a corresponding energy E (x). In thermal equilibrium, the

probability of a state will be given by the Bolthanzmann Law

p (x) =
1

Z (T )
e−E(x)/T ,

where T is the temperature and Z (T ) is the normalization constant (partition function)

Z (T ) =
∑
x∈S

e−E(x)/T ,

with S the space of all possible states x of the system.

The Helmholts free energy FH of a system is

FH = − logZ.

Physicists have devoted considerable effort to developing techniques which give good ap-

proximations to FH . The variational approach is based on a trial probability distribution

b (x) and a corresponding variational free energy (Gibbs free energy)

F (b) = U (b)−H (b) ,

where U (b) is the variational average energy

U (b) =
∑
x∈S

b (x)E (x)

and H (b) is the variational entropy

H (b) = −
∑
x∈S

b (x) log b (x) .

It follows that

F (b) = FH + KL (b‖p) ,

where

KL (b‖p) =
∑
x∈S

b (x) log
b (x)

p (x)

is the Kullback-Leibler divergence between b (x) and p (x) , which drives the choice of

the optimal trial probability distribution b (x). Since the Kullback–Leibler divergence

is always non-negative, F (b) ≥ FH , with equality when b (x) = p (x). Minimizing the
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variational free energy F (b) with respect to the trial probability function b (x) can be

intractable for large N . A possible solution is to impose a mean field restriction to b (x)

such that

b (x) =
N∏
i=1

bi (xi) ,

which is analogous to the assumption on the approximating density at the base of

statistical mean field algorithms.

1.4.2 Message passing algorithms

The literature on variational approximation methods is not limited to the approxima-

tion by Kullback–Leibler divergence. Alternative divergences may be hard to optimize

but give better approximations (Minka, 2005). Nevertheless, one general way to un-

derstand this class of algorithms is to view their cost functions as the aforementioned

free-energy functions from statistical physics (Yedidia et al., 2005; Heskes, 2003). From

this viewpoint, each algorithm arises as a different way to approximate the entropy of

a distribution, in a similar way as in Subsection 1.4.1.

Message passing is a method for fitting variational approximations including several

variants, each minimizing a different cost function with different message equations.

Minka (2005) presents a unifying view of message passing algorithms as a class of meth-

ods that differ only by the divergence they minimize. From such a perspective, the

ensemble of message passing techniques may include the following approaches:

• Loopy belief propagation (Frey and MacKay, 1998);

• Expectation propagation (Minka, 2001);

• Fractional belief propagation (Wiegerinck and Heskes, 2003);

• Power expectation propagation (Minka, 2004).

• Variational message passing (Winn and Bishop, 2005);

• Tree-reweighted message-passing (Wainwright et al., 2005).

Minka (2005) describes the behavior of different message-passing algorithms through

the illustration of divergence measure properties, with a particular focus on the α-

divergence, a generalization of the Kullback–Leibler divergence indexed by α ∈ R\ {0; 1}.
Given a density p and an approximating density q, the α-divergence measure between
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p and q is

Dα (p ‖ q) =

∫ {
αp (x) + (1− α) q (x)− p (x)α q (x)1−α} dx

α (1− α)
.

This divergence measure corresponds to KL (q ‖ p) for α → 0 and KL (p ‖ q) when

α→ 1.

Wainwright and Jordan (2008) point out that also other deterministic algorithms,

such as the sum-product algorithm (e.g. Kschischang et al., 2001) and semi-denite re-

laxations based on Lasserre sequences (e.g. Lasserre, 2001), can be couched within the

variational methodology framework. Li and Turner (2016) propose a generalized varia-

tional inference approach deriving a lower bound via the Rényi divergence.

1.5 Theory

Research on the accuracy of the variational approximation is lacking in the computer

science literature. This provides statistical sciences with an opportunity to develop

interdisciplinary contributions with quantitative performance assessments. Research

into the quality of the variational approximation for specific models is present in the

statistical literature, but offers extensions towards several directions.

Wang and Titterington (2003) study the consistency properties of variational Bayesian

estimators for mixture models of known densities. It was shown that, with probability

1, the proposed algorithm converges locally to the maximum likelihood estimator when

iterations approach infinity. Wang and Titterington (2006) describe a general algorithm

for computing variational Bayesian estimates and study its convergence properties for

a normal mixture model.

Hall et al. (2011a) and Hall et al. (2011b) use a Gaussian variational approxima-

tion to estimate the parameters of a simple Poisson mixed-effects model with a single

predictor and a random intercept. They prove consistency of these estimates, provide

rates of convergence and show asymptotic normality with asymptotically valid standard

errors. Ormerod and Wand (2012) extend with heuristic arguments these results for the

consistency of Gaussian variational approximations for more general generalized linear

mixed models.

Wang and Blei (2018) describe frequentist consistency and asymptotic normality of

variational Bayes methods. Specifically, they connect variational Bayes methods to

point estimates based on variational approximations. Zhang and Gao (2018) study
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convergence rates of variational posterior distributions for nonparametric and high-

dimensional inference, with a focus on the variational Bayes methodology.

Jordan (2004), Titterington (2004) and Blei et al. (2017) indicate further sources for

a comprehensive listing of other relevant literature on the accuracy of the variational

approximation.

1.6 Semiparametric regression

Variational methods may be proposed as a fast and effective tool for handling semi-

parametric regression models under both the frequentist and Bayesian perspectives.

Furthermore, the notion of message passing can be used to streamline the algebra and

computer coding for approximate inference in large Bayesian semiparametric regression

models, taking advantage of sparse structures of design and covariance matrices. This

motivates a brief overview of semiparametric models.

Parametric models such as linear, linear mixed, generalized linear or generalized lin-

ear mixed models use a particular functional form of predictors to explain the mean

response. Such parametric assumption may offer a simple and interpretable representa-

tion of the relationship between response and predictors but it might not be suitable for

circumstances in which the mean response is scarcely interpretable as a known function

of predictors.

Semiparametric regression extends classical parametric regression analysis to allow

the treatment of nonlinear predictor components. This extension can be achieved

through penalized basis functions such as, for instance, B-splines or Daubechies wavelets

and random effects modelling analogous to the classical longitudinal and multilevel anal-

ysis. Consequently, the general framework of mixed models offers a tailored infrastruc-

ture also for fitting and inference of semiparametric regression models. Furthermore, in

the Bayesian settings, semiparametric regression finds a corresponding directed acyclic

graphical model representation which supports the derivation of MCMC and scalable

MFVB algorithms.

The variational methodological studies and applications of this thesis concerning

semiparametric regression make use of the mixed model representation and O’Sullivan

splines, which are an immediate generalization of smoothing splines based on penal-

ized B-splines basis functions (e.g. O’Sullivan, 1986; Green and Silverman, 1994). The

classical smoothing splines involve a number of basis functions which approximately

equals the sample size. A spline of order k is a continuous piecewise polynomial with
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continuous derivatives up to order k−1. O’Sullivan penalised splines possess the attrac-

tive feature of requiring remarkably fewer basis functions. Furthermore, their natural

boundary conditions (e.g. Green and Silverman, 1994, p. 12), computational numerical

stability and smoothness make them of particular interest in the spline-based semipara-

metric literature as well as a reliable choice of basis for standard statistical software

implementations.

Wand and Ormerod (2008) provide a detailed description of O’Sullivan penalised

splines and their mixed model representation, including examples with R code. We

briefly summarize the approach here with an example.

1.6.1 Semiparametric regression via O’Sullivan penalized splines

Consider the simple nonparameteric regression setting

yi = f (xi) + εi, 1 ≤ i ≤ n,

where (xi, yi) ∈ R × R and εis are random variables with E (εi) = 0 and variance σ2
ε .

Suppose we are interested in estimating f over the interval [a, b] containing the xis via

a set of cubic B-spline basis functions Bx = [B1 (x) , . . . , BK+4 (x)], for K ≤ n. The

corresponding knot sequence is defined by a = κ1 = κ2 = κ3 = κ4 < κ5 < · · · < κK+4 <

κK+5 = κK+6 = κK+7 = κK+8 = b, where the actual values of the additional knots

beyond the boundary are arbitrary and it is customary to make them all the same and

equal to a and b, respectively (e.g. Hastie et al., 2009, Chapter 5). We require a function

that minimizes the penalized residual sum of squares (PRSS)

PRSS (f, λ) =
n∑
i=1

{yi − f (xi)}2 + λ

∫ b

a

f
′′

(x)2 dx, (1.18)

The expression λ
∫ b
a
f
′′

(x)2 dx is the so-called penalty term because it penalizes fits that

are too rough, thus yielding a smoother result. The amount of smoothing is controlled

by λ > 0, where λ is usually referred to as a smoothing parameter. The case λ = 0

corresponds to the unconstrained problem. The solution to (1.18) is the O’Sullivan

penalized spline f (x) = Bν and thus (1.18) can be rewritten as

PRSS (ν, λ) = (y −Bν)T (y −Bν) + λνTΩν, (1.19)
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where B is the design matrix with Bik = Bk (xi) and Ω is the penalty matrix with

Ωkk′ =
∫ b
a
B
′′

k (x)B
′′

k′
(x) dx. Straightforward algebraic manipulation leads to the follow-

ing O’Sullivan penalized spline with a solution to (1.19) such that

f̂ (x) = Bν̂ and ν̂ =
(
BTB + λΩ

)−1
BTy. (1.20)

In the special case in which the interior knots coincide with the xis, assumed distinct,

f̂ (x) corresponds to the cubic smoothing spline arising as the minimizer of (1.18) (e.g.

Schoenberg, 1964). These results also generalize to order m smoothing splines. Com-

putation of the design matrix B is straightforward and is readily available in the R

environment. However, computation of the penalty matrix Ω can be challenging. In

Section 6 of Wand and Ormerod (2008), an exact matrix expression for Ω is derived by

applying the Simpson’s rule over each of the inter-knot differences, given as

Ω =
(
B̃
′′
)T

diag (ω) B̃
′′
,

where B̃
′′

is the 3 (K + 7) × (K + 4) matrix with (i, j) th entry B
′′

j (x̃i), x̃i is the ith

entry of the vector

x̃i =

(
κ1,

κ1 + κ2

2
, κ2,

κ2 + κ3

2
, κ3, . . . , κK+7,

κK+7 + κK+8

2
, κK+8

)
,

and ω is the 3 (K + 7)× 1 vector given by

ω =

{
1

6
(∆κ)1 ,

2

3
(∆κ)1 ,

1

6
(∆κ)1 ,

1

6
(∆κ)2 ,

2

3
(∆κ)2 ,

1

6
(∆κ)2 , . . . ,

1

6
(∆κ)K+7 ,

2

3
(∆κ)K+7 ,

1

6
(∆κ)K+7

}
,

where (∆κ)k = κk+1 − κk, 1 ≤ k ≤ K + 7. A common default choice for the number of

knots is

K = min (nU/4, 35) , (1.21)

where nU is the number of unique xis and the distribution of knots can either be quantile-

based or equally spaced (e.g. Ruppert et al., 2003). In the next section we show how

the O’Sullivan penalized splines can be expressed within the mixed model and Bayesian

hierarchical model framework.

The positive penalization constant λ in (1.18) remains unspecified. An appropriate

value for the constant λ trades the loss term given by the residual sum of squares

against the penalty term. As pointed out in Luts and Ormerod (2014) this restricts
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the space of solutions, reduces the overfitting effect and allows the extension to new

data. Penalized likelihood is a fast but potentially unstable approach for estimation and

inference with penalty parameter selection. Popular techniques for tuning the penalty

parameter include cross-validation and random sampling methods, but these approaches

increase the overall computational overhead. Embedding a model into a mixed effect

framework is a convenient and more stable way for choosing the penalty parameter which

also allows for automatic selection. However, it may involve intractable integration.

1.6.2 Mixed model representation

Semiparametric regression can be couched within the mixed model infrastructure ex-

ploiting the inferential equivalence between penalized likelihood models and mixed

model representation (e.g. Ruppert et al., 2003). Consider the regression model

y = Xβ +Zu+ ε,

[
u

ε

]
∼ N

([
0

0

]
,

[
σ2
uI 0

0 σ2
εI

])
, (1.22)

for the general design matrices X and Z. The value ν̂ appearing in (1.20) can be

conveniently expressed using the least squares estimator to (1.22), which is equivalent

to the best linear unbiased predictor (BLUP) of β and u given as

ν̂ =

[
β̂

û

]
=

(
CTC + λ

[
0 0

0 I

])−1

CTy, (1.23)

where λ = σ2
u/σ

2
ε is the smoothing parameter and C = [XZ] (e.g. Ruppert et al., 2003,

Section 4.5.3). The equivalence of (1.20) and (1.23) can be achieved if there exists a

(K + 4)× (K + 4) linear transformation matrix L such that

C = BL and LTΩL =

[
0 0

0 I

]
.

Wand and Ormerod (2008) affirm that a common tool to obtain L and Ω is spectral

decomposition and provide the resultant forms

L =
[
UX , UZdiag

(
d
−1/2
Z

)]
and Ω = Udiag (d)UT ,

where UTU = I, d is a (K + 4)× 1 vector with exactly two zero entries and all others

positive, dZ is a (K + 2)×1 subvector of d containing the positive entries and UZ is the

(K + 4) × (K + 2) submatrix of U with columns corresponding to the positive entries
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of d. It follows that O’Sullivan penalized splines can be used for fitting (1.22) defining

the design matrices

X = BUX and Z = BUZdiag
(
d
−1/2
Z

)
.



Chapter 2

Variational inference for general

design generalized linear mixed

models

2.1 Introduction

In this chapter we introduce a new framework for estimation and inference for general

design generalized linear mixed models (GLMMs) based on Gaussian variational ap-

proximations. This involves approximating the distributions of random effects vectors,

given the responses, by the Gaussian distribution minimizing the Kullback–Leibler di-

vergence. Standard errors for fixed effects and covariance parameter estimates are an

outgrowth of the optimization algorithm. For the random effects, approximate best

predictions and prediction variances also arise from the GVA procedure.

Ormerod and Wand (2012) devise an effective variational approximation strategy for

fitting GLMMs appropriate for grouped data, affirming that a future challenge is to

treat more general GLMMs. We extend their work providing a more general framework

to handle GLMMs containing, for instance, spline basis functions in the random effects

design matrix or spatial correlation structures.

A recent and parallel work by Hui et al. (2018) employs GVA for inference on general-

ized additive models. Fully tractable variational likelihoods for some common response

types are proposed, offering a framework for inference on parametric components and

a closed-form approach for smoothing parameter selection. The simulation studies in

Hui et al. (2018) show the variational approximation approach performs similarly to and

sometimes better than software for fitting generalized additive models that are currently

in use.

25
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To our knowledge, our work is the first to employ GVA to treat general design gener-

alized linear mixed models. Without loss of generality, we consider two common Poisson

and Bernoulli response types and taking advantage of the mixed model representation

of semiparametric regression models, we make use of tractable variational likelihood

lower bounds. Differently from Hui et al. (2018), residual unidimensional integration is

present in our lower bounds for the Bernoulli case. However, residual integration can be

easily performed via Gauss–Hermite quadrature, which we prefer to a fully tractable,

but less accurate, lower bound.

Section 2.2 provides an overview on general design GLMMs, a framework that allows

for inclusion of random intercepts and slopes, spline basis functions and spatial correla-

tion structures, for example. Section 2.3 introduces GVA for the treatment of GLMMs,

while Section 2.4 is dedicated to the optimization of the variational lower bound. Sec-

tion 2.5 explains how to obtain approximate standard errors and best prediction of

random effects from the optimization procedure. Illustrations and simulation studies

are included in Sections 2.6 and 2.7.

2.2 General design GLMMs

Generalized linear models (GLMs), introduced by Nelder and Wedderburn (1972) and

systematically formalized by McCullagh and Nelder (1989), permit to analyze the rela-

tionship between a response variable and covariates via a linear functional form, given a

link function. However, GLM may not be flexible enough when analyzing more complex

situations. Generalized additive models (GAMs) extend the GLM framework replacing

linear components by a sum of smooth unknown functions of predictor variables (Hastie

and Tibshirani, 1990). The mixed model versions of GLMs and GAMs are valid al-

ternatives when one believes that the relationship between the dependent variable and

covariates is better explained if the linear predictor includes random effects in addi-

tion to the fixed effects. In this sense, the class of generalized linear mixed models is

extremely rich allowing, for example, varying coefficient models, cross random effects,

nested random effects, spline-type smoothing, additive and semiparametric components

or spatial components. The key is to devise a random effects design matrix with a

general structure.

Zhao et al. (2006) suggest a factorization of fixed and random effects structures for

describing the fitting of general design generalized linear mixed models. In particu-

lar, it is important to separate out random effects structures for handling grouping,

longitudinal data, smoothing regression or spatial models, for example.
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In detail, Zhao et al. (2006) propose the following breakdown:

Xβ +Zu = XRβR +ZRuR +XGβG +ZGuG +ZCuC . (2.1)

The decomposition is not necessarily unique for a particular model. However, the ma-

trices

XR =


XR

1
...

XR
m

 , ZR = blockdiag
1≤i≤m

(
XR

i

)
and

Cov
(
uR
)

= blockdiag
1≤i≤m

(
ΣR
i

)
= Im ⊗ΣR

can be intended to model random intercepts and slopes, as in the case of repeated

measures data on m groups with sample sizes n1, . . . , nm, with XR
i an ni × qR design

matrix corresponding to the ith group and ΣR a qR × qR covariance matrix.

The matrices XG and ZG are general design matrices of different form than those

arising in random effects models. For example, XG may contain indicator variables or

polynomial basis functions of a continuous predictor, while ZG may include spline basis

functions. The ZGuG term may be further decomposed as

ZGuG =
L∑
`=1

ZG
` u

G
`

to allow, for instance, additive model formulations. In a spline penalization context, a

possible way to model the corresponding covariance form is

Cov
(
uG
)

= blockdiag
1≤`≤L

(
σ2
u`I
)
.

The ZCuC component may represent other types of random effects, such as those

with spatial correlation structure.

2.2.1 Overview of software implementations

GLMMs are very popular models that have implementations in standard software, in-

cluding SAS, Stata, and R (R Core Team, 2018). More in detail, several R packages

support GLMM analysis. Many of them, e.g. MASS (Ripley, 2012), gamm4 (Wood and

Scheipl, 2017) and mgcv (Wood, 2018), use Laplace approximation, but a few, e.g.

glmmBUGS (Brown and Zhou, 2018), MCMCglmm (Hadfield, 2018), R2BayesX (Umlauf et al.,
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2017) and spikeSlabGAM (Scheipl and Gruen, 2017), use MCMC methods. Exact max-

imum likelihood-based inference via quadrature, is supported by glmmML (Broström,

2018) and lme4 (Bates et al., 2018). For the generalized additive mixed model (GAMM)

extension, only approximate inference is so far available and it is supported by gamm4,

mgcv, R2BayesX, spikeSlabGAM and gammSlice (Pham and Wand, 2018). Laplace ap-

proximation is used by the first two of the these packages. The third and fourth perform

GAMM fitting via MCMC. The latter is the only R package that provides MCMC based

inference for GAMM analyses using the same penalized spline approach that mgcv em-

ploys.

2.3 GVA for GLMMs

As a starting point to the introduction of Gaussian variational approximations for in-

ference and fitting, consider GLMMs for canonical one-parameter exponential families

with Gaussian random effects, taking the general form

y |u ∼ exp
{
yT (Xβ +Zu)− 1T b (Xβ +Zu) + 1T c (y)

}
, u ∼ N (0,G) , (2.2)

where X and Z are general design matrices and G is the random effect covariance

matrix for the random vector u of length K. The component Xβ+Zu can be designed

according to the breakdown (2.1). The functions b and c characterize the members of the

family. For the cases considered here, we have that b(x) = ex for Poisson responses or

b(x) = log(1+ex) in the logistic case. The treatment of other response types goes beyond

the illustrative purpose of this thesis. However, the framework proposed here can be

easily extended to treat other cases, ranging from normal responses to more elaborate

ones. We also use p to denote densities of random vectors and sometimes suppress

dependence on parameters to shorten the notation. For example, the log-likelihood

function can be written in terms of the joint density of y as ` (β,G) = log p (y;β,G) =

log p (y).

The log-likelihood function coresponding to model (2.2) is

` (β,G) = log p (y;β,G)

= log

∫
p (y |u;β) p (u;G) du

=yTXβ + 1T c (y)− 1

2
log |G| − K

2
log (2π)

+ log

∫
exp

{
yTZu− 1T b (Xβ +Zu)− 1

2
uTG−1u

}
du.
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Maximization of ` (β,G) is hindered by the presence of K dimensional integration,

which cannot be solved analytically.

As an alternative, we may resort to variational approximations and make inference

on a lower bound in the form of (1.5), which is more tractable than the original function

of interest. This produces the following log-likelihood lower bound on ` (β,G):

` (β,G, ξ; q) =

∫
q (u; ξ) log

{
p (y,u;β,G)

q (u; ξ)

}
du, (2.3)

where q (u; ξ) is an arbitrarily density function in RK , depending on the variational

parameters ξ. The lower-bound expression (2.3) can be derived using the ideas of

Kullback–Leibler divergence and decomposing the log-likelihood function as

` (β,G) =

∫
q (u; ξ) log

{
p (y,u;β,G) /q (u; ξ)

p (u |y) /q (u; ξ)

}
du

=

∫
q (u; ξ) log

{
p (y,u;β,G)

q (u; ξ)

}
du+

∫
q (u; ξ) log

{
q (u; ξ)

p (u |y)

}
du.

Since the last term is the Kullback–Leibler discrepancy between q (u; ξ) and p (u |y),

which is always non-negative, we get the lower bound (2.3). Note that q (u; ξ) may

be interpreted as an approximation to the distribution of random effects given the

responses, p (u |y), and setting q (u; ξ) = p (u |y) the lower bound corresponds to the

log-likelihood function.

Proposition 2.1 provides an expression for the lower bound ` (β,G,µ,Λ) when q (u; ξ)

is chosen to be a normal distribution.

Proposition 2.1. Setting q (u; ξ) to the N (µ,Λ), the likelihood lower bound (2.3) takes

the form

` (β,G,µ,Λ) =
K

2
+ yT (Xβ +Zµ)− 1TB

(
Xβ +Zµ, dg

(
ZΛZT

))
+ 1T c (y)

− 1

2

{
µTG−1µ+ tr

(
G−1Λ

)}
+

1

2
log
∣∣G−1Λ

∣∣ , (2.4)

where B (µ, σ2) =
∫∞
−∞ b (µ+ σx)φ (x) dx. For vector arguments, function B is applied

in element-wise fashion such that, for instance, B

([
a1

a2

]
,

[
b1

b2

])
=

[
B (a1, b1)

B (a2, b2)

]
.

A proof of Proposition 2.1 is given in Section B.1.1 of Appendix B. The lower bound

` (β,G,µ,Λ) is the so called Gaussian variational approximation to ` (β,G), since

q (u; ξ) is assumed to be a normal density function, with variational parameters µ and

Λ. The advantage of using ` (β,G,µ,Λ) in replacement of ` (β,G) is that the former
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no longer involves K-dimensional integration but unidimensional integrals appearing in

function B (µ, σ2) at most. Such integrals are even expressible in closed form in the case

of Poisson responses with canonical link function. In this case, B (µ, σ2) = exp(µ+ 1
2
σ2).

Ormerod and Wand (2012) suggest to treat this integration via adaptive Gauss–Hermite

quadrature and provide details in their supplementary material. We follow this scheme

for the integration steps in our illustrations involving Bernoulli responses.

Since ` (β,G) ≥ ` (β,G,µ,Λ) for all (µ,Λ), maximizing over the variational param-

eters implies pushing the lower bound towards the log-likelihood function. Therefore, we

define a new optimization problem in lieu of log-likelihood maximization, which forms

the base for variational inference. Let(
β̂, Ĝ, µ̂, Λ̂

)
= argmax

β,G,µ,Λ
` (β,G,µ,Λ)

then β̂ and Ĝ are the Gaussian variational approximate maximum likelihood estimators

for β and G, respectively. The optimization problem requires the application of efficient

computational procedures that are able to handle a large set of parameters, especially

those entering covariance matrices.

One idea is to conduct the optimization procedure through the Newton-Raphson algo-

rithm, which guarantees fast convergence, given that parameters are initialized “nearby”

the optima.

2.4 Lower bound optimization

Despite several routines in the R computing environment support efficient optimiza-

tion, an additional Newton-Raphson optimization step may provide improved estimates

with fast convergence, if set close to the optima. An efficient Newton-Raphson scheme

adapted to the Gaussian variational lower bound is described in Ormerod and Wand

(2012, Section A.5).

Our optimization strategy includes the following three steps:

1. parameters initialization;

2. first optimization step via the R function optim() and “BFGS” (Broyden, Fletcher,

Goldfarb and Shanno) quasi-Newton method;

3. second optimization step via Newton-Raphson, having as input the values from

the previous optimization.
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There are at least two issues that must be addressed in the lower bound optimization.

The first is setting starting values that respect constraints, such as covariance matrices

being symmetric and positive definite, and give rise to a converging optimization. The

second involves the calculation of derivatives and Hessians of the lower bound (2.4),

in order to apply a Newton-Raphson scheme. Section B.1.2 of Appendix B lists first

order derivative and Hessian expressions for the lower bound (2.4). However, it should

be pointed out that these expressions need to be adapted to single model specifications

to guarantee a better optimization procedure. For instance, if the covariance matrix

G is specified as G = σ2I, than it makes sense to compute derivatives with respect

to σ2, rather than the whole matrix G. Alternatively to tedious and somehow tricky

derivatives calculations, the R package TMB Kristensen (2018) may be employed. This

tool allows for efficient calculation of first and second order derivatives, taking as input

the function to be optimized as a simple C++ template.

An important issue that arises in the optimization procedure over the variational

parameters is to maintain the symmetric and positive-definite characteristics of the

covariance matrix of the approximating Gaussian density and covariance matrices as-

sociated with random effects components. A straightforward solution when working

with simple covariance matrices parameterized as, for instance, σ2I is to work with the

logarithm of the variance parameter, σ2. For nontrivial cases, the solution we adopt

is the one proposed in Pinheiro and Bates (2000, Subsection 2.2.7), which consists of

parameterizing the covariance matrix through its matrix logarithm. Noting that any

symmetric positive-definite matrix A can be expressed as the matrix exponential of

another symmetric matrix B, it is possible to rewrite A as

A = eB = I +B +
B2

2!
+
B3

3!
+ · · · .

Given a real symmetric and positive-definite matrix A of dimension q × q, one way to

obtain its matrix logarithm B is to calculate the eigendecomposition

A = QLQT ,

where L is a q× q diagonal matrix whose main diagonal entries are the eigenvalues of A

and Q is a q× q and orthogonal matrix whose columns are the eigenvectors of A. Note

that ifA is positive-definite, then all the diagonal elements of L must be positive and we

are able to define the matrix logarithm of L, logL, as the diagonal matrix whose main

diagonal elements are the logarithms of the corresponding elements of L. Therefore we
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get

B = logA = Q logLQT .

Unconstrained optimization can be then performed via the matrix logarithm of the

matrix of interest.

The covariance matrix of the approximating Gaussian density, Λ, may have large

dimensions, especially in applications to models with grouped data or spline basis func-

tions in the design matrix. Some solutions have already been proposed in the literature.

For instance, Ormerod and Wand (2012, Theorem 1) prove that the optimal Λ has a

simplified block-diagonal form for grouped data GLMMs with same group size. Tan and

Nott (2018) impose sparsity in the precision matrix to reflect appropriate conditional

independence structures in the model, showing applications to GLMMs and state space

models.

In our simulation studies in Section 2.6 we perform GVA with simplified Λ matrices

reflecting the random effects covariance matrix structure, although without providing

in this thesis formal results in support of our choices.

2.5 Approximate standard errors and best predic-

tion of random effects

Ormerod and Wand (2012) suggest a strategy to obtain approximate standard errors

and approximate best prediction of random effects that easily extends to a framework

involving general design generalized linear mixed models.

Imagine to treat the lower bound as a log-likelihood function and
(
µT , vech (Λ)T

)
as a vector of nuisance parameters, setting θ =

(
βT , vech (G)T

)
. Then, via standard

theory of inference we get the asymptotic covariance matrix of θ̂ =
(
β̂T , vech

(
Ĝ
)T )

,

Σ̂
asym

θ̂ = θ sub-block of I (β,G,µ,Λ)−1 , (2.5)

where I (β,G,µ,Λ) = E {−H` (β,G,µ,Λ)} is the variational approximate Fisher in-

formation matrix and H is the Hessian matrix operator with respect to (θ,µ, vech (Λ)).

Approximate standard errors can be obtained at convergence of the optimization pro-

cedure by extracting the square roots of the diagonal entries of Σ̂
asym

θ̂ .

The best predictor of u

BP (u) = E (u |y) =

∫
up (u |y) du
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is often of interest, but in our case hindered by intractable integration. We may then re-

sort to the fact that the optimal approximating density q (u;µ,Λ) is chosen to minimize

the KullbackLeibler divergence with p (u |y) and propose the following approximation

to BP (u):

BP (u) =

∫
uq
(
u; µ̂, Λ̂

)
du = µ̂.

From best prediction theory (e.g. McCulloch et al., 2008, Chapter 13) we have that

Cov {BP (u)− u} = Ey {Cov (u |y)} ,

with Ey indicating expectation with respect to y. Resorting again to the fact that

q (u;µ,Λ) approximates p (u |y), we get the estimated asymptotic covariance matrix

Σ̂
asym

{BP(u)−u} = Λ̂. (2.6)

Proposition 2.2 associates the estimate for the variability of BP to the variational ap-

proximate Fisher information matrix.

Proposition 2.2. Let Hµµ` be the µ block of H` (β,G,µ,Λ). Then

Λ̂ = (−Hµµ`)
−1

According to Proposition 2.2, Σ̂
asym

{BP(u)−u} can be obtained as the µ sub-block of the

variational approximate Fisher information matrix I (β,G,µ,Λ), in a similar way as

for fixed effects. Section B.1.3 of Appendix B provides a proof of Proposition 2.2.

2.5.1 Asymptotic properties

Hall et al. (2011a) and Hall et al. (2011b) examine a simple Poisson mixed-effects model

with a single predictor and a random intercept. They use a GVA approach and estimate

parameters with a variational expectation-maximization procedure. They prove consis-

tency of the corresponding estimates at a certain parametric rate as well as asymptotic

normality with asymptotically valid standard errors.

Starting from arguments similar to those used by Opper and Archambeau (2009) to

show that the Laplace approximation and the GVA are closely related, Ormerod and

Wand (2012) give heuristic arguments for the consistency of GVA for simple generalized

linear mixed models.
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Hui et al. (2018) consider a framework for semiparametric regression based on GVA.

They demonstrate the consistency of the variational approximation estimates and asymp-

totic normality for the parametric component.

All these results and the somehow satisfactory performances of GVA highlighted by

our next simulation studies, encourage to dedicate further research endeavor to formalize

more general results.

2.6 Illustrative examples using simulated data

The general design GLMMs framework we operate in covers a vast range of situations

and a complete description is impractical. Therefore we illustrate the application of GVA

for some prominent models through simulated datasets, similarly to the description of

the R package gammSlice provided in Pham and Wand (2018). The cases we consider

are Poisson nonparametric regression, semiparametric logistic regression and a logistic

additive mixed model.

We also provide a rough performance assessment via the comparison of GVA and

MCMC results obtained with rstan (Stan Development Team, 2018). Such a com-

parison of frequentist and Bayesian inferential summaries may rise some philosophical

criticisms. However, since Bayesian inference is here performed with diffuse priors, there

is at least an informal sense that motivates this juxtaposition of the results. Fixed effects

parameters, say β, have priors N
(
0, σ2

βI
)
, with σ2

β = 1010, while priors on standard

deviations, say σ, are half Cauchy distributions with scale parameter Aσ = 105. Sub-

section B.1.4 of Appendix B displays the rstan code for fitting Poisson nonparametric

regression via MCMC. The code can be easily adapted to fit the other GLMMs with

little modification.

The lower bound optimization may benefit of parsimonious parametrization of Λ.

For example, Ormerod and Wand (2012) consider models for grouped data such as the

Poisson random intercept model

yij
ind.∼ Poisson (exp (β0 + β1xij + ui)) ,

ui
ind.∼ N

(
0, σ2

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

According to Ormerod and Wand (2012, Theorem 1), the optimal Λ takes form

Λ = blockdiag
1≤i≤m

(Λi) ,
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where each Λi is a n×n positive definite matrix. Without providing any formal result, we

can make similar assumptions on the form of matrix Λ to support efficient optimization

in cases such as additive models, where the covariance matrix of random effects has a

block-diagonal structure.

2.6.1 Poisson nonparametric regression

We simulate data from

yi
ind.∼ Poisson (exp {f (xi)}) , 1 ≤ i ≤ n,

with n = 500, xi
ind.∼ Uniform (0, 1) and

f (x) = cos (4πx) + 2x− 1.

The smooth function f is modeled using penalized splines and we estimate the Poisson

nonparametric regression model

yi
ind.∼ Poisson

(
exp

{
β0 + β1xi +

K∑
k=1

ukzk (xi)

})
, 1 ≤ i ≤ n,

uk
ind.∼ N

(
0, σ2

)
.

(2.7)

The {zk (·) : 1 ≤ k ≤ K} are the O’Sullivan spline functions described in Section 1.6.1.

The choice of K is of relatively minor concern for penalised splines but of impact on the

number of parameters to optimize, since the size of matrix Λ directly depends on it. In

this case we choose K = 50.

Referring to (2.2), an equivalent GLMM formulation involves the design matrices

X =
[

1 xi

]
1≤i≤n

, Z =

[
zk (xi)
1≤k≤K

]
1≤i≤n

β =
[
β0 β1

]T
, u =

[
uk

1≤k≤K

]T
,

G = σ2I.

We model Λ as a symmetric positive definite full matrix of size K ×K.

Credible intervals are obtained making use of the expressions (2.5) and (2.6) by

assuming asymptotic normality. Results are displayed in Figure 2.1 and show great

similarity between MCMC and GVA.
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Figure 2.1: Left panel: mean estimate of f (solid line) and pointwise 95% credible
intervals (dashed lines) obtained via MCMC and GVA for the Poisson nonparametric
regression model (2.7). The interior knots are drawn on the x axis. The true f from
which the data were generated is shown as a red solid line. Right panel: As for the
left panel, but for exp (f) instead of f . The data are shown as circles.

2.6.2 Semiparametric logistic regression

The nomenclature semiparametric is introduced when an explanatory variable enters the

model via a nonparametric function and a second one, at least, provides a parametric

explanatory component. We simulate data according to the following semiparametric

logistic regression model:

yi
ind.∼ Bernoulli

(
logit−1 {βx1i + f (x2i)}

)
, 1 ≤ i ≤ n,

where n = 500, logit−1 (x) = ex/ (1 + ex). We use β = 0.5, x1i
ind.∼ Bernoulli

(
1
2

)
,

x2i
ind.∼ Uniform (0, 1) and

f (x) = sin (2πx) .

Then, we estimate the model

yi
ind.∼ Bernoulli

(
logit−1

{
β0 + βx1x1i + βx2x2i +

K∑
k=1

ukzk (x2i)

})
, 1 ≤ i ≤ n,

uk
ind.∼ N

(
0, σ2

)
,

(2.8)
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where {zk (·) : 1 ≤ k ≤ K} is a set of O’Sullivan spline functions. We set K = 50.

Referring to (2.2), an equivalent GLMM formulation is

X =
[

1 x1i x2i

]
1≤i≤n

, Z =

[
zk (x2i)
1≤k≤K

]
1≤i≤n

β =
[
β0 βx1 βx2

]T
, u =

[
uk

1≤k≤K

]T
,

G = σ2I.

We employ a symmetric positive definite full matrix Λ of size K × K. The effect of

the covariates entering the model through nonparametric components, x2, on the logit

function of the Bernoulli probability is shown in Figure 2.2, together with mean estimate

and credible intervals obtained via MCMC and GVA.
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Figure 2.2: Mean estimate of f (solid line) and pointwise 95% credible intervals
(dashed lines) with respect to x2, keeping x1 fixed to its mean, obtained via MCMC
and GVA for the semiparametric logistic regression model (2.8). The interior knots
are drawn on the x axis. The true f from which the data were generated is shown as
a red solid line line.
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2.6.3 Logistic additive model

We simulate a dataset from the model

yi
ind.∼ Bernoulli

(
logit−1 {f1 (x1i) + f2 (x2i)}

)
, 1 ≤ i ≤ n, (2.9)

with n = 500, x1i
ind.∼ Uniform (0, 1), x2i

ind.∼ Uniform (0, 1) and

f1 (x) = cos (4πx) + 2x, f2 (x) = sin
(
2πx2

)
.

Then, we estimate the logistic additive model

yi
ind.∼ Bernoulli

(
logit−1

{
β0 + βx1x1i +

K1∑
k1=1

u1k1z1k1 (x1i)

+βx2x2i +

K2∑
k2=1

u2k2z2k2 (x2i)

})
, 1 ≤ i ≤ n,

u1k1 ∼ N
(
0, σ2

1

)
, 1 ≤ k1 ≤ K1, u1k2 ∼ N

(
0, σ2

2

)
, 1 ≤ k2 ≤ K2,

(2.10)

where

{z1k1 (·) : 1 ≤ k1 ≤ K1} and {z2k2 (·) : 1 ≤ k2 ≤ K2}

are O’Sullivan spline functions over the range of the x1is and x2is, respectively. We set

K1 = K2 = 30.

Referring to (2.2), an equivalent GLMM formulation involves matrices and vectors

X =
[

1 x1i x2i

]
1≤i≤n

, Z =

[
z1k1 (x1i)
1≤k1≤K1

z2k2 (x2i)
1≤k2≤K2

]
1≤i≤n

,

β =
[
β0 βx1 βx2

]T
, u =

[
u1k

1≤k≤K1

u2k
1≤k≤K2

]T
,

G =

[
σ2

1IK1 0

0 σ2
2IK2

]
.

Reflecting the structure of G, we choose Λ to be

Λ =

[
Λ1 0

0 Λ2

]
,

where Λ1 and Λ2 are K1 × K1 and K2 × K2 symmetric positive definite matrices,

respectively. At the end of the optimization procedure, we are able to produce the plots

displayed in Figure 2.3.
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Figure 2.3: Left panel: mean estimate of f1 (solid line) and pointwise 95% credible
intervals (dashed lines) with respect to x1, keeping x2 fixed to its mean, obtained via
MCMC and GVA for the logistic additive regression model (2.10). The interior knots
are drawn on the x axis. The true function from which the data were generated is
shown as a red solid line line. Right panel: As for the left panel, but for f2 plotted
against x2, keeping x1 fixed to its mean.

2.6.4 Generalized geoadditive model

Another type of extension is to allow for bivariate functions of pairs of continuous

predictors to be included in additive models such as the one of Subsection 2.6.3. In a

spatial data context, these models may be referred to as geoadditive models (Kammann

and Wand, 2003) and can be included in the framework given by (2.2). We exemplify

this concept with the following illustrative example.

We simulate a dataset from the model

yi
ind.∼ Poisson (exp {f1 (x1i) + f2 (x2i) + g (xgeo

i )}) , 1 ≤ i ≤ n, (2.11)

with n = 100, x1i
ind.∼ Uniform (0, 1), x2i

ind.∼ Uniform (0, 1), xgeo

1i
ind.∼ Uniform (0, 1),

xgeo

2i
ind.∼ Uniform (0, 1) and

f1 (x) = sin
(
2πx2

)
, f2 (x) = cos

(
3πx3

)
, g (x, y) = sin (3πxy) .

In this context, x1i and x2i are predictor variables, xgeo

i is a 2×1 vector containing spatial
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coordinates, while f1, f2 and g are functions of the predictors. Then, we estimate the

Poisson geoadditive model

yi
ind.∼ Poisson

(
exp

{
β0 + β1x1i +

K1∑
k1=1

u1k1z1k1 (x1i) + β2x2i +

K2∑
k2=1

u2k2z2k2 (x2i)

+βgeoTxgeo

i +
Kgeo∑
kgeo=1

ugeo

kgeoz
geo

kgeo (xgeo

i )

})
, 1 ≤ i ≤ n,

u1k1 ∼ N
(
0, σ2

1

)
, 1 ≤ k1 ≤ K1, u1k2 ∼ N

(
0, σ2

2

)
, 1 ≤ k2 ≤ K2,

ugeo = N
(
0, σ2

geoΩ
−1
)
.

(2.12)

Here

{z1k1 (·) : 1 ≤ k1 ≤ K1} and {z2k2 (·) : 1 ≤ k2 ≤ K2}

are O’Sullivan spline functions over the range of the x1is and x2is, respectively and

{zgeo

kgeo (·) : 1 ≤ kgeo ≤ Kgeo}

give rise to a matrixZgeo which reflects the covariance structure of the spatial coordinates

xgeos. In applications, Kgeo may be a particularly large number giving rise to a Gaussian

approximating density with large covariance matrix Λ. One possibility to overcome this

problem is to select or propose a set of representative knots using the space filling design

(Johnson et al., 1990; Nychka and Saltzman, 1998). The cover.design() function

from the R package Fields (Nychka et al., 2018) provides software for space filling

knot selection. We employ these tools to select a set of κkgeo , 1 ≤ kgeo ≤ Kgeo ≤ n

representative points. Following Kammann and Wand (2003), we define

Zgeo =

[
C0

(
‖xgeo

i − κkgeo‖ /ρ
1≤kgeo≤Kgeo

)]
1≤i≤n

, Ω =

C0

∥∥κkgeo − κkgeo′ ∥∥ /ρ
1≤kgeo,kgeo

′
≤Kgeo


1≤i≤n

,

where C0 (r) = (1 + |r|) exp (− |r|) is the underlying covariance structure. We choose

ρ = max
1≤i,j≤n

∥∥xgeo

i − xgeo

j

∥∥ and find the singular value decomposition of Ω, that is, Ω =

Udiag (d)V T , to obtain the matrix square root of Ω, Ω1/2 = Udiag
(√
d
)
V T . For

fitting purposes, we compute the reparameterization Z̃geo = ZgeoΩ−1/2, whose associate

random effect vector ũgeo has covariance σ2
geoI. Referring to the GLMM formulation
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(2.2), the following matrices are involved:

X =
[

1 x1i x2i xgeo

i

]
1≤i≤n

, Z =

[
z1k1 (x1i)
1≤k1≤K1

z2k2 (x2i)
1≤k2≤K2

Z̃geo

]
1≤i≤n

,

β =
[
β0 βx1 βx2 βgeo

]T
, u =

[
u1k

1≤k≤K1

u2k
1≤k≤K2

ũgeo

]T
,

G =


σ2

1IK1 0 0

0 σ2
2IK2 0

0 0 σ2
geoI

 .
GVA can be applied in a similar way as done in Subsection 2.6.3, setting

Λ =


Λ1 0 0

0 Λ2 0

0 0 Λgeo

 ,
where Λ1, Λ2 and Λgeo are symmetric positive definite matrices of size K1×K1, K2×K2

andKgeo×Kgeo, respectively. We setK1 = K2 = 30 and, according to step (1) of Ruppert

et al. (2003, Section 13.5), we select Kgeo = 25.

Figure 2.4 displays the simulated data highlighting the selected representative knots.

Figure 2.5 shows the univariate functions resulting from the fitting. In a similar manner,

a fitted surface can be produced through kriging prediction, accounting for the covariates

effect.

2.7 Simulation study

We here include a first performance investigation consisting in a simulation study that

involves a Poisson non-parametric model and a logistic additive model with canonical

link.

Data were simulated using the same settings of Subsection 2.6.1, for the Poisson case.

The linear predictor was scaled so that there was about 50% unexplained variance in each

replicate dataset, similarly to what suggested in Wood (2011). The GLMs of Subsection

2.6.1 were fitted to each replicate dataset, using the correct distribution and link, via

GVA, penalized quasi likelihood (PQL), generalized cross-validation (GCV) and MCMC

with the already mentioned uninformative priors. We used the R function glmmPQL of

libary MASS for PQL and function gam, and then gamm for the logistic model, from

package mgcv for GCV. Boxplots in the left panel of Figure 2.6 show the distributions,

over 100 replicates, of differences in mean square error (MSE) between each alternative
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Figure 2.4: Plot of the data simulated according to (2.11). The symbol “+” indicates
the representative knots.

method and GCV, divided by the average MSE of GCV. Indeed, GCV showed the

lowest average MSE, measured on the scale of the linear predictor. If compared to

GCV, PQL performs very similarly in terms of MSE, followed by GVA. However, it

should be pointed out that GVA sometimes performed better or slightly worse when

varying the number of nodes or generating functions in simulations studies that have

not been included here. The initialization of the optimization procedure for GVA is

also crucial and requires further investigations to face the presence of local optima and

improve GVA performances.

In a similar way, we performed the simulation study for the logistic case with 100

replicates, using the settings and model of Subsection 2.6.3. However, the MSE was

measured on the probability scale and not on the linear predictor. This time, MCMC

showed better performances in terms of MSE, but the boxplot of GVA in the right panel

of Figure 2.6 highlights a significant difference with the MCMC benchmark, which was

less evident for the Poisson nonparametric case.

Nevertheless, what is apparent in both the simulation studies is that the boxplots

associated with GVA are more concentrated, if compared to the others, excluding the

boxplot associated with PQL in the Poisson nonparametric case.
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Figure 2.5: Left panel: mean estimate of f1 (solid line) and pointwise 95% credible
intervals (dashed lines) with respect to x1, keeping x2 and spatial coordinates fixed to
their mean, obtained via MCMC and GVA for the Poisson geoadditive model (2.12).
The interior knots are drawn on the x axis. The true function from which the data
were generated is shown as a red solid line line. Right panel: As for the left panel,
but for f2 plotted against x2, keeping x1 and spatial coordinates fixed to their mean.
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Figure 2.6: Mean square error comparisons. Left panel: comparison between GCV
and other methods involving Poisson non parametric models. Right panel: comparison
between MCMC and other methods involving logistic additive models.
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2.8 Concluding remarks

Gaussian variational approximations are an approximate inference tool that easily ap-

plies to a GLMM context, covering a wide range of models with peculiar random effects

structures. Numerous other cases not listed here could be contemplated. A type of ex-

tension is to allow for models having both random intercept and slopes, which we could

name generalized additive semiparametric mixed models. One more obvious extension

is the treatment of additional distributional families for the response variable. Exam-

ples are normal, gamma and negative binomial distributions. All of these extensions are

relatively straightforward with respect to the framework of general GLMMs we have pre-

sented. However, more complete numerical studies should be implemented to partially

fill the gap in theoretical results and asymptotic properties for GVA. Further simulation

studies should involve more generating functions for each model under exam or a larger

number of nodes in models with spline components. Fitting of other types of models

should be tested, covering distributions other then the Poisson and Bernoulli ones and

also using alternative competing methods. Simulation studies may be complemented by

tracking means and standard errors of estimated model parameters.



Chapter 3

Variational inference for elaborate

response models

3.1 Introduction

We extend recent work concerning variational approximations via message passing to

accommodate approximate fitting and inference for some elaborate response models.

Derivation of variational message passing is challenging owing to the presence of non-

standard exponential families and numerical integration being needed. Nevertheless the

factor graph fragment approach means that algorithm updates only need to be derived

once for a particular response model, which can be integrated in an arbitrarily complex

model. Another advantage of this approach is that the VMP framework is such that

arbitrarily large semiparametric regression models can be handled using factor graph

fragments.

Wand (2017) introduced the notion of factor graph fragments to design a general

framework for variational Bayes approximate inference, considering situations that are

fundamental to semiparametric regression analysis via VMP: Gaussian prior, inverse

Wishart prior, iterated inverse G-Wishart, Gaussian penalization and Gaussian likeli-

hood. Additional cases are examined to handle logistic, probit and Poisson regression

models. The idea of message passing on factor graph fragments implicitly indicates the

possibility of compartmentalize the algebraic derivations to single parts of the model

at hand, or likelihood fragments. Such an approach is extendible to models with more

elaborate likelihood structures. Nolan and Wand (2017) provide accurate algebraic and

numerical details for fitting logistic likelihood regression via VMP. McLean and Wand

(2018) consider six other likelihood families: negative binomial, Student’s t, asymmetric

Laplace, skew normal, finite normal mixture and support vector machine. We add to

45
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this recent body of work and derive VMP updates for approximate fitting and inference

for the Pareto random sample, support vector regression (SVR) and skew t responses1.

Furthermore, we investigate how various auxiliary random variable representations of

the likelihood impact the variational approximating results. The response likelihoods

are re-expressed in terms of auxiliary variables and more common distributions since

the route without auxiliary variables is usually numerically complex or intractable. The

use of auxiliary variables has the practical advantage of producing algorithm message

updates which are derivable in closed form or requiring only univariate numerical in-

tegration. On the other hand, such a representation may introduce strong posterior

dependence which is hard to capture with simple forms of approximating densities.

Section 1.3 provides a brief description of VMP and its implementation via the notion

of message passing on a factor graph. An introduction to the parallel methodology of

mean field variational Bayes (MFVB) on directed acyclic graphs is also included. All

the VMP algorithms proposed in the following sections have been checked comparing

the parameter estimates with those from the corresponding MFVB algorithms, that

have been derived but not all included in this thesis. In fact, our VMP and MFVB

algorithms converge to the same posterior density function approximations, since they

are each based on the same optimization problem.

When performing variational inference based on a mean field restriction as in the

case of VMP and MFVB, the variational lower bound on the marginal loglikelihood

is commonly used to assess convergence. However, the algebra required to obtain the

lower bound expression is involved for large models since it includes the calculation of

entropy components, which is non-standard for the exponential families arising in the

models considered here.

Only the MFVB algorithm for SVR and related derivation details are included here

as an illustration, despite all the MFVB algorithms have been derived and checked with

the corresponding VMP versions. The reason is that VMP provides a more flexible and

scalable framework for variational inference in which iterative updates are amenable to

modularization and extendible to arbitrarily large models via the notion of factor graph

fragments, as shown in the application of Subsection 3.4.2. For the sake of conciseness

and clarity, explanations are provided in this chapter for the following points:

1. In Section 3.2, the Pareto random sample is proposed as an introductory example

to illustrate the steps for the complete derivation of a VMP algorithm;

1The paper Maestrini and Wand (2018) is based on the work concerning the skew t likelihood
fragment presented in this chapter.
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2. A MFVB algorithm for SVR is derived in Section 3.3 in addition to the cor-

responding VMP alternative to highlight the major differences between the two

perspectives;

3. Two different VMP algorithms are displayed for the skew t regression likelihood

fragment in Section 3.4, according to two alternative product density restrictions

on the approximating density; we prove with a numerical study and a theoreti-

cal result that the more computationally convenient one has a serious pitfall and

show that posterior dependence arising from an auxiliary variable representation

of a skew t model may lead to poor performances in terms of variational message

passing approximation; this happens if using simple auxiliary variable representa-

tions of the likelihood fragment and convenient factorizations of the approximating

densities; we conclude with an illustration.

3.1.1 Notation

Before treating variational algorithms for the response models of interest, we define some

relevant additional notation.

For a d × 1 vector v1 and a d2 × 1 vector v2 such that vec−1 (v2) is symmetric and

given a d× d matrix Q, a d× 1 vector r and s ∈ R we define

GVMP

([
v1

v2

]
;Q, r, s

)
=− 1

8
tr
(
Q
{

vec−1 (v2)
}−1

[
v1v

T
1

{
vec−1 (v2)

}−1 − 2I
])

− 1

2
rT
{

vec−1 (v2)
}−1

v1 −
1

2
s.

The GVMP function originates from the fact that

Eθ

{
−1

2

(
θTQθ − 2rTθ + s

)}
= GVMP (η;Q, r, s)

when θ is a d × 1 multivariate normal random vector with natural parameter vector

η. We introduce the notations (ET )ISRN

2 , (ET )ISRN

3 , (ET )MR

2 , (ET )SS

2 and (ET )SS

3 , as

expressed in (A.4)–(A.8), referring to the expected value of the sufficient statistic of

particular exponential families that are defined in Appendix A: the inverse square root

Nadarajah, Sea Sponge and Moon Rock distributions.



48 Section 3.2 - The Pareto likelihood fragment

3.1.2 A note on the inverse chi-squared prior

The inverse chi-squared distribution is the conjugate family for variance parameters

in normal mean-scale models written in auxiliary variable form and Bayesian semi-

parametric regression. Since the models we examine involve normal distributions the

conjugacy property helps reduce the number of non-analytic forms but alternative scale

parameter priors may be also convenient. Gelman (2006) explains that approximate

non-informativeness of scale parameters can be achieved via half t distribution priors

and pays particular attention to half Cauchy priors.

VMP and MFVB algorithm derivations benefit from the following auxiliary variable

result. Let x and a be random variables such that

x | a ∼ Inverse-χ2 (1, 1/a) and a ∼ Inverse-χ2
(
1, 1/A2

)
.

Then

x ∼ Half-Cauchy (A) .

The conjugacy relationship between the Gaussian and inverse gamma or, equivalently,

inverse chi-squared families arising from a half Cauchy prior specification reduces the

number of intractable integrals in mean field variational inference.

An extension of this result to covariance matrices via the inverse G-Wishart distri-

bution described in Subsection A.2.13 of Appendix A supports algorithm derivations in

Chapter 4.

3.2 The Pareto likelihood fragment

The Pareto distribution is a skewed distribution with “heavy” tails named after the

Italian civil engineer, economist, and sociologist Vilfredo Pareto. It finds main applica-

tions is social sciences to model the distribution of incomes or populations but also in

the fields of engineering and actuarial sciences. Among several alternative definitions of

Pareto distributions we consider the one known as Pareto distribution of II type.

Consider the model

yi
ind.∼ Pareto (µ, α, β) , 1 ≤ i ≤ n, (3.1)

where yi ≥ µ, α > 0 is the Pareto exponent and β > 0 is the scale parameter, according

to the density specification in Subsection A.2.19 of Appendix A. A Pareto exponent

value of α = log4 5 ≈ 1.16 is associated with a famous result known as Pareto principle,
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or “80-20” rule. A notorious exemplification of this rule states that the 80% of the

wealth of a society is held by 20% of its population.

As previously affirmed, an auxiliary variable representation of the likelihood fragment

may simplify the derivation of VMP algorithms. Then, if we introduce a random variable

ai, 1 ≤ i ≤ n, such that ai |α, β ind.∼ Gamma (α, β) with α and β shape and scale

parameters respectively, we can write model (3.1) as

yi |µ, ai ind.∼ Exp (µ, ai) , ai |α, β ind.∼ Gamma (α, β) , (3.2)

where p (yi |µ, ai) = ai exp {−ai (yi − µ)} is a shifted exponential distribution.

In accordance with the theory of mean field variational approximations, a product

density restriction as in (1.6) is required. We assume the q-density admits the simplest

product density restriction, that is,

q (µ, α, β,a) = q (µ) q (α) q (β) q (a)

= q (µ) q (α) q (β)
n∏
i=1

q (ai) , (3.3)

where a is the vector containing the ai, 1 ≤ i ≤ n, auxiliary variables. Similarly to a,

we define the vector of observations y. The factor graph representation in Figure 3.1 is

designed around model (3.2) and restriction (3.3) to support the derivation of a VMP

algorithm, following steps (1.14)–(1.16). The procedure basically requires to obtain

p(y|µ,a)

µ

p(a|α,β)

a1 an

α β

● ● ●

Figure 3.1: Factor graph for the Pareto likelihood specification in (3.2) under the
assumption in (3.3) with independent auxiliary variables a1 . . . an.
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expressions for messages passed from each stochastic node to connected factors and vice

versa. Messages from factors to stochastic nodes produce the optimal approximating

densities at convergence.

As a starting point, we consider messages involving the parameter µ, which only

depend on the logarithm of the exponential density term in the likelihood factor, the

only part of the likelihood fragment expressing dependence on µ:

log p (y |µ,a) =
n∑
i=1

log (aiI (yi > µ))−
n∑
i=1

ai (yi − µ) , (3.4)

where log (I (yi > µ)) = −∞ for I (yi > µ) = 0. It follows from (1.15) that messages

from factor p (y |µ,a) to µ take form

mp(y |µ,a)→µ (µ) = exp
(
µ1TnEq(a) (a)

)
I

(
µ < min

1≤i≤n
(yi)

)
, (3.5)

where, according to (1.16), Eq(a) denotes expectation with respect to the density function

arising from the normalization of

mp(y |µ,a)→a (a)ma→p(y |µ,a) (a) = mp(y |µ,a)→a (a)mp(a |α,β)→a (a) . (3.6)

It is apparent that messages mp(y |µ,a)→µ (µ) have the form of a truncated distribution.

Such information helps defining a model in which the messages entering the main factor

graph fragment ensure conjugacy with the outgoing ones and facilitates the deriva-

tion of a VMP scheme. If, for instance, the only message that µ receives is a prior

within the same family of truncated distribution with the same truncation value, then

mµ→p(y |µ,a) (µ) is conjugate to mp(y |µ,a)→µ (µ).

Now, consider messages from factor p (y |µ,a) to a single auxiliary variable ai. Ap-

plying formula (1.15) to the log-likelihood component (3.4) and expectation with respect

to (1.16), these messages take the form

mp(y |µ,a)→ai (ai) = exp


[

log (ai)

ai

]T
ηp(y |µ,a)→ai

 , (3.7)

with natural parameter update

ηp(y |µ,a)→ai ←−
[

1

µq(µ) − yi

]
,
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with µq(µ) denoting expectation of µ with respect to the normalization of

mp(y |µ,a)→µ (µ)mµ→p(y |µ,a) (µ) .

Supposing, for example, that the only message entering µ is a prior p (µ) with hyperpa-

rameter λµ > 0 such that

p (µ) ∝ exp (λµµ) I

(
µ < min

1≤i≤n
(yi)

)
, (3.8)

then

µq(µ) =

∫ ymin
−∞ eηp(y |a,µ)↔µxdx∫ ymin
−∞ xeηp(y |a,µ)↔µxdx

= ymin −
1

ηp(y |a,µ)↔µ
,

with ymin = min
1≤i≤n

(yi) and ηp(y |a,µ)↔µ = 1TnEq(a) (a)+λµ. It follows that µq(µ) is updated

according to

µq(µ) ←− ymin −
(
1TnEq(a) (a) + λµ

)−1
.

Observing the sufficient statistic component of mp(y |µ,a)→ai (ai) as in (3.7) it is ap-

parent that this message is within the family of the gamma distribution.

The auxiliary random variable ai also appears in the gamma density term of the

likelihood factor, therefore also messages from p (a |α, β) to ai have to be obtained.

The logarithm of the auxiliary random variable ai likelihood component is

log p (ai |α, β) = α log β − log Γ (α) + (α− 1) log (ai)− βai.

This log-likelihood expression also produces the messages from factor p (ai |α, β) to

variables α and β. It follows from application of (1.15) that

mp(a |α,β)→ai (ai) = exp


[

log (ai)

ai

]T
ηp(a |α,β)→ai

 , (3.9)

mp(a |α,β)→α (α) = exp


[

log {Γ (α)}
α

]T
ηp(a |α,β)→α

 (3.10)

and mp(a |α,β)→β (β) = exp


[

log (β)

β

]T
ηp(a |α,β)→β

 . (3.11)
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Note that the sufficient statistic vectors of messagesmp(a |α,β)→ai (ai) andmp(a |α,β)→β (β)

are those of a gamma density function. Expectation with respect to (1.16) indicates that

the messages from p (a |α, β) to β and from p (a |α, β) to ai are proportional to a gamma

density function with natural parameter updates which are respectively

ηp(a |α,β)→ai ←−
[
µq(α) − 1

−µq(β)

]

and ηp(a |α,β)→β ←−
[

nµq(α)

−1TnEq(a) (a)

]
,

where

µq(α) =

∫ ∞
0

αq∗ (α) dα,

and µq(β) =

∫ ∞
0

βq∗ (β) dβ,

with q∗ (α) proportional to

mp(a |α,β)→α (α)mα→p(a |α,β) (α)

and q∗ (β) defined in an analogous way. An appropriate choice of messages entering the

β node may facilitate the VMP algorithm derivation and computation. If, for example,

mβ→p(a | ,α,β) only receives a gamma prior on β then conjugacy will be ensured.

The sufficient statistic vector of messages mp(a |α,β)→α (α) is not associable to any

notorious exponential family instead. Expectation with respect to (1.16) indicates that

the messages from p (a |α, β) to α are proportional to a non-standard density function

with natural parameter

ηp(a |α,β)→α ←−
[

−n
nµq(log(β)) + 1TnEq(a) (log (a))

]
,

where

µq(log(β)) =

∫ ∞
0

log (β) q∗ (β) dβ.

However, if for instance mα→p(a |α,β) (α) is an exponential density prior on α conjugacy

is ensured and we can compute µq(α) via numerical integration involving integrals of the

form

J (r, s) =

∫ ∞
0

Γ (x)r xsdx.
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Then

µq(α) =
J
((
ηp(a |α,β)↔α

)
1
,
(
ηp(a |α,β)↔α

)
2

+ 1
)

J
((
ηp(a |α,β)↔α

)
1
,
(
ηp(a |α,β)↔α

)
2

) .

Working on the log-scale is recommended, as described in Section C.2.3 of the Appendix

concerning numerical integration steps for the skew t fragment, paying attention to

restrictions on coefficients r and s.

Now, noting that mp(a |α,β)→ai (ai) is the only message that ai receives and then passes

to factor p (y |µ,a), from mp(y |µ,a)→ai (ai) and mp(a |α,β)→ai (ai), we get the natural

parameter vector of the density obtained normalizing (3.6),

ηq(a) =

[ (
ηq(a)

)
1(

ηq(a)

)
2

]
=ηp(y |µ,a)→ai + ηp(a |α,β)→ai

=

[
µq(α)

µq(µ) − y − µq(β)

]
,

which belongs to a gamma distribution, as both the messages that generate it.

Consequently, by applying result (A.2) in Appendix about the expectation of the

sufficient statistic of a gamma distribution we get

Eq(a) (log (a)) =ψ
{(
ηq(a)

)
1

+ 1
}
− log

{
−
(
ηq(a)

)
2

}
=ψ

(
µq(α) + 1

)
− log

(
y + µq(β) − µq(µ)

)
and Eq(a) (a) =−

{(
ηq(a)

)
1

+ 1
}
/
(
ηq(a)

)
2

=
(
µq(α) + 1

)
/
(
y + µq(β) − µq(µ)

)
.

In a similar way, under conjugacy, we get

µq(log(β)) = ψ
{(
ηp(a |α,β)↔β

)
1

+ 1
}
− log

{
−
(
ηp(a |α,β)↔β

)
2

}
,

µq(β) =
{(
ηp(a |α,β)↔β

)
1

+ 1
}
/
(
ηp(a |α,β)↔β

)
2
.

Finally, the optimal approximating densities as in (1.17) for the variables of interest

µ, α and β and the auxiliary variables ais are given by messages (3.5), (3.7) and (3.9)–

(3.11). Algorithm 3.1 summarizes the previous results and provides a VMP scheme for

the Pareto random sample.

As an example, Algorithm 3.1 is run on a simulated dataset of size n = 500 with
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Algorithm 3.1 The VMP inputs, updates and outputs of the Pareto random sample
likelihood fragment assuming q (µ, α, β,a) = q (µ) q (α) q (β)

∏n
i=1 q (ai).

Data Inputs: y.

Parameter Inputs: ηp(y |µ,a)→µ, ηµ→p(y |µ,a), ηp(a |α,β)→α, ηα→p(a |α,β), ηp(a |α,β)→β ,
ηβ→p(a |α,β).

Updates:

µq(µ) ←− min
1≤i≤n

(yi)−
(
ηp(y |a,µ)↔µ

)−1

µq(α) ←−
J ((ηp(a |α,β)↔α)

1
,(ηp(a |α,β)↔α)

2
+1)

J ((ηp(a |α,β)↔α)
1
,(ηp(a |α,β)↔α)

2
)

µq(log(β)) ←− ψ
{(
ηp(a |α,β)↔β

)
1

+ 1
}
− log

{
−
(
ηp(a |α,β)↔β

)
2

}
µq(β) ←−

{(
ηp(a |α,β)↔β

)
1

+ 1
}
/
(
ηp(a |α,β)↔β

)
2

Eq(a) (log (a))←− ψ
(
µq(α) + 1

)
− log

(
y + µq(β) − µq(µ)

)
Eq(a) (a)←−

(
µq(α) + 1

)
/
{
y + µq(β) − µq(µ)

}
ηp(y |a,µ)→µ ←− 1TnEq(a) (a)

ηp(a |α,β)→α ←−
[

−n
nµq(log(β)) + 1TnEq(a) (log (a))

]
ηp(a |α,β)→β ←−

[
nµq(α)

−1TnEq(a) (a)

]
.

Parameter Outputs: ηp(x |µ,a)→µ, ηp(a |α,β)→α, ηp(a |α,β)→β .

parameters µ = 2, α = 2 and β = 1. We integrate the Pareto random sample model

(3.2) with some prior specifications. The prior distribution on µ is defined as (3.8)

with hyperparameter λµ = 0.01 while for α and β we use priors Gamma (αα, βα) and

Gamma (αβ, ββ) respectively, with αα = αβ = 1 and βα = ββ = 0.01. We compare VMP

approximate densities with the posterior densities of single parameters obtainable via

Markov chain Monte Carlo (MCMC) through rstan with the R computing environment

(R Core Team, 2018) interfacing via the rstan package (Stan Development Team, 2018).

MCMC samples of size 10,000 were drawn setting a burn-in of 5000 values and thinning

the remaining 5000 by a factor of 5. Figure 3.2 shows both the VMP and MCMC results.

The density curves produced by Algorithm 3.1 seem to capture the modes of MCMC

posterior densities and the true generating parameters. However, note the lower variance

of variational approximating densities which corresponds with the theoretical results in

Wang and Blei (2018) concerning variance underestimation of variational Bayes. A more

structured and appropriate assessment of VMP performances is proposed for the skew

t likelihood fragment.
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Figure 3.2: VMP-approximate and MCMC posterior density functions for a dataset
simulated with parameters µ = 2, α = 1, β = 2. Vertical lines indicate the true values.

3.3 The support vector regression likelihood frag-

ment

Support vector machine (SVM) tools, including support vector regression (SVR), are

a class of popular supervised learning techniques used for classification and regression

analysis. However they scale relatively badly with increasing sample size, due to their

quadratic optimization algorithm, the use of kernel transformations for linear learn-

ing machine mapping and the choice of kernel parameters (e.g. Bennett and Campbell,

2000). Similarly to the classification approach, SVR seeks the optimal regression func-

Figure 3.3: Loss function in support vector regression.

tion using a loss function that ignores errors which are situated within a certain distance

from the true value. This type of function is often called epsilon intensive loss function.
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Figure 3.3 shows an example of one-dimensional linear regression function with epsilon

intensive band. The model variables measure the cost of the errors on the training

points. These are zero for all points which fall inside the band.

We apply the result in Lemma 2 in Zhu et al. (2014) to write the pseudo-likelihood

specification at the base of SVR:

exp
{
−2 (|x| − ε)+

}
=

∫ ∞
0

(2πa1)−1/2 exp

{
−(a1 + x− ε)2

2a1

}
da1

×
∫ ∞

0

(2πa2)−1/2 exp

{
−(a2 − x− ε)2

2a2

}
da2,

where u+ = max (0, u) for any u ∈ R. Indicating with p̌ an improper density function

which does not integrate to 1, the previous expression can be rewritten as follows:

p̌ (x) =

∫ ∞
−∞

∫ ∞
−∞

p1 (x | a1) p2 (x | a2) p̌ (a1) p̌ (a2) da1da2 = exp
{
−2 (|x| − ε)+

}
, (3.12)

where p1 (x | a1) is the N (ε− a1, a1) density function in x, p2 (x | a2) is the N (a2 − ε, a2)

density function in x and p̌ (aj) = I (aj > 0), j = 1, 2. In other terms, the pseudo-density

function p̌ (x) is represented as a mixture of specific normal density functions and two

auxiliary variables pseudo-density functions p̌ (a1) and p̌ (a2).

The Support Vector Regression pseudo-likelihood fragments are concerned with the

pseudo-likelihood specification

p̌ (y |θ) =
n∏
i=1

exp
{
−2 (|y − (Aθ)i| − ε)+

}
, (3.13)

with y vector in R. We now introduce two auxiliary variable vectors aj = (aj1, . . . , ajn),

j = 1, 2, with entries aji, 1 ≤ i ≤ n, each independently having the pseudo-density

function p̌ (aji) = I (aji > 0). Then, using (3.12), (3.13) is equivalent to

p̌ (y |θ,a1,a2) =
n∏
i=1

(2πa1i)
−1/2 exp

[
−{a1i + yi − (Aθ)i − ε}

2

2a1i

]

× (2πa2i)
−1/2 exp

[
−{a2i − yi + (Aθ)i − ε}

2

2a2i

]
,

p̌ (a1) =
n∏
i=1

I (a1i > 0) , p̌ (a2) =
n∏
i=1

I (a2i > 0) .

(3.14)
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To produce one of the simplest and tractable VMP schemes, we propose the approxi-

mation of the full joint posterior density function of the form

p (θ,a1,a2 |y) ≈ q (θ,a1,a2)

subject to the q-density product restriction

q (θ,a1,a2) = q (θ) q (a1) q (a2)

= q (θ)
n∏
i=1

q (a1i) q (a2i) .
(3.15)

The likelihood specification (3.14) and the product density restriction (3.15) produce the

factor graph representation in Figure 3.4. Messages from the factors to node appearing

p(y|θ,a1,a2)

 

θ

p(a1)

 

p(a2)

 

a11 a1n a21 a2n● ● ● ● ● ●

Figure 3.4: Factor graph for the support vector regression likelihood specification in
(3.14) under the assumption in (3.15) with independent auxiliary variables a11 . . . a1n

and a21 . . . a2n.

in the factor graph representation are obtained by manipulation of the log-likelihood

components as a function of the node of interest, applying steps (1.14)–(1.16). The

messages passed from the pseudo-likelihood factor to the parameter vector of interest,

θ, have the form

mp̌(y |θ,a1,a2)→θ (θ) = exp


[

θ

vec
(
θθT

) ]T ηp̌(y |θ,a1,a2)→θ

 ,
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which has a multivariate normal structure. Therefore, to ensure conjugacy, messages

that θ receives from factors outside of the SVR likelihood fragment, such as a prior on

θ, have to be proportional to a multivariate normal density. The structures of these

messages together with those involving the auxiliary random variables derived in Section

C.1.1 of the Appendix produce the VMP scheme listed as Algorithm 3.2.

Algorithm 3.2 The VMP inputs, updates and outputs of the support vector regression
likelihood fragment assuming q (θ,a1,a2) = q (θ)

∏n
i=1 q (a1i) q (a2i).

Data Inputs: y, A.

Parameter Inputs: ηp̌(y | θ,a1,a2)→θ, ηθ→p̌(y | θ,a1,a2).

Updates:

υ1 ←− − 1
2A
{

vec−1
((
ηp̌(y | θ,a1,a2)↔θ

)
2

)}−1 (
ηp̌(y | θ,a1,a2)↔θ

)
1

υ2 ←− − 1
2dg

[
A
{

vec−1
((
ηp̌(y | θ,a1,a2)↔θ

)
2

)}−1

AT

]
υ3 ←−

{
(υ1 + ε1n − y)

2
+ υ2

}−1/2

υ4 ←−
{

(y − υ1 + ε1n)
2

+ υ2

}−1/2

ηp̌(y | θ,a1,a2)→θ ←−
[
AT {υ3 � (y − 1nε) + υ4 � (y + 1nε)}
− 1

2vec
{
ATdiag (υ3 + υ4)A

} ]
.

Parameter Outputs: ηp̌(y | θ,a1,a2)→θ.

3.3.1 Approximate inference via mean field variational Bayes

Mean field variational Bayes does not benefit of the fragmentation property of VMP.

For this reason additional model details such as parameter priors are required to de-

rive a complete variational algorithm. We add to the Bayesian model (3.14) a prior

specification p (θ) on the vector θ such that

θ ∼ N (µθ,Σθ) , (3.16)

where µθ is a vector of length d and Σθ is a positive semidefinite matrix of size d× d,

to derive the corresponding MFVB algorithm.

As a starting point, consider the DAG for model (3.14) under the prior specification

(3.16) in Figure 3.5. Once again, to achieve tractability, we approximate the full joint

posterior density function with an approximating density q which is subject to the

density product restriction (3.15).

The q-densities are chosen to minimise the Kullback-Leibler divergence between the

full joint posterior density function and (3.15).
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Figure 3.5: Directed acyclic graph for the support vector regression likelihood spec-
ification in (3.14).

First note that the full conditional of θ satisfies

p (θ | rest) ∝ p̌ (y |θ,a1,a2) p (θ) ,

where “rest” denotes all of the random variables included in the Markov blanket of the

variable of interest, according to Figure 3.5. Taking logarithms on both sides gives

log p (θ | rest) = log p̌ (y |θ,a1,a2) + log p (θ) + const

=− 1

2

{
(a1 + y −Aθ − ε)T diag (a1)−1 (a1 + y −Aθ − ε)

+ (a2 − y +Aθ − ε)T diag (a2)−1 (a2 − y +Aθ − ε)
}

− 1

2
(θ − µθ)T Σ−1

θ (θ − µθ) + const

=

[
θ

vec
(
θθT

) ]T
 AT

{
1
a1
� (y − ε) + 1

a2
� (y + ε)

}
+ Σ−1

θ µθ

−1
2
vec
{
ATdiag

(
1
a1

+ 1
a2

)
A
}
− 1

2
vec
(
Σ−1
θ

)
+ const.

Taking expectations with respect to all parameters except θ it follows that the optimal

q-density for θ is

q∗ (θ) ∝ exp
{
Eq(a1,a2) log p (θ | rest )

}

= exp


[

θ

vec
(
θθT

) ]T


AT
{
µq(1/a1) � (y − ε)

+µq(1/a2) � (y + ε)
}

+ Σ−1
θ µθ

−1
2

[
vec
{
ATdiag

(
µq(1/a1) + µq(1/a2)

)
A+ Σ−1

θ

}]


 ,

with µq(1/a1) =
[
µq(1/a11), . . . , µq(1/a1n)

]T
and µq(1/a2) =

[
µq(1/a21), . . . , µq(1/a2n)

]T
. The

optimal density q∗ (θ) is then a multivariate normal N
(
µq(θ),Σq(θ)

)
density function
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with

Σq(θ) =
(
vec−1

[
vec
{
ATdiag

(
µq(1/a1) + µq(1/a2)

)
A
}

+ vec
(
Σ−1
θ

)])−1
,

µq(θ) = Σ−1
q(θ)

[
AT

{
µq(1/a1) � (y − ε) + µq(1/a2) � (y + ε)

}
+ Σ−1

θ µθ
]
.

(3.17)

Expressions for µq(1/a1) and µq(1/a2) are derived from the full conditionals for a1 and a2.

The full conditional of a1 satisfies

log p (a1 | rest) = log p̌ (y |θ,a1,a2) + log p (a1) + const

= −1

2

n∑
i=1

log (a1i)−
1

2

n∑
i=1

1

a1i

[a1i − {(Aθ)i + ε+ yi}]2 + const

=
n∑
i=1

log

a−1/2
1i exp


[

a1i

1/a1i

]T [
−1

2

−1
2
{(Aθ)i + ε− yi}2

]
+ const,

from which we derive q∗ (a1) as the product of the q (a1i) densities, 1 ≤ i ≤ n, taking

expectation with respect to θ and a2. It follows that

q∗ (a1i) ∝ exp
{
Eq(θ) log p (a1 | rest)

}
= a

−1/2
1i exp


[

a1i

1/a1i

]T [
−1

2

−1
2
Eq(θ) {(Aθ)i + ε− yi}2

] .

Using result (A.3) concerning the expectation of the sufficient statistic of the generalized

inverse Gaussian distribution we have

µq(1/a1i) =

[{(
Aµq(θ)

)
i
+ ε− yi

}2

+
(
AΣq(θ)A

T
)
ii

]−1/2

. (3.18)

Similarly, for a2 and 1 ≤ i ≤ n,

µq(1/a2i) =

[{
yi −

(
Aµq(θ)

)
i
+ ε
}2

+
(
AΣq(θ)A

T
)
ii

]−1/2

. (3.19)

Expressions (3.17), (3.18) and (3.19) provide the MFVB coordinate ascent proce-

dure to obtain the optimal variational parameters for the SVR problem, which is here

proposed as Algorithm 3.3 .
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Algorithm 3.3 MFVB coordinate ascent procedure to obtain the parameters in the
optimal densities q∗ (θ), q∗ (a1) and q∗ (a2) for the support vector regression model
assuming q (θ,a1,a2) = q (θ)

∏n
i=1 q (a1i) q (a2i).

Initialize: µq(θ) (d× 1), Σθ (d× d) symmetric and positive definite.

Cycle:

For 1 ≤ i ≤ n:

µq(1/a1i) ←−
[{(

Aµq(θ)

)
i
+ ε− yi

}2

+
(
AΣq(θ)A

T
)
ii

]−1/2

µq(1/a2i) ←−
[{
yi −

(
Aµq(θ)

)
i
+ ε
}2

+
(
AΣq(θ)A

T
)
ii

]−1/2

.

Update:

Σq(θ) ←−
(

vec−1
[
vec
{
ATdiag

(
µq(1/a1) + µq(1/a2)

)
A
}

+ vec
(
Σ−1
θ

)])−1

µq(θ) ←− Σ−1
q(θ)

[
AT

{
µq(1/a1) � (y − ε) + µq(1/a2) � (y + ε)

}
+ Σ−1

θ µθ

]
until convergence.

3.4 The skew t likelihood fragment

Skew distributions have emerged as a popular tool in modelling heterogeneous data with

asymmetric features. The well-know skew normal distribution certainly plays a major

role. However, as pointed out in Frühwirth-Schnatter and Pyne (2010), the kurtosis

coefficient of a skew normal distribution is restricted to the interval [3, 3.8692]. To

achieve a higher degree of excess kurtosis, skew t distributions have been introduced.

The skew t likelihood fragment corresponds to the likelihood specification

yi |θ, σ2, λ, ν
ind.∼ Skew-t

(
(Aθ)i , σ

2, λ, ν
)
, 1 ≤ i ≤ n, (3.20)

where A is a generic design matrix, θ is a generic vector of coefficients, σ2 > 0, λ ∈ R
and ν > 0. Among the possible definitions of the skew t distribution, we consider the

one described in Azzalini and Capitanio (2003) and recalled in Subsection A.2.20 of

Appendix A. Their skew t distribution becomes a symmetric Student’s t distribution

when λ = 0, a conditional normal distribution as ν → ∞ and allows the inclusion of

left-tailed or negative skewness when λ < 0 and right-tailed or positive skewness when

λ > 0. One of the advantages of treating the skew t fragment under the VMP framework

is that all the parameters can be inferred, rather than being held fixed.

The response likelihood can be conveniently re-expressed in terms of auxiliary vari-

ables and more common distributions to aid the construction of a tractable VMP algo-

rithm. The introduction of auxiliary variables has the practical advantage of reducing
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the complexity of message updates which either can be expressed in closed form or

require only univariate numerical integration.

Equation (25) of Azzalini and Capitanio (2003) or Proposition 2.1 of Parisi and Liseo

(2018) suggest a useful auxiliary variable representation for the skew t distribution. If

we introduce two auxiliary random variables a1i and a2i, 1 ≤ i ≤ n, such that

a1i
ind.∼ N (0, 1) and a2i

ind.∼ Inverse-χ2 (ν, ν) ,

then, with standard distribution manipulations, the model in (3.20) can be alternatively

written as

yi |θ, σ2, λ, a1i, a2i
ind.∼ N

(
(Aθ)i +

σλ |a1i|
√
a2i√

1 + λ2
,
a2iσ

2

1 + λ2

)
,

a1i
ind.∼ N (0, 1) , a2i | ν ind.∼ Inverse-χ2 (ν, ν) .

(3.21)

Considering this last model specification, we provide fragment updates that allow for

the skew t distribution to be handled within the VMP framework. An assumption on

the optimal q-density product restriction is required to produce the VMP solution in

(1.17). An assumption producing one of the simplest VMP schemes is

q
(
θ, σ2, λ, ν,a1,a2

)
= q (θ) q

(
σ2
)
q (λ) q (ν) q (a1) q (a2)

= q (θ) q
(
σ2
)
q (λ) q (ν)

n∏
i=1

q (a1i) q (a2i) .
(3.22)

Combining this product density restriction with the likelihood model in (3.21), we obtain

the factor graph representation in the left panel of Figure 3.6. The structure of messages

from the likelihood factor to each node is obtained by manipulation of the log-likelihood

factor as a function of the node of interest, according to the VMP equations (1.14)–

(1.16).

The messages passed from the likelihood factor to θ take the form

mp(y|θ,σ2,λ,a1,a2)→θ (θ) = exp


[

θ

vec
(
θθT

) ]T ηp(y|θ,σ2,λ,a1,a2)→θ

 ,

which has multivariate normal structure. Therefore, to ensure conjugacy, messages that

θ receives from factors outside of the skew t likelihood fragment, such as a prior on θ,

have to be proportional to a multivariate normal density.
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p(y|θ,σ2,λ,a1,a2)
θ

σ2

λ

p(a1) p(a2|ν)

a11 a1n a21 a2n

ν

p(y|θ,σ2,λ,a1,a2)
θ

σ2

λ

p(a1) p(a2|ν)

(a11,a21) (a1n,a2n)

ν

Figure 3.6: Factor graph for the skew t likelihood specification in (3.21) with inde-
pendent N (0, 1) auxiliary variables a11 . . . a1n and independent Inverse-χ2 (ν, ν) aux-
iliary variables a21 . . . a2n under the assumption in (3.22) (left panel) and (3.24) (right
panel).

The messages passed from the likelihood factor to σ2 have the form

mp(y|θ,σ2,λ,a1,a2)→σ2

(
σ2
)

= exp




log (σ2)

1/σ

1/σ2


T

ηp(y|θ,σ2,λ,a1,a2)→σ2

 ,

which is within the inverse square root Nadarajah family described in McLean and

Wand (2018, Section S.2.3). The imposition of conjugacy means that we assume that all

messages passed to σ2 from factors outside of the skew t fragment are also proportional

to inverse square root Nadarajah density functions. For instance, an Inverse-χ2 prior

on σ2 is suitable to ensure conjugacy.

The message from the likelihood factor to λ has the exponential family form

mp(y|θ,σ2,λ,a1,a2)→λ (λ) = exp




log (1 + λ2)

λ2

λ
√

1 + λ2


T

ηp(y|θ,σ2,λ,a1,a2)→λ

 ,

which is within the Sea Sponge family identified in McLean and Wand (2018, Section

S.2.5). We assume that each of the messages that λ receives from factors outside of this

fragment are conjugate to Sea Sponge density functions. If, for instance, the only factor

that sends a message to λ is the prior density function p (λ), then mp(λ)→λ (λ) = p (λ)
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and, under conjugacy, p (λ) must be of the form

p (λ) ∝ exp




log (1 + λ2)

λ2

λ
√

1 + λ2


T

ηλ

 , (3.23)

for some 3 × 1 vector ηλ. A special case of (3.23) is priors of the form λ ∼ N (0, σ2
λ),

having ηλ = [0,−1/ (2σ2
λ) , 0].

As a function of ν we have

log p (a2|ν) =

[
(ν/2) log (ν/2)− log {Γ (ν/2)}

(ν/2)

]T [
n

−1Tn {log (a2) + 1n/a2}

]
+const,

indicating that messages from p (a2|ν) to a2i, 1 ≤ i ≤ n, are within the Moon Rock

family defined McLean and Wand (2018, Section S.2.4). We assume messages passed

to ν from factors outside the skew t likelihood fragments are conjugate with the Moon

Rock family. For example, if the only other factor passing messages to ν is its prior

density function p (ν) then we require that p (ν) is a Moon Rock density function or

conjugate with one, such as an exponential density function.

The structures of these messages serve as a base to build a VMP algorithm on as-

sumption (3.22). Algorithm 3.4 contains a listing of such a VMP scheme while algebraic

derivations are given in Section C.2.1 of the Appendix.

However, the implementation of such an algorithm in simulation studies reveals poor

performances of VMP if roughly compared with the posterior densities of single pa-

rameters obtainable via MCMC. The cause of this discrepancy is the strong posterior

dependence between the two auxiliary variables a1i and a2i, whereas the product density

factorization in (3.22) ignores such a dependence. Figure 3.7 provides some insight into

why VMP developed according to assumption (3.22) is prone to inaccuracy, showing

pairwise scatterplots of series |a1| and 1/
√
a2 from an MCMC fitting output of a skew

t random sample of size n = 1000 as in the figure description. As for the Pareto likeli-

hood fragment, MCMC draws are obtained through rstan. Expectations of these series

involving the auxiliary random variables appear when deriving message updates. It is

apparent that the posterior correlation between the auxiliary variables increases as the

value of λ increases.

The following result confirms this posterior correlation problem.
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Algorithm 3.4 The VMP inputs, updates and outputs of the skew t likelihood fragment
assuming q (θ, σ2, λ, ν,a1,a2) = q (θ) q (σ2) q (λ) q (ν)

∏n
i=1 q (a1i) q (a2i).

Data Inputs: y, A.

Parameter Inputs: ηp(y|θ,σ2,λ,a1,a2)→θ, ηθ→p(y|θ,σ2,λ,a1,a2), ηp(y|θ,σ2,λ,a1,a2)→σ2 ,
ησ2→p(y|θ,σ2,λ,a1,a2), ηp(y|θ,σ2,λ,a1,a2)→λ, ηλ→p(y|θ,σ2,λ,a1,a2), ηp(a2|ν)→ν , ην→p(a2|ν),

Eq(a2)

(
1n/
√
a2

)
.

Updates:

µq(1/σ) ←− (ET )
ISRN

2

(
ηp(y|θ,σ2,λ,a1,a2)↔σ2

)
µq(1/σ2) ←− (ET )

ISRN

3

(
ηp(y|θ,σ2,λ,a1,a2)↔σ2

)
µq(λ2) ←− (ET )

SS

2

(
ηp(y|θ,σ2,λ,a1,a2)↔λ

)
µq(λ

√
1+λ2) ←− (ET )

SS

3

(
ηp(y|θ,σ2,λ,a1,a2)↔λ

)
µq(ν) ←− 2 (ET )

MR

2

(
ηp(a2|ν)↔ν

)
ω1 ←− y + 1

2A
{

vec−1
((
ηp(y|θ,σ2,λ,a1,a2)↔θ

)
2

)}−1 (
ηp(y|θ,σ2,λ,a1,a2)↔θ

)
1

ω2 ←− Eq(a2)

(
1n/
√
a2

)
� ω1

ω3 ←−
µq(1/σ)µq(λ

√
1+λ2)

ω2

√
1+µq(λ2)

Eq(a1) |a1| ←− ω3+ζ
′
(ω3)√

1+µq(λ2)

Eq(a1) ‖a1‖2 ←−
n+1Tn

[
ω3�

{
ω3+ζ

′
(ω3)

}]
1+µq(λ2)

ω4 ←−
[
GVMP

(
ηp(y|θ,σ2,λ,a1,a2)↔θ;ATeie

T
i A,A

Teie
T
i y, y

2
i

)]
1≤i≤n

ηq(a2) ←−

 − 1
2µq(ν) − 3

2
µq(1/σ)µq(λ

√
1+λ2)ω1 � Eq(a1) |a1|

µq(1/σ2)

(
1 + µq(λ2)

)
ω4 − 1

2µq(ν)


Eq(a2) (log (a2))←− (ET )

ISRN

1

(
ηq(a2)

)
Eq(a2)

(
1n/
√
a2

)
←− (ET )

ISRN

2

(
ηq(a2)

)
Eq(a2) (1n/a2)←− (ET )

ISRN

3

(
ηq(a2)

)
ω5 ←− GVMP

(
ηp(y|θ,σ2,λ,a1,a2)↔θ;ATdiag

{
Eq(a2) (1n/a2)

}
A, ,

ATdiag
{
Eq(a2) (1n/a2)

}
yyTdiag

{
Eq(a2) (1n/a2)

}
y
)

ηp(y|θ,σ2,λ,a1,a2)→θ ←−
(
1 + µq(λ2)

)
µq(1/σ2)

[
ATdiag

{
Eq(a2) (1n/a2)

}
y

− 1
2vec

(
ATdiag

{
Eq(a2) (1n/a2)

}
A
) ]

−µq(λ√1+λ2)µq(1/σ)

[
ATdiag

{
Eq(a2)

(
1n/
√
a2

)}
Eq(a1) |a1|

0

]

ηp(y|θ,σ2,λ,a1,a2)→σ2 ←−

 −n/2
µq(λ

√
1+λ2)ω

T
2 Eq(a1) |a1|(

1 + µq(λ2)

)
ω5


Continued overleaf...
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Continuing...

ηp(y|θ,σ2,λ,a1,a2)→λ ←−

 n/2

µq(1/σ2)ω5 − 1
2Eq(a1) ‖a1‖2

µq(1/σ)ω
T
2 Eq(a1) |a1|


ηp(a2|ν)→ν ←−

[
n

−1TnEq(a2) {log (a2) + 1n/a2}

]
.

Parameter Outputs: ηp(y|θ,σ2,λ,a1,a2)→θ, ηp(y|θ,σ2,λ,a1,a2)→σ2 , ηp(y|θ,σ2,λ,a1,a2)→λ,
ηp(a2|ν)→ν .

Figure 3.7: Markov chain Monte Carlo samples (n = 1000) drawn via rstan from
the distribution

{
|a1| , 1/

√
a2 | rest

}
for a skew t random sample with θ = µ = 0,

σ = 1, ν = 1.5 and λ = (0.05, 0.5, 5, 50), using the hyperparameters specified in
Section 3.4.1. Sample correlations are also shown.

Theorem 3.1. Consider random variables satisfying

x | a1, a2 ∼ N

(
µ0 +

σ0λ0 |a1|
√
a2√

1 + λ2
0

,
a2σ

2
0

1 + λ2
0

)
,

where a1 ∼ N (0, 1) and a2 ∼ Inverse-χ2 (ν0, ν0) ,

with µ0, λ0 ∈ R and σ0, ν0 > 0. Then for any x0 ∈ R and µ0, σ0, ν0

lim
|λ0|→∞

Corr (|a1| , 1/
√
a2 |x = x0) = 1.

A proof is given in Section C.2.2 of the Appendix. As the q densities are assumed

to approximate the posterior density structure, Theorem 3.1 suggests a modification on

our previous assumption to a less simplistic product density restriction. At the cost of

further algebra, we propose the replacement of the assumption in (3.22) with

q
(
θ, σ2, λ, ν,a1,a2

)
= q (θ) q

(
σ2
)
q (λ) q (ν) q (a1,a2)

= q (θ) q
(
σ2
)
q (λ) q (ν)

n∏
i=1

q (a1i, a2i) .
(3.24)

This gives rise to the factor graph representation in the right panel of Figure 3.6 and Al-

gorithm 3.5, whose output at convergence provides the optimal approximating densities
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according to (1.17), without alteration of previous message structures. Further details

about derivations and notation (ET )MW

j , j = 1, . . . , 4, are displayed in section C.2.3 of

the Appendix. In particular, under assumption (3.24), the moments with respect to

q∗ (a1i, a2i) are expressible in a closed form. However, further numerical integration may

be required when the arguments of the Gaussian hypergeometric functions appearing in

moment expressions are close to 1.

3.4.1 Simulation study

We performed a simulation study to compare the performances of the VMP algorithm

designed around the assumption in (3.22), Algorithm 3.4, and Algorithm 3.5, which is

based on the assumption in (3.24). We generated 100 datasets of size n = 500 setting

two regression parameters to be θ0 = 1 and θ1 = 2, scale parameter σ = 1 and shape

parameters λ = 5 and ν = 1.5. The hyperparameters for θ were fixed to µθ = 0 and

Σθ = 1010I over a prior N (µθ,Σθ). We used an Inverse-χ2(A,B) prior on the squared

scale with A = B = 0.01. The prior for the parameter of skewness λ is assumed to be

N (µλ, σ
2
λ), with µλ = 0 and σ2

λ = 1010 and that for the degrees of freedom ν to be a

Gamma (αν , βν) with αν = 1 and βν = 0.01.

Let ξ be a generic parameter. The accuracy of each VMP approximation q∗ (ξ) as

from (1.17) can be assessed using the L1 error, or integrated absolute error (IAE) of q∗,

given by

IAE (q∗) =

∫ ∞
−∞
|q∗ (ξ)− p (ξ |y)| dξ.

As pointed out in Wand et al. (2011), the L1 error is a scale independent number that

is invariant to monotone transformation on the parameter ξ. This implies, for instance,

that the IAE values for q∗ (σ) and q∗ (σ2) coincide. Note that the L1 error is a number

between 0 and 2. To express this measure as a percentage we can then define the

accuracy as

accuracy (q∗) = 1−
{

IAE (q∗) / sup
q a density

IAE (q)

}
= 1− 1

2
IAE (q∗) ,

so that 0 ≤ accuracy (q∗) ≤ 1, with 1 reflecting perfect correspondence between VMP

approximations and posterior densities. The computation of p (ξ |y) is complex, so we

worked with MCMC samples obtained using rstan. MCMC samples of size 10,000 were

generated setting a burn-in of 5000 values and thinning the remaining 5000 by a factor of

5. Subsection C.2.4 of Appendix C displays the rstan code for fitting skew t regression.

Table 3.1 includes the accuracy values from the simulation study. As expected,
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Algorithm 3.5 The VMP inputs, updates and outputs of the skew t likelihood fragment
assuming q (θ, σ2, λ, ν,a1,a2) = q (θ) q (σ2) q (λ) q (ν)

∏n
i=1 q (a1i, a2i).

Data Inputs: y, A.

Parameter Inputs: ηp(y|θ,σ2,λ,a1,a2)→θ, ηθ→p(y|θ,σ2,λ,a1,a2), ηp(y|θ,σ2,λ,a1,a2)→σ2 ,
ησ2→p(y|θ,σ2,λ,a1,a2), ηp(y|θ,σ2,λ,a1,a2)→λ, ηλ→p(y|θ,σ2,λ,a1,a2), ηp(a2|ν)→ν , ην→p(a2|ν).

Updates:

µq(1/σ) ←− (ET )
ISRN

2

(
ηp(y|θ,σ2,λ,a1,a2)↔σ2

)
µq(1/σ2) ←− (ET )

ISRN

3

(
ηp(y|θ,σ2,λ,a1,a2)↔σ2

)
µq(λ2) ←− (ET )

SS

2

(
ηp(y|θ,σ2,λ,a1,a2)↔λ

)
µq(λ

√
1+λ2) ←− (ET )

SS

3

(
ηp(y|θ,σ2,λ,a1,a2)↔λ

)
µq(ν) ←− 2 (ET )

MR

2

(
ηp(a2|ν)↔ν

)
τ 1 ←− y + 1

2A
{

vec−1
((
ηp(y|θ,σ2,λ,a1,a2)↔θ

)
2

)}−1 (
ηp(y|θ,σ2,λ,a1,a2)↔θ

)
1

τ 2 ←−
[
GVMP

(
ηp(y|θ,σ2,λ,a1,a2)↔θ;ATeie

T
i A,A

Teie
T
i y, y

2
i

)]
1≤i≤n

ηq(a1,a2) ←−


− 1

2

(
1 + µq(λ2)

)
µq(λ

√
1+λ)µq(1/σ)τ 1(

1 + µq(λ2)

)
µq(1/σ2)τ 2 − 1

2µq(ν)

− 1
2

(
3 + µq(ν)

)


Eq(a1,a2)

(
a2

1

)
←− (ET )

MW

1

(
ηq(a1,a2)

)
Eq(a1,a2)

(
|a1| /

√
a2

)
←− (ET )

MW

2

(
ηq(a1,a2)

)
Eq(a1,a2) (1n/a2)←− (ET )

MW

3

(
ηq(a1,a2)

)
Eq(a1,a2) {log (a2)} ←− (ET )

MW

4

(
ηq(a1,a2)

)
τ 3 ←− GVMP

(
ηp(y|θ,σ2,λ,a1,a2)↔θ;ATdiag

{
Eq(a1,a2) (1n/a2)

}
A,

ATdiag
{
Eq(a1,a2) (1n/a2)

}
y,yTdiag

{
Eq(a1,a2) (1n/a2)

}
y
)

ηp(y|θ,σ2,λ,a1,a2)→θ ←−
(
1 + µq(λ2)

)
µq(1/σ2)

[
ATdiag

{
Eq(a1,a2) (1n/a2)

}
y

− 1
2vec

(
ATdiag

{
Eq(a1,a2) (1n/a2)

}
A
) ]

−µq(λ√1+λ2)µq(1/σ)

[
ATEq(a1,a2)

(
|a1| /

√
a2

)
0

]

ηp(y|θ,σ2,λ,a1,a2)→σ2 ←−

 −n/2
µq(λ

√
1+λ2)τ

T
1 Eq(a1,a2)

(
|a1| /

√
a2

)(
1 + µq(λ2)

)
τ 3


ηp(y|θ,σ2,λ,a1,a2)→λ ←−

 n/2
µq(1/σ2)τ 3 − 1

21TnEq(a1,a2)

(
a2

1

)
µq(1/σ)τ

T
1 Eq(a1,a2)

(
|a1| /

√
a2

)


ηp(a2|ν)→ν ←−
[

n
−1TnEq(a1,a2) {log (a2) + 1n/a2}

]
.

Parameter Outputs: ηp(y|θ,σ2,λ,a1,a2)→θ, ηp(y|θ,σ2,λ,a1,a2)→σ2 , ηp(y|θ,σ2,λ,a1,a2)→λ,
ηp(a2|ν)→ν .
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Table 3.1: Average (standard deviation) accuracy from the simulation study.
“VMP 1” and “VMP 2” refer to Algorithms 3.4 and 3.5 respectively.

Accuracy

Parameter VMP 1 VMP 2

β0 0.0 (0.0) 37.7 (6.2)
β1 51.2 (17.7) 57.1 (4.5)
σ2 0.0 (0.0) 11.0 (3.5)
λ 0.0 (0.0) 10.0 (3.4)
ν 0.0 (0.0) 56.6 (6.1)

the algorithm based on assumption (3.24) is seen to provide more accurate inference.

However, accuracy and percentage of coverage of σ2 and λ are particularly low for

both the algorithms. This might suggest the application of less generic product density

restriction to take into account other possible posterior dependence among variables.

Nonetheless, this choice would imply more involved message update derivations and

further numerical integration. Figure 3.8 permits visualization of these results with

the plot of approximate and MCMC posterior densities from a single simulation. The

density curves produced by Algorithm 3.5 are sensibly closer to the modes of MCMC

posterior densities than those from the other VMP algorithm.
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Figure 3.8: VMP-approximate and MCMC posterior density functions from a single
dataset of the simulation study. “VMP 1” and “VMP 2” respectively refer to Algo-
rithms 3.4 and 3.5. VMP, variational message passing; MCMC, Markov chain Monte
Carlo. Vertical lines indicate the true values.
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3.4.2 Applications

Variational message passing is a flexible instrument for inference and prediction in a

number of applications. With the intent to illustrate VMP performances and advan-

tages, we first provide the study of the Martin Marietta dataset via the simple regression

model presented in Azzalini and Capitanio (2003). On the other hand, the second ap-

plication is intended to show how the VMP methodology easily adapts to models that

extend beyond the original likelihood fragment, such as the skew t nonparametric re-

gression model we propose for the Workinghours dataset.

3.4.2.1 Martin Marietta data

We illustrate the parameter estimation of a skew t regression model via VMP.

Consider the Martin Marietta dataset examined in Azzalini and Capitanio (2003)

with the linear model

yi = β0 + β1CRSPi + εi, εi ∼ Skew-t
(
0, σ2, λ, ν

)
, 1 ≤ i ≤ 60.

The variables yi and CRSPi denote the Martin Marietta company excess rate and the

return excess index for the whole New York Stock Exchange respectively. Data over a

period of n = 60 consecutive months from January 1982 to December 1986 are available.

According to the properties of the skew t distribution described in Section 4.2.3 of

Azzalini and Capitanio (2003), the response yi will be skew t distributed as the error

term, but with mean β0 +β1CRSPi. As before, we write the skew t distribution in terms

−0.12 −0.10 −0.08 −0.06 −0.04 −0.02

0
20

40
60

β0

ap
pr

ox
. p

os
te

rio
r 

de
ns

ity

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

1.
0

2.
0

3.
0

β1

ap
pr

ox
. p

os
te

rio
r 

de
ns

ity

0.000 0.005 0.010 0.015 0.020 0.025

0
10

0
30

0

σ2

ap
pr

ox
. p

os
te

rio
r 

de
ns

ity

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

λ

ap
pr

ox
. p

os
te

rio
r 

de
ns

ity

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

ν

ap
pr

ox
. p

os
te

rio
r 

de
ns

ity

MCMC
VMP

Figure 3.9: Martin Marietta data: posterior density plots via MCMC and VMP.
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of standard normal and inverse χ2 auxiliary variables. We adopt the q-density product

restriction (3.24) to approximate the parameter posterior densities with VMP. As a

check, we compare them to MCMC density estimation via rstan. The hyperparameters

for β are fixed to µβ = 0 and Σβ = 105I over a prior N (µβ,Σβ) while those on the

shape parameters are Inverse-χ2(0.01, 0.01) on the squared scale, N (0, 105) on λ and

Γ (1, 0.01) on ν. Posterior density plots are shown in Fig. 3.9. VMP curves apparently

underestimate the variance of MCMC posterior densities but locate around their modes.

Differently from Azzalini and Capitanio (2003), we did not set σ2 = 1, therefore their

estimates are not directly comparable with the results from MCMC and VMP.

3.4.2.2 Workinghours dataset

Here we provide an application that illustrates how the derivations in Section 3.4 can

be integrated to perform variational inference on extensions of the skew t likelihood

fragment without deriving a VMP scheme from scratch. We consider the dataset

Workinghours from the R package Ecdat (Croissant, 2016) which contains a cross-section

study of 3, 382 observations. The response variable is income divided by a factor of 10

(the other household income in thousands of dollars) versus the variable age (age of

the wife). The pairs of predictors and responses (xi, yi), 1 ≤ i ≤ n, are analyzed via

nonparametric regression and the following penalized spline model in Bayesian mixed

model form:

yi | f, σ2
ε , λ, ν

ind.∼ Skew-t
(
f (xi) , σ

2
ε , λ, ν

)
,

with function f structured as f (x) = β0 +β1x+
∑K

k=1 ukzk (x), with uk |σ2
u

ind.∼ N (0, σ2
u)

and {zk : 1 ≤ k ≤ K} suitable spline basis. The full model with auxiliary variable rep-

resentation is

yi |β,u, σ2
ε , λ, a1i, a2i

ind.∼ N

(
(Xβ +Zu)i +

σελ |a1i|
√
a2i√

1 + λ2
,
a2iσ

2
ε

1 + λ2

)
a1i

ind.∼ N (0, 1) , a2i | ν ind.∼ Inverse-χ2 (ν, ν) ,[
β

u

] ∣∣∣∣σ2
u ∼ N

([
µβ

0

]
,

[
Σβ 0

0 σ2
uI

])
,

σ2
u ∼ Inverse-χ2

(
Aσ2

u
, Bσ2

u

)
, σ2

ε ∼ Inverse-χ2
(
Aσ2

ε
, Bσ2

ε

)
,

λ ∼ N
(
µλ, σ

2
λ

)
, ν ∼ Gamma (αν , βν) ,

(3.25)
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where

X =


1 x1

...
...

1 xn

 and Z =


z1 (x1) · · · zK (x1)

...
. . .

...

z1 (xn) · · · zK (xn)

 .
The 2 × 1 vector µβ, 2 × 2 symmetric positive definite matrix Σβ, positive numbers

Aσ2
u
, Bσ2

u
, Aσ2

ε
, Bσ2

ε
, σ2

λ, αν and βν and number µλ are user-specified hyperparameters

that we choose to be ideally uninformative as for the study of Martin Marietta data.

We adopt canonical cubic O’Sullivan splines described in Section 1.6.1 with K = 14,

according to the rule of thumb (1.21).

Assuming that the joint posterior density approximation admits the product density

approximation

p
(
β,u, σ2

ε , σ
2
u, λ, ν |y

)
≈ q (β,u) q

(
σ2
ε

)
q
(
σ2
u

)
q (λ) q (ν)

n∏
i=1

q (a1i, a2i) , (3.26)

Algorithm 3.5 can be integrated with updates involving the blue nodes in the factor

graph in the left panel of Figure 3.10 to fit the regression model (3.25) via VMP. The

estimated nonparametric regression function and corresponding pointwise 95% credible

set are shown in the right panel of Figure 3.10. The results show higher mean of the

other household income for average-age wives which tends to decrease more remarkably

around the age of 43 and 57.
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λ
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Figure 3.10: Study of data from Workinghours dataset. Left panel: factor graph
corresponding to the model in (3.25) under the product density restriction in (3.26).
Right panel: approximate posterior mean (solid line) and pointwise 95% credible sets
(dashed line) obtained via VMP, integrating Algorithm 3.5; 20 observations whose
“income/10” value exceeds 150 have been excluded from the plot.
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3.5 Concluding remarks

Variational message passing offers a flexible framework to standardize variational Bayes

algorithm derivations and numerical integration steps. Motivated by the desire to have

fast approximate inference methods for additional notable likelihood models, we have

developed VMP algorithms for fitting and inference for Pareto random samples, sup-

port vector regression and skew t regression likelihood fragments. As indicated by the

simulation study in Section 3.4.1, the performance of variational Bayes is not always

satisfactory, especially in presence of a high number of parameters and strong correla-

tion among model parameters. The VMP algorithms we propose are designed around a

choice of the mean field restriction which is a compromise among algebraic complexity,

feasibility and quality of the approximation. As revealed by the application on a real

dataset, VMP allows one to integrate several fragments and compose algorithms for

more complex models without significant additional effort.





Chapter 4

Streamlined variational message

passing

4.1 Introduction

In this chapter we present streamlined MFVB and VMP algorithms for models con-

taining higher level random effects. The estimation of multilevel models via standard

approaches may be too slow, or even computationally infeasible, when the number of

groups or the dimension of possible spline basis functions become large.

Consider an educational study predicting for each classroom and school the grades of

students on a standardized test given their scores on a pre-test and other information.

Imagine we would like to study intra and inter-level dependence. Here the students,

classrooms and schools are the three levels around which a multilevel model can be

designed. Following, for instance, Gelman and Hill (2014) we name these three-level

data, while other references such as Pinheiro and Bates (2000) use the term two-level for

analogous scenarios, considering the two levels of nesting. Nolan et al. (2018) point out

that if the dataset is such to include, for instance, 500 groups, each containing 60 second

level groups with 1000 observations, then the combined fixed and random effects design

matrices have 1.83 · 1012 entries of which at least the 99.99% are zeroes. These issues

motivate the development of fast and scalable variational methods where updates can

be potentially streamlined in terms of number of operations and storage. Variational

inference is able to perform model fitting employing only the about 0.01% non-zero

design matrix components, with algorithm updates that are linear in the numbers of

groups.

The present chapter is an attempt to extend the class of streamlined variational infer-

ence algorithms for higher level random effects models with preliminary results, relying

75
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on recent work in Nolan et al. (2018) concerning linear system solutions and sub-blocks

of matrix inverses. Our aim is to provide some directions for future developments. In

particular, two-level models for non-Gaussian responses are considered. In the vari-

ational Bayesian framework that we adopt, the linear unbiased prediction is replaced

by variational approximate posterior means and confidence intervals are replaced by

variational approximate credible intervals. We denote with p the number of columns of

the fixed effect design matrix X, with q that of the random effects design matrix Z,

with m the number of groups in a two-level model and ni, 1 ≤ i ≤ m, the number of

observations per group.

Section 4.2 presents two algorithms for solving two-level sparse matrix problems

which support variational inference for non-Gaussian response models with hierarchical

random effects structure. We examine the use of variational approximations, specifi-

cally MFVB and VMP methodologies, for fitting and inference in Bayesian GLMMs,

with an emphasis on the Bernoulli and Poisson response cases. The resulting MFVB

schemes are Algorithms 4.3 and 4.4, while the corresponding VMP versions are listed as

Algorithms 4.6 and 4.7. A very simple illustration on a simuluated dataset is included

in Section 4.5. As for Chapter 3, both the MFVB and VMP approaches produce the

same results at convergence, but we highlight once again that VMP algorithms easily

adapt to arbitrarily large models through the notion of factor graph fragment.

4.2 Two-level sparse matrix problem algorithms

This section describes two algorithms, named SolveTwoLevelSparseMatrix and Sol-

veTwoLevelSparseLeastSquares by Nolan et al. (2018), which serve as the base for

streamlined variational inference for two-level models. Two-level sparse matrix prob-

lems are treated in Nolan et al. (2018). Here, their results are recalled preserving the

same notation.

The SolveTwoLevelSparseMatrix algorithm is conceived to solve the general two-

level sparse linear system problem

Ax = a, (4.1)
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where

A =



A11 A12,1 A12,2 · · · A12,m

AT
12,1 A22,1 O · · · O

AT
12,2 O A22,2 · · · O

...
...

...
. . .

...

AT
12,m O O · · · A22,m


, a =



a1

a2,1

a2,2

...

a2,m


and x =



x1

x2,1

x2,2

...

x2,m


(4.2)

and obtain the sub-matrices of A−1 corresponding to the non-zero blocks of A:

A−1 =



A11 A12,1 A12,2 · · · A12,m

A12,1T A22,1 × · · · ×
A12,2T × A22,2 · · · ×

...
...

...
. . .

...

A12,mT × × · · · A22,m


. (4.3)

The sub-blocks represented by the× symbol are not of interest when deriving stream-

lined variational algorithms since they correspond to between group covariances. On the

opposite side, the remaining sub-blocks, which are in the same position as the non-zero

blocks of A, are sufficient for both coordinate ascent and message passing parameter

optimization with minimal product density restrictions to obtain within-group standard

errors. The sub-matrices of A have dimensions:

A11 is p× p and, for each 1 ≤ i ≤ m, A12,i is p× q and A22,i is q × q.

The dimensions of the sub-vectors of a and x are:

both a1 and x1 are p× 1 and, for each 1 ≤ i ≤ m, both a2,i and x2,i are q × 1.

Algorithm 4.1 lists the SolveTwoLevelSparseMatrix algorithm.
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Algorithm 4.1 (Nolan et al., 2018) The SolveTwoLevelSparseMatrix algorithm for
solving the two-level sparse matrix problem x = A−1a and sub-blocks of A−1 corre-
sponding to the non-zero sub-blocks of A. The sub-block notation is given by (4.2) and
(4.3).

Inputs:
(
a1(p× 1),A11(p× p),

{(
a2,i(q × 1),A22,i(q × q),A12,i(p× q)

)
: 1 ≤ i ≤ m

})
.

ω1 ←− a1 ; Ω2 ←− A11

For i = 1, . . . ,m:

ω1 ←− ω1 −A12,iA
−1
22,ia2,i ; Ω2 ←− Ω2 −A12,iA

−1
22,iA

T
12,i

A11 ←− Ω−1
2 ; x1 ←− A11ω1

For i = 1, . . . ,m:

x2,i ←− A−1
22,i(a2,i −AT

12,ix1) ; A12,i ←− −(A−1
22,iA

T
12,iA

11)T

A22,i ←− A−1
22,i

(
I −AT

12,iA
12,i
)
.

Outputs:
(
x1,A

11,
{(
x2,i,A

22,i,A12,i) : 1 ≤ i ≤ m
})

.

The SolveTwoLevelSparseLeastSquares algorithm arises in the special case where x

is the minimizer of the least squares problem

‖b−Bx‖2 = (b−Bx)T (b−Bx), (4.4)

where

B =



B1

•

B1 O · · · O

B2 O
•

B2 · · · O
...

...
...

. . .
...

Bm O O · · ·
•

Bm


and b =



b1

b2

...

bm


, (4.5)

with sub-blocks and sub-vectors such that

Bi is ni × p,
•

Bi is ni × q and bi is ni × 1 for 1 ≤ i ≤ m.

Then the x that minimizes (4.4) is the solution to the two-level sparse linear system

(4.1) with

A = BTB and a = BTb,
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so that the sub-blocks of A and the sub-vectors of a take the forms

A11 =
m∑
i=1

BT
i Bi, A12,i = BT

i

•

Bi, A22,i =
•

B
T

i

•

Bi, a1 =
m∑
i=1

BT
i bi and a2,i =

•

B
T

i bi.

These forms arise in two-level random effects models and Nolan et al. (2018) show that

they admit a computationally fast and stable QR-decomposition based solution (e.g.

Gentle, 2007, Section 6.7.2). A QR-decomposition of a rectangular n×p (n ≥ p) matrix

X is based on the representation

X = Q

[
R

O

]
,

where Q is a n× n orthogonal matrix and R is a p× p upper-triangular matrix.

The SolveTwoLevelSparseLeastSquares algorithm is listed as Algorithm 4.2. Some

of its steps require to implement the QR-decomposition, which is a standard procedure

within most computing environments.

An important result at the base of the streamlined expressions appearing in the next

sections is that for any symmetric d× d matrix M

vech (M ) = D+
d vec (M) , (4.6)

where D+
d is the Moore–Penrose inverse matrix of dimension d of the duplication matrix

Dd (e.g. Magnus and Neudecker, 2007, p. 57). The reduced expressions (A.10) for

natural parameter vector and inverse mapping of the multivariate normal distribution in

Subsection A.2.12 of Appendix A are also relevant for streamlined variational inference.

4.3 MFVB for two-level random effects models

This section presents streamlined MFVB algorithms for two-level linear mixed models

with Poisson and binomial responses, taking advantage of Algorithm 4.1.
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Algorithm 4.2 (Nolan et al., 2018) SolveTwoLevelSparseLeastSquares for solving the
two-level sparse matrix least squares problem: minimise ‖b−Bx‖2 in x and sub-blocks
of A−1 corresponding to the non-zero sub-blocks of A = BTB. The sub-block notation
is given by (4.2), (4.3) and (4.5).

Inputs:
{(
bi(ni × 1), Bi(ni × p),

•

Bi(ni × q)
)

: 1 ≤ i ≤ m
}

.

ω3 ←− NULL ; Ω4 ←− NULL

For i = 1, . . . ,m:

Decompose
•

Bi = Qi

[
Ri

0

]
such that Q−1

i = QT
i and Ri is upper-triangular.

c0i ←− QT
i bi ; C0i ←− QT

i Bi

c1i ←− first q rows of c0i ; c2i ←− remaining rows of c0i ; ω3 ←−
[
ω3

c2i

]
C1i ←− first q rows of C0i ; C2i ←− remaining rows of C0i

Ω4 ←−
[

Ω4

C2i

]

Decompose Ω4 = Q

[
R
0

]
such that Q−1 = QT and R is upper-triangular

c←− first p rows of QTω3 ; x1 ←− R−1c ; A11 ←− R−1R−T

For i = 1, . . . ,m:

x2,i ←− R−1
i (c1i −C1ix1) ; A12,i ←− −A11(R−1

i C1i)
T

A22,i ←− R−1
i (R−Ti −C1iA

12,i).

Output:
(
x1,A

11,
{(
x2,i,A

22,i,A12,i) : 1 ≤ i ≤ m
})

.

4.3.1 Streamlined MFVB for Poisson response models

Consider the two-level Poisson mixed model, for 1 ≤ i ≤ m:

yi |β,ui
ind.∼ Poisson (exp (X iβ +Ziui)) , ui |Σ ∼ N (0,Σ) ,

β ∼ N (µβ,Σβ) , Σ|AΣ ∼ Inverse-G-Wishart
(
Gfull, νΣ + 2q − 2,A−1

Σ

)
,

AΣ ∼ Inverse-G-Wishart(Gdiag, 1,ΛAΣ
), ΛAΣ

= {νΣdiag(s2
Σ, 1, . . . , s

2
Σ, q)}−1,

(4.7)

The dimensions of vectors and matrices are, for 1 ≤ i ≤ m:

yi is ni × 1, X i is ni × p, β is p× 1,

Zi is ni × q, ui is q × 1 and Σ is q × q.
(4.8)

The hyperparameters are the µβ vector of length p, the symmetric and positive definite

matrix Σβ of size p × p and νΣ, sΣ, 1, . . . , sΣ, q > 0. In the previous model, the prior

on Σ is within the class described in Huang and Wand (2013), which generalizes the
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univariate case treated in Subsection 3.1.2. As for the half Cauchy prior specification

for the univariate case, such priors allow standard deviation and correlation parameters

to be arbitrary non-informative.

Next, define the matrices

y =


y1
...

ym

 , X =


X1

...

Xm

 , Z = blockdiag
1≤i≤m

(Zi), u =


u1

...

um

 . (4.9)

Derivation of MFVB and VMP algorithms requires the usual mean field restriction

on the joint posterior density function of all parameters in (4.7). In this case we assume

p (β,u,AΣ,Σ|y) ≈ q (β,u,AΣ) q (Σ) . (4.10)

The corresponding DAG representation is given in Figure 4.1.

Figure 4.1: Directed acyclic graph for the two-level Poisson and logistic response
mixed model in (4.7) and (4.17).

Evaluation of the optimal q-density as a function of β and u according to the canon-

ical MFVB formula (1.8) involves multivariate integrals that are not available in closed

form. The non-conjugate variational message passing solution proposed in Knowles and

Minka (2011) is one that instead works also for the MFVB case and leads to the optimal

q (β,u,AΣ) being

q∗ (β,u,AΣ) = q∗ (β,u) q∗ (AΣ)
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and to the following optimal q-density functions for the parameters of interest contained

in β, u and Σ:

q∗(β,u) has a N
(
µq(β,u),Σq(β,u)

)
density function;

q∗(Σ) has an Inverse-G-Wishart(Gfull, ξq(Σ),Λq(Σ)) density function.
(4.11)

Section D.1.1 of Appendix D provides details about the derivation of the optimal q-

density parameters via an iterative coordinate ascent algorithm. In particular, the

updates for µq(β,u) and Σq(β,u) can be written as

µq(β,u) ←
(
CTR−1

2PMFVBC +D2PMFVB

)−1 (
CTz2PMFVB + o2PMFVB

)
Σq(β,u) ←

(
CTR−1

2PMFVBC +D2PMFVB

)−1
,

(4.12)

where C = [X Z],

R−1
2PMFVB = diag (ω2PMFVB) , D2PMFVB =

 Σ−1
β O

O Im ⊗M q(Σ−1)

 ,
o2PMFVB =

(
Σ−1
q(β,u) −D2PMFVB

)−1

µq(β,u) +

[
Σ−1
β µβ

0

]
,

z2PMFVB = y − ω2PMFVB

(4.13)

and

ω2PMFVB = exp

{
Cµq(β,u) +

1

2
dg
(
CΣq(β,u)C

T
)}

.

Details about the moment M q(Σ−1) are given in Section D.1.1 of Appendix D. The

updates expressed in form of (4.12) somehow reflect the algebraic forms of results on

best linear unbiased prediction for mixed models (e.g. Ruppert et al., 2003, Subsection

4.5.3).

The matrix Σq(β,u) can have massive computational and storage costs when the

number of groups is particularly large. However, only the following sub-blocks of Σq(β,u)

are required for variational inference concerning Σ:

Σq(β) = top left-hand p× p sub-block of
(
CTR−1

2PMFVBC +D2PMFVB

)−1
;

Σq(ui) = subsequent q × q diagonal sub-blocks of(
CTR−1

2PMFVBC +D2PMFVB

)−1
below Σq(β), 1 ≤ i ≤ m;

Eq{(β − µq(β))(ui − µq(ui))T} = subsequent p× q sub-blocks of(
CTR−1

2PMFVBC +D2PMFVB

)−1
to the right of Σq(β), 1 ≤ i ≤ m.

(4.14)
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The following result supports the use of Algorithm 4.2 to obtain µq(β,u) and the relevant

sub-blocks of Σq(β,u) in (4.14).

Result 4.1. The mean field variational Bayes updates of µq(β,u) and each sub-block of

Σq(β,u) in (4.14) are expressible as a two-level sparse matrix least squares problem of the

form: ∥∥b−Bµq(β,u)

∥∥2
,

where b and the non-zero sub-blocks of B, according to the notation in (4.5), are, for

1 ≤ i ≤ m,

bi =


diag

{
(ω2PMFVB)−1/2

i

}
{yi − (ω2PMFVB)i}

m−1/2Σ
−1/2
β

(
µβ − µq(β)

)
−M 1/2

q(Σ−1)
µq(ui)

 ,

Bi =


diag

{
(ω2PMFVB)1/2

i

}
X i

m−1/2Σ
−1/2
β

O

 , •

Bi =


diag

{
(ω2PMFVB)1/2

i

}
Zi

O

M
1/2

q(Σ−1)

 .
(4.15)

The solutions can be obtained via the SolveTwoLevelSparseLeastSquares Algorithm 4.2

and are µq(β) = x1, Σq(β) = A11 and

µq(ui) = x2,i, Σq(ui) = A22,i, Eq{(β − µq(β))(ui − µq(ui))T} = A12,i, 1 ≤ i ≤ m.

Result 4.1 produces the streamlined MFVB scheme listed as Algorithm 4.3 for the

two-level Poisson response model. Its derivation is given in Subsection D.1.1 of Appendix

D. It employs the matrix square root of a symmetric positive definite matrixM given by

M 1/2 = Udiag(
√
d)UT , where M = Udiag(d)UT is the singular value decomposition

of M .

The MFVB approximate marginal log-likelihood

log{p(y; q)} = Eq{log p(y,β,u,Σ,AΣ)− q(β,u,Σ,AΣ)}. (4.16)

can be used as a stopping criterion for Algorithm 4.3. However, an explicit streamlined

expression for log{p(y; q)} is not provided here and we define convergence by monitoring

parameters at each iteration.
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4.3.2 Streamlined MFVB for logistic models

Consider the two-level logistic mixed model, for 1 ≤ i ≤ m:

yi |β,ui
ind.∼ Bernoulli

(
logit−1 (X iβ +Ziui)

)
, ui |Σ ∼ N (0,Σ) ,

β ∼ N (µβ,Σβ) , Σ|AΣ ∼ Inverse-G-Wishart
(
Gfull, νΣ + 2q − 2,A−1

Σ

)
,

AΣ ∼ Inverse-G-Wishart(Gdiag, 1,ΛAΣ
), ΛAΣ

= {νΣdiag(s2
Σ, 1, . . . , s

2
Σ, q)}−1.

(4.17)

Matrix and vector dimensions are the same as in (4.8). Analogous arguments to the

Poisson case about prior distributions specification hold and we define matrices y, X,

Z and u as in (4.9). Also, we assume the same q-density restriction (4.10). Then, the

DAG representation is still the one depicted in Figure 4.1.

As for the Poisson model, evaluation of the optimal q-density as a function of β and u

according to the canonical MFVB formula (1.8) involves multivariate integrals that are

not available in closed form. The non-conjugate variational message passing approach of

Knowles and Minka (2011) can be applied also in this case. Nevertheless, the resulting

optimal q-density in β and u introduces further numerical integration, which is related to

the log-partition function of the Bernoulli distribution. Nolan and Wand (2017) provide

a detailed illustration on variational inference for logistic regression and overcome this

issue by performing the normal scale mixture uniform approximation by Monahan and

Stefanski (1989). Table 4.1 displays the vectors p and s containing the coefficients for

the most accurate approximation achievable with the values provided Monahan and

Stefanski (1989), that is, the 8 normal scale mixture uniform approximation. This

Table 4.1: Vectors p and s corresponding to the k = 8 normal scale mixture uniform
approximation of Monahan and Stefanski (1989).

p s

0.003246343272134 1.365340806296348
0.051517477033972 1.059523971016916
0.195077912673858 0.830791313765644
0.315569823632818 0.650732166639391
0.274149576158423 0.508135425366489
0.131076880695470 0.396313345166341
0.027912418727972 0.308904252267995
0.001449567805354 0.238212616409306

solution leads to the following optimal q-density functions for the parameters of interest,
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which is similar to that of the Poisson case:

q∗(β,u) has a N
(
µq(β,u),Σq(β,u)

)
density function;

q∗(Σ) has an Inverse-G-Wishart(Gfull, ξq(Σ),Λq(Σ)) density function.
(4.18)

The updates for µq(β,u) and Σq(β,u) can be written as

µq(β,u) ←
(
CTR−1

2LMFVBC +D2LMFVB

)−1 (
CTz2LMFVB + o2LMFVB

)
Σq(β,u) ←

(
CTR−1

2LMFVBC +D2LMFVB

)−1
,

(4.19)

where C = [X Z],

R−1
2LMFVB = diag (ω2LMFVB2) , D2LMFVB =

 Σ−1
β O

O Im ⊗M q(Σ−1)

 ,
o2LMFVB =

[
Σ−1
β µβ

0

]
, z2LMFVB = y − ω2LMFVB1 + ω2LMFVB2 � µ,

(4.20)

and

ω2LMFVB1 = Φ
((
µsT

)
/Ω
)
p, ω2LMFVB2 =

{
φ
((
µsT

)
/Ω
)
/Ω
}

(p� s) ,

µ = Cµq(β,u), σ2 = dg
(
CΣq(β,u)C

T
)
, Ω =

√
1n1

T
8 + σ2 (s2)T ,

with p and s defined in Table 4.1. These results can be derived considering the non-

streamlined VMP scheme for the logistic likelihood fragment listed as Algorithm 2 of

Nolan and Wand (2017) and following the derivation of Algorithm 4.3.

As for the Poisson model, only the sub-blocks of Σq(β,u) indicated in (4.14) are

relevant for streamlined MFVB, with R−1
2PMFVB and D2PMFVB replaced by R−1

2LMFVB and

D2LMFVB, respectively. The following result allows to take advantage of Algorithm 4.2

to obtain µq(β,u) and the relevant sub-blocks of Σq(β,u).

Result 4.2. The mean field variational Bayes updates of µq(β,u) and each sub-block of

Σq(β,u) in (4.14) are expressible as a two-level sparse matrix least squares problem of the

form: ∥∥b−Bµq(β,u)

∥∥2
,
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where b and the non-zero sub-blocks of B, according to the notation in (4.5), are, for

1 ≤ i ≤ m,

bi =


diag

{
(ω2LMFVB2)−1/2

i

}
{yi − (ω2LMFVB1)i + (ω2LMFVB2)i � (µ)i}
m−1/2Σ

−1/2
β µβ

0

 ,

Bi =


diag

{
(ω2LMFVB2)1/2

i

}
X i

m−1/2Σ
−1/2
β

O

 , •

Bi =


diag

{
(ω2LMFVB2)1/2

i

}
Zi

O

M
1/2

q(Σ−1)

 .

The solutions can be obtained via the SolveTwoLevelSparseLeastSquares Algorithm 4.2

and are µq(β) = x1, Σq(β) = A11 and

µq(ui) = x2,i, Σq(ui) = A22,i, Eq{(β − µq(β))(ui − µq(ui))T} = A12,i, 1 ≤ i ≤ m.

The derivation of Result 4.2 is similar to that of Result 4.1. Result 4.2 produces the

streamlined MFVB scheme listed as Algorithm 4.4 for the two-level logistic model, via

the use of the SolveTwoLevelSparseLeastSquares Algorithm 4.2. Algorithm 4.4 can

be derived similarly to Algorithm 4.3. The MFVB approximate marginal log-likelihood

log{p(y; q)} expressed in (4.16) can be used as a stopping criterion.

4.4 VMP for two-level random effects models

This section presents streamlined VMP algorithms for two-level linear mixed models

with Poisson and binomial responses.

First, note that both the Poisson and binomial models (4.7) and (4.17) admit the

following factorization:

p (y,β,u,Σ,AΣ) = p (y|β,u) p (β,u|Σ) p (Σ|AΣ) p (AΣ) . (4.21)

Figure 4.2 shows a factor graph representation of (4.21). Colors differentiate the various

fragments appearing in the factor graph. The main likelihood fragment in sky blue given

by factor p (y |β,u) and stochastic node (β,u) is treated in Wand (2017, Section 5.3)

for the Poisson case and Nolan and Wand (2017) for the logistic model. The other

fragments are treated in Wand (2017, Section 4.1).
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Figure 4.2: Factor graph for the two-level Poisson and logistic response mixed model
in (4.7) and (4.17).

Nolan et al. (2018) provide streamlined VMP updates for the Gaussian penalization

fragment in red given by factor p (β,u |Σ) and stochastic nodes (β,u) and Σ, when the

random effects vector has a two-level structure. The corresponding algorithm can be

used also for the non-Gaussian response models considered here, thanks to the notions

of message passing on factor graph fragments.

4.4.1 Streamlined Poisson and logistic likelihood fragments up-

dates

We now focus on the Poisson and logistic likelihood fragments, which correspond to the

sky blue factor graph fragment in Figure 4.2. Similarly to Wand (2017, Section 5.3)

and Algorithm 2 of Nolan and Wand (2017), in both cases the messages passed between

p (y |β,u) and (β,u) involve multivariate normal distributions with natural parameter

vectors containing

p+mq +
1

2
(p+mq) (p+mq + 1)

unique entries. Therefore the sizes of these vectors grow quadratically with the number

of groups m, making message passing computationally demanding. However, these mes-

sages are within reduced multivariate normal families, where the relevant components of

the sufficient statistic vector are those associated with the relevant sub-blocks of Σq(β,u),

as for MFVB.

By imposing a conjugacy constraint, all messages passed to (β,u) from factors out-

side of the Poisson or logistic two-level likelihood fragment are within the same reduced

multivariate normal family. Under such a constraint, the natural parameter vectors of

messages passed to and from (β,u) have length

p+
1

2
p (p+ 1) +m

{
q +

1

2
q (q + 1) + pq

}
, (4.22)
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which is linear in the number of groups.

The message from p (y |β,u) to (β,u) is

mp(y |β,u)→(β,u) (β,u) = exp





β

vech
(
ββT

)
stack
1≤i≤m


ui

vech
(
uiu

T
i

)
vec
(
βuTi

)




T

ηp(y |β,u)→(β,u)


, (4.23)

with natural parameter vector ηp(y |β,u)→(β,u) of length (4.22). Under the conjugacy

constraint, also the message m(β,u)→p(y |β,u) has the form (4.23) with natural parameter

vector also of length (4.22).

Result 4.3. The variational message passing updates of the quantities µq(β), µq(ui),

1 ≤ i ≤ m, and the sub-blocks of Σq(β,u) listed in (4.14), with q-density expectations

with respect to the normalization of

mp(y |β,u)→(β,u) (β,u)m(β,u)→p(y |β,u) (β,u) ,

are expressible as a two-level sparse matrix problem with

A = −2


vec−1

(
D+T

p η1,2

) [
1
2

stack
1≤i≤m

{
vec−1

(
η2,3,i

)T}]T
1
2

stack
1≤i≤m

{
vec−1

(
η2,3,i

)T}
blockdiag

1≤i≤m

{
vec−1

(
D+T

q η2,2,i

)}


and

a =


η1,1

stack
1≤i≤m

(
η2,1,i

)
 , where



η1,1 (p× 1)

η1,2

(
1
2
p (p+ 1)× 1

)
stack
1≤i≤m


η2,1,i (q × 1)

η2,2,i

(
1
2
q (q + 1)× 1

)
η2,3,i (pq × 1)




is the partitioning of ηp(y |β,u)↔(β,u) that defines

η1,1, η1,2,
{(
η2,1,i,η2,2,i,η2,3,i

)
: 1 ≤ i ≤ m

}
.
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The solutions are µq(β) = x1, Σq(β) = A11 and

µq(ui) = x2,i, Σq(ui) = A22,i, Eq

{(
β − µq(β)

) (
ui − µq(ui)

)T}
= A12,i, 1 ≤ i ≤ m.

Result 4.3 is derived in Subsection D.2.1 of Appendix D As illustrated by Result 4.3,

the process of converting a generic reduced natural parameter vector ηq(β,u) to µq(β,u)

and relevant sub-blocks of Σq(β,u) is an important step to streamlining variational mes-

sage passing. This procedure is formalized as the TwoLevelNaturalToCommonParame-

ters algorithm, which is listed as Algorithm 4.5.

Result 4.3 gives rise to the streamlined VMP schemes listed as Algorithms 4.6 and

4.7 for the two-level Poisson response and logistic models respectively, which can be

derived considering the VMP scheme for the Poisson and logistic likelihood fragments

listed in Wand (2017, Subsection 5.3) and as Algorithm 2 of Nolan and Wand (2017),

respectively.

4.5 Illustrative examples

Consider a fictional educational experiment involving data from a set of schools in

which some students were given the possibility to participate in supplementary tutorial

activities. Suppose the number of hours of extra activities were recorded for each student

as a response variable. Also, scores of a preliminary test and covariates characterizing

each school are available.

We then simulate a dataset from

yij |β,ui ind.∼ Poisson (exp (β0 + u0i + (β1 + u1i)xij)) , ui |Σ ∼ N (0,Σ) ,

with 1 ≤ i ≤ 36, 1 ≤ j ≤ 200, xij ∼ Uniform (0, 1) and

β = (β0, β1) = (0.5,−0.9) , ui = (u01, u1i) , Σ =

[
0.25 0.15

0.15 0.15

]
.

Therefore, p = q = 2, m = 36 and ni = n = 200, for 1 ≤ i ≤ m, that is, 36 schools with

200 students each are monitored. Next, we fit the model (4.7) via the VMP Algorithm

4.6 for Poisson two-level linear mixed models, or equivalently the MFVB Algorithm 4.3.

We choose the hyperparameters µβ = 0 and Σβ = 105I are chosen. Results of the

fitting procedure are available in a fraction of second with the algorithms coded in R
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(R Core Team, 2018). Convergence has been considered achieved when the absolute

relative error for the optimal q-density parameters computed at the current iteration

with respect to the previous one is less than 10−10. In each panel of Figure 4.3, the

approximate posterior mean corresponding to the best linear unbiased prediction fit

and the pointwise 95% credible sets are displayed.
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Figure 4.3: Simulated two-level data with 36 schools, each having 200 students, ac-
cording to the Poisson multilevel model described in Section 4.5. Each panel contains
the approximate posterior mean (solid line) and pointwise 95% credible intervals for
the mean response. The true function from which the data were generated is shown
as a red solid line.

In a similar fashion, we generate data from the model

yij |β,ui ind.∼ Bernoulli
(
logit−1 (β0 + u0i + (β1 + u1i)xij)

)
, ui |Σ ∼ N (0,Σ) ,
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with 1 ≤ i ≤ 100, 1 ≤ j ≤ 500, xij ∼ Uniform (0, 1) and

β = (β0, β1) = (0.58, 1.89) , ui = (u01, u1i) , Σ =

[
0.05 0.005

0.005 0.35

]
.

Hence, p = q = 2, m = 100 and ni = n = 500, for 1 ≤ i ≤ m. We then perform

variational inference under the same specification of prior distributions and convergence

assessment to obtain the logistic counterpart of the simulation study, whose results are

displayed in Figure 4.4. The estimation in R was performed in less than 10 seconds

in a standard working laptop, without performing parallel computing or defining any

accurate parameters initialization. A more structured simulation study for higher di-

mensional datasets could also be implemented to quantify the effective benefits of the

streamlined algorithms in terms of computing time.

4.6 Concluding remarks

Sparsity is one of the keys for big model inference as datasets and models continue to

grow in size. Matrix algebraic streamlining in the form of sparse matrix-type refinements

are then fundamental for efficient handling of large longitudinal and multilevel datasets

via MFVB or VMP. These variational approximation methods are relatively simple

approaches whose algorithms benefit of streamlined computing of the fragment updates.

Taking advantage of recent results in Nolan et al. (2018), we have derived explicit

algorithms that facilitate streamlined variational inference for two-level models with the

two common Poisson and binomial responses.

These first achievements are very important for future extensions to higher level

models and especially for approximate inference with some very large semiparametric

models. Much has to be done to cover a variety of models and applications. Additional

tedious effort will be necessary to cover a larger variety of responses and produce wide

spectrum software implementations with low level programming languages.
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Figure 4.4: Simulated two-level data with 100 schools, each having 500 students,
according to the logistic multilevel model described in Section 4.5. Each panel contains
the approximate posterior mean (solid line) and pointwise 95% credible intervals for
the mean response. The true function from which the data were generated is shown
as a red solid line.
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Algorithm 4.3 QR-decomposition-based streamlined algorithm for obtaining mean field
variational Bayes approximate posterior density functions for the parameters in the two-
level Poisson mixed model (4.7) with product density restriction (4.10).

Data Inputs: yi(ni × 1), Xi(ni × p), Zi(ni × q), 1 ≤ i ≤ m.

Hyperparameter Inputs: µβ(p× 1), Σβ(p× p) symmetric and positive definite,
sΣ, 1, . . . , sΣ, q, νΣ > 0.

Initialize: µq(β) (p× 1), Eq

{(
β − µq(β)

)(
ui − µq(ui)

)T}
(p× q), µq(ui) (q × q);

Σq(β) (p× p), Σq(ui) (q × q), Mq(Σ−1)(q × q), Mq(A−1

Σ
)(q × q) all symmetric

and positive definite.

ξq(Σ) ←− νΣ + 2q − 2 +m ; ξq(AΣ) ←− νΣ + q

Cycle:

For i = 1, . . . ,m:

ω2PMFVBi ←− exp
{
Xiµq(β) +Ziµq(ui) + 1

2dg
(
XiΣq(β)X

T
i +ZiΣq(ui)Z

T
i

+2XiEq

{(
β − µq(β)

)(
ui − µq(ui)

)T}
ZTi

)}

bi ←−


diag

(
ω
−1/2
2PMFVBi

)
(yi − ω2PMFVBi)

m−1/2Σ
−1/2
β

(
µβ − µq(β)

)
−M1/2

q(Σ−1)
µq(ui)



Bi ←−


diag

(
ω

1/2
2PMFVBi

)
Xi

m−1/2Σ
−1/2
β

O

 ;
•

Bi ←−


diag

(
ω

1/2
2PMFVBi

)
Zi

0

M
1/2

q(Σ−1)


S2PMFVB ←− SolveTwoLevelSparseLeastSquares

({(
bi,Bi,

•

Bi

)
: 1 ≤ i ≤ m

})
µq(β) ←− x1 component of S2PMFVB ; Σq(β) ←− A11 component of S2PMFVB

Λq(Σ) ←−M q(A−1

Σ
)

For i = 1, . . . ,m:

µq(ui) ←− x2,i component of S2PMFVB

Σq(ui) ←− A22,i component of S2PMFVB

Eq

{(
β − µq(β)

)(
ui − µq(ui)

)T}
←− A12,i component of S2PMFVB

Λq(Σ) ←− Λq(Σ) + µq(ui)µ
T
q(ui)

+ Σq(ui)

M q(Σ−1) ←− (ξq(Σ) − q + 1) Λ−1
q(Σ)

Λq(AΣ) ←− diag
{

dg
(
M q(Σ−1)

)}
+ {νΣdiag(s2

Σ, 1, . . . , s
2
Σ, q)}−1

M q(A−1

Σ
) ←− ξq(AΣ)Λ

−1
q(AΣ)

until convergence.

Output:
(
µq(β), Σq(β),

{(
µq(ui),Σq(ui), Eq{(β − µq(β))(ui − µq(ui))T }

)
: 1 ≤ i ≤ m

}
,

ξq(Σ),Λq(Σ)

)
.
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Algorithm 4.4 QR-decomposition-based streamlined algorithm for obtaining mean field
variational Bayes approximate posterior density functions for the parameters in the two-
level logistic mixed model (4.17) with product density restriction (4.10).

Data Inputs: yi(ni × 1), Xi(ni × p), Zi(ni × q), 1 ≤ i ≤ m.

Hyperparameter Inputs: µβ(p× 1), Σβ(p× p) symmetric and positive definite,
sΣ, 1, . . . , sΣ, q, νΣ > 0.

Constant inputs: p, s from Table 4.1

Initialize: µq(β) (p× 1), Eq{(β − µq(β))(ui − µq(ui))T } (p× q), µq(ui) (q × q);
Σq(β) (p× p), Σq(ui) (q × q), Mq(Σ−1)(q × q), Mq(A−1

Σ
)(q × q) all symmetric

and positive definite.

ξq(Σ) ←− νΣ + 2q − 2 +m ; ξq(AΣ) ←− νΣ + q

Cycle:

For i = 1, . . . ,m:

µi ←−Xiµq(β) +Ziµq(ui)

σ2
i ←− dg

(
XiΣq(β)X

T
i +ZiΣq(ui)Z

T
i + 2XiEq{(β − µq(β))(ui − µq(ui))T }Z

T
i

)
Ωi ←−

√
1ni1

T
8 + σ2

i (s2)
T

; ω2LMFVB1i ←− Φ
((
µis

T
)
/Ωi

)
p

ω2LMFVB2i ←−
{
φ
((
µis

T
)
/Ωi

)
/Ωi

}
(p� s)

bi ←−

 diag
(
ω
−1/2
2LMFVB2i

)
(yi − ω2LMFVB1i + ω2LMFVB2i � µi)
m−1/2Σ

−1/2
β µβ

0



Bi ←−


diag

(
ω
−1/2
2LMFVB2i

)
Xi

m−1/2Σ
−1/2
β

O

 ;
•

Bi ←−


diag

(
ω

1/2
2LMFVB2i

)
Zi

0

M
1/2

q(Σ−1)

 .
S2LMFVB ←− SolveTwoLevelSparseLeastSquares

({(
bi,Bi,

•

Bi

)
: 1 ≤ i ≤ m

})
µq(β) ←− x1 component of S2LMFVB ; Σq(β) ←− A11 component of S2LMFVB

Λq(Σ) ←−M q(A−1

Σ
)

For i = 1, . . . ,m:

µq(ui) ←− x2,i component of S2LMFVB ; Σq(ui) ←− A22,i component of S2LMFVB

Eq{(β − µq(β))(ui − µq(ui))T } ←− A
12,i component of S2LMFVB

Λq(Σ) ←− Λq(Σ) + µq(ui)µ
T
q(ui)

+ Σq(ui)

M q(Σ−1) ←− (ξq(Σ) − q + 1) Λ−1
q(Σ)

Λq(AΣ) ←− diag
{

dg
(
M q(Σ−1)

)}
+ {νΣdiag(s2

Σ, 1, . . . , s
2
Σ, q)}−1

M q(A−1

Σ
) ←− ξq(AΣ)Λ

−1
q(AΣ)

until convergence.

Output:
(
µq(β), Σq(β),

{(
µq(ui),Σq(ui), Eq{(β − µq(β))(ui − µq(ui))T }

)
: 1 ≤ i ≤ m

}
,

ξq(Σ),Λq(Σ)

)
.
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Algorithm 4.5 (Nolan et al., 2018) The TwoLevelNaturalToCommonParameters algo-
rithm for conversion of a two-level reduced natural parameter vector to its corresponding
common parameters.

Inputs: p, q,m,ηq(β,u)

ωNCP1 ←− first p entries of ηq(β,u)

ωNCP2 ←− next p(p+ 1) entries of ηq(β,u) ; ΩNCP3 ←− −2vec−1(D+T
p ωNCP2)

istt ←− p+ p(p+ 1) + 1 ; iend ←− istt + q − 1

For i = 1, . . . ,m:

ωNCP4i ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + q(q + 1)− 1

ωNCP5 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + pq − 1

ωNCP6 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + q − 1

ΩNCP7i ←− −2 vec−1(D+T
q ωNCP5) ; ΩNCP8i ←− −vec−1

p×q(ωNCP6)

SNCP ←− SolveTwoLevelSparseMatrix
(
ωNCP1,ΩNCP3,

{
(ωNCP4i,ΩNCP7i,ΩNCP8i) : 1 ≤

i ≤ m
})

µq(β) ←− x1 component of SNCP ; Σq(β) ←− A11 component of SNCP

For i = 1, . . . ,m:

µq(ui) ←− x2,i component of SNCP ; Σq(ui) ←− A22,i component of SNCP

Eq{(β − µq(β)}(ui − µq(ui))T } ←− A
12,i component of SNCP

Output:
(
µq(β),Σq(β),

{(
µq(ui),Σq(ui), Eq{(β − µq(β)}(ui − µq(ui))T }) : 1 ≤ i ≤ m

})
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Algorithm 4.6 The inputs, updates and outputs of the matrix algebraic streamlined
Poisson likelihood fragment for two-level models.

Data Inputs: yi (ni × 1), Xi (ni × p), Zi (ni × q), 1 ≤ i ≤ m.

Parameter Inputs: ηp(y |β,u)→(β,u), η(β,u)→p(y |β,u).

Updates:

S2PVMP ←− TwoLevelNaturalToCommonParameters
(
p, q,m,ηp(y |β,u)↔(β,u)

)
µq(β) ←− µq(β) component of S2PVMP ; Σq(β) ←− Σq(β) component of S2PVMP

ω2PVMP3 ←− 0p ; ω2PVMP4 ←− 0 1
2p(p+1)

For i = 1, . . . ,m:

µq(ui) ←− µq(ui) component of S2PVMP

Σq(ui) ←− Σq(ui) component of S2PVMP

Eq{(β − µq(β))(ui − µq(ui))T } ←− Eq{(β − µq(β))(ui − µq(ui))T }
component of S2PVMP

ω2PVMP1i ←− exp
{
Xiµq(β) +Ziµq(ui) + 1

2dg
(
XiΣq(β)X

T
i +ZiΣq(ui)Z

T
i

+2XiEq{(β − µq(β))(ui − µq(ui))T }Z
T
i

)}
ω2PVMP2i ←− yi − ω2PVMP1i �

(
1ni −Xiµq(β) +Ziµq(ui)

)
ω2PVMP3 ←− ω2PVMP3 +XT

i ω2PVMP2i

ω2PVMP4 ←− ω2PVMP4 − 1
2D

T
p vec

(
XT
i diag (ω2PVMP1i)Xi

)

ηp(y |β,u)→(β,u) ←−


ω2PVMP3

ω2PVMP4

stack
1≤i≤m


ZTi ω2PVMP2i

− 1
2D

T
q vec

(
ZTi diag (ω2PVMP1i)Zi

)
−vec

(
XT
i diag (ω2PVMP1i)Zi

)


 .

Parameter Output: ηp(y |β,u)→(β,u).
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Algorithm 4.7 The inputs, updates and outputs of the matrix algebraic streamlined
logistic likelihood fragment for two-level models.

Data Inputs: yi (ni × 1), Xi (ni × p), Zi (ni × q), 1 ≤ i ≤ m.

Constant Inputs: p, s

Parameter Inputs: ηp(y |β,u)→(β,u), η(β,u)→p(y |β,u)

Updates:

S2LVMP ←− TwoLevelNaturalToCommonParameters
(
p, q,m,ηp(y |β,u)↔(β,u)

)
µq(β) ←− µq(β) component of S2LVMP ; Σq(β) ←− Σq(β) component of S2LVMP

ω2LVMP4 ←− 0p ; ω2LVMP5 ←− 0 1
2p(p+1)

For i = 1, . . . ,m:

µq(ui) ←− µq(ui) component of S2LVMP

Σq(ui) ←− Σq(ui) component of S2LVMP

Eq{(β − µq(β))(ui − µq(ui))T } ←− Eq{(β − µq(β))(ui − µq(ui))T }
component of S2LVMP

µ←−Xiµq(β) +Ziµq(ui)

σ2 ←− dg
(
XiΣq(β)X

T
i + 2XiEq{(β − µq(β))(ui − µq(ui))T }Z

T
i

+ZiΣq(ui)Z
T
i

)
T ←−

√
1ni1

T
8 + (σ2) (s2)

T

ω2LVMP1i ←− Φ
((
µsT

)
/T
)
p ; ω2LVMP2i ←−

{
φ
((
µsT

)
/T
)
/T
}

(p� s)
ω2LVMP3i ←− yi − ω2LVMP1i + ω2LVMP2i � µ ; ω2LVMP4 ←− ω2LVMP4 +XT

i ω2LVMP3i

ω2LVMP5 ←− ω2LVMP5 − 1
2D

T
p vec

(
XT
i diag (ω2LVMP2i)Xi

)

ηp(y |β,u)→(β,u) ←−


ω2LVMP4

ω2LVMP5

stack
1≤i≤m


ZTi ω2LVMP3i

− 1
2D

T
q vec

(
ZTi diag (ω2LVMP2i)Zi

)
−vec

(
XT
i diag (ω2LVMP2i)Zi

)


 .

Parameter Output: ηp(y |β,u)→(β,u).





Conclusions and future directions

Discussion

In this thesis we applied variational inference techniques for frequentist and Bayesian

fitting and inference in a variety of models. Even though the numerical studies consid-

ered here did not involve very large datasets, the variational inference framework offers

the opportunity to develop many fast algorithms that can be applied to datasets whose

storage requirements exceed what is available on a standard computer.

In frequentist settings, we worked with Gaussian density families to approximate, in

terms of Kullback–Leibler divergence, the distribution of random effects vectors, given

the output (e.g. Ormerod and Wand, 2012). An assortment of models contextualized

in a general design GLMMs infrastructure were covered. What we presented is a new

framework for inference in cases that can be treated through GLMs with random inter-

cept and slope and models with additive non-linear components or spatial correlation

structures, for example. We showed that GVA performs similarly to and sometimes

better than currently available software for fitting the considered models.

From a Bayesian perspective, we extended recent achievements concerning mean

field variational Bayes algorithms, adopting the approach of variational message pass-

ing on factor graph fragment. Three elaborate likelihood fragments, including Pareto

random samples, support vector regression and skew t regression, were explored. We

also presented explicit algorithms to perform streamlined computing variational infer-

ence for GLMMs containing two-level random effects. Recent results in Nolan et al.

(2018) include streamlined MFVB and VMP algorithms for Gaussian response two-level

and three-level models. Our extensions now cover Poisson and logistic two-level mixed

models. If compared to standard MCMC methods, variational techniques for Bayesian

inference may suffer some accuracy loss. In several instances, variational mean field

approximations can be shown to underestimate posterior variances (e.g. Wang and Blei,

2018). Another type of loss, in terms of bias, may be the consequence of simple aux-

iliary variable representations of the likelihood fragment, associated with a convenient

factorization of the approximating density, as shown for the skew t likelihood fragment.
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However, putting accuracy evidences apart, mean field approximations can always

be used to complement more traditional MCMC methods or other methods which tend

to asymptotically recover the actual posterior, as well as to quickly explore the data.

Future directions of research

Variational inference is prone to the exploration of several promising research directions,

especially in a context in which datasets are continuously growing in size, while modern

applications require inference tools with reduced computational times.

In particular, the interesting performances in terms of accuracy of GVA motivate

further exploration of such a technique applied to GLMMs. Efficient and general op-

timization procedures have to be considered, if the intention is to provide an effective

inference tool which can be implemented in standard computing environments. In par-

allel, reasonable parametrizations of the approximating Gaussian density covariance

matrix are fundamental for efficient computational strategies, especially for large semi-

parametric regression models. Also for the frequentist case, sparsity may be a key to

fast and robust optimization. Useful insights are described in Tan and Nott (2018),

who take advantage of the conditional independence structure which may characterize

a model to allow parsimonious parametrization of precision matrices.

The research on mean field algorithms can be now oriented to widen the class of

streamlined variational algorithms. General results allowing the treatment of higher

than three-level random effects models are desirable. Once sparse matrix-type refine-

ments of fragment updates relevant to prominent models are obtained, software imple-

mentation in low-level programming language will be necessary, also to diffuse these

useful results, however lacking of statistical glamour.

Future work can move beyond mere algorithm derivations and application of varia-

tional inference tools for fast approximate inference. Indeed, while a comparison with a

MCMC benchmark highlights some guarantees of accuracy, Gaussian variational meth-

ods lack of general theoretical results. The fascinating proves and results exposed in

Hall et al. (2011b), for instance, motivate further research endeavor.

On the other side, the application of frequentist results on model misspecification

(Pace and Salvan, 1997) may be explored to address the problem of variance under-

estimation in mean field variational applications. Such a perspective has not been

considered in the literature yet but would be worthwhile to investigate in the future.

Intuitively, variational versions of sandwich estimators and sandwich asymptotic vari-

ance can be proposed and derived from the lower bound expressions.
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Appendix A

A.1 Vector differential calculus

Let f be a scalar-valued function with argument x ∈ Rd. The derivative vector of f ,

Df (x), is the 1× d vector whose ith entry is

∂f (x)

∂xi
.

The Hessian matrix of f is

Hf (x) = D {Df (x)}T

and is, alternatively, the d× d matrix with (i, j) entry equal to

∂2f (x)

∂xi∂xj
.

Useful related results are provided in Magnus and Neudecker (2007) and Wand (2002).

A.2 Distributions and special functions

Here we describe the distribution functions mentioned in this PhD thesis and include in

each subsection the relevant results. The Inverse Square Root Nadarajah, Moon Rock

and Sea Sponge distributions are defined in the supplementary material of McLean and

Wand (2018). The remaining distributions follow the convention of Wand (2017) and

related supplementary material, when present. For the exponential family densities ap-

pearing in the derivation of variational algorithms further results such as the expectation

of the sufficient statistic are included.
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A.2.1 Exponential families

A univariate exponential family density or probability mass function can be written as

p (x) = exp
{
T (x)T η − A (η)

}
h (x)

where T (x) is the sufficient statistic, η is the natural parameter, A (η) is the log-partition

function and h (x) is the base measure. The sufficient statistic is not unique but it is

commonly chosen to be the simplest algebraic form given p (x).

The following results link the sufficient statistic and log-partition function:

E {T (x)} = DηA (η)T and Cov {T (x)} = Dη

{
DηA (η)T

}
where Cov {T (x)} is the covariance matrix of T (x). Similar results hold for multivariate

distributions.

The expression involving the expectation of the sufficient statistics is a relevant result

for variational message passing since the messages from factors to stochastic nodes of

conjugate factor graphs reduce to sufficient statistic expectations.

In frequentist settings, alternative notation in use in this thesis for one-parameter ex-

ponential families is

p (x) = exp {ηT (x)− b (η) + c (x)} ,

where ec(x) corresponds to the base measure and b (x) is the log-partition.

A.2.2 Digamma function

The digamma function ψ is

ψ (x) =
d

dx
log Γ (x) =

Γ
′
(x)

Γ (x)
.

Evaluation of ψ is supported, for instance, in the R computing environment (R Core

Team, 2018) via the function digamma().

A.2.3 Modified Bessel functions of the second kind

The Modified Bessel function of the second kind of order p ∈ R is denoted by Kp

and its argument can be and arbitrary complex number. Restricting attention to real

positive arguments, the modified Bessel functions of the second kind have the integral
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representation

Kp (x) =
Γ (|p|+ 1/2) (2x)|p|√

π

∫ ∞
0

cos (t)

(x2 + t2)|p|+1/2
dt, x > 0.

Evaluation of Kp (x) for p ∈ R and x > 0 is supported, for instance, in the R computing

environment (R Core Team, 2018) via the function besselK(x,p), where p and x denote

the values of p and x respectively. If p = (1/2) (2k + 1) for some k ∈ Z then Kp

admits explicit expressions. For our purposes, a useful formula is expression S.1.3 in the

supplementary material of McLean and Wand (2018):

K3/2 (x)

K1/2 (x)
= 1 +

1

x
, x > 0. (A.1)

Further details about efficient computation of modified Bessel functions of the second

kind and useful related formulae are provided in Section S.1.1 of the supplementary

material of McLean and Wand (2018).

A.2.4 Parabolic cylinder functions

The parabolic cylinder function of order ν ∈ R is denoted by Dν . If of negative order it

can be expressed in terms of a simple integral:

Dν (x) = Γ (−ν)−1 exp
(
−x2/4

) ∫ ∞
0

t−ν−1 exp

(
−xt− 1

2
t2
)
dt, ν < 0, x ∈ R.

Further details about efficient computation of parabolic cylinder functions and useful

related formulae are provided in Section S.1.2 of the supplementary material of McLean

and Wand (2018).

Distributions with exponential family theory results

A.2.5 Univariate normal distribution

A random variable x has a univariate normal distribution with mean µ ∈ R and variance

σ2 > 0, written x ∼ N (µ, σ2), if its density function is

p (x) =
(
2πσ2

)−1/2
exp

{
− (x− µ)2 /

(
2σ2
)}
, x ∈ R.
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The sufficient statistic and base measure are

T (x) =

[
x

x2

]
and h (x) = (2π)−1/2 .

The natural parameter vector and its inverse mapping are

η =

[
η1

η2

]
=

[
µ/σ2

−1/ (2σ2)

]
,

[
µ

σ2

]
=

[
−η1/ (2η2)

−1/ (2η2)

]

and the log-partition function is

A (η) = −1

4

(
η2

1/η2

)
− 1

2
log (−2η2) .

The expectation of the sufficient statistic is

E {T (x)} =

[
−η1/ (2η2)

(η2
1 − 2η2) / (4η2

2)

]
.

A.2.6 Gamma, chi-squared and exponential distributions

A random variable x has a gamma distribution with shape α > 0 and scale β > 0,

written x ∼ Γ (α, β), if the density function of x is

p (x) = βαΓ (α)−1 xα−1 exp (−βx) , x ≥ 0.

The sufficient statistic and base measure are

T (x) =

[
log (x)

x

]
and h (x) = 1.

The natural parameter vector and its inverse mapping are

η =

[
η1

η2

]
=

[
α− 1

−β

]
,

[
α

β

]
=

[
η1 + 1

−η2

]

and the log-partition function is

A (η) = log {Γ (η1 + 1)} − (η1 + 1) log (−η2) .
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The expectation of the sufficient statistic is

E {T (x)} =

[
ψ (η1 + 1)− log (−η2)

− (η1 + 1) /η2.

]
. (A.2)

A random variable x has a chi-squared distribution with degrees of freedom ν ∈ N>0,

written x ∼ χ2 (ν), if the density function of x is

p (x) = 2−ν/2Γ (ν/2)−1 xν/2−1 exp (−x/2) , x ≥ 0

With a reparametrization, we obtain

x ∼ χ2 (ν) if and only if x ∼ Γ (ν/2, 1/2) .

A random variable x has an exponential distribution with rate λ > 0, written x ∼
Exp (λ), if the density function of x is

p (x) = λ exp(−λx), x ≥ 0.

With a reparametrization, we obtain

x ∼ Exp (λ) if and only if x ∼ Γ
(
1, λ−1

)
.

A.2.7 Inverse chi-squared and inverse gamma distributions

A random variable x has an inverse chi-squared distribution with shape parameter κ > 0

and scale parameter λ > 0, written x ∼ Inverse-χ2 (κ, λ), if the density function of x is

p (x) =
{

(λ/2)κ/2 /Γ (κ/2)
}
x−(κ/2)−1 exp {− (λ/2) /x} , x > 0.

A random variable x has an inverse gamma distribution with shape parameter κ̃ > 0

and scale parameter λ̃ > 0, written x ∼ Inverse-Gamma
(
κ̃, λ̃
)

, if the density function

of x is

p (x) =
{
κ̃λ̃/Γ (κ̃)

}
x−κ̃−1 exp

{
−λ̃/x

}
, x > 0.

With a reparametrization, we obtain

x ∼ Inverse -χ2 (κ, λ) if and only if x ∼ Inverse-Gamma (κ/2, λ/2) .
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The sufficient statistic and base measure are

T (x) =

[
log (x)

1/x

]
and h (x) = I (x > 0) .

The natural parameter vector and its inverse mappings are

η =

[
η1

η2

]
=

[
−1

2
(κ+ 2)

−1
2
λ

]
=

[
− (κ̃+ 1)

−λ̃

]
,[

κ

λ

]
=

[
−2− 2η1

−2η2

]
,

[
κ̃

λ̃

]
=

[
−1− η1

−η2

]

and the log-partition function is

A (η) = (η1 + 1) log (−η2) + log Γ (−η1 − 1) .

The expectation of the sufficient statistic is

E {T (x)} =

[
log (−η2)− ψ (−η1 − 1)

(η1 + 1) /η2

]
.

Note also that the inverse Wishart distribution for random matrices described in Sub-

section A.2.13 reduces to the inverse chi-squared distribution in the 1× 1 case.

A.2.8 Generalized inverse Gaussian distribution

A random variable x has an generalized inverse Gaussian distribution with parameters

α, β > 0, for any fixed p ∈ R, written x ∼ Generalized-Inverse-Gaussian (α, β; p), if its

density function is

p (x) =
(α/β)p/2 xp−1

2Kp

(√
αβ
) exp

{
−1

2
(αx+ β/x)

}
, x > 0,

where Kp is the modified Bessel function of second kind. The sufficient statistic and

base measure are

T (x) =

[
x

1/x

]
and h (x) =

1

2
xp−1I (x > 0) .
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The natural parameter vector and its inverse mappings are

η =

[
η1

η2

]
=

[
−α/2
−β/2

]
,

[
α

β

]
=

[
−2η1

−2η2

]

and the log-partition function is

A (η) =
1

2
p log (η1/η2)− logKp

(
2 (η1η2)1/2

)
.

The expectation of the sufficient statistic is

E {T (x)} =

 (η2/η1)1/2Kp+1(2(η1η2)1/2)
Kp(2(η1η2)1/2)

(η1/η2)1/2Kp+1(2(η1η2)1/2)
Kp(2(η1η2)1/2)

+ p
η2

 .
Applying A.1, it follows that for the special case p = 1/2

E {T (x)} =

[
{η1/ (2η2)}1/2 − 1/ (2η2)

(η1/η2)1/2

]
. (A.3)

A.2.9 Inverse square root Nadarajah distribution

A random variable x has an inverse square root Nadarajah distribution with parame-

ters α, β > 0 and γ ∈ R, written x ∼ Inverse-Square-Root-Nadarajah (α, β, γ), if the

corresponding density function is

p (x) = (2β)α/2 /
[
2 exp

{
γ2/ (8β)

}
Γ (α)D−α

(
γ/
√

2β
)]
x−(α/2)−1 exp

(
−β/x− γ/√x

)
,

x > 0.

The sufficient statistic and base measure are

T (x) =


log (x)

1/
√
x

1/x

 and h (x) = I (x > 0) .

The natural parameter vector and its inverse mapping are

η =


η1

η2

η3

 =


− (α/2)− 1

−γ
−β

 ,

α

β

γ

 =


−2 (η1 + 1)

−η3

−η2
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and the log-partition function is

A (η) = −1

2
(η1 + 1) log (−2η3)− log (2)− 1

8

(
η2

2/η3

)
+ log {Γ (η1 + 1)}+ log

{
D−η1−1

(
−η2/

√
−2η3

)}
.

The expectation of the sufficient statistic is

E {T (x)} =


∫∞

0
log (x)xη1 exp (η2/

√
x+ η3/x) dx

−2(η1+1)D2η1+1(−η2/
√
−2η3)

√
−2η3D2η1+2(−η2/

√
−2η3)

−(η1+1)(2η1+1)D2η1+1(−η2/
√
−2η3)

η3D2η1+2(−η2/
√
−2η3)

 ,

from which we define the notation

(ET )ISRN

2 =
−2 (η1 + 1)D2η1+1

(
−η2/

√−2η3

)
√−2η3D2η1+2

(
−η2/

√−2η3

) , (A.4)

(ET )ISRN

3 =
− (η1 + 1) (2η1 + 1)D2η1+1

(
−η2/

√−2η3

)
η3D2η1+2

(
−η2/

√−2η3

) . (A.5)

Section S.1.2 in the supplementary material of McLean and Wand (2018) suggests how

to perform stable and efficient computation of (ET )ISRN

2 and (ET )ISRN

3 .

A.2.10 Moon Rock distribution

A random variable x has a Moon Rock distribution with parameters α > 0 and β > α,

written x ∼ Moon-Rook (α, β), if the density function of x is

p (x) =

[∫ ∞
0

{
tt/Γ (t)

}α
exp (−βt) dt

]−1

{xx/Γ (x)}α exp (−βx) , x > 0.

The sufficient statistic and base measure are

T (x) =

[
x log (x)− log {Γ (x)}

x

]
and h (x) = I (x > 0) .

The natural parameter vector and its inverse mapping are

η =

[
η1

η2

]
=

[
α

−β

]
,

[
α

β

]
=

[
η1

−η2

]
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and the log-partition function is

A (η) = log

{∫ ∞
0

{
tt/Γ (t)

}η1 exp (η2t) dt

}
.

The expectation of the sufficient statistic is

E {T (x)} = exp {−A (η)}
[ ∫∞

0
[x log (x)− log {Γ (x)}] {xx/Γ (x)}η1 exp (η2x) dx∫∞

0
x {xx/Γ (x)}η1 exp (η2x) dx

]
,

from which we define the notation

(ET )MR

2 = exp {−A (η)}
∫ ∞

0

x {xx/Γ (x)}η1 exp (η2x) dx. (A.6)

The integrals here appearing are not expressible in terms of established special functions.

See sections S.1.3 and S.2.4 in the supplementary material of McLean and Wand (2018)

for further details about stable and efficient integral computation.

A.2.11 Sea Sponge distribution

The random variable x has a Sea Sponge distribution with parameters α > 0, β > 0 and

|γ| < β, written x ∼ Sea-Sponge (α, β, γ), if the density function of x is

p (x) =

{∫ ∞
−∞

(
1 + t2

)α
exp

(
−βt2 + γt

√
1 + t2

)
dt

}−1 (
1 + x2

)α
× exp

(
−βx2 + γx

√
1 + x2

)
.

The sufficient statistic and base measure are

T (x) =


log (1 + x2)

x2

x
√

1 + x2

 and h (x) = 1.

The natural parameter vector and its inverse mapping are

η =


η1

η2

η3

 =


α

−β
γ

 ,

α

β

γ

 =


η1

−η2

η3
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and the log-partition function is

A (η) = log

{∫ ∞
−∞

(
1 + t2

)η1 exp
(
η2t

2 + η3t
√

1 + t2
)
dt

}
.

The expectation of the sufficient statistic is

E {T (x)} = exp {−A (η)}


∫∞
−∞ log (1 + x2) (1 + x2)

η1 exp
(
η2x

2 + η3x
√

1 + x2
)
dx∫∞

−∞ x
2 (1 + x2)

η1 exp
(
η2x

2 + η3x
√

1 + x2
)
dx∫∞

−∞ x
√

1 + x2 (1 + x2)
η1 exp

(
η2x

2 + η3x
√

1 + x2
)
dx

 ,
from which we define the notation

(ET )SS

2 = exp {−A (η)}
∫ ∞
−∞

x2
(
1 + x2

)η1 exp
(
η2x

2 + η3x
√

1 + x2
)
dx, (A.7)

(ET )SS

3 = exp {−A (η)}
∫ ∞
−∞

x
√

1 + x2
(
1 + x2

)η1 exp
(
η2x

2 + η3x
√

1 + x2
)
dx. (A.8)

The integrals here appearing are not expressible in terms of established special functions.

See sections S.1.3 and S.2.5 in the supplementary material of McLean and Wand (2018)

for further details about stable and efficient integral computation.

A.2.12 Multivariate normal distribution

A d × 1 random vector x has a multivariate normal distribution with mean µ and

covariance matrix Σ, a symmetric positive definite d× d matrix, written x ∼ N (µ,Σ),

if its density function is

p (x) = (2π)−d/2 |Σ|−1/2 exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
, x ∈ Rd.

The sufficient statistic and base measure are

T (x) =

[
x

vec
(
xxT

) ] and h (x) = (2π)−d/2 .

The natural parameter vector and inverse mapping are

η =

[
η1

η2

]
=

[
Σ−1µ

−1
2
vec
(
Σ−1

) ] , [
µ

Σ

]
=

[
−1

2
{vec−1 (η2)}−1

η1

−1
2
{vec−1 (η2)}−1

]
(A.9)
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and the log-partition function is

A (η) = −1

4
η1

T
{

vec−1 (η2)
}−1

η1 −
1

2
log
∣∣−2vec−1 (η2)

∣∣ .
The expectation of the sufficient statistic is

E {T (x)} =

 −1
2
{vec−1 (η2)}−1

η1

1
4
vec
(
{vec−1 (η2)}−1

) [
η1η

T
1 {vec−1 (η2)}−1 − 2I

]  .
Reduced expressions

The sufficient statistic can be written in a more efficient way as

T (x) =

[
x

vech
(
xxT

) ] .
More compact expressions for the natural parameter vector ad inverse mapping are

η =

[
η1

η2

]
=

[
Σ−1µ

−1
2
DT

d vec
(
Σ−1

) ] , [
−1

2

{
vec−1

(
D+T

d η2

)}−1
η1

−1
2

{
vec−1

(
D+T

d η2

)}−1

]
(A.10)

and for the log-partition function is

A (η) = −1

4
η1

T
{

vec−1
(
D+T

d η2

)}−1
η1 −

1

2
log
∣∣−2vec−1

(
D+T

d η2

)∣∣ ,
where Dd is the duplication matrix of size d and D+T

d is the corresponding Moore–

Penrose inverse matrix.

A.2.13 Inverse G-Wishart distribution

Let G be an undirected graph with d nodes labeled 1 . . . d and E the sets of pairs of

nodes that are connected by an edge. The symmetric d× d matrix M respects G if

M ij = 0 for all {i, j} /∈ E.

A d×d random matrix X has an inverse G-Wishart distribution with graph G, param-

eters ξ > 0 and symmetric d× d matrix Λ, written X ∼ Inverse-G-Wishart (G, ξ,Λ) if

and only if the density function of X satisfies

p (X) ∝ |X|−(ξ+2)/2 exp

{
−1

2
tr
(
ΛX−1

)}
,
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where X is symmetric and positive definite and X−1 respects G. A special case arises

when G is a totally connected d-node graph, Gfull, that is, X−1 is a full matrix, for which

the inverse G-Wishart distribution coincides with the inverse Wishart distribution. A

second special case is when G is a totally disconnected d-node graph, Gdiag, that is,

X−1 is a diagonal matrix, for which the inverse G-Wishart distribution coincides with a

product of independent inverse chi-squared random variables. If d = 1, G = Gfull = Gdiag

and the inverse G-Wishart distribution reduces to the inverse chi-squared distribution.

The sufficient statistic is

T (x) =

[
log |X|

vech
(
X−1

) ] .
The natural parameter vector and inverse mapping are

η =

[
η1

η2

]
=

[
−1

2
(ξ + 2)

−1
2
DT

d vec (Λ)

]
,

[
ξ

Λ

]
=

[
−2η1 − 2

−2vec−1
(
D+T

d η2

) ] ,
where Dd is the duplication matrix of size d and D+T

d is the corresponding Moore–

Penrose inverse matrix. For the aforementioned special cases, expectations of X−1 are

E
(
X−1

)
=

{
η1 +

1

2
(d+ 1)

}{
vec−1

(
D+T

d η2

)}−1
, if G = Gfull,

E
(
X−1

)
= (η1 + 1)

{
vec−1

(
D+T

d η2

)}−1
, if G = Gdiag.

The inverse G-Wishart distribution generalizes the inverse Wishart distribution and cor-

responds to the matrix inverses of random matrices that have a G-Wishart distribution

(e.g. Atay-Kayis and Massam, 2005).

Other distributions

A.2.14 Bernoulli distribution

A random variable x has a Bernoulli distribution with probability p ∈ [0, 1], written

x ∼ Bernoulli (p), if its probability mass function is

p (x) =

 p for x = 1,

1− p for x = 0.
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A.2.15 Poisson distribution

A random variable x has a Poisson distribution with rate parameter λ > 0, written

x ∼ Poisson (λ), if its probability mass function is

p (x) =
λxe−λ

x!
, x ∈ N.

A.2.16 Uniform distribution

A random variable x has a uniform distribution defined over the interval [a, b] such that

−∞ < a < b <∞, written x ∼ Uniform (a, b), if its probability density function is

p (x) =

 1
b−a for x ∈ [a, b] ,

0 otherwise.

A.2.17 Student’s t distribution

A random variable x has a Student’s t distribution or, shortly, t distribution with ν > 0

degrees of freedom, written x ∼ t (ν) if the corresponding probability density function

is such that

p (x) =
Γ {(ν + 1) /2}√

νπΓ (ν/2)

(
1 +

x2

ν

)− ν+1
2

, x ∈ R.

A.2.18 Half Cauchy distribution

A random variable x has a half Cauchy distribution with scale parameter σ > 0, written

x ∼ Half-Cauchy (σ), if its probability density function is

p (x) =
2

πσ
{

1 + (x/σ)2} , x > 0.

A.2.19 Pareto distribution of II type

A random variable x has a Pareto distribution of II type with location parameter µ ∈ R,

Pareto exponent α > 0 and scale parameter β > 0, written x ∼ Pareto (µ, α, β), if its

probability density function is

p (x) = αβ−1

(
1 +

x− µ
β

)−(α+1)

, x ≥ µ.
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A.2.20 Univariate and multivariate skew t distribution

According to the formulation of Azzalini and Capitanio (2003), a d× 1 random vector

x is distributed as a d-variate skew t distribution, written x ∼ Skew-td (µ,Σ,λ, ν), if

its probability density function is

p (x) = 2td (x; ν)T1

{
λTΩ−1 (x− µ)

(
ν + d

Qx + ν

)1/2

; ν + d

}

where

Qx = (x− µ)T Σ−1 (x− µ) , td (x; ν) =
Γ {(ν + d) /2}

|Σ|1/2 (πν)d/2 Γ (ν/2)

(
1 +

Qx
ν

)−(ν+d)/2

is a d-dimensional t-variate density function with ν degrees of freedom and T1 (y; ν + d)

indicates the scalar t distribution function with ν + d degrees of freedom. The vectors

µ,λ ∈ Rd are location and shape (skewness) parameter vectors respectively, while ν is

the number of degrees of freedom. Also, Ω is the diagonal matrix having the square

root of the diagonal elements of the d × d full rank covariance matrix Σ on its main

diagonal such that R = Ω−1ΣΩ−1 is the correlation matrix associated with Σ. The

skew t distribution approaches the skew normal distribution as ν →∞.

In our univariate skew t formulation, written as Skew-t (µ, σ2, λ, ν), the multivariate

parameters µ, Σ and λ respectively correspond to the univariate parameters µ, σ2 and

λ with Ω corresponding to
√
σ2.

A.3 The sufficient statistic expectation of the aux-

iliary variables arising in the skew normal and

skew t VMP calculations

The following results were formalized by Wand as personal notes to derive the skew

normal VMP algorithm. They are here included to support the VMP calculations for

the skew t likelihood fragment and related theoretical results. Notations φ (·) and Φ (·)
respectively refer to the standard normal density and distribution functions.

Consider

p (x) ∝ exp


[
|x|
x2

]T
η

 , x ∈ R.



Appendix A 117

We express E |x| and E (x2) in terms of the entries of

η =

[
η1

η2

]
.

Define

R (p, q) =

∫ ∞
−∞
|x|p

(
x2
)q

exp
(
η1 |x|+ η2x

2
)
dx,

where p, q ∈ {0, 1} and p+ q < 1. It follows that

E

([
|x|
x2

])
=

[
R (1, 0) /R (0, 0)

R (0, 1) /R (0, 0)

]
.

Then note that

R (p, q) =

∫ 0

−∞
(−x)p

(
x2
)q

exp
{
η1 (−x) + η2x

2
}
dx+

∫ ∞
0

xp
(
x2
)q

exp
(
η1x+ η2x

2
)
dx

= (−1)p
∫ 0

−∞
xp+2q exp

{
η1 (−x) + η2x

2
}
dx+

∫ ∞
0

xp+2q exp
(
η1x+ η2x

2
)
dx

= (−1)p
∫ 0

−∞
(−u)p+2q exp

(
η1u+ η2u

2
)

(−du) +

∫ ∞
0

xp+2q exp
(
η1x+ η2x

2
)
dx

= (−1)2(p+q)

∫ ∞
0

up+2q exp
(
η1u+ η2u

2
)
du+

∫ ∞
0

xp+2q exp
(
η1x+ η2x

2
)
dx

= 2

∫ ∞
0

xp+2q exp
(
η1x+ η2x

2
)
dx

= 2

∫ ∞
0

xp+2q exp


[
x

x2

]T
η − AN (η)

 (2π)−1/2 dx
[
exp {AN (η)} (2π)1/2

]

= Z
∫ ∞

0

xp+2q exp


[
x

x2

]T
η − AN (η)

 (2π)−1/2 dx

where Z = 2 exp {AN (η)} (2π)−1/2 and AN is the log-partition of the normal distribu-

tion. Let

µ = −η1/ (2η2) and σ2 = −1/ (2η2) .

Then

R (p, q) = Z
∫ ∞

0

xp+2q 1

σ
φ

(
x− µ
σ

)
dx,
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where φ (z) = (2π)−1/2 exp (−z2/2) is the N (0, 1) density function. Introducing the

change of variables z = (x− µ) /σ we get

R (p, q) = Z
∫ ∞
−µ/σ

(µ+ σz)p+2q φ (z) dz.

Expression for R (0, 0)

We have that

R (0, 0) = Z
∫ ∞
−µ/σ

φ (z) dz

= Z
{

1−
∫ −µ/σ
−∞

φ (z) dz

}
= Z {1− Φ (−µ/σ)}
= ZΦ (µ/σ)

= ZΦ
(
η1/
√
−2η2

)
since

µ/σ = η1/
√
−2η2.

Hence,

R (0, 0) = ZΦ
(
η1/
√
−2η2

)
. (A.11)

Expression for R (1, 0)

We have that

R (1, 0) =

∫ ∞
−µ/σ

(µ+ σz)φ (z) dz

= µR (0, 0) + Zσ
∫ ∞
−µ/σ

zφ (z) dz

= µR (0, 0)−Zσ
∫ ∞
−µ/σ

φ
′
(z) dz

= µR (0, 0)−Zσ [φ (z)]∞−µ/σ

= µR (0, 0) + Zσφ (µ/σ)

= −η1R (0, 0) / (2η2) + Zφ
(
η1/
√
−2η2

)
/
√
−2η2.
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Hence,

R (1, 0) = Z
{
φ
(
η1/
√−2η2

)
√−2η2

− η1Φ
(
η1/
√−2η2

)
2η2

}
. (A.12)

Expression for R (0, 1)

We have that

R (0, 1) = Z
∫ ∞
−µ/σ

(µ+ σz)2 φ (z) dz

= µ2R (0, 0) + 2µσZ
∫ ∞
−µ/σ

zφ (z) dz + σ2Z
∫ ∞
−µ/σ

z2φ (z) dz

= µ2R (0, 0) + 2µσZφ (µ/σ) + σ2Z
∫ ∞
−µ/σ

(
z2 − 1

)
φ (z) dz + σ2Z

∫ ∞
−µ/σ

φ (z) dz

=
(
µ2 + σ2

)
R (0, 0) + 2µσZφ (µ/σ) + Zσ2

∫ ∞
−µ/σ

φ
′′

(z) dz

=
(
µ2 + σ2

)
R (0, 0) + 2µσZφ (µ/σ)−Zσ2 [zφ (z)]∞−µ/σ

=
(
µ2 + σ2

)
R (0, 0) + 2µσZφ (µ/σ)−Zµσφ (µ/σ)

= Z
{(
µ2 + σ2

)
Φ (µ/σ) + µσφ (µ/σ)

}
= Z

{
(η2

1 − 2η2) Φ
(
η1/
√−2η2

)
4η2

2

+
η1φ

(
η1/
√−2η2

)
(−2η2)3/2

}
.

Hence,

R (0, 1) = Z
{
η1φ

(
η1/
√−2η2

)
(−2η2)3/2

+
(η2

1 − 2η2) Φ
(
η1/
√−2η2

)
4η2

2

}
. (A.13)

Expression for E |x|
Combining (A.11) and (A.12) we get

E |x| = R (1, 0)

R (0, 0)
(A.14)

=
(φ/Φ)

(
η1/
√−2η2

)
√−2η2

− η1

2η2

=
ζ
′ (
η1/
√−2η2

)
√−2η2

− η1

2η2

=

√−2η2ζ
′ (
η1/
√−2η2

)
+ η1

(−2η2)
. (A.15)
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Expression for E
(
x2
)

Combining (A.11) and (A.13) we get

E
(
x2
)

=
R (0, 1)

R (0, 0)

=
η1ζ

′ (
η1/
√−2η2

)
(−2η2)3/2

+
(η2

1 − 2η2)

4η2
2

=
η1

√−2η2ζ
′ (
η1/
√−2η2

)
+ η2

1 − 2η2

4η2
2

. (A.16)
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B.1 Derivations concerning Gaussian variational ap-

proximations for general design GLMMs

We here provide details about the derivations concerning Gaussian variational inference

for general design GLMMs that can be easily adapted to further GLMMs and response

distributions not treated here.

B.1.1 Proof of Proposition 2.1

Write the log-likelihood lower bound (2.3) as

` (β,G,µ,Λ) =

∫
q (u; ξ) log {p (y,u;β,G)} du−

∫
q (u; ξ) log {q (u; ξ)} du. (B.1)

By applying properties of the expected value of a multivariate normal density and the

formula to derive the expected value of the square from expected value and variance,

the first component at the right hand side of (B.1) gives∫
q (u; ξ)

{
yT (Xβ +Zu)− 1Tb (Xβ +Zu) + 1Tc (y)

}
du

+

∫
q (u; ξ) log

{
(2π)−

K
2 |G|− 1

2 exp

(
−1

2
uTG−1u

)}
du

=yT (Xβ +Zµ)− 1TB
(
Xβ +Zµ, dg

(
ZΛZT

))
+ 1Tc (y)

− K

2
log (2π)− 1

2
log |G| − 1

2

{
µTG−1µ+ tr

(
G−1Λ

)}
.

The second component at the right hand side of (B.1) is the negative entropy of a

N (µ,Λ), that is,

−K
2

+
K

2
log (2π) +

1

2
log |Λ| .

The sum of the two previous results gives the final lower bound expression.

121



122 Appendix B

B.1.2 First and second order derivatives of the Gaussian vari-

ational lower bound

The first and second order derivatives of the lowerbound (2.4) presented here are similar

to the results of Ormerod and Wand (2012) and can be derived using the rules indicated

in Wand (2002) and the definitions of Section A.1 in Appendix A.

Define B(r) (β,µ,Λ) = B(r)
(
Xβ +Zµ, dg

(
ZΛZT

))
, where

B(r)
(
µ, σ2

)
=

∫ +∞

−∞
b(r) (µ+ σx)φ (x) dx,

and Q (A) =
(
A⊗ 1T

)
�
(
1T ⊗A

)
. Let M = G−1

(
µµT + Λ

)
G−1. Shortly, we

indicate the lower bound ` (β,G,µ,Λ) with `.

The first order derivatives of (2.4) with respect to the model parameters of interest and

the variational parameters are

Dβ` =
{
y − B(1) (β,µ,Λ)

}T
X,

Dvech(G)` =
1

2
vec
(
M −G−1

)
DK ,

Dµ` =
{
y − B(1) (β,µ,Λ)

}T
Z − µTG−1,

Dvech(Λ)` =
1

2
vec
{
Λ−1 −G−1 −ZTdiag

(
B(2) (β,µ,Λ)

)
Z
}T
DK , (B.2)

where DK indicates the duplication matrix of order K.

The second order derivatives of (2.4) are

Hββ` = −XTdiag
(
B(2) (β,µ,Λ)

)
X,

Hvech(G)vech(G)` =
1

2
DT

K

(
G−1 ⊗G−1 −G−1 ⊗M +M ⊗G−1

)
DK ,

Hβµ` = −XTdiag
(
B(2) (β,µ,Λ)

)
Z,

Hβvech(Λ)` = −1

2
XTdiag

(
B(3) (β,µ,Λ)

)
Q (Z)DK ,

Hvech(G)µ` = DT
K

{(
G−1µ

)
⊗G−1

}
,

Hvech(G)vech(Λ)` =
1

2
DT

K

(
G−1 ⊗G−1

)
DK ,

Hµµ` = −ZTdiag
(
B(2) (β,µ,Λ)

)
Z −G−1,

Hµvech(Λ)` = −1

2
ZTdiag

(
B(3) (β,µ,Λ)

)
Q (Z)DK ,

Hvech(Λ)vech(Λ)` = −1

4
DT

K

{
Q (Z)T diag

(
B(4) (β,µ,Λ)

)
Q (Z) + 2

(
Λ−1 ⊗Λ−1

)}
DK .
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B.1.3 Proof of Proposition 2.2

The matrix Λ̂ solves the score equation Dvech(Λ)` = 0, with Dvech(Λ) expressed as in B.2,

from which we get

vec
{
Λ−1 −G−1 −ZTdiag

(
B(2) (β,µ,Λ)

)
Z
}T
DK = 0,

Λ−1 −G−1 −ZTdiag
(
B(2) (β,µ,Λ)

)
Z = 0.

From the last expression it follows that at convergence of the optimization procedure

Λ̂ =
(
G−1 +ZTdiag

(
B(2) (β,µ,Λ)

)
Z
)−1

.

Noting that Hµµ` = −G−1 −ZTdiag
(
B(2) (β,µ,Λ)

)
Z the thesis follows.

B.1.4 rstan code for fitting Poisson nonparametric regression

via MCMC

Stan (Carpenter et al., 2017) is a probabilistic programming language, written in C++,

to perform Bayesian statistical inference through a particular form of MCMC sam-

pling (Hamiltonian Monte Carlo no U-turn sampling). The R computing environment

interfaces with Stan via rstan. We here provide the rstan code for fitting Poisson non-

parametric regression via MCMC. Similar scripts were employed for the other GLMMs.

The first step consists in setting the values for burn-in, kept sample size and thinning

factor.

nWarm <- 10000 # Length of burn-in.

nKept <- 5000 # Size of the kept sample.

nThin <- 5 # Thinning factor.

Second, specify the input data: the number of observations, n, the design matrices X

and Z, the response vector, y and the hyperparameters σβ and A, which are associated

with the prior distributions defined in the model environment. Constrains can also be

included. For instance, in our case hyperparameters must be positive.

PoissRespNPregn <-

’data

{

int<lower=1> ncZ; int<lower=1> n;

int<lower=0> y[n];
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matrix[n,2] X; matrix[n,ncZ] Z;

real<lower=0> sigmaBeta; real<lower=0> A;

}

Then, specify parameters and transformed parameters.

parameters

{

vector[2] beta; real<lower=0> sigma;

vector[ncZ] u;

}

transformed parameters

{

vector[n] etaVec;

etaVec = X*beta + Z*u;

}

Finally, define the Bayesian model, including prior distributions.

model

{

for (i in 1:n)

{

y[i] ~ poisson(exp(etaVec[i]));

}

beta ~ normal(0,sigmaBeta); u ~ normal(0,sigma);

sigma ~ cauchy(0,A);

}’

The rstan code is now ready to be compiled and fit the model on real data.

allData <- list(n=n,ncZ=ncZ,y=y,X=X,Z=Z,sigmaBeta=sigmaBeta,A=A)

stanCompilObj <- stan(model_code=PoissRespNPregn,data=allData,

iter=1,chains=1)

Last, obtain the MCMC samples for each parameter and save the Stan output. In our

case the β vector is of dimension 1× 2.

stanObj <- stan(model_code=PoissRespNPregn,data=allData,

warmup=nBurnin,iter=(nBurnin+nIter),
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chains=1,thin=nThin,refresh=100,fit=stanCompilObj)

betaMCMC <- NULL

for (j in 1:2)

{

charVar <- paste("beta[",as.character(j),"]",sep="")

betaMCMC <- rbind(betaMCMC,extract(stanObj,charVar,permuted=FALSE))

}

beta0MCMCvec <- betaMCMC[1,]

beta1MCMCvec <- betaMCMC[2,]

uMCMC <- NULL

for (k in 1:ncZ)

{

charVar <- paste("u[",as.character(k),"]",sep="")

uMCMC <- rbind(uMCMC,extract(stanObj,charVar,permuted=FALSE))

}

sigmaMCMC <- as.vector(extract(stanObj,"sigma",permuted=FALSE))
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C.1 Derivations concerning the SVR likelihood frag-

ment

We here provide details about the derivation of Algorithm 3.2 concerning VMP for the

SVR likelihood fragment.

C.1.1 Derivation of Algorithm 3.2

According to (1.15)

mp̌(a1)→a1i = p̌ (a1i) = I (a1i > 0) , 1 ≤ i ≤ n (C.1)

mp̌(a2)→a2i = p̌ (a2i) = I (a2i > 0) , 1 ≤ i ≤ n. (C.2)

Messages from p̌ (y |θ,a1,a2) to each of the a1i, for 1 ≤ i ≤ n, can be easily obtained

writing log p̌ (y |a1,a2,θ) as a function of a1i, indicating with “const” terms which are

independent of a1i:

log p̌ (y |θ,a1,a2) =− 1

2
log (a1i)−

1

2a1i

(
a2

1i − 2a1i {(Aθ)i + ε− yi}

+ {(Aθ)i + ε− yi}2)+ const

=− 1

2
log (a1i)−

1

2
a1i −

1

2a1i

{(Aθ)i + ε− yi}2 + const

= log

a−1/2
1i exp


[

a1i

1/a1i

]T [
−1

2

−1
2
{(Aθ)i + ε− yi}2

]
+ const.
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Therefore

mp̌(y |θ,a1,a2)→a1i (a1i) = a
−1/2
1i exp


[

a1i

1/a1i

]T [
−1

2

−1
2
Eq(θ)

[
{(Aθ)i + ε− yi}2]

] ,

(C.3)

where Eq(θ) denotes expectation with respect to the normalization of

mp̌(y |θ,a1,a2)→θ (θ)mθ→p̌(y |θ,a1,a2) (θ) . (C.4)

Similarly

mp̌(y |θ,a1,a2)→a2i (a2i) = a
−1/2
2i exp


[

a2i

1/a2i

]T [
−1

2

−1
2
Eq(θ)

[
{yi − (Aθ)i + ε}2]

] .

(C.5)

Messages from p̌ (y |a1,a2,θ) to θ can be easily obtained writing log p̌ (y |θ,a1,a2) as

a function of θ, indicating with “const” terms which are independent of θ. Recall also

the trace trick

aTAa = tr
(
aTAa

)
= tr

(
aaTA

)
= tr

(
AaaT

)
, (C.6)

for any vector a and any matrix A and that

tr
(
XTY

)
= vec (Y )T vec (X) , (C.7)

for any matrices X and Y . We get

log p̌ (y |θ,a1,a2) =− 1

2

{
(a1 + y −Aθ − ε)T diag (a1)−1 (a1 + y −Aθ − ε)

+ (a2 − y +Aθ − ε)T diag (a2)−1 (a2 − y +Aθ − ε)
}

+ const

=− 1

2

[
−2θTATdiag (a1)−1 (a1 + y − ε) + tr

{
ATdiag (a1)−1AθθT

}
+2θTATdiag (a2)−1 (a2 − y − ε) + tr

{
ATdiag (a2)−1AθθT

}]
+ const

=

[
θ

vec
(
θθT

) ]T
 AT

{
1
a1
� (y − ε) + 1

a2
� (y + ε)

}
−1

2
vec
{
ATdiag

(
1
a1

+ 1
a2

)
A
} + const.



Appendix C 129

Then the message from p̌ (y |θ,a1,a2) to θ is proportional to a multivariate normal

density function with natural parameter update

ηp̌(y |θ,a1,a2)→θ ←−


AT

{
Eq(a1) (1/a1)� (y − 1nε)

+Eq(a2) (1/a2)� (y + 1nε)
}

−1
2
vec
{
ATdiag

(
Eq(a1) (1/a1) + Eq(a2) (1/a2)

)
A
}

 , (C.8)

where

Eq(a1) (1/a1) =
[
Eq(a11) (1/a11) , . . . , Eq(a1n) (1/a1n)

]T
and Eq(a1i) denotes expectation with respect to the normalized

q∗ (a1i) ∝ mp̌(y |θ,a1,a2)→a1i (a1i)mp̌(a1)→a1i (a1i) , 1 ≤ i ≤ n. (C.9)

Eq(a2) (1/a2) is similarly defined with Eq(a2i) denoting expectation with respect to the

normalized

q∗ (a2i) ∝ mp̌(y |θ,a1,a2)→a2i (a2i)mp̌(a2)→a2i (a2i) , 1 ≤ i ≤ n. (C.10)

Combining (C.1) and (C.3) with (C.9), and (C.2) and (C.5) with (C.10), it is evident

that both Eq(a1i) and Eq(a2i) denote expectation with respect to a generalized inverse

Gaussian distribution with p = 1
2

and natural parameter vectors[
−1

2

−1
2
Eq(θ)

[
{(Aθ)i + ε− yi}2]

]
and

[
−1

2

−1
2
Eq(θ)

[
{yi − (Aθ)i + ε}2]

]

respectively. Then, from (A.3)

Eq(a1i) (1/a1i) =
(
Eq(θ)

[
{(Aθ)i + ε− yi}2])−1/2

=
[
Eq(θ)

{
(Aθ)2

i

}
+ 2 (ε− yi)Eq(θ) {(Aθ)i}+ (ε− yi)2]−1/2

=
([
Eq(θ) {(Aθ)i}

]2
+ Varq(θ) {(Aθ)i}

+2 (ε− yi)Eq(θ) {(Aθ)i}+ (ε− yi)2)−1/2

=
{(
Aµq(θ)

)2

i
+
(
AΣq(θ)A

T
)
ii

+ 2 (ε− yi)
(
Aµq(θ)

)
i
+ (ε− yi)2

}−1/2

=

[{(
Aµq(θ)

)
i
+ ε− yi

}2

+
(
AΣq(θ)A

T
)
ii

]−1/2

,
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and

Eq(a2i) (1/a2i) =
(
Eq(θ)

[
{yi − (Aθ)i + ε}2])−1/2

=
[
(yi + ε)2 − 2 (yi + ε)Eq(θ) {(Aθ)i}+ Eq(θ)

{
(Aθ)2

i

}]−1/2

=
(
(yi + ε)2 − 2 (yi + ε)Eq(θ) {(Aθ)i}

+
[
Eq(θ) {(Aθ)i}

]2
+ Varq(θ) {(Aθ)i}

)−1/2

=
{

(yi + ε)2 − 2 (yi + ε)
(
Aµq(θ)

)
i
+
(
Aµq(θ)

)2

i
+
(
AΣq(θ)A

T
)
ii

}−1/2

=

[{
yi −

(
Aµq(θ)

)
i
+ ε
}2

+
(
AΣq(θ)A

T
)
ii

]−1/2

,

where µq(θ) and Σq(θ) are the common parameters of the multivariate normal den-

sity that arises normalizing (C.4), if we assume that mθ→p̌(y |θ,a1,a2) (θ) is conjugate to

mp̌(y |θ,a1,a2)→θ (θ).

Define now the updates

υ1 ←− Aµq(θ), υ2 ←− diagonal
(
AΣq(θ)A

T
)

υ3 ←−
{

(υ1 + ε1n − y)2 + υ2

}−1/2
,

υ4 ←−
{

(y − υ1 + ε1n)2 + υ2

}−1/2
.

(C.11)

Then Algorithm 3.2 follows from updates (C.8) and (C.11), with µq(θ) and Σq(θ) replaced

by their natural parameter counterparts according to (A.9).

C.2 Derivations concerning the skew t likelihood frag-

ment

We here provide details about the derivation of Algorithm 3.4 and 3.5 concerning VMP

skew t likelihood fragment derived according to the two alternative approximating den-

sity specifications. Moreover, we illustrate the related theoretical results and provide a

code for MCMC fitting.

C.2.1 Derivation of Algorithm 3.4

We here derive the algorithm based on the product density restriction (3.22) to which

we refer as Algorithm 3.4.
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It follows from (8) that the logarithm of the normal density term in the likelihood factor

is

log p
(
y|θ, σ2, λ,a1,a2

)
=− 1 + λ2

2σ2

{(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)T
diag (a2)−1

×
(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)}
− 1

2
1n log (a2)

+
n

2

{
log
(
1 + λ2

)
− log

(
σ2
)}

+ const

where “const” indicates terms not depending on the likelihood parameters.

With simple applications of formulae (1.14)–(1.17) and steps similar to those given in

Sections 4.1.5 and S.2.5.5 of Wand (2017) for the Gaussian likelihood fragment and in

McLean and Wand (2018, Sections S.3.2 and S.3.4) for the t likelihood and skew normal

fragment updates we derive the message updates of the VMP algorithm. From hereafter

we denote with “const” terms that do not depend on the variable(s) of interest.

Applying (1.16), the message from factor p (y|θ, σ2, λ,a1,a2) to node θ update involves

expectation with respect to

mp(y|θ,σ2,λ,a1,a2)→σ2

(
σ2
)
mσ2→p(y|θ,σ2,λ,a1,a2)

(
σ2
)
mp(y|θ,σ2,λ,a1,a2)→λ (λ)

×mλ→p(y|θ,σ2,λ,a1,a2) (λ)
n∏
i=1

{
mp(y|θ,σ2,λ,a1,a2)→a1i (a1i)

× ma1i→p(y|θ,σ2,λ,a1,a2) (a1i)mp(y|θ,σ2,λ,a1,a2)→a2i (a2i)ma2i→p(y|θ,σ2,λ,a1,a2) (a2i)
}
.

(C.12)
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We write log p (y|θ, σ2, λ,a1,a2) as a function of θ in terms of the sufficient statistic

vector. Using (C.6) and (C.7) we have

log p
(
y|θ, σ2, λ,a1,a2

)
=− 1 + λ2

2σ2

(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)T
diag (a2)−1

×
(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)
+ const

=− 1 + λ2

2σ2

[
2θTATdiag (a2)−1 σλ |a1| �

√
a2√

1 + λ2

−2θTATdiag (a2)−1 y + tr
{
ATdiag (a2)−1AθθT

} ]

=

[
θ

vec
(
θθT

) ]T


1+λ2

σ2 A
Tdiag (a2)−1 y

−λ
√

1+λ2

σ
ATdiag

(√
a2

)−1 |a1|

−1+λ2

2σ2 vec
{
ATdiag (a2)−1A

}

+ const.

Hence, applying (1.15) and expectation with respect to (C.12), the messagemp(y|θ,σ2,λ,a1,a2)→θ

is proportional to a multivariate normal density function with natural parameter update

ηp(y|θ,σ2,λ,a1,a2)→θ ←−
(
1 + µq(λ2)

)
µq(1/σ2)

[
ATdiag

{
Eq(a2) (1n/a2)

}
y

−1
2
vec
(
ATdiag

{
Eq(a2) (1n/a2)

}
A
) ]

− µq(λ√1+λ2)µq(1/σ)

[
ATdiag

{
Eq(a2)

(
1n/
√
a2

)}
Eq(a1) |a1|

0

]
,

where

µq(1/σk) =

∫ ∞
0

(
1/σk

)
q∗
(
σ2
)
dσ2 for k = 1, 2,

µq(λ2) =

∫ ∞
−∞

λ2q∗ (λ) dλ,

µq(λ
√

1+λ2) =

∫ ∞
−∞

λ
√

1 + λ2q∗ (λ) dλ,

with q∗ (σ2) proportional to

mp(y|θ,σ2,λ,a1,a2)→σ2

(
σ2
)
mσ2→p(y|θ,σ2,λ,a1,a2)

(
σ2
)

and q∗ (λ) similarly defined. Eq(a1) denotes expectation with respect to q∗ (a1) =∏n
i=1 q

∗ (a1i), where q∗ (a1i) is proportional to

mp(y|θ,σ2,λ,a1,a2)→a1i (a1i)ma1i→p(y|θ,σ2,λ,a1,a2) (a1i) = mp(y|θ,σ2,λ,a1,a2)→a1i (a1i)mp(a1)→a1i (a1i)
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and Eq(a2) is similarly defined with q∗ (a2i) being proportional to

mp(y|θ,σ2,λ,a1,a2)→a2i (a2i)ma2i→p(y|θ,σ2,λ,a1,a2) = mp(y|θ,σ2,λ,a1,a2)→a2i (a2i)mp(a2|ν)→a2i (a2i) .

Applying (1.16), the message from factor p (y|θ, σ2, λ,a1,a2) to node σ2 update involves

expectation with respect to the normalization of

mp(y|θ,σ2,λ,a1,a2)→θ (θ)mθ→p(y|θ,σ2,λ,a1,a2) (θ)mp(y|θ,σ2,λ,a1,a2)→λ (λ)

×mλ→p(y|θ,σ2,λ,a1,a2) (λ)×
n∏
i=1

{
mp(y|θ,σ2,λ,a1,a2)→a1i (a1i)

× ma1i→p(y|θ,σ2,λ,a1,a2) (a1i)mp(y|θ,σ2,λ,a1,a2)→a2i (a2i)ma2i→p(y|θ,σ2,λ,a1,a2) (a2i)
}
.

(C.13)

Writing log p (y|θ, σ2, λ,a1,a2) as a function of σ2 in terms of the sufficient statistic

vector we have

log p
(
y|θ, σ2, λ,a1,a2

)
=− n

2
log
(
σ2
)
− 1 + λ2

2σ2

(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)T
× diag (a2)−1

(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)
+ const

=− n

2
log
(
σ2
)
− 1 + λ2

2σ2

(
(y −Aθ)T diag (a2)−1 (y −Aθ)

−2 (y −Aθ)T diag (a2)−1 σλ |a1| �
√
a2√

1 + λ2

)
+ const

=


log (σ2)

1/σ

1/σ2


T



−n/2

λ
√

1 + λ2 (y −Aθ)T

×diag
(√
a2

)−1 |a1|

−1
2

(1 + λ2) (y −Aθ)T

×diag (a2)−1 (y −Aθ)


+ const.

Therefore, application of formula (1.15) and expectation with respect to (C.13) show

that the message mp(y|θ,σ2,λ,a1,a2)→σ2 is proportional to an inverse square root Nadarajah
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density function with natural parameter update

ηp(y|θ,σ2,λ,a1,a2)→σ2 ←−



−n/2

µq(λ
√

1+λ2)
{
y −AEq(θ) (θ)

}T
×diag

{
Eq(a2)

(
1n/
√
a2

)}
Eq(a1) |a1|

(
1 + µq(λ2)

)
GVMP

(
ηp(y|θ,σ2,λ,a1,a2)↔θ;

ATdiag
{
Eq(a2) (1n/a2)

}
A,ATdiag

{
Eq(a2) (1n/a2)

}
y,

yTdiag
{
Eq(a2) (1n/a2)

}
y
)


,

where Eq(θ) denotes expectation with respect to the normalization of

mp(y|θ,σ2,λ,a1,a2)→θ (θ)mθ→p(y|θ,σ2,λ,a1,a2) (θ) .

The treatment of mp(y|θ,σ2,λ,a1,a2)→σ2 (σ2) is analogous to that for the messages from the

likelihood factor to σ2 for the asymmetric Laplace distribution in McLean and Wand

(2018, Section S.3.3).

Applying (1.16), the message from factor p (y|θ, σ2, λ,a1,a2) to node λ update involves

expectation with respect to the normalization of

mp(y|θ,σ2,λ,a1,a2)→θ (θ)mθ→p(y|θ,σ2,λ,a1,a2) (θ)mp(y|θ,σ2,λ,a1,a2)→σ2

(
σ2
)

×mσ2→p(y|θ,σ2,λ,a1,a2)

(
σ2
) n∏
i=1

{
mp(y|θ,σ2,λ,a1,a2)→a1i (a1i)

× ma1i→p(y|θ,σ2,λ,a1,a2) (a1i)mp(y|θ,σ2,λ,a1,a2)→a2i (a2i)ma2i→p(y|θ,σ2,λ,a1,a2) (a2i)
}
.

(C.14)
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Writing log p (y|θ, σ2, λ,a1,a2) as a function of λ in terms of the sufficient statistic

vector we have

log p
(
y|θ, σ2, λ,a1,a2

)
=
n

2
log
(
1 + λ2

)
− 1 + λ2

2σ2

(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)T
× diag (a2)−1

(
y −Aθ − σλ |a1| �

√
a2√

1 + λ2

)
+ const

=
n

2
log
(
1 + λ2

)
− λ2

2σ2
(y −Aθ)T diag (a2)−1 (y −Aθ)

− 1

2
λ2 ‖a1‖2 +

λ
√

1 + λ2

σ
(y −Aθ)T diag (a2)−1 |a1|+ const

=


log (1 + λ2)

λ2

λ
√

1 + λ2


T



n/2

−1
2

{
1
σ2 (y −Aθ)T diag (a2)−1

× (y −Aθ) + ‖a1‖2}
1
σ

(y −Aθ)T diag
(√
a2

)−1 |a1|


+ const

where ‖v‖ =
√
vTv for any vector v.

It follows from application of (1.15) and expectation with respect to (C.14) that the

message mp(y|θ,σ2,λ,a1,a2)→λ is proportional to density functions within the Sea Sponge

exponential family with natural parameter update

ηp(y|θ,σ2,λ,a1,a2)→λ ←−



n/2

µq(1/σ2)GVMP

(
ηp(y|θ,σ2,λ,a1,a2)↔θ;

ATdiag
{
Eq(a2) (1n/a2)

}
A,ATdiag

{
Eq(a2) (1n/a2)

}
y,

yTdiag
{
Eq(a2) (1n/a2)

}
y
)
− 1

2
Eq(a1) ‖a1‖2

µq(1/σ)

{
y −AEq(θ) (θ)

}T
×diag

{
Eq(a2)

(
1n/
√
a2

)}
Eq(a1) |a1|


,

where µq(1/ak2)
=
∫∞

0

(
1/ak2

)
q∗ (a2) da2, for k = 1/2, 1.
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Applying (1.16), the message from factor p (y|θ, σ2, λ,a1,a2) to node a1i update involves

expectation with respect to the normalization of

mp(y|θ,σ2,λ,a1,a2)→θ (θ)mθ→p(y|θ,σ2,λ,a1,a2) (θ)mp(y|θ,σ2,λ,a1,a2)→σ2

(
σ2
)

×mσ2→p(y|θ,σ2,λ,a1,a2)

(
σ2
)
mp(y|θ,σ2,λ,a1,a2)→λ (λ)mλ→p(y|θ,σ2,λ,a1,a2) (λ)

×
n∏
i=1

mp(y|θ,σ2,λ,a1,a2)→a2i (a2i)ma2i→p(y|θ,σ2,λ,a1,a2) (a2i) .

(C.15)

Writing log p (y|θ, σ2, λ,a1,a2) as a function of a1i in terms of the sufficient statistic

vector we have

log p
(
y|θ, σ2, λ,a1,a2

)
= −1 + λ2

2σ2a2i

(
(y −Aθ)i −

σλ |a1i|
√
a2i√

1 + λ2

)2

+ const

=
λ
√

1 + λ2

σ
√
a2i

(y −Aθ)i |a1i| −
1

2
λ2a2

1i + const

=

[
|a1i|
a2

1i

]T [
λ
√

1+λ2

σ
√
a2i

(y −Aθ)i

−1
2
λ2

]
+ const.

Application of formula (1.15) and expectation with respect to (C.15) indicates that the

natural parameter for the messages from p (y|θ, σ2, λ,a1,a2) to the a1i, 1 ≤ i ≤ n,

variables are

mp(y|θ,σ2,λ,a1,a2)→a1i (a1i) = exp


[
|a1i|
a2

1i

]T
ηp(y|θ,σ2,λ,a1,a2)→a1i


with natural parameter update

ηp(y|θ,σ2,λ,a1,a2)→a1i ←−
[
µq(1/σ)µq(λ

√
1+λ2)

{
Eq(a2)

(
1/
√
a2

)}
i

{
y −AEq(θ) (θ)

}
i

−1
2
µq(λ2)

]
.

Messages from p (a1) to a1i, 1 ≤ i ≤ n, are

mp(a1)→a1i (a1i) = exp

(
−1

2
a2

1i

)
,

hence

q∗ (a1i) ∝ exp


[
|a1i|
a2

1i

]T [
µq(1/σ)µq(λ

√
1+λ2)

{
Eq(a2)

(
1/
√
a2

)}
i

{
y −AEq(θ) (θ)

}
i

−1
2

(
1 + µq(λ2)

) ] .
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Standard manipulations involving the standard normal density and, in particular, results

(A.14) and (A.16) provide expressions for the expectations with respect to Eq(a1)

Eq(a1) |a1| =
ω3 + ζ

′
(ω3)√

1 + µq(λ2)

and Eq(a1) ‖a1‖2 =
n+ 1Tn

[
ω3 �

{
ω3 + ζ

′
(ω3)

}]
1 + µq(λ2)

,

where ω3 is defined in Algorithm 3.4. The previous expressions involve the first deriva-

tive of ζ (x) = log (2Φ (x)), that is, ζ
′
(x) = φ (x) /Φ (x) with φ and Φ distribution

density function and cumulative distribution function of the standard normal respec-

tively. The function zeta() within the R package sn (Azzalini, 2017) supports stable

computation of ζ
′
.

Applying (1.16), the message from factor p (y|θ, σ2, λ,a1,a2) to node a2i update involves

expectation with respect to the normalization of

mp(y|θ,σ2,λ,a1,a2)→θ (θ)mθ→p(y|θ,σ2,λ,a1,a2) (θ)mp(y|θ,σ2,λ,a1,a2)→σ2

(
σ2
)

×mσ2→p(y|θ,σ2,λ,a1,a2)

(
σ2
)
mp(y|θ,σ2,λ,a1,a2)→λ (λ)mλ→p(y|θ,σ2,λ,a1,a2) (λ)

×
n∏
i=1

mp(y|θ,σ2,λ,a1,a2)→a1i (a1i)ma1i→p(y|θ,σ2,λ,a1,a2) (a1i) .

(C.16)

Writing log p (y|θ, σ2, λ,a1,a2) as a function of a2i in terms of the sufficient statistic

vector we have

log p
(
y|θ, σ2, λ,a1,a2

)
=− 1

2
log (a2i)−

1 + λ2

2σ2a2i

(
(y −Aθ)i −

σλ |a1i|
√
a2i√

1 + λ2

)2

+ const

=− 1

2
log (a2i)−

1 + λ2

2σ2a2i

{(y −Aθ)i}
2

+
λ
√

1 + λ2

σ
√
a2i

(y −Aθ)i |a1i|+ const

=


log (a2i)

1/
√
a2i

1/a2i


T 

−1/2
λ
√

1+λ2

σ
(y −Aθ)i |a1i|

−1+λ2

2σ2 {(y −Aθ)i}
2

+ const.

Application of formula (1.15) and expectation with respect to (C.16) indicates that the

messages from p (y|θ, σ2, λ,a1,a2) to a2i, 1 ≤ i ≤ n, are

mp(y|θ,σ2,λ,a1,a2)→a2i (a2i) = exp




log (a2i)

1/
√
a2i

1/a2i


T

ηp(y|θ,σ2,λ,a1,a2)→a2i

 ,
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with natural parameter update

ηp(y|θ,σ2,λ,a1,a2)→a2i ←−


−1/2

µq(1/σ)µq(λ
√

1+λ2)
{
y −AEq(θ) (θ)

}
i

(
Eq(a1) |a1|

)
i

−1
2
µq(1/σ2)

(
1 + µq(λ2)

)
Eq(θ) {(y −Aθ)i}

2

 ,
which is within the inverse square root Nadarajah family, that provides expressions for

expectations with respect to Eq(a2) included in the algorithm by conjugacy with

mp(a2i|ν)→a2i (a2i) = exp


[

log (a2i)

1/a2i

]T [
−1

2
µq(ν) − 1

−1
2
µq(ν)

]
from the Inverse-χ2 family.

As a function of ν we have

log p (a2|ν) = n {(ν/2) log (ν/2)− log {Γ (ν/2)}} − (ν/2) 1Tn {log (a2) + 1/a2}+ const

=

[
(ν/2) log (ν/2)− log {Γ (ν/2)}

(ν/2)

]T [
n

−1Tn {log (a2) + 1/a2}

]
+ const.

Therefore the natural parameter vector of the message mp(a2|ν)→ν involves expectation

with respect to a2 only and according to formula (1.15) has form

ηp(a2|ν)→ν ←−
[

n

−1TnEq(a2) {log (a2) + 1n/a2}

]
,

which is proportional to a factor of 2 rescaling of a Moon Rock density function. Im-

posing conjugacy, the message mν→p(a2|ν) (ν) is proportional to the same exponential

family. It follows that

q∗ (ν) ∝ exp


[

(ν/2) log (ν/2)− log (Γ (ν/2))

(ν/2)

]T
ηp(a2|ν)↔ν

 ,

which leads to

µq(ν) =

∫ ∞
0

νq∗ (ν) dν.

Note that the algorithm requires initialization of one of the vectors of expectations

involving the two auxiliary variables a1 and a2. In Algorithm 3.4 we choose to initialize
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Eq(a2)

(
1n/
√
a2

)
.

C.2.2 Proof of Theorem 3.1

First note that

Corr (|a1| , 1/
√
a2 |x) =

E
(
|a1| /

√
a2 |x

)
− E (|a1| |x)E

(
1/
√
a2 |x

)√
E (a2

1 |x)− E (|a1| |x)2
√
E (1/a2 |x)− E

(
1/
√
a2 |x

)2
.

(C.17)

We then study single components of the previous expression.

Term E (|a1| | x)

Note that

E (|a1| | x) =

∫ ∞
−∞
|a1| p (a1 |x) da1 =

1

p (x)

∫ ∞
−∞

p (a2)

∫ ∞
0

|a1| p (x | a1, a2) p (a1) da1da2

and consider the inner integral. With standard manipulations involving the standard

normal distribution density function and the cumulative distribution function and using

(A.12) we can write

∫ ∞
−∞
|a1| p (x | a1, a2) p (a1) da1 =

1
√
πσ0

√
1 + λ2

0

√
a2

{
1√
π
K1 +

√
2λ0 (x− µ0)

σ0
√
a2

K2

}
(C.18)

where

K1 = exp

{
−(1 + λ2

0) (x− µ0)2

2σ2
0a2

}
and K2 = exp

{
−(x− µ0)2

2σ2
0a2

}
Φ

{
λ0 (x− µ0)

σ0
√
a2

}
.

Hence,

E (|a1| | x) =
1

√
πσ0

√
1 + λ2

0p (x)

{
1√
π

∫ ∞
0

1√
a2

p (a2)K1da2

+

√
2λ0 (x− µ0)

σ0

∫ ∞
0

1

a2

p (a2)K2da2

}
.

(C.19)
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Term E
(
|a1| /

√
a2 |x

)
Note that

E

( |a1|√
a2

∣∣∣∣x) =

∫ ∞
0

∫ ∞
−∞

|a1|√
a2

p (a1, a2 |x) da1da2

=
1

p (x)

∫ ∞
0

1√
a2

p (a2)

∫ ∞
−∞
|a1| p (x | a1, a2) p (a1) da1da2.

Using result (C.18) we get

E

( |a1|√
a2

∣∣∣∣x) =
1

√
πσ0

√
1 + λ2

0p (x)

{
1√
π

∫ ∞
0

1

a2

p (a2)K1da2

+

√
2λ0 (x− µ0)

σ0

∫ ∞
0

1

a
3/2
2

p (a2)K2da2

}
.

(C.20)

Term E (a2
1 |x)

Note that

E
(
a2

1 |x
)

=

∫ ∞
−∞

a2
1p (a1 |x) da1 =

1

p (x)

∫ ∞
−∞

p (a2)

∫ ∞
0

a2
1p (x | a1, a2) p (a1) da1da2.

With standard manipulations involving the standard normal distribution density and

cumulative distribution functions and using (A.13) the inner integral in the previous

expression becomes∫ ∞
−∞

a2
1p (x | a1, a2) p (a1) da1 =

1√
πσ2

0 (1 + λ2
0)

[
λ0 (x− µ0)√

πa2

K1

+

√
2
{
λ2

0 (x− µ0)2 + σ2
0a2

}
σ0a

3/2
2

K2

]
.

Finally,

E
(
a2

1 |x
)

=
1√

πσ2
0 (1 + λ2

0) p (x)

[
λ0 (x− µ0)√

π

∫ ∞
0

1

a2

p (a2)K1da2

+

√
2

σ0

∫ ∞
0

{
λ2

0 (x− µ0)2

a
3/2
2

+
σ2

0√
a2

}
p (a2)K2da2

]
.

(C.21)
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Term E
(
1/
√
a2 |x

)
Note that

E

(
1√
a2

∣∣∣∣x) =

∫ ∞
0

1√
a2

p (a2 |x) da2 =
1

p (x)

∫ ∞
−∞

1√
a2

p (a2)

∫ ∞
0

p (x | a1, a2) p (a1) da1da2.

With standard manipulations involving the standard normal distribution density and

cumulative distribution functions and using (A.11) the inner integral in the previous

expression becomes ∫ ∞
0

p (x | a1, a2) p (a1) da1 =

√
2√

πσ0
√
a2

K2.

It follows that

E

(
1√
a2

∣∣∣∣x) =

√
2√

πσ0p (x)

∫ ∞
0

1

a2

p (a2)K2da2. (C.22)

Term E (1/a2 |x)

Similarly to term E
(
1/
√
a2 |x

)
we get

E

(
1

a2

∣∣∣∣x) =

√
2√

πσ0p (x)

∫ ∞
0

1

a
3/2
2

p (a2)K2da2. (C.23)

Consider expression (C.17) again. Substituting expressions (C.20)–(C.23) in it and di-

viding numerator and denominator by
{√

2λ0 (x− µ0)
}
{√πσ0p (x)}−1 ∫∞

0
1

a
3/2
2

p (a2)K2da2

we get

Corr (|a1| , 1/
√
a2 |x = x0) =[

1 +
σ0√

2πλ0 (x− µ0)

C2

G3

− 1

p (x)

{
1

πλ0 (x− µ0)

C1G2

G3

+

√
2√
πσ0

G2
2

G3

}]

×
{

1−
√

2√
πσ0p (x)

G2
2

G3

}−1/2

×
[
1 +

σ0√
2πλ0 (x− µ0)

C2

G3

+
σ2

0

λ2
0 (x− µ0)2

G1

G3

− 1

p (x)

{
σ0√

2π3/2λ2
0 (x− µ0)2

C2
1

G3

+
2

πλ0 (x− µ0)

C1G2

G3

+

√
2√
πσ0

G2
2

G3

}]−1/2

(C.24)
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with

C1 =

∫ ∞
0

1√
a2

p (a2)K1da2 =
(ν0

2

)− 1
2 Γ {(ν0 + 1) /2}

Γ (ν0/2)

×
{

1 +
(1 + λ2

0) (x− µ0)2

ν0σ2
0

}− ν0+1
2

,

(C.25)

C2 =

∫ ∞
0

1

a2

p (a2)K1da2 =

{
1 +

(1 + λ2
0) (x− µ0)2

ν0σ2
0

}− ν0
2
−1

, (C.26)

G1 =

∫ ∞
0

1√
a2

p (a2)K2da2 <
(ν0

2

)− 1
2 Γ {(ν0 + 1) /2}

Γ (ν0/2)

{
1 +

(x− µ0)2

ν0σ2
0

}− ν0+1
2

,

(C.27)

G2 =

∫ ∞
0

1

a2

p (a2)K2da2 <

{(ν0

2

) ν0
2
/

Γ
(ν0

2

)}{
1 +

(x− µ0)2

ν0σ2
0

}− ν0
2
−1

,

(C.28)

and G3 =

∫ ∞
0

1

a
3/2
2

p (a2)K2da2 >
(ν0

2

)− 3
2 Γ {(ν0 + 3) /2}

Γ (ν0/2)

{
1 +

(x− µ0)2

ν0σ2
0

}− ν0+3
2

− σ0√
2πλ0 (x− µ0)

{
1 +

(1 + λ2
0) (x− µ0)2

ν0σ2
0

}− ν0
2
−1

.

(C.29)

The expressions and inequalities in (C.25)–(C.29) are obtained with standard algebra

and integration involving the gamma function. In particular, the upper bound for G1

and G2 in (C.27) and (C.28) are derived using the fact that Φ (t) > 1−(2π)−1/2 t−1e−t/2,

∀t ∈ R. The lower bound for G3 in (C.29) is derived making use of Φ (t) < 1, ∀t ∈ R.

We can then study the behavior of single components of (C.24) when |λ0| → ∞ using

simplifications (C.25)–(C.29) and setting x = x0 ∈ R. We then have, for instance,

lim
|λ0|→∞

σ0√
2πλ0 (x0 − µ0)

C2

G3

≤ lim
|λ0|→∞

σ0√
2πλ0 (x0 − µ0)

{
1 +

(1 + λ2
0) (x0 − µ0)2

ν0σ2
0

}− ν0
2
−1

×

(ν0

2

)− 3
2 Γ {(ν0 + 3) /2}

Γ (ν0/2)

{
1 +

(x0 − µ0)2

ν0σ2
0

}− ν0+3
2

− σ0√
2πλ0 (x0 − µ0)

{
1 +

(1 + λ2
0) (x0 − µ0)2

ν0σ2
0

}− ν0
2
−1
−1

= 0.
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Similar arguments lead to the final expression

lim
|λ0|→∞

Corr (|a1| , 1/
√
a2 |x = x0) = lim

|λ0|→∞

1−
√

2√
πσ0p(x0)

G2
2

G3√
1−

√
2√

πσ0p(x0)

G2
2

G3

√
1−

√
2√

πσ0p(x0)

G2
2

G3

= 1.

C.2.3 Derivation of Algorithm 3.5

We now derive the algorithm based on product density restriction (3.24). The main

implications in terms of algebra passing from assumption (3.22) to assumption (3.24)

concern the auxiliary variables. Expectations with respect to Eq(a1) and Eq(a2) are

replaced by the joint expectation Eq(a1,a2). Following steps similar to those for Algorithm

3.4 we obtain

q∗ (a1i, a2i) ∝ exp




a2

1i

|a1i| /
√
a2i

1/a2i

log (a2i)


T

ηq(a1i,a2i)


= exp




a2

1i

|a1i| /
√
a2i

1/a2i

log (a2i)


T 

η1

η2

η3

η4



,

where we use the shorthand:

η1 =
(
ηq(a1i,a2i)

)
1

= −1

2

(
1 + µq(λ2)

)
,

η2 =
(
ηq(a1i,a2i)

)
2

= µq(λ
√

1+λ)µq(1/σ)τ 1,

η3 =
(
ηq(a1i,a2i)

)
3

=
(
1 + µq(λ2)

)
µq(1/σ2)τ 2 −

1

2
µq(ν),

η4 =
(
ηq(a1i,a2i)

)
4

= −1

2

(
3 + µq(ν)

)
.

Expressions for τ 1 and τ 2 are given in Algorithm 3.5.

Algorithm 3.5 updates include the following sufficient statistic expectations of a bivariate

exponential family identified by the superscript MW

(ET )MW

1

(
ηq(a1i,a2i)

)
= Eq(a1i,a2i)

(
a2

1i

)
=
N1

D
,

(ET )MW

2

(
ηq(a1i,a2i)

)
= Eq(a1i,a2i) (|a1i| /

√
a2i) =

N2

D
,

(ET )MW

3

(
ηq(a1i,a2i)

)
= Eq(a1i,a2i) (1/a2i) =

N3

D
,

(ET )MW

4

(
ηq(a1i,a2i)

)
= Eq(a1i,a2i) {log (a2i)} =

N4

D
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where

D =

∫ ∞
0

∫ ∞
−∞

aη42i exp

(
η1a

2
1i + η2

|a1i|√
a2i

+
η3

a2i

)
da1ida2i,

N1 =

∫ ∞
0

∫ ∞
−∞

a2
1ia

η4
2i exp

(
η1a

2
1i + η2

|a1i|√
a2i

+
η3

a2i

)
da1ida2i,

N2 =

∫ ∞
0

∫ ∞
−∞
|a1i| aη4−

1
2

2i exp

(
η1a

2
1i + η2

|a1i|√
a2i

+
η3

a2i

)
da1ida2i,

N3 =

∫ ∞
0

∫ ∞
−∞

aη4−1
2i exp

(
η1a

2
1i + η2

|a1i|√
a2i

+
η3

a2i

)
da1ida2i,

N4 =

∫ ∞
0

∫ ∞
−∞

aη42i log (a2i) exp

(
η1a

2
1i + η2

|a1i|√
a2i

+
η3

a2i

)
da1ida2i.

With standard manipulations involving the standard normal distribution density and

cumulative distribution functions and, in particular, results (A.11)–(A.13) the previous

expressions simplify as follows:

(ET )MW

1

(
ηq(a1i,a2i)

)
=

η2

4I1

{
I2√

π (−η1)3/2
+
η2I3

η2
1

}
− 1

2η1

,

(ET )MW

2

(
ηq(a1i,a2i)

)
=

1

2I1

(
I2√−πη1

− η2I3

η1

)
,

(ET )MW

3

(
ηq(a1i,a2i)

)
=
I3

I1

,

(ET )MW

4

(
ηq(a1i,a2i)

)
=
I4

I1

.

where

Ii =

∫ ∞
0

{log (x)}pi xqieri/xΦ
(
si√
x

)
dx, i = 1, . . . , 4

and

p1 = 0, q1 = η4 < −
3

2
, r1 = η3 −

η2
2

4η1

< 0, s1 =
η2√−2η1

∈ R,

p2 = 0, q2 = η4 −
1

2
< −2, r2 = η3 < 0, s2 =∞,

p3 = 0, q3 = η4 − 1 < −5

2
, r3 = η3 −

η2
2

4η1

< 0, s3 =
η2√−2η1

∈ R,

p4 = 1, q4 = η4 < −
3

2
, r4 = η3 −

η2
2

4η1

< 0 and s4 =
η2√−2η1

∈ R.

Integral I2 has the following simple closed form:

I2 = (−r2)q2+1 Γ (−q2 − 1) .
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The integrals I1, I3 and I4 are expressible in closed form in terms of Gaussian hyperge-

ometric functions 2F1 (a, b; c; z), making use of results 4.3.8 and 4.3.9 in Ng and Geller

(1969). For i = 1, 3, 4,

Ii =
1

2
(−ri)qi+1 Γ (−qi − 1) +

s√
2π

(−ri)qi+
1
2 Γ

(
−qi −

1

2

)
× 2F1

(
1

2
,−qi −

1

2
;
3

2
;
s2
i

2ri

)
if

∣∣∣∣ s2
i

2ri

∣∣∣∣ < 1,

Ii =
1

2
(−ri)qi+1 Γ (−qi − 1) +

s√
2π

(−ri)qi+
1
2 Γ

(
−qi −

1

2

)
× 2F1

(
−qi − 1,−qi −

1

2
;−qi;

2ri
s2
i

)
if

∣∣∣∣ s2
i

2ri

∣∣∣∣ > 1.

Evaluation of the Gaussian hypergeometric function is supported by the function hyperg 2F1

in the R package gsl (Hankin, 2006) (Hankin, 2006). However, evaluation of 2F1 (a, b; c; z)

for argument values close to 1 is cumbersome in practical implementations. Therefore

numerical integration is necessary when the argument z = |s2
i / (2ri)| of the Gaussian

hypergeometric function is close to 1.

Efficient numerical integration can be performed via the simple trapezoidal rule (see

Appendix B of (Wand et al., 2011)). Working on the log-scale is strongly recommended

to avoid underflow and overflow. Integrals I1, I3 and I4 are basically concerned with

computation of integrals of the form

I =

∫ ∞
0

log (x)p xqer/x+ζ(s/
√
x)dx (C.30)

Setting u = log x, expression (C.30)

I =

∫ ∞
−∞

eh(u)du

= eh(umax)

∫ ∞
−∞

eh(u)−h(umax)du,

where h (u) = p log u + (q + 1)u + re−u + ζ
(
se−u/2

)
and umax = max

u
h (u). First and

second order derivatives are

h
′
(u) =

p

u
+ q + 1− re−u − s

2
ζ
′ (
se−u/2

)
e−u/2

h
′′

(u) = − p

u2
+ re−u +

s

4
e−u/2ζ

′ (
se−u/2

)
+
s2

4
e−uζ

′′ (
se−u/2

)
.
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Study of the second order derivative can take advantage of expression

ζ
′′

(x) = −ζ ′ (x)
{
x+ ζ

′
(x)
}

appearing in Section 4 of Azzalini and Capitanio (1999) and reveals integrand functions

are log-concave if s < 0 for all other parameter values, which aids numerical integration

strategies. If s is positive, log-concavity is guaranteed for certain values of r.

Derivation of Algorithm 3.5 is then analogous to that of Algorithm 3.4 apart for re-

placement of the components involving auxiliary variables with the previous results on

the joint distribution of auxiliary variables.

C.2.4 rstan code for fitting skew t regression via MCMC

A description of Stan is provided in Subsection B.1.4 of Appendix B. We here describe

the rstan code for fitting of skew t regression, taking advantage of the formulation 3.21.

Similar scripts were employed to test the algorithms for the Pareto and SVR likelihood

fragments.

The first step consists in setting the values for burn-in, kept sample size and thinning

factor.

nWarm <- 10000 # Length of burn-in.

nKept <- 5000 # Size of the kept sample.

nThin <- 5 # Thinning factor.

Second, specify the input data: the number of observations, n, the design matrix, A, the

response vector, y and the hyperparameters, σθ, Aσ, σλ, which are associated with the

prior distributions defined in the model environment. Constrains can also be included.

For instance, in our case all hyperparameters must be positive.

SkewtRegModel <-

’data

{

int<lower=1> n;

vector[n] y; matrix[n,2] A;

real<lower=0> sigmaTheta; real<lower=0> AsigmaHYP;

real<lower=0> sigmaLambda; real<lower=0> nuHYP;

}

Then, specify parameters and transformed parameters. The transformed parameters

environment allows to include the auxiliary variable formulation of the model.
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parameters

{

vector[2] theta; real<lower=0> sigma;

vector[n] aux1Vec; vector<lower=0>[n] aux2Vec;

real lambda; real<lower=0> nu;

}

transformed parameters

{

vector[n] meanShift; vector<lower=0>[n] sigmaAdj;

for (i in 1:n)

{

meanShift[i] = sigma*lambda*fabs(aux1Vec[i])*

sqrt(aux2Vec[i])/sqrt(1 + lambda^2);

sigmaAdj[i] = sigma*sqrt(aux2Vec[i])/sqrt(1 + lambda^2);

}

}

Finally, define the Bayesian model, including prior distributions.

model

{

for (i in 1:n)

{

y[i] ~ poisson(exp(etaVec[i]));

}

beta ~ normal(0,sigmaBeta); u ~ normal(0,sigma);

sigma ~ cauchy(0,A);

}’

The rstan code is now ready to be compiled and fit the model on real data.

allData <- list(n=n,ncZ=ncZ,y=y,X=X,Z=Z,sigmaBeta=sigmaBeta,A=A)

stanCompilObj <- stan(model_code=PoissRespNPregn,data=allData,

iter=1,chains=1)

Last, obtain the MCMC samples for each parameter and save the Stan output. In our

case the β vector is of dimension 1× 2.

stanObj <- stan(model_code=PoissRespNPregn,data=allData,warmup=nBurnin,
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iter=(nWarm+nKept),chains=1,thin=nThin,refresh=100,

fit=stanCompilObj)

betaMCMC <- NULL

for (j in 1:2)

{

charVar <- paste("beta[",as.character(j),"]",sep="")

betaMCMC <- rbind(betaMCMC,extract(stanObj,charVar,permuted=FALSE))

}

uMCMC <- NULL

for (k in 1:ncZ)

{

charVar <- paste("u[",as.character(k),"]",sep="")

uMCMC <- rbind(uMCMC,extract(stanObj,charVar,permuted=FALSE))

}

sigmaMCMC <- as.vector(extract(stanObj,"sigma",permuted=FALSE))
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D.1 Derivations concerning MFVB for Poisson and

logistic two-level random effects models

We here provide details about the derivation of Algorithm 4.3 and Result 4.1 concerning

MFVB for the Poisson two-level random effects models. Derivations of Algorithm 4.4

and Result 4.2 concerning MFVB for the logistic two-level random effects models can

be obtained in a similar way.

D.1.1 Derivation of Algorithm 4.3

Arguments analogous to those given for the Poisson case treated in Algorithm 1 of Luts

and Wand (2015) and in the appendix of Nolan et al. (2018) for the two-level Gaussian

mixed model lead to:

q (β,u) is a N
(
µq(β,u),Σq(β,u)

)
density function,

where

Σq(β,u) =
(
CTR−1

2PMFVBC +D2PMFVB

)−1
and µq(β,u) = Σq(β,u)

(
CTz2PMFVB + o2PMFVB

)
,

with R2PMFVB, D2PMFVB, z2PMFVB and o2PMFVB defined as in (4.13);

q (Σ) is an Inverse-G-Wishart
(
Gfull, ξq(Σ),Λq(Σ)

)
density function,

where ξq(Σ) = νΣ + 2q − 2 +m and

Λq(Σ) = M q(A−1
Σ ) +

m∑
i=1

(
µq(ui)µ

T
q(ui)

+ Σq(ui)

)
,
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with M q(Σ−1) =
(
ξq(Σ) − q + 1

)
Λ−1
q(Σ);

q (AΣ) is an Inverse-G-Wishart
(
Gdiag, ξq(AΣ),Λq(AΣ)

)
density function,

where ξq(AΣ) = νΣ + q and

Λq(AΣ) = diag
{

dg
(
M q(Σ−1)

)}
+ ΛAΣ

,

with inverse moment M q(A−1
Σ ) = ξq(AΣ)Λ

−1
q(AΣ). The previous results give rise to a coor-

dinate ascent iterative algorithm, which includes, for instance, Algorithm 1 of Luts and

Wand (2015) as a special case of model (4.7). A streamlined version of such an algorithm

can be obtained taking advantage of 4.1 and using SolveTwoLevelSparseLeastSquares

(Algorithm 4.2) to compute µq(β,u) and Σq(β).

D.1.2 Derivation of Result 4.1

It is easy to see that the µq(β,u) and Σq(β) updates in (4.12) may be written as

µq(β,u) ←−
(
BTB

)−1
BTb = A−1a, Σq(β) ←−

(
BTB

)−1
= A−1,

where B and b are specified as in (4.5), with bi, Bi and
•

Bi from (4.15).

D.2 Derivations concerning VMP for Poisson and

logistic two-level random effects models

We here provide details about the derivation of Result 4.3.



D.2.1 Derivation of Result 4.3

First note that

q (β,u) ∝ mp(y |β,u)→(β,u) (β,u)m(β,u)→p(y |β,u) (β,u)

= exp





β

vech
(
ββT

)
stack
1≤i≤m


ui

vech
(
uiu

T
i

)
vec
(
βuTi

)




T

ηp(y |β,u)↔(β,u)


= exp


[
β

u

]T
a− 1

2

[
β

u

]T
A

[
β

u

] ,

where a and A are given in Result 4.3 and the last step makes use of (4.6). With

standard manipulations we obtain

µq(β,u) = A−1a, Σq(β,u) = A−1.

Extraction of the sub-blocks of A−1a and the important sub-blocks of A−1 according

to (4.14) gives Result 4.3.
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