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RIASSUNTO 

 

PRESUPPOSTI DELLO STUDIO: Le infezioni respiratorie ricorrenti (IRR) 

rappresentano una condizione molto diffusa; contribuiscono in modo sostanziale alla 

morbilità pediatrica ed hanno un costo economico e sociale elevato. Gli 

immunostimolanti, come il pidotimod, sono utilizzati per la loro prevenzione. Recenti 

evidenze suggeriscono che anche i probiotici possano avere un ruolo preventivo nelle 

IRR. 

 

OBIETTIVO DELLO STUDIO: Valutare se il trattamento con pidotimod e/o bifidobatteri 

si associ a 1) riduzione della morbilità correlata alle IRR e 2) differenze nel profilo 

metabolomico urinario pre e post terapia 

 

MATERIALI E METODI: Si tratta di uno studio a 4 braccia, esplorativo, prospettico, 

randomizzato e controllato, in doppio cieco e versus placebo condotto durante gli 

stessi 3 mesi autunnali in due anni consecutivi. Sono stati arruolati bambini dai 3 ai 6 

anni con diagnosi di IRR che frequentavano la scuola materna e sono stati assegnati 

in modo randomizzato a ricevere il trattamento attivo (pidotimod e/o bifidobatterio) o il 

placebo per i primi 10 giorni di ciascun mese per 4 mesi. L’analisi metabolomica sui 

campioni di urine raccolti prima e dopo il trattamento è stata eseguita mediante 

spettroscopia di massa accoppiata con cromatografia liquida ad alta performance 

(UPLC-MS). 

 

RISULTATI: Confrontati con il gruppo placebo, i bambini trattati con pidotimod, con o 

senza bifidobatteri, presentavano una proporzione di giorni liberi da sintomi 

significativamente più alta (p=0.02 and p=0.003, rispettivamente) e una percentuale 

più bassa di giorni con rinite (p=0.004 and p=0.005, rispettivamente). Dal punto di vista 

metabolomico questi bambini presentavano un profilo significativamente diverso 

rispetto a quelli trattati con placebo. I bambini trattati con solo pidotimod dimostravano 

un profilo metabolico urinario ancora diverso rispetto a quelli trattati con la 

combinazione pidotimod e bifidobatterio. Dall’altro lato i bambini trattati con solo 

bifidobatterio non dimostravano differenze significative se confrontati con il gruppo 

placebo né per quanto riguarda gli outcome clinici né nel profilo metabolomico. 

 



 5 

CONCLUSIONI: lo studio dimostra che i bambini con IRR trattati con pidotimod hanno 

un outcome clinico migliore e un profilo metabolomico urinario diverso rispetto ai 

bambini trattati con placebo, mentre i bambini trattati con il solo bifidobatterio non 

hanno dimostrato differenze né negli outcome clinici né nel profilo metabolomico se 

confrontati con quelli che hanno assunto placebo. L’associazione del bifidobatterio al 

pidotimod non modifica l’outcome clinico, ma l’analisi metabolomica è stata in grado di 

dimostrare, andando oltre la clinica, che questi due gruppi presentano delle differenze 

a cui la composizione del microbiota intestinale potrebbe contribuire. 

 

 

ABSTRACT 

 

BACKGROUND: Many preschool children develop recurrent respiratory tract 

infections (RRI). Strategies to prevent RRI include the use of immunomodulators, as 

pidotimod or probiotics, but there is limited evidence on the clinical effects of the 

treatment, alone or combined, as well as on the changes of urine metabolic profile 

following it.  

 

OBJECTIVES. To investigate whether the treatment with pidotimod and/or 

bifidobacteria were associated with 1) a reduced morbidity related to RRI and 2) 

differences in the urine metabolic profile. 

 

MATERIALS AND METHODS: The study is a four-arm, exploratory, prospective, 

randomized, double-blinded, placebo-controlled clinical trial conducted during 2 

autumn seasons, over the same three-months periods in 2 consecutive years. Children 

aged 3-6 years with RRI who attended the nursery school were enrolled and randomly 

assigned to one of the 4 arms to receive active medications or placebos for the first 10 

days of each month for 4 consecutive months. Metabolomic analyses on urine samples 

collected before and after treatment were performed using mass spectrometry 

combined with ultra-performance liquid chromatography (UPLC-MS). 

 

RESULTS: Compared to the placebo group, children receiving pidotimod, alone or 

combined with bifidobacteria, had a significantly higher proportion of symptom-free 

days (p=0.02 and p=0.003, respectively) and a significantly lower percentage of days 
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with common cold (p=0.004 and p=0.005, respectively). In those children, we also 

found relevant changes in the urine metabolomic profile compared to children receiving 

placebo. Furthermore, children treated with pidotimod alone showed a different 

metabolic profile compared to children treated with pidotimod plus bifidobacteria. On 

the other side, children receiving bifidobacteria alone did not show differences with 

respect to the placebo group in clinical outcomes or metabolomic profiles. 

 

CONCLUSIONS: this study shows that children with RRI treated with pidotimod have a 

better clinical outcome and a different metabolomics profile after treatment, compared 

to subject receiving placebo while patients treated only with bifidobacteria did not show 

any difference in clinical outcomes and metabolomic profile in comparison to the 

placebo group. The combined treatment (pidotimod plus bifidobacterium) did not 

modify the clinical outcome, but metabolomic analysis was able to reveal, going 

beyond the clinic, a different behavior for these two groups, suggesting a possible role 

for the microbiota composition in the underlying physiopathologic mechanism. 
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1.INTRODUCTION 

1.1 Metabolomics 

1.1.1 Global System biology and metabolomics 

Studying a biological system, a major challenge of molecular biology is to unravel the 

organization and interactions of cellular networks that enable complex processes. The 

underlying complexity of the biological system itself arises from intertwined nonlinear 

and dynamic interactions among large numbers of cellular constituents1. The 

reductionist approach, is based on the assumption that complex problems are solvable 

by dividing them into smaller, simpler and thus more tractable units2. Through this 

approach, most of the components of biological systems and many of their links have 

been identified. However, the pluralism of causes and effects in biological networks 

can be also addressed by observing multiple components simultaneously. This 

system-wide perspective has emerged in recent years to move toward the 

comprehension of the system as a whole, and has been defined as Systems Biology1. 

This approach appreciates how a system works altogether, in an holistic view of the 

biological organism3. The strength of Systems Biology lies in a comprehensive 

investigation of the “omic cascade”, with a combination of data deriving from different 

analytical platforms, such as genomics, transcriptomics, proteomics and 

metabolomics3. The term “omics” refers to approaches capable of studying entities in 

aggregate. Genomics is the science that studies the genome. Transcriptomics is the 

study of gene expression and transcriptome describes the full set of mRNAs present in 

a cell or tissue at any one time. Similarly, the study of protein translation is called 

proteomics4. Metabolomics, instead, one of the most recent “omic” sciences, has been 

suggested to provide the most “functional” information of the omics technologies5. The 
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term “metabolome” has been first used by Olivier et al. in 1998 to describe the 

quantitative complement of all the low molecular weight molecules (< 1kDa) present in 

cells in a particular physiological or developmental state5. The word Metabolomics was 

first coined by Fiehn and later defined as the comprehensive quantitative analysis of all 

metabolites of an organism or specified biological sample, which represents the 

multiparametric time-related metabolic responses of a complex system to a 

pathophysiological intervention or genetic modification6. Metabolomics is considered to 

overcome the limits of other “omic” sciences, as metabolites represent the final “omic” 

level in a biological system5,7. With its non-selective analytical approach, not driven by 

a-priori hypothesis, metabolomics is the “omic” science closest to phenotype 

expression 8. Metabolites reflect the surrounding environment, and the metabolic 

profile of a biological sample or system derives from the interaction of both genetic and 

exogenous factors9. Metabolomics reflects the holistic vision of systems biology, as it 

offers a picture of all the biochemical processes ongoing in a complex organism over 

time and space10,11 and is emerging as a promising tool in disease diagnosis and 

prognosis, drug discovery and personalized pharmacology7.  
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Figure 1.“Omics” sciences and their relationship with environment and phenotype. Carraro et al. 

(3) 

 

1.1.2 The study of metabolites 

The exact number of human metabolites is still not known. Since its first release in 

2007, the Human Metabolome Database (HMDB) (the world’s largest and most 

comprehensive organism-specific metabolomics database) has incremented the 

number of annotated metabolite entries from 2180 (HMDB version 1.0) to 41828 

(HMDB version 3.6) in July 2014 (www.hmdb.ca). The human metabolome is currently 

estimated to contain many thousands of metabolites, as defined by metabolic 

reconstruction and HMDB. However, these are under-estimates of the actual number 

of metabolites expected to be defined in the future12.  

Historically, two complementary approaches allow the metabolite analysis: metabolite 

profiling and metabolite fingerprinting5,13. 

 

Metabolite Profiling 

Metabolite profiling involves the identification and quantitation of a predefined set of 

metabolites belonging to a selected metabolic pathway or a class of compounds5. 

Target analysis is even a more specific and selective approach, constrained 

exclusively to the qualitative and quantitative identification of a particular metabolite or 

metabolites. By their nature, these approaches provide a restrictive non-

comprehensive view of the metabolome, as they are hypothesis-driven. As a result, 

only a very small fraction of the metabolome is focused upon and signals from all other 

components are ignored5,13. 
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Metabolite Fingerprinting 

Metabolite fingerprinting aims to analyze patterns or “fingerprints” of metabolites13. It 

can be simultaneously applied to a wide range of metabolites and can rapidly classify 

numerous samples on the basis of their metabolic characteristics. This truly 

comprehensive methodology is not driven by research’s hypothesis. Unexpected or 

unknown metabolites may turn out to be important in characterizing specific groups of 

subjects, and new pathophysiological hypothesis may be formulated3. The 

identification of each observed metabolite is not mandatory and metabolite 

fingerprinting can potentially be used as a diagnostic tool. Nonetheless, qualitative and 

quantitative analysis of the discriminant matabolites strengthen the results13 .At the 

moment, human metabolome is not completely mapped and known. The metabolome 

identification process is rapidly expanding; the Human Metabolome Database, the 

most complete available database, had 6500 metabolites in the 2.0 version of 2009; 

and more than 40000 in the 3.5 version of 2013; reaching the 74.461 of the last 

version 3.6 and data are continuously incrementing. 

 

1.1.3 The “Metabolomic Workflow” 

The analytical process in the field of metabolomics requires different specific steps. 

Sample acquisition is primarily driven by the experimental design. After an appropriate 

sample preparation, two main analytical techniques are used for the detection of a 

wide range of metabolites in a single measurement: nuclear magnetic resonance 

(NMR) spectroscopy and mass spectrometry (MS). These techniques produce the 

spectra where the intensities of peaks represent the amount of the corresponding 

metabolites. Subsequently, multivariate statistical analysis approaches extract the 

information obtained from the spectra to generate multidimensional plots of metabolic 

activity. In this way, patterns of metabolites characterizing specific groups of subjects 
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can be recognized. The characteristics of the emerged discriminant molecules are 

compared with those of known metabolites through the use of Metabolite databases 

(HMDB, METLIN and others), to identify potential putative biomarkers with biological 

significance13-15. The final step is represented by the structural identification of the 

analytes that have emerged as possible biomarkers.  

 

 

Figure 2. The characteristic “Metabolomic Worflow” 

 

Sample acquisition and preparation 

Metabolites can be detected in a wide range of biological matrices, such as plasma, 

whole blood, saliva, cerebrospinal fluid, urine, amniotic fluid, tissue homogenates and 

cell pellets. Before any metabolome measurements are taken, it is essential to stop 

metabolism as quickly as possible, in order to minimize the formation or degradation of 

metabolites after sampling due to remaining enzymatic activity or oxidation processes. 

Metabolism can be inhibited by several techniques, such as freezing in liquid nitrogen, 
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acid treatment or quenching in cold buffered methanol. The subsequent sample 

preparation is very important for the success of the analytical procedure. Sample 

preparation typically entails metabolite extraction and enrichment, depletion of proteins 

and removal of sample matrix, meaning all the matrix components that may interfere 

with the analysis. In a true metabolomics approach, all small molecules are the targets 

and only salts and macromolecules (such as proteins and larger peptides) can be 

considered as matrix. Depending on the matrices phase and on the type of metabolites 

studied, numerous sample preparation protocols have been developed for the 

metabolites extraction13,14,16. These protocols aim at limiting the loss of metabolites, 

although any kind of sample preparation will cause a certain degree of analyte loss13.  

 

Analytical platforms 

Nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry (MS) (often 

combined with chromatographic separation techniques) are widely used platforms for 

performing metabolomic analysis and profiling. These two spectroscopic techniques 

are complementary and play a central part in the “omic” world3. Both can be performed 

on very small quantity of sample3,16. The choice of the analytical tool is based on the 

level of chemical information required about the metabolites14. 

NMR spectroscopy   

In NMR spectroscopy, a compound is placed in a magnetic field. Isotopes within the 

compound absorb the radiation and resonate at a frequency which is dependent on its 

location in the small molecule8. The resultant NMR spectrum is a collection of peaks at 

different positions and intensities and each compound has a unique pattern16. NMR 

spectroscopy provides detailed information on molecular structures of compounds, 

both pure and in complex mixture. NMR spectroscopy is particularly useful for studying 
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metabolite levels in intact tissues (such as biopsy samples), that can thus be used in 

further experiments. 

 

Mass Spectrometry  

Mass spectrometry is a powerful method for identifying and quantifying positively or 

negatively charged metabolites and it is considered to have high sensitivity (<1nmol/L) 

compared to1H-NMR spectroscopy. Combination with a separation technique reduces 

the complexity of the mass spectra due to metabolite separation in a time dimension, 

provides isobar separation and delivers additional information on the physical and 

chemical properties of the metabolites13. Biomolecules derived from the sample are 

separated by liquid chromatography (LC) or gas chromatography (GC), and 

subsequently ionized. Nowadays, the “soft” ionization techniques are widely used, 

such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization 

(MALDI)17. The majority of ionized metabolites is singularly charged because of their 

low molecular weight capable of carrying single charges only12. Then the mass 

analyzer separates the obtained ions according to their mass-to-charge ratios (m/z). 

Finally, the electric charged molecules are detected in the spectra as peaks 

proportional to the abundance of each species. In many configurations, additional 

tandem MS analysis (MS/MS or MSn) are feasible3,16,17. 

The advantages of MS are its speed, high selectivity, and high sensitivity.  
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Figure 3.High resolution mass spectrometer (Synapt G2, Waters) at the Laboratory of Mass 

Spectrometry of the Research Tower. Women’s and Children’s Health Department, University of 

Padova. 

 

Recent applications of MS in metabolomics are based on instruments like Quadrupole 

Time-of-Flight (Q-ToF) and Fourier Transform Mass Spectrometry (FT-MS)3.  

 

Data Mining, Extraction and Analysis 

NMR spectroscopy and MS are powerful spectroscopic methods for generating 

multivariate datasets. Several commercial and free specialized software packages are 

available to properly interpret the data and convert them into a uniform format. This 

process includes the reduction of background spectral noise, appropriate peak 

assignment for the same compound, peak alignment across multiple samples and 

peak normalization13,16. 

As spectra derived from NMR spectroscopy and MS are highly complex, the biological 

information they contain can only be extracted using appropriate multivariate statistical 

approaches, the so-called pattern recognition methods. These computer-based 

procedures can be classified as unsupervised or supervised3. 
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The unsupervised methods reduce the complexity of the data contained in the spectra 

and represent them by means of plots that the human eye can interpret. These 

methods are useful when prior information about the sample identity is unknown and 

when the aim of the analysis is sample classification. In fact, this approach enables to 

identify sample clustering to see whether different groups of subjects can be 

discriminated by their spectra characteristics3,13. An example of these unsupervised 

methods is Principal Component Analysis (PCA). This method reduces the data 

dimension and devises the most informative descriptors in the data set. Afterwards, the 

aim is to verify if these principal components are capable of distinguishing the different 

classes of samples18. 

On the other hand, when sample identity is known and the aim of the study is to 

discover characteristic biomarkers, the supervised methods are more appropriate. With 

this approach, a training set of samples of known classification is used to build a 

mathematical model, which is then evaluated using an independent dataset. In this 

way, the supervised methods enable to predict which group a new sample belongs to 

on the basis of its spectra characteristics3,13. Partial Least Square Analysis combined 

with Discriminant Analysis (PLS-DA) is a very popular example of these supervised 

methods. It allows to find the relationships between different blocks of data using 

“latent variables”, and to calculate a discriminant function for the classes separation18. 

These bioinformatic methods can not only enable the discrimination between groups, 

but also lead to the identification of the more important metabolites involved in the 

sample classification.  

 

Identification of Metabolites 

The last step of the “Metabolomic Work-flow” is the structural identification of the 

analytes that have emerged as possible biomarkers. Working with mass spectrometry, 
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the basic strategy behind the exact compound identification consists of different 

passages. First, a mass spectrum is recorded at high resolution to define the accurate 

mass (<5ppm) of the ion of interest and its isotopic pattern. This will lead to a minimum 

list of possible elemental formula of the compound. An additional step is the ion 

fragmentation by MS/MS. This technique consists of two mass analyzers put in series 

in space or in time and separated by a collision cell. This enables either to select a 

precursor-ion and obtain the resultant product-ions m/z ratios with the second analyzer 

(“product-ion” scan), or to select the ions that fragment in the collision cell in order to 

find a predefined product-ion with known m/z ratio (“precursor-ion” scan)19. As each 

compound has its own specific fragmentation pattern, the MS/MS analysis can provide 

further important information for the structural identification of the molecule in question.  

A fundamental support for molecular identification comes from various on-line 

databases, which are in increasing expansion and carry a wide range of information on 

the already-known metabolites, such as their physico-chemical properties, their 

spectroscopic characteristics and the biochemical pathways in which they are involved.   

The Human Metabolome Database is currently the largest and most comprehensive 

organism-specific metabolomics database. It contains spectroscopic, quantitative, 

analytic and physiological information about human metabolites, their associated 

enzymes or transporters, their abundance and their disease-related properties20. The 

latest release of the HMDB now has detailed information on more than 41000 

metabolites (www.hmdb.ca). Other important databases are KEGG 

(http://www.genome.jp/kegg), BioCyc (http://biocyc.org), and METLIN 

(http://metlin.scripps.edu/). LIPID maps (http://www.lipidmaps.org/data/index.html) 

provides an useful database to search for lipid metabolites. Once the m/z ratio, the 

retention time, and the fragmentation pattern of a compound are known, these data 

can be compared with those of know metabolites in the just-mentioned databases. 

When the molecule is presumptively identified with this process, the final proof and 
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confirmation of its identity is a comparison of LC retention time and MS/MS spectrum 

with that of an authentic standard. However, it is not always possible to identify all 

metabolites of interest by MS alone, either because the compound has not been 

characterized in the databases yet, or because of the absence of a reference 

standard20.  

 

1.1.4 Metabolomics: clinical applications 

Over the last few years, there has been a rapidly growing number of metabolomics 

applications aimed at finding biomarkers7. Biomarkers have been defined by the 

National Institute of Health as “biological characteristics that are objectively measured 

and evaluated as indicators of normal biological processes, pathological processes or 

pharmacologic responses to a therapeutic intervention” (NIH, Biomarkers Definitions 

Working Group 2001). Sets of metabolic biomarkers, may be appropriate in the future, 

especially in the cases of multifactorial and complex diseases21.  

From a clinical standpoint, the metabolomic analysis has three major potential 

applications. First, metabolic profiling of populations could allow the development of 

“molecular epidemiology”, where the susceptibilities of specific groups to a disease is 

recognized. In this sense, metabolites could be identified as risk biomarkers of 

diseases, with implications for health screening programmes15. The second application 

concerns the early diagnosis and characterization of disease phenotypes22. The third 

potential clinical application consists in the identification of individual metabolomic 

characteristics able to predict drug effectiveness and/or toxicity, referred to as 

pharmacometabolomics 22.  
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Figure 4.The development of disease from healthy (homeostasis within black dotted lines) to sub-

optimal health and eventually an overt disease state. Biomarker patterns (for graphical reasons 

represented as a single line) are essential to describe the changes from normality to dysfunction. 

Van der Greef et al. (23) 

 

In respect to the systems biology perspective, the results in metabolomics should be 

integrated with those obtained from the other omics platforms in a multi-omic approach 

to achieve a holistic picture of a given disease24. This approach correlates well also 

with the essence of the emerging P4 medicine, which consists of predictive, 

preventive, personalized and participatory medicine using the enormous amount of 

data from the omic sciences to focus on the individual25. The clinician will then appear 

as the connector in the omics-era: making true the 4Ps of precision medicine. 

 

Metabolomics: Pediatric clinical studies 

Metabolomic analysis can be applied to the study of biological fluids collected in non-

invasive (urine, exhaled breath condensate) or minimally-invasive ways (blood). What 

is more, NMR and MS techniques can be performed on very small quantity of sample. 

These characteristics make the metabolomic approach suitable and particularly 
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promising in the field of pediatric medicine3,22. A number of recently-published studies 

have applied the metabolomic approach to the pediatric population.  

Some of these studies evaluated how physiological variables can affect children’s 

metabolic profiles22. Metabolomic analysis was able to differentiate urinary metabolic 

profiles of neonates with different gestational ages, suggesting that the neonate’s 

metabolic status at birth is strictly dependent on the time of delivery26. In the same 

way, age seems to have an effect on the urinary metabolite profile in children27. Diet is 

another important factor that may affect metabolic composition of biofluids, in particular 

urine28. Finally, gender too has been shown to influence the metabolic plasma 

composition29.  

All these studies prove the potential of metabolomic technologies in detecting specific 

patterns of biomarkers of physiological states. However, it is especially in the 

understanding of pathological mechanisms that metabolomics approaches have been 

applied recently, with an increasing number of publications in the last few years. Here 

we will report the most significant.  

 

Metabolic biomarkers of diagnosis and characterization of metabolic phenotypes in 

different settings 

The neonatal screening of inborn errors of metabolism is a common practice in many 

pediatric hospitals and is based on the detection of known appropriate metabolic 

biomarkers using MS techniques30.  

In neurological diseases, the urinary metabolic phenotypes in 3 groups of children 

aged 3 to 9 years (39 affected by autism, 28 non-autistic siblings and 34 aged-

matched healthy controls) were characterized using 1H-NMR spectroscopy and pattern 

recognition methods. Some biochemical changes were found in the urine of autistic 

children reflecting sulfur and amino acid metabolism, and were consistent with some 

abnormalities of gut microbiota31.  
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In regards to kidney diseases, 1H-NMR based-metabolomics was able to discriminate 

the urinary metabolic profiles of children with nephrouropathies (such as renal 

dysplasia, vesico-ureteral reflux, urinary tract infections) from those of healthy 

controls32.  

As far as respiratory diseases are concerned, the metabolomics approach has been 

applied also on exhaled breath condensate (EBC) in order to discriminate asthmatic 

patients from healthy children and to characterize asthma subphenotypes. The 

analysis of this particular biofluid through metabolomics is called breathomics, and the 

matrix is collected in a totally non-invasive way by cooling down the exhaled air. Its 

composition is believed to mirror that of the airway lining fluid. The LC-MS-based 

metabolomics profiling of EBC could clearly distinguish the severe asthmatic patients 

from the healthy subjects, and it could even discriminate severe and non-severe 

asthma metabolic phenotypes33. A previous study had demonstrated that asthma 

phenotypes in childhood could be differentiated through the LC-MS analysis of urine 

samples as well, also with the identification of relevant metabolites34. These important 

findings demonstrate the potential role of the metabolomic approach in eventually 

leading to tailored therapies depending on the severity of asthma. To remain in the 

field of respiratory diseases, MS-based metabolomic analysis was applied in the 

investigation of the volatile organic compounds (VOCs) in the exhaled air of subjects 

affected by several chronic different diseases35.  

The metabolomics approach has concerned pediatric oncology as well. Zhang et al. 

have applied GC-MS in serum and urine of healthy subjects and young adults affected 

by osteosarcoma and benign bone tumor. The analysis discriminated patients with 

osteosarcoma from healthy controls and patients with benign bone tumor. What is 

more, some metabolites were identified both in serum and in urine in association with 

osteosarcoma morbidity36.  
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Prognostic profiles and predictive biomarkers  

Over the last decade, metabolomics has introduced new insights into the pathology of 

diabetes as well as methods to predict disease onset and timing of complications by 

discovering new biomarkers37. These results, suggesting that metabolic dysregulation 

precedes the impairment of the immune system in type 1 diabetes, offer good 

perspectives for a future and efficient method of primary prevention and intervention in 

this condition38.  

In perinatology, metabolomic analysis has been increasingly used in recent years39. An 

example is represented by perinatal asphyxia, one of the major causes of brain injury 

and neurological sequelae. Chu et al. analyzed through the use of MS the urinary 

metabolite profiles of 256 newborns with severe birth asphyxia. In particular, eight 

organic acids were recognized as potential discriminators between good and poor 

neonatal outcome, thus representing possible prognostic markers of neurological 

consequences40.  

Another relevant disease occurring especially in preterm infants is patent ductus 

arteriosus. A preliminary study using 1H-NMR spectroscopy was carried out in order to 

assess the possibility of identifying in advance the persistence of PDA. A PLS-DA 

model was able to distinguish infants born at term, preterm infants with PDA and 

preterm infants without PDA on the basis of different urine metabolic patterns at birth39.  

In the respiratory field, the application of metabolomics to the amniotic fluid has 

demonstrated that infants who will or will not experience wheezing in their first year of 

life have distinct amniotic fluid metabolomic profiles at birth41. It has also been 

demonstrated that metabolomic urinary profile can discriminate preschoolers with 

recurrent wheezing who will outgrow their symptoms from those who have early-onset 

asthma. These results may pave the way to the characterization of early non-invasive 

biomarkers capable of predicting asthma development42. 
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Pharmacometabolomics 

Metabolomic analysis can be applied in the study of xenobiotic effects on an organism, 

potentially leading to the prediction of effectiveness or toxicity of a drug based on the 

individual’s pre-treatment characteristics3. This is of great importance in pediatrics and 

neonatology, since pharmacokinetic of almost all the drugs is completely different from 

adults, especially in the neonatal age and over the first years of life.  

An elegant study by Clayton et al. provided proof-of-principle of the 

pharmacometabolomics approach, with the administration of paracetamol 

(acetaminophen) to rats. In the study, it was possible to determine an association 

between pre-dose urinary metabolite composition and the extent of liver damage 

sustained after paracetamol administration43. Later, the authors have confirmed that 

even in humans the pre-dose urinary metabolic profiles could predict subsequent 

acetaminophen metabolism and excretion44.  

A relevant study was performed by Price et al. in order to differentiate the urine 

metabolic profiles of healthy subjects and children affected by seizures undergoing 

treatment with carbamazepine or with valproic acid. The group treated with valproic 

acid appeared to have a distinct urinary metabolic pattern from each of the control 

groups45. 

A more recent study examined the metabolic profiles of paired bone marrow and 

peripheral blood samples from 10 children with acute lymphoblastic leukemia (ALL). 

Samples were collected from the same patient at the time of diagnosis and after 29 

days of induction therapy with the standard protocol PEG-I-asparaginase, vincristine 

and a glucocorticoid. A peripheral blood sample was collected from each patient also 

after 8 days of treatment. The analysis showed different metabolic profiles between the 

two biofluids, both at time of diagnosis and after 29 days of therapy. In addition, the 

treatment significantly altered the metabolite composition of peripheral blood samples 

collected at different time. These findings confirm how a specific drug can alter the 
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metabolite composition of the targeted tissue, and offer the basis for further researches 

on how metabolic profile of pretreatment samples can predict sensitivity to a 

chemoterapy46. 

Pharmacometabonomics approach might provide the basis for the identification of new 

biomarkers with which individuals could be selected according to their suitability for 

treatment with particular drugs, drug classes or drug doses. Adverse drug reactions 

could potentially be avoided, and dose levels could be targeted more effectively 

according to the metabolic characteristics of each individual43. 

 

 

1.2 Recurrent respiratory infections: problem entity and 

definition 

At the end of 1990 World Hearth Organization considered acute respiratory tract 

infections (ARTIs) to be the “forgotten pandemic” with a wide difference between 

industrialized and developing countries in mortility and morbility. In 2000 we know that 

1.9 million children died from ARTIs worldwide, with 70% of the deaths in Africa and 

South-East Asia47. Also in high-income countries (USA, Canada, Western Europe) 

ARTIs are the leading cause of morbidity and account for 20% of medical consultations, 

30% of days lost from work and 75% of antibiotic prescriptions48. ARTIs are 

responsible for most sick days amongst school children49 and parental absenteeism 

from work50. Today the introduction of new antibiotics and vaccines has contributed to 

the reduction of serious infections, but no effect on prevalence and treatment of viral 

respiratory infections in children has been noted.  

In particular, the recurrence of respiratory infections is one of the major complaint in 

the paediatric population and represents a great cause of morbidity. It has been 

estimated that at least 6% of Italian children with less than 6 years present recurrent 

respiratory infections (RRI)51. RRI increase the use of useless antibiotic therapies and 
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contribute to the development of resistances. 

The definition of RRI was formulated in the 1970s by the Immunology Study Group of 

the Italian Pediatric Society based on epidemiological studies in Italy. The criteria are 

the absence of any pathological underlying condition (primary or secondary 

immunodeficiency, cystic fibrosis, airways malformations, primary ciliary dyskinesia) 

justifying the recurrence of infections and the presence of at least one of the following 

conditions: 1) six or more annual diseases due to respiratory infections; 2) one or more 

monthly diseases due to respiratory infection from October to February; 3) three or 

more annual diseases due to lower airway respiratory infections51. Other definitions of 

RRI distinguish the number of infections according to the age of the child: > 6 ARTI per 

year if age is > 3 years, and > 8 ARTI per year if age is < 3 years52. 

RRI represent essentially the consequence of an increased exposure to infectious 

agents associated to the exposure to environmental risk factors during the first years of 

age and the relative immaturity of the immune system. Social and environmental 

factors, particularly daycare attendance, but also family size, air pollution, parental 

smoking, and home dampness, represent important risk factors for airway diseases 

and may contribute in various degrees to determine the incidence of RRI. 

Approximately 75% of children attending day-care centres start to suffer from RRI 

during the first year at child-care facilities. Early enrolment in day-care centres 

influences the prevalence of respiratory infections and accelerates the acquisition of 

immunological experiences but this occurs with the cost of the disease (because of the 

naivety of the immune system). The younger the child, the greater is the risk of 

developing a symptomatic disease, rather than an unapparent infection, after the 

contact with an infectious agent49. The postponed enrolment of children at day-care 

centres may prevent this excess risk. Environmental factors such as parental smoking 

and pollution can influence the risk of RRI. Second hand smoke and air pollution have 

been demonstrated to be associated with the development of cough, wheezing and 
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asthma in children and to a reduction in lung function53-55. A recent Italian study 

demonstrated that there is a significant association between traffic-related pollution 

and the development of asthma exacerbations and respiratory infections in children 

born to atopic parents and in those suffering from recurrent wheezing or asthma. 

These findings suggest that environmental control and reduction in parental smoking 

may be crucial for respiratory health in children with underlying respiratory disease56. 

Recent studies demonstrated that also intrauterine exposure to fine particulate matter 

is a risk factor for increased susceptibility to acute broncho-pulmonary infections in 

early childhood57-59.  

The complete maturity of the immune system is not reached until the child is 5-6 years 

old and in the first years of life, the immune system is still developing with a 

demonstrated alteration in the cytochine levels51. When immune functions are still 

largely immature, the airway epithelium plays a primary defensive role since, besides 

providing a physical barrier, it is also involved in the innate and the adaptive immune 

responses. The epithelial cell actually is the principal site of viral infection in the 

airways and plays a central role in viral modulation of airway inflammation. The 

mechanisms by which viral infections modulate epithelial function, therefore, is a topic 

of intense investigation60. 

 

The recurrence of RI represent a great “challenge” for the paediatricians on the 

preventive and therapeutic point of view. First of all because they have to discriminate 

between children that present RRI associated with an increase in environmental risk 

factors exposure and with a physiological immaturity of the immune system, from 

children that have an underlying pathologic condition (immunological or not). The 

annual infection number cannot be the only parameter considered to this purpose, but 

it is more significant to analyse respiratory infections’ characteristics, severity and 

duration in particular to individuate children requiring deeper investigation61. The 



 26 

majority of children with RRI do not have recognised immunodeficiency, but in some 

children we may find low levels of certain immunological parameters, such as reduced 

levels of immunoglobulin isotypes. However, a number of the observed immunological 

alterations are of questionable significance and may not be related to the increased 

susceptibility to respiratory infections. Several viral infections may influence immune 

response, altering cytokine responses or macrophage phagocytosis and it is possible 

consequently, that children with RRI develop a sort of deeper virus-induced immune 

depression51. 

It is of note that substantial and recent evidences implicate common respiratory viral 

infections also in the pathogenesis of asthma and chronic obstructive pulmonary 

disease (COPD), the mechanisms by which viruses predispose to these diseases 

remain poorly understood. It is clear that viral infections lead to enhanced airway 

inflammation and can cause airways hyper-responsiveness. RRI remain a social 

problem for both their pharmaco-economic impact and the burden for the family. 

Although current therapies may help combat virally induced disease exacerbations, 

they are less than ideal. To this purpose, a better characterization of these patients is 

crucial to identify effective preventive and personalized and new therapeutic 

approaches. 

 

1.3 Immunostimulants 

Immunostimulants (IS) are heterogeneous compounds that seem to be effective in 

modulating the innate immunity and improving defences against infections. They can 

come from a synthetic source (levamisole, isoprenaline, pidotimod); or are of biological 

origin such as Klebsiella extracts containing lipopolysaccharide and mixtures of 

bacterial extracts and bacterial lysates, prebiotics and probiotics. When a diagnosis of 

RRI has been formulated in a child, accurate environmental prophylaxis (reduction of 
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second-hand smoke, postponed enrolment in at day-care centres) is crucial51 but 

evidences suggest a benefit regarding the prevention of ARTI coming also from the 

use of immunostimulants. The recent discovery of Toll-like-receptors (TLRs) in 1990s 

supported the possible mechanism of action of immunostimulants62. It may be 

postulated that products with IS properties activate the immune cells using the 

receptors that recognise common bacterial products or receptors that provide 

additional stimulation for activation. For instance, TLRs recognise components 

common to a range of bacteria, so-called pathogen-associated molecular patterns 

such as lipopolysaccharide, peptidoglycan, lipoteichoic acid, lipoarabinomannan, un-

methylated DNA with CpG motif and bacterial lipoproteins which activate the innate 

immune responses. The innate immune response is responsible for the early 

mechanisms of defence against infection; for instance the phagocytosis and 

neutralisation of bacteria entering the body. The mechanisms that enhance the innate 

immune responses (cytokines and chemokines) also stimulate the adaptive immune 

response (production of specific antibodies and reproduction of specific T cells)63,64. 

Immunostimulants mimic the immune response normally evoked by a pathogen in the 

host system (first with the activation of the innate immune system and then of the 

adaptive response). 

There are many natural products, such as Vitamin D, Resveratrol, Zinc, Echinacea, β-

Glucans and bacterial lysates for which it has been described an immunostimulant 

effect.  As part of the NHLBI 2013 workshop on the primary prevention of chronic lung 

diseases, the asthma group underlines the relevance of prebiotics, probiotics, and 

bacterial lysates and states that immunmodulation using this compounds is a field that 

should be investigated in future clinical trials in high-risk infants for asthma 

prevention65. 

Vitamin D has a demonstrated action against respiratory infections and it has recently 

been re-discovered as an important immunostimulant, in particular during the winter 
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season66. 

Resveratrol (trans-3,4,5-trihydroxystilbene) is a natural non-flavonoid polyphenol and 

belongs to a subclass of stilbenes. It is found in various fruits and vegetables and 

abundant in grape skin, it functions as a phytoalexin (a class of vegetal antibiotics) so 

protecting the plant from environmental stress or infections. Resveratrol exerts anti-

infective and anti-inflammatory activities. The anti-inflammatory effects of resveratrol 

depend on the inhibition of the transcription factor NF-kB, mainly inhibiting Ik-B kinase. 

Moreover, resveratrol inhibits viral replication. A recent study provided evidence that 

resveratrol inhibits the replication of rhinovirus, the etiologic agent of common cold, on 

nasal epithelial cells and the rhinovirus-dependent expression of ICAM-1, that is the 

main rhinovirus receptor. Resveratrol has also demonstrated anti-inflammatory and 

anti-asthmatic effects in mouse model of allergic asthma, diminishing IL-4 and IL-5 in 

plasma and bronchoalveolar lavage fluid, and suppressing bronchial hyperactivity, lung 

eosinophilia, and mucus hypersecretion67. 

Zinc is an essential micronutrient important for growth and for normal function of the 

immune system. Studies suggest that zinc administration could reduces the risk of new 

episodes of acute respiratory illnesses, while no effect in the acute phase has been 

observed68. 

Echinacea is a widely used herbal remedy for treatment of upper respiratory tract 

infections. A recent met-analysis concludes that the use of echinacea extracts is 

associated with reduced risk of recurrent respiratory infections69. 

Metabolites and components of medicinal mushrooms have been used in medicine for 

many centuries. β-Glucans, a heterogeneous group of glucose polymers, are 

biologically active polysaccharides that are responsible for the observed clinical 

efficacy of mushroom extracts. β-Glucans appear to be an interesting group of natural 

immunomodulating substances, which are associated with a low risk of side effects. A 

recent review supports, based on published studies, the preventive use of beta-
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glucans in managing RRIs. Preventive application of beta-glucans may decrease the 

frequency of various forms of respiratory tract infection, supporting a protective 

immune mechanisms70. 

Broncho-Vaxom is an orally administered immunomodulator containing the lyophilized 

bacterial lysate of eight pathogenic bacteria of the respiratory tract. Broncho-Vaxom 

stimulates immune defences and the production of salivary and bronchoalveolar IgA as 

well as serum IgA and IgG. It has been administered since the 1980s to adults and 

children in order to prevent recurrences of respiratory tract infections. A very recent 

review showed a significant reduction in RRIs, a decrease in the duration of the course 

of antibiotics, infections, fever, cough, and wheezing in children with RRIs who were 

treated with Broncho-Vaxom in comparison to controls71. 

A number of studies have investigated the immunostimulants’ effect on cellular and 

innate immunity, and their clinical efficacy. The majority of them have shown that the 

number of infections decreases after immunostimulants treatment but most studies in 

meta-analyses are often heterogeneous and of poor quality because of methodological 

biases. That is why caution is needed when considering apparently positive results and 

this is the reason why, to date, there is no consensus as to their real usefulness. A 

2011 Cochrane meta-analysis, including randomised controlled trials (RCTs), 

comparing immunostimulants, administered by any method, to placebo to prevent 

ARTIs in children younger than 18 years concluded that immunostimulants seem to be 

able to reduce the incidence of ARTIs by 40% on average in susceptible children. The 

main limitations of this review were the poor methodological quality and diverse trial 

results. They concluded that ARTI-susceptible children may benefit from 

immunostimulants (not specifying the type), but more high-quality studies are needed72. 
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1.3.1 Probiotics 

Oral probiotics are non-pathogenic live microbes that have a role in the prevention and 

treatment of a wide range of disorders. The most widely studied probiotics are 

Lactobacillus and Bifidobacterium. Albeit with large differences from one 

microorganism to another, it is now established that probiotics can produce 

antimicrobial products capable of eliminating bacterial pathogens73, blocking toxin-

mediated responses74, interfering with bacteria limiting their presence and virulence75, 

and modulating systemic immune responses by enhancing humoral and cellular 

immunity76. Most of the data regarding probiotic use in children have been collected in 

studies of gastrointestinal disorders, such as infectious and antibiotic-associated 

diarrhea, travellers’ diarrhea, necrotizing enterocolitis, and Helicobacter pylori 

infection77-79.  

Routine use of probiotics as an additive therapy in subjects with RTIs has been poorly 

studied and evidences about this topic are still insufficient and are mainly related to the 

field of upper respiratory tract infections. A recent Cochrane meta-analysis of 10 

clinical trials found that probiotics were more beneficial than placebo in terms of 

infection prevention, and reduced the rate of acute upper respiratory tract infections 

and frequency of antibiotic use, but did not decrease the duration of each single 

episode80. A recent review and meta-analysis by Laursen et al concluded that 

Lactobacillus rhamnosus GG is modestly effective in decreasing the duration of RTIs, 

but underlined that more RCTs investigating specific probiotic strains or their 

combinations in prevention of RTIs are needed. Further research to establish the role 

of probiotics in the treatment and prevention of RTIs, including those involving the 

lower respiratory tract, are then required81. 
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1.3.2 Pidotimod 

Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid) is a synthetic dipeptide 

molecule with immunomodulatory properties. It is a highly purified molecule with high 

reproducibility among batches. It is rapidly absorbed by the gastrointestinal tract, with a 

bioavailability of 45 % not influenced by food and it is eliminated unmodified via renal 

excretory mechanisms. Half-life of the compound did never exceed 8-9 hours. The 

safety profile of pidotimod is good, no serious adverse event were reported except for 

one case of suspected Schonlein-Henoch purpura.  

In vitro studies, in both animal and human specimens have shown that this product has 

an immunomodulatory activity on both innate and adaptive immune responses82. In 

detail pidotimod induces dendritic cell maturation, up-regulates the expression of HLA-

DR and co-stimulatory molecules CD83 and CD 86, stimulates dendritic cells to 

release pro inflammatory molecules, driving T cell proliferation and differentiation 

towards a Th1 phenotype, enhances natural killer cell functions, inhibits thymocyte 

apoptosis and promotes phagocytosis83,84.  

A recent study conducted by Carta et al showed that pidotimod, in vitro, through 

different effects on ERK1/2 and NF-kB was able to increase the expression of TLR-2 

proteins, surface molecules involved in the initiation of the innate response to 

infectious stimuli. It had no effect on ICAM-1 expression, the receptor for rhinovirus, 

and on IL-8 release, the potent chemotactic factor for neutrophils (that are already 

present in sites of infection) and this may represent a protective function from 

infections if confirmed in vivo. The Authors concluded that, in children, pidotimod 

seems to modulate airway epithelial cells functions involved in host-virus interactions, 

possibly through NF-kBactivation83. Recently it has been demonstrated that pidotimod 

facilitatesM2 macrophage (activated macrophage) polarization that are able to tune 

inflammatory responses, enhance phagocytosis, scavenge debris, and promote tissue 

remodelling and repair85.A study was conducted in 1994 in CD-1 mice who were 
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treated with methylprednisolone in order to achieve an immunosuppressed state. The 

study demonstrated that immunosuppressed mice who were treated also with 

pidotimod were able to recover the capacity to produce TNF-alpha and NO in response 

to different stimuli (lipopolysaccharide, IFN-gamma or conidia from an opportunistic 

fungus, Aspergillus fumigatus) in contrast with mice treated only with metilprednisolone 

(that completely inhibit the antimicrobial activity)86. Furthermore, it has been 

demonstrated that pidotimod can modulate the inflammatory cascade triggered by TLR 

ligands through the up-regulation of the nucleotide binding and oligomerization domain 

receptor (NOD-like receptor) NLRP1287. 

In vitro and in vivo studies using experimental model systems are essential for 

identifying the biological mechanisms of action of pidotmod. These assumptions 

anyway cannot precisely predict human responses and encouraging results from in 

vitro and in vivo studies have to be confirmed with clinical trials. The first clinical trials 

investigating pidotimod efficacy appeared in 1990s and showed that this compound 

seems to have a beneficial effect in children, reducing the number of ARTI, the number 

of days of fever and the severity of the signs and symptoms of acute episodes. A 

significant reduction in use of antibiotics, antipyretics drugs, and symptomatic drugs, 

and absence from school and caregiver absenteeism was also observed. Some 

studies focused on the prevention of recurrent tonsillitis showing that pidotimod 

reduces the incidence of upper respiratory tract infections88. 

In recent years, with the increasing interest towards this product, many studies have 

been conducted with the aim of demonstrating its effects and trying to bridge the gap 

between preclinical and clinical research. A clinical randomized prospective Russian 

study enrolled 157 children (age range 3-6 years) with RRI assigned to two arms, a 

group treated with pidotimod (78 children, dose of 400 mg/die) for 30 days and one 

control group (79 children, 50% of them with demonstrated allergies). Changes in 

serum immunological markers were evaluated at baseline and 30 days after treatment 
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discontinuation. A statistically significant reduction in the number of ARI was observed 

in the treated group (p<0,05). After 6 months ARTI developed in 92,3% in the treated 

group versus 100% of the control group. An interesting finding was that, concerning 

the immunological markers considered (IL-8), the treatment group showed a better 

profile of normalization compared to the control group89. A study in children with Down 

Syndrome, that represent a particular class of patients more susceptible to infectious 

agents, showed that pidotimod (given a dose of 400 mg a day for 90 days) potentiate 

innate and adaptive immune response increasing the efficacy of influenza vaccine. 

Particularly this compound can induce the up-regulation of a number of genes involved 

in the activation of immune response and in the antimicrobial activity. Authors 

concluded suggesting that this synthetic immunostimulant can potentiate the beneficial 

effect of immunization, resulting in a stronger immune response90. 

On the other side a recent Italian double-blinded randomized placebo-controlled trial 

study assessed the efficacy of pidotimod in a population of 3-year-old healthy children 

who just entered kindergarten concluding that it did not prove to be statistically 

superior to placebo for the prevention of ARTI. However, pidotimod showed some 

potential as a means for reducing antibiotic usage in these children. The limit of the 

study is the number of patients enrolled (24 children who received pidotimod and 25 

who received placebo) 91. 

It has been hypothesized that pidotimod could have a role also in Th1-Th2 balance 

with a possible “antiallergic” activity84.through the down-regulation of CD30 in 

asthmatic and healthy children92. Moreover there are studies that confirm a role of 

pidotimod on IL-4 and IFNgamma and also on IgE levels93.  

In a recently published metabolomic study by our group, pidotimod has shown the 

possibility to partially "restores" the altered metabolic profile found in children with RRI 

compared to healthy controls. After pidotimod treatment some metabolic differences 

between RRI children and the healthy controls persisted; and among them emerged 



 34 

some metabolites, that appeared to be related to the microbiota composition. In the 

light of these results, Authors hypothesize a potential synergic effect of the combined 

use of immunostimulants and probiotics for the purpose of prevention in children with 

RRI95. 

Considering available studies, it seems that pidotimod has a beneficial effect and a 

good tolerability in children, but further studies are still needed to confirm its efficacy 

and to better understand its mechanism of action. 
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2 RATIONALE AND OBJECTIVES OF THE STUDY 

 

Recurrent respiratory infections (RRI) represent a widespread condition that largely 

contributes to pediatric morbidity and has considerable economic and social impact50. 

In patients with RRI antibiotics may be overused, and increased bacterial resistance 

has become an important matter of concern worldwide. Interestingly, RRI in the first 

years of life has been indicated as a possible co-factor in the development of adult 

respiratory disorders, namely asthma and chronic obstructive pulmonary disease 

(COPD)94. In view of the early impact of RRI on human health and of its social burden, 

limiting the condition in the pediatric population shows remarkable promise to prevent 

chronic lung diseases in adulthood.  

Pidotimod is an immunostimulant with proved clinical efficacy in RRI prevention82, 

albeit the mechanism of action has been elucidated only in part87, 83, 84. In a recent 

study of children with RRI, we showed that pidotimod can partially "restore" the altered 

metabolic profile found in these children, even though some metabolites possibly 

originating from the microbiota were persistently altered95. Based upon these findings, 

we hypothesized a potential interactive effect of immunostimulants and probiotics on 

preventing RRI in children and wondered if they had any influence on the metabolomic 

profiling. Actually, also probiotics were suggested to have a preventive effect on 

respiratory infections, but evidences are quite limited81. Hence, we conducted an 

exploratory prospective, randomized controlled trial (RCT) to determine if the treatment 

with pidotimod and/or bifidobacteria can reduce the morbidity of RRI and modify the 

urine metabolomic profile of preschool children with RRI. 
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3 MATERIALS AND METHODS 

 

3.1 Study design  

The exploratory study, designed as a four-arm, prospective, randomized, double-

blinded, placebo-controlled clinical trial, was conducted at the Department of 

Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, 

Italy. We recruited all 3-to-6 year-old children with RRI consecutively seen at the 

Pediatric Pulmonology Unit, Federico II University, and at the office of 22 primary care 

pediatricians uniformly distributed across the urban and suburban areas of the city of 

Naples. Metabolomic analysis was performed at the Department of Women's and 

Children's Health, Mass Spectrometry Laboratory, Fondazione Istituto di Ricerca 

Pediatrica Città della Speranza, University of Padua, Italy. 

Inclusion criteria were: a) age 3–6 years; b) attendance to nursery school/kindergarten; 

c) diagnosis of RRI. Exclusion criteria were: a) not meeting inclusion criteria; b) 

presence of chronic medical conditions, including cardiovascular or any systemic 

disease, neurological disorders, primary or secondary immunodeficiency, cystic 

fibrosis, or primary ciliary dyskinesia; c) Down syndrome; d) airways malformation; e) 

recurrent wheezing96; f) administration of immunomodulators or systemic steroids in 

the previous 4 weeks; g) current acute respiratory and/or any other infection requiring 

hospital admission. 

We generated a randomization list and subsequently balanced between treatments. 

Patients were randomly assigned to one of the 4 arms to receive active medications or 

placebos as follows:  

 group A: pidotimod as liquid suspension in 400 mg vial (one vial/day) + 

bifidobacteria mixture (B longum BB536, 3x109 CFU; B infantis M-63, 1x109 105 CFU; 

B breve M-16V, 1x109 106 CFU) as powder in 3 g sachet (one sachet/day);  
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 group B: pidotimod as liquid suspension in 400 mg vial (one vial/day) + 

identical-looking and -tasting placebo of bifidobacteria mixture sachet (one 

sachet/day);  

 group C: identical-looking and -tasting pidotimod placebo as liquid suspension 

in a vial (one vial/day) + bifidobacteria mixture (B longum BB536, 3x109 CFU; B 

infantis M-63, 1x109 105 CFU; B breve M-16V, 1x109 106 CFU) as powder in 3 g 

sachet (one sachet/day);  

 group D: identical-looking and -tasting pidotimod placebo as liquid suspension 

in a vial (one vial/day) + identical-looking and -tasting placebo of bifidobacteria mixture 

sachet (one sachet/day). 

The study protocol required that patients received oral active medications and/or 

placebos for the first 10 days of each month for 4 months, and were subsequently 

followed-up for an additional period of 2 months. The compounds were provided in 

identical vials and sachets, and the placebo and active drugs did not differ in smell, 

taste, or color. Neither study personnel nor parents were aware of the nature of the 

product. 

The study had primary and secondary endpoints. The primary clinical endpoint 

included the number of symptom-free days and the number of days with common cold 

per participant. The secondary endpoint was to determine any change in the urine 

metabolic profile before and after treatment. 

This RCT was conducted during 2 autumn seasons, over the same three-months 

periods in 2 consecutive years. In the first study period (October, November, 

December 2015), we enrolled patients with the aim of seeking out any clinically evident 

effect of the treatment with pidotimod and/or bifidobacteria. In the second study period 

(October, November, December 2016), we enrolled another cohort of patients who 

satisfied the same study inclusion criteria with the dual aim of evaluating the clinical 

effects of the treatments and of characterizing the metabolic profiles of patients' urine 
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samples by mass-spectrometry-based metabolomics, in order to fulfill the secondary 

aim of the study, i.e. to determine whether there is any difference in the urine 

metabolic profile before and after treatment among the 4 groups. The study started on 

October 2015 and the follow-up of the last child was completed in May 2017. 

According to data from the Italian National Institute of Health, there was no significant 

difference between the 2 study seasons in frequency, distribution and virulence of 

respiratory pathogens. The schedule of the 4 visits (at the recruitment and after 8, 16, 

and 24 weeks) and data collection points are summarized in Table 1. The daily diary 

included questions about the occurrence of body temperature superior to 37°C, cough, 

sore throat, common cold, ear pain, hoarseness, and/or a physician-made diagnosis of 

tracheobronchitis or pneumonia. Any additional therapy was allowed with the exclusion 

of immunomodulators, probiotics and systemic steroids. Over the entire study, patients 

were monitored by telephone calls every month to remind the study procedure to the 

parents and monitor participants’ adherence to the protocol. Personal history was 

collected for every patient and none of the children enrolled followed special diets or 

an elimination diet. We therefore assumed that children considered in the study had 

common diet habits and common lifestyles according to their age. 

All study procedures were performed in accordance with the declaration of Helsinki 

and approved by the Ethical Committee, Federico II University, Naples (protocol no. 

173/2015). Study participants and parents were informed about the study procedure in 

detail and written informed consent was obtained. 
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Table 1. Summary of visits and measurements for the trial.  

 

 Visit 1 Visit 2 Visit 3 Visit 4 

 T0 
8 weeks 

after  

16 weeks 

after 

24 weeks 

after 

Written informed consent 


 

   

Demographics     

Inclusion/exclusion criteria verification     

Randomization     

Medications/placebos delivery/collection     

Adverse events registration     

Daily diary delivery/collection/supervision     

Urine for metabolomics analysis     

 

3.2 Untargeted Metabolomics Analysis 

In the second study period (October, November, December 2016), all children who had 

been recruited underwent the same clinical protocol of the first study period and, in 

addition,  were asked to collect at least 6 mL of urine for the metabolomics analysis at 

visit 1, before any active drug or placebo administration, and at visit 3 (4 months after 

enrollment), respectively.  The urine samples were immediately stored at -80°C until 

metabolomics analysis was performed.  

The urine samples were thawed at room temperature, stirred for 30 seconds in a 

vortex mixer, and then centrifuged at 6000 g for 10 minutes to remove the sediment 

present in the urine. We transferred 100 µL of the supernatant into a test tube and 

added 400 µl of H2O containing 0.1% formic acid (FA) to obtain a 1:5 dilution. Each 
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diluted sample was transferred into a glass vial, placed in the autosampler and kept at 

5°C. 

3.3 Ultra-Performance Liquid Chromatography (UPLC)-Mass 

Spectrometry (MS) analysis 

All urine samples were analyzed using a Waters Acquity UPLC system coupled to a 

Waters Q-TOF Synapt G2 mass spectrometer (Waters Corp., Milford, MA, USA). 5µL 

of each diluted sample were injected into a Waters Acquity HSS T3 2.1 x 100mm 

column packed with 1.7µm beads kept at 50ºC. The mobile phase for elution was 

composed of solvent A (H2O, 0.1% FA) and solvent B [methanol/ acetonitrile 

(MeOH/CH3CN) 90:10/0.1% FA, v/v]. The gradient elution started with 5%B 

isocratically for 1 min, followed by a linear gradient to 30%B in 2.5 min, then to 95%B 

in other 2.5 min. The composition was kept at 95%B for 2min to clean the column and 

then changed to 5%B to equilibrate to the initial conditions for 3 min, for a total run time 

of 11 min. The flow rate was 500µL min-1. The electrospray source of Q-TOF was 

operated in positive (ESI+) and negative (ESI-) ionization mode with a capillary voltage 

set at 3kV and 1.5kV respectively. Data were collected in continuum mode, with a 

mass scan range of 20-1200 m/z, a resolution of 20.000. A leucine-enkephalin solution 

was used as lock-mass. All UPLC–ESI-TOF-MS operations were controlled with 

MassLynx 4.1 (Waters, Milford, MA, USA). 

In order to assess the reproducibility and accuracy during the analysis and to evaluate 

the metabolite content of the samples, Quality Control samples (QC) and Standards 

Solution Samples (Mix) were used. The QCs were prepared mixing together an aliquot 

of each sample and then diluting the mixture to 1:2, 1:3 and 1:5 (H2O, 0.1% FA), 

obtaining three type of QCs. The standards solution consisted of a mix of nine 

compounds, whereof the exact mass and retention time are known. 

The QCs and Mix samples were injected at regular intervals during the sequence, 
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together with blank samples (H2O, 0.1% FA), to determine specific ions from the 

mobile phase and to find out any contaminants. The analysis was performed in 

triplicate. The samples were injected randomly to prevent any spurious classification 

deriving from the samples position in the sequence. 

 

3.4 Data pre-processing and pre-treatment 

UPLC-MS data were processed by the software Progenesis (Waters) and two data 

sets were generated, one for the positive-ionization mode (POS data set) and the other 

for the negative-ionization mode (NEG data set). The parameters used for data 

extraction were optimized through the preliminary analysis processing of the QC 

samples. As a result, the so called Rt_mass variables (where Rt is the retention time 

and mass is the mass to charge ratio m/z of the chemical compound) were generated. 

Variables with more than 95% of missing values in the blank samples or with a ratio 

between the 5th percentile measured in the QCs and the 95th percentile measured in 

the blank samples greater than 5  were included. Moreover, variables with a coefficient 

of variation in the QCs greater than 15% were excluded. Missing data were imputed by 

generating a random number between zero and the minimum value measured for the 

variable. For each type of QCs, linear regression models were generated to estimate 

the variable level as a function of the run order. Then, the level of each variable in the 

samples was calculated regressing the intensity of the variable obtained by data 

extraction on the linear model built using the level of the variable in the three QCs 

estimated at the same run order of the sample as response and the dilution factors as 

independent variables.  

After Probabilistic Quotient Normalization 97, median was applied to each variable of 

the triplicates. The differences between the urine metabolite content after 16 weeks of 

treatment and at the baseline were used to obtained the sample representation useful 
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for data analysis. 

 

3.5 Data analysis 

In the analysis of the primary outcome, homogeneity of baseline values was carried 

out by using appropriate statistical test (ANOVA or Chi Square test).  Inferential 

statistics to compare treatment groups was performed using ANOVA followed by post–

hoc Dunnett’s test multiple comparison versus placebo. Significance level was set to 

=0.05.  

In the analysis of the secondary outcome, multivariate data analysis based on 

projection methods and univariate data analysis were applied to investigate the 

differences in the metabolome of the 4 groups of interest. Specifically, the group D (i.e. 

placebo) was considered as a control group and the other three groups were 

independently compared to it.  Exploratory data analysis was performed by Principal 

Component Analysis (PCA), whereas post-transformation of Projection to Latent 

Structures Discriminant Analysis (ptPLS2-DA) 98 was applied to evaluate if differences 

exist between the group under investigation and group D. The predictive performance 

of the ptPLS2-DA models was estimated by means of the Area Under the Receiver 

Operating Characteristic curve (AUC) of the outcomes of the predictions during 5-fold 

cross-validation (i.e. AUCCV). Permutation test on the group response was performed 

to avoid over-fitting. Since multivariate data analysis explores the correlation structure 

of the collected data, while univariate data analysis investigates the properties of single 

variables, we performed also univariate data analysis by t-test and ROC curve analysis 

with False Discovery Rate in order to complete the results of the multivariate data 

analysis. We selected the variables with q-value less than 0.05 for both t-test and AUC. 

We performed PCA, ptPLS2-DA, t-test and ROC analysis with False Discovery Rate 

by the R 3.3.2 platform (R Foundation for Statistical Computing). The main available 
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metabolomic databases (Human Metabolome DataBase and METLIN) were searched 

to annotate the selected variables characterizing each group. We considered a mass 

tolerance of 10 ppm.
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4 RESULTS 

4.1 Patients’ characteristics 

A total of 55 children were enrolled, were randomized to the 4 groups, and completed 

the study (Table 2). No significant differences in age, gender, body weight, height, and 

number of upper or lower respiratory tract infections in the previous year were found 

among the groups. Twenty-five out of 55 children underwent the metabolomic analysis 

of urine samples. No significant differences in gender, age, weight and height were 

found.    

 

Table 2. Characteristics of the 55 children with recurrent respiratory infections.  

Values are expressed as mean and range or standard error of the mean. 

Abbreviations: URTI, upper respiratory tract infections; LRTI, lower respiratory tract infections. 

 

 
Group A 
(n = 13) 

Group B 
(n = 13) 

Group C 
(n = 13) 

Group D 
(n = 16) 

Males/Females 9/4 11/2 6/7 8/8 

Age at the study (yrs) 4 (3-6) 3.5 (3-6) 3.5 (3-6) 4.2 (3-6) 

Body weight at the study (Kg) 18.0 ± 1.0 18.2 ± 1.0 18.0 ± 0.7 20.5 ± 1.6 

Height at the study (cm) 106.8 ± 1.3 106.5 ± 2.2 106.2 ± 2.0 110.2 ± 2.8 

URTI in the previous year 6.8 (1-13) 5.9 (1-8) 6.9 (5-9) 7.5 (5-12) 

LRTI in the previous year 1.4 (0-9) 1.5 (0-6) 0.6 (0-4) 0.6 (0-3) 

 

 

 

In Table 3 we report the results of the whole 6-month study period for the 55 enrolled 

children. Compared to group D (“placebo group”), groups A (“pidotimod + 

Bifidobacterium group”) and B (“pidotimod group”) showed a significantly higher 
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proportion of symptom-free days (p=0.02 and p=0.003, respectively) and a lower 

percentage of days with common cold (p=0.004 and p=0.005, respectively). No 

differences in treatment adherence were found among the groups. All treatments were 

well tolerated and no adverse events associated to treatments were reported in any 

patient.  

 

Table 3. Clinical outcomes in the 55 children with recurrent respiratory infections 

 
Group A 

(n = 13) 

Group B 

(n = 13) 

Group C 

(n = 13) 

Group D 

(n = 16) 

Number of URTI 39 53 64 58 

Number of LRTI 2 4 1 6 

Number of days with URTI 21 (0-66)§ 25 (0-72)§ 37 (7-72)§ 32 (0-82)§ 

Number of days with LRTI  7 (7-7)§ 5 (2-7)§ 10 (10-10)§ 10 (4-17)§ 

Symptom-free days (%) 65* 69** 59 44 

Days with common cold (%) 15≠ 17# 26 37 

Days with fever (%) 1 4 4 3 

Days with cough (%) 21 18 27 32 

Days with sore throat (%) 8 3 3 10 

Days with hoarseness (%) 2 1 2 6 

Days with ear pain (%) 1 1 1 1 

Workdays lost by the parents 

(%) 
2 7 5 14 

 

Abbreviations: URTI, upper respiratory tract infections; LRTI, lower respiratory tract 

infections. 

§ Values are expressed as mean (range) 

* p = 0.02 versus Group D  
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** p = 0.003 versus Group D  

≠ p = 0.004 versus Group D  

# p = 0.005 versus Group D 

 

4.2 Metabolomic analysis 

The urine metabolomics analysis was performed in 25 patients enrolled in the second 

study period. 

The UPLC-MS analysis of the urine samples led to the generation of two data sets: the 

POS data set, obtained in positive ionization mode including 1329 RT_mass variables, 

and the NEG data set, in negative ionization mode comprising 1346 RT_mass 

variables. A preliminary exploratory data analysis was performed by PCA on each data 

set to identify outliers and specific patterns in the data collected. No outliers were 

detected on the basis of the DModX test and Hotelling’s T2 test ( =0.05) performed on 

the PCA models of each group. Moreover, no differences in the metabolic profile were 

observed between the 4 groups at the baseline. 

 

Group D (“placebo group”) versus group C (“bifidibacterium 

group”) 

The variations in the metabolite content of the urines from the 8 children of the control 

group D were compared to those from the 6 children of group C. No significant 

differences were highlighted by multi- and univariate data analysis for both the NEG 

data set and the POS data set. Specifically, ptPLS2-DA models did not pass the 

permutation test on the group response and q-values resulted to be greater than 0.20 

for all the variables. 
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Group D (“placebo group”) versus group B (“pidotimod group”) 

Urine samples were available for 6 children of group B. Significant differences between 

group D and group B were detected by multi- and univariate data analysis. ptPLS2-DA 

models (mean centering and Pareto scaling, 1 predictive latent variables) showed 

AUCCV=0.85 (p-value=0.041) for the POS data set and AUCCV=0.81 (p-value=0.049) 

for the NEG data set. The score bar plot of the model for the POS data set is reported 

in figure 1 (a similar plot was obtained for the NEG data set, data not shown). We 

selected 384 variables by univariate data analysis, 357 from the POS data set and 27 

from the NEG data set. Variable annotation is reported in Table S1 in Supplementary 

Information. Among them some variables could be ascribable to a derivative of 

hippuric acid and to triptophan metabolites (L-Kynurenine and indolacetic acid). 

 
 
 

 
 
 
Figure 1. Group D (“placebo group”) versus group B (“pidotimod group”): score bar plot of the 

ptPLS2-DA model for the POS data set. White bars indicate group D children, grey bars refer to 

group B children. tp is the predictive score of the model. 
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Group D (“placebo group”) versus group A (“pidotimod + 

bifidobacterium group”) 

Urine samples were available for 5 children of group A. Significant differences between 

group D and group A were highlighted by multi- and univariate data analysis. ptPLS2-

DA models (mean centering and Pareto scaling, 1 predictive latent variables) showed 

AUCCV=0.98 (p-value=0.016) for the POS data set and AUCCV=0.99 (p-value=0.002) 

for the NEG data set. The score bar plot of the model for the POS data set is reported 

in figure 2 (a similar plot was obtained for the NEG data set, data not shown). We 

selected 647 variables by univariate data analysis, 356 from the POS data set and 291 

from the NEG data set. Variable annotation is reported in Table S2 in Supplementary 

Information. Among them, we identified a metabolite of bile acid (deoxycholic acid 3-

glucuronide), oxoglutaric acid, metabolites of tryptamine (trace amines) and some 

metabolites belonging to the ubiquinone family. 

 

 

Figure 2. Group D (“placebo group”) versus group A (“pidotimod + Bifidobacterium group”): 

score bar plot of the PLS-DA model for the POS data set. White bars indicate group D children, 

black bars refer to group A children. tp is the predictive score of the model. 
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The results of data analysis can be summarized in the Shared and Unique Structure 

plot (SUS-plot) of figure 3 99, where the predictive correlation loadings of each variable 

calculated for the ptPLS2-DA model distinguishing group D and group A and for the 

model separating group D and group B are reported in the same plot. Many variables 

are close to the diagonal of the plot, and therefore it can be assumed that the variables 

which distinguish group D and group A likely separate also group D and group B 

(“shared variables”), this suggesting that the effect might be attributed to the presence 

of pidotimod. Among them, we found variables that could be ascribable to metabolite 

of steroid hormones, metabolites of vitamin B metabolism and aminoacid derivatives. 

On the other hand, some variables lie on the extreme regions of the horizontal/vertical 

axis (close to -0.8 or 0.8) suggesting that some metabolites can be related to the 

interaction effects of pidotimod and bifidobacteria. 
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Figure 3. SUS-plot for the POS data set: variables distinguishing group D and group B are 

reported as grey inverted triangle, variables separating group D and group A as light grey 

triangles, whereas black boxes indicate variables distinguishing both group D and group A, and 

group D and group B. Open circles indicate variables that did not result significant in the 

analysis. 
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5 DISCUSSION 

 

This RCT enrolled preschool children who attended nursery school/kindergarten and 

had RRI, a condition representing an early life troublesome event typically cared for in 

primary care settings. 

We found that pidotimod, administered alone or combined with bifidobacteria, is 

effective in significantly decreasing the days of illness along with reducing symptoms 

due to common cold. In contrast, in the group treated with bifidobacteria mixture alone 

no significant differences in clinical outcomes compared to the placebo group were 

found.   

A major novel finding from this study is provided by the metabolomic analysis. For the 

first time, we demonstrated that children with RRI receiving pidotimod have a 

metabolomic profiling of urine significantly different from the placebo group. These 

differences were observed regardless children were taking pidotimod alone (group B) 

or in combination with bifidobacterium mixture (group A) and concern steroid 

hormones, metabolites of vitamin B metabolism and aminoacid derivatives. 

On the other hand children treated with bifidobacterium mixture alone did not showed 

variations in the metabolomic profile compared to those of the placebo group. 

Steroid hormones exert immuno-regulatory effects both in vivo and in vitro and they 

could represent the activation of the hypothalamus-pituitary-adrenal axis in the 

interaction between neuroendocrine and immune systems100. Vitamin B is mostly 

derives from diet and bacteria can synthesize it. Recent studies have demonstrated 

that our immune system can uses vitamin B as a point of difference to recognize 

infection through mucosal associated invariant T cells that lie in mucosal and other 

surfaces (intestine, mouth, lungs) 101,102. 

From a clinical point of view, no differences were found in children treated with 

pidotimod alone and children taking pidotimod plus bifidobacterium mixture, and these 
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two groups seem to behave in the same way. However, the metabolomics analysis 

revealed a different biochemical behavior. The interaction between bifidobacterium and 

pidotimod produces different metabolic perturbations related to a number of products 

such as metabolites of bile acid, a derivative of hippuric acid, triptophan metabolites, 

the oxoglutaric acid, a metabolite of tryptamine and a metabolites belonging to the 

ubiquinone family. Actually hippuric acid and bile acid metabolites are likely associated 

with the microbiota composition and they emerged as discriminant metabolites also in 

a recent metabolomic study by our group considering, in that case, children with RRI 

treated with pidotimod compared to healthy controls95. These metabolites, previously 

described in children with RRI, point toward a role of the microbiota in the immune 

regulation, even though we still do not know how they can precisely interact and 

respond to a possible probiotics supplementation. 

Moreover, triptophan metabolites L-Kynurenine and indolacetic acid could derive from 

enteric biotransformation and thus be related to the microbiota composition103. A recent 

review also underlined in this respect the crucial role of tryptophan and its metabolites 

in the balance between intestinal immune tolerance and gut microbiota 

maintenance104. The metabolites of oxoglutaric acid may be related to the microbiota 

composition as well105, while metabolites of tryptamine (trace amines) may be 

associated with microbiome growth. Considering the metabolites belonging to the 

ubiquinone family, in the context of the microbiota, a recent study, based on genomic 

analysis, provided further insight into the quinone biosynthesis by microorganisms from 

the human gut microbiota106.  

Our findings are not due to the bifidobacterium effect only because no differences in 

the metabolomic profile were found between placebo and group C (bifidobacteria 

group) and thus can be at least partially interpreted as the result of the combined effect 

of the two agents (pidotimod plus bifidobacterium) on the metabolomic arrangement.  
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Our study has strengths and limitations. The major strength is that this is the first 

prospective, randomized, double-blinded, placebo-controlled trial evaluating the clinical 

efficacy as well as the effects on the urine metabolomic profiling of the combined use 

of an immunostimulant and probiotics for preventing RRI in preschool children. 

The accuracy of the study is warranted by the 4 arms design with a comparison not 

only versus the subjects receiving placebo, but also versus each active medication 

group. In this way, we could appropriately assess the role that each treatment, alone or 

in combination, played in the trial in order to achieve the final effect. The inclusion 

criteria we set were also very strict, thus avoiding as many confounding factors as 

possible. Moreover, we administered a mixture of bifidobacteria instead of a single 

strain. Indeed, multistrain probiotics seem to be more effective than single strains107. 

Whether this is due to synergistic interactions between strains or a consequence of the 

higher probiotic dose is at present unclear. On the other hand, we acknowledge that 

our population size was small. Future RCTs including a larger number of subjects and 

a healthy group of participants are warranted to further understand the 

immunomodulatory effects of pidotimod and bifidobacteria in terms of RRI prevention.
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6 CONCLUSIONS 

 

In conclusion, the novel finding from this study is that children with RRI treated with 

pidotimod have better clinical outcomes and a different urine metabolomic profiling 

after treatment compared to subjects receiving placebo, while patients treated only 

with bifidobacteria did not show any difference in clinical outcomes and metabolomic 

profile in comparison to the placebo group.  Group A (“pidotimod + bifidobacteria 

group”) and B (“pidotimod group”) did not differ from the clinical point of view, but the 

metabolomic analysis was able to reveal, going beyond the clinic, a different behaviour 

for these two groups, suggesting a possible role for the microbiota composition in the 

underlying physiopathologic mechanism. We believe that the study of metabolome in 

pediatric or adult RRI is promising to uncover the possible connection between the gut 

microbiome, the role of immunostimulants and their combined relationship to RRI. 
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7 SUPPLEMENTARY INFORMATIONS 

Compound m/z ESI Compound ID Charge Urine Adducts Formula Description Biological class/pathway Mass Error (ppm)Isotope Similarity

0,87_990,4973m/z 990.4973 ESI+ HMDB06902 1 x M+H C48H72CoN11O8+2 Cobinamide intermediate in porphyrin and chlorophyll metabolism 0.2 53.4

0,90_162,1120m/z 162.112 ESI+ HMDB00062 1 x M+H C7H15NO3 L-Carnitine fatty acid metabolism/acylcarnitine -2.9 95.9

0,96_90,0550m/z 90.05502 ESI+ HMDB00161 1 x M+H C3H7NO2 L-Alanine aminoacid 0.7 99.6

1,01_160,1329m/z 160.1329 ESI+ HMDB00991 1 x M+H C8H17NO2 DL-2-Aminooctanoic acid amino compound -2.0 99.3

1,05_204,1235m/z 204.1235 ESI+ HMDB00201 1 x M+H C9H17NO4 L-Acetylcarnitine fatty acid metabolism/acylcarnitine 2.3 98.5

1,07_254,0879m/z 254.0879 ESI+ HMDB00727 1 x M+H C9H11N5O4 L-Threoneopterin catabolism of nucleotide -1.8 61.2

1,18_250,0379m/z 250.0379 ESI+ HMDB02062 1 x M+H C8H11NO6S Norepinephrine sulfate Tyr derivative -0.2 93.8

1,40_170,0920m/z 170.092 ESI+ HMDB00001 1 x M+H C7H11N3O2 1-Methylhistidine His derivative -2.5 56.7

1,47_259,0920m/z 259.092 ESI+ HMDB04813 1 x M+H C10H14N2O6 3-Methyluridine nucleoside derivative -1.7 90.1

1,52_218,1385m/z 218.1385 ESI+ HMDB00824 1 x M+H C10H19NO4 Propionylcarnitine fatty acid metabolism/acylcarnitine -0.7 96.9

1,78_153,0655m/z 153.0655 ESI+ HMDB04194 1 x M+H C7H8N2O2 N1-Methyl-4-pyridone-3-carboxamide derivative of dinucleotide (NAD) -2.2 98.8

2,57_283,1037m/z 283.1037 ESI+ HMDB02721 1 x M+H C11H14N4O5 1-Methylinosine Modified nucleotide 0.1 95.1

2,66_173,0805m/z 173.0805 ESI+ HMDB00341 1 x M+H C8H12O4 2-Octenedioic acid fatty acid -1.8 95.8

2,66_250,0935m/z 250.0935 ESI+ HMDB01526 1 x M+H C10H19NO2S2 S-Acetyldihydrolipoamide intermediate in alanine, aspartate and pyruvate metabolism 1.9 87.3

2,83_286,1041m/z 286.1041 ESI+ HMDB05923 1 x M+H C11H15N3O6 N4-Acetylcytidine Modified nucleotide 2.4 94.7

2,84_367,0651m/z 367.0651 ESI+ HMDB01439 1 x M+H C10H15N4O9P Phosphoribosyl formamidocarboxamide purine metabolism 0.3 90.4

2,86_209,0919m/z 209.0919 ESI+ HMDB00684 1 x M+H C10H12N2O3 L-Kynurenine Trp metabolism -0.9 94.5

3,40_185,0800m/z 185.08 ESI+ HMDB01565 1 x M+H C5H15NO4P+ Phosphorylcholine precursor metabolite of choline -6.1 93.2

3,58_111,0440m/z 111.044 ESI+ HMDB00957 1 x M+H C6H6O2 Pyrocatechol catechol -0.4 97.9

3,58_246,1698m/z 246.1698 ESI+ HMDB00378 1 x M+H C12H23NO4 2-Methylbutyroylcarnitine fatty acid metabolism/acylcarnitine -0.8 97.3

4,58_369,1284m/z 369.1284 ESI+ HMDB01204 1 x M+H C16H20N2O8 trans-3-Hydroxycotinine glucuronide nicotine metabolite -2.4 85.3

4,66_459,1294m/z 459.1294 ESI+ HMDB01142 1 x M+H C17H23N4O9P FMNH vit B2 metabolism 4.0 94.6

4,82_195,0641m/z 195.0641 ESI+ HMDB00954 1 x M+H C10H10O4 trans-Ferulic acid phenolic compound -5.6 93.6

4,83_137,0595m/z 137.0595 ESI+ HMDB01326 1 x M+H C8H8O2 Phenyl acetate organic acid derivative -1.3 96.6

5,07_361,1394m/z 361.1394 ESI+ HMDB06045 1 x M+H C18H20N2O6 Dityrosine Tyr derivative -0.1 95.9

5,18_197,0800m/z 197.08 ESI+ HMDB00434 1 x M+H C10H12O4 Homoveratric acid metabolite of 3,4-dimethoxyphenylethylamine -4.2 96.6

5,33_304,1571m/z 304.1571 ESI+ HMDB03573 1 x M+H C17H21NO4 Scopolamine  alkaloid 9.1 82.7

5,45_288,2166m/z 288.2166 ESI+ HMDB00791 1 x M+H C15H29NO4 L-Octanoylcarnitine fatty acid metabolism/acylcarnitine -1.1 96.8

5,79_302,2324m/z 302.2324 ESI+ HMDB06320 1 x M+H C16H31NO4 2,6 dimethylheptanoyl carnitine fatty acid metabolism/acylcarnitine -0.5 99.3

5,79_361,1990m/z 361.199 ESI+ HMDB02802 1 x M+H C21H28O5 Cortisone steroids -5.4 81.2

5,99_163,0751m/z 163.0751 ESI+ HMDB02333 1 x M+H C10H10O2 Safrole food flavour -1.5 99.1

6,15_389,1637m/z 389.1637 ESI+ HMDB05032 1 x M+H C21H25ClN2O3 Cetirizine medication 2.6 73.3

6,22_379,2105m/z 379.2105 ESI+ HMDB00418 1 x M+H C21H30O6 18-Hydroxycortisol steroids -2.8 58.9

1.38_180.0656m/z 180.0656 ESI- HMDB00158 1 x M-H C9H11NO3 L-Tyrosine aminoacid -5.4 99.1

4.59_174.0553m/z 174.0553 ESI- HMDB00197 1 x M-H C10H9NO2 Indoleacetic acid Trp metabolism -4.0 94.9

3.00_218.1025m/z 218.1025 ESI- HMDB00210 1 x M-H C9H17NO5 Pantothenic acid vitamin B5 -3.9 99.0

3.54_189.0763m/z 189.0763 ESI- HMDB00325 1 x M-H C8H14O5 3-Hydroxysuberic acid fatty acids -2.9 92.4

3.26_145.0501m/z 145.0501 ESI- HMDB00448 1 x M-H C6H10O4 Adipic acid dicarboxylic acid -3.7 95.3

3.47_157.0499m/z 157.0499 ESI- HMDB00555 1 x M-H C7H10O4-2 3-Methyladipic acid catabolism of phytanic acid. -4.4 99.2

4.59_174.0553m/z 174.0553 ESI- HMDB00859 1 x M-H2O-H C10H11NO3 Methylhippuric acid metabolites of fatty acids -3.7 94.7

1.83_138.0556m/z 138.0556 ESI- HMDB00875 1 x M-H C7H9NO2 Trigonelline alkaloid -3.5 99.3

1.83_138.0556m/z 138.0556 ESI- HMDB00959 1 x M-H2O-H C7H11NO3 Tiglylglycine metabolites of fatty acids -3.1 99.1

1.38_180.0656m/z 180.0656 ESI- HMDB01119 1 x M-H C9H11NO3 4-Hydroxy-4-(3-pyridyl)-butanoic acid nicotine metabolite -5.4 99.1

4.67_457.1146m/z 457.1146 ESI- HMDB01142 1 x M-H C17H23N4O9P FMNH vit B2 metabolism 3.5 87.7

4.65_150.0555m/z 150.0555 ESI- HMDB01537 1 x M-H2O-H C8H11NO3 6-Hydroxydopamine amine -3.5 98.2

1.60_162.0233m/z 162.0233 ESI- HMDB01890 1 x M-H C5H9NO3S Acetylcysteine Cys derivative 1.3 91.9

3.47_157.0499m/z 157.0499 ESI- HMDB02025 1 x M-H2O-H C7H12O5 2,3-Dimethyl-3-hydroxyglutaric acid fatty acid -3.9 99.0

4.65_150.0555m/z 150.0555 ESI- HMDB02210 1 x M-H C8H9NO2 2-Phenylglycine alpha amino acids -3.9 98.4

3.26_145.0501m/z 145.0501 ESI- HMDB02712 1 x M-H2O-H C6H12O5 1,5-Anhydrosorbitol polyol -3.3 95.0  

Table S1: B versus D. The table reported the ID of the variables , the mass of the ion, the type 

of ESI, the HMDB ID, the type of adduct, the chemical formula, the putative marker, the 

pathway involved or the biological class of the compounds, the mass error of the m/z extracted 

respect to the matched compound and the isotopic similarity between the spectrum of the ion 

and the matched compound (expressed in %) 
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Compound (rt_m/z) m/z ESI HMDB ID Charge Urine Adducts Formula Description Biological class/pathway

Mass 

Error 

(ppm)

Isotope 

Similarity

0.87_990.4973m/z 990.4973 ESI+ HMDB06902 1 x M+H C48H72CoN11O8+2 Cobinamide intermediate in porphyrin and chlorophyll metabolism 0.2 53.4

0.89_774.6082m/z 774.6082 ESI+ HMDB05331 1 x M+H C43H84NO8P GPEtn(18:0/20:1(11Z)) glycerophospholipid 9.6 88.9

0.99_310.1132m/z 310.1132 ESI+ HMDB00773 1 x M+H C11H19NO9 N-Acetyl-a-neuraminic acid sialic acid -0.3 93.5

1.00_223.0742m/z 223.0742 ESI+ HMDB00099 1 x M+H C7H14N2O4S L-Cystathionine dipeptide -2.1 42.5

1.13_231.0977m/z 231.0977 ESI+ HMDB02335 1 x M+H C9H14N2O5 Aspartyl-L-proline dipeptide 0.6 94.7

1.18_250.0379m/z 250.0379 ESI+ HMDB02062 1 x M+H C8H11NO6S Norepinephrine sulfate Tyr derivative -0.2 93.8

1.45_288.1196m/z 288.1196 ESI+ HMDB02089 1 x M+H C11H17N3O6 n-Ribosylhistidine His derivative 2.1 98.7

2.66_250.0935m/z 250.0935 ESI+ HMDB01526 1 x M+H C10H19NO2S2 S-Acetyldihydrolipoamide intermediate in alanine, aspartate and pyruvate metabolism 1.9 87.3

2.83_286.1041m/z 286.1041 ESI+ HMDB05923 1 x M+H C11H15N3O6 N4-Acetylcytidine nucleoside 2.4 94.7

2.84_367.0651m/z 367.0651 ESI+ HMDB01439 1 x M+H C10H15N4O9P Phosphoribosyl formamidocarboxamide purine metabolism 0.3 90.4

3.13_175.1227m/z 175.1227 ESI+ HMDB04370 1 x M+H C11H14N2 N-Methyltryptamine alkaloids -1.5 92.8

3.18_125.0598m/z 125.0598 ESI+ HMDB00873 1 x M+H C7H8O2 4-Methylcatechol catechol 1.0 94.5

4.66_459.1294m/z 459.1294 ESI+ HMDB01142 1 x M+H C17H23N4O9P FMNH vit B2 metabolism 4.0 94.6

4.77_377.1450m/z 377.145 ESI+ HMDB00244 1 x M+H C17H20N4O6 Riboflavin vit B2 -1.6 66.3

4.83_137.0595m/z 137.0595 ESI+ HMDB01326 1 x M+H C8H8O2 Phenyl acetate organic acid derivative -1.3 96.6

5.07_361.1394m/z 361.1394 ESI+ HMDB06045 1 x M+H C18H20N2O6 Dityrosine Tyr derivative -0.1 95.9

5.46_251.1279m/z 251.1279 ESI+ HMDB02012 1 x M+H C14H18O4 Ubiquinone intermediate of Coenzyme Q 0.4 97.8

5.79_361.1990m/z 361.199 ESI+ HMDB02802 1 x M+H C21H28O5 Cortisone steroids -5.4 81.2

5.96_379.2086m/z 379.2086 ESI+ HMDB00418 1 x M+H C21H30O6 18-Hydroxycortisol steroids -7.7 92.0

6.45_319.1909m/z 319.1909 ESI+ HMDB06709 1 x M+H C19H26O4 Ubiquinone Q2 intermediate of Coenzyme Q 1.6 74.5

0.81_485.1979m/z 485.1979 ESI- HMDB00585 1 x M-H C18H34N2O13 Glucosylgalactosyl hydroxylysine Lys derivative -1.8 85.1

0.89_1078.3541m/z 1078.354 ESI- HMDB06513 1 x M-H C43H68N7O17P3S docosa-4,7,10,13,16-pentaenoyl coenzyme A unsaturated fatty acids 0.8 78.9

0.89_750.5486m/z 750.5486 ESI- HMDB05779 1 x M-H C43H78NO7P GPEtn(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) glycerophospholipid 5.6 81.8

0.97_267.0716m/z 267.0716 ESI- HMDB00195 1 x M-H C10H12N4O5 Inosine nucleoside -7.1 93.0

1.04_117.0186m/z 117.0186 ESI- HMDB00202 1 x M-H C4H6O4 Methylmalonic acid metabolism of fat and protein -6.0 96.0

1.04_85.0289m/z 85.02887 ESI- HMDB00549 1 x M-H C4H6O2 gamma-Butyrolactone  precursor of gamma-hydroxybutyrate. -7.4 97.6

1.05_240.0017m/z 240.0017 ESI- HMDB06512 1 x M-H C6H11NO5S2 3-mercaptolactate-cysteine disulfide Cys derivative 4.7 75.3

1.11_145.0136m/z 145.0136 ESI- HMDB00208 1 x M-H C5H6O5 Oxoglutaric acid TCA cycle -4.7 96.1

1.21_67.0184m/z 67.01842 ESI- HMDB06853 1 x M-H C4H4O 3-Butyn-1-al butanoate metabolism -7.6 96.2

1.38_180.0656m/z 180.0656 ESI- HMDB00158 1 x M-H C9H11NO3 L-Tyrosine aminoacid -5.4 99.1

1.60_162.0233m/z 162.0233 ESI- HMDB01890 1 x M-H C5H9NO3S Acetylcysteine Cys derivative 1.3 91.9

1.64_257.0774m/z 257.0774 ESI- HMDB04813 1 x M-H C10H14N2O6 3-Methyluridine nucleoside -2.1 93.6

1.84_328.0447m/z 328.0447 ESI- HMDB00058 1 x M-H C10H12N5O6P Cyclic AMP nucleotide -1.7 98.0

2.01_197.0452m/z 197.0452 ESI- HMDB00291 1 x M-H C9H10O5 Vanillylmandelic acid catabolism of catecholamines -1.7 97.7

3.00_218.1025m/z 218.1025 ESI- HMDB00210 1 x M-H C9H17NO5 Pantothenic acid vitamin B5 -3.9 99.0

3.00_88.0397m/z 88.03966 ESI- HMDB00056 1 x M-H C3H7NO2 beta-Alanine or 3-aminopropanoate aminoacid -8.4 96.9

3.17_382.0997m/z 382.0997 ESI- HMDB00912 1 x M-H C14H17N5O8 Succinyladenosine nucleoside -1.9 98.2

3.22_123.0446m/z 123.0446 ESI- HMDB00873 1 x M-H C7H8O2 4-Methylcatechol catechol -4.4 99.2

3.54_189.0763m/z 189.0763 ESI- HMDB00325 1 x M-H C8H14O5 3-Hydroxysuberic acid fatty acids -2.9 92.4

3.59_143.0707m/z 143.0707 ESI- HMDB01988 1 x M-H C7H12O3 4-Hydroxycyclohexylcarboxylic acid carboxylic acid -4.6 96.6

3.86_333.0520m/z 333.052 ESI- HMDB00229 1 x M-H C11H15N2O8P Nicotinamide ribotide vitamin B3 8.0 92.2

4.67_457.1146m/z 457.1146 ESI- HMDB01142 1 x M-H C17H23N4O9P FMNH vit B2 metabolism 3.5 87.7

5.27_160.0761m/z 160.0761 ESI- HMDB03447 1 x M-H C10H11NO Tryptophanol indole -4.4 93.6

5.57_155.1072m/z 155.1072 ESI- HMDB04362 1 x M-H C9H16O2 4-Hydroxynonenal lipid peroxidation -3.6 93.5

5.81_155.1072m/z 155.1072 ESI- HMDB04362 1 x M-H C9H16O2 4-Hydroxynonenal lipid peroxidation -3.6 97.3

5.83_229.1436m/z 229.1436 ESI- HMDB00623 1 x M-H C12H22O4 Dodecanedioic acid fatty acids -4.2 89.8

5.99_155.1072m/z 155.1072 ESI- HMDB04362 1 x M-H C9H16O2 4-Hydroxynonenal lipid peroxidation -3.5 92.3

6.07_200.1285m/z 200.1285 ESI- HMDB00832 1 x M-H C10H19NO3 Capryloylglycine metabolites of fatty acids -3.8 96.2

6.78_427.1792m/z 427.1792 ESI- HMDB00851 1 x M-H C18H28N4O8 Pyridinoline alpha-aminoacids -9.8 85.2

6.82_567.3166m/z 567.3166 ESI- HMDB02596 1 x M-H C30H48O10 Deoxycholic acid 3-glucuronide glucuronide of bile acids -1.5 89.6

  

Table S2: A versus D The table reported the ID of the variables , the mass of the ion, the type 

of ESI, the HMDB ID, the type of adduct, the chemical formula, the putative marker, the 

pathway involved or the biological class of the compounds, the mass error of the m/z extracted 

respect to the matched compound and the isotopic similarity between the spectrum of the ion 

and the matched compound (expressed in %) 
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