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Abstract

Many Monte Carlo light transport simulations use multiple importance
sampling (MIS) to weight between different path sampling strategies. We
propose to use the path throughput to compute the MIS weights instead
of the commonly used probability density per area measure. This new for-
mulation is equivalent to the previous approach and results in the same
weights as well as implementation. However, it is more intuitive and
can help in understanding the effects of modifications to the weight func-
tion. We show some examples of required modifications which are often
neglected in implementations. Also, our new perspective might help to
derive MIS strategies for new samplers in the future.

1 Introduction

Beginning with Path Tracing [Kaj86] there are different solutions to the light
transport simulation problem. In all cases the integral equation (Rendering
Equation)

L(xi,
−→wi) =

∫

Ω

L(xi+1,
←−wi)ρ(xi,

−→wi,
←−wi)〈ni,

←−wi〉d
←−wi

is solved numerically by sampling. For the notation please refer to table 1. De-
pendent on the direction of tracing we talk from light transport (paths starting
at the light source/photons) or importance transport (paths starting at the ob-
server). Both define a different sampler for the same paths. Since they cover
different light effects more successfully, the combination to Bidirectional Path

Tracing (BPT) by Veach [VG95a] gives a more robust solution.
The key idea in BPT is to weight each path from each sampler using Multiple

Importance Sampling (MIS). The weights form a partition of unity, such that
the weighted sum of all samplers is again an unbiased estimate of the Rendering
Equation. The goal of that weights is to find a minimal variance solution. I.e. if
one of the samplers has a lower variance than others, it should be preferred, oth-
erwise an average of multiple equal samplers will also result in a lower variance
due to higher sample count. The state of the art weight function is called the
Balance Heuristic (introduced by Veach [VG95a]) and is explained in Section 2.
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xi A path vertex with index i; indices are ascending and start with
0 at the observer

Xa A path x0,x1, . . . ,xs+t from sampler a with s vertices on the view
sub-path and t vertices on the light sub-path

a, b Indices used to depict different samplers

ni The surface normal at vertex xi with ‖ni‖ = 1
−→wi A direction from xi−1 to xi with ‖

−→wi‖ = 1
←−wi A direction from xi+1 to xi with ‖

←−wi‖ = 1
−→pi ,
←−pi Sampling PDF at vertex xi in importance transport direction

−→pi = p(xi,
−→wi,
←−wi) and light transport direction←−pi = p(xi,

←−wi,
−→wi)

ρi The bidirectional scattering or reflectance distribution function
(BxDF); Same in both transport directions due to reciprocity

〈·, ·〉 Scalar product of two vectors (equals the cos θ between the two
vectors if both are normalized)

S(X ) Sampled value (radiance) of a path X

We introduce a new way to think of the Balance Heuristic in Section 3.
Our approach is to use the path throughput (the sampled quantity) instead of
probabilities. This new perspective helps in understanding the implications of
modifications to the renderer and allow more intuitive extensions towards other
samplers (See Section 4). For an already existing and correct implementation
there is nothing to be changed.

An example of such an extension is the combination of Photon Mapping
[Jen96] with BPT. In photon mapping two sub-paths are merged by searching
end points in a local neighborhood at one path end, instead of connecting sub-
paths only. The difficulty here is to find a compatible probability description for
both methods to be able to compute the MIS. The solution was discovered by
[GKDS12] and [HPJ12] in parallel. Using our perspective the solutions becomes
trivial.

A further family of samplers are Marcov Chain Monte Carlo methods which
conditionally exchange sub-paths (light, importance or both) to sample an ar-
bitrary target function. In [ŠOHK16] MCMC was combined with BPT using
MIS, too. For one chain their approach uses the unmodified path sampling
probability, regardless of its optimality, since computing the true probability is
unfeasible. Our approach suggests that parts of the throughput calculation (like
acceptance probability) should be included into the MIS computation.
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2 Path Probability Importance Weights

Given the Probability Density Functions (PDFs) pa of a sampler and the number
of samples na drawn from this sampler, the Balance Heuristic is

wa =
napa
∑

b nbpb
=

1

1 +
∑

b6=a
nbpb

napa

. (1)

According to Elvira et al. [EMLB17] it is the best known strategy for sampling a
mixture of PDFs. Also, Veach [VG95b] states it is the optimal choice, if sampling
PDF mixtures with random decisions between PDFs (one-sample model). To
obtain a variance optimal combination, it is also necessary to choose the number
of samples na optimally (multi-sample model) and then use a weighting without
the na [SHSK16]. The second form of Eq. (1) is used in practice to avoid the
computation the numerically challenging probability sums.

However, in light transport simulation we do not know the PDF pb of all
possible samplers when sampling a vertex of a path. The difficulty is that paths
from the adjoint quantity (importance ↔ light) depend on the scene globally.
I.e. the PDF of paths which randomly reach the current vertex is not given by
local properties.

A solution was given by Veach [VG95a] who used the probability density per
unit area instead. For each segment of the path this measure is

p(xi → xi+1) =
−→pi · |〈ni+1,

←−wi〉|

‖xi − xi+1‖2
(2)

where −→pi is the sampling PDF at the source vertex, 〈ni+1,
←−wi〉 is the cos θ at the

target vertex and ‖xi−xi+1‖
2 is the squared distance between the two surfaces.

Analogously, the probability in the inverse direction p(xi ← xi+1) is defined by
inverting all directional sizes on the right side and replacing the indices of −→p
and n.

The probability of a path X is given by the product of all its segment prob-
abilities and the probabilities to sample the first and last vertex.

p(X ) = p(x0) ·
s−2
∏

i=0

p(xi → xi+1) ·
s+t−2
∏

i=s

p(xi ← xi+1) · p(xs+t−1). (3)

Whenever two sub-paths, one from the observer and one from the light
source, are connected, the probability measure for that sampler is the product of
the two parts as defined by Eq. (3). The measures for all other possible samplers
are obtained by replacing forward and backward direction for the other path
segments recursively. In the unidirectional case either the left or the right half
of the product vanishes, including the sampling probability of the end vertex.

Figure 1 shows some of the possibilities for sampling a certain path. For
example, to get the probability for the second path from the first

p(x2 ← x3)

p(x1 → x2)
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X3 :
s = 3
t = 3

p(x0→x1) p(x1→x2) p(x3←x4) p(x4←x5)1

X2 :
s = 2
t = 4

p(x0→x1) p(x2←x3) p(x3←x4) p(x4←x5)1

X4 :
s = 4
t = 2

p(x0→x1) p(x1→x2) p(x2→x3) p(x4←x5)1

Figure 1: Path probabilities for different examples of sampling possibilities for
the same path.

must be multiplied. Hence, the ratio between two path probabilities has the
form

p(Xb)

p(Xa)
=

a−1
∏

k=b

p(xk ← xk+1)

p(xk−1 → xk)
(4)

where k ranges from the end vertex of the connection sb = b in Xb to the start
vertex of the connection (sa = a)−1 in Xa. Here, w.l.o.g. the connection appears
earlier on the path in Xb than in Xa. Otherwise, the fraction must be inverted.

3 Path Throughput Importance Weights

To calculate the sample value (radiance throughput) S(Xa) of a sampled path
we have

S(Xa) =
W(x0)

p(x0)
·

s−2
∏

i=1

−→ρ⊥i
−→pi
·
−−→ρ⊥s−1 ·

←−ρ⊥s

‖xs − xs−1‖2
·

s+t−2
∏

i=s+1

←−ρ⊥i
←−pi
·
L(xs+t−1)

p(xs+t−1)
. (5)

It depends on the sensor weight W , the emitted radiance L, multiple sampling
events in the form ρ⊥/p and the transport evaluation of the connection. Here
ρ⊥ is the BxDF ρ multiplied with the outgoing cosine −→ρ⊥i = ρi · |〈ni,

←−wi〉| and
←−ρ⊥i = ρi · |〈ni,

−→wi〉|.
The true radiance estimate of a pixel L(x0,

−→w0) is then

E[S(X )] = lim
N→∞

1
∑N

k=1 wk

N
∑

k=1

wkS(Xk),

4



where N is the total number of samples (increases with iterations) and Xk are
different sampled paths. The weight wk is artificially introduced and can be any
weight like the Balance Heuristic from Eq. (1).

Our goal is to minimize the variance V[S(X )] = E[S(X )2]−E[S(X )]2. Since
E[S(X )] is the fixed (true) value we only need to minimize E[S(X )2]. Hence,
preferring samplers with a small S must lead to a smaller variance. Therefore,
we require

ŵa ∝ S(Xa)
−1.

This leads us to an equivalent formulation of the balance heuristic

ŵa =
na · S(Xa)

−1

∑

b nb · S(Xb)−1
=

1

1 +
∑

b6=a
nbS(Xa)
naS(Xb)

. (6)

3.1 Equivalence to Probability Weights

Theorem 1. The balance heuristic wa using path probabilities Eq.(1) is equiv-

alent to the heuristic ŵa using inverse throughputs Eq.(6).

Proof. In the calculation of ŵa we need ratios of sampled throughputs which
are:

S(Xa)

S(Xb)
=
‖xb−1 − xb‖

2

−−→ρ⊥b−1 ·
←−ρ⊥b

·
−−→ρ⊥a−1 ·

←−ρ⊥a

‖xa−1 − xa‖2
·

∏a−2
b−1
−→ρ⊥k/
−→pk

∏a

b+1
←−ρ⊥k/
←−pk

=
‖xb−1 − xb‖

2

‖xa−1 − xa‖2
·

∏a−1
b
−→ρ⊥k

∏a−1
b
←−ρ⊥k

·

∏a

b+1
←−pk

∏a−2
b−1
−→pk

=
‖xb−1 − xb‖

2

‖xa−1 − xa‖2
·
a−1
∏

k=b

∣

∣

∣

∣

〈nk,
←−wk〉

〈nk,
−→wk〉

∣

∣

∣

∣

·
a−1
∏

k=b

←−−pk+1
−−→pk−1

using Eq. (5). In step one we split the products into an BxDF and a probability
part and then moved the BxDFs into the product adjusting indices. In the
second step we canceled the reciprocal BxDF arriving at a product of cosines
and substituted the indices in the probabilities to unify the product range.

We get a similar transformation for Eq. (4) by inserting Eq. (2):

p(Xb)

p(Xa)
=

(

a−1
∏

k=b

←−−pk+1|〈nk,
−−−→wk+1〉|

‖xk − xk+1‖2
‖xk−1 − xk‖

2

−−→pk−1|〈nk,
←−−wk−1〉|

)

=
a−1
∏

k=b

‖xk−1 − xk‖
2

‖xk − xk+1‖2
·
a−1
∏

k=b

∣

∣

∣

∣

〈nk,
←−wk〉

〈nk,
−→wk〉

∣

∣

∣

∣

←−−pk+1
−−→pk−1

=
‖xb−1 − xb‖

2

‖xa−1 − xa‖2
·

a−1
∏

k=b

∣

∣

∣

∣

〈nk,
←−wk〉

〈nk,
−→wk〉

∣

∣

∣

∣

←−−pk+1
−−→pk−1

In step one we used −−−→wk+1 = −←−wk and reordered the terms. In the second step,
the first product was expanded and equal terms were canceled out. Comparing
the last line of each ratio we see their equivalence. This applies to unidirectional
cases (s = 0 or t = 0) in the same way.
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4 Implementation Consequences

In practice, the terms in Eq. (4) are computed recursively allowing to store
intermediate results in sub-paths and having higher robustness. With this ap-
proach both weights lead to an identical implementation, because expanding
the ratios leads to the same expression as shown in the proof.

Instead, path throughput weights ŵi are a tool to check whether the com-
puted weights are correct or optimal. They show that all modifications to the
estimated radiance need to be accounted for in the weight computation. To
name some of them:

Russian Roulette To increase the efficiency of a renderer it is common to ran-
domly terminate paths. This termination probabilities must be included
into the segment probabilities.

Shading Normal Correction Shading normals1, which are different from ge-
ometric normals, need a correction factor for a reciprocal light transport
(see Veach’s thesis [Vea97] chapter 5.3). It must be applied inversely to
the probability densities for MIS computation, too.

Random Connection The most used implementation of BPT traces one view-
path for every light-path and connects them deterministically in all pos-
sible ways. However, in GPU implementations often a single random
decision is made [DKHS14]. Then, a connection has a probability of 1/l̄
with l̄ being the average path length of paths which can be chosen by the
process.

While some of these events are included in other renderers (e.g. Russian
Roulette in the VCM implementation (see supplemental of [GKDS12])) we have
never seen that the shading normal correction is included in the MIS computa-
tion.

Using ŵ as a tool can also help in unifying different sampling approaches.
For example, combining BPT with Vertex Merging (i.e. photon gathering) is
more intuitive than for the probability based approach. It took several years
and multiple authors [GKDS12,HPJ12] to derive a unified weight computation
which allowed the combination of BPT with merges. In its essence, the required
modification is the multiplication of the query area πr2 to the path probability.
In the path throughput this quantity is contained naturally. Thus, comparing
connection paths with merge paths using S unifies the two sampling approaches
trivially.

However, there are also cases where our formulation does not help. For
example, another possibility of using random connections was used by Popov
et al. [PRDD15]. They connected each view sub-path to multiple light sub-
paths to increase the path reuse. The problem here is the correlation between
paths due to the choice of connections. The authors derived an upper bound for
the variances to obtain a more robust MIS calculation. This problem remains
equally hard regardless of the MIS formulation.

1Smooth interpolated normals on a triangle or bump mapping modified normals
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5 Results

We derived a new form of the Balance Heuristic (Eq. (6)) which opens new
perspectives to the path combination problem. By using path throughputs,
many effects, which must be included in the MIS weight, become more obvious
than before. Whenever a new quantity is multiplied with the path throughput,
the path probability should be divided with this quantity.

In future the new perspective may also help in finding better combination
heuristics for old and new sampling techniques such as MCMC.
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sive Light Transport Simulation on the GPU: Survey and Improvements. ACM
Transactions on Graphics (TOG), 33(3):29, 2014.

[EMLB17] Vı́ctor Elvira, Luca Martino, David Luengo, and Mónica F Bugallo. Generalized
Multiple Importance Sampling. arXiv:1511.03095v2, 2017.
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