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Abstract: The two temperate forage legumes containing condensed tannins (CT) that 

promote ruminant production are birdsfoot trefoil (Lotus corniculatus L.; BFT) and 

sainfoin (Onobrychis viciifolia Scop.; SF). Both are well-adapted to the cool-temperate 

climate and alkaline soils of the Mountain West USA. Condensed tannins comprise  

a diverse family of bioactive chemicals with multiple beneficial functions for ruminants, 

including suppression of internal parasites and enteric methane. Birdsfoot trefoil contains 

10 to 40 g·CT·kg−1 dry matter (DM), while SF contains 30 to 80 g·CT·kg−1 DM.  

Our studies have focused on these two plant species and have demonstrated consistently 

elevated rates of gain for beef calves grazing both BFT and SF. Novel results from our 

BFT research include carcass dressing percentages and consumer sensory evaluations 

equivalent to feedlot-finished steers and significantly greater than grass-finished steers, but 

with omega-3 fatty acid concentrations equal to grass-finished beef. We have further 

demonstrated that ruminants fed BFT or SF will consume more endophyte-infected tall 

fescue (Schedonorus arundinaceus (Schreb.) Dumort.) forage or seed than ruminants fed a 

non-CT forage legume. There is great potential value for sustainable livestock production 

in the use of highly digestible, nitrogen-fixing legumes containing tannins demonstrated to 

improve ruminant productivity. 
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1. Introduction: Structural Diversity and Function of Condensed Tannins: 

Condensed tannins (CT) are a heterogeneous family of highly-reactive, carbon-based secondary 

compounds of high molecular weight [1] that bind to proteins with great affinity [2,3], precipitating 

them from solution [4]. These biomolecules, also known as polyphenolics or proanthocyanidins, cause 

responses in herbivores that vary with the diversity of their chemical structures [5,6]. Such diversity is 

in part due to the fact that CT are polymers of flavan-3-ol subunits, which offer the possibility of a 

wide array of molecular weights [7,8], ranging from dimers and trimers to oligomers with multiple 

subunits [9]. The structure of CT also depends on the degree of polymerization of these subunits, 

stereochemistry, the hydroxylation pattern on the “A” and “B” rings of the flavan-3-ol subunits and the 

presence or absence of the 3-hydroxyl group in the molecule [6,8]. In addition, CT are amphipathic 

molecules with aromatic (hydrophobic) rings and hydroxyl (hydrophilic) groups, allowing for bonds 

with different molecules, from proteins and minerals to polysaccharides and other plant  

secondary compounds [10]. 

The abundance of CT in the leaves of forest trees and early findings on the negative relationship 

between CT concentration and levels of insect herbivory led to the proposal that CT evolved as a 

quantitative chemical defense against insect herbivory [11]. This early view was reinforced by the fact 

that there are no compelling findings suggesting that CT have a fundamental role in plant physiological 

processes [12,13]. Nevertheless, several recent studies have failed to show a consistent protective role 

for CT against herbivory (i.e., [14,15]), and thus, the role of CT as a defensive chemical has been 

challenged. For instance, it has been noted that the vision of CT as toxins is at odds with the fact that 

humans have enjoyed CT in drinks and foods for thousands of years [4]. Moreover, recent evidence 

suggests that at appropriate doses, CT may enhance the nutrition and health of consumers, as well as 

the quality of milk and meat products [16–18]. 

In ruminants, the binding and precipitation of dietary proteins by CT shifts the site of protein 

digestion from the rumen to the intestines and nitrogen excretion from urine to feces [19]. Such shifts 

can improve the nutrition of ruminants [20] in feeds that have a greater concentration of soluble 

protein than is required for carbohydrate utilization by rumen microbes, which is the case with most 

well-managed forage legumes. Moreover, improving the protein nutrition of ruminants enhances 

immune responses [21,22], which may increase resistance to gastrointestinal nematodes [23]; 

increasing the essential and branched-chain amino acids reaching the small intestine also improves 

reproductive efficiency in ruminants [24]. By consuming CT-containing forages, herbivores alleviate 

bloat [25], reduce methane emissions [26,27] and reduce internal parasites [21]. For instance,  

CT-containing legumes, like sainfoin (SF; Onobrychis viciifolia Scop.), have antiparasitic activity 

against helminth nematodes [28], and sheep appear to recognize this benefit of SF during grazing by 

increasing their selection of this forage when challenged by parasitic burdens [29]. Further, when 

herbivores consume feeds containing CT, their meat is lighter in color, with a greater concentration of 
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antioxidants and omega-3 compared with omega-6 fatty acids, reduced “pastoral” flavor [30] and is 

generally more desirable for human consumption [16,17,31,32]. 

For this review, we will focus on the beneficial effects of CT and CT-containing temperate legumes 

in ruminant diets and the potential interactions that can enhance such effects. Both birdsfoot trefoil 

(BFT; Lotus corniculatus L.) and SF perform well under irrigation in the high pH soils and cool-temperate 

climate of the Mountain West USA, and both are beneficial for ruminant productivity [4,18]. 

2. Condensed Tannins in Temperate Forage Legumes 

The CT synthesized in forage plant species differ in molecular weight and the type and proportion 

of subunit (see the comprehensive appendix of [4]). The most commonly-cultivated temperate forage 

legumes are alfalfa (Medicago sativa L.) and white clover (Trifolium repens L.). Alfalfa expresses CT 

in its seed coat, and white clover expresses CT in its flowers. The selection of white clover for elevated 

floral CT [33] resulted in white clover shoot CT concentrations as great as 12 g·kg−1 dry matter (DM). 

Alfalfa and white clover have recently been genetically engineered to express CT in their leaves [34], 

but commercial release of CT-containing cultivars is anticipated to require nine years or more [35,36]. 

Two forage plant species that grow well in the Mountain West USA and that naturally contain 

significant concentrations of CT in their leaves are BFT, which contains 10 to 40 g·CT·kg−1 DM, and 

SF, which contains 30 to 80 g·CT·kg−1 DM [9]. 

2.1. Grass and Legume Forages 

Grazing-based cattle and sheep production is commonly carried out on grass or mixed grass-legume 

pastures. The rapid digestibility and greater accessibility of proteins in legumes, such as alfalfa and 

white clover, can result in bloat if these forages constitute more than 25% of a pasture mixture [37] or 

if they occur in patches that can be selected by ruminants. However, CT concentrations as little as  

5 g·kg−1 DM can prevent bloat [38], so pastures composed of CT-containing legumes can be grazed 

without restriction. Ruminant intake is negatively correlated with forage fiber concentration, and 

intake is greater for ruminants fed legumes than grasses [39]; ruminant production on forages is a 

function of intake, which is typically limited by rumen fill and fiber digestion [40]. At similar stages of 

forage maturity, legumes have less fiber than grasses (e.g., [41]) and can be digested more readily.  

The protein content of forage legumes is often greater than the dietary protein requirement of 

ruminants, and when the available protein exceeds the available carbohydrate (i.e., energy) in the 

rumen, amino acids will be used for energy [42]. This results in an undesirable generation of ammonia 

that is excreted in urine or milk [43]. 

2.2. The Beneficial Role of Some Condensed Tannins in Ruminant Digestion 

Condensed tannins prevent bloat by binding to and precipitating proteins, which reduces protein 

concentration in the rumen and increases rumen bypass or “undegradable” protein [44]. The CT 

expressed by many forages can bind to salivary proteins, reducing palatability and intake; CT can also 

form indigestible complexes with rumen microbes and cell wall carbohydrates, reducing the rate of 

rumen digestion and intake [45]. As a result, forages, such as big trefoil (Lotus pedunculatus Cav.), can 
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prevent bloat, but also reduce ruminant productivity [46]. The CT in BFT is present in a relatively low 

concentration and is not reported to inhibit intake or digestion [47,48]. Birdsfoot trefoil CT precipitates 

excess plant proteins in the rumen, preventing bloat, but it does not suppress post-ruminal digestion of 

proteins or absorption in the small intestine [4,49]. This has resulted in consistently better productivity 

of sheep fed BFT compared with alfalfa [50,51] and cattle fed BFT compared with  

non-CT legumes [52,53]. 

3. Ruminant Production on CT Legumes in the Western U.S. 

3.1. Conventional Beef Production 

The conventional North American beef production system consists of a low-input, grazing- and 

hay-based cow-calf phase lasting 11 months to 12 months and a high-input feedlot phase in which a 

ration comprised primarily of grain is fed for three to four months, for a total of 14 months to  

16 months from birth to slaughter. The resulting grain-finished beef is juicy and tender; the 

intramuscular fat content of the longissimus muscle of beef graded choice ranges from 4% to 8% [54]. 

Alternatively, weaned calves that are never fed grain, antibiotics or hormones may be certified as 

grass-fed beef [55] and typically are slaughtered at 18 months to 24 months [56]. The longissimus 

intramuscular fat concentration of grass-finished beef is approximately half that of grain-finished  

beef [57]. 

3.2. Beef Production on a CT-Containing Forage Legume 

Birdsfoot trefoil is productive and persistent in the northern Mountain West [58], typically 

continuing to increase in DM yield for two years after planting [59]. In production-scale swards, 

mature BFT stands averaged approximately 7000 kg·ha−1 per year in the second and third year after 

planting [60], about two-thirds the DM yield of grazing types of alfalfa [59]. In a study carried out at 

Utah State University (USU), yearling Angus (Bos taurus) steers that were finished for 111 days  

(3.7 months) gained 0.55 kg·day−1 on introduced grass pastures, 0.95 kg·day−1 on BFT pastures or  

1.74 kg·day−1 on a concentrate diet [61]. Steers that averaged 451 kg when treatments were initiated 

weighed 512 kg, 557 kg and 644 kg at slaughter when finished on grass, BFT and concentrate, 

respectively. Stocking densities were low; post-grazing pasture DM did not fall below 1700 kg·ha−1. 

Expressed as the number of cattle required to produce one billion pounds of beef (Table 1; adapted 

from [62]), estimates from USU studies for cattle finished on grass (USU grass-finished (GFD);  

3.4 million) were similar to those reported for current model predictions (GFD; 3.6 million) [62]. The 

estimate of the number of cattle required to produce one billion pounds of beef with BFT (USU BFT), 

however, was 2.9 million cattle, which compared favorably with Capper’s [62] estimate for feedlot 

finishing in a U.S. conventional system that includes growth-enhancing feed additives (2.7 million) or 

in a feedlot system that does not include growth-enhancing feed additives (natural; 3.0 million). Age at 

slaughter ranged from 14.6 months for feedlot-finished beef to 22.6 months for grass-finished beef in  

Capper’s [62] estimate, while the USU cattle were all slaughtered at 18 months. This comparison 

illustrates the importance of dressing percentage, which was 62% for BFT-finished beef and 64% for 

feedlot-finished beef. The dressing percentage for grass-finished beef in both reports was similar:  
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57.5% for GFD and 57% for USU GFD [62]. Time to finishing for all cattle in the USU study was  

18 months, while time to finishing varied from 14.6 months for feedlot-finished cattle to 22.6 months 

for grass-finished cattle in Capper’s [62] estimate. 

Table 1. Capper [62] calculated the number of days to slaughter, final weights, dressing 

percentage and the number of cattle required to produce 1 billion kg beef for three U.S. 

beef production systems: CON (feedlot concentrate-finished), NAT (CON without  

growth-enhancing feed additives) and GFD (grass-finished). Results from Pitcher [61] 

have been compared in columns labeled USU (Utah State University). Treatments were 

USU NAT (CON without growth-enhancing feed additives), USU BFT (birdsfoot  

trefoil-finished) and USU GFD (grass-finished). Output is the number of cattle required to 

produce 1 billion kg red meat. 

Time in System (day) 

CON USU NAT NAT USU BFT GFD USU GFD 

Pre-weaned beef calf 207 215 207 215 207 215 

Stocker 123 216 159 216 159 216 

Yearling finishing 110 111 110 111 313 111 

Total in days 440 542 476 542 679 542 

Total in months 14.6 18 15.8 18 22.6 18 

Weight (kg) 

CON USU NAT NAT USU BFT GFD USU GFD 

Pre-weaned beef calf 245 289 245 289 226 289 

Stocker 122 162 122 162 67 162 

Yearling finishing 204 193 163 106 192 61 

Total weight 571 644 530 557 486 512 

Dressing percentage (%) 63.8 58.1 63.3 62.1 57.5 57.0 

Cattle required for  

1 × 109 kg red meat 
2,745,005 2,672,625 2,980,715 2,891,034 3,585,836 3,426,535 

The underlining signifies that the numbers in the next row are the sums of the first three rows in both the upper and lower 

halves of the table. 

Cattle from the three USU treatments in Table 1 were slaughtered, and steaks from the longissimus 

muscle were subjected to consumer sensory evaluation. For the characteristics tenderness, juiciness, 

degree of fattiness and overall preference, steaks from BFT-finished steers were comparable to steaks 

from grain-finished steers and preferred to steaks from grass-finished steers [63]. The fatty acid 

composition of steaks from these treatments was also determined, and the meat from grass- and  

BFT-finished steers had an equivalent ratios of omega-6 (n-6) to omega-3 (n-3) fatty acid 

concentrations, and both were less than the n-6:n-3 of grain-finished beef, with greater n-3, as well as 

reduced n-6 in BFT-finished beef [64]. Likewise, beef from cattle fed CT-containing SF had greater 

marbling scores, quality grades (select versus standard) and backfat thicknesses than alfalfa-fed 

animals. Steaks from cattle finished on CT-containing SF were redder in color than steaks from cattle 

finished on alfalfa and contained more unsaturated fatty acids [65]. 

In a 2014 grazing study, the enteric methane emissions of beef cows grazing BFT were half those of 

cows grazing meadow bromegrass (Bromus riparius Rehm.) [61]; we believe these are the first data 
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comparing enteric methane emissions of grazed perennial grasses and CT legumes. Along with the 

reduction of excess rumen protein due to CT, BFT has a relatively great concentration of non-fibrous 

carbohydrate [66] that could contribute to the elevated gain and dressing percentage observed for the 

BFT-finishing treatment. 

3.3. Dairy Production on a CT-Containing Forage Legume 

In a study carried out on a commercial organic dairy in southeast Idaho USA, an 8-ha  

sprinkler-irrigated grass pasture was subdivided, and 4-ha were cultivated and seeded with ‘Norcen’ 

BFT in late summer of 2011. Data were collected on establishment in autumn of 2011 and spring of 

2012 [67], and forage and milk production data were collected in 2012 and 2013. Grass pastures were 

comprised of Lolium perenne L., Dactylis glomerata L., S. arundinaceus, Elymus repens (L.) Gould 

and T. repens L. Nine Holstein dairy cows rotationally grazed either the BFT or the grass pasture. 

Cows were also fed 2.27 kg of barley each day, which included a vitamin and mineral supplement, and 

moved to fresh paddocks after each milking (every 12 h). Intake was estimated with a rising plate 

meter as the difference between pre-grazing and post-grazing DM. Milk production was measured at 

the beginning of the study and every two weeks by collecting milk from each cow at four successive 

(two morning and two evening) milkings. 

Forage intake and milk production were significantly greater on BFT in 2012 and 2013 (Table 2).  

A medium cheddar cheese was made from the milk of cows grazing grass and BFT pastures and 

compared with cheese made at the same time from the milk of non-organic cows fed a total mixed 

ration (TMR). Cheese made from the milk of pasture-fed cows was significantly greater in omega-3 

fatty acids and conjugated linoleic acid than cheese made from the milk of TMR-fed cows.  

The omega-3 fatty acid concentration of cheese made from the milk of BFT-fed cows was also 

significantly greater than that of cheese made from the milk of grass-fed cows (Figure 1).  

Birdsfoot trefoil is a tap-rooted legume, like alfalfa, giving it an agronomic advantage over  

grasses [68] even under irrigation in an environment that has low humidity and elevated 

evapotranspiration, such as the semi-arid Mountain West. The BFT was inoculated with 

Mesorhizobium loti, so it was receiving nitrogen from a symbiotic relationship with soil bacteria. 

Legumes typically have more crude protein and less neutral detergent fiber than grasses [69], which 

increases the rate of forage digestion, resulting in greater intake [70]. Dairy intake and production on 

BFT pastures likely benefitted from the combined effects of plant adaptation, morphology, nutritive 

value and CT concentration. 

Table 2. Mean intake and milk production on pastures in 2012 and 2013. 

Year BFT Intake SEM Grass Intake SEM
BFT Milk 

Production
SEM

Grass Milk 

Production 
SEM

kg/ha kg/cow/day 

2012 1603 235 773 149 30 1.4 25 1.6 

2013 2183 256 1301 181 35 0.7 30 2.1 
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Figure 1. Omega-3 (left) and conjugated linoleic fatty acid concentrations (right) of cheese 

made from the milk of organic dairy cows grazing mixed grass pastures or birdsfoot trefoil 

(BFT) pastures, compared with cheese made from the milk of non-organic cows fed a total 

mixed ration (TMR). 

4. Chemical Interactions of Condensed Tannins within a Dietary Context 

The aforementioned analysis describes recent findings on the positive effects of CT and  

CT-containing legumes on ruminant nutrition and product quality. However, ruminants ingest  

a diversity of chemicals during grazing, from those present in a single forage to those ingested with  

a diverse diet. Thus, there is potential for multiple interactions among all of the different chemicals 

ingested within and between meals; this is particularly true for CT, since as stated above, these 

biomolecules are highly reactive. 

4.1. Interaction with Proteins 

The CT-protein interaction has been given considerable attention since the basis for the role of CT 

in chemical defense has been attributed to their ability to precipitate plant proteins and gastrointestinal 

enzymes [5,71], despite the fact that the CT-protein bond may be prevented or reversed [71]. 

The formation of CT complexes involves covalent and non-covalent bonding with other molecules [5]. 

During oxidative coupling, covalent bonds are formed by the conversion of phenols to quinones or 

semi-quinones, and these bonds are not reversible [2]; however, the CT-binding mechanism in a 

dietary context typically involves non-covalent forces (i.e., hydrogen bonds and hydrophobic 

interactions), which are reversible [10,72]. Condensed tannins that interact predominantly via 

hydrogen bonds form stronger complexes with dietary proteins than those based on hydrophobic 

interactions. Therefore, CT that form hydrogen bonds with proteins are more likely to result in ruminal 

escape proteins, while CT that interact with proteins via hydrophobic bonds form weaker complexes [4]. 

Condensed tannin-protein complexes formed by hydrogen bonds are stable in the rumen at pH values 

close to neutrality, but may become unstable in the more acidic (e.g., pH 2.5 to 3.0) abomasum. The 

protein released from the disrupted complex provides amino acids for digestion and absorption in the 

small intestine at pH 8.0 to 9.0 [49,73]. 
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Weaker CT-protein bonds may also mean an increased likelihood for interactions of CT with 

chemical structures present in the broad array of plant species ingested by herbivores, such as in 

pastures with diverse forage species composition [74]. Such interactions may lead to antagonistic 

effects that reduce the bioavailability of CT or to synergistic effects that increase their bioactivity [74]. 

As an example, the negative post-ingestive effects of different CT may be attenuated due to 

complexation when they are consumed in the same meal. It has been observed that DM intake by 

sheep is enhanced as the number of CT-containing shrubs in the diet increases relative to single shrub 

diets [75]. Likewise, phenolic compounds have been shown to have antagonistic interactions, making 

some of them (e.g., resveratrol) much less bioavailable when other phenols are present in the diet [76]. 

In contrast, other nutrient or plant chemical interactions may increase the activity or bioavailability of 

CT. Synergistic effects have been observed between increments in dietary calcium concentration and 

the bioavailability of resveratrol, a phenolic compound found in grapes and berries [77]. 

4.2. Interactions with Carbohydrates 

It has been reported that greater CT concentrations depress rumen digestion of both readily 

fermentable and structural carbohydrates [44,46,78]. These effects are likely to be caused by an 

inactivation of extracellular microbial and mammalian enzymes through the formation of CT-enzyme 

complexes [79], rather than by a direct CT-carbohydrate interaction. In addition, CT can potentially 

interfere with the adhesion process of microbial bacteria onto forage cell walls, which can also lead to  

a depression in structural carbohydrate digestion [79]. 

4.3. Interactions with Saponins 

Steroidal and triterpenoid saponins are a family of chemical compounds consisting of  

an isoprenoidal-derived aglycone (sapogenin), covalently linked to one or more sugar moieties [80]. 

Saponins are generally regarded as plant defenses, although several valuable pharmacological properties 

have recently been identified, such as anti-cancer, immunomodulatory and cholesterol-lowering 

activities [81]. In addition, saponins have been shown to reduce methane emissions [82] and to control 

gastrointestinal nematodes in ruminants [83]. The anthelmintic effects of CT and saponins can be 

explained through their toxic effects on parasites [84]. 

Consuming a diversity of plant secondary compounds like saponins and CT may reduce the overall 

toxic effect of the mix, as the formation of gastrointestinal complexes could reduce the absorption and 

activity of single toxic compounds [85]. In support of this, it has been found that intestinal bonding of 

CT and saponins results in moderated toxic effects, representing a mechanism that allows herbivores to 

consume more nutrients when offered diverse foods [86]. Condensed tannins and saponins cross-react 

and bind in the gastrointestinal tract, nullifying the effects of both compounds [86]. For example, goats 

increase intake when shrubs contain a combination of CT and saponins relative to when animals are 

offered single shrubs [75], and sheep offered a choice between saponin- and CT-containing rations ate 

more feed than animals only offered CT or saponins in single rations [87]. However, the in vivo antiparasitic 

effect of the CT-saponin combination was found to be less than that of the single rations [87]. Thus, a 

reduction in the negative impacts of CT or saponins on the herbivore (i.e., through inactivation) can be 

carried over to the endoparasite, resulting in beneficial effects for both the herbivore and the parasite. 
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In other words, the complexation (and potential inactivation) of CT and saponins can be beneficial to 

the ruminant relative to nutrient intake, but negative in regard to its effects on parasite loads.  

This suggests that the value of the interaction between saponins and CT may depend on whether 

concern is with nutrient intake or antiparasitic activity. 

4.4. Interactions with Alkaloids 

Condensed tannins are known to complex not only with proteins and saponins, but also with 

alkaloids [88]. Alkaloids are nitrogen-based secondary compounds, and the strong binding capacity of 

CT for nitrogen-containing compounds [89] may be responsible for this interaction. Stable complexes 

between alkaloids and CT made alkaloids less available in the gastrointestinal tract, thus reducing their 

toxic effects [90]. A CT-containing legume like BFT ingested prior to eating endophyte-infected (E+) 

tall fescue (S. arundinaceus or reed canarygrass (Phalaris arundinacea L.), both alkaloid-containing 

forage grasses, enabled lambs and calves to consume more tall fescue or reed canarygrass (and 

therefore more energy and protein) than lambs and calves fed the same grasses without the  

legumes [91–93]. Likewise, lambs offered CT-containing supplements ingested more  

alkaloid-containing rations than lambs offered just the alkaloid-containing rations [94,95]. Lambs 

offered a choice of alfalfa with an elevated saponin concentration, BFT containing CT and E+ tall 

fescue containing alkaloids preferred alfalfa [96]. However, lambs receiving intraruminal infusions of 

saponins increased their preference for BFT and E+ tall fescue, and lambs receiving intraruminal 

infusions of CT increased their preference for E+ tall fescue. Overall, these results support the notion 

that CT complex with other secondary compounds and attenuate negative post-ingestive effects of 

individual components of the complex. 

Recent evidence further supported the interaction of CT and alkaloids: polyethylene glycol, a 

polymer that selectively binds to CT, reduced the benefits of SF CT on a basal diet containing E+ tall 

fescue in sheep [90]. These benefits included an increase in the total amount of nutrients ingested and 

improvements in some physiological parameters indicative of fescue toxicosis, such as reduced rectal 

temperatures, increased numbers of leukocytes and lymphocytes and increased plasmatic 

concentrations of globulin and prolactin compared with control lambs that consumed E+ tall fescue 

without CT-containing SF. Radial diffusion assays [97] in which tannins with or without ergot 

alkaloids were precipitated as they diffused through agar containing bovine serum albumin 

demonstrated that ergotamine, an alkaloid from E+ tall fescue, reduced the protein binding capacity of 

CT from SF and BFT (B. Goff, personal communication). This in vitro evidence supports in vivo 

observations of increased intake of E+ tall fescue seed by lambs consuming SF, but reduced intake by 

lambs consuming the non-CT forage legume cicer milkvetch (Astragalus cicer L.) [98]. 

4.5. Interactions with Terpenes 

Terpenes are a large and diverse class of carbon-based secondary compounds, biosynthetically 

derived from isoprene subunits [99] and produced by a variety of plants, particularly woody species. 

Evidence suggests that CT bind to terpenes and reduce their bioavailability. When offered feeds with 

higher levels of terpenes and CT, sheep consumed more feed containing terpenes if they first 

consumed feed with CT [100]. Likewise, sheep with a preference for terpene-containing sagebrush 
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(Artemisia tridentata Nutt.) consumed considerably more CT-containing bitterbrush (Purshia 

tridentata (Pursh) DC) than sheep with less preference for sagebrush [101]. These findings are 

consistent with the hypothesis that terpenes and CT interact in the digestive system of sheep. Finally, 

lambs offered CT- and terpene-containing feeds consumed more than when they were offered only one 

feed [102], which again suggests the formation of CT-terpene complexes with reduced toxicity. 

5. Conclusions 

Condensed tannins are a family of plant secondary compounds with diverse structures and multiple 

impacts on herbivores that can range from detrimental to beneficial. Condensed tannins can form 

complexes with proteins, as well as with other plant secondary compounds. The temperate forage 

legumes BFT and SF have CT concentrations ranging from 10 g·kg−1 to 80 g·kg−1 and protein 

concentrations ranging from 12 g·kg−1 to 25 g·kg−1. Their CT are generally beneficial to ruminants by 

eliminating bloat, suppressing internal parasites, reducing enteric methane emissions and increasing 

the quantity of protein that is absorbed from the intestines. Our studies have demonstrated greater 

productivity of beef cattle fattened on BFT compared with other forages and greater milk production of 

commercial dairy cows grazing BFT compared with cows grazing grass pastures in mid-summer. We 

have also demonstrated the attenuation of negative tall fescue endophyte effects when CT were 

ingested along with E+ tall fescue. One of the next challenges in the study of CT-containing forages is 

to relate CT biochemical structures to CT activities within the ruminant gut, particularly to balance beneficial 

effects on protein digestion with suppressive effects on parasites and toxic secondary compounds. 
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