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ABSTRACT

Revolution in Autonomous Orbital Navigation (RAON)

by

Rachit Bhatia

Utah State University, 2019

Major Professor: David K. Geller, Ph.D.
Department: Mechanical and Aerospace Engineering

The future of deep space exploration depends upon technological advancement towards

improving spacecraft’s autonomy and versatility. This study aims to examine the feasibil-

ity of autonomous orbit determination using advanced accelerometer measurements. The

objective of this research is to ascertain specific sensor requirements to meet pre-defined mis-

sion navigation error budgets. Traditional inertial navigation (dead reckoning and external

aiding) is not considered. Instead, measurements from pairs of advanced, highly sensitive

accelerometers (e.g. cold atom accelerometers) are used on-board, to determine gravity field

gradients which are then correlated to onboard gravity maps and used to determine orbital

information. Linear Covariance Theory helps to efficiently conduct an error budget analy-

sis of the system.This error budget analysis helps to determine the effect of specific error

sources in the sensor measurements, thereby providing information to rank and compare

relevant sensor parameters and determine an optimal sensor configuration for a given space

mission. The procedure is repeated to evaluate different accelerometer configurations, and

sensor parameters, for a range of space missions.

(219 pages)
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PUBLIC ABSTRACT

Revolution in Autonomous Orbital Navigation (RAON)

Rachit Bhatia

Spacecraft navigation is a critical component of any space mission. Space navigation

uses on-board sensors and other techniques to determine the spacecraft’s current position

and velocity, with permissible accuracy. It also provides requisite information to navigate to

a desired position, while following the desired trajectory. Developments in technology have

resulted in new techniques of space navigation. However, inertial navigation systems have

consistently been the bedrock for space navigation.

Recently, the successful space mission GOCE used on-board gravity gradiometer for

mapping Earth’s gravitational field. This has motivated the development of new techniques

like cold atom accelerometers, to create ultra-sensitive gravity gradiometers, specifically

suited for space applications, including autonomous orbital navigation.

This research aims to highlight the existing developments in the field of gravity gra-

diometry and its potential space navigation applications. The study aims to use the Linear

Covariance Theory to determine specific sensor requirements to enable autonomous space

navigation for different flight regimes.
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CHAPTER 1

Introduction

Revolution in Autonomous Orbital Navigation (RAON) is a study to investigate the

feasibility and requirements for an autonomous navigation that can potentially apply to all

flight regimes. For any space mission, navigation relies primarily on external aids such as

the Global Positioning Systems (GPS), the Tracking and Data Relay Satellite (TDRSS),

or the Deep Space Network (DSN). These traditional space navigation techniques limit the

range of space exploration capability, and require specialized communication and ground-

based navigation systems to achieve acceptable levels of spaceflight safety. These additional

systems not only require precious onboard resources, but are also subject to failures that can

result in the Loss of Crew or Loss of Vehicle condition. For next generation space navigation,

there is a need to relieve the traditional navigation techniques by implementing autonomous

navigation system onboard and thus reduce the risk level of Loss of Crew or Loss of Vehicle

condition.

This research aims to explore the viability of using pairs of advanced accelerometers and

onboard gravity field maps to autonomously determine orbital position and velocity for Low

Earth Orbit (LEO) regime. This study will evaluate the role of advanced accelerometers,

used in recent gravity-mapping missions like GRACE-2 (Gravity Recovery and Climate

Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer), in

developing and executing autonomous orbital navigation for different mission requirements.

Gravity gradiometry has been in use since mid 20th century and has applications in wide

ranging fields like mineral exploration, field survey, submarine navigation,and gravitational

mapping [2, 6, 10]. The technology has been used for many airborne and terrestrial surveys,

predominantly to image subsurface geology to aid hydrocarbon and mineral exploration [2].

Over 2.5-million-line km has been surveyed using the technique [10]. During the Cold War,

US Navy submarines used gravity gradiometry for covert navigation [2].
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In recent years, the technology has matured and requisite instruments have evolved

and been upgraded. Because of this, there is renewed interest in space applications for

this technique. Recently, engineers and scientists have used various measurement principles

based on electrostatics, superconductivity, and cold atom interferometry, to considerably

advance the measurement sensitivity and precision of accelerometers [2].

Future autonomous orbital navigation architectures need to be suitable and reliable

for varying space environments. The navigation approach addressed in this study has the

potential to satisfy these requirements. Considering the universal nature of gravity, this

approach provides a generic solution for autonomous navigation in almost all types of space

environment. Thus, giving the RAON concept an edge over other potential autonomous

orbital navigation techniques.

The idea of autonomous space navigation (see Figure 1.1), as presented in this study,

is to reverse the problem of precision gravitational mapping (as achieved during European

Space Agency’s GOCE mission) and have this high fidelity gravity map on-board along with

a pair of ultra-precise accelerometers. The accelerometer measurements can be correlated

to the on-board gravity map to navigate autonomously in the LEO regime.

Fig. 1.1: Autonomous Space Navigation using Advanced Accelerometer Measurements
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1.1 Research Objective

The objective of this research is to use the Linear Covariance theory to investigate the

feasibility and sensor requirements for an autonomous orbit determination using advanced

accelerometer measurements and onboard gravity field maps, for different sensor and orbit

configurations.

1.2 Dissertation Overview

Chapter 2 covers associated literature and previous work, relevant to the topic of re-

search. Chapter 3 covers the scope, objectives, and approach for the research. Chapters 4

and 5 review the problem setup, important parameters and system modeling. Observability

analysis theory and results are discussed in Chapter 6, and Linear Covariance analysis tool

theory, testing, and results are covered in Chapters 7 to 9. Lastly, Chapter 10 offers the

conclusion of this study, and highlights important contributions.
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CHAPTER 2

Literature Survey and Related Works

This chapter provides an overview of the literature related to the gravity gradiometry, its

history, and the development of the existing gravity gradiometer instruments. A literature

review of the gravity gradiometry applications has been examined, primarily in the light

of its potential application for autonomous orbital navigation. At the end of this chapter,

a brief account of the Extended Kalman Filter (EKF) theory and the Linear Covariance

theory is discussed. Throughout this chapter, effort has been made to provide insight about

the previous work in the field of gravity gradiometry and its application in autonomous

orbital navigation. In the summary section, a concise review of this literature survey has

been presented, so as to help the reader gauge the application of this theory, in regard to

the objective of this dissertation.

The purpose of this chapter is to help the reader assess the existing developments in the

field of gravity gradiometry, and thereby, understand the importance of the research and its

prospective influence on the future of gravity gradiometry.

2.1 Gravity Gradiometry

The study and measurement of the changes in the gravitational acceleration, with re-

spect to the change in spatial position, is termed gravity gradiometry. The measurement of

gravity gradiometry is a gravity gradient tensor, measured over the given spatial distance.

Hungarian physicist Baron Loránd (Roland) von Eötvös is credited for inventing the

first gravity gradiometer instrument, in the late 1880s [1, 11]. While working on series of

experiments on the proportionality of inertial and gravitational masses, Eötvös’ specialized

torsion balance was used to measure gravitational gradient [11]. To recognize his ingenious

invention, the unit of the gravitational gradient has been named after him [11]. One Eötvös

(Eö) is equal to 10−9s−2 [12]. The gravity gradient tensor (GGT) is the 3x3 matrix, con-
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sisting of 9 components of the derivative of the gravitational vector with respect to position

vector.

∇g =


∇gXX ∇gXY ∇gXZ

∇gY X ∇gY Y ∇gY Z

∇gZX ∇gZY ∇gZZ

 (2.1)

∇gij =
∂2U

∂ri∂rj
, i, j = X,Y, Z (2.2)

where U is the gravitational potential at the given position vector r. The conservative

nature and the continuity of the gravitation field ensures that the gravity gradient matrix

is symmetric (∇gij = ∇gji), and by Laplace’s equation it has zero trace (
∑

i∇gii = 0)

[3, 13, 14]. Thus, only five out of nine components are independent [6].

Gravity gradient measurement is a significant tool as it emphasizes the short-wavelength

characteristics of the field, and enhances fine structures, such as geological edges and faults

[15]. The components of the gravity gradient matrix contain encoded information about the

curvature of the potential [15]. This information about the curvature of the potential can be

used to model the subsurface features, estimate the position and velocity of the measuring

instrument, and determine the directions of the principal axes of source bodies, respectively.

[15].

A number of studies have analytically and mathematically decoded the geophysical,

gravitational and spatial information ciphered in the gravity gradient measurements. A

publication by Christopher Jekeli on Gravity Gradiometry, in 2011, beautifully highlights

the rich mathematical foundations of the gravity gradiometry [15]. He presents the basic

mathematical equations leading up to the derivation of gravity gradient tensor, and the

formulas to compute the minimum and maximum curvature of an equipotential surface,

using gravity gradient measurements.

In his paper, Jekeli presents an interesting account of the measurement error analy-

sis of the gravity gradient measurement, specifically the analysis of the required gyroscope

and gradiometer noise levels adequate enough to separate the gravity gradient from non-
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gravitational components. Further, Jekeli briefly discuss the minimum number of accelerom-

eter measurements required to make the “full tensor gradiometer”, and their corresponding

configuration. This is interesting as one of the objectives of this research includes the study

of optimal accelerometer configurations for an on-board gravity gradiometer.

A more recent effort to extract the positional information of a spacecraft from the

gravity gradient matrix includes a paper titled “Gravity Gradient Eigen-Decomposition for

Spacecraft Positioning” (2015), by Pei Chen, Sun, and Han. In this paper, they comprehen-

sively describe the method to isolate the attitudinal, latitudinal and longitudinal information

from the gravity gradient matrix, assuming that the true gravity field is known [3].

Chen and others present an Eigen-Decomposition algorithm for spacecraft positioning

using gravity gradient measurements (Figure 2.1) [3]. This provides a powerful technique,

when attitudinal states of the spacecraft are known within permissible limits, and a high

resolution gravity field model of the primary body is available onboard. Interestingly, this

technique does not require any prediction or initial guess. Hence, it is believed that this

technique can be significant for dead reckoning and help provide initial guesses for Kalman

Filters. To formulate this Eigen-Decomposition algorithm, Chen and others use J2 spherical

harmonics gravity model only. It is believed that this theory can be extended to higher

spherical harmonics models, or different gravity models, as well.

Other attempts made to analytically extract useful information from gravity gradient

matrix include the study titled “Measuring Attitude with Gradiometer” (1994) by David

Sonnabend, and Thomas G. Gardner (University of Colorado), and the article titled “The

gradient tensor of potential field anomalies: Some implications on data collection and data

processing of maps” (1990) by Pedersen and Rasmussen [16, 17].
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Fig. 2.1: Block Diagram of the GGT Inversion Positioning System (Image taken from Chen

et al. - “Gravity gradient tensor eigendecomposition for spacecraft positioning” (2015)) [3].

Detailed mathematical analysis of gravity gradient is also found in “Geophysical Ex-

ploration” (1963) by Carl August Heiland, and “Physical Geodesy” (2005) by Bernhard

Hofmann-Wellenhof and Helmut Moritz. The abundant and useful knowledge, conveyed

by the gravity gradient measurements, has rendered gravity gradiometry as a favorite tool

for the geologists, and archeologists. Unsurprisingly, scientists (specifically physicists) and

engineers have been equally interested in the developments of gravity gradiometry. A brief

history of the development of the gravity gradiometer instruments, and their classification

is presented in the next section, followed by the real-world applications of the gravity gra-

diometry.

2.2 Gravity Gradiometer - History, Development and Classification

A number of publications have extensively highlighted the technical history and math-

ematical details on the setup and the operating principles of different gravity gradiometers.

Some of the prominent studies are cited in this document. These include W.C. Wells’ ar-

ticle on “Spaceborne gravity gradiometers” (1984), Christopher Jekeli’s paper on “A review

of gravity gradiometer survey system data analyses” (1993), Richeson’s thesis on “Grav-

ity gradiometer aided inertial navigation within non-GNSS Environments” (2008), a paper

on “Gravity gradiometer systems—advances and challenges” by Daniel DiFrancesco et al.,

(2008), a paper by DiFrancesco on “Gravity gradiometry - today and tomorrow” (2009), an
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article by Jekeli on “Gravity Gradiometry” (2011), and a very recent book titled “Gravity,

Magnetic and Electromagnetic Gradiometry - Strategic technologies in the 21st century”

(Feb 2018) by Alexey V Veryaskin [1, 2, 10, 15, 18, 19, 20].

In this subsection, technical details and operating principles of prominent gravity gra-

diometers is provided and an attempt has been made to classify the gradiometers, based on

operating principle and other characteristics, respectively.

Experiments with gravity sensors have been performed since late 1700s [19]. Henry

Cavendish, in 1798, determined the universal gravitational constant (G) using a torsion

balance [19]. In the quest to test the equivalence principle, Eötvös continued to improve the

sensitivity of the torsion balance by careful manufacturing increasingly sensitive instruments

[11].

Around 1888, Eötvös improved his instrument to precisely measure the universal grav-

itational constant, and soon realized the potential of this simple device to measure gravity

gradients with a sensitivity of 10−9s−2 or 1Eö [11]. The gravity gradiometer developed by

Eötvös was a working torsion balance [11]. Christopher Jekeli, in his paper on Gravity Gra-

diometry (2011), presents detailed mathematical equations for measuring gravity gradients

using the Eötvös torsion balance [15].

In the early 1900s, Eötvös’ gradiometer along with the next-generation Oertling gra-

diometer, were widely used to map oil and gas [19]. After World War 1, geologists tried to

use the Eötvös’ gradiometer to find geologic structures called salt domes [21]. Technological

development of gravity gradiometry slowed down until 1960s [22].

During 1960s, with the heightened space race and cold war, the need for improvements

in inertial navigation and methods to accurately measure the vertical deflection of the gravity

vector was felt [19, 22]. Around the 1960s and the 1970s, U.S. Navy and Air Force Geophysics

Laboratory became interested in the applications of gravity gradiometer [2, 19]. This led to a

competition between Hughes Aircraft, C.S. Draper Laboratory and Bell Aerospace Textron,

with Bell Aerospace finally getting the contract to develop the gradiometer for U.S. Navy

[19].
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During this period, Robert Forward of the Hughes Aircraft Research Laboratory in-

vented the first prototype of a rotating gravity gradiometer (RGG) [1, 23]. This is one of

the earliest modern gradiometers [15]. It has two centrally pivoted arms, in a cross-shaped

arrangement, with proof masses on each end (refer Figure 2.2) [1, 2, 15, 23]. These types

of gravity gradiometers can be called resonant rotating gravity gradiometers (RRGG) or

resonant modulating gravity gradiometers (RMGG) [1]. The RGG’s operating principle is

that at a sufficiently high frequency, the error contribution, towards gravity gradient mea-

surements, due to the linear and angular motions are negligible and hence, the useful signal

can be modulated-demodulated from the error and noise sources [1, 2, 15, 23].

Fig. 2.2: The RMGG developed at the Hughes Aircraft Research Laboratory. (a) Two

orthogonal dumbbells are set to rotate uniformly around a mutual pivot representing a tor-

sional spring. (b) A real RMGG prototype (Image taken from Veryaskin, Gravity, Magnetic

and Electromagnetic Gradiometry (2018)) [1].

In 1970s, the development of the floated gravity gradiometer (FGG) by Milton Trageser

of Charles Stark Draper Laboratory (Cambridge, Massachusetts) was another novel attempt

to design stable gravity gradiometers [1, 2, 15]. Some of the advantages of FGG included

quick time response, low self-noise, relative insensitivity to angular vibration, low fluid

unbalance, and reasonably low sensitivity to linear vibration, temperature and magnetic

fields [1].
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During 1980s, Ernest Metzger of Bell Aerospace / Textron designed a rotating finite

differenced accelerometer gravity gradiometer, to measure the full-tensor of gravity gradients

(FTGs) [1, 2]. It operates on the principle of measuring gravity gradients by adding two

finite differenced accelerometer pairs, mounted diametrically opposite on a rotating disk

[1, 2, 19].

In the mid 2000s, improvements to this concept were made by digitizing the critical

signals, so as to decrease the noise, increase reliability, and reduce the size and weight

of the installed system [19]. Eventually, the Bell / Textron instrument technology was

acquired by Lockheed Martin, which has since developed the current-generation of rotating

GGIs [1, 2, 19]. Subsequent developments made by Bell Aerospace and Lockheed Martin to

improve the current generation of gravity gradiometers are discussed in detail by Richeson

(2008), DiFrancesco (2009), Jekeli (2011), and Veryaskin (2018), respectively [1, 2, 15, 19].

Difficulties associated in using rotating gravity gradiometers for surface and airborne

surveillance systems stimulated the search for technological concepts and ideas that can

enhance gravity gradiometer accuracy and make instrumentation easier for application in

dynamic environments. Four potential candidates for progressing the future of gradiometer

technology emerged from this search. These include the string (ribbon) gravity gradiome-

ter, superconducting gravity gradiometer, MEMS gravity gradiometer and quantum gravity

gradiometer (cold atom accelerometer based technology).

The string (ribbon) gravity gradiometer is an ’intrinsic’ class gravity gradiometer (IGG),

which has been under development, since 1995, by Gravitec Instruments Ltd [1]. In 2005,

Gravitec Instruments collaborated with University of Western Australia to develop an in-

trinsic string magnetic gradiometer [1]. String gravity gradiometer concept does not follow

torsional (dumbbell) or accelerometric operating principle [1]. Instead, string gravity gra-

diometer use a single sensing element (a ribbon) that responds to gravity gradient forces

[1, 19]. Because these types of gradiometers do not difference the signals from paired sensors

such as accelerometers or gravimeters, they are called intrinsic gravity gradiometers [1].
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Another potential future gravity gradiometer is the superconducting gravity gradiome-

ter. The gravity gradiometer instruments developed using superconducting technology have

an order-of-magnitude improvement in noise sensitivity, reduced thermal noise, near perfect

magnetic shielding, high degree of mechanical and electrical stability, virtual elimination

of thermal gradients and unprecedented mechanical displacement measurement sensitivity

[1, 2].

The first superconducting gravity gradiometer (SGG) were developed independently, in

the 1980s, by Ho Jung Paik of the University of Maryland (UMD), and Frank van Kann of

the University of Western Australia (UWA) [1, 2, 24]. The operating principle of SGG is

based on sensing the proof mass displacement by the change in superconducting current [1].

The European Space Agency’s Gravity Field and Steady-State Ocean Circulation Ex-

plorer (ESA GOCE, 2008) satellite carried an Electrostatic Gravity Gradiometer (EGG)

on-board to achieve its objective to map Earth’s gravitational field spatially and temporally

[2]. The EGG on-board GOCE satellite used capacitance (i.e., voltage) to measure the

accelerometer’s proof mass displacements, unlike UMD’s SGG which used inductance (i.e.,

current) to sense proof mass displacement [2].

A third potential future gravity gradiometer is a MEMS-based gravity gradiometer.

MEMS or Micro-machined Electro-Mechanical Systems are micro machined state of the art

structures [1]. Owing to this extraordinary sensitivity, and their ultra-miniature size, they

are counted as a potential technology for space applications [1].

The Quantum gravity gradiometer works on the principle of atom interferometry, which

use the concepts of wave-particle duality, and the superposition principle [1, 22, 25]. The first

quantum gravity gradiometer was based on laser-manipulated atom interferometry and was

developed by Mark Kasevich’s laboratory (Yale University) [1]. Since the proof mass in this

gradiometer are individual atoms and absolute acceleration is being measured simultaneously

at both positions, errors due to sensor misalignment, scale factor, null bias errors, material

instabilities due to temperature variations, and any other ’classic’ systematic errors are

virtually eliminated [1].
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Some considerable efforts have been made in the past to classify different types of

gravity gradiometers based on their working principles, measurement noise level, and other

parameters [1]. One such attempt includes the efforts made by Soviet-era physicist Victor

Nazarenko, in 1982 [1]. Based on Nazarenko’s classification, as published by Veryaskin

(2018), a horizontal tree diagram is shown in Figures 2.3 and 2.4 [1].

Fig. 2.3: Classification of Differencing Gradiometers based on the measurement sensor type,

operating principle, and operating temperature. Adapted from Veryaskin, Gravity, Magnetic

and Electromagnetic Gradiometry (2018) [1].

Gravity gradiometers can be classified as two basic types (refer Table 2.1) [1]. Firstly,

differencing Gradiometers, which use differencing method, i.e., subtracting the real-time

output signals from a pair of sensors [1]. Secondly, intrinsic gradiometers, which use a single

sensing element to make gravity gradient measurements directly [1]. The measurement
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model used in this study will be based on differencing type (i.e. cold atom accelerometer,

electrostatic gravity accelerometer, etc.) gradiometers only.

Fig. 2.4: Classification of Intrinsic Gradiometers based on the measurement sensor type,

operating principle, and operating temperature. Adapted from Veryaskin, Gravity, Magnetic

and Electromagnetic Gradiometry (2018). [1]

GGI type Measured quantity Major problem

Differencing gz2−gz1
x2−x1

Misalignment of sensing elements

Intrinsic Gzx = ∂gz
∂x = ∂gx

∂z Read-out sensitivity limitations

Table 2.1: An example of differencing and intrinsic gravity gradiometers. Their sensitivity

axes are chosen to be aligned along the X direction. However, a gradiometer can have mul-

tiple sensitivity axes and measure all five independent gravity gradient tensor components.

Adapted from Veryaskin, Gravity, Magnetic and Electromagnetic Gradiometry (2018) [1].

Finally, Table 2.2 summarizes the chronological evolution of the gravity gradiometer

instruments and parallel improvement in their sensitivity, respectively [2].
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Gradiometer Developer Noise (1-σEö) Data Rate (sec)

Rotating Accelerometer GGI Bell Aerospace/Textron 2 (Lab), 10 (Air) 10

Rotating Torque GGI Hughes Research Lab 0.5 (Goal) 10

Floated GGI Draper Lab 1 (Lab) 10

Falcon AGG LM/BHP Billiton 3 Post Survey

ACVGG Lockheed Martin(LM) 1 1

3D FTG LM/Bell Geospace 5 Post Survey

FTGeX LM/ARKeX 10 (Goal) 1

UMD SGG (Space) UMD 0.02 (Lab) 1

UMD SAA (Air) UMD 0.3 (Lab) 1

UWA OQR UWA 1 (Lab) 1

Exploration GGI ARKeX 1 (Goal) 1

HD-AGG Gedex/UMD/UWA 1(Goal) 1

Electrostatic GGI ESA 0.001 (Goal) 10

Cold Atom Interferometer Stanford/JPL 30 (Lab) 1

Table 2.2: Gravity Gradiometer Instruments. Adapted from Richeson, Gravity gradiometer

aided inertial navigation within non-GNSS environments (2008) [2].

2.3 Applications and Challenges of Gravity Gradiometry

The gravity gradient measurement is significant as it can detect small geological fea-

tures, and contain spatial and attitudinal information. This renders the gravity gradiometry

as an important tool in a plethora of real-world applications. Some of the prominent appli-

cations of gravity gradiometry have been highlighted in Figure 2.5 [4].
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Fig. 2.5: Comparison of gravity gradiometry applications, based on a sensitivity scale (Image

taken from Evstifeev, The state of the art in the development of onboard gravity gradiome-

ters (2017)) [4].

Since mid 20th century, gravity gradiometry has become an important industrial tool

in many fields, ranging from oil and mineral exploration to archeology to geophysics and ge-

ology. However, the major part of the technological development in gravity gradiometry can

be associated with its use in oil and mineral exploration.With the necessary technological

development, the potential of using gravity gradiometry in commercial and defense applica-

tions has steadily increased, which has stimulated mainstream interest and has opened up

new research fronts in this field. Apart from oil, gas, and mineral exploration, gravity gra-

diometry has found applications in gravity gradiometer surveying, underground tunnels and

void detection, cargo hidden masses detection, nuclear non proliferation, terrestrial GPS de-

nied navigation, and space missions to map Earth’s gravitational field [1, 12]. There has also

been an on-going effort to further develop gradiometer technology to make measurements

possible during sub-surface explorations [1].

According to Veryaskin (2018), the first passive navigation system, which employed

gravity gradient map matching techniques, was discussed by Clive Affleck and Albert Jirci-

tano of Bell Aerospace Textron (USA) [1, 2, 26]. Affleck and Jircitano presented a parametric

study for an airborne system operating over land and ocean areas for varying navigation
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system quality, gradiometer quality, altitude above terrain, etc. [26].

Many other studies like the technical report on “Superconducting gravity gradiometer

mission” by Paik and Morgan (1993), the article titled “Satellite orbit determination using

satellite gravity gradiometry observations in GOCE mission perspective” by Bobojć (2003),

the dissertation on “Gravity gradiometer aided inertial navigation within non-GNSS environ-

ments” by Richeson (2008), two papers titled “Low-Earth Orbit Determination from Gravity

Gradient Measurements” , and “Autonomous Orbit Determination via Kalman Filtering of

Gravity Gradients” by Sun et al (2016), and lastly, a paper on “Autonomous Orbit Deter-

mination Using Epoch-Differenced Gravity Gradients and Starlight Refraction” by Pei et

al (2017) discuss different approaches and methods for airborne and terrestrial navigation

using GPS integrated gravity gradiometer system [2, 24, 27, 28, 29, 30].

Some studies only discuss terrestrial or airborne navigation, while others only discuss

techniques to estimate spacecraft’s position and velocity. Most of the studies consider inte-

grated inertial navigation system (INS) based on gravity gradient measurements and GPS

updates. Most of these studies do not include the objective to compute the required mea-

surement sensitivity to enable gravity gradiometer based navigation. During the literature

survey, no study has been found to discuss the techniques to provide real-time estimate of

the spacecraft’s position, velocity, and attitude using gravity gradient measurements only.

Further, most of the studies used analytical approaches or Monte Carlo analysis to con-

duct the measurement error analysis for gravity gradient measurements. No study has been

conducted to analyze the effects of gravity gradiometer measurement sensitivity on the fi-

nal navigation solution, for different mission requirements. This research will be the first

to conduct a Linear Covariance analysis and provide error budgets for gravity gradiometer

measurements, for different sensor requirements.

This research offers to complement the existing literature. The contribution of this

research will include the determination of specific sensor requirements and optimal sensor

configuration for different mission types. This will help guide the development of future

advanced accelerometers.
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Today, as the technological development of gravity gradiometer instruments enhance

their measurement sensitivity, one of the biggest challenge is to isolate the gravity gradi-

ent measurements from the disturbing sources [10, 19]. This is because with the enhanced

measurement sensitivity the resolution of a gravity gradient measurement improves, how-

ever this also improves the resolution of disturbing sources by the same amount [10, 19].

Some of the major challenges impacting the full use of gravity gradiometry include the dif-

ficulty in obtaining gravity gradient measurements in a dynamic environment, limitations

of gradiometer measurement bandwidth for moving-base gravity gradiometers, difficulty in

processing gravity gradient measurements and isolating useful measurements from the dis-

ruptive noise sources, and lastly, hardware and data export controls limit the growth of this

field [10, 19].

2.4 Extended Kalman Filter and Linear Covariance Analysis Techniques

The Extended Kalman Filter and Linear Covariance Analysis Techniques are mathe-

matical/statistical tools used for estimating and predicting the future states of a dynamic

system, and studying the complexities of closed-loop GN&C systems (refer Figure 2.7) [9, 31].

The Extended Kalman Filter is an optimal recursive data processing algorithm used to

estimate the current and future value of the variables of interest [9]. An Extended Kalman

filter is an “extended” version of a standard Kalman filter, in a sense that the Kalman filter is

extended to use non-linear models and process non-linear dynamics, and discrete non-linear

measurement models to estimate the states of the system [9, 32]. It consists of two stages,

firstly, propagation of the states and state covariance, and secondly, the update of the state

and state covariance [9, 32, 33]. The flowchart depicting the two stage process for a discrete

linearized model is shown in Figure 2.6.
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Fig. 2.6: Kalman Filter Flow Diagram .

Fig. 2.7: Generic Closed-Loop GN&C Simulation (Image taken from Christensen and Geller,

Linear covariance techniques for closed-loop guidance navigation and control system design

and analysis (2014)) [5].
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Linear covariance (LinCov) analysis for closed-loop GN&C analysis is used to deter-

mine the expected performance of a Kalman filter by evaluating the covariance of the true

state estimation errors [5, 9, 31]. For linear covariance analysis, it is important to linearize

the system dynamics about a nominal or desired reference trajectory and then use linear

stochastic system theory to determine the state covariance [9, 31].

2.5 Literature Review Summary

In this chapter, a holistic overview of gravity gradiometry, chronological development of

gravity gradiometer instruments, their classification, potential applications, and correspond-

ing challenges needed to be solved to make progress in the future, have been presented. This

chapter covered the basics of gravity gradiometry, and the literature highlighting the an-

alytical approaches available to deduce spatial and attitudinal information from a gravity

gradient matrix.

The working principle of different gravity gradiometer instruments were explained and

their advantages were highlighted. A brief overview of the applications of gravity gradiom-

etry and the existing challenges towards achieving the full potential was discussed. Lastly,

a summary of important mathematical tools, like the Extended Kalman Filter and Linear

Covariance Theory, has been presented.
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CHAPTER 3

Dissertation Overview

3.1 Chapter Overview

This chapter aims to define the scope and objectives of the study, and help understand

the real-world applications of this research. The approach and introduction to the important

mathematical tools required to achieve the pre-defined objectives are described. Performance

metrics to validate the final results, of this study, are defined.

3.2 Scope

This research is focussed on investigating the feasibility of using advanced accelerometer

measurements and onboard gravity field maps for autonomous orbit determination in LEO

regime. This study does not consider traditional inertial navigation (dead reckoning and

external aiding). Instead, the study focuses on identifying the required range of measurement

sensitivity for advanced accelerometers, for different sensor and orbit configurations.

Linear Covariance Theory is used as a tool to determine the sensitivity of the final

navigation error to specific error sources. The error budgets are then used to determine

specific sensor requirements and, thereby, calculate the optimal sensor configuration required

to satisfy given mission requirements. One of the key objectives of this study is to determine

the sensitivities of the final navigation solution to system uncertainties.

The final outcome of this research aims to answer the following realm of questions:

• Which type of advanced accelerometer with what level of measurement sensitivity is

best suited for autonomous navigation, for a given mission objective?

• Can highly sensitive accelerometers solve both the orbit determination and the attitude

determination problem?

• What are the best system solutions for LEO regime?
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• What is the optimal sensor configuration required to determine position, velocity, and

attitude of the spacecraft in a specified orbit and for a given mission objective?

• What levels of accelerometer bias and alignment error can be tolerated?

• What is the optimal accelerometer separation and to what accuracy must the separa-

tion be known?

To answer these questions and achieve the goals of this study, Linear Covariance analysis is

used to study various sensor configurations for different orbital configurations. High-fidelity

dynamics models include rotational and translational dynamics. Environment models in-

clude higher-order gravity models, solar radiation pressure, drag, and high-fidelity planetary

ephemerides. Sensor models include uncertainties in scale-factors, biases, noise (colored as

applicable), and sensor location.

This study does not include the development of hardware or sensor architecture. The

scope of this research is restricted to test the hypothesis by computer simulations only and

does not include field trials. The research plan is to evaluate and guide the development of

the family of advanced accelerometers with an objective of their potential for space appli-

cations.

Based on this research, the required range of measurement sensitivity for advanced

accelerometers, using different measurement principles for different flight regimes, will be

determined.

3.3 Objective

This research includes differencing type (i.e. cold atom accelerometer, electrostatic

gravity accelerometer, etc.) gradiometer measurement model only. The main objectives of

this research are

• Conduct observability analysis to investigate the feasibility of using advanced ac-

celerometer measurements to determine position, velocity, and attitude of the space-

craft.
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• Develop a Linear Covariance tool to determine the sensitivity of the final orbit navi-

gation error to specific error sources for different orbital configurations.

• Determine specific sensor requirements and calculate the optimal sensor configuration

required to satisfy given mission requirements.

3.4 Approach

In the following subsections, an outline of the approach pursued for setting up the

problem is discussed. The details of this approach are presented in Chapter 5.

3.4.1 Key Problem Parameters and Reference frames

The key problem parameters are defined by the following state vector (x)

x = (xs,xp,xa)
T (3.1)

It consists of 16 spacecraft states (xs), 3 environmental parameter states (xp), and 12n

(n = number of accelerometers) accelerometer states (xa). The spacecraft states are given

by

xs =
(
rICM/E ,v

I
CM/E ,qI→B,ω

B
B/I , r

B
CM/O

)T
(3.2)

where rICM/E and vICM/E denote the position and velocity of the spacecraft’s center of

mass with respect to the center of the Earth, expressed in inertial frame, qI→B denotes

the spacecraft’s attitude quaternion, such that it defines the attitude/orientation of the

spacecraft body-fixed reference frame with respect to the inertial reference frame, ωBB/I

is the angular velocity of the spacecraft with respect to the inertial frame, expressed in

spacecraft body-fixed frame, and rBCM/O denotes the spacecraft center of mass position with

respect to the origin of the spacecraft body-fixed reference frame.

The three environmental parameter states are given by
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xp = (β, ρr, hs)
T (3.3)

where β is the ballistic coefficient for the spacecraft, ρr is the reference sea level atmospheric

density, and hs is the scale height for exponentially decaying atmospheric drag model.

The accelerometer parameter states are given by

xa =
(
rBai/O,b

ãi
i , f

ãi
i , ε

ãi
i

)T
(3.4)

where rBai/O denotes the ith accelerometer position with respect to the origin of spacecraft

body-fixed reference frame, and bãii , f
ãi
i , and ε

ãi
i denote the accelerometer bias, scale factor

and accelerometer misalignment, respectively.

The relevant reference frames (all right-handed and orthogonal) used in this study are

the Inertial Reference Frame (IRF), Spacecraft Body-fixed Reference Frame (SBRF), Ac-

celerometer Nominal Reference Frame (ANRF), and Accelerometer Actual Reference Frame

(AARF). The first 3 frames are generally known, while the AARF is generally unknown.

The fundamental Inertial Reference Frame (IRF) for this study is defined by an origin

located at the centre of the Earth, x-axis at the intersection of the mean ecliptic plane with

the mean equatorial plane at the date of 1st January 2000 and pointing positively towards

the vernal equinox, z-axis orthogonal to the mean equatorial plane at the date 1st January

2000, and y-axis completing a right-handed reference frame.

The Spacecraft Body-fixed Reference Frame (SBRF) is an arbitrarily defined reference

frame whose center coincides with the nominal center of mass of the spacecraft. The trans-

formation from IRF to SBRF is denoted as TI→B or qI→B.

The Accelerometer Nominal Reference Frame (ANRF) is the accelerometer reference

frame defined by the manufacturer or as per the accelerometer model. The transformation

from SBRF to ANRF is denoted as TB→aNi .

The Accelerometer Actual Reference Frame (AARF) is the same as Accelerometer Nom-

inal Reference Frame (ANRF), except that it takes into account the misalignments (εi) in-
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troduced while securing the accelerometer on the spacecraft structure. The transformation

from ANRF to AARF is a small angle transformation defined by

TaNi →ãi
= I3×3 −

[
εãii ×

]
(3.5)

where εãii is a vector of three small angle rotations.

In this study, a spherical harmonic gravity model is used to simulate Earth’s gravity

model. Perturbations like atmospheric drag, solar radiation pressure, third-body effect (due

to the sun and moon), and gravity gradient torques are included in the dynamical model.

Detailed environmental model is discussed in Chapter 5.

3.4.2 Non-Linear Modeling

The non-linear dynamics of the spacecraft and the measurements are defined as pre-

sented below

The dynamics for the given system can be defined in the general form

ẋ = f (x, t) +Gw (3.6)

where x is the true state vector, G is a matrix to map the noise vector to the state dynamics,

and w is a vector of zero-mean white noise processes. The dynamics can then be segmented

into three broad categories: (1) translational dynamics, (2) rotational dynamics, and (3)

dynamics of the uncertainties inherent to system/environmental model.

The translational dynamics are defined as

ṙICM/E = vICM/E (3.7)

v̇ICM/E = gIe

(
rICM/E

)
+ aIThird−body

(
rICM/E ,ρSun,ρMoon

)
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+aIaero

(
rICM/E ,v

I
CM/E , β, ρr, hs

)
+ aISRP

(
rICM/E ,ρSun

)
+ wT + waero (3.8)

where ge (r) denotes the Earth’s gravitational acceleration at position rICM/E , and aaero is

the aerodynamic acceleration at position rICM/E , velocity vICM/E , and for ballistic coeffi-

cient β, reference atmospheric density ρr, and scale height hs. In Eq(3.8), wT and waero

denote the translational disturbance acceleration and unmodeled aerodynamic acceleration,

modeled as zero-mean white Gaussian noise. The dynamics for three environmental param-

eters (β, ρr, hs) are modeled as 1st-order Markov processes, also known as Exponentially

Correlated Random Variables (ECRVs), given as follow

ẋp =
xp
τxp

+ ωxp (3.9)

where xp are the parameters, τxp is the time-constant of the corresponding parameters, and

ωxp is the unmodeled zero-mean white Gaussian noise in the dynamics.

The rotational dynamics are defined by the quaternion representing the orientation of

the spacecraft body-fixed reference frame (SBRF) with respect to the inertial reference frame

(IRF), denoted as qI→B. The corresponding kinematics and dynamics will be defined as

[31]

q̇I→B =
1

2
ωBB/I ⊗ qI→B (3.10)

where ωBB/I is the angular velocity of the spacecraft, expressed in spacecraft-fixed body

frame. Correspondingly, spacecraft’s angular acceleration can be defined as [31]

ω̇BB/I = J−1
[
Mgg

(
rICM/E ,qI→B

)
− ωBB/I ×

(
JωBB/I

)]
+ wR (3.11)

where J is the moment of inertia of the spacecraft, and Mgg is the gravity gradient torque.

In Eq(3.11), wR is the rotational disturbance acceleration, modeled as zero-mean white
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Gaussian noise.

Instrument error dynamics are defined by uncertainty and process (unmodeled) noise

of the center of mass position rBCM/O (with respect to the spacecraft fixed body frame),

accelerometer position rBai/O (with respect to the spacecraft fixed body frame), accelerome-

ter measurement bias bãii , accelerometer measurement scale-factor bias f ãii , and lastly, ac-

celerometer misalignment εãii . The dynamics of these parameters
(
rBCM/O, r

B
ai/O

,bãii , f
ãi
i , ε

ãi
i

)
are modeled as 1st-order Markov processes, also known as Exponentially Correlated Random

Variables (ECRVs), and generally defined by Eq. 3.9.

The accelerometer measurements for a system can be generically defined as

ããii = h (x) + ηãii (3.12)

where x is the true state vector, and ηi is a vector of zero-mean white Gaussian noise. The

subscript i represents the ith accelerometer.

In terms of the state vector, the non-linear model for the accelerometer measurements,

will be modeled as

h (x) =
[
I +D

(
f ãii

)]
aãidi + bãii (3.13)

where I denotes a 3×3 identity matrix and D
(
f ãii

)
is a matrix with f ãii as diagonal elements

and bãii is the accelerometer bias.

aãidi = TaNi →ãi
TB→aNi

TI→B (qI→B) aIdi (3.14)

aIdi = gI
(
rICM/E

)
− gI

(
rIai/E

)
+ NI

(
rICM/E ,v

I
CM/E , β, ρr, hs

)

+TB→I (qB→I)
[
ωBB/I ×

(
ωBB/I × rBai/CM

)]
(3.15)



27

where all the vectors with superscript I, ãi, and ãNi are coordinatized in inertial reference

frame, accelerometer actual reference frame, and accelerometer nominal reference frame, re-

spectively. In Eq. 3.15, ãi denotes the accelerometer measurement, ηãii is the accelerometer

measurement noise modeled as zero-mean white Gaussian noise, aãidi denotes the detected

acceleration in the accelerometer frame, aIdi is the detected acceleration in the inertial ref-

erence frame, and g
(
rICM/E

)
denotes the total gravitational acceleration

(
ge

(
rICM/E

)
+

a3rdbody

(
rICM/E

))
at position rICM/E . Further, rBai/CM , ṙBai/CM , and r̈Bai/CM are the ac-

celerometer position, velocity, and acceleration with respect to the spacecraft center of mass

(and is expressed in spacecraft fixed body frame), and N denotes the non-gravitational

acceleration (i.e., acceleration due to atmospheric drag and solar radiation pressure) as

a function of spacecraft position rICM/E , velocity vICM/E , ballistic coefficient β, reference

atmospheric density ρr, and scale height hs. It can be noted that the last three terms

in Eq(3.15) are very small, this is because spacecraft structure is assumed to be rigid(
i.e., ṙBai/CM ≈ 0, and, r̈Bai/CM ≈ 0

)
, the accelerometer position vector

(
rBai/CM

)
is assumed

to be relatively small, and the spacecraft is assumed to have very small angular acceleration,

such that the cross product
(
i.e., ω̇BB/I × rBai/CM

)
is approximately equal to zero. Thus,

these terms are absorbed into the bias and noise terms in Eq(3.13). The accelerometer

set-up is shown in Figure 3.1.

Only the differencing type (i.e. cold atom accelerometer, electrostatic gravity accelerom-

eter, etc.) gradiometer measurement model are studied for this research. This is because

of the market predominance of differencing type gradiometers relative to the intrinsic type.

And since most of the gradiometers are based on the differencing model, which includes

the gradiometer on-board GOCE mission and the promising cold atom accelerometer based

gradiometer, it is more pertinent to study and analyze the differencing type gradiometers.
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Fig. 3.1: Gravity Gradiometer Instrument - Schematic Diagram (only 2 of the 6 accelerom-

eter are shown). Adapted from Cesare, Performance Requirements and budgets for gradio-

metric mission (2002). [6]

Measurements from an on-board star camera are used to improve the estimation of the

states and thereby enhance the overall fidelity of the navigation system. The measurement

model for the star camera measurements is presented in Chapter 5.

3.4.3 Linear Modeling

The aforementioned non-linear models and equations are linearized about the reference

state vector (x̄) so as to formulate the linear covariance model for the given system. The

reference state includes the desired trajectory (i.e., given LEO orbit). Note that for formu-

lating an Extended Kalman Filter, linearization is done about the estimated state vector

(x̂). The linearized equations of motion (Jacobian) and measurement partials are derived

in Chapter 5.
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3.4.4 Observability Analysis

Next, the observability analysis of the system is conducted. The observability of the

given linearized time-varying discrete-time model can be deduced by computing the observ-

ability gramian Ok (0,M) for M measurements, as

Ok (0,M) ,
M∑
i=1

φT (i, 0)HT (i)H (i)φ (i, 0) (3.16)

where φ is the state transition matrix, and H is the measurement partial. The model is said

to be completely observable if and only if any of the following criteria are met after some

finite M measurements : (1) the null space of Ok (0,M) is 0 ∈ Rn, (2) Ok (0,M) is non-

singular, i.e., invertible, (3) Ok (0,M) is positive definite, (4) the determinant of Ok (0,M)

is non-zero [9].

3.4.5 Linear Covariance Analysis

Finally, the Linear Covariance Analysis is conducted and the corresponding results are

used to develop an error budget model for the system, which in turn is used to deduce specific

sensor requirements and optimal sensor configuration. This approach is repeated for different

flight regimes and mission types so as to build a measurement sensitivity requirement chart

based on the mission requirements.

Performance analysis is conducted by studying important modeling parameters like

filter gravity model, measurement noise, measurement frequency, number of accelerometers,

gradiometer baseline length, orbital regime, and initial state covariance. This helps to obtain

the preliminary results for determining the role and importance of each modeling parameter

in designing an autonomous orbital navigation system.

3.4.6 Performance Metrics

Performance metrics for this research are the navigation solution at the final time, i.e.,

the standard deviation (3-sigma values) for the spacecraft position, velocity, attitude, angu-

lar velocity, center of mass position, accelerometer positions, and accelerometer parameters
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(bias, scale factor, and misalignment). Final navigation requirements are defined based on

the mission type, and these requirements are compared to the performance metrics of the

autonomous navigation system based on advanced accelerometers.

Final navigation requirements are defined in the Local Vertical and Local Horizontal

(LVLH) frame, and the final navigation solution in the LVLH frame is compared with the

pre-defined requirements (as described in mission objective). Error budgets are used to show

the contribution of each source of error to the final orbit navigation error, which in turn is

compared against the reference solution, for different mission types.

MATLAB is used to develop the required algorithm and generate results for this study.

3.5 Summary

In this chapter, the scope and the objective of the proposed research were presented.

The approach and important mathematical tools required to achieve the pre-defined objec-

tives were outlined. Performance metrics to validate the final results, of this study, was also

defined.
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CHAPTER 4

Coordinate Frames, Transformations, and Gravity Field Models

4.1 Chapter Overview

Detailed problem setup and relevant mathematical quantities require detailed review of

coordinate frames and corresponding transformations. This chapter provides an overview

of the significant coordinate frames used during this study. The aim of this chapter is to

help create the foundation for a detailed problem setup in later chapters, and elucidate the

specifics of coordinate transformations and gravity field models.

4.2 Coordinate Frames

Defining relevant coordinate frames is integral to any navigation system, and expressing

mathematical quantities in appropriate coordinates helps to better represent dynamical sys-

tems. All the coordinate frames used in this study are right-handed Cartesian/orthogonal

coordinates. Coordinate frames used in this study are described next.

4.2.1 Earth-Centered Inertial Frame (ECI)

Earth-Centered Inertial Frame (ECI) is one of the most fundamental coordinate frames,

used frequently to define systems that obey Newton’s laws of motion. An inertial frame is

a non-rotating drame, defined to be fixed in space or moving with no acceleration [34, 35].

This frame is generally preferred to define a satellites’ motion in an orbit.

The origin of this frame coincides with the center of the Earth, and the X-axis and

Z-axis are aligned with the Earth’s vernal equinox axis and polar axis, respectively. The

Y-axis completes the right handed coordinate system. The X-Y axes of this frame lie in

Earth’s equatorial plane, and are non-rotating with respect to fixed stars.

The direction of the vernal equinox is defined as the apparent direction from Earth to

the Sun at the time of vernal equinox, i.e., when the length of day and night are equal and
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when the Sun appears to cross the equatorial plane into the northern hemisphere. The polar

axis of Earth is defined as the rotation axis of the Earth, through the conventional terrestrial

pole (CTP). The ECI frame is shown in Figure 4.1.

However, in reality, all the inertial frames are actually “quasi-inertial”. This is because

the reference directions like Earth’s polar axis or Earth’s vernal equinox axis, used to define

an inertial frame, have some precession rate. For example, the inertial direction of the

Earth’s vernal equinox is changing slowly at about 50 arc seconds per year, while the inertial

direction of the rotation axis of Earth has a rotation rate of about 1.6 × 10−6 deg/h [7].

Because the rate of this precession is very small and over a large time period, with respect to

most of the navigation problems, the defined coordinate frame can be treated as a reference

frame. Further, to improve consistency of these models, the inertial directions are usually

corrected by giving a particular date and time for the assumed value of the mean equatorial

plane [7].

Currently, according to International Earth Rotation and Reference Systems Service

(IERS) convention, ECI is referenced to the J2000 ECI reference frame and the Earth’s

mean equator and equinox at 12:00 terrestrial time on 1 January 2000 are used as the

inertial directions to define the axes of the reference frame.

Thus to define the ECI frame, it is necessary to calculate the days past the J2000 epoch.

For this Julian date is computed. For all the results presented in this document, time of

start has been defined as 2 a.m. on January 1st, 2019.
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Fig. 4.1: Earth-Centered Inertial Frame (ECI) [7] .

4.2.2 Local Vertical and Local Horizontal Frame (LVLH)

Local Vertical and Local Horizontal Frame (LVLH) is a common reference frame used

to define the motion of the spacecraft, in reference to the spacecraft’s orbit. This frame also

offers convenient representation of spacecraft’s attitude, especially for an Earth-pointing

spacecraft.

The three axes of the LVLH frame are defined in an inertial frame, as follow

L̂Iz =
rICM/E∥∥∥rICM/E

∥∥∥ (4.1)

L̂Iy =
rICM/E × vICM/E∥∥∥rICM/E × vICM/E

∥∥∥ (4.2)

L̂Ix = L̂Iy × L̂Iz (4.3)

where rICM/E and vICM/E are the position and velocity of the spacecraft’s center of mass

with respect to the center of the Earth, expressed in the ECI frame. In Eqs. 4.1-4.3, L̂Iz is

the radial axis of the LVLH frame and it points in the radially outward, i.e. in the direction

from the center of the Earth to the origin of the LVLH frame along the position vector
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of the spacecraft. Further, L̂Iy is defined as the cross-track axis of the LVLH frame and

it points along the orbit normal, and L̂Ix is the along-track axis of the LVLH frame and

it completes the right-handed coordinate system. The origin of the LVLH frame coincides

with the nominal center of mass of the spacecraft. The LVLH frame is shown in Figure 4.2.

Note that when the spacecraft is in a circular orbit, the along-track axis is aligned with the

velocity vector vICM/E of the spacecraft.

The rotation matrix from the LVLH frame to ECI frame can be expressed as

TLV LH→ECI =

[
L̂Ix L̂Iy L̂Iz

]
(4.4)

For this study, to better estimate and determine orientation of a rotating spacecraft,

the body-fixed frame of the spacecraft is defined to be aligned with the LVLH frame. When

a case for a non-rotating spacecraft is considered, the body-fixed frame of the spacecraft is

defined to be aligned with the ECI frame. This is done to ease the interpretation of the

orbital motion of the spacecraft and its’ orientation for the results presented in Chapter 9.

Fig. 4.2: Local Vertical and Local Horizontal frame (LVLH) and ECI frame .

4.2.3 Nominal Reference Frame (NRF)

To effectively define the measurements from the on-board sensors like accelerometers
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and star camera, a nominal reference frame is defined for each sensor. This is important

for operational reasons, because large forces during launch, unmodeled structural forces like

thermal deformations, or some planned motion of gimbaled instruments while on-orbit, can

complicate the ability to accurately express measurements from on-board sensors.

For this study, the nominal reference frame for all on-board sensors is defined to be

always aligned with the spacecraft’s body fixed frame.

4.3 LAGEOS Spacecraft

For this study, specification of the LAser GEOdynamic Satellite (LAGEOS) has been

used for setting up the simulation. LAGEOS is a passive research satellite, designed by

NASA and launched on May 4, 1976. This spacecraft is an aluminum sphere with a brass

core, and has a diameter of 60 cm and a mass of 411 kg.

The primary reason to select LAGEOS as the basis for deciding the specifications (refer

Table 4.1) of the spacecraft, simulated in this study, is because it is a spherically symmetric

spacecraft, and hence a simplistic atmospheric drag model can be implemented with rea-

sonable fidelity. In fact, recent research by Pilinski and Palo has highlighted the techniques

to measure the atmospheric drag on small satellites, and this study has used a spherically

symmetric spacecraft for the basis of the model [36].

Table 4.1: Spacecraft (s/c) Parameters .
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4.4 Gravity Field Models

Understanding gravity field models of a planetary body is important for designing any

orbital mission, and also, for accurate tracking and orbital determination of a satellite.

This section provides a brief overview of the history and techniques behind the modeling of

gravitation field.

Before the Space Age began, terrestrial gravimetry was predominantly used to measure

Earth’s gravitational field [37]. However, the measurements were sparse and evidently inad-

equate. Space technology and the ability to place satellites in Earth orbit opened a gateway

to measure and observe the gravity field with unprecedented precision.

A straightforward technique to measure gravitational field is to measure the orbital

period and semi-major axis of either a small natural moon or a small satellite orbiting

about the given body [38]. Various techniques, ranging from telescopic observations to radio

tracking, are used to estimate the velocity and position of the orbiting satellite [38]. The

primary body’s mass can then be easily deduced with the knowledge of Kepler’s third law or

measured data [38]. And in the fortunate case, when the primary body’s mass is spherically

symmetric, knowledge of body’s mass provides sufficient insight about its gravitational field,

otherwise spherical harmonic functions are used to estimate a model of the gravitational field

[38].

The fundamental expression for the primary body’s gravitational potential acting on a

satellite is derived as the integral solution to Laplace’s equation [37]

∇2U = 0 (4.5)

where the unit potential U is defined as

U = G

∫
V olume

(
dm

rs

)
(4.6)

where rs is the distance from an arbitrary incremental mass dm inside the primary body

to the satellite (considered as a point mass), and G is the universal gravitation constant
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[37]. Noting that rs is the vector difference of two vectors, i.e., r−R, where R is the vector

from the center of mass of the primary body to the arbitrary incremental mass dm inside

the primary body, and r is the vector from the center of mass of the primary body to the

satellite, thus [37]

rs =
√

(r−R) · (r−R) = r

√
1− 2R

cos θ

r
+

(
R

r

)2

(4.7)

Using Eqs. 4.5-4.7, Laplace formulated Earth’s gravitational potential (valid external

to the Earth) as [37]

U =
G

r

∫ ∞∑
n=0

Pn (cos θ)

(
R

r

)n
dm (4.8)

where Pn are the Legendre polynomials in cos θ, and θ is the angle between the position

vector to the mass increment (R) and the position vector to the satellite (r), respectively

[37]. A familiar form of the Earth’s gravitational potential can be obtained by converting

coordinates in Eq. 4.8 to spherical coordinates (r, φ, λ) and applying Rodrigues’ formula,

followed by evaluation of the integrals, such that [37]

U =
µ

r

[
1 +

∞∑
n=1

n∑
m=0

(
RE
r

)n
Pn,m(sλ) (Cn,m cos (mφ) + Sn,m sin (mφ))

]
(4.9)

where µ is the universal gravitational parameter, r is the position vector from a point O fixed

in body E (say Earth) to a generic point Q, r denotes the magnitude of r, RE is a scaling

radius for body E. Pn,m is the associated Legendre function of the first kind, of degree n and

order m, and has as its argument sλ, the sine of λ, the latitude of Q [39, 40]. The longitude

of Q is denoted by φ. Cn,m and Sn,m are unnormalized gravitational coefficients of degree

n and order m [39, 40]. If point O is coincident with the mass center of E, then C1,0, C1,1,

and S1,1 all become zero [39, 40, 41].

In geodetic applications, the Legendre polynomials are called zonals, sectorials, and

tesserals, determined by their exclusive dependency on latitude (m=0), longitude (n=m),

or both latitude and longitude (n 6=m), respectively [37].

Details about gravity field models, required for this study, have been covered in this



38

section. However, for readers interested in more details, studies by Vetter (1994) and Carrol

(2018) are recommended. The paper titled “The Evolution of Earth Gravitational Models

used in Astrodynamics” by Jerome R. Vetter provides detailed history and mathematical

background for modeling Earth’s gravitational field, and the study by Carroll and Faber,

titled “Asteroid Orbital Gravity Gradiometry”, highlights relevant techniques for measuring

gravity and gravity gradient from orbit [37, 38].

For this study, Goddard Earth Model (GEM-T1) coefficients have been used [42]. How-

ever, the algorithm has been setup that the simulation can be run by feeding coefficients

from any other Spherical Harmonics gravity model as well.

4.5 Summary

This chapter provided an overview of the significant coordinate frames used during

this study. This chapter helped create the foundation for a detailed problem setup in later

chapters, and elucidate the specifics of coordinate transformations and gravity field models.
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CHAPTER 5

Problem Parameters and System Modeling

5.1 Chapter Overview

This chapter aims to formulate, develop and detail the non-linear dynamics and mea-

surement equations for onboard autonomous orbital navigation based on accelerometer mea-

surement model. The chapter also describes in detail the corresponding linearized dynamics

and measurement models for the given system. Detailed derivations of important equations,

required to conduct Linear Covariance (LinCov) analysis are presented.

5.2 State Vector and Reference Frames

For the given model, the state vector (x) has been defined as follow

x = (xs,xp,xa)
T (5.1)

It consists of 16 spacecraft states (xs), 3 environmental parameter states (xp), and 12n

(n = number of accelerometers) accelerometer states (xa), such that

xs =
(
rICM/E ,v

I
CM/E ,qI→B,ω

B
B/I , r

B
CM/O

)T
(5.2)

where rICM/E and vICM/E denote the position and velocity of the spacecraft’s center of

mass with respect to the center of the Earth, expressed in inertial frame, qI→B denote

the spacecraft’s attitude quaternion, such that it defines the attitude/orientation of the

spacecraft body-fixed reference frame with respect to the inertial reference frame, ωBB/I

is the angular velocity of the spacecraft with respect to the inertial frame, expressed in

spacecraft body-fixed frame, and rBCM/O denote the spacecraft center of mass position with

respect to the origin of the spacecraft body-fixed reference frame.

The three environmental parameter states are given by
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xp = (β, ρr, hs)
T (5.3)

where β is the ballistic coefficient for the spacecraft, ρr is the reference sea level atmospheric

density, and hs is the scale height for exponentially decaying atmospheric drag model.

The accelerometer parameter states are given by

xa =
(
rBai/O,b

ãi
i , f

ãi
i , ε

ãi
i

)T
(5.4)

where rBai/O denote the ith accelerometer position with respect to the origin of spacecraft

body-fixed reference frame, and lastly, bãii , f
ãi
i , and ε

ãi
i denote the accelerometer bias, scale

factor and misalignment, respectively.

The relevant reference frames (all right-handed and orthogonal) used in this study are

the Inertial Reference Frame (IRF), Spacecraft Body-fixed Reference Frame (SBRF), Ac-

celerometer Nominal Reference Frame (ANRF), and Accelerometer Actual Reference Frame

(AARF). The first 3 frames are generally known, while the AARF is generally unknown.

Inertial Reference Frame (IRF) The fundamental inertial reference frame for this study is

defined by an origin located at the centre of the Earth, x-axis at the intersection of the mean

ecliptic plane with the mean equatorial plane at the date of 1st January 2000 and pointing

positively towards the vernal equinox, z-axis orthogonal to the mean equatorial plane at the

date 1st January 2000, and y-axis completing a right-handed reference frame.

Spacecraft Body-fixed Reference Frame (SBRF) This is an arbitrarily defined reference

frame, whose center coincides with the nominal center of mass of the spacecraft. The

transformation from IRF to SBRF is denoted as TI→B or qI→B.

Accelerometer Nominal Reference Frame (ANRF) This is the accelerometer reference frame,

as defined by the manufacturer or as per the accelerometer model. The transformation from

SBRF to ANRF is denoted as TB→aNi .
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Accelerometer Actual Reference Frame (AARF) This reference frame is the same as Ac-

celerometer Nominal Reference Frame (ANRF), except that it takes into account the mis-

alignments (εi) introduced while securing the accelerometer on the spacecraft structure. The

transformation from ANRF to AARF is a small angle transformation defined by

TaNi →ãi
= I3×3 −

[
εãii ×

]
(5.5)

where εãii is a vector of three small angle rotations. AARF and ANRF are shown in

Figure 5.1.

Fig. 5.1: Accelerometer Nominal Reference Frame (ANRF) and Accelerometer Actual Ref-

erence Frame (AARF) frame .

5.3 Environmental Models

In this section, relevant environmental models are presented and correspondingly ap-

propriate perturbations acting on the spacecraft are mathematically represented. There are

in general two classifications of the perturbations: (1) those that arise from the gravita-

tional potential functions and (2) those that are not derivable from gravitational potential

functions [8]. Perturbations like third-body effect (due to the sun, the moon, and other

massive space objects), gravity gradient torques, or the tidal potential perturbations are
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classified under first category, as all of these effects can be derived from potential functions

[8]. However, perturbations due to atmospheric drag, solar radiation pressure, and other

perturbations that involve some “contact” with the spacecraft are classified under the second

category [8].

5.3.1 Spherical Harmonics Gravity Model

Spherical harmonics gravity model is used to simulate Earth’s gravity model. It is computed

analytically by evaluating the first derivative of gravitational potential U(r) with respect to

the position vector r.

U =
µ

r

[
1 +

∞∑
n=1

n∑
m=0

(
RE
r

)n
Pn,m(sλ) (Cn,m cos (mφ) + Sn,m sin (mφ))

]
(5.6)

where gravitational potential U(r) is given by Eq. 5.6, such that µ is the universal gravita-

tional parameter, r is the position vector from a point O fixed in body E (say Earth) to a

generic point Q, r denotes the magnitude of r, RE is a scaling radius for body E. Pn,m is

the associated Legendre function of the first kind, of degree n and order m, and has as its

argument sλ, the sine of λ, the latitude of Q [39, 40]. The longitude of Q is denoted by φ.

Cn,m and Sn,m are unnormalized gravitational coefficients of degree n and order m [39, 40].

If point O is coincident with the mass center of E, then C1,0, C1,1, and S1,1 all become zero

[39, 40, 41].

5.3.2 Atmospheric Drag Model

Spacecraft in the lower altitudes (approx. 400 km or below) of the low earth orbit,

experience an opposing force or drag due to the interaction with the upper atmosphere. A

simplified exponentially decaying atmospheric drag model is used for this study, defined as

follow [43]

aIaero = −1

2
ρ
(
rICM/E , ρr, hs

)
β
∥∥∥vICM/E

∥∥∥vICM/E (5.7)
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ρ
(
rICM/E , ρr, hs

)
= ρre

−
(∥∥∥∥rICM/E

∥∥∥∥−href)
hs (5.8)

href = 400000 +RE (5.9)

where aaero is the aerodynamic acceleration due to atmospheric drag, at spacecraft position

rICM/E , velocity vICM/E , and for ballistic coefficient β, reference atmospheric density ρr,

and scale height hs. Further, ρ is the atmospheric density at spacecraft position rICM/E ,

href is the reference altitude in meters, at which reference atmospheric density ρr and scale

height hs have been defined, and lastly, RE is the radius of the Earth [34, 43].

5.3.3 Solar Radiation Pressure Model

Due to the incident solar radiation, a force is exerted on the spacecraft and this is

modeled based on three main factors: (1) the intensity and spectral distribution of the

incident radiation, (2) the geometry of the surface and its optical properties, and (3) the

orientation of the Sun vector relative to the spacecraft [43]. Here, a simple radiation model

is considered, i.e., a constant solar radiation has been assumed (the Earth’s albedo and

the radiation emitted from the Earth and its atmosphere have been ignored) [43]. The

mathematical model of the acceleration due to the solar radiation pressure on a spherical

spacecraft can be defined as follows [43]

aISRP = −Pflux
(

3

rscρsc

)(
1

4
+

1

9
cd

)
ŝ (5.10)

ŝ = − dj
‖dj‖

= −
r− ρj∥∥r− ρj∥∥ = −

rICM/E − ρSun∥∥∥rICM/E − ρSun
∥∥∥ = ρ̂Sun (5.11)

where aSRP is the acceleration due to solar radiation pressure, Pflux is the mean momentum

flux acting on a surface normal to the Sun’s radiation (refer Eq. 5.12), rsc is the radius of the

spherical spacecraft, ρsc is the density of the spherical spacecraft, cd denote the coefficient
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of diffuse reflection, i.e. the fraction of the incident radiation that is diffusely reflected, ŝ is

the unit vector from the spacecraft to the Sun (refer Figure 5.2 and Eq. 5.11), dj denote the

vector from the sun to the spacecraft, rICM/E is the vector from the Earth to the spacecraft,

and ρj is the vector from the Earth to the sun [43]. The mean momentum flux is defined

as follows [43]

Pflux =
Fe
c

(5.12)

Fe =
1358

1.0004 + 0.0334 cosD
W/m2 (5.13)

where Fe is the solar constant (modeled with 1358 W/m2, i.e. the mean flux at 1 AU, and

the denominator is a correction for the true Earth distance), D is the "phase" of the year

measured from July 4 (the day of Earth aphelion), and c is the speed of light [43]. It should

be noted that the solar constant depends on the radiation wavelength and the eccentricity

of the Earth’s orbit about the Sun [43]. The variations in this flux (based on the above

model) are always less than 0.5%, and solar radiation is largely emitted in the visible and

near-infrared portions of the spectrum [43]. For this study, a constant mean momentum flux

of 4.4× 10−6 kg ·m−1 · s−2 has been considered (see page 130 in reference [43]).

5.3.4 Third-body Perturbation model

The perturbing acceleration
(
aI

3rd

)
, acting on the spacecraft, due to the gravitational

force of the massive space objects (Sun and Moon) can be modeled as follows [8]

aI3rd = −GmSun

(
dSun

‖dSun‖3
+

ρSun

‖ρSun‖
3

)
−GmMoon

(
dMoon

‖dMoon‖3
+

ρMoon

‖ρMoon‖
3

)
(5.14)

Since, the vector (dj) from the Sun and Moon to the spacecraft can be defined as (refer

Figure 5.2) [8]
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dj = r− ρj (5.15)

this implies

aI3rd = −GmSun

 rICM/E − ρSun∥∥∥rICM/E − ρSun
∥∥∥3 +

ρSun

‖ρSun‖
3



−GmMoon

 rICM/E − ρMoon∥∥∥rICM/E − ρMoon

∥∥∥3 +
ρMoon

‖ρMoon‖
3

 (5.16)

where mSun and mMoon are the mass of the Sun and the Moon, and G is the universal

gravitational constant.

Fig. 5.2: Position vectors for n-body system [8].

5.3.5 Gravity Gradient Torque

The gravity gradient torque, due to point-mass gravitational field of the Earth, acting

on the spacecraft is given as follow [43]

Mgg =
3µ∥∥∥rBO/E∥∥∥5

[
rBO/E ×

(
J · rBO/E

)]
(5.17)
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where rBO/E is the position vector of the spacecraft’s geometric center with respect to the

center of the Earth, µ = GME is the Earth’s gravitational constant, and J is the spacecraft

moment-of-inertia tensor [43]. Note that the above expression is valid only if it is assumed

that the center of mass of the spacecraft coincide with its geometric center [43].

5.4 Non-Linear Dynamics Modeling

The non-linear dynamical and measurement models are presented in this section.

The dynamics for the given system can be defined as

ẋ = f (x, t) +Gw (5.18)

where x is the true state vector, G is a matrix to map the noise vector to the state dynamics,

and w is a vector of zero-mean white noise processes. The dynamics can be segmented

into three broad categories: (1) Translational dynamics, (2) Rotational dynamics, and (3)

Dynamics of the uncertainties/errors (inherent to system/environmental model).

5.4.1 Translational Dynamics

The position and velocity of the spacecraft’s center of mass with respect to the center

of the Earth, expressed in inertial frame, are denoted as rICM/E and vICM/E . All vectors

with superscript I are coordinatized in the inertial reference frame (IRF).

Correspondingly, spacecraft dynamics can be defined as

ṙICM/E = vICM/E (5.19)

v̇ICM/E = gIE

(
rICM/E

)
+ aI3rd

(
rICM/E ,ρSun,ρMoon

)
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+aIaero

(
rICM/E ,v

I
CM/E , β, ρr, hs

)
+ aISRP

(
rICM/E ,ρSun

)
+ wT + waero (5.20)

where gE (r) denotes the Earth’s gravitational acceleration at position rICM/E , and aaero is

the aerodynamic acceleration at position rICM/E , velocity vICM/E , and for ballistic coefficient

β, reference atmospheric density ρr, and scale height hs. In Eq. 5.20, wT and waero are the

translational disturbance acceleration and unmodeled aerodynamic acceleration, modeled as

zero-mean white Gaussian noise

E[wT (t) wT

(
t′
)T

] = QT δ
(
t− t′

)
(5.21)

E[waero (t) waero

(
t′
)T

] = Qaeroδ
(
t− t′

)
(5.22)

where QT is the strength of the translational disturbance acceleration, Qaero is the strength

of the unmodeled aerodynamic acceleration, and δ is the Dirac delta function. The initial

position and velocity uncertainty are defined as,

rICM/E (t0) ∼ N
(
r̄CM/E (t0) , Prr (t0)

)
(5.23)

vICM/E (t0) ∼ N
(
v̄CM/E (t0) , Pvv (t0)

)
(5.24)

where Prr (t0) and Pvv (t0) are initial covariance of spacecraft’s position and velocity, and

rICM/E (t0) and vICM/E (t0) are the initial nominal position and velocity of the spacecraft.

Further, the aerodynamic acceleration aIaero is modeled by Eq. 5.7, where the ballistic

coefficient β is defined as follows
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β = β̄ + δβ (5.25)

where β̄ is the nominal value of the ballistic coefficient β, and δβ is a small deviation of the

ballistic coefficient β from its nominal value. The dynamics of δβ is modeled as a 1st-order

Markov process (ECRV)

δβ̇ =
−δβ
τβ

+ wβ (5.26)

δβ (t0) ∼ N
(
0, σ2

β

)
(5.27)

E[wβ (t)wβ
(
t′
)T

] = qβδ
(
t− t′

)
=

2σ2
β

τβ
δ
(
t− t′

)
(5.28)

where σβ denote the steady state standard deviation of ballistic coefficient, and wβ is the un-

modeled noise in the dynamics of ballistic coefficient, modeled as zero-mean white Gaussian

noise with a strength denoted by qβ .

Similarly, the reference atmospheric density ρr is defined as follows

ρr = ρ̄r + δρr (5.29)

where ρ̄r is the nominal value of the reference atmospheric density ρr, and δρr is a small

deviation of the reference atmospheric density ρr from its nominal value. The dynamics of

δρr is modeled as a 1st-order Markov process (ECRV)

δρ̇r =
−δρr
τρr

+ wρr (5.30)

δρr (t0) ∼ N
(
0, σ2

ρr

)
(5.31)
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E[wρr (t)wβ
(
t′
)T

] = qρrδ
(
t− t′

)
=

2σ2
ρr

τρr
δ
(
t− t′

)
(5.32)

where σρr denote the steady state standard deviation of reference atmospheric density, and

wρr is the unmodeled noise in the dynamics of reference atmospheric density, modeled as

zero-mean white Gaussian noise with a strength denoted by qρr .

Lastly, the scale height hs is defined as follows

hs = h̄s + δhs (5.33)

where h̄s is the nominal value of the scale height hs, and δhs is a small deviation of the scale

height hs from its nominal value. The dynamics of δhs is modeled as a 1st-order Markov

process (ECRV)

δḣs =
−δhs
τhs

+ whS (5.34)

δhs (t0) ∼ N
(
0, σ2

hs

)
(5.35)

E[whs (t)whs
(
t′
)T

] = qhsδ
(
t− t′

)
=

2σ2
hs

τhs
δ
(
t− t′

)
(5.36)

where σhs denote the steady state standard deviation of scale height, and whs is the unmod-

eled noise in the dynamics of scale height, modeled as zero-mean white Gaussian noise with

a strength denoted by qhs .
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5.4.2 Rotational Dynamics

The quaternion representing the orientation of the spacecraft body-fixed reference frame

(SBRF) with respect to the inertial reference frame (IRF) is defined as qI→B, and the

corresponding kinematics are defined as [31]

q̇I→B =
1

2
ωBB/I ⊗ qI→B (5.37)

where ωBB/I is the angular velocity of the spacecraft with respect to the inertial frame,

expressed in spacecraft-fixed body frame. Correspondingly, the spacecraft’s angular accel-

eration is defined as [31]

ω̇BB/I = J−1
[
Mgg

(
rICM/E ,qI→B

)
− ωBB/I ×

(
JωBB/I

)]
+ wR (5.38)

where J is the moment of inertia of the spacecraft, and Mgg is the gravity gradient torque.

In Eq. 5.38, wR is the rotational disturbance acceleration, modeled as zero-mean white

Gaussian noise

E[wR (t) wR

(
t′
)T

] = QRδ
(
t− t′

)
(5.39)

where QR is the strength of the rotational disturbance acceleration. Further, the initial

uncertainty in spacecraft’s quaternion is modeled as [31]

qI→B (t0) = δq (θ)⊗ q̄I→B (t0) (5.40)

where δq (θ) is the quaternion representing any small rotation, θ is the incremental rotation

vector of the spacecraft, and q̄I→B (t0) is the reference quaternion at initial time. Further,

the initial uncertainty in spacecraft’s rotation vector and angular velocity are modeled as

θ (t0) ∼ N (03×1, Pθθ (t0)) (5.41)
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ωBB/I (t0) ∼ N
(
ω̄BB/I (t0) , Pωω (t0)

)
(5.42)

where θ (t0) and ωBB/I (t0) are the initial nominal spacecraft’s rotation vector and angular

velocity, and Pθθ (t0) and Pωω (t0) are the initial covariance of the spacecraft’s rotation

vector and angular velocity, respectively.

The convention used in this document for quaternion is that the first three elements

are known as the vector component, whereas the fourth element is the scalar component.

5.4.3 Instrument Error Dynamics

The center of mass position rBCM/O, with respect to the spacecraft fixed body frame,

can also be defined as a 1st-order Markov process (ECRV)

ṙBCM/O =
−rBCM/O

τrCM/O
+ wrCM/O (5.43)

rBCM/O (t0) ∼ N
(
03×1, σ

2
rCM/O

I3×3

)
(5.44)

E[wrCM/O (t) wrCM/O

(
t′
)T

] = qrCM/Oδ
(
t− t′

)
I3×3 (5.45)

qrCM/O =
2σ2

rCM/O

τrCM/O
(5.46)

where σrCM/O denotes the steady state standard deviation of center of mass position, and

wrCM/O is the unmodeled noise in the center of mass position, modeled as zero-mean white

Gaussian noise with a strength denoted by qrCM/O .

Similarly, the accelerometer position rBai/O, with respect to the spacecraft fixed body

frame, can be defined as follow

rBai/O = r̄Bai/O + δrBai/O (5.47)
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where r̄Bai/O is the nominal value of the accelerometer position rBai/O, and δr
B
ai/O

is a small

deviation of the accelerometer position rBai/O from its nominal value. The dynamics of δrBai/O

is modeled as a 1st-order Markov process (ECRV)

δṙBai/O =
−δrBai/O
τrai/O

+ wrai/O
(5.48)

δrBai/O (t0) ∼ N
(
03×1, σ

2
rai/O

I3×3

)
(5.49)

E[wrai/O
(t) wrai/O

(
t′
)T

] = qrai/Oδ
(
t− t′

)
I3×3 (5.50)

qrai/O =
2σ2

rai/O

τrai/O
(5.51)

where σrai/O
denotes the steady state standard deviation of accelerometer position, and

wrai/O
is the unmodeled noise in the accelerometer position, modeled as zero-mean white

Gaussian noise with a strength denoted by qrai/O .

Similarly, the accelerometer measurement bias bãii can be defined as a 1st-order Markov

process (ECRV)

ḃãii =
−bãii
τbi

+ wbi (5.52)

bãii (t0) ∼ N
(
03×1, σ

2
bi
I3×3

)
(5.53)

E[wbi (t) wbi

(
t′
)T

] = qbiδ
(
t− t′

)
I3×3 (5.54)

qbi =
2σ2

bi

τbi
(5.55)
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where σbi denotes the steady state standard deviation of accelerometer measurement bias,

and wbi is the unmodeled noise in the accelerometer measurement bias, modeled as zero-

mean white Gaussian noise with a strength denoted by qbi . All vectors with superscript ãi

are coordinatized in the actual ith accelerometer frame, and the subscript i represents the

ith accelerometer.

Similarly, the accelerometer measurement scale-factor f ãii can be defined as a 1st-order

Markov process (ECRV)

ḟ ãii =
−f ãii
τfi

+ wfi (5.56)

f ãii (t0) ∼ N
(
03×1, σ

2
fi
I3×3

)
(5.57)

E[wfi (t) wfi

(
t′
)T

] = qfiδ
(
t− t′

)
I3×3 (5.58)

qfi =
2σ2

fi

τfi
(5.59)

where σfi denotes the steady state standard deviation of accelerometer measurement scale-

factor, and wfi is the unmodeled noise in the accelerometer measurement scale-factor, mod-

eled as zero-mean white Gaussian noise with a strength denoted by qfi .

Lastly, the accelerometer misalignment εãii can be defined as a 1st-order Markov process

(ECRV)

ε̇ãii =
−εãii
τεi

+ wεi (5.60)

εãii (t0) ∼ N
(
03×1, σ

2
εiI3×3

)
(5.61)

E[wεi (t) wεi

(
t′
)T

] = qεiδ
(
t− t′

)
I3×3 (5.62)
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qεi =
2σ2
εi

τεi
(5.63)

where σεi denotes the steady state standard deviation of accelerometer misalignment, and

wεi is the unmodeled noise in the accelerometer misalignment, modeled as zero-mean white

Gaussian noise with a strength denoted by qεi .

5.5 Nonlinear Measurement Modeling

The accelerometer measurements for a system can be generically defined as

ããii = h (x) + ηãii (5.64)

where x is the true state vector, h (·) is a non-linear function which maps state vector to

the accelerometer measurements, and ηãii is a vector of zero-mean white Gaussian noise on

the accelerometer measurements. In this document, the subscript i represents the quanti-

ties/vectors related to the ith accelerometer, and the superscript I, B, and ãi denote the

vectors coordinatized in the inertial reference frame (IRF), spacecraft body-fixed reference

frame (SBRF), and accelerometer actual reference frame (AARF), respectively.

Fig. 5.3: Spacecraft’s center of mass position vector relative to inertial reference frame (IRF)

and spacecraft body-fixed reference frame (SBRF) .
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According to Figure 5.3, the position of the ith accelerometer, with respect to the center

of the Earth, can be defined as follow

rai/E = rO/E + rai/O (5.65)

where rai/E is the position of the ith accelerometer with respect to the center of the Earth,

rO/E is the position of the origin of the spacecraft body-fixed reference frame with respect

to the center of the Earth, and rai/O is the position of the ith accelerometer with respect to

the origin of the spacecraft body-fixed reference frame. On differentiating Eq. 5.65,

vai/E = ṙai/E = ṙO/E + ṙai/O (5.66)

where vai/E is the velocity of the ith accelerometer with respect to the center of the Earth,

and the derivatives on the right hand side of Eq. 5.66 are calculated from the view point of an

observer in the inertial reference frame. Now using the transport theorem, the relationship

between the time derivatives of rai/OB from the view point of an observer in the inertial

reference frame and the spacecraft body-fixed reference frame, is given as follow

ṙai/O =
(
ṙai/O

)
rel

+ ωB/I × rai/O (5.67)

where ωB/I is the angular velocity of the spacecraft body-fixed reference frame with respect

to the inertial frame. Substituting the result from Eq. 5.67 in the Eq. 5.66, gives

vai/E = ṙai/E = ṙO/E +
(
ṙai/O

)
rel

+ ωB/I × rai/O (5.68)

Now differentiating Eq. 5.68, from the view point of an observer in the inertial reference

frame, and using transport theorem again, gives

r̈ai/E = r̈O/E+
(
r̈ai/O

)
rel

+2ωB/I×
(
ṙai/O

)
rel

+ω̇B/I×rai/O+ωB/I×
(
ωB/I × rai/O

)
(5.69)
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Now assuming that the origin O of the spacecraft body-fixed reference frame is fixed to

the spacecraft’s center of mass CM , then the inertial acceleration of the ith accelerometer

is given as follow

r̈ai/E = r̈CM/E+
(
r̈ai/CM

)
rel

+2ωB/I×
(
ṙai/CM

)
rel

+ω̇B/I×rai/CM+ωB/I×
(
ωB/I × rai/CM

)
(5.70)

An electrostatic accelerometer is designed to detect the difference between the acceler-

ation of center of mass of the spacecraft, and that of the proof mass of the ith accelerometer,

by measuring the electrostatic force required to keep the proof mass in the center of the ac-

celerometer. Using Eq. 5.70, the acceleration of the proof mass aIpi of the i
th accelerometer,

expressed in the inertial reference frame, can be given as

aIpi = r̈Iai/E = r̈ICM/E +
(
r̈Iai/CM

)
rel

+ 2ωIB/I ×
(
ṙIai/CM

)
rel

+ω̇IB/I × rIai/CM + ωIB/I ×
(
ωIB/I × rIai/CM

)
(5.71)

where aIpi is the acceleration of the ith accelerometer’ proof mass, r̈ICM/E is the acceleration

of the spacecraft,
(
r̈Iai/CM

)
rel

is the acceleration of the ith accelerometer’ proof mass with

respect to the spacecraft, as viewed relative to the rotating spacecraft body-fixed reference

frame,
(
ṙIai/CM

)
rel

denotes the velocity of the ith accelerometer’ proof mass with respect to

the spacecraft, as viewed relative to the rotating spacecraft body-fixed reference frame, and

rIai/CM is the position of the ith accelerometer’ proof mass with respect to the spacecraft.

Using Newton’s second law

FI
v = mv r̈

I
CM/E (5.72)
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FI
pi = mpia

I
pi (5.73)

where FI
v is the total force acting on the spacecraft, mv is mass of the spacecraft, FI

pi

is the total force acting on the ith accelerometer’ proof mass, and mpi is mass of the ith

accelerometer’ proof mass.

Force analysis of the ith accelerometer’ proof mass yields

Fpi = Fgpi
+ Femfi (5.74)

where Fgpi
is the force acting on the ith accelerometer’ proof mass due to gravitational field,

and Femfi is the electro-motive force acting on the ith accelerometer’ proof-mass, to keep

the proof mass at the center of the accelerometer frame.

Force analysis of the vehicle yields

Fv = Fgv + N− Femfi (5.75)

where Fgv is the force acting on the spacecraft due to gravitational field, N is the force

acting on the spacecraft due to non-gravitational forces, like atmospheric drag, and Femfi

is the equal and opposite electro-motive force acting on the spacecraft.

Using free body analysis of the vehicle and ith accelerometer’ proof mass, the accel-

eration of the spacecraft and the acceleration of the ith accelerometer’ proof mass can be

expressed as below

aIv = gI
(
rICM/E

)
+

NI
(
rICM/E ,v

I
CM/E , β, ρr, hs

)
mv

−
FI
emfi

mv
(5.76)

aIpi = gI
(
rICM/E + rIai/CM

)
+

FI
emfi

mpi

(5.77)

where rICM/E is the inertial position of the spacecraft, vICM/E is the inertial velocity of

the spacecraft, gI
(
rICM/E

)
is the gravitational acceleration at the position rICM/E , and
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gI
(
rICM/E + rIai/CM

)
is the gravitational acceleration at the position

(
rICM/E + rIai/CM

)
.

Further,

rICM/E + rIai/CM = rIai/E (5.78)

where rIai/E is the inertial position of the ith accelerometer’ proof mass.

The difference between the acceleration of center of mass of the spacecraft, and that of

the proof mass of the ith accelerometer is defined as the detected acceleration, and is denoted

by aIdi . The detected acceleration is equal to the sum of all non-gravitational accelerations

acting on the proof mass. Thus using Eq. 5.77 and Eq. 5.78, the detected acceleration is

given as

aIdi =
FI
emfi

mpi

= aIpi − gI
(
rIai/E

)
(5.79)

To re-state this rigorously, substituting Eqs. 5.76-5.78 in Eq. 5.71, and noting that

the detected acceleration measurement is proportional to FI
emfi

(
1
mpi

+ 1
mv

)
, the detected

acceleration is given as

aIdi = FI
emfi

(
1

mpi

+
1

mv

)
= gI

(
rICM/E

)
− gI

(
rIai/E

)
+

NI
(
rICM/E ,v

I
CM/E , β, ρr, hs

)
+ ωIB/I ×

(
ωIB/I × rIai/CM

)
+

ω̇IB/I × rIai/CM + 2ωIB/I ×
(
ṙIai/CM

)
rel

+
(
r̈Iai/CM

)
rel

(5.80)

Since, quantities like position, velocity, and acceleration of the ith accelerometer’ proof

mass, and the spacecraft angular velocity are traditionally measured in spacecraft body-fixed
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reference frame (SBRF), these terms are transformed using a transformation matrix from

SBRF to IRF.

aIdi = gI
(
rICM/E

)
− gI

(
rIai/E

)
+ NI

(
rICM/E ,v

I
CM/E , β, ρr, hs

)

+TB→I

[
ωBB/I ×

(
ωBB/I × rBai/CM

)]
+ TB→I

[
ω̇BB/I × rBai/CM

]

+2TB→I

[
ωBB/I × ṙBai/CM

]
+ TB→I

[
r̈Bai/CM

]
(5.81)

where g
(
rICM/E

)
denotes the total gravitational acceleration at position rICM/E , and N

denotes the non-gravitational acceleration (includes acceleration due to atmospheric drag

and solar radiation pressure) as a function of spacecraft position rICM/E , velocity vICM/E ,

ballistic coefficient β, reference atmospheric density ρr, and scale height hs.

For this measurement model, Eq. 5.64 is expanded and, the accelerometer measure-

ments are given by the detected acceleration in the accelerometer frame aãidi plus errors due

to bias and noise

ããii = aãidi + bãii + ηãii (5.82)

where ηãii is the accelerometer measurement noise modeled as zero-mean white Gaussian

noise with a strength denoted by Qηi , such that

E[ηãii (t)ηãii
(
t′
)T

] = Qηiδ
(
t− t′

)
(5.83)

This means that if the accelerometer measurement noise resolution is ηãii
(

m
s2
√
Hz

)
, then

the power spectral density of the accelerometer noise can be defined as Qηi
(

m2

s4Hz
or m2

s32πrad

)
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Thus, the measurement covariance R
(

m2

s42πrad

)
is given as

R =
Qηi
δtmeas

(5.84)

where δtmeas is measurement update time in seconds. All vectors with superscript ãi are

coordinatized in the actual ith accelerometer frame. In Eq. 5.82, aãidi denotes the detected

acceleration in the accelerometer frame, defined as

aãidi =
[
I +D

(
f ãii

)]
TaNi →ãi

TB→aNi
TI→B

[
aIdi
]

(5.85)

where D
(
f ãii

)
denotes the matrix with accelerometer measurement scale-factors on the

diagonal. All vectors with superscript aNi are coordinatized in the nominal ith accelerometer

frame. The nominal ith accelerometer frame and the actual ith accelerometer frame are

different because of the inherent misalignments that occur while setting up the accelerometer

in the spacecraft frame. These accelerometer misalignments
(
εãii

)
are accounted for by

defining the following small angle rotation

TaNi →ãi
= I −

[
εãii ×

]
(5.86)

It can be noted that with reasonable assumptions of nearly constant spacecraft angu-

lar velocity and a rigid body spacecraft with accelerometers firmly fixed to the spacecraft

structure, the last three terms in Eq. 5.81 are very small and can be absorbed into the bias

and noise terms in Eq. 5.82.

Further, using vector algebra (refer Figure 5.4), the relationship between accelerometer

position
(
rIai/E

)
with respect to the center of the Earth, expressed in inertial frame, and

accelerometer position
(
rBai/CM

)
with respect to the spacecraft center of mass, expressed in

spacecraft fixed body frame, can be written as

rIai/E = rICM/E + T TI→B

[
rBai/CM

]
(5.87)
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where accelerometer position
(
rBai/CM

)
with respect to the spacecraft center of mass, ex-

pressed in spacecraft fixed body frame, is given as

rBai/CM = rBai/O − rBCM/O (5.88)

Fig. 5.4: Schematic Model (only 2 of the 6 accelerometer are shown)[6].

Now using Eq. 5.86 in Eq. 5.85 , gives

aãidi =
[
I +D

(
f ãii

)](
I −

[
εãii ×

])
TB→aNi

TI→B
[
aIdi
]

(5.89)

where the detected acceleration
(
aIdi
)
, in the inertial frame, can be rewritten using Eqs. 5.87-

5.88 and ignoring the linear acceleration
(

˙̄ω
B
B/I × r̄Bai/CM

)
, Coriolis acceleration

(
2ω̄BB/I

× ˙̄rBai/CM

)
, and acceleration with respect to the spacecraft

(
¨̄rBai/CM

)
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aIdi = gI
(
rICM/E

)
− gI

(
rICM/E + TB→I

[
rBai/O − rBCM/O

])
+ aIaero

(
rICM/E ,v

I
CM/E , β, ρr, hs

)

+aISRP

(
rICM/E ,ρSun

)
+ TB→I

{
ωBB/I ×

(
ωBB/I ×

[
rBai/O − rBCM/O

])}
(5.90)

This provides the necessary relationship between the measurement ãi and the state x.

Measurements from an on-board star camera are used to improve the estimation of the

states and thereby enhance the overall fidelity of the navigation system. The star camera

measurements s̃ are generically defined as

s̃s̃ = l (x) + ηs̃sc (5.91)

where superscript s̃ denotes the vectors coordinatized in the actual star-camera reference

frame (ASRF), x is the true state vector, l (·) is a non-linear function which maps state

vector to the star camera measurements, and ηs̃sc is a vector of zero-mean white Gaussian

noise on the star camera measurements with the covariance of the noise denoted by Qηsc(
rad2

)
, such that

E[ηs̃sc,iη
s̃
sc,j

T ] = Qηscδij (5.92)

where δij is a Kronecker delta function.

The star camera measurements s̃ are modeled as

s̃s̃ = TB→s̃θI→B + ηs̃sc (5.93)

where TB→s̃ is the transformation matrix from spacecraft body-fixed reference frame (SBRF)

to the actual star-camera reference frame (ASRF) and θI→B is the true orientation of the
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spacecraft body-fixed reference frame (SBRF) with respect to the inertial reference frame

(IRF).

For this study, actual star-camera reference frame (ASRF) is aligned with the spacecraft

body-fixed reference frame (SBRF). This means that the misalignments in the setting up

of the star camera on the rigid body of the spacecraft have been ignored. Thus, TB→s̃ is a

3× 3 identity matrix.

5.6 Linear Dynamics Modeling

In this section, the aforementioned non-linear models and equations are linearized about

the reference state vector (x̄) so as to formulate the linear covariance model for the given

system. Note that for formulating an Extended Kalman Filter, linearization needs to be

done about the estimated state vector (x̂). All the nominal values are decorated with an

over-bar.

Also note that the state vector is “modified” to formulate the linear model. [44] The

4-dimensional quaternion state qI→B is replaced by the 3-dimensional rotation vector θI→B

and the quaternion kinematics are replaced by the Bortz equation, given as [45]

θ̇ = ω +
1

2
θ × ω +

1

‖θ‖

[
1− ‖θ‖ sin ‖θ‖

2 (1− cos ‖θ‖)

]
θ × (θ × ω) (5.94)

Linearization of the rotational dynamics is presented in detail in Section 1.5.2, respec-

tively.

5.6.1 Linearized Translational Dynamics

The linearized dynamics of the spacecraft position in inertial frame
(
rICM/E

)
is given

as

δṙICM/E = δvICM/E (5.95)

Discretized form of Eq. 5.95 is given as
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δrICM/E,k+1 = δrICM/E,k + δvICM/E,k∆t (5.96)

where subscript k denote the state at a particular discrete time-step and ∆t is the discretiza-

tion time step.

The linearized dynamics of the spacecraft velocity in inertial frame
(
vICM/E

)
is given

as

δv̇ICM/E =
∂gIE

(
rICM/E

)
∂rICM/E

∣∣∣∣∣∣
x̄

δrICM/E +
∂aI

3rd

∂rICM/E

∣∣∣∣∣
x̄

δrICM/E +
∂aIaero
∂rICM/E

∣∣∣∣∣
x̄

δrICM/E+

∂aISRP
∂rICM/E

∣∣∣∣∣
x̄

δrICM/E +
∂aIaero
∂vICM/E

∣∣∣∣∣
x̄

δvICM/E +
∂aIaero
∂β

∣∣∣∣
x̄

δβ

+
∂aIaero
∂ρr

∣∣∣∣
x̄

δρr +
∂aIaero
∂hs

∣∣∣∣
x̄

δhs + wT + waero (5.97)

where the partial derivatives in Eq. 5.97 are given in Appendix A, respectively.

Similarly, the discretized form of Eq. 5.97 is given as

δvICM/E,k+1 = δvICM/E,k +
∂gIE

(
rICM/E,k

)
∂rICM/E,k

∣∣∣∣∣∣
x̄,k

δrICM/E,k∆t+
∂aI

3rd,k

∂rICM/E,k

∣∣∣∣∣
x̄,k

δrICM/E,k∆t+

∂aIaero,k

∂rICM/E,k

∣∣∣∣∣
x̄,k

δrICM/E,k∆t+
∂aISRP,k

∂rICM/E,k

∣∣∣∣∣
x̄,k

δrICM/E,k∆t+
∂aIaero,k

∂vICM/E,k

∣∣∣∣∣
x̄,k

δvICM/E,k∆t+
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∂aIaero,k
∂βk

∣∣∣∣∣
x̄,k

δβk∆t+
∂aIaero,k
∂ρr,k

∣∣∣∣∣
x̄,k

δρr,k∆t+

∂aIaero,k
∂hs,k

∣∣∣∣∣
x̄,k

δhs,k∆t+ wd,T,k∆t+ wd,aero,k∆t (5.98)

where subscript k denote the state at a particular discrete time-step, wd,T,k and wd,aero,k

are the discretized translational disturbance acceleration and discretized unmodeled aerody-

namic acceleration, such that Qd,T is the variance of the discretized translational disturbance

acceleration and Qd,aero is the variance of the discretized unmodeled aerodynamic accelera-

tion, given as

Qd,T =
QT
∆t

(5.99)

Qd,aero =
Qaero

∆t
(5.100)

Since the dynamics of ballistic coefficient, reference atmospheric density, and scale

height are already linear, refer Eqs. 5.26, 5.30, and 5.34, the discretized form of the corre-

sponding equations is given below.

The discretized dynamics of the small deviation in the ballistic coefficient (δβ), for

exponentially decaying atmospheric drag, is given as

δβk+1 = e−∆t/τβδβk + wd,β (5.101)

where subscript k denote the state at a particular discrete time-step, and wd,β is the dis-

cretized unmodeled noise in the dynamics of the small deviation in the ballistic coefficient
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with variance Qd,β given as

Qd,β = E[wd,β [t1] wd,β [t2]T ] = σ2
β

{
1− exp

(
−2∆t

τβ

)}
(5.102)

where σβ denote the steady state standard deviation of the spacecraft ballistic coefficient,

and ∆t is the discretization time step.

The discretized dynamics of the small deviation in the reference atmospheric density

(δρr), for exponentially decaying atmospheric drag, is given as

δρr,k+1 = e−∆t/τρr δρr,k + wd,ρr (5.103)

where wd,ρr is the discretized unmodeled noise in the dynamics of the small deviation in the

reference atmospheric density with variance Qd,ρr given as

Qd,ρr = E[wd,ρr [t1] wd,ρr [t2]T ] = σ2
ρr

{
1− exp

(
−2∆t

τρr

)}
(5.104)

where σρr denote the steady state standard deviation of the reference atmospheric density.

The discretized dynamics of the small deviation in the scale height (δhs) , for exponen-

tially decaying atmospheric drag, is given as

δhs,k+1 = e−∆t/τhs δhs,k + wd,hs (5.105)

where wd,hs is the discretized unmodeled noise in the dynamics of the small deviation in the

scale height with variance Qd,hs given as

Qd,hs = E[wd,hs [t1] wd,hs [t2]T ] = σ2
hs

{
1− exp

(
−2∆t

τhs

)}
(5.106)

where σhs denote the steady state standard deviation of the scale height.

5.6.2 Linearized Rotational Dynamics

Noting that the time derivative of the nominal quaternion, refer Eq. 5.37, is given as
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˙̄qI→B =
1

2
ω̄BB/I ⊗ q̄I→B (5.107)

Now for a small quaternion δqI→B, quaternion kinematics can be rewritten as

d

dt
[δqI→B ⊗ q̄I→B] =

1

2
ωBB/I ⊗ qI→B (5.108)

δq̇I→B ⊗ q̄I→B + δqI→B ⊗ ˙̄qI→B =
1

2
ωBB/I ⊗ (δqI→B ⊗ q̄I→B) (5.109)

Using Eq. 5.107, gives

δq̇I→B ⊗ q̄I→B + δqI→B ⊗
(

1

2
ω̄BB/I ⊗ q̄I→B

)
=

1

2
ωBB/I ⊗ (δqI→B ⊗ q̄I→B) (5.110)

Since nominal quaternion q̄I→B is a unit quaternion, eliminating q̄I→B from both sides

in Eq. 5.110. Further, noting that a small quaternion and corresponding time derivative is

defined as

δqI→B =

δθ/2
1

 , δq̇I→B =

δθ̇/2
0

 (5.111)

where δθ is an error rotation vector defining the small change in the spacecraft’s attitude.

Now using Eq. 5.111 in Eq. 5.110 and expanding the quaternion cross-product, yields

−1
2

[
δθ̇×

]
1
2δθ̇

−1
2δθ̇

T
0

+
1

2

I3×3 − 1
2 [δθ×] 1

2δθ

−1
2δθ

T 1


−

[
ω̄BB/I×

]
ω̄BB/I

−
(
ω̄BB/I

)T
0

 =

1

2

−
[
ωBB/I×

]
ωBB/I

−
(
ωBB/I

)T
0


I3×3 − 1

2 [δθ×] 1
2δθ

−1
2δθ

T 1

 (5.112)
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Now to get linearized form of the spacecraft’s rotation vector, evaluating the 3×1 upper

right corner of the matrices on both sides in Eq. 5.112, such that

δθ̇ + ω̄BB/I −
1

2
[δθ×] ω̄BB/I = −1

2

[
ωBB/I×

]
δθ + ωBB/I (5.113)

On rearranging Eq. 5.113 resembles closely to Bortz equation Eq. 5.94, and on ignoring

the second-order term this equation reduces to [45]

δθ̇ = δωBB/I − ω̄
B
B/I × δθ (5.114)

Discretized form of Eq. 5.114 is given as

δθk+1 = δθk + δωBB/I,k∆t−
[
ω̄BB/I,k×

]
δθk∆t (5.115)

where subscript k denote the state at a particular discrete time-step and ∆t is the discretiza-

tion time step.

The linearized dynamics of the spacecraft’s angular velocity
(
ωBB/I

)
is given as [31]

δω̇BB/I = J−1

 ∂Mgg

∂rICM/E

∣∣∣∣∣
x̄

δrICM/E +
∂Mgg

∂θ

∣∣∣∣
x̄

δθ −
∂
(
ωBB/I ×

[
JωBB/I

])
∂ωBB/I

∣∣∣∣∣∣
x̄

δωBB/I

+ wR

(5.116)

where

∂
(
ωBB/I ×

(
JωBB/I

))
∂ωBB/I

∣∣∣∣∣∣
x̄

= −
[(
Jω̄BB/I

)
×
]

+
[
ω̄BB/I×

]
J (5.117)

The partial derivatives of the gravity gradient torque with respect to the spacecraft

position vector and the rotation vector, are given in Appendix A, respectively.

Discretized form of Eq. 5.116 is given as
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δωBB/I,k+1 = δωBB/I,k + J−1
k

 ∂Mgg,k

∂rICM/E,k

∣∣∣∣∣
x̄,k

δrICM/E,k∆t+
∂Mgg,k

∂θk

∣∣∣∣
x̄,k

δθk∆t−

∂
(
ωBB/I,k ×

[
Jkω

B
B/I,k

])
∂ωBB/I,k

∣∣∣∣∣∣
x̄k

δωBB/I,k∆t

+ wd,R,k∆t (5.118)

where wd,R,k is the discretized rotational disturbance acceleration, such that Qd,R is the

variance of the discretized rotational disturbance acceleration, given as

Qd,R =
QR
∆t

(5.119)

5.6.3 Linearized Instrument Error Dynamics

Since the dynamics of center of mass position with respect to the spacecraft body-fixed

frame
(
rBCM/O

)
, ith accelerometer position with respect to the spacecraft body-fixed frame(

δrBai/O

)
, accelerometer bias

(
bãii

)
, accelerometer scale factor

(
f ãii

)
, and accelerometer

misalignment
(
εãii

)
are already linear, refer Eqs. 5.43, 5.48, 5.52, 5.56, and 5.60, the

discretized form of the corresponding equations is given below.

The discretized dynamics of the center of mass position with respect to the spacecraft

body-fixed frame
(
rBCM/O

)
is given as

rBCM/O,k+1 = I3×1e
−∆t/τrCM/O rBCM/O,k + wd,rCM/O (5.120)

where subscript k denote the state at a particular discrete time-step, and wd,rCM/O is the

discretized unmodeled noise in the dynamics of the center of mass position with variance

Qd,rCM/O given as
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Qd,rCM/O = E[wd,rCM/O [t1] wd,rCM/O [t2]T ] = σ2
rCM/O

{
1− exp

(
−2∆t

τrCM/O

)}
(5.121)

where σrCM/O denote the steady state standard deviation of center of mass position, and ∆t

is the discretization time step.

The discretized dynamics of the small deviation in the ith accelerometer position with

respect to the spacecraft body-fixed frame
(
δrBai/O

)
is given as

δrBai/O,k+1 = I3×1e
−∆t/τrCM/O δrBai/O,k + wd,rai/O

(5.122)

where wd,rai/O
is the discretized unmodeled noise in the dynamics of the small deviation in

the ith accelerometer position with variance Qd,rai/O given as

Qd,rai/O = E[wd,rai/O
[t1] wd,rai/O

[t2]T ] = σ2
rai/O

{
1− exp

(
−2∆t

τrai/O

)}
(5.123)

where σrai/O
denote the steady state standard deviation of the ith accelerometer position.

The discretized dynamics of the accelerometer bias
(
bãii

)
is given as

bãii,k+1 = I3×1e
−∆t/τbibãii,k + wd,bi (5.124)

where wd,bi is the discretized unmodeled noise in the dynamics of the accelerometer bias

with variance Qd,bi given as

Qd,bi = E[wd,bi [t1] wd,bi [t2]T ] = σ2
bi

{
1− exp

(
−2∆t

τbi

)}
(5.125)

where σbi denote the steady state standard deviation of the accelerometer bias.

The discretized dynamics of the accelerometer scale factor
(
f ãii

)
is given as

f ãii,k+1 = I3×1e
−∆t/τfi f ãii,k + wd,fi (5.126)
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where wd,fi is the discretized unmodeled noise in the dynamics of the accelerometer scale

factor with variance Qd,fi given as

Qd,fi = E[wd,fi [t1] wd,fi [t2]T ] = σ2
fi

{
1− exp

(
−2∆t

τfi

)}
(5.127)

where σfi denote the steady state standard deviation of the accelerometer scale factor.

The discretized dynamics of the accelerometer misalignment
(
εãii

)
is given as

εãii,k+1 = I3×1e
−∆t/τεiεãii,k + wd,εi (5.128)

where wd,εi is the discretized unmodeled noise in the dynamics of the accelerometer mis-

alignment with variance Qd,εi given as

Qd,εi = E[wd,εi [t1] wd,εi [t2]T ] = σ2
εi

{
1− exp

(
−2∆t

τεi

)}
(5.129)

where σεi denote the steady state standard deviation of the accelerometer misalignment.

5.7 Linearized Measurement Equation

Now, Eq. 5.64 is linearized as

δããii = Hxδx + ηãii (5.130)

where Hx is the measurement partial due to the accelerometer measurements, defined as

Hx =
∂h

∂x

∣∣∣∣
x̄

(5.131)

Hx =

[
∂h3n

∂rI
CM/E

∣∣∣∣
x̄

∂h3n

∂vI
CM/E

∣∣∣∣
x̄

∂h3n
∂θI→B

∣∣∣
x̄

∂h3n

∂ωB
B/I

∣∣∣∣
x̄

∂h3n

∂rB
CM/O

∣∣∣∣
x̄

∂h3n
∂β

∣∣∣
x̄

∂h3n
∂ρr

∣∣∣
x̄

∂h3n
∂hs

∣∣∣
x̄

∂h3n

∂rB
ai/O

∣∣∣∣
x̄

∂h3n

∂b
ãi
i

∣∣∣∣
x̄

∂h3n

∂f
ãi
i

∣∣∣∣
x̄

∂h3n

∂ε
ãi
i

∣∣∣∣
x̄

]
3n×(18+12n)

(5.132)
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Noting that the total number of states is 18 + 12n (where n is the number of ac-

celerometers), the measurement partial Hx is a matrix of dimension size 3n × (18 + 12n).

Measurement partials with respect to each state are given below.

Measurement partials with respect to the spacecraft position in inertial frame
(
rICM/E

)
are given as

∂h

∂rICM/E

∣∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
∂aIdi

∂rICM/E

∣∣∣∣∣
x̄

(5.133)

where

∂aIdi
∂rICM/E

∣∣∣∣∣
x̄

=
∂gI

(
rICM/E

)
∂rICM/E

∣∣∣∣∣∣
x̄

−
∂gI

(
rICM/E + TB→I

[
rBai/O − rBCM/O

])
∂rICM/E

∣∣∣∣∣∣
x̄

+
∂aIaero
∂rICM/E

∣∣∣∣∣
x̄

+
∂aISRP
∂rICM/E

∣∣∣∣∣
x̄

+
∂TB→I

{
ωBB/I ×

(
ωBB/I ×

[
rBai/O − rBCM/O

])}
∂rICM/E

∣∣∣∣∣∣
x̄

(5.134)

where g (r) denote the total gravitational acceleration (i.e. gravitational acceleration due to

Earth plus three body perturbations) at position r

∂aIdi
∂rICM/E

∣∣∣∣∣
x̄

= ∇ḡI
(
r̄ICM/E

)
−∇ḡI

(
r̄Iai/E

)
+

1

2
ρ̄re

−
(∥∥∥∥r̄ICM/E

∥∥∥∥−href)
h̄s β̄

∥∥∥v̄ICM/E

∥∥∥ v̄ICM/E

îT
r̄I
CM/E

h̄s

+
Fe
c

[
3

rscρsc

] [
1

4
+

1

9
cd

]
I3×3 − îI(

r̄I
CM/E

−ρ̄Sun
)
(

îI(
r̄I
CM/E

−ρ̄Sun
)
)T

∥∥∥r̄ICM/E − ρ̄Sun
∥∥∥ (5.135)
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Detailed derivation of partial derivatives used in Eq. 5.135 are given in Appendix A.

Measurement partials with respect to the spacecraft velocity in inertial frame
(
vICM/E

)
are given as

∂h

∂vICM/E

∣∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
∂aIdi

∂vICM/E

∣∣∣∣∣
x̄

(5.136)

where

∂aIdi
∂vICM/E

∣∣∣∣∣
x̄

=
∂aIaero
∂vICM/E

∣∣∣∣∣
x̄

= −1

2
ρ̄re

−
(∥∥∥∥r̄ICM/E

∥∥∥∥−href)
h̄s β̄

(
v̄ICM/E îT

v̄I
CM/E

+
∥∥∥v̄ICM/E

∥∥∥ I3×3

)
(5.137)

Measurement partials with respect to the spacecraft’s rotation vector (θI→B) are given

as

∂h

∂θI→B

∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

∂aBdi
∂θI→B

∣∣∣∣∣
x̄

(5.138)

where

∂aBdi
∂θI→B

∣∣∣∣∣
x̄

=
[{
TI→B̄

(
θ̄
)
āIdi
(
θ̄
)}
×
]

+ TI→B̄
(
θ̄
)
∇ḡI

(
r̄Iai/E

)
T TI→B̄

(
θ̄
) [

r̄Bai/CM×
]

(5.139)

Detailed derivation of partial derivatives used in Eq. 5.139 are given in Appendix A.

Thus, measurement partial with respect to the spacecraft’s rotation vector (θI→B) is given

as

∂h

∂θI→B

∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

([{
TI→B̄

(
θ̄
)
āIdi
(
θ̄
)}
×
]
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+TI→B̄
(
θ̄
)
∇ḡI

(
r̄Iai/E

)
T TI→B̄

(
θ̄
) [

r̄Bai/CM×
])

(5.140)

where āIdi is given by Eq. 5.90

Measurement partials with respect to the spacecraft’s angular velocity
(
ωBB/I

)
are given

as

∂h

∂ωBB/I

∣∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
(
θ̄I→B

) ∂aIdi
∂ωBB/I

∣∣∣∣∣
x̄

(5.141)

where

∂aIdi
∂ωBB/I

∣∣∣∣∣
x̄

= −TB→I
{[(

ω̄BB/I ×
[
r̄Bai/O − r̄BCM/O

])
×
]

+
[
ω̄BB/I×

] [(
r̄Bai/O − r̄BCM/O

)
×
]}

(5.142)

Detailed derivation of partial derivatives used in Eq. A.49 are given in Appendix A.

Measurement partials with respect to the center of mass position, in spacecraft body-

fixed frame and with respect to the origin of the spacecraft body-fixed frame
(
rBCM/O

)
, are

given as

∂h

∂rBCM/O

∣∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
(
θ̄I→B

) ∂aIdi
∂rBCM/O

∣∣∣∣∣
x̄

(5.143)

where

∂aIdi
∂rBCM/O

∣∣∣∣∣
x̄

= ∇ḡI
(
r̄Iai/E

)
TB→I − TB→I

([
ω̄BB/I×

] [
ω̄BB/I×

])
(5.144)

Detailed derivation of partial derivatives used in Eq. A.52 are given in Appendix A.
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Measurement partials with respect to the ballistic coefficient (β), for exponentially

decaying atmospheric drag, are given as

∂h

∂β

∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
(
θ̄I→B

) ∂aIdi
∂β

∣∣∣∣∣
x̄

(5.145)

where

∂aIdi
∂β

∣∣∣∣∣
x̄

=
∂aIaero
∂β

∣∣∣∣
x̄

= −1

2
ρ̄re

−
(∥∥∥∥r̄ICM/E

∥∥∥∥−href)
h̄s

∥∥∥v̄ICM/E

∥∥∥ v̄ICM/E (5.146)

Measurement partials with respect to the reference atmospheric density (ρr), for expo-

nentially decaying atmospheric drag, are given as

∂h

∂ρr

∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
(
θ̄I→B

) ∂aIdi
∂ρr

∣∣∣∣∣
x̄

(5.147)

where

∂aIdi
∂ρr

∣∣∣∣∣
x̄

=
∂aIaero
∂ρr

∣∣∣∣
x̄

= −1

2
e

−
(∥∥∥∥r̄ICM/E

∥∥∥∥−href)
h̄s β̄

∥∥∥v̄ICM/E

∥∥∥ v̄ICM/E (5.148)

Measurement partials with respect to the scale height (hs) , for exponentially decaying

atmospheric drag, are given as

∂h

∂hs

∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
(
θ̄I→B

) ∂aIdi
∂hs

∣∣∣∣∣
x̄

(5.149)

where

∂aIdi
∂hs

∣∣∣∣∣
x̄

=
∂aIaero
∂hs

∣∣∣∣
x̄

= −

(∥∥∥r̄ICM/E

∥∥∥− href)
2h̄2

s

ρ̄re

−
(∥∥∥∥r̄ICM/E

∥∥∥∥−href)
h̄s β̄

∥∥∥v̄ICM/E

∥∥∥ v̄ICM/E (5.150)
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Measurement partials with respect to the ith accelerometer position, in spacecraft body-

fixed frame and with respect to the origin of the spacecraft body-fixed frame
(
rBai/O

)
, are

given as

∂h

∂rBai/O

∣∣∣∣∣
x̄

=
[
I +D

(
f̄ ãii

)](
I −

[
ε̄ãii ×

])
TB→aNi

TI→B
(
θ̄I→B

) ∂aIdi
∂rBai/O

∣∣∣∣∣
x̄

(5.151)

where

∂aIdi
∂rBai/O

∣∣∣∣∣
x̄

= −∇ḡI
(
r̄Iai/E

)
TB→I + TB→I

([
ω̄BB/I×

] [
ω̄BB/I×

])
(5.152)

Detailed derivation of partial derivatives used in Eq. A.55 are given in Appendix A.

Measurement partials with respect to the accelerometer bias
(
bãii

)
are given as

∂h

∂bãii

∣∣∣∣∣
x̄

= I3×3 (5.153)

Measurement partials with respect to the accelerometer scale factor
(
f ãii

)
are given as

∂h

∂f ãii

∣∣∣∣∣
x̄

= D
(
āãidi

)
(5.154)

where āãidi is given by Eq. 5.89

Measurement partials with respect to the accelerometer misalignment
(
εãii

)
is given as

∂h

∂εãii

∣∣∣∣∣
x̄

=
(
I +D

(
f̄ ãii

)){[(
TB→aNi

TI→B
(
θ̄I→B

)
āIdi

)
×
]}

(5.155)

where āIdi is given by Eq. 5.90

Now star camera measurement model, as given in Eq. 5.93, is linearized as

δs̃s̃ = Lxδx + ηs̃sc (5.156)

where Lx is the measurement partial due to star camera measurements, defined as
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Lx =
∂l

∂x

∣∣∣∣
x̄

(5.157)

Noting that, for this study only one star camera has been included and because the total

number of states is 18 + 12n (where n is the number of accelerometers), the measurement

partial Lx is a matrix of dimension size 3 × (18 + 12n). Since, using Eq. 5.93 it is easy to

note that the star camera measurement is only the function of spacecraft rotation vector,

this implies

∂l

∂θI→B

∣∣∣∣
x̄

= TB→s̃ = I3×3 (5.158)

As stated earlier, for this study, the misalignments in the setting up of the star camera

on the rigid body of the spacecraft have been ignored. Thus, TB→s̃ is a 3×3 identity matrix.

5.8 Summary of Linearized Dynamics & Measurement Model

The linearized dynamics in Eq. 5.18 can be summarized as follow

δẋ = Fxδx +Gw (5.159)

where uppercase characters denote partial derivatives taken with respect to the variable

indicated by subscript and evaluated along the reference state vector (e.g. Fx = ∂f/∂x|x̄),

and G is a matrix to map the noise vector to the state dynamics.

Now let the state vector be segmented in two parts such that

x =

x1

x2

 (5.160)

ẋ =

ẋ1

ẋ2

 =

f1 (x1, t)

f2 (x2, t)

 (5.161)

where x is the true state vector, and x1 and x2 are defined as
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x1 =
(
rICM/E ,v

I
CM/E ,θI→B,ω

B
B/I

)T
(5.162)

x2 =
(
rBCM/O, β, ρr, hs, r

B
ai/O

,bãii , f
ãi
i , ε

ãi
i

)T
(5.163)

where x2 denotes all the ECRV.

Thus, based on Eqs. 5.159-5.163, Fx can be defined as

Fx =
∂f

∂x

∣∣∣∣
x̄

=

Fx1x1 Fx1x2

Fx2x1 Fx2x2

 (5.164)

where Fx is a (18 + 12n) × (18 + 12n) Jacobian matrix, while Fx1x1 is 12 × 12, Fx1x2 and

Fx2x1 are 12 × (6 + 12n) and (6 + 12n) × 12, and lastly, Fx2x2 is (6 + 12n) × (6 + 12n),

respectively. Number of accelerometers is denoted by n.

Fx1x1 =
∂f1

∂x1

∣∣∣∣
x̄

=



03×3 I3×3 03×3 03×3

FV R FV V 03×3 03×3

03×3 03×3 −Ω⊗ I3×3

FWR 03×3 FWθ FWW


12×12

(5.165)

where

FV R =
∂gIE

(
rICM/E

)
∂rICM/E

∣∣∣∣∣∣
x̄

+
∂aIThird−body

∂rICM/E

∣∣∣∣∣
x̄

+
∂aIaero
∂rICM/E

∣∣∣∣∣
x̄

+
∂aISRP
∂rICM/E

∣∣∣∣∣
x̄

(5.166)

FV V =
∂aIaero
∂vICM/E

∣∣∣∣∣
x̄

(5.167)

FWR = J−1 ∂Mgg

∂rICM/E

∣∣∣∣∣
x̄

(5.168)
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FWθ = J−1 ∂Mgg

∂θ

∣∣∣∣
x̄

(5.169)

FWW = −J−1
∂
(
ωBB/I ×

[
JωBB/I

])
∂ωBB/I

∣∣∣∣∣∣
x̄

= −J−1
(
−
[(
Jω̄BB/I

)
×
]

+
[
ω̄BB/I×

]
J
)

(5.170)

Detailed derivation of partial derivatives used in Eqs. 5.166 - 5.169 are given in Ap-

pendix A.

Fx1x2 =
∂f1

∂x2

∣∣∣∣
x̄

=



03×3 03×1 03×1 03×1 03×3n 03×3n 03×3n 03×3n

03×3 FV β FV ρr FV hs 03×3n 03×3n 03×3n 03×3n

03×3 03×1 03×1 03×1 03×3n 03×3n 03×3n 03×3n

03×3 03×1 03×1 03×1 03×3n 03×3n 03×3n 03×3n


12×(6+12n)

(5.171)

where

FV β =
∂aIaero
∂β

∣∣∣∣
x̄

(5.172)

FV ρr =
∂aIaero
∂ρr

∣∣∣∣
x̄

(5.173)

FV hs =
∂aIaero
∂hs

∣∣∣∣
x̄

(5.174)

Detailed derivation of partial derivatives used in Eqs. 5.172 - 5.174 are given in Ap-

pendix A.

Fx2x1 =
∂f2

∂x1

∣∣∣∣
x̄

= 0(6+12n)×12 (5.175)
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Fx2x2 =
∂f2

∂x2

∣∣∣∣
x̄

(5.176)

That is,

Fx2x2 =



− I3×3

τrCM/O
03×1 03×1 03×1 03×3n 03×3n 03×3n 03×3n

01×3 − 1
τβ

0 0 01×3n 01×3n 01×3n 01×3n

01×3 0 − 1
τρr

0 01×3n 01×3n 01×3n 01×3n

01×3 0 0 − 1
τhs

01×3n 01×3n 01×3n 01×3n

03n×3 03n×1 03n×1 03n×1 Frai/O
03n×3n 03n×3n 03n×3n

03n×3 03n×1 03n×1 03n×1 03n×3n Fbi 03n×3n 03n×3n

03n×3 03n×1 03n×1 03n×1 03n×3n 03n×3n Ffi 03n×3n

03n×3 03n×1 03n×1 03n×1 03n×3n 03n×3n 03n×3n Fεi


(6+12n)×(6+12n)

(5.177)

where

Frai/O
=
∂ṙai/O

∂rai/O

∣∣∣∣
x̄

= −I3n×3n

τrai/O
(5.178)

Fbi =
∂ḃi
∂bi

∣∣∣∣∣
x̄

= −I3n×3n

τbi
(5.179)

Ffi =
∂ ḟi
∂fi

∣∣∣∣∣
x̄

= −I3n×3n

τfi
(5.180)

Fεi =
∂ε̇i
∂εi

∣∣∣∣
x̄

= −I3n×3n

τεi
(5.181)

The linearized accelerometer measurements can be summarized as follow

δããii =

[
∂h3n

∂rI
CM/E

∣∣∣∣
x̄

∂h3n

∂vI
CM/E

∣∣∣∣
x̄

∂h3n
∂θI→B

∣∣∣
x̄

∂h3n

∂ωB
B/I

∣∣∣∣
x̄

∂h3n

∂rB
CM/O

∣∣∣∣
x̄

∂h3n
∂β

∣∣∣
x̄
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∂h3n
∂ρr

∣∣∣
x̄

∂h3n
∂hs

∣∣∣
x̄

∂h3n

∂rB
ai/O

∣∣∣∣
x̄

∂h3n

∂b
ãi
i

∣∣∣∣
x̄

∂h3n

∂f
ãi
i

∣∣∣∣
x̄

∂h3n

∂ε
ãi
i

∣∣∣∣
x̄

]
3n×(18+12n)

δx + ηãii (5.182)

where partials in Eq. 5.182 are given in Section 5.7.

Similarly, the linearized star camera measurements can be summarized as follow

δs̃s̃ =

[
03×3 03×3 I3×3 03×3 03×3 03×1

03×1 03×1 03×3n 03×3n 03×3n 03×3n

]
3×(18+12n)

δx + ηs̃sc (5.183)

where partials in Eq. 5.183 are given in Section 5.7.

5.9 Summary

In this chapter, the non-linear dynamics and measurement equations for onboard au-

tonomous orbital navigation based on accelerometer measurements were presented. Detailed

linearized dynamical and measurement models were provided, along with important equa-

tions required to conduct Linear Covariance (LinCov) analysis.
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CHAPTER 6

Observability Analysis

6.1 Chapter Overview

This chapter provides a simple, heuristic and intuitive argument for orbit observabil-

ity based on gravity-gradient measurements. More specifically, a pictorial representation of

gravity gradients in a point-mass gravity field is used to show that an onboard measurement

of the local gravity gradient can be associated with a specific on-orbit position (with one am-

biguity). It is then postulated that position and velocity will be observable if measurements

of the local gravity gradient are taken over a period of time.

Results are presented to show that orbital position, velocity, and attitude are all ob-

servable using a configuration of six 3-axis accelerometers (i.e., a gradiometer). It is then

shown that measurements from just one 3-axis accelerometer can provide orbital and atti-

tude observability.

This chapter is based on the paper presented by Geller and Bhatia at AAS/AIAA

Astrodynamics Conference 2018 [46].

6.2 Theoretical Setup

A number of studies have made thorough efforts to analytically and mathematically

decode the geophysical, gravitational and spatial information ciphered in the gravity gradi-

ent measurements. However, while a gravitational acceleration vector is relatively easy to

visualize as an “arrow” with a direction and magnitude, the gravity-gradient tensor is not as

easy to visualize. Figure 6.1 (left) shows the gravity field near a point located at a position

rcm from the center of the Earth. An axis of symmetry exists about the radial direction

for a point mass gravity field. The difference between the gravity vector at position r and

the gravity vector at a point near r is shown in Figure 6.1 (right). This picture is a fairly
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accurate representation of the gravity gradient tensor for a point mass gravity field: the

eigenvectors of the tensor are aligned with the vectors in the figure, the eigenvalues are both

positive (tension) and negative (compression), and the sum of the eigenvalues equals zero

(note that the third axis, not shown in Figure 6.1, is an axis of compression) [47].

λ1 = 2µ/ ‖r‖3 , λ2 = λ3 = −µ/ ‖r‖3

Thus, the 5 independent parameters of the gravity-gradient matrix can then be inter-

preted as follows: λ1, λ2, two angles defining the direction of the first eigenvector e1, and a

third angle defining the direction of the second eigenvector e2 (since e2 is by definition or-

thogonal to e1 ). The third eigenvalue is given by λ3 = −λ1−λ2 , and the third eigenvector

is defined by e3 = e1 × e2 [3].

Fig. 6.1: Gravity field near a position r (left); gravity-gradient tensor at a position r (right)

.

Consider a spacecraft with center-of-mass located at a position rcm in the gravity field

as shown in Figure 6.2. If the spacecraft has a single perfect accelerometer located near

its center-of-mass, and if the spacecraft is non-rotating and subject only to gravitational

acceleration, g, the measurement obtained from the perfect accelerometer is given by
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ãbi = T bI (θbI)
[
gI(rIcm/o)− g

I(rIcm/o + rIai/cm)
]

(6.1)

This measurement looks similar to a gravity gradient measurement, but the measure-

ment is a vector while the gravity gradient is a tensor. The accelerometer measurement is

actually an approximation of the projection of the gravity gradient tensor onto the direction

of rIai/cm

ãi ≈
∂g

∂rIcm/o
rai/cm (6.2)

Thus, more than one accelerometer measurement is needed to obtain the local gravity-

gradient tensor and its 5 parameters.

Fig. 6.2: Position of the center-of-mass of a spacecraft with respect to an inertial frame, and

position of the ithe accelerometer with respect to the center-of-mass .

Figure 6.3 shows a “field” of gravity-gradient tensors for a point-mass gravity model.

The field of tensors is symmetric about any plane containing the origin and decreases in

magnitude as a function of altitude. Figure 6.3 also shows a non-rotating spacecraft with a

known orientation (for example using a star camera) subject only to gravitational forces .
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Without loss of generality, it is assumed the vehicle body axes are aligned with the Earth-

centered inertial frame.

Fig. 6.3: Field of gravity-gradient tensors, and satellite measurement of the gravity gradient

tensor in the body frame .

If the spacecraft has a set of perfect accelerometers, a perfect measurement of the

gravity-gradient in the body frame can be obtained. Since the orientation of the spacecraft

is known, there are only two possible inertial positions in which this gravity gradient tensor

measurements could have been obtained, position rsat, and position−rsat. Hence, position is

observable (with one ambiguity) based on one measurement of the gravity-gradient tensor.

If two or more measurements of the gravity-gradient tensor separated by ∆t seconds are

obtained, velocity can be inferred, and complete orbit observability, i.e., position and velocity

observability, is achieved.

Regarding the ambiguity in the observed position vector, it is postulated that a unique

position, velocity, and therefore orbit, can be determined when a more complex, non-

symmetric gravity field is employed.

If these heuristic arguments are applied to the case where both the attitude and orbit

are unknown, one can see that full attitude and orbit observability are not possible for a
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point-mass gravity field. For example, if the attitude of the spacecraft is unknown, the

possible locations where the measured gravity-gradient equals the actual gravity gradient

can be anywhere on a sphere of radius ‖rsat‖. This is illustrated in Figure 6.4. Thus, the

orbit and attitude are probably not observable for a point-mass gravity field.

Fig. 6.4: Different satellite orientations with the same measurement of the gravity-gradient

tensor in the body frame .

The above arguments however are only heuristic. A more quantitative and definitive

approach is taken in the next two sections. In fact, it will be shown that both the attitude

and orbit are observable in a a more complex, “lumpy” gravity field.

6.3 Mathematical Setup

In this section, a quantitative standard observability analysis is conducted to demon-

strate that three 3-axis onboard accelerometer measurements can provide both orbit and

attitude observability, i.e., orbital position, velocity, and attitude observability. It is as-

sumed that the only forces acting on the spacecraft are due to either a simple point-mass

gravity model or and n × n spherical harmonic gravity model. It is also assumed that the

angular velocity and angular acceleration of the spacecraft is known and equal to zero.
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The analysis is then extended to show that only two, and then only one 3-axis ac-

celerometer is required to obtain full-state, position, velocity, and attitude observability

under the given assumptions.

The observability metrics used in this analysis are the rank and condition number of the

classical observability Gramian. Special care is taken to ensure the observability Gramian

is a well-conditioned matrix.

The simplified dynamics model is defined by the state vector

x =


rIcm/o

vIcm/o

θbI

 (6.3)

where rIcm/o , vIcm/o, and θ
b
I denote the inertial position, velocity, and attitude of the space-

craft, respectively. Since the spacecraft is assumed to be non-rotating, the dynamics model

is given by

ẋ = f(x, t) =


vIcm/o

gI(rIcm/o)

0

 (6.4)

where gI(rIcm/o) is the acceleration due to gravity. The 9 × 9 Jacobian, F , for this system

is given by

F (t) =
∂f

∂x

∣∣∣∣
xn(t)

=


03×3 I3×3 03×3

∇g 03×3 03×3

03×3 03×3 03×3


∣∣∣∣∣∣∣∣∣∣
xn(t)

(6.5)

where ∇g = ∂g/∂rIcm/o , and the indicated partial derivative is evaluated along a nominal

trajectory xn(t).

The simplified measurement model for the ith accelerometer is given by

ãbi = T bI (θbI)
[
gI
(
rIcm/o

)
− gI

(
rIcm/o + T Ib (−θbI)rbai/cm

)]
+ ηbi (6.6)
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where ãbi is the accelerometer measurement in body-fixed frame, rbai/cm is the position of

the accelerometer with respect to the center-of-mass in the body-fixed frame, T bI
(
θbI
)
is

the inertial to body transformation, gI
(
rIcm/o

)
is the gravitational acceleration at position

rIcm/o, and η
b
i is zero mean measurement noise.

The measurement geometry vector is given by

hi(tj) =
∂abi
∂x

∣∣∣∣
xn

=

[
∂ãbi
∂rIcm/o

, 03×3,
∂ãbi
∂θbI

]
xn(t)

(6.7)

where
∂ãbi
∂rIcm/o

= T bI (θbI)
[
∇gI

(
rIcm/o

)
−∇gI

(
rIcm/o + T Ib (−θbI)rbai/cm

)]
(6.8)

∂ãbi
∂θbI

= [M×] + T bI (θbI)∇gI
(
rIcm/o + T Ib (−θbI)rbai/cm

)
T Ib (−θbI)[rbai/cm×] (6.9)

M = T bI (θbI)
[
∇gI

(
rIcm/o

)
−∇gI

(
rIcm/o + T Ib (−θbI)rbai/cm

)]
and where the expression [Z×] represents a skew-symmetric matrix associated with the

vector Z, i.e., [Z×]a = Z× a.

For N accelerometers, the measurement partial is 3N × 9 and given by

H(tj) =


h1(tj)

...

hN (tj)

 (6.10)

Finally, the observability Gramian after m measurements is given by [9]

O(tm) ,
m∑
j=1

φT (tj,t0)HT (tj)H(tj)φ(tj,t0) (6.11)

where the state transition matrix φ(tj,t0) is computed recursively as

φ(tj,t0) = φ(tj,tj−1)φ(tj−1,t0), φ(t0,t0) = I9×9 (6.12)
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and where

φ(tj,tj−1) ≈ I9×9 + F (tj−1)∆t+ F 2(tj−1)∆t2/2 + . . . (6.13)

Based on this approach, the condition number of the observability Gramian was found

to be very large, and it was suspected that the problem was due to the scaling of the

problem rather the matrix actually being near singular (the columns of hi(tj) associated

with ∂ãbi/∂rIcm/o are many orders of magnitude smaller than the columns associated with

∂ãbi/∂θ
b
I . To solve this, the problem was scaled as follows

x̄ =


rIcm/o/Rc

vIcm/o/Vc

θbI

 (6.14)

where Rc and Vc are the mean orbital radius and velocity of the nominal trajectory. Using

the scaled state vector x̄ the Jacobian becomes

F̄ =


03×3

Vc
Rc
I3×3 03×3

Rc
Vc
∇g 03×3 03×3

03×3 03×3 03×3


∣∣∣∣∣∣∣∣∣∣
x̄n(t)

(6.15)

and the measurement partial for N accelerometers is given by

H̄(tj) =


h̄1(tj
...

h̄N (tj

 (6.16)

where

h̄i(tj) =
∂abi
∂x̄

∣∣∣∣
x̄n(t)

=

[
Rc

∂ãbi
∂rIcm/o

, 03×3,
∂ãbi
∂θbI

]
xn(t)

(6.17)

So, in terms of the scaled state vector x̄, the observability Gramian is given by
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Ō(tm) ,
m∑
j=1

φ̄T (tj,t0)H̄T (tj)H̄(tj)φ̄(tj,t0) (6.18)

where again the state transition matrix φ̄(tj,t0) is computed recursively as

φ̄(tj,t0) = φ̄(tj,tj−1)φ̄(tj−1,t0), φ̄(t0,t0) = I9×9 (6.19)

and where

φ̄(tj,tj−1) ≈ I9×9 + F̄ (tj−1)∆t+ F̄ 2(tj−1)∆t2/2 + . . . (6.20)

6.4 Results

In this section, the rank and condition number of the observability Gramian in Eq.

6.18 are used as a metric to determine orbit and attitude observability. The analysis looks

at two different nominal LEO spacecraft orbits, 2 different gravity models, and 3 different

accelerometer configurations. In all cases, measurements are taken for 1500 seconds with

a sample rate of 30 sec. The nominal vehicle orientation is constant and aligned with the

inertial frame. The gravity models are either a point mass gravity model or a 4×4 spherical

harmonics model. The LEO orbits have a semi-major axis equal to 7000 km and and an

inclination of 56 degrees. The first orbit is circular and the second orbit has an eccentricity

e=0.01.

Three 3-Axis Accelerometers

In this case three 3-axis accelerometers are mounted 0.5 m from the spacecraft center-

of-mass along 3 perpendicular axes. The results of the observability analysis are shown

below in Table 6.1.

Table 6.1 shows that with three 3-axis accelerometers the orbit and attitude are un-

observable for only the circular orbit, point mass gravity model case. This confirms the

conclusion drawn at the end Section 6.2. All other cases with three 3-axis accelerometers,

including the point mass elliptical orbit case are observable.
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Three 3-Axis Accelerometers
Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O
Circular 8 2.5×1016 U 9 3.9×108 O 9 3.6×108 O
Elliptical 9 1.0×1012 O 9 3.6×108 O 9 3.6×108 O

Table 6.1: Orbit and Attitude Observability (O)/Unobservablility (U) using three 3-axis
accelerometers .

One 3-Axis Accelerometer

In this case one 3-axis accelerometer is mounted 0.5 m from the spacecraft center-of-

mass. The results of the observability analysis are shown below in Table 6.2.

One 3-Axis Accelerometer
Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O
Circular 7 1.6×1018 U 9 1.5×109 O 9 1.3×109 O
Elliptical 9 5.7×1012 O 9 1.2×109 O 9 1.1×109 O

Table 6.2: Orbit and Attitude Observability (O)/Unobservability (U) using one 3-axis ac-
celerometer .

The observability results for the one 3-axis accelerometer cases shown in Table 6.2 are

the same as the for the three 3-axis accelerometer cases in Table 6.1. However, the condition

numbers are all higher indicating weaker observability.

One 2-Axis Accelerometer

In this case one 2-axis accelerometers is mounted 0.5 m from the spacecraft center-of-

mass. The results of the observability analysis are shown below in Table 6.3.

One 2-Axis Accelerometer
Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O
Circular 7 9.6×1016 U 9 1.5×1010 O 9 7.5×109 O
Elliptical 9 8.6×1012 O 9 1.1×1010 O 9 6.2×109 O

Table 6.3: Orbit and Attitude Observability (O)/Unobservability (U) using one 2-axis ac-
celerometer .
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The trend continues for one 2-axis accelerometer, i.e., the observability results are the

same, but the conditions numbers are higher indicating still weaker observability.

One Single-Axis Accelerometer

In this case one single-axis accelerometer is mounted 0.5 m from the spacecraft center-

of-mass. The results of the observability analysis are shown below in Table 6.4. All cases

indicate a lack of observability.

One Single-Axis Accelerometer

Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O

Circular 6 1.6×1034 U 8 2.4×1027 U 8 2.1×1027 U

Elliptical 6 8.2×1033 U 8 2.4×1027 U 8 4.2×1028 U

Table 6.4: Orbit and Attitude Observability (O)/Unobservability (U) using one single-axis

accelerometer .

The above results show that even in the best case, the conditions number are on the

order of 108. This relatively high value leads to the suspicion that the inertial attitude is

relatively weakly observable. To confirm this, the above observability analysis was repeated

with a state vector consisting of only position and velocity. The attitude was assumed to be

known. The results of this observability analysis are shown in Table 6.5-6.8 below.
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Three 3-Axis Accelerometers

Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O

Circular 6 110 O 6 110 O 6 110 O

Elliptical 6 106 O 6 106 O 6 106 O

Table 6.5: Orbit-Only Observability (O)/Unobservability (U) using three 3-axis accelerom-

eters .

One 3-Axis Accelerometer

Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O

Circular 6 357 O 6 359 O 6 359 O

Elliptical 6 345 O 6 347 O 6 347 O

Table 6.6: Orbit-Only Observability (O)/Unobservability (U) using one 3-axis accelerometer

.

.

One 2-Axis Accelerometer

Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O

Circular 6 474 O 6 476 O 6 476 O

Elliptical 6 457 O 6 459 O 6 459 O

Table 6.7: Orbit-Only Observability (O)/Unobservability (U) using one 2-axis accelerometer

.
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One Single-Axis Accelerometer

Point Mass 4× 4 Spherical 8× 8 Spherical

Rank Cond # U/O Rank Cond # U/O Rank Cond # U/O

Circular 6 2.1×1010 O 6 2.1×1010 O 6 1.1×1010 O

Elliptical 6 2.0×1010 O 6 2.3×1010 O 6 1.1×1010 O

Table 6.8: Orbit Observability (O)/Unobservability (U) using one single-axis accelerometer

.

These results show that position and velocity are strongly observable and confirm the

suspicion that attitude is relatively weakly observable.Thus, it can be concluded that al-

though it may be theoretically possible to estimate the orbital position, velocity, and at-

titude using a set of accelerometers, an accurate estimate of attitude may be difficult and

require an additional sensor such as a star camera.

6.5 Summary

A preliminary observability analysis shows that in the presence of only gravitational

accelerations orbital position, velocity, and attitude are all observable using a configuration

of three 3-axis accelerometers. The measurements from just one 3-axis accelerometer, or

even one 2-axis accelerometer can provide orbital and attitude observability. The evidence

presented in this chapter suggests that the attitude is weakly observable, while the position

and velocity are strongly observable.
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CHAPTER 7

Linear Covariance (LinCov) Analysis Tool Development

7.1 Chapter Overview

This chapter provides the necessary theoretical background and mathematical equations

to develop a Linear Covariance (LinCov) analysis tool. The aim is to introduce the reader

to the mathematical process to setup the LinCov analysis tool and conduct a sensitivity

analysis. This chapter highlights different error groups, used to interpret the error budget

results in Chapter 9.

7.2 LinCov Models - Theory & Setup

Techniques like Monte Carlo analysis and Linear Covariance analysis are extensively

used for modeling and simulating a range of possible operational scenarios and thereby en-

able the study of the effects of significant parameters on the overall mission performance.

These techniques are particularly useful for guidance, navigation, and control (GN&C) anal-

ysis, and generally include the effects of environment, actuator, and sensor uncertainties,

estimation errors, and most importantly, the effect of uncertainties and estimation errors on

trajectory and attitude control errors [48].

Despite the initial overhead associated with the development of linear models, LinCov

techniques have cost benefits when compared to Monte Carlo analysis [48]. This is because

LinCov techniques produce the same statistical results with a single simulation run, thus

saving tremendous amount of computational power and time [48]. Since the expected en-

velope of trajectories about the nominal is often very small for a general orbital dynamics

problem, the conditions under which LinCov is valid (e.g. good linear models) are easily

satisfied [48].

In a Linear Covariance approach, the system states are segmented into two parts, viz.
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filter states and truth states. Further, the covariance of the filter states and the augmented

states (truth and filter) are propagated and updated, so as to generate the covariance of the

dispersions and navigation errors in a single simulation run.

7.2.1 Propagation

The filter state covariance P̂ and the augmented state covariance PA are propagated as

follow [5]

P̂ (tk+1) = φ̂P̂ (tk) φ̂
T + Q̂d (7.1)

PA (tk+1) = φPA (tk)φ
T +Qd (7.2)

where φ̂ and φ are the filter and augmented state transition matrices, defined as

φ̂ = eF̂xdt (7.3)

φ = e


 Fx 0z×ẑ

0ẑ×z F̂x

dt


(7.4)

F̂x =
∂f

∂x̂

∣∣∣∣
x̄

(7.5)

where Fx and F̂x are the true and filter state Jacobian given by Eq. 5.164 and Eq. 7.5, and

z and ẑ represent the number of truth and filter states, respectively.

Now since for this study, the filter state model has the same states as the truth state

model, and because the only notable difference between two models is the resolution of the

gravity model, the partial derivatives needed to compute F̂x are the same (except the gravity

partials) as that needed for Fx, and are given in detail in Chapter 5 and Appendix A.
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For this study, the resolution of the truth gravity model has been set to 18 × 18, whereas

the resolution of the filter gravity model is set to 12 × 12. Details about filter and truth

models are also noted, alongside the results, in Chapter 9.

In Eq. 7.1 and Eq. 7.2, Q̂d and Qd are the filter and augmented process noise covariance

matrices for the filter and augmented states, defined as

Q̂d = Diag

[
01×3 (QT +Qaero) ∆t 01×3 QR∆t QdrCM/O Qdβ

Qdρr Qdhs Qdrai/O
Qdbi Qdfi Qdεi

]
ẑ×ẑ

(7.6)

Qd =

 Q̂d 0z×ẑ

0ẑ×z 0ẑ×ẑ


(z+ẑ)×(z+ẑ)

(7.7)

In Eq. 7.6, QT is the power spectral density (PSD) of the translational disturbance

acceleration (m2/s3), Qaero is the power spectral density (PSD) of the unmodeled aerody-

namic acceleration (m2/s3), and QR is the power spectral density (PSD) of the rotational

disturbance acceleration (1/s3), respectively. The integration/discretization time step is

denoted by ∆t.

Further, in Eq. 7.6, QdrCM/O , Qdβ , Qdρr , Qdhs , Qdrai/O
, Qdbi , Qdfi , andQdεi are the vari-

ance of the linearized unmodeled noise in the center of mass position (m2), ballistic coeffi-

cient (m4/kg2), reference atmospheric density (kg2/m6), scale height (m2), ith accelerom-

eter position (m2), accelerometer bias (m2/s4), accelerometer scale factor (unit-less), and

accelerometer misalignment (rad2), respectively. These are defined in Eqs. 5.121, 5.102,

5.104, 5.106, 5.123, 5.125, 5.127, and 5.129, respectively.
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7.2.2 Update - Accelerometer Measurements

The filter P̂ covariance is updated as follow [5]

P̂
(
t+k
)

=
[
I − K̂ (tk) Ĥx̂ (tk)

]
P̂ (tk)

[
I − K̂ (tk) Ĥx̂ (tk)

]T
+ K̂ (tk) R̂a (tk) K̂

T (tk) (7.8)

K̂ (tk) = P̂ (tk) Ĥ
T
x̂ (tk)

[
Ĥx̂ (tk) P̂ (tk) Ĥ

T
x̂ (tk) + R̂a (tk)

]−1
(7.9)

Ĥx̂ =
∂h

∂x̂

∣∣∣∣
x̄

(7.10)

where K̂ (tk) is the Kalman gain, and Ĥx̂ (tk) is the filter measurement partial matrix given

by Eq. 7.10 (for accelerometer measurements).

In Eq. 7.8 and Eq. 7.9, the filter measurement noise covariance is denoted by R̂a (tk) and

is given by

E[η̂ãii (t) η̂ãii
(
t′
)T

] = Qη̂iδ
(
t− t′

)
(7.11)

R̂a (tk) =
Qη̂i
δtmeas

(7.12)

where η̂ãii is the accelerometer measurement noise, modeled as zero-mean white Gaussian

noise, used in the filter model. The strength of the accelerometer measurement noise is

denoted by Qη̂i , and δtmeas is measurement update time in seconds, as used in the filter

model. Note the size of R̂a (tk) is 3n×3n, where n is the number of accelerometers on-board.

The augmented PA covariance is updated as follow [5]

PA
(
t+k
)

= Ak (tk)PA (tk)A
T
k (tk) +Bk (tk)Ra (tk)B

T
k (tk) (7.13)



99

Ak (tk) =

 Iz×z 0z×ẑ

K̂ (tk)Hx (tk) Iẑ×ẑ − K̂ (tk) Ĥx̂ (tk)

 (7.14)

Bk (tk) =

0z×(z+ẑ)

K̂ (tk)

 (7.15)

where Hx (tk) is the truth measurement partial matrix given by Eq. 5.131 (for accelerometer

measurements), and Ra (tk) is the truth measurement noise covariance given by Eq. 5.84

(for accelerometer measurements), respectively. In Eq. 7.14 and Eq. 7.15, z and ẑ represent

the number of truth and filter states.

As stated in Section 7.2.1, the filter state model has the same states as the truth state model,

and because the only notable difference between two models is the resolution of the gravity

model, the partial derivatives needed to compute Ĥx̂ (tk) are the same (except the gravity

partials) as that needed for Hx (tk), and are given in detail in Chapter 5 and Appendix A.

7.2.3 Update - Star Camera Measurements

The filter P̂ covariance is updated as follow [5]

P̂
(
t+k
)

=
[
I − K̂ (tk) L̂x̂ (tk)

]
P̂ (tk)

[
I − K̂ (tk) L̂x̂ (tk)

]T
+ K̂ (tk) R̂sc (tk) K̂

T (tk) (7.16)

K̂ (tk) = P̂ (tk) L̂
T
x̂ (tk)

[
L̂x̂ (tk) P̂ (tk) L̂

T
x̂ (tk) + R̂sc (tk)

]−1
(7.17)

L̂x̂ =
∂l

∂x̂

∣∣∣∣
x̄

(7.18)

where K̂ (tk) is the Kalman gain, and L̂x̂ (tk) is the filter measurement partial matrix given

by Eq. 7.18 (for star camera measurements).
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In Eq. 7.16 and Eq. 7.17, the filter measurement noise covariance is denoted by R̂sc (tk)

and is given by

E[η̂s̃sc,iη̂
s̃
sc,j

T ] = Qη̂scδij (7.19)

where δij is a Kronecker delta function, and η̂s̃sc is a vector of zero-mean white Gaussian

noise on the star camera measurements, as used in filter model. The covariance of the

measurement noise for the star camera measurements is denoted by Qη̂sc
(
rad2

)
, i.e.,

R̂sc (tk) = Qη̂sc (7.20)

Note the size of R̂sc (tk) is 3n× 3n, where n is the number of star cameras on-board.

The augmented PA covariance is updated as follow [5]

PA
(
t+k
)

= Ak (tk)PA (tk)A
T
k (tk) +Bk (tk)Rsc (tk)B

T
k (tk) (7.21)

Ak (tk) =

 Iz×z 0z×ẑ

K̂ (tk)Lx (tk) Iẑ×ẑ − K̂ (tk) L̂x̂ (tk)

 (7.22)

Bk (tk) =

0z×(z+ẑ)

K̂ (tk)

 (7.23)

where Lx (tk) is the truth measurement partial matrix given by Eq. 5.157 (for star camera

measurements), and Rsc (tk) is the truth measurement noise covariance given by Eq. 5.92

(for star camera measurements), respectively. In Eq. 7.22 and Eq. 7.23, z and ẑ represent

the number of truth and filter states.

As stated in Section 7.2.1, the filter state model has the same states as the truth state model,

and because the only notable difference between two models is the resolution of the gravity

model, the partial derivatives needed to compute L̂x̂ (tk) are the same (except the gravity

partials) as that needed for Lx (tk), and are given in detail in Chapter 5 and Appendix A.
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7.2.4 Performance Evaluation

Covariance of the true navigation state errors Ptrue and covariance of the filter state

errors P̂ are used to evaluate the performance of the onboard navigation system.

Ptrue =

[
−Mx Iẑ×ẑ

]
PA

[
−Mx Iẑ×ẑ

]T
(7.24)

where Mx is the partial with respect to the true state of the mapping function defined as

[49]

Mx = Iẑ×z (7.25)

Ptrue is compared with P̂ to determine the performance of the filter. True navigation

error provides insight into the navigation performance. The true navigation error is also

used for sensitivity analysis, where the simulation is run multiple times with the combi-

nation of different error groups switched on/off in the truth model (while the filter model

remains unchanged), to compute the error budget or relative contribution of each error

group, respectively.

7.3 Error Budget Analysis

Error budget analysis, also known as sensitivity analysis, is a tool to compute the

contribution of different sources of error to the total error. This is significant because based

on this analysis, individual components of a navigation systems, or GN&C in general, can be

adjusted and designed while having permissible and predictable performance, as per mission

requirements.

In an error budget analysis, the total error is always equal to the root sum square

(RSS) of the individual error sources, provided the error sources are uncorrelated. The

selection and classification of the error sources depend entirely on the mission requirements

and known/unknown parameters.

For this study, the sources of error have been classified into 9 groups:
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1. Spacecraft’s initial position and velocity uncertainty - In the plots, shown in later

chapters, this group is denoted by an acronym PosVel.

2. Spacecraft’s initial orientation and angular velocity uncertainty - In the plots, shown

in later chapters, this group is denoted by an acronym AttdAV.

3. Spacecraft’s center of mass position uncertainty - In the plots, shown in later chapters,

this group is denoted by an acronym COMPos.

4. Translational process noise - In the plots, shown in later chapters, this group is denoted

by an acronym QTErr.

5. Rotational process noise - In the plots, shown in later chapters, this group is denoted

by an acronym QRErr.

6. Uncertainty in atmospheric model parameters (spacecraft ballistic coefficient, reference

atmospheric density, and scale height) - In the plots, shown in later chapters, this group

is denoted by an acronym AtmErr.

7. Uncertainty in accelerometer parameters (accelerometer measurement noise, bias, scale

factor, and misalignment) - In the plots, shown in later chapters, this group is denoted

by an acronym ACErr.

8. Accelerometer position uncertainty - In the plots, shown in later chapters, this group

is denoted by an acronym ACPos.

9. Star camera measurement noise - In the plots, shown in later chapters, this group is

denoted by an acronym SCNoise.

Uncertainty/Error due to each of the individual groups is switched on for the truth model,

while all other sources of error (in truth model) are switched off. The filter model remains

unchanged, and the contribution due to this error group on the true navigation error of each

state is determined in a single simulation run. Thus, with a single simulation run, the range

of acceptable uncertainty in the particular error group, for a given mission requirement, can
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be determined. Based on 9 simulation runs, an error budget analysis is conducted and the

results are used to design an autonomous orbital navigation system.

Note that this classification of error groups is for this study and is not unique, it depends

on the knowledge of the system and mission requirements. However, the error sources must

be uncorrelated.

Generally, an additional simulation run with all the errors switched on, for both truth

and filter model, to validate the error budget analysis. This process will be explained in

Chapter 8.

7.4 Summary

This chapter provided the necessary theoretical background and mathematical equa-

tions to develop a Linear Covariance (LinCov) analysis tool. Error budget analysis and the

classification of error groups have been discussed.
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CHAPTER 8

LinCov Simulation Testing

8.1 Chapter Overview

A thorough examination has been done of the LinCov analysis tool, presented in Chapter

7, and important stages have been documented in this chapter. Developing a simulation

always needs extensive testing so as to gain sufficient trust on the mathematical model, its

functioning, and corresponding results.

This chapter highlights the steps taken to ensure reasonable and optimal working of the

simulation developed for this study. This chapter will help the reader understand different

aspects of the LinCov simulation, while convincing the reader of the proper working of

mathematical model, and thereby enhancing the trust in the results presented in Chapter 9.

8.2 Reference Trajectory Testing

Spacecraft position, velocity, and orientation results are plotted for the reference tra-

jectory, for various test cases (elucidated in this section) and corresponding results are ana-

lyzed. Parameters like LEO orbital elements, spacecraft specifications, and nominal values

of atmospheric drag model parameters are given in Tables 8.1-8.2.
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Table 8.1: LEO Orbital parameters

Table 8.2: Spacecraft (s/c) Specifications and Nominal Value of Atmospheric Drag Param-

eters

A number of test cases are run to credibly develop the reference trajectory. In all

the test cases, three accelerometers with a baseline of 0.5 meters and measurement update
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frequency of 20 seconds are used. A plot of the accelerometer configuration is shown in

Figure 8.1.

8.2.1 Test Case 1 - Check Orbital Dynamics

This test case helps ascertain the nominal values of important parameters defining

spacecraft’s orbit, while all the non-gravitational external forces are switched off and the

truth and filter gravity model is set to point mass gravity. Results are presented for a

non-rotating spacecraft, with the spacecraft body-fixed frame initially aligned with the ECI

frame. For this test case, orbital elements are set as per Table 8.1.

Fig. 8.1: Accelerometer Configuration

As per expectation, orbital elements (except true anomaly) and spacecraft’s Euler angles

stay constant, and spacecraft’s angular velocity is exactly zero. Plots for spacecraft position

and accelerometer measurements are shown in Figure 8.2 and Figure 8.3.
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Fig. 8.2: Test case 1 - Spacecraft Position in ECI frame

Fig. 8.3: Test case 1 - Accelerometer measurements (in Spacecraft body-fixed reference

frame) for accelerometer 1, 2, & 3
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8.2.2 Test Case 2 - Check Effect of J2 & Rotating Spacecraft

This test case helps ascertain the effect of the J2 gravity model, and verify the modeling

of the spacecraft’s attitude and angular velocity. Results are presented for a spacecraft

rotating with angular velocity ω =

[
1 0 0

]
deg / sec, with the spacecraft body-fixed frame

initially aligned with the ECI frame. For this test case, orbital elements are set as per Table

8.1, all the non-gravitational external forces are switched off, and the filter and truth gravity

model is set to J2 gravity.

Plots for LEO orbital elements, spacecraft’s attitude and accelerometer measurements

are shown in Figures 8.4 - 8.6.

Fig. 8.4: Test case 2 - LEO orbital elements

For this test case, the components of spacecraft’s position and velocity are the same as

in test case 1, spacecraft’s angular velocity is exactly constant, and the oscillation period of

the components of Euler angles, denoting spacecraft’s attitude, is 360 seconds.
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Fig. 8.5: Test case 2 - Euler angles denoting attitude of the spacecraft body-fixed reference

frame with respect to the ECI frame

Fig. 8.6: Test case 2 - Accelerometer measurements (in Spacecraft body-fixed reference

frame) for accelerometer 1, 2, & 3
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8.2.3 Test Case 3 - Check Atmospheric Drag Model

This test case helps evaluate the atmospheric drag model. Results are presented for

a spacecraft rotating with angular velocity ω =

[
1 0.1 0.05

]
deg / sec, with the space-

craft body-fixed frame initially aligned with the ECI frame. For this test case, orbital

elements are set as per Table 8.1 except the eccentricity for the orbit is exactly zero. All

the non-gravitational external forces are switched off except translational acceleration due

to atmospheric drag, and the filter and truth gravity model is set to point mass gravity.

For this test case, the magnitude of spacecraft’s position decreases slowly over time, and

the magnitude of the spacecraft’s velocity increases slowly over time. Plots for LEO orbital

elements, spacecraft’s attitude, and accelerometer measurements are shown in Figures 8.7

and Figure 8.9.

Fig. 8.7: Test case 3 - Change in semi-major axis for the given LEO orbit

Changes in the orbit because of the acceleration due to atmospheric drag are studied.

It can be noted that inclination and right ascension of the ascending node stay constant,
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and the semi-major axis slightly decreases. Time derivative of the semi-major axis, of a

circular orbit, as a function of the acceleration due to atmospheric drag has been derived

and presented in Appendix B.

Fig. 8.8: Test case 3 - Euler angles denoting attitude of the spacecraft body-fixed reference

frame with respect to the ECI frame
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Fig. 8.9: Test case 3 - Accelerometer measurements (in Spacecraft body-fixed reference

frame) for accelerometer 1, 2, & 3

8.3 LinCov Propagation Testing

Covariance propagation is an important part of the algorithm for setting up the complete

filter. Various test cases have been simulated to debug the propagation algorithm. Two of

the most relevant test cases are elucidated in this section and corresponding results are

analyzed. Parameters like LEO orbital elements, spacecraft specifications, and nominal

values of atmospheric drag model parameters are given in Tables 8.1-8.2. Parameters such

as time constants, initial conditions, accelerometer parameters, star camera parameters, and

environmental uncertainties are given in Tables 8.3 - 8.7.
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Table 8.3: Time Constants (T denotes the orbital period)

Table 8.4: Initial Conditions - Spacecraft (s/c) position, velocity, attitude, and angular

velocity
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Table 8.5: Accelerometer (AC) Parameters

Table 8.6: Star Camera (SC) Parameters

Table 8.7: Environmental Uncertainties
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In all the test cases, three accelerometers with a baseline of 0.5 meters and measurement

update frequency of 20 seconds are used. A plot of the accelerometer configuration is shown

in Figure 8.1.

8.3.1 Test Case 1 - Check State Dynamics & Propagation Equations

This test case helps verify the state dynamics and propagation equations by running

the simulation without measurement updates and varying uncertainties on individual states.

Results are presented for a non-rotating spacecraft with the spacecraft body-fixed frame

aligned with the ECI frame. For this test case, orbital elements are set as per Table 8.1, all

the non-gravitational external forces are switched off, process noise is zero, and the truth

and filter gravity model is set to point mass gravity.

First, all errors/uncertainties on states were set to zero, and as per expectation all

the filter navigation errors stay zero. Next, individual state errors are switched on, and

it is ascertained that the filter navigation errors behave in accordance with the dynamics.

Further, the filter navigation error matches the true navigation error because the filter and

truth model are same for this test case. This verifies the state dynamics and propagation

equations.

When the spacecraft’s position and velocity initial uncertainty is switched on, the filter

navigation error grows in accordance with the state dynamics. Next, when spacecraft’s

attitude and angular velocity initial uncertainty is switched on, the filter navigation error

on Euler angles increases while the filter navigation error on angular velocity stays constant.

When the spacecraft’s center of mass position initial uncertainty is switched on, the

filter navigation error stay constant at the 3σ value. Similarly, when accelerometer position

initial uncertainty is switched on, the filter navigation error stays constant at the 3σ value.

When the initial uncertainty on accelerometer bias, misalignment, and scale factor is

switched on, the filter navigation error stays constant at the 3σ value. Similarly, when

initial uncertainty on ballistic coefficient, reference atmospheric density, and scale height is

switched on, the filter navigation error stays constant at the 3σ value.
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The reason that the filter navigation error stays constant at the 3σ value for some of

the states is because external forces are switched off for this test case and the spacecraft

is non-rotating. Changing these conditions changes the trend in filter navigation error,

in accordance with the dynamics. This was verified by running this test case again with

different conditions, and the state dynamics were verified.

8.3.2 Test Case 2 - Find Appropriate Process Noise

This test case helps to compute the filter navigation error due to the propagation of

the process noise. This is important so as to maintain the numerical stability of the filter,

while keeping the filter navigation error in check. Results are presented for a non-rotating

spacecraft, with the spacecraft body-fixed frame initially aligned with the ECI frame. For

this test case, orbital elements are set as per Table 8.1, all the non-gravitational external

forces are switched off, and the truth and filter gravity model is set to point mass gravity.

First, the spacecraft’s position and velocity initial uncertainty is switched on and the

translational process noise is varied until the final navigation error is within required limits.

Next, the process is repeated by switching on the initial uncertainty on spacecraft’s attitude

and angular velocity and the rotational process noise is varied until the final navigation

error is within required limits. Thus, an appropriate value for translational and rotational

process noise, based on permissible mission requirement and for given initial uncertainty

and spacecraft’s orbit, is obtained.

This test case is repeated for different gravity models and other varied conditions, so

as to be confident on the values selected for translational and rotational process noise.

8.4 LinCov Update Testing

Various test cases have been simulated to debug the update algorithm and set up

the complete filter. Three of the most relevant test cases are elucidated in this section

and corresponding results are analyzed. Parameters like LEO orbital elements, spacecraft

specifications, and nominal value of atmospheric drag model parameters are given in Tables
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8.1-8.2. Parameters such as time constants, initial conditions, accelerometer parameters,

star camera parameters, and environmental uncertainties are given in Tables 8.3 - 8.7.

In all the test cases, three accelerometers with a baseline of 0.5 meters and measurement

update frequency of 20 seconds are used. A plot of the accelerometer configuration is shown

in Figure 8.1.

8.4.1 Test Case 1 - Verify State Dynamics & Update Equations

This test case helps verify the state dynamics and update equations by running the sim-

ulation with measurement updates and switching uncertainties on individual states on/off.

Results are presented for a non-rotating spacecraft with the spacecraft body-fixed frame

initially aligned with the ECI frame. For this test case, orbital elements are set as per Table

8.1, all the non-gravitational external forces are switched off, process noise is zero, and the

truth and filter gravity model is set to point mass gravity.

First, all errors/uncertainties on states are zero, and as per expectation all the filter

navigation errors stay zero. Next, individual state errors are switched on, and it is ascer-

tained that the filter navigation errors converge or approach a steady state value. Further,

it is made sure that the filter navigation error matches the true navigation error, because

the filter and truth model are same for this test case. This verifies the filter setup, state

dynamics and update equations.

When the spacecraft’s position and velocity initial uncertainty is switched on, the filter

navigation error does converge as per expectation. However, at some time instants, the

error is imaginary. This is because the translational process noise is set to zero for this

test case, and thus, the filter becomes numerically unstable. This test is repeated with the

translational process noise and the results are shown under test case 2.

Similarly, when the spacecraft’s attitude and angular velocity initial uncertainty is

switched on, then the filter navigation error does converge as per expectation. But the

error is again imaginary at some time instants. This is because the rotational process noise

is set to zero for this test case, and thus, the filter becomes numerically unstable. This test

is repeated with the rotational process noise and the results are shown under test case 2.



118

Plots for the filter navigation error when spacecraft’s center of mass position initial

uncertainty is switched on are given in Figure 8.10.

Plots for the filter navigation error when accelerometer position initial uncertainty is

switched on are given in Figure 8.11. Filter navigation error on accelerometer 2 position

and accelerometer 3 position are similar to that for accelerometer 1.

Plots for the filter navigation error when uncertainty on accelerometer bias, misalign-

ment, and scale factor is switched on, are given in Figure 8.12. Filter navigation error on

accelerometer 3 bias, misalignment, and scale factor are similar to that for accelerometer

1. Note that in in Figure 8.12, the estimate for accelerometer misalignment is very poor.

Reasons for the same are discussed in Chapter 9.

It is noted that the filter navigation error for ballistic coefficient, reference atmospheric

density, and scale height stay zero, even when initial uncertainty on these states are switched

on. This is because the external forces (including atmospheric drag) are switched off.

Thus, when the simulation is run again with acceleration due to atmospheric drag

switched on, and having initial uncertainty on ballistic coefficient, reference atmospheric

density, and scale height switched on, it is noted that the filter navigation errors on these

states converge to a steady state value. However, the error is imaginary at some time

instants. This is because the aerodynamic process noise is set to zero for this test case, and

thus, the filter becomes numerically unstable. This test is repeated with the aerodynamic

process noise and the results are shown under test case 2.
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(a)

(b)

Fig. 8.10: Test case 1 - Spacecraft’s center of mass position (with respect to the origin of the

spacecraft body-fixed frame and expressed in spacecraft body-fixed frame) filter navigation

error - (a) For 2 orbits, (b) Zoomed view for first 350 seconds
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(a)

(b)

Fig. 8.11: Test case 1 - Accelerometer 1 position (with respect to the origin of the spacecraft

body-fixed frame and expressed in spacecraft body-fixed frame) filter navigation error - (a)

For 2 orbits, (b) Zoomed view for first 350 seconds
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(a)

(b)

Fig. 8.12: Test case 1 - Accelerometer bias, misalignment, and scale factor (expressed in

accelerometer actual reference frame) filter navigation error - (a) For Accelerometer 1, (b)

For Accelerometer 2
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8.4.2 Test Case 2 - With Process Noise

This test case helps to narrow the initial uncertainties on the states, and to consolidate

the process noise power spectral density value selected earlier. Results are presented for a

non-rotating spacecraft, with the spacecraft body-fixed frame initially aligned with the ECI

frame. For this test case, orbital elements are set as per Table 8.1, all external forces are

switched off, and the truth and filter gravity model is set to point mass gravity.

First, when the spacecraft’s position and velocity initial uncertainty and the transla-

tional process noise are switched on, the filter navigation error converge as per expectation.

A plot of spacecraft position, expressed in LVLH frame, is shown in Figure 8.13.

Fig. 8.13: Test case 1 - Spacecraft position (expressed in LVLH frame) filter navigation error

Next, when the spacecraft’s attitude and angular velocity initial uncertainty and the ro-

tational process noise are switched on, the filter navigation error converge as per expectation.

Plot for spacecraft attitude, expressed in ECI frame, is shown in Figure 8.14.
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Fig. 8.14: Test case 1 - Spacecraft attitude (expressed in ECI frame) filter navigation error

Finally, when acceleration due to atmospheric drag, initial uncertainty on ballistic co-

efficient, reference atmospheric density, and scale height, and the aerodynamic process noise

are switched on, the filter navigation error converge as per expectation. Plots for ballistic

coefficient, reference atmospheric density, and scale height are shown in Figure 8.15.
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Fig. 8.15: Test case 1 - Filter navigation error on ballistic coefficient, reference atmospheric

density, and scale height

This test case was repeated for different gravity models and other varied conditions so

as to gain confidence in the values selected for initial uncertainties on the states and the

process noise power spectral density value.

8.4.3 Test Case 3 - With Error Groups

After completing the above test cases, the simulation with complete filter setup is run

and it is asserted that the filter is working nominally. Next, the simulation is run for different

filter and truth gravity models, and again the filter navigation error and true navigation error

for all states are closely scrutinized.

Finally, error groups are formed, based on the sources of error to be studied. These

error groups consist of one or many uncorrelated filter states. The simulation is run multiple

times with the same truth model but different filter model, such that the individual error

groups (filter states) are switched on/off. Results from this setup help confirm no correlation
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between the selected error groups and nominal working of the LinCov setup.

This test case was repeated for different filter and truth models based on the judgement

of the engineer.

8.5 Numerical Instability & Limitations

This section reports about the issues related to the filter numerical instability, its proba-

ble causes, and prospective solutions. Numerical stability of the filter is of utmost importance

when developing a LinCov simulation, and hence, this section provides an overview on this

aspect.

8.5.1 Overview

Kalman filter numerical stability is a widely researched and studied problem. However,

due to limited scope of this study, only issues observed during filter setup for this problem

will be discussed.

During the simulation development for this study, two major issues resulting in filter

numerical instability were observed. The first issue is numerical precision limit of modern

day computers. When the filter is setup with initial uncertainty on spacecraft position,

velocity, attitude, and angular velocity, it is suspected that the wide range of numerical

values result in the breach of numerical precision limit, which in turn results in numerical

instability during mathematical operations.

The second issue is the appropriate selection of simulation parameters, like process noise

power spectral density, initial uncertainty on states, and sensor parameters. It is suspected

that for some scenarios, the simulation is sensitive to the selection of simulation parameters,

especially due to very low magnitude of sensor noise and process noise required for this

study.

8.5.2 Prospective Solutions

Prospective solutions are suggested for solving numerical instability of the filter. It is

suggested that the testing process, presented in this chapter, should be followed thoroughly.
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This helps significantly with the appropriate selection of simulation parameters, and in

general, promotes healthy algorithm development.

Next, it is believed that a good covariance factorization technique may help solve the

issue of numerical precision limit. UDU Covariance Factorization technique may be one of

the options. It is used to maintain numerical stability of the filter. In this method, the state

covariance P is replaced such that [9, 50]

P = UDUT (8.1)

where U is an upper triangular and unitary matrix, and D is a diagonal matrix. Cholesky

decomposition algorithm is used to decompose covariance matrix P in the form given in

Eq. 8.1 [9, 50]. The flowchart in Figure 8.16 depicts the UDU covariance propagation and

update algorithm, equivalent to the system shown in Figure 2.6 [9, 50].

Fig. 8.16: UDU Covariance Propagation and Update Flow Diagram. Based on the algorithm

given in Maybeck (1979), Stochastic Models, Estimation, and Control [9]
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Another prospective solution is to use variable precision commands (like vpa and digits)

in MATLAB, by performing symbolic mathematical operations for covariance propagation

and measurement update equations. This technique increases the computational time and

memory requirements.

Finally, another prospective solution may be to normalize the states. This technique

was used during the observability analysis for this study, and has been discussed in Chapter

6. Intelligently normalizing the state vector will keep the numerical range within precision

limits, without increasing the computational time and memory requirements.

8.6 Summary

This chapter highlighted steps taken to ensure reasonable and optimal working of the

simulation. The LinCov analysis tool was thoroughly examined and important test cases

have been documented in this chapter. These test cases are an important step towards

selecting effective range for the initial values of simulation parameters, while taking into

consideration the mission requirements, spacecraft specifications, and spacecraft orbit.
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CHAPTER 9

LinCov Simulation Results and Analysis

9.1 Chapter Overview

Based on the framework developed in the preceding chapters, Linear Covariance sim-

ulation results are presented and detailed analysis is discussed in this chapter. Effort has

been made to reasonably categorize and analyze the results so as to help understand the

performance of the system for different configurations.

In the following sections, the initial setup of the simulation parameters is highlighted,

and then the results obtained for a Low Earth Orbit (50 degree Inclination) and a polar

Low Earth Orbit are presented.

9.2 Initial Setup

Initial setup of the simulation parameters, and the nominal values for initial state

errors/uncertainties are presented in this section. Spacecraft specifications, nominal values

of atmospheric drag model parameters, initial conditions, time constants, accelerometer

parameters, star camera parameters, and environmental uncertainties are given in the Tables

9.1 - 9.6.
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Table 9.1: Spacecraft (s/c) Specifications and Nominal Value of Atmospheric Drag Param-

eters

Table 9.2: Initial Conditions - Spacecraft (s/c) Position, Velocity, Attitude, and Angular

Velocity
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Table 9.3: Time Constants (T denotes the orbital period)

Table 9.4: Accelerometer (AC) Parameters

Table 9.5: Star Camera (SC) Parameters
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Table 9.6: Environmental Uncertainties

For the results presented in the forthcoming sections, three accelerometers with a base-

line of 0.5 meters and measurement update frequency of 20 seconds are used. A plot of the

accelerometer configuration is shown in the Figure 9.1.

Fig. 9.1: Accelerometer Configuration
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Specifications for parameters given above have been set as per the recent advancements

made in the development of precision sensors and future projections mentioned in the rele-

vant literature [51, 52, 53, 54].

9.3 Low Earth Orbit (50 degree Inclination)

The reference orbit is defined by the orbital parameters tabulated below

Table 9.7: LEO (50 degree Inclination) Orbital Parameters

9.3.1 Reference Trajectory

Reference trajectory results for a LEO (50 degree Inclination) orbit are presented for 2

orbital periods. Plots have been generated by setting the parameters as per the values given

in the Tables 9.1 and 9.7.

Firstly, results are presented for a non-rotating spacecraft which is inertially fixed, i.e.,

the spacecraft body-fixed frame is initially aligned with the ECI frame. Plots for LEO

orbital elements, spacecraft position, spacecraft attitude, and accelerometer measurements

are shown in the Figures 9.2 - 9.5.
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Fig. 9.2: Reference Trajectory (Non-rotating spacecraft) - LEO (50 degree Inclination) or-

bital elements
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Fig. 9.3: Reference Trajectory (Non-rotating spacecraft ) - Spacecraft Position in ECI frame

Fig. 9.4: Reference Trajectory (Non-rotating spacecraft) - Euler angles denoting attitude of

the spacecraft body-fixed frame with respect to the ECI frame
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Fig. 9.5: Reference Trajectory (Non-rotating spacecraft) - Accelerometer measurements (in

Spacecraft body-fixed frame) for accelerometer 1, 2, & 3

Results are now presented for a rotating spacecraft which is rotating at LVLH rate,

Nadir pointing, and the spacecraft body-fixed frame is initially aligned with the LVLH

frame.

Since a rotating spacecraft does not affects the translational states, the LEO orbital

elements and spacecraft position do not change and the plots are the same as that for the

non-rotating spacecraft. Plots for spacecraft attitude and accelerometer measurements are

shown in the Figures 9.6 - 9.7.
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Fig. 9.6: Reference Trajectory (Rotating spacecraft) - Euler angles denoting attitude of the

spacecraft body-fixed frame with respect to the ECI frame

Fig. 9.7: Reference Trajectory (Rotating spacecraft) - Accelerometer measurements (in

Spacecraft body-fixed frame) for accelerometer 1, 2, & 3
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9.3.2 High Sensor Grade & Precise System Model

In this section, results for high sensor grade and precise system model are presented.

To model high sensor grade and precise system model, sensor parameters, environmental

uncertainties, and initial 1σ errors for all states are set equal to the values given in the High

Cost column of the Tables 9.4, 9.5, and 9.6. Results have been generated by setting the

parameters as per the values given in the Tables 9.1, 9.7, and 9.2.

First, the results are presented for three accelerometers, with initial 1σ error on space-

craft position, velocity, attitude, and angular velocity set equal to the values given in Table

9.2, accelerometer parameters are set as per Table 9.4, and the time constants are set as per

Value 1 in Table 9.3.

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.8-9.9. These results are for inertially fixed case, i.e., non-

rotating spacecraft.

Fig. 9.8: True navigation error 1σ standard deviation on spacecraft position components

(expressed in LVLH frame) and magnitude
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Fig. 9.9: True navigation error 1σ standard deviation on spacecraft attitude magnitude

The true navigation error 1σ standard deviation for all states converge to a steady state

value. However, the estimates for accelerometer states are poor, especially accelerometer

misalignment. One of the reason for poor estimation of accelerometer states could be weak

observability of these states. The error budget results for accelerometer states also reflect

this, because the major source of error is accelerometer error.

Further, plots for spacecraft velocity and angular velocity are not shown, as the trend

for these states is similar to the trend of the true navigation error for spacecraft position and

orientation. All the plots have been annotated to depict the major sources of true navigation

error.

Error budget results are summarized in Table 9.8. Note that the total steady-state true

navigation error is the RSS of all the error sources.
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Table 9.8: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.10-9.11, for the rotating Nadir pointing spacecraft.
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Fig. 9.10: True navigation error 1σ standard deviation on spacecraft position components

(expressed in LVLH frame) and magnitude

The true navigation error 1σ standard deviation for all states converge to a steady state

value. However, the estimates for accelerometer states are again poor, especially accelerom-

eter misalignment. The reason for poor estimation of accelerometer states is suspected to

be weak observability of these states. The error budget results for accelerometer states also

reflect this, because the major source of error is accelerometer error.

Further, plots for spacecraft velocity and angular velocity are not shown, as the trend

for these states is similar to the trend of the true navigation error for spacecraft position

and orientation. All the results have been annotated to depict the major sources of true

navigation error.
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Fig. 9.11: True navigation error 1σ standard deviation on spacecraft attitude magnitude

Error budget results are summarized in Table 9.9. Note that the total steady-state true

navigation error is the RSS of all the error sources.
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Table 9.9: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results in Table 9.9 show that the estimates for the spacecraft position, velocity,

attitude, angular velocity, and atmospheric parameter states improve marginally for the

rotating spacecraft in comparison to that for the non-rotating spacecraft. Whereas, the

estimates for spacecraft’s center of mass position are marginally better for the non-rotating

spacecraft. Estimates for accelerometer states show no change for the rotating spacecraft.

Further, results are generated for a variety of scenarios and the effect of different number
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of accelerometers, initial conditions, baseline length, and the time constant are studied.

Error budget results for these scenarios are summarized in Tables 9.10-9.27.

The error budget results presented in the following tables help understand the effect of

individual simulation parameters on the true navigation error of spacecraft position, velocity,

attitude, and angular velocity. This information can be used to model the system based on

the mission requirements. For this reason, error budgets for spacecraft position and attitude

have been highlighted in each table.

The error budgets presented in this section help study a number of scenarios simultane-

ously. For example, it can be inferred that to get the best estimate of the spacecraft position

for a non-rotating spacecraft, the system may be modeled based on Table 9.22 or Table 9.26.

Similarly, an inference can be drawn for a rotating spacecraft. Thus, the error budget tables

help provide a sensitivity matrix for multitude scenarios in a concise and compact manner.

Next, the results are presented for six accelerometers, with initial 1σ error on spacecraft

position, velocity, attitude, and angular velocity set equal to the values given in Table 9.2,

accelerometer parameters are set as per Table 9.4, and the time constants are set as per

Value 1 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.10.

Table 9.10: Error budget of the maximum steady-state true navigation error 1σ standard

deviation
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Given below in Table 9.11 are the results for the rotating Nadir pointing spacecraft.

Table 9.11: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results shown in Tables 9.10 and 9.11 provide evidence that as the number of

accelerometers are increased more measurements are received which in turn provides more

information about the system dynamics and hence, the state estimation improves.

Next, the results are presented for three accelerometers, with initial 1σ error on position

and velocity set to 10% of the values given in Table 9.2, whereas initial 1σ error on spacecraft

attitude and angular velocity are set equal to the values given in Table 9.2, accelerometer

parameters are set as per Table 9.4, and the time constants are set as per Value 1 in Table

9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.12.
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Table 9.12: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.13 are the results for the rotating Nadir pointing spacecraft.

Table 9.13: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Next, the results are presented for six accelerometers, with initial 1σ error on position

and velocity set to 10% of the values given in Table 9.2, whereas initial 1σ error on spacecraft

attitude and angular velocity are set equal to the values given in Table 9.2, accelerometer

parameters are set as per Table 9.4, and the time constants are set as per Value 1 in Table

9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.14.
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Table 9.14: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.15 are the results for the rotating Nadir pointing spacecraft.

Table 9.15: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results shown in Tables 9.12 - 9.15 provide evidence that the filter performance is

nominal as the filter converge to the same steady state values for different initial conditions.

This is because as the measurements are received over time, the error due to the initial

uncertainty shrinks and eventually a steady state is achieved.

Results are now presented for three accelerometers, with initial 1σ error on spacecraft

position, velocity, attitude, and angular velocity set equal to the values given in Table 9.2,
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accelerometer parameters are set as per Table 9.4, and the time constants are set as per

Value 2 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.16 .

Table 9.16: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.17 are the results for the rotating Nadir pointing spacecraft.

Table 9.17: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.18 are the results for six accelerometers, with initial 1σ error

on spacecraft position, velocity, attitude, and angular velocity set equal to the values given
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in Table 9.2, accelerometer parameters are set as per Table 9.4, and the time constants are

set as per Value 2 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.18.

Table 9.18: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Results for the rotating Nadir pointing spacecraft are presented in Table 9.19 .

Table 9.19: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results shown in Tables 9.16 - 9.19 depict the effect of the smaller time constant

on the reference atmospheric density state. And when these results are compared with that
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shown in Tables 9.8 - 9.11, it is inferred that there is no effect on spacecraft position, velocity,

attitude, and angular velocity states for the non-rotating inertially fixed case. While the

effect is minimal on these states for rotating Nadir pointing spacecraft.

Further, results are presented for three accelerometers with accelerometer baseline

length set to 1 meters. Initial 1σ error on spacecraft position, velocity, attitude, and angular

velocity is set equal to the values given in Table 9.2, accelerometer parameters are set as

per Table 9.4, and the time constants are set as per Value 1 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.20 .

Table 9.20: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.21 are the results for the rotating Nadir pointing spacecraft.
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Table 9.21: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Next, results are presented for six accelerometers with accelerometer baseline length set

to 1 meters. Initial 1σ error on spacecraft position, velocity, attitude, and angular velocity

is set equal to the values given in Table 9.2, accelerometer parameters are set as per Table

9.4, and the time constants are set as per Value 1 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.22 .

Table 9.22: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.23 are the results for the rotating Nadir pointing spacecraft.
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Table 9.23: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results shown in Tables 9.20 - 9.23 provide evidence for the effect of the increase

in the baseline length of the on-board accelerometers. As expected, the increase in baseline

length improves the resolution of the accelerometer measurements and hence, the filter

performance improves.

Next, results are presented for three accelerometers with accelerometer baseline length

set to 1 meters. Initial 1σ error on spacecraft position, velocity, attitude, and angular

velocity is set equal to the values given in Table 9.2, accelerometer parameters are set as

per Table 9.4, and the time constants are set as per Value 2 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are presented in Table 9.24 .
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Table 9.24: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

And similarly, given below in Table 9.25 are the results for the rotating Nadir pointing

spacecraft.

Table 9.25: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Results are now presented for six accelerometers with accelerometer baseline length set

to 1 meters. Initial 1σ error on spacecraft position, velocity, attitude, and angular velocity

is set equal to the values given in Table 9.2, accelerometer parameters are set as per Table

9.4, and the time constants are set as per Value 2 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are given in Table 9.26.
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Table 9.26: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.27 are the results for the rotating Nadir pointing spacecraft.

Table 9.27: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results shown in Tables 9.24 - 9.27 provide evidence for the combined effect of the

increase in the baseline length of the on-board accelerometers and the smaller time constant

on the reference atmospheric density state.
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9.3.3 Moderate Sensor Grade & Moderately Precise System Model

In this section, results for moderate sensor grade and moderately precise system model

are presented. To model moderate sensor grade and moderately precise system model, sensor

parameters, environmental uncertainties, and initial 1σ error for all states are set equal to

the values given in the Moderate Cost column of the Tables 9.4, 9.5, and 9.6. Results have

been generated by setting the parameters as per the values given in the Tables 9.1, 9.7, and

9.2.

Results are presented for three accelerometers, with initial 1σ error on spacecraft po-

sition, velocity, attitude, and angular velocity set equal to the values given in Table 9.2,

accelerometer parameters are set as per Table 9.4, and the time constants are set as per

Value 1 in Table 9.3.

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.12-9.13, for the non-rotating inertially fixed spacecraft.

Fig. 9.12: True navigation error 1σ standard deviation on spacecraft position magnitude
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Fig. 9.13: True navigation error 1σ standard deviation on spacecraft attitude magnitude

Results for spacecraft velocity and angular velocity are not shown, as the trend for

these states is similar to the trend of the true navigation error for spacecraft position and

orientation. All results have been annotated to depict the major sources of true navigation

error.

Error budget results are summarized in Table 9.28. Note that the total steady-state

true navigation error is the RSS of all the error sources.
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Table 9.28: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.14-9.15, for the rotating Nadir pointing spacecraft.

Fig. 9.14: True navigation error 1σ standard deviation on spacecraft position magnitude
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Fig. 9.15: True navigation error 1σ standard deviation on spacecraft attitude magnitude

Plots for spacecraft velocity and angular velocity are not shown, as the trend for these

states is similar to the trend of the true navigation error for spacecraft position and ori-

entation. All results have been annotated to depict the major sources of true navigation

error.

Error budget results are summarized in Table 9.29. Note that the total steady-state

true navigation error is the RSS of all the error sources.

The results for the moderate sensor grade and moderately precise system model depict

the effect of lower sensor grade on the true navigation error of spacecraft position, velocity,

attitude, and angular velocity. The accelerometer error is now a major source of error, and

thus system should be designed accordingly.
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Table 9.29: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

9.3.4 Low Sensor Grade & Less Precise System Model

In this section, results for low sensor grade and less precise system model are discussed.

To model low sensor grade and less precise system model, sensor parameters, environmental

uncertainties, and initial 1σ error for all states are set equal to the values given in the Low

Cost column of the Tables 9.4, 9.5, and 9.6. Plots were generated by setting the parameters

as per the values given in the Tables 9.1, 9.7, and 9.2.

Results were generated for three accelerometers, with initial 1σ error on spacecraft

position, velocity, attitude, and angular velocity set equal to the values given in Table 9.2,

accelerometer parameters are set as per Table 9.4, and the time constants are set as per Value

1 in Table 9.3. In both cases, non-rotating inertially fixed spacecraft or rotating radially

pointing spacecraft, true navigation error for spacecraft position and velocity diverge, and

the estimation of these states is not feasible. The major source of error is due to the low

grade sensor model and its associated accelerometer error. Though estimation of spacecraft

attitude and angular velocity is still possible because of the star camera measurements.
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9.4 Polar Low Earth Orbit (P-LEO)

Reference orbit is defined by the orbital parameters tabulated below

Table 9.30: Polar LEO Orbital Parameters

9.4.1 Reference Trajectory

Reference trajectory results for a polar LEO orbit are presented for 2 orbital periods.

Plots have been generated by setting the parameters as per the values given in the Tables

9.1 and 9.30.

Firstly, for a non-rotating spacecraft which is inertially fixed, i.e., the spacecraft body-

fixed frame is initially aligned with the ECI frame. Plots for LEO orbital elements, spacecraft

position, spacecraft attitude, and accelerometer measurements are shown in the Figures 9.16

- 9.19.
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Fig. 9.16: Reference Trajectory (Non-rotating spacecraft) - Polar LEO orbital elements

Fig. 9.17: Reference Trajectory (Non-rotating spacecraft ) - Spacecraft Position in ECI

frame
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Fig. 9.18: Reference Trajectory (Non-rotating spacecraft) - Euler angles denoting attitude

of the spacecraft body-fixed frame with respect to the ECI frame
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Fig. 9.19: Reference Trajectory (Non-rotating spacecraft) - Accelerometer measurements (in

Spacecraft body-fixed frame) for accelerometer 1, 2, & 3

Results are now presented for a rotating spacecraft which is rotating at LVLH rate,

such that the spacecraft is radially pointing and the spacecraft body-fixed frame is initially

aligned with the LVLH frame.

Since a rotating spacecraft do not affects the translational states, the LEO orbital

elements and spacecraft position do not change and the plots are the same as that for the

non-rotating spacecraft. Plots for spacecraft attitude and accelerometer measurements are

shown in the Figures 9.20 - 9.21.
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Fig. 9.20: Reference Trajectory (Rotating spacecraft) - Euler angles denoting attitude of the

spacecraft body-fixed frame with respect to the ECI frame

Fig. 9.21: Reference Trajectory (Rotating spacecraft) - Accelerometer measurements (in

Spacecraft body-fixed frame) for accelerometer 1, 2, & 3
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9.4.2 High Sensor Grade & Precise System Model

In this section, results for high sensor grade and precise system model are presented.

To model high sensor grade and precise system model, sensor parameters, environmental

uncertainties, and initial 1σ error for all states are set equal to the values given in the High

Cost column of the Tables 9.4, 9.5 (except the star camera noise is set equal to 10−5 rad),

and 9.6. Plots have been generated by setting the parameters as per the values given in the

Tables 9.1, 9.30, and 9.2.

First, the results are presented for three accelerometers, with initial 1σ error on space-

craft position, velocity, attitude, and angular velocity set equal to the values given in Table

9.2, accelerometer parameters are set as per Table 9.4, and the time constants are set as per

Value 1 in Table 9.3.

Plots for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.22-9.23, for the non-rotating inertially fixed spacecraft.

Fig. 9.22: True navigation error 1σ standard deviation on spacecraft position components

(expressed in LVLH frame) and magnitude
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Fig. 9.23: True navigation error 1σ standard deviation on spacecraft attitude magnitude

The true navigation error 1σ standard deviation for all states converge to a steady state

value. However, the estimates for the accelerometer states are poor, especially accelerometer

misalignment. One of the reason for poor estimation of accelerometer states could be weak

observability of these states. The error budget results for accelerometer states also reflect

this, because the major source of error is accelerometer error.

Further, plots for spacecraft velocity and angular velocity are not shown, as the trend

for these states is similar to the trend of the true navigation error for spacecraft position and

orientation. All the plots have been annotated to depict the major sources of true navigation

error.

Error budget results are summarized in Table 9.31. Note that the total steady-state

true navigation error is the RSS of all the error sources.
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Table 9.31: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.24-9.25, for the rotating Nadir pointing spacecraft.
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Fig. 9.24: True navigation error 1σ standard deviation on spacecraft position components

(expressed in LVLH frame) and magnitude

The true navigation error 1σ standard deviation for all states converge to a steady state

value. However, the estimates for accelerometer states are poor, especially accelerometer

misalignment. One of the reason for poor estimation of accelerometer states is suspected to

be weak observability of these states. The error budget results for accelerometer states also

reflect this, and the major source of error is accelerometer error.

Further, plots for spacecraft velocity and angular velocity are not shown, as the trend

for these states is similar to the trend of the true navigation error for spacecraft position and

orientation. All the plots have been annotated to depict the major sources of true navigation

error.
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Fig. 9.25: True navigation error 1σ standard deviation on spacecraft attitude magnitude

Error budget results are summarized in Table 9.32. Note that the total steady-state

true navigation error is the RSS of all the error sources.
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Table 9.32: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

The results in Table 9.32 show that the estimates for the spacecraft position, velocity,

attitude, angular velocity, and atmospheric parameter states improve marginally for the

rotating spacecraft in comparison to that for the non-rotating spacecraft. Whereas, the

estimates for spacecraft’s center of mass position are marginally better for the non-rotating

spacecraft. Estimates for accelerometer states show no change for the rotating spacecraft.

Further, results are generated for six on-board accelerometers. The initial 1σ error on
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spacecraft position, velocity, attitude, and angular velocity set equal to the values given in

Table 9.2, accelerometer parameters are set as per Table 9.4, and the time constants are set

as per Value 1 in Table 9.3.

Results for a non-rotating inertially fixed spacecraft are shown in Table 9.33 .

Table 9.33: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Given below in Table 9.34 are the results for the rotating Nadir pointing spacecraft.

Table 9.34: Error budget of the maximum steady-state true navigation error 1σ standard

deviation
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Thus, above results show how increasing the number of on-board accelerometers can

improve the performance of the autonomous orbital navigation system.

Above scenarios for high sensor grade and precise system model in P-LEO were repeated

with star camera noise of 10−4 radians and nominal results were obtained.

9.4.3 Moderate Sensor Grade & Moderately Precise System Model

In this section, results for moderate sensor grade and moderately precise system model

are presented. To model moderate sensor grade and moderately precise system model, sensor

parameters, environmental uncertainties, and initial 1σ error for all states are set equal to

the values given in the Moderate Cost column of the Tables 9.4, 9.5, and 9.6. Plots have

been generated by setting the parameters as per the values given in the Tables 9.1, 9.30,

and 9.2.

Results are presented for three accelerometers, with initial 1σ error on spacecraft po-

sition, velocity, attitude, and angular velocity set equal to the values given in Table 9.2,

accelerometer parameters are set as per Table 9.4, and the time constants are set as per

Value 1 in Table 9.3.

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.26-9.27, for the non-rotating inertially fixed spacecraft.
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Fig. 9.26: True navigation error 1σ standard deviation on spacecraft position magnitude

Fig. 9.27: True navigation error 1σ standard deviation on spacecraft attitude magnitude



173

Results for spacecraft velocity and angular velocity are not shown, as the trend for

these states is similar to the trend of the true navigation error for spacecraft position and

orientation. All results have been annotated to depict the major sources of true navigation

error.

Error budget results are summarized in Table 9.35. Note that the total steady-state

true navigation error is the RSS of all the error sources.

Table 9.35: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

Results for the true navigation error 1σ standard deviation on spacecraft position and

attitude are shown in Figures 9.28-9.29, for the rotating Nadir pointing spacecraft.
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Fig. 9.28: True navigation error 1σ standard deviation on spacecraft position magnitude

Fig. 9.29: True navigation error 1σ standard deviation on spacecraft attitude magnitude
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Plots for spacecraft velocity and angular velocity are not shown, as the trend for these

states is similar to the trend of the true navigation error for spacecraft position and ori-

entation. All results have been annotated to depict the major sources of true navigation

error.

Error budget results are summarized in Table 9.36. Note that the total steady-state

true navigation error is the RSS of all the error sources.

The results for the moderate sensor grade and moderately precise system model depict

the effect of lower sensor grade on the true navigation error of spacecraft position, velocity,

attitude, and angular velocity. The accelerometer error is now a major source of error, and

thus system should be designed accordingly.

Table 9.36: Error budget of the maximum steady-state true navigation error 1σ standard

deviation

9.4.4 Low Sensor Grade & Less Precise System Model

In this section, results for low sensor grade and less precise system model are discussed.

To model low sensor grade and less precise system model, sensor parameters, environmental

uncertainties, and initial 1σ error for all states are set equal to the values given in the Low

Cost column of the Tables 9.4, 9.5, and 9.6. Plots were generated by setting the parameters
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as per the values given in the Tables 9.1, 9.30, and 9.2.

Results were generated for three accelerometers, with initial 1σ error on spacecraft

position, velocity, attitude, and angular velocity set equal to the values given in Table 9.2,

accelerometer parameters are set as per Table 9.4, and the time constants are set as per Value

1 in Table 9.3. In both cases, non-rotating inertially fixed spacecraft or rotating radially

pointing spacecraft, true navigation error for spacecraft position and velocity diverge, and

the estimation of these states is not feasible. The major source of error is due to the low

grade sensor model and its associated accelerometer error. Though estimation of spacecraft

attitude and angular velocity is still possible because of the star camera measurements.

9.5 Summary

Linear Covariance simulation results for a LEO (50 degree Inclination) and a polar LEO

orbits were presented and detailed analysis was conducted. Results have been categorized,

so as to help understand the performance of the system for different configurations.

A number of simulation parameters were studied and corresponding error budget anal-

ysis has been shown. For improving the performance of the system, high sensor grade and

precise system model is recommended. Additionally, filter performance improves when the

number of on-board accelerometers is increased. Filter performance is better for 1 meter

baseline length accelerometer configuration in comparison to that for 0.5 meter baseline

length accelerometer configuration.

Further, major source of error for most of the scenarios has been sensor errors (like

accelerometer error, accelerometer position uncertainty or star camera noise). This is an

important result as it highlights the sensor specifications to be improved, so as to reduce

the final navigation error.
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CHAPTER 10

Conclusion

10.1 Summary of the Contributions & Results

LinCov results for a spacecraft in a LEO (50 degree Inclination) and a polar LEO

orbits have been presented, analyzed, and discussed in detail. Key contributions from this

study are noted to be the development of mathematical measurement model of electrostatic

accelerometers, observability analysis for the autonomous navigation system, and the error

budget results for a spacecraft in LEO regime.

An extensive detail about the existing technology and literature background of gravity

gradiometry and spacecraft navigation has been discussed. Detailed problem setup and Lin-

Cov tool development has been presented along with mathematical model for measurements

and state dynamics. Observability analysis was conducted and the results were presented, so

as to corroborate the idea of autonomous orbital navigation with advanced accelerometers.

Observability of spacecraft position, velocity, and attitude was proven for a config-

uration of three 3-axis accelerometers. Feasibility of autonomous orbital navigation was

established.

Error budget analysis for a non-rotating and a rotating spacecraft, in a low Earth

orbit (50 degree Inclination) and polar low Earth orbit, was conducted and results were

documented. A number of scenarios were discussed and contributions due to specific error

sources were identified.

Results were analyzed for three different sensor grades, and it was shown that the

performance of the high sensor grade and precise system model satisfies the requirements

for autonomous orbital navigation. Additionally, filter performance was shown to improve

when the number of on-board accelerometers is increased. Filter performance was shown to

be better for 1 meter baseline length accelerometer configuration in comparison to that for
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0.5 meter baseline length accelerometer configuration. It has also been noted that estimation

of accelerometer scale-factor and misalignment is poor, for all the scenarios.

Further, major source of error for most of the scenarios has been sensor errors (like

accelerometer error, accelerometer position uncertainty or star camera noise). This is an

important result as it highlights the sensor specifications to be improved, so as to reduce

the final navigation error.

This research highlighted the ultra-precise sensitivity requirements needed to generate

accelerometer measurements and in turn use the information to navigate autonomously in

space.

In summary, the objective of the research as stated in the first chapter of this dissertation

has been accomplished.

The objective of this research is to use the Linear Covariance theory to investigate

the feasibility and sensitivity requirements for an autonomous orbit determination using ad-

vanced accelerometer measurements and onboard gravity field maps, for different sensor and

orbit configurations.

10.2 Proposed Future Work

This research presented an idea and a feasibility study along with the sensitivity re-

quirements for developing an autonomous orbital navigation system based on ultra-precise

accelerometers. To extend this idea of developing an autonomous orbital navigation system

into reality, a detailed analysis and intensive study of the hardware of these ultra-precise

sensors is needed.

Results presented in this study can be used to perform a detailed analysis by expanding

the number of parameters and including uncertainties in the gravity field model and Earth

model. Further, a suite of sensors can be included and different permutations can be tested

accordingly.

Monte Carlo analysis can be conducted and an analysis may be performed in order to

test and validate the linearized models. Different types of gravity models can be studied
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and an effort may be made towards determining computationally efficient method to store

high-fidelity gravity maps on-board.
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APPENDIX A

Matrix Partial Derivatives

A.1 Overview

This appendix highlights some additional partial derivatives used in Chapter 5.

A.2 Partial Of Gravitational Acceleration With Respect To Spacecraft Position
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A.3 Partial Of Acceleration Due To Atmospheric Drag With Respect To Space-
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A.4 Partial Of Acceleration Due To Atmospheric Drag With Respect To Space-

craft Velocity
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A.5 Partial Of Acceleration Due To Atmospheric Drag With Respect To Space-

craft Ballistic Coefficient
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A.6 Partial Of Acceleration Due To Atmospheric Drag With Respect To Ref-

erence Atmospheric Density
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A.7 Partial Of Acceleration Due To Atmospheric Drag With Respect To Scale

Height

∂aIaero
∂hs

∣∣∣∣
x̄

= −

(∥∥∥r̄ICM/E

∥∥∥− href)
2h̄2

s

ρ̄re

−
(∥∥∥∥r̄ICM/E

∥∥∥∥−href)
h̄s β̄

∥∥∥v̄ICM/E

∥∥∥ v̄ICM/E (A.6)

A.8 Partial Of Solar Radiation Pressure Perturbation With Respect To Space-

craft Position

Solar radiation pressure perturbation partial, with respect to spacecraft position in

inertial frame, is computed as follow
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where îICM/Sun is the unit vector defined as

îICM/Sun =
r̄ICM/E − ρSun∥∥∥r̄ICM/E − ρSun

∥∥∥ (A.9)



187

A.9 Partial Of Third-Body Perturbation With Respect To Spacecraft Position

Third-body perturbation partial, with respect to spacecraft position in inertial frame,

is computed as follow
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where m3rd is the mass of the third-body (Sun, Moon, etc.), and îI
CM/3rd

is the unit

vector defined as

îICM/3rd =
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∥∥∥ (A.12)

A.10 Partial Of Gravity Gradient Torque With Respect To Spacecraft Position

Gravity gradient torque partial with respect to spacecraft position is computed as follow
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∥∥∥5


5
[
r̄BCM/E ×

(
J r̄BCM/E

)]
îT
r̄B
CM/E∥∥∥r̄BCM/E

∥∥∥ +
[(
J r̄BCM/E

)
×
]

−
[
r̄BCM/E×

]
J
}
TI→B (A.15)

A.11 Partial Of Gravity Gradient Torque With Respect To Spacecraft Rotation

Vector

Gravity gradient torque partial with respect to rotation vector is computed as follow

∂Mgg

∂θ

∣∣∣∣
x̄

=

∂

{
3µ∥∥∥rBCM/E∥∥∥5

(
rBCM/E ×

[
JrBCM/E

])}
∂θ

∣∣∣∣∣∣∣∣∣∣
x̄

(A.16)

∂Mgg

∂θ

∣∣∣∣
x̄

= 3µ
(
rBCM/E ×

[
JrBCM/E

]) ∂
(

1∥∥∥rBCM/E∥∥∥5

)
∂
∥∥∥rBCM/E

∥∥∥
∂
∥∥∥rBCM/E

∥∥∥
∂θ

∣∣∣∣∣∣∣∣∣∣
x̄

+
−3µ

[(
J r̄BCM/E

)
×
]

∥∥∥rBCM/E

∥∥∥5

∂rBCM/E

∂θ

∣∣∣∣∣∣∣
x̄

+
3µ
([

r̄BCM/E×
]
J
)

∥∥∥rBCM/E

∥∥∥5

∂rBCM/E

∂θ

∣∣∣∣∣∣∣
x̄

(A.17)

Since,
∂
∥∥∥rBCM/E∥∥∥
∂θ = 0

∂Mgg

∂θ

∣∣∣∣
x̄

=
−3µ

[(
J r̄BCM/E

)
×
]

∥∥∥rBCM/E

∥∥∥5

∂rBCM/E

∂θ

∣∣∣∣∣∣∣
x̄

+
3µ
[
r̄BCM/E×

]
J∥∥∥rBCM/E

∥∥∥5

∂rBCM/E

∂θ

∣∣∣∣∣∣∣
x̄

(A.18)
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To compute
∂
(
rB
CM/E

)
∂θI→B

∣∣∣∣∣
x̄

, Eq. A.16 is linearized, such that for small rotations (δθ)

TI→B = (I − [δθ×])TI→B̄ (A.19)

rBCM/E = TI→B

(
rICM/E

)
(A.20)

rBCM/E = (I3×3 − [δθ×])TI→B̄

(
rICM/E

)
(A.21)

Expanding right hand side in Eq. A.21

rBCM/E = TI→B̄

(
rICM/E

)
− [δθ×]TI→B̄

(
rICM/E

)
(A.22)

rBCM/E = TI→B̄

(
rICM/E

)
+
[{
TI→B̄

(
rICM/E

)}
×
]
δθ (A.23)

Extracting the first order term from Eq. A.23, gives

∂rBCM/E

∂θ

∣∣∣∣∣
θ̄

=
[
r̄BCM/E×

]
(A.24)

Substituting Eq. A.24 in Eq. A.18, the partial derivative of the gravity gradient torque

can be written as follow

∂Mgg

∂θ

∣∣∣∣
x̄

=
−3µ∥∥∥rBCM/E

∥∥∥5

{[(
J r̄BCM/E

)
×
]
−
[
r̄BCM/E×

]
J
}[

r̄BCM/E×
]

(A.25)

A.12 Partial of Accelerometer Measurement With Respect To Spacecraft Ro-

tation Vector

Accelerometer measurement in spacecraft body-fixed frame, is given as
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aBdi = TI→B

{
gI
(
rICM/E

)
− gI

(
rICM/E + TB→I

[
rBai/O − rBCM/O

])
+ aIaero + aISRP

}

+ωBB/I ×
(
ωBB/I ×

[
rBai/O − rBCM/O

])
(A.26)

To compute
∂aBdi
∂θI→B

∣∣∣∣
x̄

, Eq. A.26 is linearized, such that for small rotations (δθ)

θI→B ≈ θI→B̄ + δθ (A.27)

TI→B (θI→B) = (I − [δθ×])TI→B̄ (A.28)

aBdi = (I3×3 − [δθ×])TI→B̄ (θ) aIdi (θ + δθ) (A.29)

aBdi = (I3×3 − [δθ×])TI→B̄ (θ)

[
aIdi (θ) +

∂aIdi
∂θ

∣∣∣∣∣
x̄

δθ

]
(A.30)

Expanding right hand side in Eq. A.30

aBdi = TI→B̄ (θ)aIdi (θ)− [δθ×]TI→B̄ (θ)aIdi (θ) +

TI→B̄ (θ)
∂aIi
∂θ

∣∣∣∣
x̄

δθ − [δθ×]TI→B̄ (θ)
∂aIdi
∂θ

∣∣∣∣∣
x̄

δθ (A.31)

Ignoring second order term in δθ
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aBdi = TI→B̄ (θ)aIdi (θ) +

{[(
TI→B̄ (θ)aIdi (θ)

)
×
]

+ TI→B̄ (θ)
∂aIdi
∂θ

∣∣∣∣∣
x̄

}
δθ (A.32)

Extracting the first order term from Eq. A.32, gives

∂aBdi
∂θ

∣∣∣∣∣
x̄

=
[{
TI→B̄

(
θ̄
)
āIdi
(
θ̄
)}
×
]

+ TI→B̄
(
θ̄
) ∂aIdi
∂θ

∣∣∣∣∣
x̄

(A.33)

To evaluate
∂aIdi
∂θ

∣∣∣∣
x̄

, differentiate both sides of aIdi = gI
(
rICM/E

)
− gI

(
rICM/E+

T TI→B

[
rBai/CM

])
with respect to θ. Since,

∂
{
gI
(
rI
CM/E

)}
∂θ is not a function of θ, this implies

∂aIdi
∂θ

∣∣∣∣∣
x̄

= −
∂
{
gI
(
rICM/E + T TI→B

[
rBai/CM

])}
∂θ

(A.34)

Since, rIai/E = rICM/E + T TI→B

[
rBai/CM

]
, using chain rule

∂aIdi
∂θ

∣∣∣∣∣
x̄

= −
∂
{
gI
(
rIai/E

)}
∂rIai/E

∂
(
rIai/E

)
∂θ

(A.35)

Noting that
∂
{
gI
(
rI
ai/E

)}
∂rI
ai/E

is equal to the gravity gradient ∇gI
(
rIai/E

)
, at the ith accelerom-

eter position

∂aIdi
∂θ

∣∣∣∣∣
x̄

= −∇ḡI
(
r̄Iai/E

) ∂ (rIai/E)
∂θ

(A.36)

Substituting rIai/E = rICM/E + T TI→B

[
rBai/CM

]
in Eq. A.36

∂aIdi
∂θ

∣∣∣∣∣
x̄

= −∇ḡI
(
r̄Iai/E

) ∂ (T TI→B [rBai/CM])
∂θ

(A.37)

To evaluate
∂
(
TTI→B

[
rB
ai/CM

])
∂θ

∣∣∣∣∣
x̄

, using the linearization method, such that

T TI→B (θ) = T TI→B (θI→B̄ + δθ) (A.38)
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T TI→B (θ) = TB→I (−θI→B̄ − δθ) (A.39)

Using the cascading property of the transformation matrix

T TI→B (θ) = TB̄→I (−θ)TB→B̄ (−δθ) (A.40)

For small angle rotations, approximating TB→B̄ (−δθ) = (I3×3 + [δθ×])

T TI→B

[
rBai/CM

]
= T TI→B̄ (I3×3 + [δθ×])

[
rBai/CM

]
(A.41)

On expanding the right hand side

T TI→B (θ)
[
rBai/CM

]
= T TI→BN (θN )

[
rBai/CM

]
+ T TI→BN (θN ) [δθ×]

[
rBai/CM

]
(A.42)

T TI→B (θ)
[
rBai/CM

]
= T TI→B̄ (θ)

[
rBai/CM

]
− T TI→B̄ (θ)

[
rBai/CM×

]
δθ (A.43)

Ignoring the nominal term and extracting the first order term from Eq. A.43, yields

∂
(
T TI→B (θ)

[
rBai/CM

])
∂θ

∣∣∣∣∣∣
x̄

= −T TI→B̄
(
θ̄
) [

r̄Bai/CM×
]

(A.44)

Substituting the result from Eq. A.44 in Eq. A.37, gives

∂aIdi
∂θ

∣∣∣∣∣
x̄

= ∇ḡI
(
r̄Iai/E

)
T TI→B̄

(
θ̄
) [

r̄Bai/CM×
]

(A.45)

Substituting the result from Eq. A.45 in Eq. A.33, gives
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∂aBdi
∂θ

∣∣∣∣∣
x̄

=
[{
TI→B̄

(
θ̄
)
āIdi
(
θ̄
)}
×
]

+ TI→B̄
(
θ̄
)
∇ḡI

(
r̄Iai/E

)
T TI→B̄

(
θ̄
) [

r̄Bai/CM×
]

(A.46)

A.13 Partial Of Acceleration Measurement With Respect To Spacecraft An-

gular Velocity

Partial of accelerometer measurement with respect to spacecraft angular velocity is

given as

∂aIdi
∂ωBB/I

∣∣∣∣∣
x̄

= TB→I (qB→I)
∂
[
ωBB/I ×

(
ωBB/I ×

(
rBai/O − rBCM/O

))]
∂ωBB/I

∣∣∣∣∣∣
x̄

(A.47)

∂aIdi
∂ωBB/I

∣∣∣∣∣
x̄

= −TB→I

 ∂
{
ωBB/I ×

([
rBai/O − rBCM/O

]
× ωBB/I

)}
∂ωBB/I

∣∣∣∣∣∣
x̄

+
∂
{(
ωBB/I ×

[
rBai/O − rBCM/O

])
× ωBB/I

}
∂ωBB/I

∣∣∣∣∣∣
x̄

 (A.48)

∂aIdi
∂ωBB/I

∣∣∣∣∣
x̄

= −TB→I
{[(

ω̄BB/I ×
[
r̄Bai/O − r̄BCM/O

])
×
]

+
[
ω̄BB/I×

] [(
r̄Bai/O − r̄BCM/O

)
×
]}

(A.49)

A.14 Partial Of Accelerometer Measurement With Respect To Spacecraft’s

Center Of Mass Position

Partial of accelerometer measurement with respect to spacecraft’s center of mass posi-

tion, in spacecraft body-fixed frame and with respect to the origin of spacecraft body-fixed

frame, is given as
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∂aIdi
∂rBCM/O

∣∣∣∣∣
x̄

= −
∂
{

gI
(
rICM/E + TB→I (qB→I)

[
rBai/O − rBCM/O

])}
∂rBCM/O

∣∣∣∣∣∣
x̄

+ TB→I (qB→I)
∂
{
ωBB/I ×

(
ωBB/I ×

[
rBai/O − rBCM/O

])}
∂rBCM/O

∣∣∣∣∣∣
x̄

(A.50)

∂aIdi
∂rBCM/O

∣∣∣∣∣
x̄

= −
∂
{

gI
(
r̄Iai/E

)}
∂rIai/E

∣∣∣∣∣∣
x̄

∂
(
rIai/E

)
∂rBCM/O

∣∣∣∣∣∣
x̄

+TB→I (q̄B→I)

 ∂
{[
ω̄BB/I×

] [
ω̄BB/I×

] [
rBai/O − rBCM/O

]}
∂rBCM/O

∣∣∣∣∣∣
x̄

 (A.51)

∂aIdi
∂rBCM/O

∣∣∣∣∣
x̄

= ∇ḡI
(
r̄Iai/E

)
TB→I − TB→I

([
ω̄BB/I×

] [
ω̄BB/I×

])
(A.52)

A.15 Partial Of Accelerometer Measurement With Respect To Accelerometer

Position

Partial of accelerometer measurement with respect to the ith accelerometer position,

in spacecraft body-fixed frame and with respect to the origin of the spacecraft body-fixed

frame
(
rBai/O

)
, is given as

∂aIdi
∂rBai/O

∣∣∣∣∣
x̄

= −
∂
{

gI
(
rICM/E + TB→I (qB→I)

[
rBai/O − rBCM/O

])}
∂rBai/O

∣∣∣∣∣∣
x̄
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+ TB→I (qB→I)
∂
{
ωBB/I ×

(
ωBB/I ×

[
rBai/O − rBCM/O

])}
∂rBai/O

∣∣∣∣∣∣
x̄

(A.53)

∂aIdi
∂rBai/O

∣∣∣∣∣
x̄

= −
∂
{

gI
(
r̄Iai/E

)}
∂rIai/E

∣∣∣∣∣∣
x̄

∂
(
rIai/E

)
∂rBai/O

∣∣∣∣∣∣
x̄

+TB→I

 ∂
{[
ω̄BB/I×

] [
ω̄BB/I×

] [
rBai/O − rBCM/O

]}
∂rBai/O

∣∣∣∣∣∣
x̄

 (A.54)

∂aIdi
∂rBai/O

∣∣∣∣∣
x̄

= −∇ḡI
(
r̄Iai/E

)
TB→I + TB→I

([
ω̄BB/I×

] [
ω̄BB/I×

])
(A.55)
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APPENDIX B

Semi-Major Axis Time Derivative

B.1 Overview

This appendix provides the detailed derivation of the time derivative of the semi-major

axis for a circular orbit, when atmospheric drag acts on the spacecraft.

B.2 Derivation

Total Energy of an orbit is given as

v.v

2
− µ√

r.r
= − µ

2a
= ξ (B.1)

where ξ denotes the total energy, r and v are position and velocity of the object in orbit,

µ is the standard gravitational parameter of the primary body, and a is the semi-major axis

of the orbit, respectively.

Now to compute the change in semi-major axis, due to atmospheric drag, taking the

time derivative of both sides of Eq. B.1

∂

∂t

(
v.v

2
− µ√

r.r

)
= −µ

2

∂

∂t

(
1

a

)
(B.2)

v̇.v +
µ (ṙ.r)

(r.r)3/2
=

µȧ

2a2
(B.3)

Since, v̇ = − µ

(r.r)3/2 r + adrag and v = ṙ

− µ

(r.r)3/2
r.ṙ + adrag.ṙ +

µ (ṙ.r)

(r.r)3/2
=

µȧ

2a2
(B.4)
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µ (ṙ.r)√
r.r

(
− 1

r.r
+

1

r.r

)
+ adrag.ṙ =

µȧ

2a2
(B.5)

ȧ =

(
2a2
)
adrag.ṙ

µ
(B.6)

Since, mean motion n is given as

n =

√
µ

a3
(B.7)

ȧ =
2adrag.ṙ

n2a
(B.8)

Now, for a circular orbit ṙcirc =
√

µ√
r.r

=
√

2µ
a

ȧcirc =

(
2a2
)
adrag

µ

√
2µ

a
(B.9)

ȧcirc =
(

2
√

2
)

adrag

√
a3

µ
(B.10)

Thus, the time derivative of the semi-major axis (circular orbit) as a function of the

acceleration due to atmospheric drag, is given as

ȧcirc =

(
2
√

2
)
adrag

n
(B.11)
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