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Abstract 

Reducing agricultural runoff year-round is important, in particular during snowmelt events on 

landscapes that receive wintertime applications of manure. To help inform manure guidelines, 

process-level data are needed that link management scenarios with the complexity of snowmelt, 

hence runoff. Albedo and radiative energy fluxes are strong drivers of thaw, but applying these 

mechanistic measurements across multiple, plot-scale management treatments over time presents 

a logistical challenge. The objective of this study was to first develop a practical field approach to 

estimate winter albedo in plot-scale field research with multiple management scenarios. The 

second objective was to quantify the radiative drivers of snowmelt by measuring fluxes after 

wintertime liquid manure application. Six management treatments were tested in south-central 

Wisconsin during the winters of 2015–2016 and 2016–2017 with a complete factorial design: three 

manure application timings (early December, late January, and unmanured) and two tillage 

treatments (conventional tillage versus no-tillage). A multiple linear regression model was 

developed to estimate albedo with digital imagery and readily-obtained site characteristics. 

Manure timing had a significant effect on radiative energy fluxes and tillage was secondary. 

January applications of liquid manure produced an immediate and lasting decrease in albedo, 

which resulted in greater net radiation absorbed by snowpack and subsequent energy available for 

snowmelt. Later applications of liquid manure accelerated snowmelt, which increased runoff 

losses and posed a challenge for nutrient retention from the liquid manure during thaw.  

Keywords: agriculture; manure; tillage; albedo; frozen soil; snow energy balance  
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1. Introduction 

Nutrient loading from agricultural runoff is the leading cause of nonpoint source surface water 

impairment (Carpenter et al., 1998; USEPA, 2015) and in temperate climates, most annual runoff 

occurs on frozen soils (Good et al., 2012). With greater risk of runoff, effective management is 

particularly important for wintertime land-applications of manure, a longstanding and essential 

disposal practice for many dairy producers (Srinivasan et al., 2006). As the sensitive winter season 

motivates revisions to manure application policy and recommendations (e.g. WI Nutrient 

Management Standard 590, USDA NRCS, 2015), a need exists for more conclusive data regarding 

winter runoff processes relative to management decisions (Srinivasan et al., 2006). Most 

agriculture research has been conducted prior to 1980 with limited replication, and focused on 

runoff from solid-bedded dairy manures (13.8–55.5 % dry matter, DM) applied at different times 

during the winter (Hensler et al., 1970; Converse et al., 1976; Klausner et al., 1976; Young and 

Mutchler, 1976). Year-to-year trends were inconsistent, but overall, early-winter applications of 

manure on bare soil tended to increase runoff compared to late-winter applications on top of 

snowpack, and unmanured controls produced the highest runoff volumes (Hensler et al., 1970; 

Converse et al., 1976; Young and Mutchler, 1976). The results were attributed to the general 

complexity of weather and snowmelt, as mechanistic data relating the manure practices to winter 

runoff processes were lacking.  

Kongoli and Bland (2002) determined the drivers of these runoff trends by measuring energy 

for snowmelt relative to solid-bedded manure (40–50 % DM) applied on top of snow and 

unmanured controls. As the presence of manure decreased the snow surface albedo from 0.85 to 

0.11, the absorption of solar radiation increased. In turn, the radiant surface temperature of the 

manure layer rose above freezing and up to seven degrees Celsius higher than that of the snowpack 
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in the unmanured control. Because of the low thermal conductivity of the solid-bedded manure 

(range: 0.08–0.20 W m-1 K-1), however, the absorbed energy was confined to the surface of the 

manure layer and the underlying snowpack was insulated during thaw events. Retarding snowmelt 

through applications on top of snowpack presumably reduced runoff and nutrient losses by 

increasing the amount of time for infiltration, relative to early applications on bare frozen soil, 

though runoff and infiltration were not measured.  

The mulching effect of solid-bedded manure, which was the predominant form of manure 

generated at the time, may not be applicable to liquid manure (< 11 % DM), which is now much 

more common (USDA-NASS, 2010). In a comparison of winter-applied liquid swine manure (4 

% DM) to turkey litter (57 % DM), overall runoff loads were greater from the liquid manure, 

despite the higher nutrient load within the turkey litter at application (Owens et al., 2011). Other 

comparisons, such as wintertime applications of liquid dairy manure to no-tillage and disk-tillage 

fields, were also mixed and cited challenges from limited replication of treatments and complex 

weather and field conditions (Komiskey et al., 2011). Few studies have evaluated the winter 

management of liquid manure applications, but recent research that evaluated runoff outcomes 

provided insight into the current practices of most producers. The emphasis for a mechanistic 

approach to determine environmental conditions that are appropriate for winter spreading remains. 

The high water content of liquid manure likely interacts differently with snowpack than solid-

bedded manure. For example, liquid manure may have a greater thermal conductivity and tendency 

to distribute within snowpack instead of maintaining a thick, discrete layer (Vadas et al., 2017). 

Applications of liquid manure on top of snowpack may then accelerate melt by lowering the snow 

surface albedo and transmitting absorbed energy directly to melt processes. Even small amounts 

of impurities, such as soot, significantly reduce snow surface albedo (Warren and Wiscombe, 
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1985). Because radiative fluxes dominate the rate of snowmelt in open systems with relatively 

shallow snowpack (Gray and Landine, 1987), increases in absorbed solar radiation from liquid 

manure may significantly impact snowmelt dynamics.  

The overall goal of this work was to understand the effect of liquid dairy manure specific to 

the radiative processes that drive snowmelt in order to mechanistically identify management 

practices that may reduce – or accelerate – wintertime losses. The need for replication of 

management treatments, paired with the need for repeated physical measurements of albedo and 

radiative fluxes, however, requires numerous net radiometers and this is often cost prohibitive. 

The option of moving a few sensors frequently between plots is often impractical due to their 

fragility and the extreme winter environment. Satellite data (e.g. MODIS, Landsat) are also 

inappropriate for plot-scale studies. Most of the energy reflected by snowpack is within the visible 

band of the electromagnetic spectrum, making digital imagery a strong option for plot-scale 

estimates of albedo (Corripio, 2004). Consequently, the first objective developed a cost-effective 

and practical field approach to measure albedo within the visible wavelengths for plot-scale 

research with digital imagery and measured snow parameters. The second objective was to 

quantify the radiative fluxes from liquid dairy manure and snowpack using a plot-scale approach 

that allowed for replication of both management treatments and physical measurements of the 

radiative energy balance.  

2. Materials and methods 

2.1. Site description and treatments 

The field study was conducted at the University of Wisconsin – Madison Arlington 

Agricultural Research Station (AARS; 43˚17’ N 89˚21’ W) as part of a larger investigation of 

winter surface nutrient transport in dairy agroecosystems. A total of 18 plots (5 x 15 m each) were 
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established on a south-facing, 5.8 % sloped field that was cropped with continuous corn for silage. 

Corn was planted along the contour in each plot with a 76-cm row spacing. Soil in the research 

area was a Saybrook-Ringwood-Griswald series association with a silt-loam texture. These soils 

were formed from loess material with underlying glacial till. Soil organic matter content was 4.0 

% (standard error, SE = 0.04) at a 0–2.5 cm depth. 

Two tillage and three manure treatments in a full factorial design were established in triplicate 

for two winter seasons (2015–2016 and 2016–2017) to test the snowmelt dynamics and hydrology 

of frozen soils under common management practices. Tillage treatments were conventional tillage 

(CT) with a fall chisel plow and spring finisher on the contour and no-tillage (NT), which resulted 

in rough and smooth soil surfaces, respectively. The typical timing of winter manure applications 

was represented with three manure treatments: an early-December application at the typical onset 

of the freezing season (D), a late-January application midway through the freezing season (J), and 

an unmanured control (C). Liquid dairy manure (DM 2–6%) was supplied from the Emmons 

Blaine Dairy Facility at AARS and applied manually at a rate of 37.4 kL ha-1, which contained 

approximately 87 kg ha-1 of total nitrogen and 13 kg ha-1 of total phosphorus. The application dates 

included: 10 Dec. 2015, 26 Jan. 2016, 09 Dec. 2016, and 27 Jan. 2017. All field operations were 

performed along the contour (i.e. tillage, harvest, and manure application). Six to 12 manure 

samples were collected during each application and the percent of dry matter was measured by 

drying. The thermal conductivity of the manure was tested with a thermal property analyzer (KD2 

Pro, Decagon Devices, Inc., Pullman, WA). Manure nutrients were analyzed by the University of 

Wisconsin Soil and Forage Analysis Laboratory (Marshfield, WI, USA), where total nitrogen was 

measured by using methods of Peters et al. (2003), Section 3.2, and phosphorus concentrations 

were measured with colorimetric spectrophotometry after dry ashing (Section 5.2). 
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2.2. Field measurements 

Atmospheric, soil, and hydrologic parameters were measured using automated and manual 

instruments to target the radiative energy balance, relative to manure applications and tillage. An 

on-site weather station was equipped with an air temperature and vapor pressure sensor (VP-3, 

Decagon Devices Inc., Pullman WA) and a tipping-bucket rain gauge (RG3, Onset Computer 

Corporation, Bourne, MA) modified to measure snowfall as the liquid equivalent (CS705, 

Campbell Scientific, Inc., Logan, UT). The weather station scanned every minute and stored 

hourly averages of air temperature (˚C), vapor pressure (kPa), and the total hourly precipitation 

(mm) with a datalogger (model CR1000, Campbell Scientific, Inc., Logan, UT). Soil frost was 

monitored with a frost tube installed in each plot (Rickard & Brown, 1972; MacKay, 1973). Three 

snow sticks were installed in each plot equidistantly along the slope for the manual measurement 

of snowpack depth to the nearest mm. The snow-water equivalent (SWE), defined as the height of 

water stored as snow in mm, was calculated by measuring the density of the snow (g cm-3) in each 

plot with a snow corer (U.S. Army Corps of Engineers, 2015). These measurements of frost and 

snow were collected at least once every week, and up to daily during precipitation and thaw events.  

Runoff was monitored with a storm-integrated, discharge-weighted collection system for each plot 

(Bonilla et al., 2006; Vadas and Powell, 2013). The area of each plot (75 m2) was hydrologically 

isolated with earthen berms. Runoff was directed into a passive, divider collection system that 

consisted of three, sequential 19 L buckets for each plot. The first two buckets of each system were 

topped with a steel crown that had 24 precision-cut, V-slot weirs that directed 1/24th of the runoff water 

to the subsequent bucket, allowing for up to a 11.4 kL (152 mm) event to be captured. After each runoff 

event, the height of the water in each bucket was measured with a meter stick to the nearest mm. To 

determine nutrient loads for each plot, a water sample was also collected for each bucket. The dilution 

ratio from the weirs was then used to calculate the total runoff volume and nutrient loads of the event 
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for each plot. Water samples were stored at 4°C until analysis. Unfiltered samples were 

colorimetrically analyzed for total Kjeldahl nitrogen (TKN) and total Kjeldahl phosphorus (TKP) after 

digestion (AQ2 Discrete Analyzer, SEAL Analytical Brand, Mequon, WI; Seal, 2017). Filtered 

samples (0.45 μm) were analyzed for dissolved reactive phosphorus (DRP; Murphy and Riley, 1962), 

and nitrate-N (NO3
--N) with a Lachat automated analyzer (Wendt, 2000). Total Nitrogen (TN) was 

calculated as the sum of TKN and NO3
--N. Nutrient loads were calculated by multiplying the nutrient 

concentrations by the runoff volume for each plot. 

One replicate per treatment (i.e. six plots) was equipped with additional instrumentation. An 

infrared radiometer (SI-111, Apogee Instruments, Logan, UT) measured the ground surface 

temperature (soil or snow, when present). The infrared radiometers were mounted at a height of 

1.2 m above the soil surface to measure temperature every minute, and hourly averages were 

recorded with dataloggers (model CR1000, Campbell Scientific, Inc., Logan, UT). During the 

freezing season of 2015–2016, one net radiometer (NR01, HuksefluxUSA, Center Moriches, NY) 

was mounted at a 30 cm height above the soil surface and rotated between the six plots. During 

the freezing season of 2016–2017, three net radiometers were rotated between plots. Hourly 

averages of incoming and reflected solar radiation and longwave radiation, surface temperature, 

and albedo were recorded with dataloggers (model CR10X, Campbell Scientific, Inc., Logan, UT). 

2.3. Albedo Estimation 

By February 2016, there was a clear need to frequently estimate albedo in each of the plots and 

a net radiometer proved inadequate. As such, a multiple linear regression (MLR) model of digital 

imagery, surface and weather conditions, and known albedo values (measured by the net 

radiometers) was developed for 40 dates during the 08 February to 14 March 2016, and 5 

December 2016 to 21 March 2017 winter periods. Snow was present during all the dates included 

in the model and ranged from discrete patches and thin dustings of new snowfall (< 1 mm depth, 
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below the measureable limit) to thick, continuous snowpack layers with or without the presence 

of manure. Bare soil was not intended to be represented by this model. Dates in which the soil had 

no snow cover were represented with net radiometer data and were not included in the MLR, as 

albedo becomes nonlinear and is a well-established function of soil moisture content at values less 

than 0.1 (Idso et al., 1975; Lobell & Asner, 2002).  

Using a 1 x 1 m quadrat, one representative and undisturbed area within each plot was selected 

at random on each date. A digital image of the quadrat was photographed with a cellphone camera 

(Samsung Galaxy S5, Samsung Electronics Co., Ltd., Suwon, South Korea), in which all automatic 

settings were turned off [i.e. flash, high dynamic range (HDR), low light detection, and selective 

focus] and the ISO was set to 800. For plots with net radiometers, the quadrat was placed directly 

beneath the net radiometer and a second image was photographed for that plot. Images were 

photographed between 10:00–14:00 local time. A reflectance plate (Spectralon Targets #SRT-99-

120, Labspere, Inc., North Sutton, NH) was used to verify even pixel distribution. All images were 

processed with open-source ImageJ software using the Fiji image processing package (Schindelin 

et al., 2012). Each image was corrected for distortions with Interactive Perspective, cropped to 

2.25 M pixels (1500 x 1500 pixels) within the quadrat, and an RGB Histogram of the 8-bit (0–

255) pixel values was plotted, with 0 representing black and 255 representing white ends of the 

color spectrum. The pixel mean, standard deviation, minimum, maximum, and mode were 

recorded.  

2.4. Statistical analysis and modeling  

The MLR was developed with R Statistical Software (R Core Team, 2014) using a linear mixed 

model. A total of 19 potential explanatory variables were identified: digital image data (pixel mean 

values, time, day of year, and year), weather (air temperature, vapor pressure), field-measured 
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snow characteristics (snow depth, snow density, snow-water equivalent, snow age), manure 

(application timing and presence), tillage (conventional or no-tillage), sky condition (sunny or 

overcast), measured incoming solar and longwave radiation in W m-2, and calculated solar position 

(zenith angle, declination angle, and azimuth). Inputs for manure, tillage, and sky condition were 

assigned simple rating systems. For manure application timing, the unmanured control was rated 

as 1, the December manure application as 2, and the January manure application as 3. Tillage was 

rated as 1 for conventional tillage and 2 for no-tillage. The ‘presence of manure’ variable was rated 

0 if no manure was visible in the image and 1 if manure was in the image. Similarly, sky condition 

was rated as 0 for overcast and 1 for clear. 

While digital imagery and surface conditions were captured across all plots on each of the 40 

dates, only data from the plots that also had direct measurements of albedo with a net radiometer 

were used to build the MLR (i.e. one plot per date during the freezing season of 2015–2016 and 

three plots per date during the freezing season of 2016–2017). This procedure yielded a total of 

110 ground-truthed data points. The assumptions of the MLR were tested with the following: 1) 

linearity and transformations were tested with a scatterplot matrix of each explanatory variable 

and albedo, 2) equal variance was tested with residual versus fitted plots, 3) normality was tested 

with quantile-quantile (QQ) plots, 4) leverage through Cook’s Distance and the Bonferroni Outlier 

Test (α = 0.05) were used to check for outliers, and 5) variance-inflation factors (VIF) were used 

to test for multicollinearity. The MLR was cross-validated by partitioning the data with an 80/20 

split. Data points were randomly assigned to a Training Set, with which the explanatory variables 

were selected through Subset Model Selection, and estimates of coefficients were calculated. The 

remaining data points were reserved as the Test Set, which was used to evaluate the predictive 

error of the model by calculating the root mean squared error (RMSE). A final model was 
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determined using the Bayesian Information Criterion (BIC), adjusted R2 (Radjusted
2), and RMSE 

selection criteria. 

The final MLR model was used to calculate the albedo of all of the plots across the 40 dates in 

2015–2016 and 2016–2017. To quantify the effect of the manure on resultant solar, longwave, and 

net radiation, the following calculations were made:  

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁        (1) 

where RNET is net radiation, SNET is net solar radiation, and LWNET is net longwave radiation, units 

are in W m-2, and  

𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆↓ −  𝑆𝑆↑ = (1 − 𝛼𝛼)𝑆𝑆↓        (2a) 

𝑆𝑆↑ = 𝛼𝛼𝑆𝑆↓          (2b) 

𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐿𝐿𝐿𝐿↓ − 𝐿𝐿𝐿𝐿↑        (2c) 

𝐿𝐿𝐿𝐿↑ = 𝜀𝜀𝜀𝜀𝑻𝑻4          (2d) 

where S↓ is incoming solar radiation that was directly measured by the net radiometers and S↑ is 

reflected solar radiation that was calculated from albedo, α. LW↓ is the incoming longwave 

radiation that was directly measured by the net radiometers. LW↑ is outgoing longwave radiation, 

which was calculated by the Stefan-Boltzmann constant, σ = 5.67E-8 W m-2 K-4, and T, the surface 

temperature of each treatment in Kelvin measured by the infrared radiometers. A mean of 0.98 

was used for the emissivity, ε, of snowpack, as measured by the net radiometers in this study, 

which is comparable to other established values (Hewison and English, 1999; Wan, 2008; Warren, 

1982). Daily averages of 24-hour incoming solar and longwave radiation were calculated and 

albedo estimates were used to calculate the average daily absorbed solar radiation for each plot, 

which allowed for averages and standard error to be calculated across manure and tillage 

treatments. The data related to longwave radiation, including net radiation, were restricted to one 
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daily value per treatment because only one replication was instrumented with infrared radiometers 

for the ground surface temperature measurement. 

3. Results and Discussion 

3.1. Monitoring conditions 

Average air temperature and total precipitation were greater during the winters of 2015–2016 

and 2016–2017 than the 30 year normal (1981–2010; NOAA, 2017), and there were fewer days of 

frozen ground compared to 10-year averages (University of Wisconsin, 2010) (Table 1). Six thaw 

events occurred during the 74 days of frozen ground in the 2015-2016 monitoring year and nine 

thaw events occurred during the 94 days of frozen ground in the second monitoring year (Figure 

1).  

The 10 December 2015 manure application occurred on unfrozen, bare soil, as the soil froze 

41 days later than average and snow did not accumulate until 31 December 2015 (Figures 1 and 

2). On 26 January 2016, manure was applied on top of snow that was 15.6 cm deep (SE = 0.6) 

with a SWE of 24 mm (SE = 1) and underlying frozen soil.  The 9 December 2016, application 

was on top of snow with an average depth of 6.1 cm (SE = 0.3), SWE of 10 mm (SE = 1), and 

underlying frozen soil. The 27 January 2017, application was on top of snow with an average depth 

of 19.6 cm (SE = 0.4), SWE of 31 mm (SE = 1), and underlying frozen soil. By 22 Feb. 2017, the 

soil thawed after the maximum air temperature was over 20 degrees greater than the normal, but 

refroze from 3–21 March 2017. 

3.2. MLR Results 

The assumptions of the MLR were met for all data points and eight explanatory variables were 

significant to the MLR: day of year, solar declination angle, manure application timing, presence 

of manure, mean pixel value of the digital image, snow depth, presence of overcast versus clear 
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sky, and air temperature (Table 2). Each of these eight inputs represent accessible data that are 

conducive to rapid measurement in applied, plot-scale research. A strong relationship was obtained 

between observed versus predicted albedo estimates, Radjusted
2 = 0.87 (Figure 3).  

3.3 Tillage and liquid manure application impacts on albedo and snowpack 

The albedo ranged from 0.08 for thawing soil without snowpack to 0.95 for fresh snow, and 

liquid manure application resulted in a patchy, discontinuous layer of manure that infiltrated the 

underlying snowpack. As the 26 January 2016 application took place prior to the MLR 

development, only a net radiometer recorded the change in albedo from 0.95 of the freshly fallen 

snow from the night before to 0.33 after manure application on no-tillage soils. Between 27–29 

January, the albedo of unmanured snowpack remained above 0.89, whereas the manured plot 

remained below 0.4. Snowmelt began on 30 January and by 1 February 2016, the albedo of the 

manured plot decreased to 0.12, while the unmanured snowpack decreased to 0.46. The MLR 

method was added 08 February, after there was a clear need to capture abrupt changes in albedo 

with additional small-scale snowfall events and a second thaw event between 02–07 February. 

Despite there having already been two (incomplete) melt events post-manure application, the 

manure exhibited a legacy effect on albedo through 15 February 2016 because of low and 

intermittent snowfall. A total of 4 mm (SWE) of new snow fell between 27 January – 08 February 

2016, after which no snowfall occurred until late March (Figure 1 and 2). Increases in albedo from 

new snow were temporary in the January-manured plots, as the shallowly-buried manure layer 

remained well within the penetration depth of solar radiation, which is estimated to be 10 – 16 mm 

SWE, or a 10 cm snow depth (Baker et al., 1991; O’Neill and Gray, 1973; Perovich, 2007). By 20 

February 2016, the next date of digital imagery, a large-scale snowmelt occurred and all of the 
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snowpack melted. After this event, the January-manured treatments were not different from other 

manure timings.  

After developing the MLR in late winter 2015–2016, more temporally detailed measurements 

were completed for the winter of 2016–2017. On 9 December 2016, the manure application 

decreased the albedo from 0.71 (SE = 0.00) to 0.46 (SE = 0.04) on conventional tillage and 0.69 

(SE = 0.01) to 0.39 (SE = 0.04) on no-tillage. From 10–12 December 2016, 14 mm SWE fell, 

bringing the albedo of all the plots between 0.8–0.9, and no additional differences in albedo were 

estimated from the December application. Between 24 December 2016 and 10 January 2017, 

primarily frozen conditions with intermittent rain, snow drift, and a lack of new snowfall caused 

overall reductions in snow depth and greater variability between tillage treatments (Figures 1 and 

2). Snowpack particularly decreased on conventionally tilled soils as the shallowly buried ridges 

were within the penetration depth of solar radiation and gradually became exposed. During that 

18-day period without new snow and 28 mm of rain, the albedo of conventional tillage decreased 

to 0.31, while no-tillage decreased to 0.43. New snowfall occurred on 11 January 2017 and became 

more frequent through the end of the month, reducing the differences between tillages. 

On 27 January 2017, the manure application decreased the albedo from 0.73 (SE = 0.02) to 

0.45 (SE = 0.04) on conventional tillage and 0.74 (SE = 0.01) to 0.48 on no-tillage (SE = 0.01). 

These decreases are significant and similar to decreases in snow albedo from volcanic ash deposits 

(0.84 to 0.36), which were found to accelerate the rate of snowmelt by about 150 % (Young et al., 

2014). After new snowfall on 31 January (SWE = 1.8 mm), all of the treatments had similar 

albedos. As snow aged and additional precipitation included rain (e.g. 1.6 mm of rainfall on 5 

February), the albedo of the January manure treatment, regardless of tillage, remained lower than 

that of other application timings and lasted for three weeks. Specifically, the albedo from the 
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January applications remained 0.51 to 0.41 lower in conventional tillage and no-tillage, 

respectively, than plots with no manure or December applications. This may be explained by 

overall site conditions – more precipitation fell as snow in December 2016, and masked the 

December manure layer (Figure 2). The thickness and duration of any new snow cover on top of 

the January manure layer was minimized by more precipitation falling as rain in January and 

February (Figure 1), as well as the greater intensity of solar irradiance after the winter solstice.   

3.4. Discussion of Liquid Manure Application and Tillage on Radiative Energy and Runoff 

With lasting changes in the estimated albedo, differences in the reflected solar radiation, hence 

average daily net radiation, became pronounced after the January manure applications across 

tillage treatments in both winters. During winter 2015-16, reflected solar radiation decreased by 

an average of 50 W m-2 from the January application on no-tillage until 01 February 2016 (as 

recorded by net radiometers), when a large melt event caused much of the applied manure to 

runoff. New snowfall and subsequent melts reduced these differences for the remainder of that 

winter (as captured by the MLR) (Figure 4). At the onset of the January 2017 application, the 

average daily reflected solar radiation decreased by 36.4 (SE = 3.6) W m-2 in conventional tillage 

and 35.0 (SE = 1.3) W m-2 in no-tillage, compared to unmanured controls (Figure 4c). These 

differences in reflected solar radiation between the January application and control increased 

during snowmelt events until a maximum average daily difference of 75.8 W m-2 (SE = 6.1) was 

reached on conventional tillage and 96.2 (SE = 3.1) W m-2 on no-tillage in mid-February 2017. As 

a result, SWE decreased up to 9 and 12 mm d-1 (2–5 cm d-1 as snow depth) faster from January 

applications compared to December applications and controls in conventional versus no-tillage, 

respectively (Figure 2). Snowpack disappeared up to three days earlier during thaw events, 

effectively reducing the length of the events by half. While different in scale, the trends are in 
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agreement with those regarding dust deposition on subalpine snowpack: as radiative absorption 

increased by 35–70 W m-2 from dust, 600 mm of SWE disappeared 51 days earlier than in regions 

of dust-free snow (Skiles et. al, 2012).  

A secondary difference in reflected solar radiation arose from tillage type. During the late 

December 2016 and mid-February 2017, the average daily reflected solar radiation from 

conventional tillage was up to 50 W m-2 lower than no-tillage (Figure 4). This difference is 

attributed to the network of ridges and furrows created by the fall chisel plow. Snow tended to be 

thinner on the ridges, allowing the underlying bare soil surface to influence the snow surface 

albedo and in turn, cause the thinner snow to regress during melts. Therefore, the presence of the 

ridges lowered albedo, allowing for greater absorption of solar radiation with conventional tillage. 

Under no-tillage, snowpack was able to form as a deeper, continuous layer with a greater albedo 

unless manure was added in late January. The strong contrast in reflected solar radiation between 

January manure applications and controls was lower in conventional tillage when soil ridges were 

exposed than in no-tillage. 

The average and maximum daily surface temperatures of the plots were not significantly 

different (Figure 5), thus differences in outgoing longwave radiation were also not significant. The 

decrease in albedo from solid-bedded manure applications can increase the temperature of the 

manure layer above freezing (Kongoli & Bland, 2002). The lack of surface heating from liquid 

manure, however, may be attributed to the interaction between the manure and snowpack. After 

liquid manure is applied, the manure does not remain as a discrete layer, but instead infiltrates into 

the snow with little residue left at the snow surface, creating a mixed snow/manure layer with a 

lowered albedo. The thermal conductivity of the liquid manure was 0.62–0.70 W m-1 K-1, or 5.5 

times greater than that of the solid-bedded manure measured by Kongoli and Bland (2002), due to 
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the higher water content and potential sand bedding residuals associated with liquid manure 

systems. Consequently, as the albedo decreased from manure applications, the absorbed energy 

was transmitted to the snowpack instead of being confined to the manure. 

The net radiation during thaw events indicated the legacy effect of late-January applications of 

liquid manure on snow albedo, regardless of tillage, and highlights the risk of accelerating 

snowmelt and increasing potential nutrient loads in runoff. The cumulative net radiation was 5.1 

MJ m-2 d-1 greater from January applications versus controls or December applications across 

tillages during the 6–8 February 2017 thaw, and 19 MJ m-2 d-1 greater during 10–14 February 

2017. Cumulative across the season on dates in which albedo was measured, net radiation was 4.5 

MJ m-2 d-1 greater with December application compared to unmanured control, and 44.0 MJ m-2 

d-1 greater with January application compared to the control.  

The increases in net radiation and accelerated snowmelt resulted in greater runoff losses from 

the late-January manure application. While all wintertime manure additions inherently add risk to 

runoff losses (Vadas et al., 2017), liquid manure applied in late-January intensified surface nutrient 

transport (Table 3). The earlier onset of runoff and increase to the total runoff volume caused 

concentrated nutrient loads during key melt events on frozen soils. As a result, surface losses of 

nitrogen and phosphorus doubled on soils with late-January applications compared to those with 

early-December. This is attributed to the prolonged increase in net radiation from the late-January 

application, regardless of new snowfall, that infiltrated underlying snowpack and directly 

transmitted absorbed solar radiation to melt processes. Changes to the surface energy balance from 

late applications of liquid manure add further concern to this sensitive time of year by coinciding 

with environmental conditions that already promote runoff on frozen soils: slowed infiltration from 

greater pore ice development (Niu and Yang, 2006), increasing intensity of solar irradiance after 
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the winter solstice, increasing air temperature, and greater frequency of rain. This contrasts the 

mulching effect from solid-bedded manure that allows more time for infiltration by slowing 

snowmelt, thereby reducing some nutrient loss from applications (Kongoli and Bland, 2002). 

Therefore, wintertime applications of liquid manure, and especially those later in the freezing 

season, add risk to nutrient management by accelerating snowmelt, which generates additional 

environmental concerns for runoff as producers move from solid to liquid manure forms.  

4. Conclusion  

This study monitored the influence of liquid dairy manure application timing (early versus later 

in the freezing season) and tillage (conventional fall tillage with a chisel plow versus no-tillage) 

on the resultant radiative energy fluxes on soils with snowpack. First, a multiple linear regression 

model was developed with digital imagery and readily-obtained site characteristics to repeatedly 

estimate plot-scale albedo over time after dynamic snow behavior and field operations. With these 

estimates of albedo, radiative fluxes were calculated for each management treatment. Liquid 

manure applied on top of snow infiltrated the underlying snowpack, creating a generally 

homogenized snow-manure layer with a lower albedo. While early-winter applications of manure 

did not alter radiative energy fluxes through albedo longer than the day of the application, late-

January applications produced a lasting effect, as mixed precipitation and more intense irradiance 

after the solstice reduced masking of the manure layer. The surface roughness from conventional 

tillage reduced albedo, but the effect of tillage on radiative fluxes was secondary to manure 

application timing. Late applications of liquid manure ultimately accelerated snowmelt that 

increased runoff and doubled nutrient loads, posing a challenge to nutrient retention on frozen 

ground. 
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Figure captions 

Figure 1. Weather conditions during a) 2015–16 and b) 2016–17, with average hourly air 

temperature in °C (thin black line), total daily precipitation in mm as rainfall (blue bar) or the 

liquid equivalent of snowfall (gray bar), the presence of frozen soil (thick black line on x-axis), 

and thaw events during the freezing seasons (salmon bar). Vertical arrows designate the manure 

application dates. 

Figure 2. Average snow depth (± standard error) in cm during a) 2015–2016 and b) 2016–2017, 

by tillage and manure application timing treatments: conventional tillage control, CTC (white 

circle); conventional tillage December application, CTD (white square); conventional tillage 

January application, CTJ (white triangle); no-tillage control, NTC (black circle); no-tillage 

December application, NTD, (black square); and no-tillage January application, NTJ, (black 

triangle). Vertical arrows designate the manure application dates. 

Figure 3. Observed versus predicted albedo from the MLR model, by Training Set (n = 88, black 

circle) and Test Set (n = 22, white circle). R2 = 0.87 for the full dataset across 40 days in 2015–

2016 and 2016–2017. 

Figure 4. Average reflected solar radiation, S↑, (± standard error) in W m-2 during a) late winter 

2015–2016, b) 01 December 2016 – 26 January 2017, and c) 26 January to 27 February 2017, by 

tillage and manure timing treatments: conventional tillage control, CTC (white circle); 

conventional tillage December application, CTD (white square); conventional tillage January 

application, CTJ (white triangle); no-tillage control, NTC (black circle); no-tillage December 

application, NTD, (black square); and no-tillage January application, NTJ, (black triangle). 

Liquid dairy manure was applied 10 Dec. 2015, 26 Jan. 2016, 09 Dec. 2016, and 27 Jan. 2017, 

and indicated with a black, vertical line. Vertical arrows designate the manure application dates. 
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Figure 5. Average daily surface temperature in °C during a) 2015–2016 and b) 2016–2017 by 

tillage and manure application timing treatments: conventional tillage control, CTC (white 

circle); conventional tillage December application, CTD (white square); conventional tillage 

January application, CTJ (white triangle); no-tillage control, NTC (black circle); no-tillage 

December application, NTD, (black square); and no-tillage January application, NTJ, (black 

triangle). Vertical arrows designate the manure application dates. 

Figure 6. Differences in average net radiation (RNET) between manure application timings and 

unmanured controls across tillage treatments during 2015–2016 (a) and 2016–2017 (b). 

Differences include December manure applications minus unmanured controls (white square) 

and January applications minus unmanured controls (black triangle). Vertical arrows designate 

the manure application dates. 
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Table 1. Air Temperature Expressed as Monthly Averages (Ave), Minimums (Min), and Maximums 

(Max); Total Monthly Precipitation; and Soil Frost Dates during the 2015–2016 and 2016–2017 

Seasons, Compared to Historic Weather Trends 

Year Month Air Temperature 

      [°C] 
Precipitation 

[mm] 
Soil frost dates 

  Ave Min Max  Freeze Thaw Days frozen 
2015–16 December 1.0 -12.0 14.7 83 30 Dec 12 Mar 74 
 January -7.1 -24.0 4.1 24    
 February -3.5 -21.1 13.3 14    
 March 4.1 -15.2 20.0 104    
2016–17 December -5.8 -25.2 5.1 65 7 Dec 23 Feb 94 
 January -5.3 -21.6 5.8 83 3 Mar 20 Mar  
 February -0.3 -16.2 19.8 64    
 March 0.4 -16.3 16.3 52    
Historic  December -6.4 -11.7 -1.3 37 19 Nov (2) 22 Mar (4) 118 (6) 
weathera January -9.0 -14.6 -3.4 29    
 February -6.5 -12.1 -0.9 33    
 March -0.3 -6.4 5.7 48    

Note. Total monthly precipitation (rainfall + snowfall) expressed in liquid equivalents.  

aMonthly air temperature and precipitation based on 1981–2010 normals, recorded 16 km south 

of the field site at the Dane County Regional Airport in Madison, WI (NOAA, 2017). Average 

soil frost dates (± one standard deviation) based on 10-year averages (2005–2014), recorded 13 

km west of the field site in Lodi, WI (University of Wisconsin, 2010). 

  



Journal of Hydrology 

29 
 

Table 2. Summary Statistics of the Multiple Linear Regression 

Explanatory variable Estimate Standard Error t Pr (> |t|) 
Intercept  0.0182 0.0810    0.225 0.8 
Day  0.000378 0.0000820     4.58 < 0.001 
Declination -0.00452 0.00180 2.52 0.01 
ManureApp -0.0430 0.0163 2.63 0.01 
ManurePresent -0.114   0.0250 -4.54  < 0.001 
PixelMean  0.00300       0.000501 5.99 < 0.001 
SnowDepth  0.00114      0.000202 5.62 < 0.001 
Sky -0.0745    0.02125 -3.51 0.0008 
AirTemperature -0.00895     0.00235 -3.81 0.0003 
Residual standard error 
F-statistic 

0.0867 (df = 79) 
74.7 (df = 8, 79), p < 0.001 

R2   
Radj

2  
BIC 

0.883    RMSE  0.10 
0.871 
-140 
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Table 3. Cumulative runoff and nutrient loads by manure treatment on frozen soils across 

Winters 2015-17  

Manure Application 
Timing 

Runoff TNa TKPb DRPc  
[mm] ----   [kg ha-1]   ---- 

Unmanured control 51 2.0 0.2 0.1 
December 56 3.7 1.1 0.9 
January  59 9.4 2.1 1.4 

aTotal nitrogen (TN), btotal Kjeldahl phosphorus (TKP), and cdissolved reactive phosphorus 

(DRP).  
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