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Abstract A new solution of four-dimensional vacuum
General Relativity is presented. It describes the near horizon
region of the extreme (maximally spinning) binary black hole
system with two identical extreme Kerr black holes held in
equilibrium by a massless strut. This is the first example of a
non-supersymmetric, near horizon extreme binary black hole
geometry of two uncharged black holes. The black holes are
co-rotating, their relative distance is fixed, and the solution
is uniquely specified by the mass. Asymptotically, the geom-
etry corresponds to the near horizon extreme Kerr (NHEK)
black hole. The binary extreme system has finite entropy.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 Near-horizon extreme black hole binary geometry . .
3 Discussion . . . . . . . . . . . . . . . . . . . . . . .
A Extreme co-rotating binary black hole review . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

Several black holes have been observed to rotate at nearly the
speed of light [1–5]. Although there is considerable uncer-
tainty in how black holes attain nearly extremal spins, several
mechanisms in Nature can be envisioned. These include the
merging of binary black holes (BBHs) possibly spinning at
nearly extremal spins, and prolonged disk accretion. Numer-
ical simulations, that are key in developing the most precise
predictions of dynamicalBBHs mergers [6–8] and black hole
disk accretion [9–13], have confirmed the feasibility of these
mechanisms giving rise to nearly extremal spinning black
holes.
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From a theoretical perspective, it is conjectured that a
rotating Kerr black hole obeys cosmic censorship: any sin-
gularities must lay behind the black hole’s event horizon.
As the black hole spin increases, for a fixed mass, the event
horizon area protecting the singularity decreases. The maxi-
mum allowed spin is reached before exposing the singularity.
These maximally rotating black holes are called extreme and
are the central objects of study of this work.

At extremality, the black hole’s temperature drops to zero.
Interestingly, at this point the geometry close to the event
horizon, the so called Near-Horizon Extreme Kerr (NHEK)
geometry [14], displays a very special feature: the isom-
etry group is enhanced to an SL(2, R), conformal sym-
metry and develops a warped version of AdS3. NHEK is
obtained through scalings from the extreme Kerr black hole,
has finite size, namely, finite event horizon area, and retains
all the relevant aspects of black holes: a horizon and an ergo-
sphere which may be associated with those corresponding to
extreme Kerr. The enhanced conformal symmetry in NHEK,
which does not extend to the full Kerr geometry, motivated
works such as the Kerr/CFT conjecture concerning the quan-
tum structure of black holes [15] and studies on the dynamics
of stars [16] and energy extraction [17] in this region.

One then wonders, could NHEK be formed from a merger
of the near horizon geometries of extreme BBHs? And, in this
case, is the conformal symmetry also present in the geom-
etry before merger giving rise to NHEK? To answer these
questions, in this paper, we propose to focus on the sta-
tionary – rather than dynamical – BBHs and find explicitly
the Near-Horizon Extreme Kerr Binary Black Hole geom-
etry, “NHEK2”. We will show that this new metric retains
only partially the symmetry of NHEK, and are “tree”-like
geometries: they are solutions with NHEK asymptotics, but
as one moves inward the geometry branches into two smaller
warped AdS3 regions. Fragmentation of the AdS near hori-
zon extremal charged static black hole geometries was previ-
ously investigated in [18]. Further, a description in the dual
CFT was presented where the AdS trees in the geometry
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correspond to different classical vacua of a quantum mechan-
ical theory.

Luckily, stationary (non-dynamical) BBHs solutions of
Einstein’s equations of General Relativity in vacuum with
two-(neutral)Kerr black holes are also known analytically.
These are exact asymptotically flat vacuum solutions with
two spinning Kerr black holes supported by a conical singu-
larity along the line separating the black holes. They repre-
sent special subfamilies of vacuum spacetimes constructed
via a variety of solution-generating techniques in e.g. [19–
28]. The black holes in these solutions can co-rotate or spin
in opposite directions. They become, for certain range of
the parameters, extremal zero-temperature stationary BBHs
solutions [25–28]. Remarkably, as observed in [22,26,27],
the extreme BBHs overtake the extremal Kerr bound.

The fact that there is a conical singularity in all these solu-
tions may seem discouraging, however the solution, and the
contribution from the conical singularities have a well defined
gravitational action [30]. Thus, standard Euclidean Gravity
thermodynamical arguments can be employed, and one can
extract new results from an apparently ill defined geometry.
We interpret the conical singularities as boundary conditions
necessary to prevent the collapse of the array and maintain
the holes at fixed distance. . Note also that the total energy
associated with the strut as seen by this observer at infinity
is negative. For large separation �z respect to the mass of
the black holes M , the energy is E = −M2G/�z, that cor-
responds to the Newtonian potential between two particles.

All of the above geometries were originally written in
Weyl coordinates, where many expressions simplify. In these
coordinates, the metric takes the form

ds2 = − ρ̂2

f
dt̂2 + f (dφ̂ + ω dt̂)2 + e2ν(dρ̂2 + dẑ2), (1)

where f, ν, ω are functions only of the (ρ̂, ẑ)-coordinates,
and t̂ ∈ (−∞,∞), ρ̂, ẑ ∈ (−∞,∞) and φ̂ ∼ φ̂ + 2π . Note
that all stationary axis-symmetric black hole solutions can
be written in Weyl coordinates (1), including the stationary
BBHs central to our discussion, and also the Kerr and NHEK
geometries. Our starting point to find the NHEK2 geometry
are the co-rotating extreme double-Kerr black hole solutions
in [28] (see Appendix A for a review). We develop an appro-
priate near-horizon limiting procedure in Weyl coordinates1,
and apply it to the extreme BBHs geometry. As a result we
obtain the new NHEK2 geometries, which becomes a distinct
object with finite entropy. Our results may be of considerable
interest in dual CFT studies as in [15,18], entropy calcula-
tions, and gravitational signatures of near exremal spinning
binary black holes.

1 The procedure to describe the near horizon geometries of extremal
black holes has most frequently been developed in Boyer–Lindquist
coordinates

2 Near-horizon extreme black hole binary geometry

The solution of extremal co-rotating identical BBHs [28]
(that for completeness we review in Appendix A) from which
we derive the new near-horizon geometry of extreme BBHs,
takes a simpler representation in Weyl coordinates. We there-
fore perform the scaling computations in this frame. In this
case, we find that the appropriate near-horizon limiting pro-
cedure for the extremal BBHs is

ρ = ρ̂ λ, z = ẑ λ , (2)

t = t̂

λ
, φ = φ̂ + t̂

2Mλ
, (3)

p = − 1√
2

+ (3
√

2 − 2)

4
λ κ = M λ, (4)

taking λ → 0 and keeping (t̂, ρ̂, ẑ, φ̂) fixed. In [28], p and κ

are free parameters related to the definitions of positive mass
and the separation between the black holes respectively. It
is worth emphasizing that at the same rate of the zoom-in
on the near-horizon region, the coordinate distance between
the black holes is scaled to zero. The Newtonian distance
between the black holes is �z = 2M . Therefore, after the
scaling procedure, the distance separating the black holes is
finite, and yet the two black holes are held apart by a con-
ical singularity (massless strut). As a result of this process,
we find the near-horizon extreme black hole binary NHEK2
geometry in Weyl coordinates (1). This is defined by the
equations

f = − 4M2μ0 (μ0 + 2σ 2
0 )

μ0 (μ0 + 2σ 2
0 − 2σ1 + π0) + μ1 π1 + (1 − y2) σ0 τ0

,

ω = −π0 σ0 + π1 σ1 − μ1 − 4σ0 σ1 − (1 − y2) τ0/2

2M(μ0 + 2 σ 2
0 )

,

e2ν = μ0 (μ0 + 2σ 2
0 − 2σ1 + π0) + μ1 π1 + (1 − y2) σ0 τ0

K 2
0 (x2 − y2)4

,

(5)

where the functions yield

μ0 = − ρ̂2

2M2 , σ0 = − x2 − y2

2
− x2 + y2

√
2

, (6)

π1 = −2
√

2 x2 − (1 − √
2)(x2 − y2), (7)

μ1 = − (3 − √
2)

2
(−1 + x2)2 + (1 − √

2)(x2 − y2)2, (8)

σ1 = (3 − √
2)

2
(x2 − y2)

+ (1 − √
2)(3 − 2

√
2)

2
√

2
(x2 + y2), (9)

π0 =
(

−74 + 85
√

2

14

)
x2 − √

2x(1 + x2)

+
((

145 − 108
√

2

28

)
− x

)
(x2 − y2), (10)
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τ0 = √
2x(x2 − 1) −

(
99 − 51

√
2

28
− (1 − √

2)x

)

(x2 − y2) +
(

71 − 23
√

2

28

)
(1 − y2), (11)

and

x =
√

ρ̂2 + (ẑ + M)2 + √
ρ̂2 + (ẑ − M)2

2M
,

y =
√

ρ̂2 + (ẑ + M)2 − √
ρ̂2 + (ẑ − M)2

2M
, (12)

with

K0 = −(1 + √
2)/2. (13)

We have checked that this metric is Ricci flat and, thus, a
solution to the vacuum Einstein equations except on the axis
between the two black holes where the strut is placed, and this
has an effective stress-energy. This solution represents the
near horizon geometry of two extreme Kerr black holes. With
this procedure, the asymptotically flat Minkowski region
from the original metric decouples and the throat becomes
infinitely long while there is a splitting into two pieces that
survives.

Horizons. Our solution displays two horizons located at

ρ̂H = 0, ẑH = ±M. (14)

Besides the conical singularity (to be analyzed in more detail
below) the metric is smooth. The NHEK2 geometry is not
asymptotically flat; in fact, as we show in more detail below,
it approaches the NHEK asymptotic geometry..

There are two U (1) symmetries – ∂t̂ and ∂
φ̂

symmetries
– present in the NHEK2 metric; the metric lacks one of the
killing vectors that would otherwise close in SL(2, R) as in
NHEK. An enhancement of the isometry to SL(2, R)×U (1)

is observed only when the two black holes collapse into one,
and form a single larger black hole. In the collapse of NHEK2
to NHEK, the distance between the black holes goes to zero
and corresponds to the asymptotic limit of NHEK2 as we
describe here below.
Inspection of the NHEK2 solution shows that changing coor-
dinates as

t̂ → (−2 + √
2) M2 T, ρ̂ → (R ± M) sin ,

ẑ → (R ± M) cos  ∓ M,

φ → (−2 + √
2) T + (148 − 107

√
2)

56
M �,

the expansions close to each of the black holes – located now
at R = ±M – gives rise to a metric of the form

ds2 ∼ M2 �()[−(R ± M)2dT 2 + dR2

(R ± M)2

+d2 + �() (d� + (R ± M) dT )2] (15)

with

�() =
(
(22 − 15

√
2)(3 + cos 2) ± (72 − 52

√
2) cos 

)
8

,

�()�() = 16(2 − √
2)2 sin2 (

(6 − √
2)(3 + cos 2) ± (8 − 12

√
2 cos )

) ,

when the leading terms in each metric component are
retained. Hence locally, in the vicinity of each black hole,
we note that the slices of the geometry at fixed polar angle
 correspond to warped AdS3. Our newly discovered met-
ric are “tree”-like geometries: they are solutions with NHEK
asymptotics, but as one moves inward the geometry branches
into two smaller warped AdS3 regions. For the same special
constant value of  = 0 where �(0) = 1, the local met-
rics are that of AdS3. Other tree-like geometries have been
previously found for extreme charged BBHs [18]. Whether
this local manifestation of two copies of AdS3 in NHEK hints
really to an underlying conformal symmetry of the extreme
BBHs is yet a question that needs further investigation.

Following [22,29], the horizon area can be computed from
the metric (15) close to each of the black holes via

Ai ≡ 2π

∫ π

0

√
g g�� d. (16)

The corresponding entropy Si = Ai/4, i = 1, 2 of the
extreme constituents is

S1 = S2 = (2 − √
2) πM2 ≈ 0.5858 × πM2. (17)

The total entropy of the system is

SNEHK2 = S1 + S2 = (2 − √
2) 2πM2. (18)

Asymptotically, for ρ̂ = r sin θ , ẑ = r cos θ and r → ∞,
the limiting metric is also finite but no longer flat. In the
asymptotic limit, it corresponds to the NHEK metric – in
Weyl coordinates – (1) with functions

f = 4M2ρ̂2

2ẑ2 + ρ̂2 , ω =
√
ẑ2 + ρ̂2

2M2 ,

e2ν = M2
(
2ẑ2 + ρ̂2

)
(
ẑ2 + ρ̂2

)2 . (19)

The black holes in the NHEK2 solution (1) with functions
(5)–(13) collapse into one. The collapse geometry corre-
sponds to the single NHEK black hole metric. Each of the
black holes in the original NHEK2 geometry contributes a
mass M/2. The larger NHEK black hole formed after the
collapse has mass MNHEK = M . The entropy in this case is

SNHEK = 2πM2. (20)

A more detailed discussion about the entropy of extremal
binary black holes (18).
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Conical singularity. We now compute the conical singular-
ities of the new NHEK2 metric

�φ̂ = 2π lim
ρ̂→0

(
1 −

√
f

ρ̂2e2ν

)
, −M < z < M, (21)

While the NHEK2 metric has no naked curvature singular-
ities, our computation show that there is a non-removable
conical deficit between the two horizons

�φ̂ = 2π (1/2 + √
2). (22)

Charges and entropy.The mass and angular momenta of the
solution follow from the limiting near-horizon procedure of
the extreme BBHs solution that is manifestly asymptotically
flat

M1 = M2 = M/2, J1 = J2 = M2/2, (23)

Interestingly, the ratio J1/M2
1 = J2/M2

2 = 2 is fixed. While
Hawking’s temperature is zero for NHEK2, each black hole
has an angular velocity

�1 = �2 = 1/(2M). (24)

It is straightforward to verify that the Smarr law (for the
extremal, zero temperature configuration) is satisfied Mi =
2 �i Ji for each individual black hole i = 1, 2.

Ergosphere. There are regions in the NHEK2 spacetime
where the vector ∂t̂ becomes null. We will refer to the bound-
ary region as the ergosphere, since they appear as a conse-
quence of the presence of such regions in the original sta-
tionary extreme BBHs geometries. For NHEK2 these are
defined by regions where gt̂ t̂ = 0 and give rise to a set of
disconnected regions as shown in Fig. 1. The horizons of the
black holes in NHEK2 are points in the (ρ̂, ẑ)-plane and have
finite horizon areas. There is a self similar behavior close to
each black hole that resembles the ergospheres of isolated
extremal Kerr black hole.

Uniqueness. The NHEK2 geometry that we constructed is
asymptotically NHEK, and contains two, instead of one, hori-
zons in the bulk held in equilibrium by a massless strut.
It represents the first example of a geometry with NHEK
asymptotics that is not diffeomorphic to NHEK, which hence
explicitly shows the non-uniqueness of metrics with NHEK
asymptotics with non-smooth horizon. This is not in contra-
diction with the findings of [38,39], where only asymptoti-
cally NHEK solutions with smooth horizons are considered.
Moreover, for a fixed value of the total mass, it is expected
that other finite near-horizon extremal BBHs with localized
conical singularities (or equivalently non-smooth horizons)
exist. These may include extremal BBHs containing two
black holes with non-identical masses or with spins that are
not aligned. Another intriguing aspects related to the unique-
ness includes the classifications of near horizon geometries

Fig. 1 Ergoregion (shaded orange region) of the NHEK2 black hole
solution for M = 1, as a consequence of the presence of such regions in
the original stationary extreme BBHs geometries. The black holes are
located at ρ = ρ̂H = 0, z = ẑH = ±1. A more detailed diagram, close
to one of the black holes appears in the upper right corner. The dashed
line corresponds to the boundary where ∂t̂ is null

in [31,32]. NHEK2 does not pertain to any of the classes
considered therein. This suggests that a new set of assump-
tions are needed for a complete classification i.e. restricting
the number of isolated horizons in the solutions.

3 Discussion

The extremal BBHs solutions [28], as well as the new
NHEK2 geometries that we have found in this note, con-
tain a localized conical singularity (strut), in the line sep-
arating the two black holes. Conical singularities are, in
contrast to curvature singularities in the geometry, possibly
avoidable as an orbital spin is reinstated. In the stationary
BBHs that we have focused on, for example, one could intro-
duce a rotation along one of the planes perpendicular to the
azimuthal-axis. This mechanism would give rise to a cen-
trifugal force, that may balance the self-gravitational effects
between the two black holes and eliminate the strut. So far,
however, this modification of the stationary BBHs solutions
has not been achieved analytically. Other solutions where
rotation plays a role in balancing different configurations
have been given in [33–35].2 Another reason for consider-
ing the stationary rather than the dynamical BBHs solutions
is their extremal maximally rotating (neutral) counterparts.

2 The possibility of adding a rotation to the BBH system to cancel the
strut may be achieved by breaking the axisymmetry while preserving
stationarity, or perhaps via a more challenging approach by solving the
dynamical problem perturbatively.
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Progress has been reported on rapidly spinning dynamical
BBHs mergers [6–8], but extremal zero temperature BBHs
are not viable yet through numerical explorations. There-
fore, to study the extremal BBHs one would have to choose
to work with the exact extreme stationary BBHs and consider
the effect of the conical singularities in these solutions. While
conical singularities are not desirable, these have been shown
to be irrelevant to the so called black hole shadows [36,37]
thanks to the underlying cylindrical symmetry of the prob-
lem. This suggests that certain physical properties of black
holes are protected by symmetries and can be studied even
with solutions that contain localized conical singularities.
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A Extreme co-rotating binary black hole review

For completeness in this Appendix we review the exact solu-
tion of four-dimensional vacuum General Relativity corre-
sponding to two extremal co-rotating Kerr BHs with a local-
ized strut between the BHs as it was identified beautifully in
[28] . This is an asymptotically flat metric of the form (1)

ds2 = −ρ2

f
dt2 + f (dφ + ω dt)2 + e2ν(dρ2 + dz2) (25)

with metric functions defined by

f = κ(y2 − 1)F

D ω
, e2ν = D

K 2
0 (x2 − y2)4

,

ω = − κ(y2 − 1)FN

[(κ(y2 − 1)F)2 − ρ2D2] , (26)

where

x =
√

ρ2 + (z + κ)2 + √
ρ2 + (z − κ)2

2κ
,

y =
√

ρ2 + (z + κ)2 − √
ρ2 + (z − κ)2

2κ
,

and

N = μ2 − (x2 − 1)(1 − y2)σ 2,

D = N + μπ + (1 − y2)στ,

F = (x2 − 1)σπ + μτ,

μ = p2(x2 − 1)2 + q2(1 − y2)2 + (α2 − β2)(x2 − y2)2,

σ = 2
[
pq(x2 − y2) + β(x2 + y2) − 2αxy

]
,

π = 4p2

K0
{K0[px(x2 + 1) + 2x2]

+(x2 − y2)(K0qβx − 2p4β2) + 4p2(pq + β)βx2},
τ = 4p2

K0
{K0x[q(x2 − 1) − (q − pβ)(x2 − y2)]

+2p3(p + qβ)β + p2(pq + β)(y2 − 1)}, (27)

and constants

K0 = p2(p2 − β2), β = 1

2p
[�S + q(1 + p)],

�S = [(1 + p)(1 + 3p2 + pq2)]1/2, q2 = 1 − p2. (28)

The positive values of the mass correspond to the parameter
range

− 1√
2

≤ p < 0, (29)

In this coordinates the event horizons of the extremal black
holes are two points located at

ρH = 0, zH = ±κ. (30)
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