
Environmental Modelling and Software 122 (2019) 104538

Available online 30 September 2019
1364-8152/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

An open-source data manager for network models
Stephen Knox a, James Tomlinson a, Julien J. Harou a,c,∗, Philipp Meier b, David E. Rosenberg d,
Jay R. Lund e, David E. Rheinheimer f

a Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, UK
b Eawag, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
c Department of Civil, Environmental and Geomatic Engineering, University College London, UK
d Department of Civil and Environmental Engineering and Utah Water Research Laboratory, Utah State University, 8200 Old Main
Hill, Logan, UT 84322-8200, USA
e Department of Civil and Environmental Engineering, 3109 Ghausi Hall, University of California, One Shields Avenue, Davis, CA 95616, USA
f Department of Civil and Environmental Engineering, University of Massachusetts, 130 Natural Resources Road, Amherst, MA 01003, USA

A R T I C L E I N F O

Keywords:
Model platform
Web services
Python
Open source
Software framework
Network modelling

A B S T R A C T

Developing simulation and optimisation models for resource networks like water or energy systems increasingly
involves integrating multiple data sources and software. Connecting multiple models and managing data
accessed by different groups of analysts is a software challenge. Many resource systems are represented in
computer models as networks of nodes and links, driven by a range of objectives and rules. We present a data
storage platform, written in Python, which exploits the commonality of network representations to store data
for multiple model types within a single deployment. This open-source platform provides a common source
of data to multiple models using consistent data formats, reducing likelihood of error compared to file based
data management. When deployed as a web service, it allows data to be shared securely among authorised
users over the internet, facilitating collaboration. A case study describes the hosting of a water utility planning
model, with an accompanying worked example.

Software availability

Program title: Hydra Platform
Developer: Stephen Knox
Contact address: stephen.knox@manchester.ac.uk
Software Access: https://www.github.com/hydraplatform
Year first available: 2015
Hardware required: Windows 7, 10 (tested), Linux, MacOSX
Program language: Python
Program size: 116k
Availability and cost: open source
License: LGPL for hydra base, hydra server. MIT for clients.

1. Introduction

Recent advances in simulation and optimisation of environmental
systems have relied on increasingly detailed models running many
scenarios Herman et al. (2015). Cluster and cloud computing also has
enabled larger and more complex models to be used for increasingly
sophisticated decision-making analyses (Reed et al., 2013; Kasprzyk
et al., 2013; Maier et al., 2014; Huskova et al., 2016; Eker and Kwakkel,

∗ Corresponding author at: Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, UK.
E-mail address: julien.harou@manchester.ac.uk (J.J. Harou).

2018). In addition to increasing the data-intensive nature of envi-
ronmental modelling, the sharing of data among collaborators and
stakeholders has become common and will become increasingly im-
portant in future (Carr et al., 2012; Voinov et al., 2016; van Bruggen
et al., 2019). However, translating data formats and managing data
itself can be a barrier to effective and efficient modelling. This can
result in model developers spending more time transforming data than
with the actual modelling and developing system insights.

Multi-disciplinary and remote collaboration is now a common re-
quirement for environmental modelling, and is often essential for envi-
ronmental system modelling (Laniak et al., 2013). Manually managing
multiple input and output files, and synchronising among collaborators
is inefficient and error-prone, as it requires continuous communication
to ensure all parties remain up-to-date. Asynchronous collaboration
on the same data or model is cumbersome or impossible manually.
Centralising data storage where users control access to data eliminates
this issue. Providing a suite of data management functions, such as
scenario management and history tracking, through a multi-user asyn-
chronous system further reduces the likelihood of data becoming out
of sync. Several approaches have been used in the last two decades to

https://doi.org/10.1016/j.envsoft.2019.104538
Received 1 March 2019; Received in revised form 13 August 2019; Accepted 27 September 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/237587016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/envsoft
http://www.elsevier.com/locate/envsoft
mailto:stephen.knox@manchester.ac.uk
https://www.github.com/hydraplatform
mailto:julien.harou@manchester.ac.uk
https://doi.org/10.1016/j.envsoft.2019.104538
https://doi.org/10.1016/j.envsoft.2019.104538
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2019.104538&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 122 (2019) 104538

2

S. Knox et al.

address the model data management problems. Below we present some
approaches and identify some gaps in this area.

Many existing modelling platforms (e.g. commercially available
decision-support systems for water and energy planning) use an all-in-
one single-user design, where a software installed on a user’s machine
contains the user interface, data storage and models all bundled to-
gether (Johnson et al., 1995; Kuczera, 1997; Ltd, 2000; Sieber et al.,
2005). Modern web technologies can now provide a similar experience,
with several additional advantages. Some benefits of using a web
framework over traditional desktop-based software include:

1. Upgrades to the database, code base and user interface (UI) can
be done transparently across collaborators.

2. If the models are made accessible via a web Application Pro-
gramming Interface (API) or User Interface (UI), features can be
added and upgraded transparently, without the need to reinstall
or reconfigure software.

3. Sharing data is a simple process, as it requires relaxing access
permissions on existing data.

4. Having a centralised data management system with a stan-
dardised API ensures consistent data formats, allows for access
control and allows model results to be more easily investigated
and reproduced.

5. Scalability to large-scale model runs can be simplified, as the
server can be upgraded or connected to a cloud service without
user disruption.

6. Web user interfaces such as Google Docs, Google Maps, Lucid-
chart, etc. have become common and are considered by some to
match desktop-based approaches for usability (Blau and Caspi,
2009). Having data accessible through the web allows users to
choose how they work with the data, be it with such online tools,
or with desktop solutions.

Use of web services for managing environmental data is well es-
tablished (Buytaert et al., 2012), with projects focussing on deploying
models through web services (Kralisch and Krause, 2006; Gregersen
et al., 2007; Cetinkaya et al., 2008; Kralisch et al., 2012; Peckham
et al., 2013) , standardisation of time series data (Ames et al., 2009),
management of large quantities of data (Vitolo et al., 2015; Folk et al.,
2011; Rew and Davis, 1990) , coupling of models at runtime (Gregersen
et al., 2007), and management of data for specific model runs (Knox
et al., 2014; Meier et al., 2014; Zander and Kralisch, 2011). There are
few enforced general standards or requirements for environmental data,
which means there is no single solution to data management. Many
projects specialise in one area, be it serving large quantities of time
series data (Ames et al., 2009), focussing on supporting water resource
modelling (Chalh et al., 2015) or standardising model run-time data
communication.

A focus of recent research has been facilitating model sharing and
result publishing, to better ensure model reproducibility (Tarboton
et al., 2013). By exposing a model platform through a web service, it is
possible to make particular model runs and result sets public either by
relaxing access permissions on data in the system or by exporting the
data to public repositories such as HydroShare. Using this approach,
transparency is ensured as the public data is exactly what is used by
the model.

McKinney and Cai (2002) presented an object-oriented approach
to data management of data for network-based models within a GIS
(Geographic Information System) environment. This used a generalised
node-link structure for networks, where model-specific subclasses could
be created. This allowed the structure to be applied to multiple network
types. Harou et al. (2010) describe a model platform as a generic soft-
ware which separates models from data management and visualisation.
Such software stores data in one location and exports data for use by
different models. Model platforms build on the idea of heterogeneous
data collection and model access by integrating data from multiple

sources and models into a single platform. Model developers can read
data from different sources for use in multiple models. A Model Plat-
form need not itself perform any modelling tasks or provide ability to
build models. Instead, a model platform combines several data sources
(aided by a plug-in architecture and tools to aggregate heterogeneous
interfaces) with the ability to run or export data to various models from
the same source.

Model platforms facilitate model integration through loose model
coupling (Jiang et al., 2017; Goodall et al., 2013). Loose coupling
allows models to communicate through a third-party to store intermedi-
ate data in a standardised way, eliminating the need for direct transfers
between models, which can require custom, unscalable solutions (Kelly
et al., 2013). This approach introduces an overhead, and is more
suitable to model chaining (Meier et al., 2014) where models run in
their entirety in a given order, in contrast to a solution like Pynsim or
OpenMI (Knox et al., 2018b; Gregersen et al., 2007) which allows the
models to be connected on a per-timestep basis.

A centralised data store relies on the structure of environmental
modelling data being predictable enough to store data generally, and
the system being flexible enough to deal with the idiosyncrasies and
exceptions of individual systems and model requirements. In addition
it relies on a common understanding of how data is represented. Many
environmental management models use networks of nodes and links
to represent systems, and use largely predictable data formats such as
timeseries, arrays, scalars.

Despite advances described above, the ability to easily connect
different models to the same data manager, share and collaborate on
model runs, and make data public is still needed, with no current
technologies having yet made these tasks easy. The Model Platform con-
cept goes some way to achieving this by separating data management
from the models themselves. In this paper, we add web services, which
enable the collaborative aspects of model development and analysis.

We present a solution for storing network structures and associated
datasets in a general way, with the addition of version management,
multi-user sharing including data ownership control. The presented
platform manages network-based data to support modelling tasks, such
as uploading new inputs data, managing scenarios, and extracting
results.

While data is stored in a general way, this is not a single public
data repository. Rather, it is a software platform that can be used with
specific models and does not enforce metadata rules to enable searching
of datasets, for example. This platform supports a modeller who has
compiled the necessary data from the appropriate sources, and built
a network-based model. It allows the modeller to store, manage and
share the inputs and outputs of their model with other users. Support
for scenario analysis and data sharing gives the user the possibility to
compare results and collaborate with other users. We call this system
‘Hydra Platform’.

The rest of this paper is structured as follows: Section 2 describes
the design of Hydra Platform. Section 3 outlines a case study which
illustrates a real-world deployment of Hydra Platform. The appendix
has a worked example of a water-energy simulation model and two
further partially implemented case studies.

2. Design

Hydra Platform (referred to here-on as ‘Hydra’ for brevity) is a
model platform, and aims to provide data support for network-based
models. The software stores inputs and outputs for models which use a
network structure including data, metadata and model topology. Mod-
els which use network structure include for example the simulation or
optimisation of water, energy, transport, and trading systems. Networks
are not the only way to represent a modelled domain. Some models, for
example, are raster-based hydrologic models (Marsh et al., 2018) and
would not be suitable for a network-based system.

Environmental Modelling and Software 122 (2019) 104538

3

S. Knox et al.

Fig. 1. Overview of the Hydra Architecture. Data storage and management (left) are separated from the application of that data (right). Data within Hydra can be used within
three broad categories — importing and exporting to generic data formats such as JSON or Excel, translating to and from specific model instances, written in different languages
such as GAMS or Matlab, and visualised and managed data using a UI.

2.1. Principle

Hydra is designed to provide a standardised means to store and
access data for network-based modelling and to allow data from mul-
tiple models, model types and modelling disciplines to be stored and
accessed from the same place.

To achieve this, Hydra has two main design principles:

• Decouple data storage and management from application logic,
and

• Provide support for a wide range of applications.

To achieve the first, an architecture is required which contains
minimal application logic, and is flexible enough to store different
types of data. To achieve the second, a programming interface (API)
is required which links to the data storage and provides logical and
standardised protocols for accessing data. These are often competing
requirements.

Supporting a wide range of applications requires a design which
understands the scope of possible applications while maximising its
utility within that scope. In the case of Hydra, this is network-based
resource modelling. Within this broad application area, Hydra should
be useable by any modeller from different disciplines equally — it
should be designed from the outset to not favour any one. This principle
relies on a generalised design, where application-specific content can be
entered as data, rather than requiring changes to Hydra’s source code
or architecture.

2.2. Methodology

Hydra uses a high-level representation of networks to support stor-
ing a range of network types, and employs a ‘templating’ system,
which mimics object-oriented programming by allowing users to define
user-configurable network types, and then create instances of those
types. Using this approach, a user can define types of nodes and links,
with properties relevant to specific modelling problems. Instances of

those nodes and link classes, along with their datasets are the inputs
for modelling. A range of dataset formats are supported, along with
ability to define custom data formats for non-standard values. The
customizability of the system facilitates integration with a range of
models, so long as they use a network (nodes and links) structure.

Hydra is a software library, written in Python, that provides an
application programming interface (API). The API contains high-level
operations to create and edit networks, manage scenarios, and share
networks with other users. The user has no direct interaction with
the database (i.e. they must use the API to perform queries on the
database). This separation of the logical layer from the storage allows
the database implementation to be upgraded or altered while data
operations remain unchanged. A web API (an additional Python library)
connects to the core Python library to allow remote data management.
Using a web API allows multiple users to use and access the same
data, limiting duplication in collaborative modelling. Remote access
through a web API also allows software developers to build applications
in any mainstream programming language. Separating database from
logical operations, and providing a web API all serve to broaden the
application areas in which Hydra can operate, from a simple desktop
installation to a large-scale, cloud-enabled service. Fig. 1 gives an
overview of the architecture.

2.3. Usage

Four use cases for interaction with Hydra include:

1. Importing data from a 3rd party file format, for example output
of a model run.

2. Exporting data to a 3rd party file format, for example for use in
a model run.

3. Running a model with data stored in Hydra. This involves ex-
porting data to the appropriate file format, running a model
instance, then importing results back to Hydra.

4. Using a User Interface, i.e, a graphical front-end so non-
developers can interact with the data.

Environmental Modelling and Software 122 (2019) 104538

4

S. Knox et al.

Fig. 2. Hydra’s web architecture using example clients. The client makes remote procedure calls to hydra server to import and export data, to general file formats like Excel, to
applied systems like a simulator, and to a GUI which visualises the network and data.

Fig. 3. Hydra’s architecture when a server is not deployed. Clients communicate directly with Hydra Base on the same physical machine. This approach gives greater data storage
efficiency, when internet access is unreliable, and/or where a multi-user environment is not needed. The clients require little or no alteration to work with this local deployment
and with Hydra Server.

All use cases require software that interact with Hydra. A client

application, or ‘client’ for brevity, is a software application that makes

requests to an API. Clients are not part of Hydra, but independent

software packages which provide functionality, such as the use cases

described above.

This section describes how clients interact with Hydra to store and
access data, the generalised data storage design and how it enables
accessing diverse network types and collaborative features.

A client application requests data from or sends data to Hydra by
interacting with the API. For example API functions get_network or
update_network allow a client to retrieve and modify a network
respectively. A client application may interact with the API to read,

Environmental Modelling and Software 122 (2019) 104538

5

S. Knox et al.

write, update or delete data from Hydra. Users of Hydra can write
their own custom client applications provided they interact with the
API appropriately. Hydra has its own data format which the client API
must use. This format closely reflects the database schema structure.
The data structures can be explored in the examples on the Hydra
Base GitHub repository Knox et al. (2018a), or in the JSON client
application (Knox, 2018).

2.3.1. Data import/export
Data Import and Export (IO) relates to data in any format which can

be stored in Hydra. This category includes data not necessarily linked to
any one modelling system or method, but which can be communicated.
These might include network topology contained in shapefiles, time
series data such as that available from the CUAHSI HIS (Ames et al.,
2009), and encoded as WaterML (Valentine et al., 2012), data stored
in Microsoft Excel files, CSV files etc.

2.3.2. Model clients
Model clients allow communication with specific models or mod-

elling frameworks, for example such as Matlab, GAMS (Rosenthal,
2008), Pyomo. These require input and output in specific data formats.
A model client can also include the function to run the model itself, in
which case the client algorithm would be:

1. Export the data to file ‘input.modelformat’.
2. Run a model instance using ‘input.modelformat’.
3. Once complete, import results from ‘output.modelformat’.

The process of import and export are identical to a data import /
export client. A user could use the export and import clients in isolation,
running the model manually, but the ‘run’ client allows this step to be
automated.

2.3.3. User interfaces
Hydra is a web server API and so does not have a graphical inter-

face. A User Interface (UI) is a client application which allows a user to
visually edit network topology, data, initiate model runs, share results
etc.

2.4. Architecture

Hydra has two components: Hydra Base and Hydra Server. Hydra
Base is a Python package (library), and performs all computational
tasks such as database interaction and validation. Hydra Base can be
installed as a standard Python package and used as such, with no
requirement to act as a web server. Hydra Server is an additional
Python package, which exposes the functions within Hydra Base as
Remote Procedure Calls (RPCs). This separation of the base from the
server allows for flexible deployment, with the same instance being
accessible remotely, locally or both, depending on the requirement of
the application. Figs. 2 and 3 demonstrate the different ways Hydra can
be deployed, where clients applications interact through a web service
or directly with the Python API respectively.

2.4.1. Hydra object types & terminology
The following terms refer to concepts within Hydra. This nomencla-

ture is reflected in the database structure and API, and will be referred
to throughout this paper. Capitalisation of these terms later in the paper
indicates that they relate to this list.

• A Project is a container for Networks. A Project can contain mul-
tiple Networks and have multiple owners, each with configurable
levels of access.

• A Network describes a topology and contains Nodes, Links and
Groups.

• Nodes & Links form the topology of a network and can have data
associated with them through attributes. These can have types,
like ‘Reservoir’, or ‘Water Diversion’ for Nodes or ‘River’ or ‘Pipe
line’ for Links.

• Groups are containers of Nodes, Links and other groups. These
can be used to define interdependencies among Nodes & Links, or
to construct a non-physical entity such as a governance hierarchy.

• An Attribute is defined by a name and dimension, for example:
‘Water Flow, Volumetric Flow Rate’. To illustrate, consider two
attributes: {Water Flow : Volumetric Flow Rate} and {Storage :
Volume}. Node A might have a Water Flow associated with it
while Node B might have both Water Flow and Storage.

• A Dataset is an individual data value. It is defined by a name,
data type, unit, value and metadata. When associated with an
Attribute, the unit of the Dataset must match the dimension of
the Attribute it refers to.

• Hydra supports multiple datasets for the same attribute. This
is done through Scenarios . A Network can contain multiple
scenarios, each of which contains mappings between an Attribute
and a Dataset.

• As Hydra can support data for multiple models, it uses a Tem-
plate to define the types of Nodes, Links and Groups required for
each model.

• A Template Type is defined by a name (e.g. ‘Reservoir’) and a set
of Attributes (e.g. ‘Storage’, ‘Max Head’, etc.). This can be thought
of as the equivalent of a class in Object Oriented Programming
(OOP). A Node or Link within a Network will be an instance of a
Template Type.

2.5. Scenarios & data

A Scenario in Hydra represents data associated with a Network.
Scenarios allow attributes of Nodes, Links and Groups in a Network
to have multiple Datasets associated to them at once.

Any Node, Link or Group attribute can be connected to a Dataset
through a Scenario. A reference table in the database allows multiple
attributes to be connected to the same Dataset to ensure Datasets are
not duplicated.

Datasets are stored independently of Networks in Hydra. This allows
the system to store and manage Datasets without the need for network
topology. This is useful for example when there is a need to import
time series from CUAHSI HIS (Ames et al., 2009) or other data without
having a network. This also avoids the duplication of data.

2.5.1. Units
Hydra manages units and dimensions by providing a default set

including length, area, volume density etc., with a set of default units
for each dimension. New dimensions and units can be added on a per-
user basis. Functions such as add_unit and get_all_dimensions
allow units to be managed and searched. Units are not required for
datasets, but it is encouraged to specify a unit. If a dataset has no
dimension, the unit ‘dimensionless’ is used.

Hydra can convert units on Datasets. The get_dataset function
call has an optional ‘unit’ argument which will return a dataset object
with the requested dataset converted to the specified unit. An error is
thrown if units are not of the same dimension.

2.6. Client interaction

Hydra is object-oriented and uses objects for network and data
management, and this is reflected in the web API, which is also object-
based. That is, the user sends/receives objects to/from the web server
or the native Python library in the same way.

The Web API is a wrapper for the functions within Hydra Base.
These functions have the same names and accept the same arguments,
and pass these arguments into the equivalent function within Hydra

Environmental Modelling and Software 122 (2019) 104538

6

S. Knox et al.

Base. The API is implemented as a JSON Remote Procedure Call proto-
col (RPC) using the Spyne Python library. Spyne allows for validation
of argument types and definition of the object types which the API
can accept. Spyne also allows the same API to be deployed for several
protocols at once, for example SOAP and JSON. This provides flexibility
for different client requirements (for example using SOAP (Simple
Object Access Protocol) with C# .net) can automatically build classes
and perform validation within the client. An example of how the web
API wraps hydra functions can be found in Listing 2, Appendix A.4.

There are two ways in which clients can interact with Hydra: local
or remote. Hydra provides client libraries for Python, Java and C#.
The Python implementation is the most complete, and provides two
classes which enable interactions: JSONConnection and RemoteJ-
SONConnection. As the names imply, these classes allow interaction
with Hydra using JSON-based data structures either directly with the
Python library or using http requests. The data sent and received from
each connection type and the function calls are identical, meaning the
client code would require little or no alteration when using the different
connection types. Listing 1 in Appendix A.4 presents an example of
an interaction with Hydra using a remote connection with the Python
client library.

2.7. Relational database

Hydra uses a relational database for data storage, with SQLite,
Mysql and Postresql so far tested. The Python library SQLAlchemy is
used for concurrency and transaction management, upgrades, queries,
and allows support of multiple database types. SQLAlchemy is a pop-
ular open-source, well supported library, proven to support the se-
curity, concurrency and scalability requirements of large-scale web
applications.

The summary database schema appears in Fig. 4 and the full version
appears in Fig. 11, in the Appendix.

2.8. Templates

Hydra is a generalised data management platform which can sup-
port multiple types of networks concurrently. For example, multiple
users might work on different projects, using different models, written
in different languages, without knowledge of any other. Supporting this
means allowing users to define custom Node, Link and Group types
which relate to their model. For example, User A’s model deals with
‘Supply’ and ‘Demand’ nodes, while User B deals with ‘Reservoir’, ‘De-
salination’ and ‘Treatment’ nodes. Hydra achieves this with ‘Templates’.
A Template allows a user to create definitions of the Node & Link
types required by their model, including the attributes which each type
requires (see Figs. 5–7).

Templates allow Hydra to support multiple different types of Net-
works within the same system, supporting multiple types of model
concurrently. In addition to defining the Node & Link types required by
a model, Hydra supports data validation in the template API. These are
implemented as ‘restrictions’ on the attributes of a type, and can include
enumerations (e.g. ‘the value must be 10, 20 or 30’), data ranges (‘the
value must be between 10 and 30’), date ranges (e.g. ‘the time series
must be between January 2018 and December 2018’).

2.9. Collaboration and security

Hydra supports user and data management by:

1. Global management of Users, Roles and Permissions, and
2. Management of entities by their ‘owner’.

Hydra uses a ‘User-Role-Permission’ structure to define what a user
can and cannot do. This is done by assigning a user a Role, which has
some permissions such as ‘add_network’, ‘add_user’. In these examples,
an attempt to call the ‘add_network’ or ‘add_user’ function by a user
without these permissions will result in a permission error. Using this
system, a user can be given general permissions across the whole
platform, but may still be restricted on a case-by-case basis.

In addition to global permission management, Hydra supports the
sharing and management of individual Projects, Networks, Scenarios
and Datasets. The user who creates a Project, Network or Dataset is
deemed its ‘owner’ and has control to delete, hide or share it. Here we
describe how each can be managed:

1. Projects: A user can share a project with other users through the
‘share_project’ function call. There are three modes of sharing
‘view’, ‘edit’ and ‘share’. These flags indicate whether the receiv-
ing user can view, edit or re-share the project. Once shared, the
receiving user can see all networks within the shared project.

2. Networks: Like Projects, Networks can be shared with other
users. In this case, the user will be able to see the Project con-
taining the shared Network, but any unshared Networks,within
the same Project will not be visible. The same ‘view, edit, share’
rules apply to the Network.

3. Datasets: Datasets are by default independent of any Network,
Project or Scenario. Datasets are then linked to Networks through
Scenarios, as explained in Section 2.5, to reduce duplication.
An important aspect of data management is the ability to store
confidential data. To this end, Hydra allows datasets to be
‘hidden’ such that only the owner can see them. The owner can
then share these datasets with other users, while keeping them
hidden from other users. Hidden dataset are stored in the same
way to other dataset. Their access is controlled by the ‘hidden’
flag in the tDataset table which when set to ‘Y’ checks the
tDatasetOwner table. This table is a whitelist of users who
have access to this dataset.

Security is important in multi-user systems which convey data.
Hydra employs well-established security protocols such as encrypting
passwords using the Bcrypt hashing function. In Hydra, multiple users
may share potentially sensitive data with other users. Hydra’s secu-
rity protocols are designed to ensure only users with the appropriate
privileges may view and edit data. A series of unit tests (available on
GitHub) were created to ensure sharing functions operate as expected,
and these are tested automatically whenever changes are made to Hy-
dra’s code. Security features such as secure web connections (https) and
altering Hydra’s default password hashing key are the responsibility of
each deployment.

3. Case study

Hydra is operational, and has been used in regional-scale modelling
efforts within the UK. We present a case study to illustrate an actual
deployment in an industrial setting, where a consultancy manages large
numbers of model runs and scenario analyses for a utility company, and
where efficient sharing of data was necessary. Hydra enabled efficient
sharing of data, and simplified the modelling workflow.

A common modelling workflow in an industrial setting involves a
water institution such as a water utility or river basin agency hiring
a consultant to build a model to analyse, for instance, the levels of
service impacts of a new infrastructure asset or management policy.
The model used in this project is the ‘Economic Balance of Supply
and Demand (EBSD)’ model (Padula et al., 2013), a least-cost water
supply planning optimisation model used by UK water companies for
infrastructure investment planning. This model is used to minimise
investment costs over a 25 year planning horizon subject to maintaining
supply–demand balance at a particular level of service. The problem is

Environmental Modelling and Software 122 (2019) 104538

7

S. Knox et al.

Fig. 4. A simplified Hydra Platform database schema, with some tables removed for clarity. The different colours and styles of the lines distinguish the connection types. The full
schema can be found in Fig. 11, in Appendix.

formulated as a mixed integer linear programming (MILP) with binary
decision variables for each feasible investment option in each year.
The solution is subject to constraints that ensure the supply–demand
balance is satisfied in each ‘Water Resource Zone’ planning area and
investment dependencies or exclusivities are enforced. In our case the
EBSD model is written in GAMS (Rosenthal, 2008), a scripting lan-
guage for mathematical programming optimisation models. The model
requires a single text input file containing the input network topology
and scenario data. For a large water utility with many feasible options,
solving the MILP is computationally expensive — a run containing all
possible options can take several hours.

As per regulatory requirements the water utility supplies both sup-
ply and demand data. This is generated independently prior to and
during the modelling process. Supply data includes feasible infrastruc-
ture options including their location, size and outputs. Demand data is
derived from, for example, population forecasts and analysis of historic
per-capita consumption.

Prior projects with this model involved the utility company re-
questing the consultant to run the model (located on their PC), then
waiting for the results to be returned via email in Microsoft Excel
format. Reporting was done by the consultant using PowerPoint. This
process proved slow and cumbersome, limiting the amount of iteration
and refinement of the modelling, and ultimately reducing business
intelligence on different investment strategies.

As regulatory requirements change, UK water utilities are expected
to perform more analysis (model runs), with more input scenarios
and sensitivity analysis. The traditional workflow described gave the
utility little ability to perform such detailed analysis, as running models
and accessing results was too time consuming. Hydra gave the utility
more autonomy to perform model runs themselves, and for reporting
and data analysis to be shared between consultant and utility, and
potentially with regulators.

The original EBSD model was expanded to employ the Modelling
to Generate Alternatives (MGA) technique (Chang et al., 1983; Brill

Environmental Modelling and Software 122 (2019) 104538

8

S. Knox et al.

Fig. 5. Illustration of a template defining the Node types for a water resources model (left). Node types have attributes and a shape/colour. On the right is an instance of a
Network which uses this template. Each Node instance has the appropriate Attributes, with a value.

Fig. 6. Shows two networks stored in the same system (potentially the same Project), using different templates. As Hydra stores its data in a generalised way, it can support
user-configurable network types from several different domains.

Fig. 7. An existing industrial deployment of Hydra. A water utility engages an analyst to input data, and perform model runs. Model input and output data are stored centrally,
so the client has access at all times. Once an analysis is complete, the analyst shares results with her Manager, who checks the data before sharing with the client. Hydra resides
on the server with a custom Web UI and the model. The model can be run from anywhere, and the results accessed easily.

Environmental Modelling and Software 122 (2019) 104538

9

S. Knox et al.

et al., 1990) which relaxes the ‘least cost’ requirement of the model
to return the n least cost alternatives within a specified threshold, for
example within 2% of least cost. This enabled the water utility to
explore a range of results which may perform better in criteria other
than cost, such as environmental impact, resilience to drought etc.
This additional requirement caused each model run to be significantly
longer (ranging from the original 15 min run time to several hours).
Running such models on a local workstation was infeasible, and for
efficiency, multiple runs should be configured and deployed at the same
time.

In addition to the MGA addition, the utility required that constraints
be configurable, such as pre-requisites (must build x before y) and mu-
tually exclusivities (can only build x or y but not both). To implement
these constraints, Hydra’s groups were used, where nodes were grouped
by constraint type. The groups were then exported to the model as
constraints using the client application.

The additional requirements of this project compared to prior EBSD
projects were as follows:

• Make data and model accessible online to enable collaborative
modelling.

• Allow the water utility to upload data and run scenarios indepen-
dently.

• Configure the MGA model runs (e.g. the number of optimised
configurations to save).

• Allow MGA results to be explored and downloaded for analysis.
• Allow multiple model runs to be launched concurrently.
• Make constraints user-configurable.

The software facilitated and enabled the following project roles:

1. The water utility seeking to run the model, and who must
present results to the regulator.

2. An analyst either in the water company or a consultant who
performs the actual model runs and analyses the results.

3. The developer of the model code, and specialist in EBSD and
MGA. Provides support to the analyst in interpreting results and
expanding the model.

4. The developer of the UI, Hydra and technical support. After
initial development has little interaction with the project.

For this project Hydra was installed on an Amazon EC2 instance
along with the database, GAMS client application and the GAMS model
file. A User Interface for Hydra was deployed on an Amazon EC2
instance, connected to Hydra. Import and Export functions were de-
veloped in the UI to allow uploading and downloading of model data
in the formats required by the water utility. The analyst received input
data from multiple sources for existing and proposed infrastructure (the
network topology), weather forecasts, cost information, and demand
forecasts. A custom Excel client application compiled these sources into
a single Hydra compatible Input JSON string, which was uploaded to
Hydra using the ‘add_network’ function. Through the UI, the analyst ran
the model, cloned the scenarios to tweak input data, such as interest
rates or constraints, and re-ran the model, storing outputs in different
scenarios. Once model runs were complete, the consultant was given
access to the network using ‘share_network’. The consultant and utility
analysts then performed analyses on the model results before presenting
them to the regulator.

By using Hydra in this instance, a transparent modelling work-
flow was enabled, with input data and modelling results available
to both consultants and utility analysts via a web browser. Analysts
could consolidate input and output data, and share results within a
single platform, enabled by having a single shared place to select
and refine data and manage model scenarios. The translation tool
required for compatibility with GAMS is open-source (GPL3) and avail-
able on GitHub (Knox et al., 2011). Table 1 lists requirements for the
project and the solution to those requirements provided either by Hydra
directly or through web services generally.

The Hydra features highlighted in this case study are demonstrated
in a worked example in Appendix A.1. The example illustrates how a
model can be uploaded, run and shared through Hydra. The full code
for this example is on GitHub. The worked example also demonstrates
features used in the two supplementary case studies described in Ap-
pendices A.2 and A.3. These proposed case studies differ from this one
by focussing on collaborative model development in a research setting
and managing data privacy in an industrial setting respectively.

4. Discussion

This paper has presented Hydra Platform, also referred to as ‘Hydra’
for short, a data management software system which helps modellers
collaboratively manage, share and analyse input and output data to
network models. As models and modelling efforts expand in scope and
importance within resource system decision-making processes, there is
a growing need to share data and collaborate on models which require
contributions from multiple people in different physical locations. The
old paradigm of having the model on a user’s local machine and using
a file naming system, spreadsheets and email for data management is
often too limiting to ensure reproducibility and consistency amongst
collaborators.

Hydra addresses data management and sharing issues by using a
web server which contains functions for storing network structures in a
generic way. This allows the storage of multiple types of networks while
remaining within the well-defined sphere of network simulation and
optimisation. By focusing on network-based models, there is enough
flexibility to support a cross-section of environmental modelling, while
being focussed enough to provide a meaningful and enabling platform
for these models.

The web server provides several features for creating and editing
data, while supporting multiple degrees of user control. These range
from limiting user roles (‘User A cannot create networks’) to a user
being able to control access to specific aspects of their work (‘User
A can see my network, but not edit it’). Data within Hydra are by
default only visible to the user who creates it, but a user can change
this setting. By using the same data for model input, and using the same
containers to store model outputs, there is consistency amongst users,
which could improve understanding and reproducibility of results. The
use of scenarios allows users to create multiple versions of a network,
thus allowing different inputs (and associated outputs) to be compared
and to avoid conflicts.

As multiple types of network can be stored in the same software
system and shared among users, Hydra supports model integration.
This can be achieved by linking two Networks together (for example,
an energy Network and a water Network). Having run one model to
completion, and stored the results, these results can be transferred to
the other network, and used as input to a second model. This process
is termed ‘loose coupling’, and is supported by Hydra with its ‘attribute
linking’ process, which allows a node of one network to be connected
to that of another. As outputs of one are immediately available as an
input to the next, this approach reduce both the time needed to run an
integrated model and errors in data transfer.

Our approach to facilitating this kind of model integration is use
of a common generalised data store combined with translation tools.
These tools create the appropriate input formats for each model and
stores their outputs for further use or analysis. While this requires the
researcher to translate data to and from the format of this centralised
system, this enables them to make their tools available to others,
reducing this burden on future modellers. Currently publicly available
tools exist to translate network data to and from the following formats
and modelling tools: GAMS, PYOMO, WaterML (via CUAHSI HIS),
Microsoft Excel, CSV, and GIS Shapefiles.

To demonstrate that Hydra is a functioning system, we presented a
case study of its use in an industrial setting. The case study describes
an existing deployment of Hydra within a water utility. Hydra reduces

Environmental Modelling and Software 122 (2019) 104538

10

S. Knox et al.

Table 1
Data management requirements of an industrial modelling project, and the solutions provided by Hydra and web services.

Requirement Solution

Make data and model accessible online Store data in Hydra, and give access via UI. In addition to
enabling collaboration. This made model debugging, UI and
data management upgrades fast, allowing for an efficient
modelling workflow.

Upload data and run scenarios
independently

Using Hydra, all actors could upload data and run models
through a web UI. This resulted in an efficient and
convenient data management solution.

Configure optimisation model formulation By extending the GAMS client application and UI, the utility
could configure which model formulation to run and how
many results they wished to assess in a given MGA run.

Allow MGA results to be explored and
downloaded for analysis.

Custom plotting and data input / output features in the UI
supported this. Using a web UI allowed model runs to be
monitored and results inspected and downloaded from
anywhere.

Allow multiple model runs to be deployed
concurrently and progress monitored.

Being deployed on the cloud (using AWS), the computing
environment could be expanded run multiple instances of the
GAMS client application concurrently, then scaled back as
necessary.

Make constraints user configurable Hydra’s group system was used to create constraints, where
a group could contain all the mutually exclusive options, for
example.

reliance on model developers performing the model runs, and allows
the water utility to run the model themselves. This case study illustrates
how the model itself can be deployed remotely, connecting to Hydra,
and managed through a custom user interface. Two additional proposed
case studies are presented in the appendix, with example code showing
how they can be achieved.

Early Hydra projects have pointed to needed future developments.
These include lowering the barrier to entry for the use of Hydra by
non-software developers, allowing Hydra to handle the storage of large
datasets (multiple GB), and to improve the accessibility and quality
(documentation, comments etc.) of existing client applications. As the
number of deployments of Hydra increases, we will continue to develop
its collaboration and security features, for example by allowing encryp-
tion of datasets by individual users to further ensure sensitive data is
protected.

To encourage adoption of Hydra as a solution to data management
needs, it has become clear that a UI would be helpful. We are building
on the work presented here to create a generalised UI for managing
networks and data. The UI will feature the ability to create Network
types, and build Networks manually using these types. The UI will also
feature the ability to run models, and activate client applications to
integrate input and output of data. More than one UI using Hydra may
emerge.

The data required to run some models, and the results produced by
large models can become too large to store in Hydra — in the order of
GB per dataset. In order to accommodate the potentially huge quantities
of data, we are investigating using NoSQL approaches and big data
techniques for accessing huge datasets. Hydra, then, will be used to
store references to dataset locations, which reside externally.

As with the UI, a key to the adoption of Hydra is the availability
of a range of pre-existing client applications where users can quickly
get data into and out of the system with minimal effort. We intend to
continue developing the existing client applications for GAMS, Matlab,
Excel as well as documenting their development to reduce barriers to
entry for prospective client developers.

Hydra does not contain the facility to directly make a dataset
or network publicly available. This is an important improvement to
support publications and to encourage scientific reproducibility. To this
end, we are investigating the development of a connection to Hydro

Share (Tarboton et al., 2013), an online repository of data and models
for water resources and other fields.

All tools presented here are open-source and available on GitHub.
We will continue developing documentation, examples, tests of Hydra
and its applications with the goal of encouraging adoption.

5. Conclusions

The environmental systems models being developed are increasingly
complex and there is an increasing need to manage data for such mod-
els to facilitate collaboration and sharing across users and locations,
reduce errors, and promote scientific reproducibility and transparency.

We have presented Hydra Platform (‘Hydra’), a web-based data
management platform, specialising in storing network-based data. Some
features of Hydra include:

• Open-source Python library with an extension enabling it to be
deployed as a web service.

• Client libraries to simplify interaction with local and remote
instances of Hydra.

• Networks of multiple types can be stored in the same instance of
Hydra, allowing it to serve multiple model types concurrently, so
long as all models use a node-link structure.

• Flexible data support: Built-in support for data types: data frames,
timeseries, arrays, scalars and free text. Expandable to support
other types.

• Client applications connect to Hydra to translate the data into
the formats required by a modelling framework, and to send back
results of model runs.

• Includes a user permission system and supports data ownership.
This enables data confidentiality while providing the ability to
share data amongst users.

• Multiple modellers can access the same inputs or model results,
simplifying collaboration and minimising the likelihood of the
errors common in traditional data sharing.

The case study described a successful deployment of Hydra in an
industrial setting and highlighted some features of Hydra, such as its
facility for sharing data between users, running models through client
applications, and management of confidential data.

Environmental Modelling and Software 122 (2019) 104538

11

S. Knox et al.

Fig. 8. Schematic of the water-energy system used in the worked example. The blue links illustrate the water system and orange links show the energy system. Hydropower
nodes, represented in purple, join the systems. The model is shown in a web-based graphical interface, designed with Hydra as its data manager. This interface incorporates the
flexibility of Hydra, such as its support for multiple model types, sharing between users and running different client applications. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

In future work we have proposed development of a user interface
to simplify data interaction, an approach to managing ‘big data’, and a
way to publish input data and model results.

Acknowledgements

Support for the software development was partially funded by the
UK government through Innovate UK (File Reference number 101338).
The UK Economic and Social Research Council (ESRC) provided support
through the FutureDAMS project (ES/P011373/1). Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the authors but not necessarily the funders.

Appendix

This appendix contains a worked example, which provides a com-
pact demonstration of how the case study and two proposed case
studies can be implemented with code. The worked example shows
an application to an energy-water system simulator. The appendix
also contains two further case studies which are partially designed
and implemented showing further examples of Hydra’s use which 1:
supports collaborative development of a model across academic institu-
tions (Appendix A.2) and 2: allows secure control of data sharing within
a large industrial project (Appendix A.3). Finally, two small snippets of
code are presented which demonstrate how to perform a basic hydra
task of updating an existing network, and an illustration of the hydra
server design.

A.1. Worked example

The following example shows a step-by-step process for creating
and importing a network, running a model, sharing results while keep-

ing input data private, and inspecting results visually. The demon-
stration involves simple scripts which perform actions within Hydra,
such as creating projects, retrieving network details and so on. The
reader is free and encouraged to amend these scripts. It is impor-
tant to note that these scripts are for illustrative purposes only and
as such are kept as simple as possible. They are not designed to
provide a full, comprehensive example of how a client application
should be built for Hydra. For example, almost no error checking is
performed.

This example uses a modelling tool called ‘Pywr’, a python-based
simulation system. A client application, called the ‘hydra-pywr app‘
is used to load network data into Hydra, to run the model and to
store results. To ensure maximum compatibility of this demo, the
app is run through‘’pipenv’, a virtual environment system used in
Python.

The model in question simulates coupled water and energy systems
and is applied to a small synthetic resource system network. The
simulation model includes different water demands (irrigation, water
supply and, hydropower), and energy demands. Energy demands are
supplied by hydropower plants and conventional thermal power plants.
A simple transmission system connects the different energy supplies
to the energy demands. We note that this energy system model does
not include any dispatch constraints. The model schematic is show in
Fig. 8. It is shown in a web-based front-end interface for Hydra which
is currently in development.

The formulation of the model itself is beyond the purposes of this
example, and has been submitted for publication; data workflow is our
focus here. A more detailed description of this model and the example
models are available at the same location on GitHub.

The outputs of the code in this example have been shortened for
clarity. The code contained in the scripts shown below can be found
at:

https://github.com/UMWRG/hydra-pywr-demos.

http://www.futuredams.org
https://github.com/UMWRG/hydra-pywr-demos

Environmental Modelling and Software 122 (2019) 104538

12

S. Knox et al.

Step 1

Install Hydra.

There are multiple strategies for installing Hydra. The most common is using ‘pypi’ with
‘pip install hydra-base’.

This example uses ‘pipenv’ as it helps with cross-compatibility and allows us to use avoid intruding on the
readers’s local python installation.

>>> pip install pipenv

#Download all the correct dependencies from the Pipfile.
#These contain hydra, pywr and the pywr app..

#This ensures pywr builds with fewer dependencies.
>>> export PYWR_BUILD_GLPK=true

>>> pipenv install

#Enter the virtual environment

>>> pipenv shell

Step 2
Create a project in Hydra. This will output a project ID to the terminal. The -u argument is the user,
in this case ‘root’

>>> python create_project.py -u root
Project My New Project created with ID 2

Step 3
In order to import a Pywr model to Hydra first a template must be registered with Hydra. The Pywr-Hydra
application includes functionality to register a template.

>>> hydra-pywr template register

Step 4
Using the pywr app, upload the network to Hydra. Choose one of the models to run. This uses a water-energy model
called ‘hydraville’:

>>> hydra-pywr upload ../water-energy-embed/water-energy-embed.json --project=2
Network 2 created

>>> python get_network_details.py --network=2
Name: ‘Hydraville’, ‘ID’: 2, ‘Scenario ID’: 2

Step 5
Run the model

>>> hydra-pywr run --network-id=2 --scenario-id=2
Model run successfully.

Step 6
Create a second user

>>> python create_user.py --user=‘user2’ --password=‘secureME’
User 2 created

Step 7
Share the network with user 2, keeping ‘costs’ hidden.

>>> python share_network.py --user=’test’ --hidden-attribute=‘cost’

Step 8
Posing as the shared user, Inspect results (in this case, simulated_volume) with a simple graph. A timeseries
should appear for each of the nodes which have a simulated_volume attribute.

>>> python plot_results.py --scenario=2 --attribute=simulated_volume ...
... -u user2 -p secureME

Step 9
Posing as the shared user, Inspect results (in this case, simulated_volume) with a simple graph. Notice that
an error occurs, as user2 does not have permission to view the value of the cost. *This means that user 2 may be
unable to run the model, or the model may produce inconsistent results as the cost value will not be exported.*

>>> python plot_results.py --scenario=2 --attribute=cost -u user2 -p secureME
An error occurred retrieving scenario 48.
Reason: Unable to view value for dataset cost

Environmental Modelling and Software 122 (2019) 104538

13

S. Knox et al.

A.2. Proposed Case study 1

This proposed case study case was designed to manage the difficul-
ties that can arise when working collaboratively on multiple models or
multiple instances of input data.

Consider a model being developed by two researchers in different
organisations. For example, two separate model formulations are devel-
oped of a water system, each model capable of being run with the same
input data, but with differing outputs. This project requires keeping
track of multiple evolving models and input data files.

To minimise the disorder of multiple researchers developing input
data, and analysing output data of the different models, Hydra is used
to store the data centrally, using the Project/Network structure for the
separate model formulations, and its Scenario management capabilities
for parameterising data.

In this application, the model is an optimisation-driven water re-
sources simulation written in the Generic Algebraic Modelling System
(GAMS), a scripting language for optimisation models. Different vari-
ations (‘formulations’) of the optimisation-drive simulation model are
created and compared. The GAMS models require a single text input
file containing the Network topology and Scenario data. The goal is to
study the differences in results resulting from different formulations.
The models share most data, but some parameters are particular to each
optimisation model formulation.

To manage the inputs to each different model, and the many possi-
ble outputs, the two researchers, User A and User B deploy an instance
of Hydra on an Amazon EC2 server, using a MySQL database and an
Apache web server.

User A first puts the network and the baseline Scenario into an
Excel file, in the format required by the Excel client application (Knox
and Mohamed, 2018). She then uses an Excel client application to
upload the file to Hydra. User A then shares the Network with user
B, granting full edit access using the ‘share_network’ function. Both
users can then clone the baseline Scenario, into, for example, ‘Climate
Change’ within the Network using the ‘clone_scenario’ function. In
this case, the input data is identical, but the Scenario can be used to
store different outputs once the respective models have been run. This
allows them to manage different instances of data relating to the same
Network. Should they wish to work on fully separate Networks or even
Projects, the ‘clone_network’ function could also be used.

To run the model, a GAMS client application is used which calls
‘get_network’ to retrieve the Network and Scenario in question. This is
returned as a JSON string, which is then converted by the client into
‘input.txt’, ready to be imported in the GAMS code. Upon completion,
the output — ‘output.gdx’ file is read by the client, converted back into
the Hydra-friendly JSON format, and ‘update_network’ is called, with
the new result values included.

Following the same procedure for each model results in three Sce-
narios stored against the Network, which can be compared, stored for
later and shared with User B, which in turn can re-run the model with
new input data. The translation tool required for compatibility with
GAMS is open-source (GPL2) and available on GitHub (Knox et al.,
2011).

A.3. Proposed Case study 2

Regional infrastructure planning increasingly encourages water
companies to build regional (inter-utility) models to explore the use
of common assets and transfers to cut costs and increase reliabil-
ity (Matrosov et al., 2013; Zeff et al., 2014). Multiple data sources
and need for transparency while maintaining confidentiality of cost
data (a regulatory requirement) can become difficult without dedicated
management of the data. This proposed case study presents an example

of how Hydra could be used to improve data sharing and management
in this project.

The stakeholders engage a consultant for modelling. An analyst
within the consultancy runs the model. The model in this proposed case
study is a single regional-scale simulation, written using the Python
Water Resource Simulator (Pywr). This model accepts a single JSON
input file, containing topology and scenario data.

Data on supplies, demands and costs is compiled by each water
company. Each water company may view their own data, and overall
results, but cost data from other utilities must be hidden from them
(given the UK has regulated private utilities). Hydra can consolidate
all the data so it can be input to the single regional model. The model
run itself is done by a trusted third-party analyst who has permission
to view all datasets, but each water company is only able to see its own
(see Figs. 9 and 10).

To allow controlled data access to all parties, Hydra is deployed
on an Amazon EC2 instance, which also hosts the Pywr software and
a custom UI. This ensures the model can be run from any location,
removing dependency on specific computers or institutions.

An analyst in the consultancy compiles the data from multiple
sources into a JSON file, ensuring that sensitive datasets have a ‘hidden’
flag. This ensures nobody except the analyst can see the datasets. Using
a JSON client application, the network is uploaded to the server. Next,
the sensitive datasets are shared with the appropriate user groups,
followed by the network being shared with all parties. When accessing
the network, each stakeholder can see all non-hidden datasets, as well
as the hidden datasets to which it has been granted access.

A.4. Examples

Connects to Hydra.
import hydra_client import

RemoteJSONConnection

#Create the connection
jc = RemoteJSONConnection(url=‘https://

example.hydra.org.uk’)
jc.connect(url=‘https://example.hydra.org.

uk’)
jc.login(username=‘root’, password=‘

i_am_root’)

#Get the network
mynetwork = jc.get_network (network_id =

5)

Construct New Node
node = {‘name’: ‘My New Node’, ‘type’: ‘

Reservoir’}

Add Node to Network
mynetwork.nodes.append(node)

Save Network
jc.update_network(mynetwork)

Listing 1: This describes how a user might retrieve and update a
network. Hydra provides functions for managing smaller units (e.g.
individual Nodes, Links, Datasets etc), but this illustrates a valid
workflow. The full, operational code is available on GitHub (Knox,
2018)

Listing 1 shows pseudocode to create a RemoteJSONConnection, to
enable a client to communicate with a remote installation of Hydra
Server. Using a JSONConnection the client would attempt to connect to
a local instance of Hydra Base. A client application developer can easily
switch between a local and remote connection, with both connections

Environmental Modelling and Software 122 (2019) 104538

14

S. Knox et al.

Fig. 9. Proposed Case Study 1: Two users collaboratively develop a model by interacting with a centralised server. User A imports the Network and shares it with User B. User B
can then edit or validate the data. Both users can then run their model, with the results being stored centrally, eliminating any direct data transfer between users. Hydra’s support
for scenarios enables logical comparison and development of models For example, they can be compared with Hydra’s compare_scenarios function.

Fig. 10. Proposed Case Study 2: A proposed deployment of Hydra based on the experience of a large regional modelling project. Here, a regulatory agency would enforce strict
control over who can see and edit certain datasets. A third-party analyst with permission to see all the data performs the data management and model runs. Each utility has access
to the same Network (and therefore the model outputs), but with restricted access to some input data, based on the permission settings within Hydra.

Environmental Modelling and Software 122 (2019) 104538

15

S. Knox et al.

Fig. 11. The Hydra Platform database schema. The different colours and styles of the lines are to aid in distinguishing the connections. For the meaning of colours, refer to the
simplified diagram, Fig. 4.

interacting in an identical fashion. This gives the developer flexibility
for testing, or to allow the client to interact with different end points
with little or no changes to the client-side code. The full, operational
code is available on GitHub (Knox, 2018). Other examples can be found
in the hydra-base repository, located on GitHub (Knox et al., 2018a)

import hydra_base as hb

@rpc(Integer, returns=Network) #define the
input and output types

def get_network(network_id)
return Network(hb.get_network(network_id)

)

Listing 2: Pseudocode demonstrating a hydra server function. This
illustrates that Hydra Server contains no logic and is used as an access
portal for functions within Hydra Base.

Listing 2 demonstrates using pseudocode how the Web API works.
The Spyne library exposes the ‘get_network’ function as a Remote
Procedure Call (RPC), accepting an Integer as an argument. It then
calls the ‘get_network’ function in Hydra Base, returning a ‘Network’
object. In this example, the Network object comes from a class de-
fined by the web API which ensures the incoming and outgoing
structures are valid. For every function in Hydra Base which should
be exposed, there is an identical function in the server, with this
workflow.

Environmental Modelling and Software 122 (2019) 104538

16

S. Knox et al.

References

Ames, P.D., Horsburgh, J., Goodall, J., Whiteaker, T., Tarboton, D., Maidment, D.,
2009. Introducing the open source CUAHSI hydrologic information system desktop
application (HIS desktop). In: 18th World IMACS Congress and MODSIM09 Inter-
national Congress on Modelling and Simulation. Modelling and Simulation Society
of Australia and New Zealand and International Association for Mathematics and
Computers in Simulation, pp. 4353–4359.

Blau, I., Caspi, A., 2009. What type of collaboration helps? Psychological ownership,
perceived learning and outcome quality of collaboration using Google Docs. In:
Proceedings of the Chais Conference on Instructional Technologies Research, vol.
12, pp. 48–55.

Brill, E.D., Flach, J.M., Hopkins, L.D., Ranjithan, S., 1990. Mga: a decision support
system for complex, incompletely defined problems. IEEE Trans. Syst. Man Cybern.
20 (4), 745–757.

Buytaert, W., Baez, S., Bustamante, M., Dewulf, A., 2012. Web-based environmental
simulation: Bridging the gap between scientific modeling and decision-making.
Environ. Sci. Technol. 46 (4), 1971–1976, PMID: 22260091. http://dx.doi.org/10.
1021/es2031278.

Carr, G., Blöschl, G., Loucks, D.P., 2012. Evaluating participation in water re-
source management: A review. Water Resour. Res. 48 (11), URL https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011662.

Cetinkaya, C., Fistikoglu, O., Fedra, K., Harmancioglu, N., 2008. Optimization methods
applied for sustainable management of water-scarce basins. J. Hydroinform. 10.

Chalh, R., Bakkoury, Z., Technologies, C.D.O., 2015. Big data open platform for
water resources management. URL https://ieeexplore.ieee.org/abstract/document/
7336964/.

Chang, S.Y., Brill, E.D., Hopkins, L.D., 1983. Modeling to generate alternatives: A fuzzy
approach. Fuzzy Sets Systems 9 (1), 137–151, URL http://www.sciencedirect.com/
science/article/pii/S0165011483800141.

Eker, S., Kwakkel, J., 2018. Including robustness considerations in the search phase
of many-objective robust decision making. Environ. Model. Softw. 105, 201–216,
URL http://pure.iiasa.ac.at/id/eprint/15236/.

Folk, M., Heber, G., Koziol, Q., EDBT, t.E.P.P.o., 2011. An overview of the hdf5
technology suite and its applications. URL https://dl.acm.org/citation.cfm?id=
1966900.

Goodall, L.J., Saint, D.K., Ercan, B.M., Briley, J.L., Murphy, S., You, H., DeLuca, C.,
Rood, B.R., 2013. Coupling climate and hydrological models: Interoperability
through web services. Eviron. Modell. Softw. 46, 250–259, URL http://www.
sciencedirect.com/science/article/pii/S136481521300090X.

Gregersen, J., Gijsbers, P., Westen, S., 2007. Openmi: Open modelling interface. J.
Hydroinform. 9 (3), 175–191.

Harou, J.J., Pinte, D., Tilmant, A., Rosenberg, E.D., Rheinheimer, E.D., Hansen, K.,
Reed, M.P., Reynaud, A., Medellin-Azuara, J., Pulido-Velazquez, M., Matrosov, E.,
Padula, S., Zhu, T., 2010. An open-source model platform for water management
that links models to a generic user-interface and data-manager. In: International
Environmental Modelling and Software Society (iEMSs).

Herman, J.D., Reed, P.M., Zeff, H.B., Characklis, G.W., 2015. How should robust-
ness be defined for water systems planning under change? J. Water Resour.
Plann. Manag. 141 (10), 04015012, URL https://ascelibrary.org/doi/abs/10.1061/
%28ASCE%29WR.1943-5452.0000509.

Huskova, I., Matrosov, E.S., Harou, J.J., Kasprzyk, J.R., Lambert, C., 2016. Screening
robust water infrastructure investments and their trade-offs under global change:
A London example. Global Environ. Change 41, 216–227. http://dx.doi.org/10.
1016/j.gloenvcha.2016.10.007, URL http://www.sciencedirect.com/science/article/
pii/S0959378016304216.

Jiang, P., Elag, M., Kumar, P., Peckham, D.S., Marini, L., Rui, L., 2017. A service-
oriented architecture for coupling web service models using the basic model
interface (BMI). Environ. Model. Softw. 92, 107–118.

Johnson, W., Williams, Q., Kirshen, P., 1995. WEAP: A comprehensive and integrated
model of supply and demand. In: Proceedings of the 1995 Georgia Water Resources
Conference, Georgia Institute of Technology.

Kasprzyk, J.R., Nataraj, S., Reed, P.M., Lempert, R.J., 2013. Many objective robust
decision making for complex environmental systems undergoing change. Environ.
Model. Softw. 42, 55–71, URL http://www.sciencedirect.com/science/article/pii/
S1364815212003131.

Kelly, A.R., Jakeman, J.A., Barreteau, O., Borsuk, E.M., ElSawah, S., Hamilton, H.S.,
Henriksen, J.H., Kuikka, S., Maier, R.H., Rizzoli, E.A., Delden, v.H., Voinov, A.A.,
2013. Selecting among five common modelling approaches for integrated envi-
ronmental assessment and management. Eviron. Model. Softw. 47, 159–181, URL
http://www.sciencedirect.com/science/article/pii/S1364815213001151.

Knox, S., 2018. JSON app. URL https://github.com/UMWRG/json-app.
Knox, S., Meier, P., Harou, J.J., 2014. Web service and plug-in architecture for

flexibility and openness of environmental data sharing platforms. In: 7th Intl.
Congress on Env. Modelling and Software, pp. 83–90. URL http://www.iemss.org/
society/index.php/iemss-2014-proceedings.

Knox, S., Meier, P., Tomlinson, J., Slavin, P., Basolu, G., 2018a. Hydra base. URL
https://github.com/hydraplatform.

Knox, S., Meier, P., Yoon, J., Harou, J., 2018b. A python framework for multi-agent
simulation of networked resource systems. Environ. Model. Softw. 103, 16–28.

Knox, S., Mohamed, K., 2018. Excel app. URL https://github.com/UMWRG/ExcelApp.
Knox, S., Mohamed, K., Slavin, P., 2011. GAMS App. URL https://github.com/umwrg/

gamsapp.
Kralisch, S., Böhm, B., Böhm, C., Busch, C., Fink, M., 2012. ILMS–a software platform

for integrated environmental management. URL http://iemss.logismi.co/xmlui/
handle/iemss/12373.

Kralisch, S., Krause, P., 2006. JAMS–A framework for natural resource model develop-
ment and application. URL https://scholarsarchive.byu.edu/iemssconference/2006/
all/9/.

Kuczera, G., 1997. Wathnet: Generalised Water Supply Headworks Simulation using
Network Linear Programming. Department of Civil, Surveying and Environmental
Engineering, University of Newcastle, Australia.

Laniak, F.G., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G.,
Geller, G., Quinn, N., Blind, M., Peckham, S., Reaney, S., Gaber, N., Kennedy, R.,
Hughes, A., 2013. Integrated environmental modeling: A vision and roadmap for
the future. Eviron. Model. Softw. 39, 3–23, URL http://www.sciencedirect.com/
science/article/pii/S1364815212002381.

Ltd, O.S.S., 2000. Aquator. URL http://www.oxscisoft.com/.
Maier, H., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L., Cunha, M., Dandy, G.,

Gibbs, M., Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D., Vrugt, J.,
Zecchin, A., Minsker, B., Barbour, E., Kuczera, G., Pasha, F., Castelletti, A.,
Giuliani, M., Reed, P., 2014. Evolutionary algorithms and other metaheuristics in
water resources: current status, research challenges and future directions. Environ.
Model. Softw. 62, 271–299, URL http://www.sciencedirect.com/science/article/pii/
S1364815214002679.

Marsh, B.C., Spiteri, J.R., Geosciences, J.P.C., 2018. Multi-objective unstructured
triangular mesh generation for use in hydrological and land surface models. URL
https://www.sciencedirect.com/science/article/pii/S0098300417309676.

Matrosov, E.S., Padula, S., Harou, J.J., 2013. Selecting portfolios of water supply
and demand management strategies under uncertainty—Contrasting economic
optimisation and ‘robust decision making’ approaches. Water Resour. Manag. 27
(4), 1123–1148. http://dx.doi.org/10.1007/s11269-012-0118-x.

McKinney, D.C., Cai, X., 2002. Linking GIS and water resources management models:
an object-oriented method. Environ. Model. Softw. 17 (5), 413–425, URL http:
//www.sciencedirect.com/science/article/pii/S1364815202000154.

Meier, P., Knox, S., Harou, J.J., 2014. Linking water resource network models to an
open data management platform. In: 7th Intl. Congress on Env. Modelling and
Software, pp. 463–469. URL http://www.iemss.org/society/index.php/iemss-2014-
proceedings.

Padula, S., Harou, J., Papageorgiou, L., Ji, Y., Ahmad, M., Hepworth, N., 2013.
Least economic cost regional water supply planning ? optimising infrastructure
investments and demand management for south east England?s 17.6 million people.
Water Resour. Manag. 27 (15), 5017–5044. http://dx.doi.org/10.1007/s11269-013-
0437-6.

Peckham, D.S., Hutton, H.E.W., Norris, B., 2013. A component-based approach
to integrated modeling in the geosciences: the design of CSDMS. Comput.
Geosci. 53, 3–12. http://dx.doi.org/10.1016/j.cageo.2012.04.002, URL http://
www.sciencedirect.com/science/article/pii/S0098300412001252.

Reed, P., Hadka, D., Herman, J., Kasprzyk, J., Kollat, J., 2013. Evolutionary mul-
tiobjective optimization in water resources: The past, present, and future. Adv.
Water Resour. 51, 438–456. http://dx.doi.org/10.1016/j.advwatres.2012.01.005,
URL http://www.sciencedirect.com/science/article/pii/S0309170812000073.

Rew, R., Davis, G., 1990. Netcdf: an interface for scientific data access. IEEE Comput.
Graph. Appl. 10 (4), 76–82.

Rosenthal, R.E., 2008. GAMS – A user’s guide. URL http://www.un.org/en/
development/desa/policy/mdg_workshops/eclac_training_mdgs/brookeetal2008_
gamsusersguide.pdf.

Sieber, J., Swartz, C., Huber-Lee, H.A., 2005. Water Evaluation and Planning System
(WEAP): User Guide. Stockholm Environment Institute, Boston.

Tarboton, G.D., Idaszak, R., Horsburgh, S.J., Ames, D., Goodall, L.J., Band, E.L.,
Merwade, V., Couch, A., Arrigo, J., Hooper, P.R., 2013. Hydroshare: an online,
collaborative environment for the sharing of hydrologic data and models. In: AGU
Fall Meeting Abstracts, vol. 1.

Valentine, D., Taylor, P., Zaslavsky, I., 2012. Waterml, an information standard for
the ex- change of in-situ hydrological observations. In: EGU General Assembly
Conference Abstracts, vol. 14. p. 13275.

van Bruggen, A., Nikolic, I., Kwakkel, J., 2019. Modeling with stakeholders for
transformative change. Sustainability 11 (3), 825.

Vitolo, C., Elkhatib, Y., Reusser, D., Software, C.M.I., 2015. Web technologies for
environmental big data. URL https://www.sciencedirect.com/science/article/pii/
S1364815214002965.

Voinov, A., Kolagani, N., McCall, M.K., Glynn, P.D., Kragt, M.E., Ostermann, F.O.,
Pierce, S.A., Ramu, P., 2016. Modelling with stakeholders – Next generation.
Environ. Model. Softw. 77, 196–220, URL http://www.sciencedirect.com/science/
article/pii/S1364815215301055.

Zander, F., Kralisch, S., 2011. Environmental data management with the river basin
information system. URL http://www.iwrms.uni-jena.de/fileadmin/Geoinformatik/
projekte/RBIS/web/zander.pdf.

Zeff, H.B., Kasprzyk, J.R., Herman, J.D., Reed, P.M., Characklis, G.W., 2014. Navigating
financial and supply reliability tradeoffs in regional drought management portfolios.
Water Resour. Res. 50 (6), 4906–4923, URL https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1002/2013WR015126.

http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb1
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb3
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb3
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb3
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb3
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb3
http://dx.doi.org/10.1021/es2031278
http://dx.doi.org/10.1021/es2031278
http://dx.doi.org/10.1021/es2031278
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011662
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011662
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011662
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb6
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb6
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb6
https://ieeexplore.ieee.org/abstract/document/7336964/
https://ieeexplore.ieee.org/abstract/document/7336964/
https://ieeexplore.ieee.org/abstract/document/7336964/
http://www.sciencedirect.com/science/article/pii/S0165011483800141
http://www.sciencedirect.com/science/article/pii/S0165011483800141
http://www.sciencedirect.com/science/article/pii/S0165011483800141
http://pure.iiasa.ac.at/id/eprint/15236/
https://dl.acm.org/citation.cfm?id=1966900
https://dl.acm.org/citation.cfm?id=1966900
https://dl.acm.org/citation.cfm?id=1966900
http://www.sciencedirect.com/science/article/pii/S136481521300090X
http://www.sciencedirect.com/science/article/pii/S136481521300090X
http://www.sciencedirect.com/science/article/pii/S136481521300090X
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb12
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb12
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb12
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb13
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000509
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000509
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000509
http://dx.doi.org/10.1016/j.gloenvcha.2016.10.007
http://dx.doi.org/10.1016/j.gloenvcha.2016.10.007
http://dx.doi.org/10.1016/j.gloenvcha.2016.10.007
http://www.sciencedirect.com/science/article/pii/S0959378016304216
http://www.sciencedirect.com/science/article/pii/S0959378016304216
http://www.sciencedirect.com/science/article/pii/S0959378016304216
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb16
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb16
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb16
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb16
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb16
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb17
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb17
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb17
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb17
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb17
http://www.sciencedirect.com/science/article/pii/S1364815212003131
http://www.sciencedirect.com/science/article/pii/S1364815212003131
http://www.sciencedirect.com/science/article/pii/S1364815212003131
http://www.sciencedirect.com/science/article/pii/S1364815213001151
https://github.com/UMWRG/json-app
http://www.iemss.org/society/index.php/iemss-2014-proceedings
http://www.iemss.org/society/index.php/iemss-2014-proceedings
http://www.iemss.org/society/index.php/iemss-2014-proceedings
https://github.com/hydraplatform
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb23
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb23
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb23
https://github.com/UMWRG/ExcelApp
https://github.com/umwrg/gamsapp
https://github.com/umwrg/gamsapp
https://github.com/umwrg/gamsapp
http://iemss.logismi.co/xmlui/handle/iemss/12373
http://iemss.logismi.co/xmlui/handle/iemss/12373
http://iemss.logismi.co/xmlui/handle/iemss/12373
https://scholarsarchive.byu.edu/iemssconference/2006/all/9/
https://scholarsarchive.byu.edu/iemssconference/2006/all/9/
https://scholarsarchive.byu.edu/iemssconference/2006/all/9/
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb28
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb28
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb28
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb28
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb28
http://www.sciencedirect.com/science/article/pii/S1364815212002381
http://www.sciencedirect.com/science/article/pii/S1364815212002381
http://www.sciencedirect.com/science/article/pii/S1364815212002381
http://www.oxscisoft.com/
http://www.sciencedirect.com/science/article/pii/S1364815214002679
http://www.sciencedirect.com/science/article/pii/S1364815214002679
http://www.sciencedirect.com/science/article/pii/S1364815214002679
https://www.sciencedirect.com/science/article/pii/S0098300417309676
http://dx.doi.org/10.1007/s11269-012-0118-x
http://www.sciencedirect.com/science/article/pii/S1364815202000154
http://www.sciencedirect.com/science/article/pii/S1364815202000154
http://www.sciencedirect.com/science/article/pii/S1364815202000154
http://www.iemss.org/society/index.php/iemss-2014-proceedings
http://www.iemss.org/society/index.php/iemss-2014-proceedings
http://www.iemss.org/society/index.php/iemss-2014-proceedings
http://dx.doi.org/10.1007/s11269-013-0437-6
http://dx.doi.org/10.1007/s11269-013-0437-6
http://dx.doi.org/10.1007/s11269-013-0437-6
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://www.sciencedirect.com/science/article/pii/S0098300412001252
http://www.sciencedirect.com/science/article/pii/S0098300412001252
http://www.sciencedirect.com/science/article/pii/S0098300412001252
http://dx.doi.org/10.1016/j.advwatres.2012.01.005
http://www.sciencedirect.com/science/article/pii/S0309170812000073
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb39
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb39
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb39
http://www.un.org/en/development/desa/policy/mdg_workshops/eclac_training_mdgs/brookeetal2008_gamsusersguide.pdf
http://www.un.org/en/development/desa/policy/mdg_workshops/eclac_training_mdgs/brookeetal2008_gamsusersguide.pdf
http://www.un.org/en/development/desa/policy/mdg_workshops/eclac_training_mdgs/brookeetal2008_gamsusersguide.pdf
http://www.un.org/en/development/desa/policy/mdg_workshops/eclac_training_mdgs/brookeetal2008_gamsusersguide.pdf
http://www.un.org/en/development/desa/policy/mdg_workshops/eclac_training_mdgs/brookeetal2008_gamsusersguide.pdf
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb41
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb41
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb41
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb42
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb44
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb44
http://refhub.elsevier.com/S1364-8152(19)30197-5/sb44
https://www.sciencedirect.com/science/article/pii/S1364815214002965
https://www.sciencedirect.com/science/article/pii/S1364815214002965
https://www.sciencedirect.com/science/article/pii/S1364815214002965
http://www.sciencedirect.com/science/article/pii/S1364815215301055
http://www.sciencedirect.com/science/article/pii/S1364815215301055
http://www.sciencedirect.com/science/article/pii/S1364815215301055
http://www.iwrms.uni-jena.de/fileadmin/Geoinformatik/projekte/RBIS/web/zander.pdf
http://www.iwrms.uni-jena.de/fileadmin/Geoinformatik/projekte/RBIS/web/zander.pdf
http://www.iwrms.uni-jena.de/fileadmin/Geoinformatik/projekte/RBIS/web/zander.pdf
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR015126
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR015126
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR015126

	An open-source data manager for network models
	Introduction
	Design
	Principle
	Methodology
	Usage
	Data import/export
	Model clients
	User interfaces

	Architecture
	Hydra object types & terminology

	Scenarios & data
	Units

	Client interaction
	Relational database
	Templates
	Collaboration and security

	Case study
	Discussion
	Conclusions
	Acknowledgements
	Appendix
	Worked example
	Proposed Case study 1
	Proposed Case study 2
	Examples

	References

