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ABSTRACT 

Enteric Methane and Nitrogen Emissions in Beef Cattle Grazing a Tannin-containing 

Legume Relative to Feedlot and Traditional Pasture-based Production Systems 

 
by 

Raúl David Guevara Ballesteros, Master of Science 

Utah State University, 2019 

 
Major Professor: Dr. Juan J. Villalba 
Department: Wildland Resources 

The livestock sector produces 35.4% of all anthropogenic greenhouse gas 

emissions, mainly due to methane produced by enteric fermentation and manure storage. 

Beef cattle are ruminants typically finished on grain-based rations, which yield lower 

methane emissions than grass-based diets. Some “non-traditional” legumes contain 

beneficial chemicals like condensed tannins, which in addition to their high nutritional 

quality enhance the efficiency of nutrient use in ruminants relative to grasses and other 

legumes. I assessed animal performance, methane emissions, and concentration of nitrogen 

in urine and blood urea nitrogen in cattle grazing a tannin-containing legume (birdsfoot 

trefoil; BFT; Lotus corniculatus L.), relative to a legume without tannins (cicer milkvetch; 

CMV; Astragalus cicer), a grass (meadow brome; MB; Bromus riparius), or a feedlot ration 

(total mixed ration; TMR) with high contents of roughage (50%).  

Cows grazing BFT showed greater weight gains than cows grazing CMV or MB 

(P=0.0006), but similar to cows fed the TMR (P=0.5790). Methane emissions per unit of 
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intake from cows grazing BFT were lower than emissions from animals consuming the 

TMR (P=0.0740), when the fecal output/digestibility methodology was used to assess dry 

matter intake at pasture. This suggests a positive effect of condensed tannins or nutrients 

in BFT on methane abatement. Methane emissions were comparable among animals 

grazing CMV (P=0.1180), MB (P=0.6763) or fed the TMR. Blood urea nitrogen 

concentrations were similar in cows grazing legumes (P=0.1202), but greater than in 

animals grazing MB or consuming the TMR (P=<.0001). Urinary nitrogen concentrations 

were similar among all diets (P=0.5266). These results indicate grazing BFT is a viable 

alternative to high-roughage feedlot rations for maintaining beef production with similar 

or potentially lower levels of methane emissions. 

Finally, I estimated the agricultural areas under irrigation in the state of Utah using 

remote sensing techniques. The estimated amount of agricultural land under irrigation in 

the state of Utah was 412,250 ha. These results suggest that legume-based grazing systems 

are a viable option for the state. In conclusion, this research project provides novel and 

valuable information for the future implementation of an alternative and more sustainable 

beef production system based on cows grazing tannin-containing legumes.  

(132 pages) 
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PUBLIC ABSTRACT 

Enteric Methane And Nitrogen Emissions In Beef Cattle Grazing A Tannin-containing 

Legume Relative To Feedlot And Traditional Pasture-based Production Systems 

Raúl David Guevara Ballesteros 

Beef cattle production is highly criticized because of the high use of land and 

water resources, and by the pollution (e.g., the gas methane in a cow’s breath and 

nitrogen in urine) produced by cows fed in feedlots. In contrast to feedlots diets and 

grasses, some plants (e.g., legumes) contain bioactive compounds (condensed tannins) 

that reduce pollution and enhance animal nutrition. In my research, I observed that cows 

grazing a tannin-containing legume (birdsfoot trefoil; BFT) had methane emissions 

similar to cows fed a feedlot ration with comparable weight gains. Cows in the BFT 

treatment gained more weight than cows grazing grass (meadow brome) or a legume 

without tannins (cicer milkvetch). Additionally, I estimated the potential areas in the state 

of Utah than can sustain birdsfoot trefoil production, with 412,250 ha distributed mostly 

in the Box elder, Cache, Millard and Sanpete counties. Thus, feeding tannin-containing 

legumes to cows is a viable alternative to feedlot rations, with greater levels of 

productivity than other pasture-based systems, which can lead to a more sustainable 

production of beef.  
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CHAPTER I 

INTRODUCTION 

Cattle production and global greenhouse gases landscape 
 

Beef production systems have been criticized around the world in the context of 

food security and environmental issues as the demand for beef as a protein source is 

increasing worldwide (Smith et al., 2018). The Food and Agriculture Organization (FAO) 

stated that one-third of the global cropland area is dedicated to produce animal feed (FAO, 

2006). Additionally, the livestock sector is responsible for 14.5% of anthropogenic global 

greenhouse gas (GHG) emissions (FAO, 2019). Methane is the main GHG released by the 

cattle during enteric fermentation and manure management. Methane released by enteric 

fermentation can reach 86 million tons per year, whereas, nitrous oxide, a more potent 

GHG than Methane (CH4) is volatilized to the atmosphere by applications of fertilizer or 

by animals’ urine (FAO, 2006). Moreover, frequent use of grains and concentrate feeds 

increase animal performance at the expense of competition with other sectors that use 

grains to feed the human population or with new uses such as production of ethanol 

(Holechek, 2009). United Nations Food and Agriculture Organization - FAO studies (FAO, 

2013) pointed out that cattle produce 4.6 GtCO2eq yr-1, 2.1 GtCO2eq yr-1 comes from dairy 

cattle, and 2.5 GtCO2eq yr-1 from beef production. Total antropogenic emissions were 

around 35.8 GtCO2eq for that year (Janssens-Maenhout et al., 2017). However, with the 

overall trend towards high animal productivity levels, it is unlikely that the importance of 

enteric fermentation will increase further (FAO, 2006), although an increased population 

entails greater levels of animal products with at least proportional increments in GHG 
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emissions.The scientific community has been proposing several options to mitigate GHGs 

emissions and reduce cattle environmental impacts. Alternatives such as changes in feed 

management, improvements in animal yields and, reduction in the consumption of animal 

products have been proposed as possible solutions. Feed additives have been tested for a 

long time with the aim of increasing the units of animal products per unit of GHG emitted. 

A wide spectrum of additives has been tested through time with differing levels of success. 

Additives such as essential oils (Machmuller and Kreuzer, 1999; Jordan et al., 2006); 

Ionophores like monensin (Sauer et al., 1998; McGinn et al., 2004; Van Vugt et al., 2005; 

Woodward et al., 2006; Odongo et al., 2007); yeasts (McGinn et al., 2004; Newbold et al., 

2006), organic compounds (Kim et al., 2019), and enzymatic additives (Beauchemin et al., 

2003), among others, are some examples of the approaches reported in the literature. The 

main constraints for the application of feed additives involve the public’s negative 

perception of the approach and adaptation of the rumen microbiota, which reduces the 

long- term effects of some of these compounds. Immunization against rumen methanogens 

represent alternative options for the abatement of enteric methane emission by ruminants 

(Subharat et al., 2015)  

Improvements in forage digestibility reduces energy used to produce methane and 

diverts that energy for the formation of other functional compounds such as the volatile 

fatty acid propionate. Such improvements in the efficiency of energy use is due to a decline 

in the digestion of plant fiber and an increment in the supply of non-fibrous carbohydrates 

to the diet. Consecuently, the proportion of propionic acid as a byproduct of ruminal 

fermentation is increased. Additionally, Plant Secondary Compounds (PSC) such as 

tannins and saponins, can reduce emissions by constraining the activity of methanogenic 
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microorganisms (Hess et al., 2003; Pinares-Patino et al., 2003; Woodward et al., 2004; 

Carulla et al., 2005). Meanwhile, protein availability can be increased because PSC like 

condensed and hydrolizable tannins reduce protein degradation in the rumen, allowing for 

more dietary protein to be absorbed in the intestines (Muller-Harvey, 2006: Waghorn, 

2008). Use of PSC can have a positive impact in developing countries with high levels of 

GHG emissions due to low productivity levels across large areas (Herrero et al., 2016) and 

the fact that many tannin-containing plants are present in these landscapes (Carulla et al., 

2005; Ben Salem et al., 2005; Rubanza et al., 2007).   

The reduction in methane emissions by the utilization of dense energy sources in 

the diet such as rations with grains relies in the fact that those feeds have the minimum 

content of fiber required for an animal to ruminate properly and keep ruminal pH values 

within normal levels. Rations with low fiber contents reduce the proportion of acetate to 

propionate in the rumen, and greater concentrations of propionate reduce the amounts of 

carbon available for the production of methane (Whitelaw et al., 1984; Daniels et al., 1984). 

Raising livestock based on corn-based diets is viable if relatively under cheap grain price 

persist. Such conditions are not likely to be maintained in the long-term because raising 

grains is highly dependent on fossil fuels. Thus, operations that strive to minimize 

production costs tied to oil as the main energy source are more likely to be sustainable in 

the time (Holechek, 2009).  

A reduction in the demand for products from animal origin is a controversial 

mitigation alternative, given that this approach would significantly influence the economy 

of almost 1/3 of the world labor force (Garibaldi et al., 2017). Animal production in the US 

involves more than 1.6 millions of Americans and exports of animal products reach $31.8 
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billion yearly, that equivalent to 22% of the income from all agricultural exports (White 

and Hall, 2017). The main reasons that support the proposal for a reduction in livestock 

products involve efficiency. Livestock production efficiency is lower than crop production, 

one third of the world cereal production is diverted to animal feeding and even if animal 

protein just represents 15% of the total energy for human diet, 80% of agricultural land is 

devoted to animal production (Herrero et al., 2016). Contrarily, studies show that human 

diets with moderated protein levels have positive benefits on lifespan and reduce the 

population growth rate (Simpson et al., 2017). Low calorie diets have positive benefits in 

humans health, such as reductions in the frequency of heart diseases, overweight in youth 

population, and motricity difficulties (Brehm et al., 2003; Story et al., 2008).  

Adequate food production can be achieved with less agricultural land, allowing 

reforestation and promoting reductions in GHG emission by 4.3 GtCO2e/year. 

Nevertheless, agricultural land used for cattle feeding is unsuitable for reforestation in 

many cases (Holechek, 2009).  Reduction of livestock products demand, theoretically, is a 

powerful mitigation option (Popp et al., 2010; Bajzelj et al., 2014; Westhoek et al., 2014). 

Although is remarkable that removing animal production from US agriculture would cause 

a food supply incapable to cover the US population’s nutritional requirements given the 

diversity and density of essential nutrients provided by meat and milk products which 

cannot be found in other food sources (White & Hall, 2017), and diminution of the 

population growth rate can be achieve by decreasing human’s birth rate instead of 

constraining protein intake. In addition, eliminating animal agriculture would decrease 

total US emission by just 2.6% (White & Hall, 2017). Thus, mitigation strategies to reduce 

GHG is a more viable option that reducing livestock numbers. 
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Beauchemin and McGinn, (2008), stated different criteria in order to establish the 

applicability of different GHG mitigation strategies: 1) documented effectiveness in 

emission reduction, 2) profitable, or at least neutral revenue for the producer, and 3) 

feasible implementation on the farm. The second criteria is the most difficult to accomplish 

due to several factors that involve the economic sustainability of the production enterprise. 

It is unlikely that livestock producers adopt friendly ecologic measures if the positive 

economic impact is not perceived to be real. Development of positive incentives that 

encourage producers to apply mitigation practices is a key to reduce emissions without 

negative impacts on production levels (Herrero et al., 2016). 

 
Condensed tannins to increase feeding efficiency and reduce  
methane and nitrogen emissions from the enteric fermentation 
 

Condensed tannins are a heterogeneous family of highly-reactive, carbon-based 

plant secondary compounds of high molecular weight that bind to proteins with great 

affinity, forming tannin-protein precipitates (Hagerman and Butler, 1980). Plant condensed 

tannins have positive and negative impacts in the physiology of ruminants. The quality of 

the impact depends on the concentration of the PSC in the plant’s tissues and on the 

biological activity of the PSC given by its chemical composition (Schofield et al., 2001). 

Condensed tannins must be present in the foliage in order to have real benefits for 

ruminants because there those would increase their contact with the ruminal 

microorganisms related with the proteolysis and the methanogenesis (Waghorn, 2008). 

Tannins reduce the incidence of bloat in ruminants and protect dietary proteins in 

the rumen from microbial digestion, which reduces the formation of ammonia (Jones et al., 

1976). This occurs because condensed tannins to form insoluble complexes with leaf and 
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salivary proteins of pH values that range between 3.5-7.0 (Bunglavan and Dutta, 2013). 

However, complexes may dissociate when exposed to the neutral intestine’s pH (Waghorn, 

2008), a result of the blend of feed with pancreatic and biliary secretions (Jones et al., 1976; 

Getachew et al., 2000; Barry et al., 2001). However, when crude protein is below an animal 

‘s requirement and fiber concentration is high, some condensed tannins may produce 

deleterious effects on ruminants, such as the reductions in fiber degradation due to the 

antibiotic actions of these compounds on fibrolytic bacteria, which limits voluntary intake 

and energy absorption (Waghorn, 2008). 

It has been reported that low concentrations of condensed tannins in forages (20-45 

grCT/kg Dry matter) (Min et al., 2003) decrease forage protein degradation in the rumen. 

A possible explanation to this phenomenon is that condensed tannins form reversible 

bindings on ruminal proteolytic populations, reducing their metabolic activity as result 

(Waghorn, 2008). Tannin-containing forages of several species have been tested (e.g. Lotus 

corniculatus, Hedysarum coronarium, Onobrychis viciifolia, among others.) showing 

positive effects on ruminant’s physiology and performance, increasing milk production, 

wool growth, ovulation rate and, lambing percentage (Waghorn, 2008). Additional benefits 

include reductions in the incidence of bloat and in the extent of parasitic loads (Jones et al., 

1976; Min et al., 2003). Those positive effects have been explained by increases in the 

absorption of essential amino acids from the small intestine, triggered by a greater 

protection of high-quality dietary protein in the rumen which is then digested and absorbed 

in the small intestine (Min et al., 2003; Waghorn, 2008) rather than by improvements in 

voluntary feed intake.      
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Researchers have also observed reductions in enteric methane production in 

response to condensed tannin intake (g/kg dry matter intake) with a wide range of results 

(Carulla, 1994; Woodward et al 2004; Waghorn & McNabb, 2003; Carulla et al., 2005; 

Lagrange et al, 2017; 2018). However, the mechanisms by which tannins affect methane 

production is not well defined. Proposed explanations involve the idea that condensed 

tannins indirectly affect the production of hydrogen ions or that through their antibiotic 

effects influence the rumen microflora involved in methane production. Jones et al. (1994) 

stated that condensed tannins could bind to the cell coat of some microbes in the rumen 

reducing their activity. Tan et al. (2011) observed that condensed tannins affect 

methanogens and other microbes that methanogens depend on to survive.   

Condensed tannins containing legumes have the potential to increase sustainable 

ruminant production due to the beneficial effects of condensed tannins on protein use, 

animal health, and methane emissions with no deleterious effects on voluntary intake 

(MacAdam & Villalba, 2015). Thus, condensed tannins could increase the efficiency of 

forage use by grazing ruminants since less energy is diverted to methane production and 

more nitrogen is retained in the animal’s tissues (Carulla et al., 2005). However, it is 

important to consider that excess exposure to condensed tannins, can induce tolerance 

mechanisms in the host which may also persist in future generations (Waghorn, 2008).   

 
Birdsfoot trefoil (Lotus corniculatus) as alternative forage for  
environmentally friendly beef production systems 
 

The ultimate goal for beef production is to develop a sustainable system that takes 

advantage of the unique abilities of ruminants to utilize plant fiber in an efficient manner 

(Villalba et al., 2019), minimizing environmental impacts while providing a high-quality 
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product to consumers. The use of alternative perennial forages in agriculture can help 

achieve this goal. For instance, legumes increase the growth potential and the finishing rate 

of cattle (Kopp, 2003; Speijers et al., 2004; Fraser et al., 2004). In addition, and in contrast 

to cereal grains, perennial legumes fix their own nitrogen and are productive for multiple 

years after establishment without additional cultivation or planting (MacAdam & Villalba, 

2015). Legume forages are digested more rapidly than grasses by ruminants, so intake and 

production are greater than for forage grasses (Van Soest, 1994).  

Birdsfoot trefoil (BFT) is a tannin-containing legume originated in the 

Mediterranean region (Steiner et al., 2001), and performs well in grass-legume associations 

with forages like meadow brome, tall fescue and orchardgrass (MacAdam and Griggs, 

2013). Birdsfoot trefoil has a higher concentration of non-fibrous carbohydrates than 

alfalfa and as a result it provides a protein to carbohydrates ratio that better matches the 

animal’s nutritional requirements (Brummer et al., 2016). This legume can thrive in the 

same climatic conditions where alfalfa grows, but with higher tolerance to harsh soil 

conditions such as phosphorous deficiencies, low pH and, poorly drained soils. 

Additionally, BFT maintains its nutritional quality for longer periods compared with many 

other legumes and it persists by natural reseeding (Brummer et al., 2016). Moreover, BFT 

can tolerate more defoliation than alfalfa (Smith and Nelson, 1967). Condensed tannins 

from BFT consist primarily of procyanidins and these phenolic compounds tend to increase 

their concentration in mature forage (Gutek et al., 1974; Mueller-Harvey, 2006). Tannins 

in BFT are present in low concentration and do not constrain animal intake (Ramirez-

Restrepo et al., 2015) or amino acids absorption in the small intestine (Waghorn et al. 1987; 
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Waghorn, 2008) On the contrary, absorption of essential amino acids is increased by 60% 

(Waghorn et al. 1987) under BFT diets. 

 
Cicer Milkvetch and beef production 
 
 Cicer Milkvetch (Astragalus cicer) is a perennial legume native to Europe (Stroh 

et al., 1973) adapted to several soil types in the United States as it tolerates moderate acidity 

and alkalinity levels (Townsend, 1993). This legume is highly attractive to ruminants 

because its stems are hollow and succulent, allowing for high rates of forage intake. Due 

to its decumbent and rhizomatous growth habit, cicer milkvetch is suitable for grass-

legume pasture mixtures (McGraw & Marten 1986; Loeppky et al., 1996), which increases 

nitrogen fixation, dry matter and protein content, complementing the grass crop (Acharya 

et al., 2006). Cicer milkvetch is a winter tolerant forage, and for that reason the legume 

maintains its nutritional quality under snow conditions (Acharya et al., 2006).   

 Cicer milkvetch is an outstanding option for ruminant nutrition because it does not 

cause bloat under high grazing pressures and it does not accumulate selenium like other 

milkvetch plants (Johnston et al., 1971; Johnston et al., 1975; Majak et al., 1995). The 

nutritional and digestible composition of cicer milkvetch is similar to alfalfa; cicer 

milkvetch’s leaf to steam ratio is 74:26; it is rich in crude protein (~23%) and low in fiber 

content (NDF, ~35%) (Acharya et al., 2006).  Irrigated pastures of cicer milkvetch can 

produce 570 kg of beef per hectare in one season (Russell et al., 1982). 

 Cicer milkvetch is ideally suited for cattle grazing, although some studies report 

anti-nutritional factors that affect animal performance. Studies done by Marten et al., 

(1987; 1990) described negative effects (i.e. photosesitization) in cattle and sheep grazing 
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cicer milkvetch, and Weimer et al. (1993; 1998) observed inhibition of cellulose digestion 

in cicer milkvetch during in vitro fermentation studies. Nevertheless, these outcomes were 

specific to the conditions where those studies took place (Acharya et al., 2006).   

 Cicer milkvetch was selected for this study because this legume shares some of the 

attributes (e.g. productivity, plant structure, non-bloating) observed in birdsfoot trefoil, 

although it does not contain condensed tannins, thus making this forage a good control for 

exploring the potential effects of condensed tannins from BFT on grazing studies.   

 
Meadow brome and beef production 
 
 Meadow brome (Bromus riparius) is a perennial cool-season grass introduced to 

North America in 1957, native to Southeast Europe and Western Asia (Knowles, 1990). 

This grass is characterized by a rapid regrowth of tillers after defoliation or grazing (Jensen 

et al., 2001). For instance, under Northern Utah management conditions (six harvest and 

multiple irrigation levels), this grass may produce dry matter yields 28% greater than 

smooth bromegrass and with fewer rhizomes (Jensen et al., 2001). Meadow brome showed 

good performances under rotational grazing conditions conducted in the mountain west 

region of the U.S. (Wiedmeier et al., 2004). 

Meadow brome is commonly used as pasture, hay and haylage and because of a 

dense root network, it reduces soil erosion. When this grass grows under irrigation, it can 

reach 60-180 cm in height with high levels of production per unit area of land (> 11 tons 

of DM/ha in one year of production), but without being invasive. Plant growth starts early 

in the spring and due to its deep roots and tiller base, meadow brome is capable of strong 

summer development and regrowth after grazing or haying (Ogle et al., 2006). Calves may 
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gain on average > 1 kg/day when they graze pure stands of meadow brome under the 

conditions of northern Utah (Wiedmeier et al., 2004).  

Meadow brome was selected for this study as a typical forage used under grass-

finishing systems due to its productivity and nutritional quality, with greater NDF 

digestibility than orchardgrass, tall fescue or perennial ryegrass (MacAdam et al., 2006).  

 
Feedlot systems 
 

The conventional feedlot system is characterized by high-grain inputs for a period 

of three to four months, leading to finishing product that takes a total of 14-16 months from 

birth to slaughter (Smith and Johnson, 2014). Feedlots aim to add muscle and fat to tissues, 

improving the final quality of the product. Intramuscular fat (marbling) gives consumers 

the taste and texture they desire from beef (USDA, 2011). A feed conversion ratio of 6:1 

is common in modern feedlots (Reuter, 2009; Shike, 2013). Feedlot rations are generally 

70-90% of grain and protein concentrates (USDA-ERS, 2018).  

Although the majority of feedlots in the U.S. have a small capacity (less than 1,000 

head), they are a minor share of the market. On the other hand, feedlots with more than 

1,000 head capacity are less than 5% of total feedlots, but they provide 80-90% of the fed-

cattle to the market. The beef production industry is likely to shift to a smaller number of 

animals and very specialized feedlots that are vertically integrated with the cow-calf phase 

and meat processing, sectors that produce high quality fed beef (USDA-ERS, 2018).  

In the U.S., the majority of consumers prefer domestic feedlot-finished beef over 

alternatives meats like grass-finished beef. However, the demand for alternative beef is 

growing due to particular niches with concerns regarding human health, environmental 
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impact and animal welfare (Banker, 2016; Felix, 2018). These consumer niches are willing 

to pay more for beef products that satisfy their ethical values (Umberger et al., 2002; Sitz, 

et al., 2005).  

 
Grass-fed beef production 
 
 Approximately 12-14 months after cattle start grazing, animals finish their 

production cycle in either a feedlot (high grain diet) with a production cycle that takes  

between 14-16 months from birth to slaughter, or in pastures, representing the grass-

finishing system with a production length between 18-24 months from birth to slaughter. 

In the U.S. it is difficult to complete grass-fed production cycles year-round because of 

constrains in temperature and/or precipitation that limit the growing season. Most of the 

grass-fed beef in the U.S. is imported from Australia and New Zealand because the forage 

supply in these regions is more or less constant across seasons (Nebrazka Corn Board, 

2019). Cattle under grass-finishing systems are typically slaughtered at 18-24 months of 

age (Shattuck, 2013).  

 In order to maintain beef quality under reasonable production times, the goal for 

average daily gains under grass-fed systems ranges between 0.9 to 1 Kg per day, which 

requires pastures with 14-18% of CP, >20% of DM and >20% of water-soluble 

carbohydrates (Rutherford, 2009; Felix, 2018). In addition, forage availability should not 

restrict forage intake such that cattle have the opportunity to maximize their forage intake 

to reach the aforementioned production goals.  

 It has been claimed that grass-finishing systems provide several benefits to the 

environment and society, such as increases in carbon sequestration, improvements in 
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animal welfare and product quality (Pirog, 2004; Banker, 2016; Felix, 2018), with 

concomitant increments in revenues (Umberger et al., 2002; Sitz, et al., 2005; Gwin, 2009). 

Grass-finished beef also presents greater proportions of omega-3 (antioxidant) fatty acids, 

and lower proportions of omega-6 (pro-inflammatory) fatty acids and cholesterol (Pirog, 

2004; Daley et al., 2004; Banker, 2016). A particular benefit for grass-fed beef is that it 

can be produced locally, significantly reducing the “food miles” traveled for each steak, 

which in turn diminishes the total use of fossil fuels and the level of emissions produced 

for each item. Finally, farmers marketing grass-fed beef have more control over the price, 

making this production a very attractive option for small producers (Rutherford, 2009; 

Gwin, 2009). 

 
Systems comparison 
 

Gwin (2009) enlisted three factors that constrain the grass-fed operations from 

reaching productive magnitudes similar to feedlot productions. The first constraint is 

animal genetics. Angus or Herford breeds (Gwin, 2009; Fears, 2017) have big frames with 

high nutritional requirements, which are difficult to fulfill under pasture conditions, with 

lower nutrient density than feedlot rations. Consequently, cattle in grass-fed systems take 

longer to finish than cattle in feedlots (Shattuck, 2013; MacAdam & Villalba, 2015) with 

concomitant reductions in the quality of the product. Improvements on this matter can be 

achieved by means of using cows of smaller frames that are more adapted to grazing 

conditions (Riggs, 2007; Rutherford, 2009). Breeds like Red Devon, Murray Gray, and 

British White appear to be more suited to grass-finishing conditions because they mature 

faster and have a lighter finishing weight than large-framed continental animals, although 
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small frame breeds tend to be rare and more expensive (Gwin, 2009; Rutherford, 2009). 

Large continental animals are more suited to grain-finishing conditions (Felix, 2018).  

 Another factor that impacts the grass-fed system is the supply of nutrients at a 

constant rate. Grasses in the U.S. have seasonal trends that directly affect the time of 

finishing because dietary changes that reduce forage availability and quality impact animal 

performance (Schwartzkopf-Genswein et al., 2003; Gwin, 2009). For that reason, pastures 

require irrigation to support grazing pressure during the growing season. Capper (2012) 

estimated 1,957,224 × 106 L of water per 1.0 × 109 kg beef in a grass-fed system. The 

reason of the differences in water use between feedlot production and grazing systems 

relies in the feed conversion efficiency (Mekonnen & Hoekstra, 2012). Thus, more feed 

implies more water to produce the feed. However, water use is higher in the production of 

grains relative to the forage and roughages production. Even though, this fact does not 

compensate the inefficient feed conversion rate of the grazing systems (Mekonnen & 

Hoekstra, 2012). In addition, managerial actions need to be applied during the finishing 

process in order to maximize yield and nutritional quality. Rotational grazing is a good 

strategy to increase the efficiency of pasture use but often requires adjustments in response 

to changing environmental conditions, thus demanding time, energy, facilities and 

observation to get the best results (Walton et al., 1981; Cros et al., 2001; Gwin, 2009). 

Even though, these inputs are even more high in a feedlot operation. 

The final key factor that impacts grass-fed systems is the land required to finish the 

production cycle. Farmers would require more land to finish a certain goal of kilograms of 

meat in a grass-finishing production system (9.868 x 103 ha of land per 1.0 x 109 kg beef), 

approximately 80% more land than in a feedlot (Capper, 2012). However, these estimations 
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do not take into consideration the amount of land required to produce forage and crops 

needed to feed the animals in a feedlot. Nevertheless, grass-fed production systems 

typically need two sets of pastures: one for cows and calves and another to finish heifers 

and steers (Pimentel et al., 1980; Gwin, 2009). 

 
Basis of remote sensing and its applicability in agriculture 
 

The feasibility of the proposed tannin-containing legume grazing system can be 

assess by high coverage and economic techniques such as remote sensing. This technique 

allows the user to evaluate the environmental conditions of certain area through the analysis 

and interpretation of electromagnetic reflectance data from the earth surface. This 

methodology is idea for research of locations with difficult access and size that cannot be 

easily evaluated by ground-based methodologies (Bateman, 2017).   

Remote sensing is a technique that allows for the analysis and interpretation of 

reflectance data from the earth’s surface. Such data are obtained from satellite imagery or 

sensors above ground level (Pinter et al., 2003; Rogan & Chen, 2004).   Remote sensing 

applications in agriculture are based on a theory that relates morphological characteristics 

of a certain crop to their optical properties (Pinter et al., 2003). 

The reflectance light from plants is the consequence of physiological conditions 

such as plant type, water content and other intrinsic factors (i.e. vegetable pigments) 

(Zhang & Kovacs, 2012; Xue & Su, 2017). Healthy green plants display low reflectance to 

visible light (400 to 700nm) due to strong absorbance capacity from photosynthetic 

processes and plant pigments (i.e., chlorophyll a and b, and carotenoids) (Pinter et al., 

2003). The remote sensing applications are based on the following light spectra: (i) the 
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ultraviolet region (10 to 380 nm); (ii) the visible light spectra (620 to 750 nm); and (iii) the 

near and mid-infrared (850-1700nm) (Cruden et al.; 2012; Abdul Rahim et al, 2016). 

Inversely, near-infrared reflectance (NIR) is high because there is little absorbance by 

subcellular particles (Pinter et al., 2003). 

Environmental conditions and/or plant senescence directly affect chlorophyll 

concentration in leaf tissues, which increases the effect of plant secondary pigments such 

as, carotenes and xanthophyll. These compounds tend to increase visible light reflectance 

meanwhile decrease NIR reflectance is decreased (Curran et al., 1990; Pinter et al., 2003; 

Kira et al., 2015). The water content in plants can also be estimated using shortwave 

infrared (SWIR) band reflectance; vigorous plants have higher SWIR reflectance than 

dehydrated plants (Ustin et al., 2012; Hunt Jr. et al., 2016).     

Agricultural production systems have the imperative need to optimize the system 

aforementioned technologies in order to achieve economic objectives while satisfying 

current environmental guidelines. In fact, producers have been increasing the use of these 

technologies that allow for an efficient accomplishment of different production 

expectations. Innovations such as genetic engineering to improve plant varieties, new 

chemical compounds to enrich fertilizers and crop supplements, along with sensing 

systems that allow more accurate information about environmental conditions are 

examples of new technologies that enhance the efficiency of agricultural production 

(Maggiori et al., 2017).       

Remote sensing methodologies have the potential to provide information that 

would help to reduce production inputs and maximize profits, i.e., by obtaining better 

estimates about seeding and harvesting times, precipitation trends, and plant biomass 
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production (Ramoelo et al., 2015; Maggiori et al., 2017). These reports are possible trough 

remote sensing that collects canopy reflectance data from crops. 

 
Remote sensing to forecast yield and nutritional quality in crops 
 

An application of remote sensing technique involves crop yield predictions and 

nutritional forecasting (Di Bella et al., 2004; Gitelson, 2016). Traditional methods to 

estimate crop yield or plant nutritional quality are considered inaccurate and invasive 

(Pinter et al., 2003), because samples do not guarantee a significant representation of all 

the plants in a plot, and samples are destroyed to analyze their nutritional content. For these 

reasons, remote sensing techniques represent a tool that aid in the provision of reliable 

information about the nutritional composition of crops across large scales without the need 

for multiple destructive chemical analyses.  

The approach to measure biomass cover is by vegetation indices (VI) that allows to 

extract signals of plant abundance from complex canopy spectra (Khanal et al., 2017; Xue 

& Su, 2017). Such indices are often computed as differences, ratios, or linear combinations 

of reflected light in visible and NIR wavebands (Pinter et al., 2003).  

Vegetation indices have served as the basis for many applications of remote sensing 

to crop management because they are well correlated with green biomass and leaf area 

index of crop canopies (Pinter et al., 2003; Xue & Su, 2017). One of the most used indices 

used to calculate vegetation canopy growth or vigor is the Normalized Difference 

Vegetation Index (NDVI) (Xue & Su, 2017). NDVI is based on the difference between the 

maximum absorption of radiation in the red band (as result of chlorophyll pigments) and 

the maximum reflectance in the NIR band (as result of leaf cellular structure) (Tucker, 
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1979). The soil spectrum is not detected in the difference between these bands, allowing 

the contrast between vegetation from the soil (Karnieli et al., 2010). This vegetation index 

can describe vegetation density, which can help producers to evaluate plant germination, 

growth and productivity (Precision Agriculture, 2018). 

 
Hypothesis and objectives 

I hypothesize that the nutritional composition and presence of bioactive compounds 

like condensed tannins in forages, will provide benefits to livestock production systems 

such as improvements in the efficiency of nutrient use and reductions in environmental 

impacts. Thus, I predicted that tannin-containing legumes like birdsfoot trefoil will reduce 

methane emissions in cattle relative to a grass-finishing system. I further predicted that 

such improvement in efficiency will lead to levels of productivity similar to feedlot- 

finished animals. Furthermore, dietary protein protected by condensed tannins in the rumen 

and released in the intestines will enhance nutrition promoting a shift in nitrogen excretion 

from urine to feces. In order to test my hypothesis, I determined animal performance, CH4 

production, blood urea nitrogen and urinary nitrogen excretion from cows fed a feedlot diet 

relative to cows grazing (1) meadow brome, a grass typically used in grass finishing 

systems, (2) a tannin-containing legume (birdsfoot trefoil), and (3) a legume of similar 

nutritional and structural characteristics to birdsfoot trefoil but without tannins (cicer 

milkvetch) (Chapter II). 

 In Chapter III, I explored the feasibility of producing legumes other than alfalfa 

(e.g. Birdsfoot trefoil) under irrigation by exploring the distribution and availability of 

agricultural areas under irrigation in the state of Utah. Thus, I applied GIS sensing 
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techniques to produce a map that shows alfalfa stands currently under irrigation. This effort 

was made in order to guide future management efforts or to make predictions about land 

areas in Utah with potential to promote livestock finishing systems under irrigated legumes 

as an alternative or complement to hay production.  

 
Expected benefits 
 

Results from this research project provide information about the feasibility of 

implementing an alternative and more sustainable beef production system using legumes 

instead of traditional grain-based diets or traditional grasses during the finishing phase, 

given that legumes increase the growth potential and the finishing rate of cattle. Contrary 

to cereal grains, perennial legumes fix their own nitrogen and are productive for multiple 

years after establishment without additional cultivation or planting. Moreover, condensed 

tannins may increase the efficiency of energy and protein utilization in animals by reducing 

enteric methane emissions and increasing amino acid availability at the intestinal level. 

Switching to this alternative finishing system will allow for the use of grain in other 

systems and endeavors (i.e., human nutrition, ethanol production), reducing competition 

for land while reducing environmental impacts. 
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CHAPTER II 

A COMPARISON OF ENTERIC METHANE AND NITROGEN EMISSIONS IN 

FOUR BEEF FINISHING SYSTEMS: FEEDLOT, GRASS, TANNIN- 

CONTAINING AND NON-TANNIN-CONTAINING LEGUMES 

 
ABSTRACT 

The livestock sector produces 35.4% of all anthropogenic greenhouse gas (GHG) 

emissions, and beef cattle in the US is the largest contributor to this problem, mainly due 

to methane produced by enteric fermentation and manure storage. Beef cattle are ruminants 

typically finished on cereal grain-based rations fed in confinement, which yield lower 

methane emissions than grass-based diets. In contrast to both cereal grains and pasture 

grasses, perennial legumes fix their own nitrogen and are productive for multiple years 

after establishment. Some “non-traditional” legumes also contain beneficial chemicals like 

condensed tannins, which in addition to their high nutritional quality enhance the efficiency 

of energy and protein use in ruminants relative to grasses and other legumes like alfalfa. I 

assessed (i) animal performance, (ii) methane emissions (SF6 technique), and (iii) 

concentration of nitrogen in urine and blood urea nitrogen in cattle grazing a tannin-

containing legume (birdsfoot trefoil; BFT; Lotus corniculatus L.), relative to cattle grazing 

a legume without tannins (cicer milkvetch; CMV; Astragalus cicer), a grass (meadow 

brome; MB; Bromus riparius), or to cattle fed a feedlot ration (total mixed ration; TMR) 

with high contents of roughage (50%).  

Cows grazing BFT (1.9% condensed tannins) showed greater weight gains than 

cows grazing CMV or MB (P=0.0006), but similar to cows fed the TMR (P=0.5790). 
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Methane emissions per unit of intake (using the fecal output/digestibility method) from 

cows grazing BFT were lower than (when intake at pasture was assessed using the fecal 

output/digestibility method) emissions from animals consuming the TMR (P=0.074). This 

suggests a positive effect of condensed tannins or nutrients in BFT on methane abatement. 

Methane emissions were comparable among animals grazing CMV (P=0.1180), MB 

(P=0.6763) or fed the TMR. Blood urea nitrogen concentrations were similar in cows 

grazing BFT or CMV (P=0.1202), but greater than in animals grazing MB or consuming 

the TMR (P=<.0001). Urinary nitrogen concentrations were similar among the diet 

treatments (P=0.5266). These results suggest grazing BFT is a viable alternative to high-

roughage feedlot rations for maintaining beef production with similar or potentially lower 

levels (i.e., methane emissions) of environmental impact. 

 
INTRODUCTION 

Beef cattle production systems are criticized for the use of large land areas, big 

water footprint and for the use of cereals as livestock feed (Thorpe, 2009; Herrero et al., 

2016). Cattle production contributes to greenhouse gas emissions by releasing 

approximately 86 million tons of methane per year, representing 26.87% of the total global 

anthropogenic methane emissions per year, and 8 grams of nitrogen per kilogram of dry 

matter consumed to the atmosphere (FAO, 2006). Methane emissions are considered “leaks 

of energy” because energy used to form methane is diverted from the production of muscle 

fibers and therefore growth (Johnson & Johnson, 1995; Johnson et al., 2000). One option 

to mitigate enteric methane emissions is the utilization of high-quality feeds, i.e., grains in 

ruminant diets. The low fiber contents in grains, compounded with growth-enhancing 
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technologies (e.g., addition of ionophores to concentrate rations), reduce the ruminal 

production of methane and boost animal performance (Whitelaw et al., 1984; Daniels et 

al., 1984). However, the use of grains to feed ruminants does not take full advantage of the 

unique ability of these animals to extract energy from roughages. Additionally, grains can 

be used to feed the human population or monogastric animals (Van Soest, 1994; Holechek, 

2009; Eisler et al., 2014; White & Hall, 2017) while ruminants have no dietary requirement 

for concentrates.  

In contrast to cereal grains and pasture grasses, perennial legumes fix their own 

nitrogen, and are productive for multiple years after establishment without additional 

cultivation or planting. Legume forages are digested more rapidly than grasses by 

ruminants, so intake and production are higher than for forage grasses. In addition, legumes 

like birdsfoot trefoil (Lotus corniculatus; BFT) and sainfoin (Onobrychis viciifolia Scop; 

SF) produce a class of plant secondary compounds, condensed tannins, which enhance the 

efficiency of energy and protein use in ruminants relative to other perennial legumes 

(Waghorn, 2008; Wang et al., 2015). Thus, forages with plant secondary compounds have 

the potential to reduce greenhouse gas emissions from ruminants (Hess et al., 2003; 

Pinares-Patino et al., 2003; Woodward et al., 2004; Carulla et al., 2005). For instance, the 

use of tannin-containing legumes has shown positive results regarding enteric methane 

abatement while maintaining high levels of animal performance (Carulla, 1994; Woodward 

et al., 2004; Waghorn & McNabb, 2003; Carulla et al., 2005; Lagrange et al, 2017, 2018).  

In addition to the effects described above on enteric methane emissions, condensed 

tannins in some legumes like BFT have the ability to protect dietary protein from ruminal 

proteolysis (Waghorn et al., 1987), allowing for an efficient absorption of dietary amino 



38 
 

acids at the intestinal level (Jones et al., 1976; Getachaw et al., 2000; Barry et al., 2001). 

Thus, condensed tannins can enhance the retention of nitrogen in ruminant animals and 

shift nitrogen excretions from urine to feces (Stewart et al., 2019). Fecal nitrogen is less 

volatile than urinary nitrogen, increasing the availability of this element for capture by the 

plant’s roots (Somda et al., 1993; Hoste et al., 2006), instead of being volatilized as 

ammonia or nitrous oxide when excreted as urinary urea. Thus, I hypothesized that the 

nutritional composition and presence of condensed tannins in legumes would enhance the 

efficiency of nutrient use and consequently reduce environmental impacts in beef 

production systems. Thus, I predicted that tannin-containing legumes like birdsfoot trefoil 

would reduce methane emissions in cattle relative to a grass-finishing system. I further 

predicted that such improvement in efficiency would lead to levels of productivity similar 

to feedlot-finished animals. Finally, I predicted that dietary protein protected by condensed 

tannins in the rumen and released in the intestines would enhance nutrition, promoting 

reductions in urinary nitrogen and blood urea nitrogen. The objectives of this study were 

to determine animal performance, enteric methane production, blood urea nitrogen and 

urinary nitrogen excretion from heifers fed a feedlot diet relative to heifers grazing (1) 

meadow brome, a grass typically used in grass finishing systems, (2) a tannin-containing 

legume (birdsfoot trefoil), and (3) a legume of similar nutritional and structural 

characteristics to birdsfoot trefoil but without tannins (cicer milkvetch). 

 
MATERIALS AND METHODS 

I determined animal performance, intake, blood urea nitrogen (BUN), urinary 

nitrogen excretion, fecal output and enteric methane emissions in beef cows under two 
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systems (i) Grazing: Animals grazed monocultures of birdsfoot trefoil (Lotus corniculatus 

L.), cicer milkvetch (Astragalus cicer) and meadow brome (Bromus riparius), and (ii) 

Confinement: Animals received a grain-based diet. The studies were performed in two 

agricultural facilities from Utah State University. The Intermountain Irrigated Pasture 

Project, located in Lewiston, UT (41°58′7″N 111°51′57″W) (Grazing experiment) and the 

Utah State University Animal Science Farm, located in Wellsville, UT (41°38′8″N 

111°55′59″W) (Feedlot experiment).  

The grazing study occurred from May 19 until August 4 of 2017 during three 

consecutive periods. The feedlot study occurred during two years: from June 30 until 

August 8, 2017 (during 2 consecutive periods), and from May 21 to August 6, 2018 (during 

3 consecutive periods). Both studies were conducted according to procedures approved by 

the Utah State University Institutional Animal Care and Use Committee (Approval # 2858). 

 
Grazing experiment 
 

Fifteen 2-year-old Angus heifers [541.09 kg BW ± 30 kg (Mean ± SD)] were 

randomly assigned to one of three treatment pastures: (1) Birdsfoot Trefoil, Lotus 

corniculatus (BFT), a tannin-containing legume (McAllister et al., 1994; Steiner et al., 

2001; Mueller-Harvey, 2006; Waghorn, 2008; Wang et al., 2015); (2) Cicer Milkvetch, 

Astragalus cicer (CMV), a control non-bloating legume of similar nutritional and 

agricultural characteristics to BFT but without tannins  (Stroh et al., 1973; Majak et al., 

1995; Acharya et al., 2006; MacAdam & Villalba, 2015); and (3) Meadow Brome, Bromus 

riparius (MB), a grass well-adapted for high-altitude irrigated grass-fed systems (Knowles, 

1990; Jensen et al., 2001; Jensen et al., 2006; MacAdam et al., 2006). The average 
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nutritional quality of the pastures and nutritional quality across the three experimental 

periods is reported in Table 1. The use of the aforementioned forages in the study was 

based on their characteristics of adaptation, establishment and persistence under the 

environmental conditions present in the Intermountain West for irrigated pastures 

(MacAdam et al., 1997). 

Each treatment had 5 spatial replications (experimental plot that represented the 

experimental unit of the design). Each replication was randomly divided into three 

paddocks (64 x 57m; 0.3648 ha), seeded with birdsfoot trefoil, cicer milkvetch and meadow 

brome (Figure 1). One heifer was assigned to graze in each paddock (N=5 animals/pasture). 

Heifers were allowed to graze in one-twelfth of the paddocks, and they were moved to a 

new section every 3.5 days. The perimeters of the experimental plots and paddocks were 

fenced using t-posts and electric fence.  

Throughout the experiment, animals had free access to water and mineral salt 

blocks (mineral composition: 96% NaCl, 320 mg/kg Zn, 380 mg/kg Cu, 2,400 mg/kg Mn, 

2,400 mg/kg Fe, 70 mg/kg I, and 40 mg/kg Co). Cows grazed their respective pastures for 

77 days, from May 19 to August 4, 2017. There were 3 sampling periods: Period 1: From 

June 15 to June 23; Period 2:  From July 6 to July 14; and Period 3: From July 27 to August 

4. During in-between sampling periods (2 weeks), cows continued to graze at their 

respective paddocks moving to fresh pasture every 3.5 days, as described before. 
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Figure 1. Pasture plot plan: Birdsfoot Trefoil (BFT), Meadow Brome (MB), and Cicer 
Milkvetch (CMV) paddocks randomly distributed across five spatial replications.  

 

Each sampling period represented four consecutive days of adaptation to daily 

doses of Chromic oxide (Cr2O3) and five days of sample collection (see below).  

 
Pasture sampling 

 
 Forage samples were collected once per period, mimicking animals grazing 

behavior. Samples were placed in plastic bags and labeled, stored immediately on an ice 

cooler, and then transported to the laboratory and stored in a freezer at 20 °C. Frozen 

samples were sunsequently dried in a freeze drier (Free Zone 18 Liters, Labconco 

Corporation, Kansas City, MO) for approximately 8 days until constant weight. Dried 

pasture samples were ground to pass through a 1-mm screen (Wiley Mill, Thomas 

Scientific, Philadelphia, PA) and then used for forage quality determinations (see below). 
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Pasture quality data were analyzed and presented as the average of the whole study and as 

the average of each sampling period. 

 
Body weights 

 
 Cows were weighed at the beginning of the study (May 19 of 2017) and at the end 

of period 3 (August 4 of 2017). Average daily gains were determined for each of the 

treatments. Average daily gains (ADG) were calculated for each of the treatments by 

dividing the BW gain by the number of days that elapsed to accrue such gains. ADGs are 

presented as the average for the entire grazing study.  

 
Fecal output 

 
 Each day during each sampling period, animals were gathered from their respective 

pastures at 0900 and they walked (approximately 300 m) to the handling facility, and then 

through the handling chute where they were sampled and dosed. Fecal output was 

estimated for each sampling period using Chromic oxide (Cr2O3) as an external indigestible 

fecal marker. The marker Cr2O3 was dosed once daily (15 g of Cr2O3/d) using gelatin 

capsules lubricated with mineral oil and delivered with a balling gun. This procedure 

started 4 days prior to sampling feces and then for 5 additional days, when fecal grab 

samples were collected daily from each animal (approximately 50g on a DM basis). Fecal 

grab samples were collected at 0930 daily and immediately deposited in a cooler with dry 

ice for transportation until final storage in freezer (-20°C) before analyses. 

Fecal samples were composited per cow and for each period. The homogenized 

composited samples were frozen and dried by lyophilization for 5 to 7 days in a freeze 

dryer (Free Zone 18 Liters, Labconco Corporation, Kansas City, MO). At the end of the 
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process, the dry sample weight was recorded, and then feces were ground through a 1-mm 

screen (Wiley Mill, Thomas Scientific, Philadelphia, PA). Fecal samples were analyzed 

for chromic oxide content (Kolver et al., 1998). Concentration of fecal Cr was used to 

calculate fecal output, which was then used to estimate pasture DMI as described by Kolver 

et al. (1998).  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔) =
𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷 𝐶𝐶ℎ𝑟𝑟𝑜𝑜𝑟𝑟𝐷𝐷𝐹𝐹 𝑂𝑂𝑂𝑂𝐷𝐷𝑂𝑂𝐹𝐹 𝑂𝑂𝑜𝑜𝑑𝑑𝐹𝐹 (𝑔𝑔)

𝐶𝐶ℎ𝑟𝑟𝑜𝑜𝑟𝑟𝐷𝐷𝐹𝐹 𝑂𝑂𝑂𝑂𝐷𝐷𝑂𝑂𝐹𝐹 𝐹𝐹𝑜𝑜𝑐𝑐𝐹𝐹𝐹𝐹𝑐𝑐𝑜𝑜𝑟𝑟𝐹𝐹𝑜𝑜𝐷𝐷𝑜𝑜𝑐𝑐 𝐷𝐷𝑐𝑐 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑( 𝑔𝑔
𝑔𝑔 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑)

 

Fecal output estimations are presented as the mean of the grazing study and as the 

mean of each sampling period during the grazing study (Table 2 and 4).  

 
Intake determinations 

 
Estimation using fecal output and diet digestibility. In order to estimate intake in 

grazing animals, I used fecal output values determined through the use of an external 

marker (Cr2O3) as described above, and digestibility of the forage dry matter estimated 

through NIRS analyses (NIRS, AOAC,1990; see below). Intake was calculated by the 

following equation.  

𝐼𝐼𝑐𝑐𝑜𝑜𝐹𝐹𝐼𝐼𝐹𝐹 𝐹𝐹𝑜𝑜 𝑃𝑃𝐹𝐹𝑑𝑑𝑜𝑜𝑜𝑜𝑟𝑟𝐹𝐹 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

(1 − 𝐷𝐷𝐷𝐷𝑔𝑔𝐹𝐹𝑑𝑑𝑜𝑜𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑜𝑜𝐷𝐷 𝑜𝑜𝑓𝑓 𝐷𝐷𝑟𝑟𝐷𝐷 𝑀𝑀𝐹𝐹𝑜𝑜𝑜𝑜𝐹𝐹𝑟𝑟 )
 

 
Estimation using the rising plate meter. A rising plate meter (RPM) calibrated for 

each pasture species was used to estimate the amount of forage DM availability from the 

pastures (MacAdam and Hunt, 2015). At least 30 RPM measurements were averaged to 

estimate pre- and post-grazing biomass, and DM calibration samples were collected from 

each replication of each pasture each week. Calibration samples were cut, oven-dried 
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(60°C) to constant weight, and then weighed to determine the DM content of each forage. 

The DM of RPM calibration samples was regressed on the corresponding RPM readings 

to develop a linear regression equation for each one of the forage species (birdsfoot trefoil, 

cicer milkvetch, and meadow brome). Pre- and post- grazing pasture DM readings were 

predicted from these equations. DM disappearance from each paddock was calculated as 

the difference between pre- and post-grazing estimates of pasture DM. 

 Pasture dry matter intakes by both estimation methods (biomass disappearance 

using the RPM and fecal output-digestibility relationship) were expressed as DMI/day, 

DMI/kg LBW (BW^0.75), and as DMI as % of BW. DMI was analyzed and presented as 

the average of the whole grazing study and as the average of each sampling period in the 

grazing study (Tables 2 & 3). 

 Estimations based on the NRC model. Intake by individual animals on each 

treatment was estimated with the Beef Cattle Nutrient Requirements Model (NRC, 2018 

software version 1.0.37), using the individual ADG of each animal and the total digestible 

nutrients (TDN) of each diet, which estimated the dry matter intake required by each animal 

to achieve the observed ADG. 

 
Methane determinations 

 
 Enteric methane emissions by grazing animals were measured using the sulfur 

hexafluoride (SF6) tracer gas technique described by Johnson et al., (1994; 2007). The 

quantity of methane produced on a daily basis was determined by sampling air close to the 

nostrils of cows that had received a permeation tube deposited into their rumens.  
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Fourteen days before the first methane collection period started, cows were trained 

daily to the methane capture equipment (canister and halter), and 37 days before Period 1 

started, each animal received an SF6 slow-release permeation tube delivered with a balling 

gun. The permeation tubes emitted on average 5.24 ± 0.546 kg (Mean ± SD) of SF6 marker 

per day. 

During each sampling day, every cow was fitted with a halter and an evacuated 

canister to gather exhaled air for a 24-h period. Every morning and for five consecutive 

days, canisters valves connected to air collecting capillary tubes were closed, canisters 

were replaced, and valves were opened for a new collection period. Control samples of air 

were collected from canisters placed in areas surrounding the experimental plots to 

measure background atmospheric concentrations of methane; which were used to correct 

values obtained from the air samples collected from the animals (Williams et al., 2011). 

Replaced canisters were taken back to the laboratory to measure final captured pressure 

and then they were pressurized again with nitrogen. A subsample was acquired from the 

pressurized canisters and placed in evacuated vials for temporary storage until methane and 

SF6 determinations (see below; chemical analyses). 

Methane emissions were analyzed and presented as the average of the whole study 

and as the average of each sampling period, moreover these emissions were compared with 

methane emissions from the feedlot study. 

 
Nitrogen in blood and urine 

 
 Blood and urine samples were collected at the end of each sampling period for each 

animal (3 periods, 15 animlas/period). Blood samples were taken from the coccygeal vein 
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of the tail using 10 ml vacuum tubes with no additives (Kolver & Muller, 1998). The blood 

was allowed to clot, serum was separated by centrifugation (2000 rpm for 20 minutes) and 

extracted using a disposable pipette. The serum sample was placed in two 1mL tubes and 

frozen at -20°C until urea analysis (see below).   

During the last day of each sampling period, urine (25 mL/cow) was collected 

through vulva massage. Urine volume was measured using a calibrated cylinder and then 

3.125 ml of HCl 6N were added to reduce pH (<1) in order to avoid nitrogen volatilization. 

Samples were stored at -20°C until nitrogen analysis (Bargo et al., 2002). 

BUN and urinary nitrogen were analyzed and presented as the average of the whole 

grazing study and as the average of each sampling period. These parameters were 

compared between the grazing and feedlot studies. 

 
Chemical analyses 
 
 
Forage quality 

 
 Forage nutritive value was determined from composited samples from the hand-

plucked forage samples for each collection period, forming one sample per experimental 

unit of the design and per species (5 spatial replication x 3 species = 15 total samples per 

period). Ground forage samples were analyzed for Crude Protein (CP), Acid Detergent 

Fiber (ADF), Neutral Detergent Fiber (NDF), Lignin, Non-fibrous carbohydrates (NFC) 

and digestibilities of the NDF (DNDF) and dry matter (DMD) (NIRS, AOAC,1990) at the 

Utah State University Analytical Laboratories (USUAL). Forage samples were also 

analyzed for ther condensed tannin contend (Grabber et al., 2013).  
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Methane analyses 
 

 Gas samples extracted from the canisters were analyzed for methane and sulfur 

hexafluoride by gas chromatography (Chavez et al., 2006). Enteric methane was expressed 

as the total number of grams produced per day and grams per kg of dry matter intake.  

 
Nitrogen analyses 

 
 Urine samples were analyzed for urinary nitrogen contents (Leco Corporation FP-

528 Protein/Nitrogen Determinator) at the USDA-ARS Poisonous Plant Research Lab. 

Urinary nitrogen was expressed in g/L. Blood serum samples were analyzed for urea 

nitrogen (BUN) (Siemens Urea Nitrogen Flex Reagent, Siemens Healthcare Diagnostics, 

Newar, Deleware) at the Utah Veterinary Diagnostic Laboratory (UVDL). BUN was 

expressed in mg/dL. 

 
Feedlot experiment 
 
 Five 2-year-old Angus cows [2017 BW, 526.83 kg ± 18.71 kg; 2018 BW, 563.44 

kg ± 83.61 kg (Mean ± SD)] were randomly assigned to individual adjacent pens 

(measuring 10 x 5 m) inside a covered barn to receive a TMR ration (25% of Alfalfa hay, 

25% Corn silage and 50% Chopped barley). Enteric methane emissions, BUN, Urinary 

nitrogen, and animal performance were measured using the same methodologies described 

for the grazing experiment. The nutritional value of the TMR ration (composited for all 

sampling periods) is presented in Table 1.  

The experiment was performed during two consecutive years. During 2017, cows 

received the TMR ration for 42 days from June 30 to August 8 (Period 1: July 3 to July 10; 

Period 2: July 27 to August 6). During 2018, animals received the TMR ration for 78 days, 
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from May 21 to August 6 (Period 1: June 1 to June 9; Period 2: June 28 to July 7; Period 

3: July 26 to August 4). Different cows were used in 2017 and 2018, but periods and days 

were repeated measures on the same cow during each year.   

The ration was offered each day at 0900 and the amounts offered were 27 kg/ 

animal in both years. Refused feed was collected at 0850 on the following day and weighed; 

fresh feed was offered immediately upon refusal collection. During the 2017 study, the 

feed was offered in two feeders/pen (13.5 kg feed/feeder; feeder volume = 79 L) placed 

inside each pen. During the 2018 study, the feed was offered in one larger feeder (27 kg 

feed/feeder; feeder volume = 378 L) also placed inside each pen. Each animal was given 

ad libitum access to water and trace mineral salt blocks (mineral composition: 96% NaCl, 

320 mg/kg Zn, 380 mg/kg Cu, 2,400 mg/kg Mn, 2,400 mg/kg Fe, 70 mg/kg I, and 40 mg/kg 

Co) in both years. Additionally, animals were dosed daily with 15 grams of Cr2O3 to 

estimate fecal output as described before.  

During both the 2017 and 2018 studies, enteric methane emissions were determined 

as described for the grazing study and fecal samples were collected during the last five 

days of each collection period. During 2018, urine and blood samples were collected during 

the last day of each sampling period as described for the grazing study.  

 
Body weights 

 
Cows were weighed at the beginning (2017: June 28; 2018: May 21) and the end 

(2017 and 2018: August 6) of each of the studies. Average daily gains were calculated for 

each of the treatments by dividing the BW gain by the number of days that elapsed to 

accrue such gains. ADG was presented as an average of the two years of the feedlot study. 
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Fecal output 
 

 Animals were assigned to individual pens on June 26 of 2017 and May 31 of 2018.  

Cows received a daily dose of Cr2O3 in gelatin capsules (15g/day), following the same 

protocol for marker delivery and fecal collection described for the grazing study. 

 For each sampling period, fecal samples were composited by cow and frozen as 

described before. Composited samples were dried by lyophilization and ground with the 

same protocol described above. Chromic oxide contents from feces and the amounts of 

Cr2O3 delivered daily were used to calculate fecal output as described by Kolver et al. 

(1998). 

 Fecal output estimations are presented as the mean of the feedlot study and as the 

mean in each sampling period of this study. 

 
Intake determinations 

 
 Feed intake was measured from day 5 to 9 of each collection period. The feed was 

placed every morning in individual feeders inside each pen. Feed offered was weighed at 

0900 and refused feed was measured at 0850 on the following day. The difference between 

feed offered and refused was recorded as feed intake. Additionally, food intake was 

estimated as described before using the mathematical relationship between fecal output and 

digestibility of the dry matter.  

Feed intake by both estimation methods (Gravimetrically and fecal 

output/digestibility), were expressed as DMI/day, DMI/kg LBW (BW^0.75), and as DMI 

as % of BW. 
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Feed intake is presented as the mean of the feedlot study and as the mean in each 

sampling period of this study. 

Intake was also estimated with the Beef Cattle Nutrient Requirements Model (NRC, 

2018 software version 1.0.37), using the individuals ADG of each animal and the total 

digestible nutrients (TDN) of each diet.  

 
Methane determinations 

 
Cows had an adaptation period followed by a collection period as described for the 

animals in the grazing study. During each sampling day, cows were gathered from their 

individual pens to pass through a chute, where canisters were replaced as described for the 

grazing study.   

Methane emissions are presented as the average of the two years of the feedlot study 

and as the mean emissions in each sampling period.  

 
Nitrogen in blood and urine 

 
Blood and urine samples were collected just in the second year of the feedlot study 

(2018) using the same sampling protocol described for the grazing study.  BUN and urinary 

nitrogen results are presented as an average of the study and as the average for each 

sampling period during 2018.  

 
Chemical analyses 
 
 Representative samples from feed collected in each period of the study during 2017 

and 2018 were freeze dried as described before and sent to Cumberland Valley Analytical 

Services Inc. (Hangerstown, MD). All frezze-dried samples were analyzed for dry matter 
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content (AOAC, 1990; method 967.03), neutral detergent fiber (NDF) (Van Soest et al., 

1991), acid detergent fiber (ADF) (AOAC, 1990; method 973.18), ash (AOAC, 1990; 

method 942.05), total nitrogen (AOAC, 1990; method 990.03), ether extract (EE) (AOAC, 

1990; method 920.39), lignin (Goering & VanSoest, 1970) and digestibility of DM and 

NDF (Tilley and Terry, 1963). Non-fibrous carbohydrates (NFC) were calculated from the 

equation: 

NFC%=100%-[CP%+(NDF%-NDFICP%)+EE%+Ash%], where CP was 

estimated as N% x 6.25, and NDFICP (the NDF insoluble curde protein) was estimated as 

NDF x 0.93 (Undersander and Moore, 2002). Total digestible nutrients (TDN) were 

calculated from CP and fiber concentration based on equations by Weiss et al., (1992).  

Rations were also analyzed for their condensed tannin contents (Grabber et al., 

2013). 

Methane in exlaed air, urinary N concentration, BUN were analyzed as described 

for the grazing study. 

 
Statistical analyses 
 

I analyzed pasture quality (CP, ADF, NDF, Lignin, TDN and DDM), DMI at 

pasture and in confinement, methane emissions, fecal output, blood urea nitrogen and 

urinary nitrogen excretions. Response variables for the grazing and feedlot experiment 

were analyzed as a split-plot design with repeated measures. In both experiments, cows 

(random factor) were the whole plot units with treatment (pasture species; ration) as a fixed 

factor and day, period and year (feedlot experiment) as the repeated measures. The 

variance-covariance structure used was the one that yielded the lowest Bayesian 
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information criterion. Plots were blocked by design and there was no evidence of a block 

effect and thus the block term was omitted from the statistical models. There was not 

interaction effect between treatment and rep. 

For the grazing study, treatment effects were analyzed across the three sampling 

periods of the experiment. Results are presented as the average of the three sampling 

periods, and as the mean of each sampling period. 

For the feedlot experiment, heifers (random effect factor) were the whole plot units 

in the design with year (2017 or 2018) day and period as the repeated measures on each 

heifer. Results are presented as the average of the five sampling periods of the feedlot study 

and by each sampling period during each year.  

Variables gathered across the grazing and feedlot experiment using the same 

methodology [dry matter intake (estimated by Fecal output/Digestibility), methane 

emissions, ADG, BUN, concentration of nitrogen in urinary excretions and fecal output] 

were compared using the overall means for each study (Grazing: mean of 3 sampling 

periods; Feedlot: mean of 5 sampling periods).  

All analyses were computed using PROC GLIMMIX in SAS/STAT 14.1 in the 

SAS System for Windows Version 9.4 (SAS Inst., Inc. Cary, NC). Normal distribution of 

the error residuals and homogeneity of variance were graphically assessed. Data were 

transformed when needed with logarithm for methane emission per kg of DMI, DMI/kg 

LBW, DMI as %BW, and fecal output. Pairwise mean comparisons were adjusted for 

experiment-wise Type I error using the Tukey method. 
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RESULTS 

 
Nutritional composition of the pastures and ration 
 
 The average nutritional composition of the different diets in the grazing study and 

the ration used in feedlot study are reported in Table 1. As expected, dry matter content 

was greater for the TMR (P=<.0001) followed by MB, whereas the legumes (BFT and 

CMV) showed the lowest values for this parameter. In contrast, crude protein concentration 

was greater for the legumes diets, and in particular for CMV (P=<.0001). The TMR and 

MB had similar crude protein contents (P=0.6473). Meadow brome had the highest 

concentrations of fiber [ADF (P=<.0001) and NDF (P= <.0001)] and lignin compared with 

the legumes diets and the TMR diet (P=0.0001). Non-fibrous carbohydrates concentration 

was similar between the TMR and the CMV diet (P=0.1324), both legumes diets were 

comparable among them (P=0.4178) regarding NFC, and MB was the diet with the lowest 

concentration of NFC (P=<.0001). Condensed tannins concentration was greater in BFT 

than in the other diets used in this study (P=<.0001), with low and similar (P=0.8935) 

concentration for MB and CMV (BFT>CMV=MB). The digestibility of the NDF at 48 

hours was significantly different among the diets (P=<.0001), TMR had the higher 

digestibility of the NDF at 48 hours (TMR>MB>BFT>CMV). Digestibility of the dry 

matter was CMV=TMR>BFT>MB (P=<.0001; Table 1). The level of TDN was the 

greatest for CMV, BFT and TMR were similar among them (P=0.1224), and MB showed 

the lowest values (P=<.0001). 

 Forage quality during the grazing experiment remained fairly stable across periods 

for BFT and CMV. On the other hand, MB showed a significant reduction in CP content 
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and increase in fiber concentration during Period 2, which led to reductions in DM 

digestibility and TDN contents for this grass (Figure 2). Lignin concentration was greater 

for the grass than the legumes in Period 1 and lignin concentration of the three forages did 

not differ in Periods 2 and 3 (Figure 2).
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Table 1. Average nutritional quality during the grazing1 and feedlot2 studies. Treatments: TMR (feedlot diet), BFT (Birdsfoot trefoil), 
CMV (Cicer Milkvetch) and MB (Meadow Brome). Means in a row with different letters (a-d) are significantly different at the α = 0.10 
after Tukey adjustment. SEM: Standard error of the mean. ND: Not determined. 

Item 
1Grazing study 2Feedlot study 

BFT CMV MB TMR 
Mean SEM Mean SEM Mean SEM Mean SEM 

Dry matter, % 94.84 bc 0.096 94.64 c 0.096 95.03 b 0.096 95.03 a 0.167 
Crude protein, % 20.70 b 0.717 25.39 a 0.717 13.39 c 0.717 13.12 c 1.241 
Acid detergent fiber, % 23.86 b 0.843 21.23 b 0.843 35.13 a 0.843 22.51 b 1.540 
Neutral detergent fiber, % 33.74 b 1.571 25.46 c 1.571 57.41 a 1.571 34.66 b 2.721 
Lignin, % 4.97 ab 0.162 4.56 bc 0.162 5.41 a 0.162 3.85 c 0.297 
Non-fibrous carbohydrates, % 38.93 b 0.944 41.01 ab 0.944 23.84 c 0.944 45.40 a 1.723 
Tannins, % 1.91 a 0.053 0.18 b 0.091 0.12 b 0.091 0.06 b 0.096 
Digestibility of NDF, % 22.38 c 0.598 19.98 d 0.598 35.69 b 0.598 48.16 a 1.093 
Digestibility of dry matter, % 86.40 b 0.972 91.60 a 0.972 77.06 c 0.972 87.51 ab 1.775 
Total digestible nutrients, % 74.57 ab 1.069 77.53 a 1.069 61.99 c 1.069 69.74 b 1.852 

1Grazing study data were collected on year 2017, (Period 1: June 15 to June 23; Period 2: July 6 to July 14; Period 3: July 27- August4).  
2Feedlot study data were collected on years 2017 (Period 1: July 3 to July 10; Period 2: July 27 to August 6) and 2018 (Period 1: June 1 
to June 9; Period 2: June 28 to July 7; Period 3: July 26 to August 4).  
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Grazing experiment 
 
 
Pasture biomass production 

 
Table 2 shows results for standing biomass averaged across periods and within each 

period.  Averaged across periods, CMV produced the greatest amounts of biomass 

followed by MB and then by the BFT pastures (P=<0.0001). When looking at biomass in 

different periods, CMV>MB>BFT for Period 1 (P=0.0002), whereas there was less BFT 

biomass than CMV and MB during the second grazing period (P=0.0002; 

MB=CMV>BFT). During the third period of the grazing study, there were no differences 

in standing biomass among the pastures (P=0.3463). 

 
Table 2. Average pasture biomass availability in kg/ha. Treatments: BFT (Birdsfoot 
trefoil), CMV (Cicer Milkvetch) and MB (Meadow Brome). Means in a row with different 
letters (a-c) are significantly different at the α = 0.10 after Tukey adjustment. SEM: Standard 
error of the mean. 

1Grazing study data was conducted on year 2017, (Period 1: June 15 to June 23; Period 2: 
July 6 to July 14; Period 3: July 27- August4).  

 
 

Body weights  
 

 Average daily gains were greater for cows under the BFT treatment, followed by 

cows grazing the MB and then the CMV pastures (BFT> MB > CMV; P=0.0006; Table 3).  

  

Term 
1Pasture SEM BFT CMV MB 

Period 1 5160 c 8825 a 7328 b 288.82 
Period 2 4699 b 7246 a 7277 a 288.82 
Period 3 5378 5836 5523 288.82 
Overall 5079 c 7302 a 6709 b 168.14 
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Figure 2.   Nutritional quality of three treatment pastures during the grazing study 
across three sampling periods. Treatment pastures: BFT (Birdsfoot trefoil), CMV 
(Cicer Milkvetch) and MB (Meadow Brome). Data were collected in 2017. Period 1: 
June 15 to June 23; Period 2: July 6 to July 14; Period 3: July 27- August 4. 
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Fecal output 
 
Averaged across periods, fecal output did not differ among cows grazing the three 

experimental pastures (P=0.1658; Table 3). Likewise, fecal output did not differ among 

grazing treatments across the first two periods of the study (Period 1, P=0.5762; Period 2, 

P= 0.4094). During the third period, heifers grazing BFT showed a greater level of fecal 

output (P=0.0157; Table 5). 

 
Intake determinations 

 
Intake in the grazing study is repoted by the fecal output and digestibility 

relationship because by using this methodology values were closer to those estimated using 

the NRC model for predictions of intake based on ADG and TDN contend of the forages 

(National Research Council, 2018: Table 3). Further comparisons of dry mater intake and 

methane in relation with the dry mater intake for the grazing study were performed using 

the fecal output and digestibility relationship. 

Intake values (expressed per kg of LBW and as % of BW) estimated through fecal 

output and dry matter digestibility showed that cows consumed similar amounts of BFT 

and CMV during the three sampling periods (Table 4). In contrast, cows grazed lower 

amounts of MB than CMV during Period 2 (DMI/kg LBW, P=0.0418; DMI%BW, 

P=0.0386) and lower amounts of MB than BFT (DMI/kg LBW, P=0.0239; DMI%BW, 

P=0.0270) during Period 3 (Table 4).  
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Table 3. Average dry matter intake, fecal output, methane emissions, average daily gains 
(ADG) and nitrogen in blood and urine by animals during the grazing study1. Treatments: 
BFT (Birdsfoot trefoil), CMV (Cicer Milkvetch) and MB (Meadow Brome). Means in a 
row with different letters (a-c) are significantly different at the α = 0.10 after Tukey 
adjustment. SEM: Standard error of the mean. ND: Not determined. 

1Grazing study data were collected on year 2017 (Period 1: June 15 to June 23; Period 2: 
July 6 to July 14; Period 3: July 27- August4).  
2Dry mater intake estimated by the fecal output and digestibility method. 
3Dry mater intake estimated by th NRC (2018) model. 
 

  

Item 

1Grazing study 
BFT CMV MB 

Mean SEM Mean SEM Mean SEM 
Dry mater intake and 

fecal output             
DMI, kg/d 2 14.84 a 1.063 13.14 ab 1.063 10.12 b 1.063 
DMI, kg/d 3 12.68 ND 10.11 ND 14.18 ND 
DMI/kg LBW 0.13 a 0.010 0.12 ab 0.010 0.09 b 0.010 
DMI%BW  2.77 a 0.238 2.57 ab 0.238 1.94 b 0.238 
Fecal output, kg/d  4.37  0.285 3.61  0.285 3.87  0.285 

Enteric methane 
emissions             

Methane per day, g/d 283.56  13.254 261.37  13.128 254.28  12.955 
Methane/kg DMI  20.55 2.119 21.04 2.119 25.42 2.119 
       

ADG, kg/d 0.70 a 0.079 0.18 c 0.079 0.46 b 0.079 
Nitrogen in blood and 

urine       
BUN, mg/dL 17.80 a 0.748 20.06 a 0.748 8.40 b 0.748 
Urinary Nitrogen, g/L 4.55 0.536 4.14 0.536 2.87 0.536 
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Table 4. Dry matter intake and fecal output per period during the grazing study1. Dry 
matter intake estimated through the relationship between fecal output and the digestibility 
of the dry matter of the diet. Means in a column with different letters (a-c) are significantly 
different at the α = 0.10 after Tukey adjustment. SEM: Standard error of the mean. 

1Grazing study: Dry matter intake and fecal output per period 
Item Period 1 Period 2 Period 3 

DMI, kg/d              
BFT 13.54 1.190 13.02 a 0.914 17.94 a 1.737 
CMV 12.78 1.190 13.60 a 0.914 13.04 ab 1.737 
MB 10.24 1.190 9.91 b 0.914 10.21 b 1.737 

DMI/kg LBW              
BFT 0.12 0.012 0.11  ab 0.008 0.15 a 0.016 
CMV 0.12 0.012 0.12  a 0.008 0.12 ab 0.016 
MB 0.09 0.012 0.09  b 0.008 0.09 b 0.016 

DMI%BW              
BFT 2.68 0.268 2.44 ab 0.178 3.21 a 0.357 
CMV 2.54 0.268 2.65 a 0.178 2.53 ab 0.357 
MB 2.03 0.268 1.89 b 0.178 1.88 b 0.357 

Fecal output, kg/d              
BFT 3.87 0.332 3.94 0.236 5.30 a 0.491 
CMV 3.42 0.332 3.73 0.236 3.68 b 0.491 
MB 3.82 0.332 4.2 0.236 3.60 b 0.491 

1 Data were collected in 2017. Period 1: June 15 to June 23; Period 2: July 6 to July 14; 
Period 3: July 27- August 4.  
 
 
Methane emissions 

 
Averaged across periods, cows grazing CMV, BFT and MB pastures showed 

similar average levels of methane emissions in g/day (P=0.3719; Table 3), and emissions 

per day were greater during Period 2 (P=<.0001; Table 5). 

Average methane emissions in g/kg DMI, revealed no differences among grazing 

treatments (P=0.2943; Table 3). Likewise, when looking at methane emissions/kg DMI 

within each period, no differences were observed among grazing treatments for Periods 1 

(P=0.7033) and 2 (P=0.3975; Table 5). During the third sampling period, cows grazing  
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Table 5. Methane emissions per day, and as function of the intake, per period. Means in a 
column with different letters (a-c) are significantly different at the α = 0.10 after Tukey 
adjustment. SEM: Standard error of the mean. 

1 Data were collected in 2017. Period 1: June 15 to June 23; Period 2: July 6 to July 14; 
Period 3: July 27- August 4.  

 

BFT had lower emissions than cows grazing MB (P=0.0675), and cows grazing CMV 

showed intermediate values that did not differ from BFT (P= 0.4361) or MB (P=0.4056; 

Table 5).  

 
Nitrogen in blood and urine 

 
 Legume diets promoted on average, greater levels of blood urea nitrogen (BUN) 

than the grass diet (P=<.0001; Table 6). The same trend was observed for Periods 1 and 2 

(P=0.0006 and P=<.0001, respectively), and during Period 3 BUN values were 

CMV>BFT>MB (P=<.0001; Table 6).  

Urinary nitrogen concentration did not differ among cows grazing BFT or CMV 

pastures (P=0.7081), and cows grazing MB had the lowest urinary nitrogen excretions 

(P=0.0249; Table 6). The same trend was observed for Periods 1 and 2 (P=0.0001) and for 

Period 3, cows grazing BFT had greater urinary nitrogen concentrations than cows grazing 

1Grazing study: Methane emissions per period 
Item Period 1 Period 2 Period 3 

Methane, g/d Mean SEM Mean SEM Mean SEM 
        BFT 254.44 16.292 332.21 22.559 266.88 18.828 
        CMV 232.79 15.774 305.03 22.672 246.10. 18.518 
        MB 225.11 15.733 284.41 21.926 253.19 18.518 
Methane/kg DMI             

BFT 18.92 2.832 26.68 2.829 10.20 b 4.366 
CMV 20.41 2.832 23.30 2.829 14.65 ab 4.366 
MB 22.10. 2.832 29.03 2.829 25.17 a 4.366 
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Table 6. Blood urea N (BUN) and urinary N (g/L) in cows that grazed three treatment pastures: BFT (Birdsfoot trefoil), CMV (Cicer 
Milkvetch) and MB (Meadow Brome). Means within a column with different superscripts (a-c) are significantly different at the α = 0.10 
after Tukey adjustment. SEM: Standard error of the mean. 
 
 

 

 

 

 

 

 

 

 

 

 

1Data were collected in 2017. Period 1: June 15 to June 23; Period 2: July 6 to July 14; Period 3: July 27- August 4.  
 
 
 
 

1Grazing study: Nitrogen metabolism 
Item Period 1 Period 2 Period 3 

BUN, mg/dL Mean SEM Mean SEM Mean SEM 
BFT 19.00 a 1.622 17.40 a 0.989 17.00 b 0.886 
CMV 19.40 a 1.622 19.80 a 0.989 21.00 a 0.886 
MB 9.80 b 1.622 6.80 b 0.989 8.60 c 0.886 

Urinary Nitrogen, g/L             
BFT 2.88 0.451 2.64 a 0.153 3.01 a 0.353 
CMV 2.32 0.451 3.08 a 0.153 2.36 ab 0.353 
MB 2.45 0.451 1.39 b 0.153 1.54 b 0.353 
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MB (P=0.0447), and cows grazing CMV showed intermediate values that did not differ 

from BFT or MB (Table 6). 

 
Feedlot study 

Body weights 
 

 Average daily gains for the feedlot study were in the range of 0.8 kg/d and gains 

did not differ between years (P=0.3375; Table 7). Overall, feedlot cows had similar ADG 

to animals grazing BFT (P=0.5790) and greater than animals grazing MB or CMV 

(P=0.001). 

 
Fecal output 

 
Fecal output was different between years (P=0.0211), with the greatest fecal output 

values for the year 2017 (Table 7). During this year, fecal output was greater for the second 

than for the first period of the study (P=0.0119; Table 8), whereas fecal output did not 

differ among periods for the year 2018 (P= 0.1932; Table 9). 

Heifers in the feedlot study showed greater fecal output values than cows in the 

grazing study (P=0.0219; Table 7).  

 
Intake determinations 
 

Intake values for the feedlot study are only reported by the gravimetric 

methodology as these values are closer to those obtained through the NRC model using 

ADG and TDN of the ration. Estimate of methane emissions per unit of intake also used 

these intake values.  
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Intake estimations of heifers on the feedlot study showed that intake values from 

2018 were greater than in 2017 (DMI/d, P=0.0001; DMI/LBW, P=<.0001; DMI%BW, 

P=<.0001; Table 7).   

Intakes expressed in kg/LBW or as % of BW were greater for Period 2 than for 

Period 1 during 2017 (kg/LBW, P=0.0004; %BW, P=0.0005; Table 8). In contrast, no 

differences in DMI were detected among periods during 2018 (kg/d, P=0.8104; kg/LBW, 

P=0.2703; %BW, P=0.1167; Table 9). 

Average feedlot intake estimates (DMI/d; DMI/kg LBW; DMI%BW) revealed no 

differences in TMR intakes among periods during 2018.  
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Table 7. Average dry matter intake, fecal output, methane emissions, average daily gains 
(ADG) and nitrogen in blood and urine in the feedlot study1. Means in a row with different 
letters (a-c) are significantly different at the α = 0.10 after Tukey adjustment. SEM: Standard 
error of the mean. ND: Not determined. 

1Feedlot study 
Item Overall 2017 2018 

  Mean SEM Mean SEM Mean SEM 
Dry matter intake and 

fecal output             

DMI, kg/d 2 10.87 0.362 7.97 b 0.463 11.61 a 0.387 
DMI, kg/d 3 13.59 ND 12.90 ND 14.14 ND 
DMI/LBW  0.08 0.003 0.07 b 0.004 0.09 a 0.003 
DMI%BW  1.78 0.087 1.46 b 0.098 1.99 a 0.092 
Fecal output, kg/d 6.68 0.438 7.34 a 2.053 3.22 b 1.222 

Enteric methane 
emissions             

Methane per day, g/d 224.6
9 12.464 253.09 a 10.345 212.65 b 9.124 

Methane/kg DMI 28.87 1.966 32.52 3.624 26.43 3.451 
       

ADG, kg/d 0.81 0.069 0.73  0.097 0.88  0.097 
Nitrogen in blood and 

urine       

BUN, mg/dL 7.06 0.748 ND ND 7.06 0.748 
Urinary Nitrogen, g/L 3.92 0.536 ND ND 3.92 0.536 

1Feedlot study data were collected in years 2017 (Period 1: July 3 to July 10; Period 2: July 
27 to August 6) and 2018 (Period 1: June 1 to June 9; Period 2: June 28 to July 7; Period 
3: July 26 to August 4). 
2Dry mater intake estimated by the gravimetric method. 
3Dry mater intake estimated by th NRC (2018) model. 
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Table 8. Dry matter intake estimations by the gravimetric method, fecal output, methane 
emissions and nitrogen in blood and urine in the feedlot study during 2 Periods1 for 2017. 
Means in a row with different letters (a-c) are significantly different at the α = 0.10 after 
Tukey adjustment. SEM: Standard error of the mean. 

Feedlot Study 2017 
Item Period 1 Period 2 

  Mean SEM Mean SEM 
Dry matter intake and fecal 

output     

DMI, kg/d  6.86 b 0.578 9.09 a 0.578 
DMI/kg LBW  0.06 b 0.004 0.08 a 0.004 
DMI%BW 1.30 b 0.099 1.62 a 0.099 
Fecal output, kg/d  5.82 b 1.704 14.29 a 1.704 

Enteric methane emissions     
Methane per day, g/d 212.78 b 14.842 289.28 a 15.453 
Methane/kg DMI  31.69 4.136 33.3642 4.136 

1Data collected during 2 Periods: Period 1: July 3 to July 10; Period 2: July 27 to August 
6. 
 
 
Table 9. Dry matter intake estimations by the gravimetric method, fecal output, methane 
emissions and nitrogen in blood and urine in the feedlot study during 3 Periods1 for 2018. 
Means in a row with different letters (a-c) are significantly different at the α = 0.10 after 
Tukey adjustment. SEM: Standard error of the mean. 

1Data collected during 3 Periods: Period 1: June 1 to June 9; Period 2: June 28 to July 7; 
Period 3: July 26 to August 4. 
  

1Feedlot Study: 2018 
Item Period 1 Period 2 Period 3 

  Mean SEM Mean SEM Mean SEM 
Dry mater intake and 

fecal output       

DMI, kg/d  11.50  0.582 11.84  0.582 11.48  0.582 
DMI/kg LBW  0.10  0.003 0.09  0.003 0.09  0.003 
DMI%BW  2.09  0.103 1.99  0.103 1.87  0.103 
Fecal output, kg/d  3.86  0.954 5.64  0.954 3.77  0.954 

Enteric methane 
emissions 

      

Methane per day, g/d 194.06 15.774 217.76 22.294 231.05 19.371 
Methane/kg DMI  24.03 4.136 26.53 4.136 28.73 4.136 
Nitrogen in blood and 

urine       

BUN, mg/dL 7.40  1.090 7.60  1.090 6.20  1.090 
Urinary Nitrogen, g/L 4.51  0.709 4.15  0.709 3.10  0.709 
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Methane emissions 
 

 Feedlot methane emissions (in g/d) for 2017 were greater than emissions for the 

2018 study (P=0.0041; Table 7). Methane emissions expressed per unit of intake were 

similar between years when DMI was estimated through the gravimetric method 

(P=0.2903; Table 7).  

During 2017, methane emissions (in g/d) were greater in Period 2 than in Period 1 

(P=0.0021; Table 8). However, this parameter did not differ among periods for the study 

in 2018 (P=0.1439; Table 9). 

 When methane was expressed per unit of intake, there were no differences for this 

parameter among sampling periods for both years of the study (2017: P=0.6046; 2018: 

P=0.5945; Table 8 and 9).  

Averaged across years and periods, methane emissions (in g/d) for the feedlot study 

were similar to the MB (P=0.3771) and CMV (P=0.2201) grazing treatments, but lower 

(P=0.0285) than the BFT treatment. 

When methane emissions were expressed per unit of intake, emissions from the 

feedlot study were greater for the BFT treatment (P=0.0740), whereas they did not differ 

from the animals under the MB (P=0.6763) or CMV (P=0.1180) pasture treatments.   

 
Nitrogen in blood and urine 

 
 There were no significant differences among the periods for BUN (P=0.2449) or 

nitrogen concentration in the urine excretions (P=0.3933).   

 BUN concentrations in feedlot animals were similar to values observed in cows 

grazing MB (P=0.5530), but lower than in cows grazing the legume pastures (BFT and 
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CMV) (P=<.0001). Urinary nitrogen concentrations were similar between cows in the 

feedlot and the grazing study (P=0.2036).  

 
DISCUSSION 

I hypothesized that legumes like BFT with bioactive compounds like condensed 

tannins would benefit livestock production systems by enhancing animal performance and 

reducing carbon and nitrogen emissions from enteric fermentation and urine volatilization 

to the environment relative to conventional grass-fed systems. Thus, I predicted that 

methane and nitrogen emissions and animal performance would be similar between cattle 

that graze tannin-containing legumes and cattle consuming a feedlot diet, but tannin-

containing legumes will promote lower emissions and greater weight gains than animals 

consuming grass. Consistent with these predictions, cows grazing BFT showed greater 

ADG than animals grazing MB (grass) and similar gains to animals fed a TMR with high 

roughage contents. In addition, methane emissions from cows grazing BFT per unit of 

intake were similar (RPM method) or lower (fecal output/digestibility method) than 

emissions from animals consuming the feedlot ration in confinement. Nonetheless, cows 

grazing MB showed methane emissions that were similar to those observed in cows grazing 

BFT. Animals grazing BFT and CMV showed greater blood urea nitrogen concentrations 

than cows grazing MB or consuming a TMR explained by the greater crude protein 

contents of the legumes. Finally, nitrogen excretions in urine were similar for all the diets 

suggesting greater N retention in cattle grazing legume pastures. 
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Body weights 
 
 Average daily gains for grazing animals were in generally low (0.46 and 0.70 kg/d 

for MB and BFT treatments, respectively), and in particular for CMV (0.18 kg/d). For 

instance, Pitcher (2015) observed ADG values of 0.63 kg/d in Angus steers grazing CMV, 

and MacAdam et al., (2011) reported ADG values between 1.42 to 1.64 kg/day in steers 

grazing CMV. One explanation for the lower ADG values found in the grazing experiment 

is the growth stage of the animals (2 years old) with lower rates of gain than younger 

individuals. It is known that the growth rate in ruminants is inhibited after puberty (Owens 

et al., 1993). Additionally, another explanation for the low weight gains in animals grazing 

CMV is the presence of anti-nutritional components in this forage that impede fiber 

digestion through inhibition of cellulose fermentation, as reported by Weimer et al., (1993). 

There is also evidence that fiber components from CMV might be less digestible than 

components from other forages (Kephart et al., 1990), and Marten et al., (1987) observed 

lower ADG in heifers grazing CMV than in heifers grazing alfalfa, BFT or sainfoin. The 

particularity of Marten’s results is that animals grazing CMV presented photosensitization 

and low intakes, suggesting low palatability of the forage (Marten et al., 1987). Therefore, 

it is possible to conclude that the low ADG observed in animals grazing CMV in this study 

was a consequence of the potentially negative influence of anti-nutritional factors and low 

levels of fiber digestibility in this forage (Weimer et al., 1993).  

 Under typical feedlot conditions, ADG for beef cattle ranges from 0.79 to 2.43 Kg/d 

(Reinhardt et al. 2012). Thus, the ADG for TMR-fed animals reported in the current study 

are at the low-end of this range, which is reasonable when considering that cows were in 

the postpubertal deceleration phase of their growth rate (i.e., animals were 2 years old), did 



70 
 

not receive growth promoters and the roughage contents of the TMR were high (50%). An 

important outcome of this study is that animals grazing BFT showed ADG values similar 

to those observed by animals in confinement consuming a TMR. This outcome is explained 

by the high nutritional quality of BFT (Table 1) with greater concentrations of CP and 

similar concentration of fiber relative to the feedlot ration. Consequently, BFT had a greater 

TDN content than the TMR. Moreover, tannins from BFT are responsible for an increase 

in the efficiency of use of dietary protein in the intestines (Waghorn et al. 1987; Min et al., 

2003; Waghorn, 2008; MacAdam and Villalba., 2015; Brummer et al., 2016; Lagrange et 

al., 2017). The magnitude of ADG observed in this study for cows grazing BFT is 

consistent with previous studies (Pitcher, 2015; Lagrange et al., 2017; 2018). Cows grazing 

MB showed lower ADG than animals grazing BFT (Table 3), although gains for the MB 

treatment was lower than values reported by Pitcher (2015) (0.88 Kg/d). An explanation 

for this pattern may entail the greater contents of fiber and lower concentration of protein 

in the pastures grazed during the present study (Table 1) than on those reported by Pitcher 

(2015). The greater ADG observed for animals grazing BFT than for animals grazing MB 

could also be explained by the greater intakes (fecal output/digestibility method) displayed 

by cows grazing BFT, a legume of greater nutritional quality than MB.  

 
Intake determinations 
 
 Dry matter intake is related to the concentration of the main nutritional components 

of forages: non-structural carbohydrates, nitrogen (protein) and fiber (Forbes, 2007). 

During the grazing study, two methods to assess dry matter intake in grazing animals were 

used: The rising plate meter (RPM) (Scrivner et al., 1986) and a mathematical relationship 
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between fecal output (estimated with chromic oxide as an external marker) and digestibility 

of the dry matter of the forage (estimated through NIRS analysis) (Holden et al., 1994).  

Results from the RPM method showed that animals grazing CMV consumed the 

greatest amounts of DM (Table 3). However, dry matter intake estimations for CMV, BFT, 

and MB treatments using this method appear to be overestimated,, and in particular for 

CMV, relative to intakes predicted by the NRC model (National Research Council, 2018), 

using the nutritional quality of the forages and observed ADG of cows as inputs (Table 

10). Thus, and as it was mentioned in previous sections, intake estimations for the grazing 

study were reported by the FO/D relationship because such estimations were closer to the 

predicted intake values obtained with the NRC model. Likewise, for the feedlot study, 

intake estamtions by the gravimetric method were reported due to estimations by the FO/D 

method were highly different than the intake values from the NRC model (Table 10). 

 
Table 10. Observed (gravimetric, rising plate meter-RPM and fecal output/digestibility 
method-FO/D) and predicted [using the NRC (2018) model] dry matter intakes in kg/d for 
cows in the grazing and feedlot studies. ND: Not determined. 

DMI, kg/d BFT CMV MB TMR 
Observed (Grav) ND ND ND 10.87 
Observed (RPM) 17.73 25.83 16.55 ND 
Observed (FO/D) 14.84 13.14 10.12 31.89 
Predicted 12.68 10.11 14.18 13.59 
 

The technique to compute intake based on estimations of the fecal output and forage 

digestibility (FO/D method) resulted in lower intake values that those obtained with the 

RPM method, but still above the predicted values for BFT and CMV, and below predicted 

values for MB using the NRC (2018) model (Table 10).  
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Smith & Reid (1955) reported that chromic oxide excretions in feces vary during 

the day and for that reason two grab fecal samples per day is recommended (at 0600 and 

1600 hours) to generate accurate calculations of fecal output. However, we collected one 

sample per day in order to reduce alterations in the grazing behavior of cows that had to 

walk to the handling facility located 300 m from the pastures. Lardner et al., (2015) 

calculated MB intake in beef cows at pasture using Chromic sesquioxide as an external 

marker (with two fecal samplings per day, 0700 and 1700), obtaining values of 0.14 kg 

DM/kgLBW in steers, these results are similar to those obtained in the present grazing 

study with the RPM method (0.14 kg DM/kg LBW), but lower than those obtained with 

the FO/D method (0.09 kg DM/kg LBW). 

For feedlot animals, intake determinations by the FO/D method were significantly 

greater than those values obtained gravimetrically or predicted by the NRC model (Table 

10). Ration intake in the feedlot study was assessed gravimetrically by the difference 

between the amounts of feed offered and refused. Bevans et al., (2005), and Beauchemin 

& McGinn (2005) report greater intake values by mature animals consuming a TMR (0.10 

kg DM/ kg LBW in both studies) than overall intake values observed in the current study 

(0.08 kg DM/kg LBW), although intakes were in the same range for the second year (2018) 

of the study (0.10, 0.09 and 0.09 kg DM/kg LBW for Periods 1, 2 and 3, respectively). 

Lower intake values during 2017 may be explained by a smaller volume of the feeder that 

in conjunction with the methane collection equipment likely constrained access to the 

forage. Intake estimations by the gravimetric methodology showed that intake values in 

2018 were greater than in 2017.  
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Intakes by grazing animals under this technique (10.12 to 14.84 kg/d range) were 

closer to values obtained using the NRC (2018) model (12.68 to 14.18 kg/d; Table 10) than 

those estimations from the RPM method (16.55 to 25.82 kg/d range). Intakes estimated 

with the FO/D technique were similar for cows grazing legumes (BFT and CMV), and 

cows grazing BFT had greater intakes than cows grazing MB.  

 
Methane emissions 
 
 Enteric methane production is directly related to the amounts of plant fiber digested 

by the animal (Johnson & Johnson, 1995; Johnson et al., 2000). Therefore, animals grazing 

forages low in fiber produce lower emissions than animals consuming grass or more fibrous 

feeds (Beauchemin et al., 2005), and daily methane emissions from cows consuming 

concentrate diets (e.g., low fiber content) should be lower than emissions from cows 

grazing forages (e.g., grass) with greater concentrations of fiber (Johnson & Johnson, 1995; 

Beauchemin & McGinn, 2005; Beauchemin et al., 2008). Methane emissions are 

negatively correlated with intake levels because passage rate increases with increments in 

feed intake. Consequently, the residence time of feed in the rumen declines which 

decreases the time needed for microbial fermentation and as a consequence the rate of 

methane production in the rumen is reduced (Jiao et al., 2014).  

 Heifers grazing the different pasture treatments and heifers in the feedlot study 

emitted similar amounts of methane in g/d, although animals in the feedlot study emitted 

lower absolute amounts (in g/d) than cows in the BFT treatment. Given the aforementioned 

relationship between intake and methane production, when methane emissions were 

expressed per unit of intake (estimated through the FO/D method for the grazing study), 
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no differences among grazing treatments were observed, and emissions by cows grazing 

BFT were lower than emissions per unit of intake in the feedlot study (feedlot intake was 

estimated through the gravimetric method). Prior studies reported methane emissions from 

animals grazing BFT pastures that were similar to values obtained in the current study 

(Waghorn & McNabb, 2003; Woodward et al., 2004; Lagrange et al., 2017). There is also 

evidence that condensed tannins in forages reduce methane emissions likely due to an 

antibiotic effect on methanogenic bacteria or to a reduction in the availability of hydrogen 

ions from the rumen microflora involved in methane production (Jones et al., 1994; 

Woodward et al., 2004; Tan et al., 2011.). Nevertheless, concentrations of tannins in BFT 

for the present study were low (< 20g CT/kg DM), but still much greater than the 

concentrations observed in CMV or MB. Alternatively, the high-nutritional quality of BFT 

with lower fiber contents and greater concentration of CP than grass may contribute to 

explain methane emissions in this study. Collectively, these results support my hypothesis 

that condensed tannins in legumes may improve livestock production systems by reducing 

carbon emissions from enteric fermentation.  

 I proposed that the comparison in methane emissions per unit of intake within and 

between studies using the FO/D (grazing study) and gravimetric method (feedlot study) is 

the most accurate approach among all intake estimates explored in this study. This is 

because intake values obtained through these methods were closer to estimates obtained 

through the NRC model (2018) and the gravimetric method yields accurate measurements 

of food intake in confinement.  

Contrary to what was expected due to the high fiber contents in MB, cows grazing 

this forage produced low amounts of CH4 per unit of intake, which were comparable to 
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values recorded for cows grazing BFT. Ruminants display selectivity at pasture (Theron & 

Booysen, 1966; Andrew, 1986; Provenza, 1995; Sheremetev et al., 2017) and thus this 

result can be explained by cows selecting a diet with lower fiber and greater CP contents 

(i.e. by selecting young grass tissues) than values reported in the chemical analyses (Table 

1) for meadow brome, even when hand-plucked samples were collected in a way that tried 

to mimic the animal’s selection. 

 
Nitrogen in blood and urine 
 

Blood urea nitrogen and urinary nitrogen are the consequences of digestion and 

absorption of ammonia excesses that pass from the rumen to the bloodstream (Lobley & 

Milano, 1997). Indeed, urea concentration in blood has been used as an indicator of the 

level of degradable protein in the rumen, with high correlations with the levels of urinary 

nitrogen excretions (Kebreab et al., 2004). During this study, cows grazing legumes 

showed high levels of BUN due to the high concentration of CP in these forages (Table 1). 

We used a control legume (CMV) of similar architecture and nutritional quality to BFT, 

but without tannins, to explore the influence of condensed tannins on nitrogen metabolism 

and methane emissions in grazing animals.  

Lagrange et al., (2017) observed BUN values of 13.8 mg/dL in steers grazing BFT 

pastures with 24% of protein in the forage. Meanwhile, Stewart et al., (2019) reported BUN 

values for cows consuming BFT, CMV, and MB hays in the range of 8.0, 16.0, and 8.0 

mg/dL, respectively. 

Despite the aforementioned effects of tannins on ruminal proteolysis, legume diets 

(BFT and CMV) in this study yielded similar levels of BUN and urinary nitrogen 
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concentrations in grazing animals, which were greater than for animals grazing MB or 

consuming the feedlot ration. The lower concentration of BUN in cows grazing MB or 

consuming the TMR is explained by the low concentrations of CP in the grass and the 

ration relative to BFT and CMV (Table 1). The similar concentrations of BUN and urinary 

nitrogen in tannin- (BFT) and non-tannin (CMV) containing legumes, particularly when 

considering that the concentration of CP was lower in BFT than in CMV, gives no 

indication that tannins in BFT reduced BUN or urinary nitrogen concentration in the 

present study. It is likely that the low concentration of condensed tannins in BFT (Table 1) 

explains this outcome. Although the optimal concentration of condensed tannins to reduce 

ruminal proteolysis is not universally established (Wen et al., 2003), Aerts et al., (1999) 

and Min et al., (2003) suggested that concentrations between 20 to 45g CT/kg DM have 

positive effects, forming reversible bindings to reduce proteolytic populations in the rumen, 

which reduce the degradation of dietary protein and production of ammonia. However, this 

threshold can vary depending of the molecular structure of the CT, due to strong bonds of 

tannins with the protein may reduce dissociation of the complex and posterior release of 

the protein in the intestines. Birdsfoot trefoil in my study presented tannin concentration 

bellow this optimal threshold (<20g CT/kg DM), additionally, CT present in the BFT in 

this study may not released the protein in the intestines because complexes tannin-protein 

were precipitated in the rumen slowing down the digestion of the protein (Waghorn, 2008). 

Thus, contributing to explain the lack of differences in BUN and urinary nitrogen 

concentrations in cows grazing tannin (BFT) and non-tannin (CMV) containing legumes. 

Waghorn (2008) concluded that concentrations of 30g CT/kg DM in BFT are beneficial 

for ruminant production, whereas concentrations over 50 g CT/kg DM have negative 
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impacts on forage intake, although such concentrations may contribute to control 

gastrointestinal parasite populations in ruminants. Alternatively, the type of condensed 

tannins presented in BFT (procyanidin-rich tannin type) may also be involved in the lack 

of differences for BUN and urinary nitrogen concentration between tannin- and non-tannin 

containing legumes (Mangan, 1988; Hatew et al., 2016). 

No differences were observed in urinary nitrogen concentration between cows 

consuming the TMR and cows grazing tannin-containing legumes, despite the fact that the 

concentration of CP was greater in the legumes than in the TMR. Thus, the excess of dietary 

protein in the legume species likely retained by the grazing animal due to greater synchrony 

in the availability of non-fibrous carbohydrates and nitrogen (Table 1). Finally, as the total 

urine output in pasture was not measured, it is likely that cows in the legume treatment 

excreted more urine as a consequence of more physical activity that increases the frequency 

of urination (Hirata et al., 2011), or because more urine is excreted as a consequence of 

consuming a diet with greater concentration of nitrogen (Sannes et al., 2002; Broderick, 

2003; Wattiaux & Karg, 2004). For instance, Stewart et al., (2019) reported urine excretion 

values of 17.72, 20.82, and 6.44 L/d for heifers fed with hay of BFT, CMV and MB, 

respectively, being BFT and CMV forages with higher protein concentration than the MB 

forage in that study. Thus, greater urine volumes can account for similar urinary nitrogen 

concentrations despite the fact that diets are different in CP contents. On the other hand, 

the lower concentration of urinary nitrogen in cows grazing MB can be explained by the 

lower concentration of crude protein in this grass (Table 1). Based on the fiber contend of 

the forages (NRC, 2000), it is possible to assume that water intake could been higher in the 
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animals that graze the grass diet relative to the animals that graze the legume diets due to 

a lower concentration of fiber in such forages.  

Previous research has shown positive effects of BFT at reducing urinary nitrogen 

excretions. For instance, Woodward et al., (2009) recorded a 15% reduction in the urinary 

nitrogen excretions in dairy cows by the inclusion of 45% of BFT in the diet. Eriksson et 

al., (2012) fed BFT silage (low concentration of tannins) to dairy cows, obtaining urinary 

nitrogen values (2.98 g/L) 13-14 % greater than expected based on the predicted benefits 

of condensed tannins at reducing nitrogen excretions. Hymes-Fecht et al., (2013) observed 

lower levels of urinary nitrogen excretions (6.65 g/L) in dairy cows eating BFT silage than 

animals fed alfalfa silage (7.19 g/L) or red clover (7.48 g/L). Nevertheless, these values are 

greater than those observed in the present study for cows grazing BFT, although there are 

differences in nitrogen excretions between beef and dairy cows (Xiccato et al., 2005). 

Former studies by Stewart et al., (2019) ) report urinary nitrogen concentrations of 3.72, 

4.95 and 4.89 g/L when feeding beef cows BFT, CMV and MB hays, respectively. These 

last values are comparable to the urinary nitrogen concentration reported in the current 

study. Considering that the concentration of N in the urine  are similar, it is posible to 

expect that the urinary volumes are similar as well, and then given the conetrations in this 

study the volumes might be as result, that animals fed with BFT would excreate 20.51 L/d, 

CMV animals 17.59 L/d and MB heifers 3.63 L/d.  

 
CONCLUSIONS 

In summary, cows grazing a tannin-containing legume (BFT) showed greater 

weight gains than cows grazing a non-tannin containing legume (CMV) or a grass (MB), 
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but similar to cows fed a feedlot ration with high contents of roughage. Methane emissions 

were comparable among animals grazing BFT, CMV and MB, or consuming the high-

roughage ration, although in some instances (e.g., using an external marker and forage 

digestibility to estimate intake), emissions per unit of intake were lower in cows grazing 

BFT than in cows consuming the ration. This suggests a positive effect of condensed 

tannins or nutrients in BFT on methane abatement. Blood urea nitrogen and urinary 

nitrogen concentrations were similar in cows grazing tannin- (BFT) or non-tannin (CMV) 

containing legumes, suggesting that tannins in BFT did not reduce ruminal proteolysis or 

shifted the site of nitrogen excretion from urine to feces. Overall, my findings suggest 

grazing BFT is a viable alternative to high-roughage feedlot rations for maintaining beef 

production with similar or potentially lower levels (i.e., methane emissions) of 

environmental impact. 

The development of standard methodologies to measure intake under grazing and 

confinement conditions is important to generate more accurate comparisons between these 

two feeding systems. The use of external markers like Cr2O3 (this study) to determine fecal 

output and estimates of digestibility is one of the most common and accurate approaches 

to measure intake at pasture. Nevertheless, the frequency of fecal sample collection (i.e., 

at least 2 collections per day) required to increase precision in the estimation of intake, 

constrains its applicability since animals are disturbed in their grazing patterns every time 

a sample needs to be taken. Emerging techniques where herbage intake is estimated 

through concurrent measurements of chewing behavior and sounds appear promising. In a 

recent study, energy flux density of chewing sounds have successfully predicted intake in 

grazing dairy cows offered experimental swards (Galli et al., 2018). The same technique 
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could be used to determine intake in confinement. Further validation of this technique is 

underway to assess forage intake in noisy, natural environments and over prolonged 

periods of time.   

Future projects should focus on the improvement of the agronomic characteristics 

of birdsfoot trefoil and other tannin-containing legumes, such that biomass production and 

regrowth rates are enhanced across the growing season, leading to high and sustained rates 

of body weight gains under grazing. This endeavor will contribute to create an alternative 

feeding system that in terms of production is comparable to the feedlot system, with the 

added benefits of reduced greenhouse gas emissions and enhanced rates of carbon and 

nitrogen sequestration. Foraging chains, where forage species with different phenology are 

grazed in a sequence that matches the forages’ peaks of production and quality 

(Pordomingo, 2007), the use of tannin-containing legumes, shrubs or trees to extend the 

grazing season and enhance nutrition (Revell et al., 2013), or the use of legumes in general 

to fix atmospheric nitrogen in grass pastures are all approaches that could be integrated 

into new animal management systems that contribute to achieve the goal of enhanced and 

sustained animal productivity with lower environmental impacts.   
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CHAPTER III 

ESTIMATION OF IRRIGATED AGRICULTURAL AREA IN THE STATE OF UTAH 

 
ABSTRACT 

The ultimate goal of beef production is the development of a sustainable system 

that takes advantage of the unique ability of ruminants to utilize plant fiber in an efficient 

manner, minimizing environmental impacts while providing a high-quality product to 

consumers. The use of alternative legumes (e.g. birdsfoot trefoil) as a mixed crop-livestock 

farming system could help ranchers achieve this goal in the Intermountain West. For this 

reason, an estimation of the available land in the state of Utah for growing legumes such 

as birdsfoot trefoil would inform future management efforts about the feasibility of raising 

and finishing cattle under this alternative beef production system.  

Remote sensing is a technique that allows for the capture of electromagnetic (EM) 

energy reflected from the earth’s surface and to analyze and interpret that reflectivity as 

surface land cover or land use features. The reflectance of EM energy by plant communities 

is modulated by leaf tissue and pigments that regulate absorption or reflection of light. The 

measurement of plant community reflectance utilizing different parts of the EM spectrum 

provides information that can help improve land management programs focused on 

vegetation production and biomass conservation. For the agricultural sector, estimation of 

crop status, soil quality, or plant development are important variables used in the decision-

making process that directly affect food supply and market prices. Thus, knowledge of 

proper soil condition in agricultural areas is a key factor used by managers to increase the 

likelihood of success in agricultural operations.  
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An estimation of the areas occupied by irrigated agriculture in the state of Utah was 

performed using remote sensing imagery collected by the Moderate Resolution Imaging 

Spectroradiometer (MODIS). The Normalized Difference Vegetation Index (NDVI) 

(Rouse et al., 1973) is a commonly used and accepted vegetation index for vegetation 

studies where values of the index are positively correlated with photosynthetically active 

biomass. Irrigated agriculture in Utah is generally characterized as areas with a high NDVI, 

and in relatively flat landscapes within low-lying valleys. The identification of agricultural 

land was performed using a Random forest (decision tree) using NDVI layers from 18 years 

of MODIS imagery, a digital elevation model (ASTER data), and a training data set of 

1,050 random points. The estimated amount of agricultural land in the state of Utah was 

412,250 ha, and the major regions of irrigated land were observed in the northern part of 

the state (Box Elder and Cache counties); and in the central region of the state in Millard 

and Sanpete counties. Thus, legume-based grazing systems are a viable option for the state, 

particularly when considering the implementation of mixed crop-livestock farming 

systems where growers could diversify their operations by producing both hay and beef. 

 
INTRODUCTION 

As described in Chapter II, an alternative finishing system based on tannin-

containing legumes would take advantage of the capacity of the ruminants to extract energy 

and nutrients from forages in an efficient manner, minimizing environmental impacts while 

providing a high-quality product to consumers.  

One of the steps to evaluate the feasibility of a tannin-containing legumes finishing 

system is the quantification of potential areas that can be dedicated to sustain these type of 
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forages (i.e., birdsfoot trefoil). Thus, techniques capable of providing information about 

these areas and their location are important to accomplish such an endeavor. Remote 

sensing is a technique that allows for the analysis and interpretation of reflectance data 

from the earth’s surface (Pinter et al., 2003; Rogan & Chen, 2004). There are several 

remote sensing-based data sources that can provide information about surface resources 

(i.e., drones, aircraft and satellites) that is otherwise would be difficult to obtain using 

traditional ground-based methodologies (Hunt et al., 2003).    

Remote sensing (RS) of vegetation is mainly performed by recording the 

electromagnetic (EM) reflectance information from vegetation canopies using passive 

sensors (Rogan & Chen, 2004). A passive remote sensing instrument is a device that 

records EM energy originating from the sun, or other independent energy source (NASA, 

2017). Light reflectance characteristics vary between plant types, water content within the 

plant tissues and other intrinsic factors (i.e., plant health, pigments, secondary compounds). 

Reflectance is determined by chemical and morphological characteristics on the surface of 

plant organs or leaves (Zhang & Kovacs, 2012; Xue & Su, 2017), although, the quality of 

a captured image depends on the sensitivity of the sensor to detect reflected energy (Rogan 

& Chen, 2004).  

Remote sensing of vegetation is typically based on the following light spectra: (i) 

the ultraviolet region (UV), which ranges from 10 to 380 nm; (ii) the visible spectra, 

composed of the blue (450 to 495 nm), green (495 to 570 nm), and red (620 to 750 nm) 

wavelength regions; and (iii) the near and mid-infrared band (850 to 1700 nm) (Cruden et 

al., 2012; Abdul Rahim et al., 2016; Xue & Su, 2017).  
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The primary pigments in plant leaves are chlorophyll a and b, and carotenoids. 

These pigments are responsible for the absorption and reflectance of visible light used in 

photosynthetic process. Leaf morphology (cellular structure) also affects the amount of 

reflectivity of near-infrared light, and the comparison of visible light (blue and red) 

absorption by chlorophyll of near-infrared by leaf tissue can provide an insight into the 

physiological status of plant communities (Blackburn & Steele, 1999). Changes in the 

reflectivity features due to the health status of different plants are depicted in Figure 3. 

 

Figure 3. Relationship between leaf health with visible light spectra reflectance (blue, 
green and red) and Near-Infrared reflectance (Dobrowski, 2012). 
 
 

Physiological characteristics, such as leaf water content and transpiration, are 

detected by measuring the middle infrared energy incident to the leaf (Ustin et al., 2012; 

Hunt Jr. et al., 2016). Variations in the reflectance and absorption of EM energy of these 

different wavelengths are the result of the variation of the concentration of pigments in leaf 

tissues, which are related to the physiological function of the plant (Pinter et al., 2003). For 

instance, high concentrations of chlorophyll in leaves result in high photosynthetic rates, 

and thus an increased absorption of visible light. Increased amounts of chlorophyll for a 
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specific plant is positively correlated to the amount of leaf tissue present. An increase in 

leaf tissue is positively correlated with an increase in the reflectance of NIR light. The 

differential absorption of visible light (particularly red) compared to the reflectivity of NIR 

light is indicative of the total amount of biomass (Dobrowski, 2012).    

The relationship between light reflectivity/absorption by photosynthetically active 

biomass can therefore be estimated through the use of vegetation indices (VI) that 

mathematically combine the differential reflectance/absorption of various wavelengths of 

EM energy due to changes in the photosynthetically active material (Khanal et al., 2017; 

Xue & Su, 2017). Such indices are often computed as differences, ratios, or linear 

combinations of reflected light in visible and NIR wavebands (Pinter et al., 2003; Angerer 

et al., 2016). Variation in these indices can be attributed to changes in characteristics related 

to plant growth and vigor, such as water, pigments, sugar, protein, aromatics and 

carbohydrate content, among others (Meera Gandhi et al., 2015). In addition, these indices 

can be used to estimate stomata dynamics related to plant transpiration or plant water stress 

(Tucker, 1980; Xue & Su, 2017). This information can be used to make decisions related 

to the management of a crop, such as irrigation levels or shading manipulations.   

One common application of remote sensing is the measurement of characteristics 

from a vegetation community (Di Bella et al., 2004; Meera Gandhi et al., 2015; Angerer et 

al., 2016; Gitelson, 2016; Khanal et al., 2017; Xue & Su, 2017). Thus, remote sensing has 

been widely used to assess agricultural activities and will continue to be more commonly 

used given the current trends of human population growth and the need to optimize the use 

of natural resources (Crist et al., 2017). Remote sensing has an important role in precision 

agriculture by increasing data available to make decisions, providing information about the 
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dynamics of the environment such as biomass status and abundance, or data about drought 

and water stress in agroecosystems (Ramoelo et al., 2014; Maggiori et al., 2017; Precision 

Agriculture, 2018).   

Different applications of remote sensing techniques in agriculture depend on the 

reflectivity peaks along the range of visible and near/mid-infrared regions of light spectra 

(Di Bella, et al., 2004; Gitelson, 2016). For example, plant emissions and transpiration 

levels can be portrayed using plant emissivity as measured in the thermal infrared (Soer, 

1980; McCarty, 2011).  

Thermal remote sensing is used in agriculture to detect environmental changes that 

can produce water or temperature stress in a crop (Ustin et al., 2012; Hunt Jr. et al., 2016).  

Some uses of thermal remote sensing in agriculture are: (i) soil moisture detection, which 

monitors humidity in the soil, improving timing of irrigation; (ii) land soil temperature, a 

characteristic that has a strong relationship with soil texture, that is an indicator of the 

quality of the soil (structure, porosity, hydraulic properties, and nutrient retention ability); 

(iii) plant disease detection by changes in temperature of the plant community, due to 

physiological responses in the plant caused by pathogens; (iv) drainage mapping, the 

presence of water in the soil and humidity in the environment directly affect plant thermal 

radiation, which in turn allows water stress to observed in crops; and (v) crop maturity and 

crop yield mapping (Serrano et al., 2000; Buitrago et al., 2016; Khanal et al., 2017; Yen 

Mee et al., 2017). 

Remote sensing techniques have been used as tool to forecast biomass yield 

(Serrano et al., 2000; Shanahan et al., 2001; Khanal et al., 2017; Xue & Su, 2017; Noland 

et al., 2018) and forage quality (Kalu & Fick, 1981; Owens et al., 1995; Starks et al., 2016). 
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This information can complement traditional visual estimations utilized to decide the 

harvesting of the crop. Remote sensing analysis can be particularly advantageous where 

research is economically and spatially restricted (Bateman, 2017). 

The objective of this study was to use remote sensing in order to estimate the 

agricultural areas under irrigation in the state of Utah. Results from this study will provide 

estimates on the agricultural areas that can be suitable for “non-traditional” forage legumes 

that grow under irrigation such as birdsfoot trefoil (Lotus corniculatus L) or sainfoin 

(Onobrychis coronarium) to be used in beef-finishing systems as an 

alternative/complement to hay production such that plant growers can diversify their 

operations. Thus, this information will be of value for novel local or regional programs 

aimed at developing mixed crop-livestock farming systems based on the inclusion of 

tannin-containing legumes, and to estimate the capacity for local perennial legume-based 

pasture finishing.   

 
STUDY AREA 

The state of Utah is in the center of the Intermountain West region, between the 

longitudes from 109° West to 114°West and the latitudes 37° North to 42° North latitude. 

The approximate size of the state is 219,807 square kilometers and it has 29 counties, with 

San Juan, Tooele, Millard, and Box Elder (McGinty & McGinty, 2009) being the largest 

ones, which are distributed in three major eco-regions: Rocky Mountains, Basin and Range, 

and Colorado Plateau (Figure 4).  Utah is ranked as the 11th largest state in the U.S (UACD-

UDA-NRCS, 2005). The state altitude ranges from 663 meters at Beaver Dam Wash in the 
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southwestern corner of the state to 4,123 meters above sea level at the summit of King’s 

Peak in the Uinta Mountains (Netstate.com, 2016). 

 Three-quarters of the land in Utah is not permanently inhabited by humans, because 

the landscape is too dry, too low in vegetation cover or it is owned by the federal 

government. Utah is the second driest state US (UACD-UDA-NRCS, 2005). However, 

these lands provide several ecological services such as habitat for plants and animals, water 

source for irrigation, minerals and fossil fuels, and numerous recreational activities related 

to the natural resources (West, 2009). 

Agriculture in Utah is dominated by livestock production, animal products, and 

crops that provide feed to the livestock industry (Banner, 2009; Ward & Salisbury, 2016). 

Livestock grazing has been an important economic activity in Utah since colonization by 

Europeans (West, 2009; Forrest, 2016). Utah is the second producer of mink pelts in the 

U.S., third-largest in apricots and tart cherries, sixth in sheep and sweet cherries, seventh 

in onions, and ninth in pears and farm-raised trout. Barley production in Utah ranks 

eleventh and alfalfa hay production ranks thirteenth (UACD-UDA-NRCS, 2005). 

The acreage utilized for production of grains and forages for livestock production 

has increased by almost 16% since 1940. Introduction of irrigation technology has 

contributed to this growth, but 82% of the irrigated land in Utah is considered to have low 

to marginal crop production potential (Banner, 2009), and is more suitable for forage 

production or grazing than for crop production. 

 Beef and dairy operations are abundant in the state, there are 830,000 head of cattle 

being raised by more than 8,000 ranchers (Utah Beef Council, 2018). Cropland irrigation 

is necessary for sustained plant growth, and 80% of the diverted water in Utah is for 
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agricultural irrigation purposes (Allen, 2017). Dryland farming and grazing are also noted 

as major agricultural businesses. However, grazing on public land is decreasing due to 

reduction in the range quality, overgrazing; conflicts in public land use policies, lease 

availability and pricing (UACD-UDA-NRCS, 2005; Coppock et al., 2009). 

 

 

Figure 4.  General geography of the state of Utah. Image provided by the remote 
sensing/GIS laboratory at Utah State University (Utah State University, 2009). 
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MATERIALS AND METHODS 

The estimation of the agricultural areas in the state of Utah was performed by the 

development of a map with data from the MODIS sensor (Moderate Resolution Imaging 

Spectroradiometer), an instrument installed on two satellites: Terra (EOS AM-1) and Aqua 

(EOS PM-1). Terra orbits the earth from north to south across the equatorial line in the 

morning, while Aqua crosses the equatorial line from south to north in the afternoon 

(NASA, 2002). Both platforms, Terra and Aqua MODIS sensors acquire information of 

the Earth’s surface every one to two days in 36 spectral bands. MODIS is a key tool sued 

to generate information related to the development of interactive Earth system models. 

Such information is important to predict global changes accurately enough to assist the 

decision-making process regarding the environment (NASA, 2002).  

The MODIS sensor provides a high radiometric fidelity (12 bit) for each of the 36 

spectral bands ranging in wavelength from 0.4 to 14.4 µm. Two bands collect reflectance 

values at a resolution of 250 m, five bands at 500 m and, the remaining 29 bands at 1 km 

(NASA, 2002).  

The MODIS data product analyzed was MOD13Q1, because it provides vegetation 

index values for every pixel. The MOD13Q1 product consists of imagery from the Terra 

platform collected every day. Daily imagery is combined into 16-day intervals to generate 

cloud-free composites. For each 16-day interval, an algorithm selects the highest quality 

pixel from the images collected during that 16-day period. The quality criteria used consists 

of low cloud cover, low view angle and the highest NDVI value (Didan, 2015).  
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MODIS data are organized by a tile system that covers the Earth. The extent of the 

state of Utah intersects tiles H08V05, H09V05, and H09V04. To map irrigated agriculture 

across the state, I used data collected between day 97 (April 7, spring) and day 273 

(September 30, end of the summer) from 2000 through 2018. The data were reduced to a 

yearly NDVI value by identifying the maximum value of NDVI for each of the 19 years. 

Yearly NDVI, data were filtered by topographic conditions, to distinguish between 

cropland and forest or other vegetated areas in the mountains. The topography data was 

obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER). ASTER is an imaging instrument aboard Terra, the flagship satellite of NASA's 

Earth Observing System (EOS) (NASA-JPL, 2012). ASTER captures high-resolution 

images of the Earth surface in 14 different wavelengths of the electromagnetic spectrum 

(from visible to thermal infrared light). Scientists use ASTER data to create detailed maps 

of land surface temperature, emissivity, reflectance, and along-orbit track stereo capability 

is used to generate elevation data (NASA, 2019). Additionally, a training data set was 

produced through selection of a representative sample of each land cover class, with a total 

of 1,050 sample sites distributed in across of the state. These training sites were classified 

by visual appreciation of the user of high-resolution imagery.  

A supervised classification utilizing the Random forest decision tree algorithm 

(Breiman, 2001) and a training data set of 1,050 random points separated NDVI and 

topographic into four different land use/cover categories. The categories were: (i) Irrigated 

Agricultural lands, such as croplands or pastures, (ii) Forest areas, (iii) non-agricultural 

land like pastures in the mountains, urbanized areas, shrublands or vegetation without 

irrigation, and (iv) bare ground areas, lands with low or no vegetation cover.  
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In general, irrigated agriculture (crops and grazing pastures under irrigation) was 

characterized by high NDVI values across the 19 years and occurring in flat areas. Forest 

areas are represented by pixels with high NDVI, but occurring on higher elevation, steeper 

landscapes. Non-agriculture had variable NDVI and occurred in higher elevations or urban 

areas where NDVI was high and lowland flat areas where NDVI was low. These were 

considered non-irrigated pastures or shrublands. Bare ground areas consistently have the 

lowest NDVI values and occur in any topographic landscape. Area in hectares for each 

type was estimated by multiplying the area of one pixel by the total number of pixels 

assigned to a specific class and dividing the product by 10.000 (number of meters in one 

hectare). 

𝐿𝐿𝐹𝐹𝑐𝑐𝑂𝑂 𝐶𝐶𝑜𝑜𝐶𝐶𝐹𝐹𝑟𝑟 = [(𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝐷𝐷𝑆𝑆𝐹𝐹2 × 𝐶𝐶𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑 (𝐹𝐹𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜)]/10,000 

 
RESULTS 

 Land cover classification revealed that the state of Utah has 412,250 ha dedicated 

to agricultural activities under irrigation. Based on the current assessment, the majority of 

the hectares in the state of Utah are dedicated to non-agricultural activities (urbanized 

areas, shrublands, short vegetation areas with no irrigation) (Table 11, Figure 5). Accuracy 

of the map is 72.2% and the agreement index is 54.22%(Table 12). 

 
Table 11. Pixel count and hectares estimated by remote sensing by each land cover use for 
the classification. 

Land Cover ha 
Irrigated Ag 412,250 
Forests 7,388,819 
Non-Ag 11,481,350 
Bare Ground 2,867,906 
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Table 12. Confusion  matrix of the land cover classification for the state of Utah. 

 
 
 
 

 

Figure 5. State of Utah, classified by land cover use. 
 
 
  

ClassValue IrrigatedAg Forests Non-Ag BareGround Total U_Accuracy 
IrrigatedAg 52 0 8 0 60 86.66% 
Forests 4 134 66 10 214 62.61% 
Non-Ag 1 16 248 50 315 78.73% 
BareGround 0 0 32 79 111 71.17% 
Total 57 150 354 139 700 - 
P_Accuracy 91.22% 89.33% 70.05% 56.83% - 73.28% 
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DISCUSSION 

The USDA-NASS reported 444,028.77 ha under irrigation in Utah in the 

agricultural census of 2017 performed through a survey (USDA-NASS, 2019), this 

estimate is similar to the value obtained in the present study using remote sensing. The 

difference between the values obtained in this study and those reported by USDA-NASS 

can be explained by several factors such as the size of the study area, size of the training 

data or sensor utilized in the present study. These factors have shown to affect the accuracy 

of the land cover classification (Table 12). 

Geurts et al., 2006; Millard & Richardson, 2015; Ma et al., 2017; Tang et al., 2018). 

Moreover, a constraint in the classification methodology is the inability to know what is 

the spectral overlapping among certain classes (Bateman, 2017), and consequently areas 

with similar spectral sign can be misclassified. Thus, the main misclassification occurred 

when Forest and Bare Ground pixels were classified as Non-Ag, because of the wide 

variety of areas that were defined as non-agricultural (pastures in the mountains, urbanized 

areas, shrublands or vegetation without irrigation). Additionally, small agricultural areas 

under irrigation (<6.25 ha) were undetected by the classification because a pixel would be 

classified under a certain category depending of the dominating land cover type in the pixel 

(Bateman, 2017; Ma et al., 2017). Finally, it is important to consider that different 

measurement methodologies can produce different results and different error rates. 

Therefore, USDA-NASS agricultural census is self reported by agricultural owners or 

managers (USDA-NASS, 2019). Consequently, differences between the remote sensing 

results and the agricultural census are possible.  
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Figure 5 shows that agricultural areas under irrigation are concentrated in the 

northern part of the state, in Box Elder and Cache counties; and in the central region of the 

state in Millard and Sanpete counties. The USDA-NASS’ census of agriculture registered 

these counties as the ones with the most irrigated agricultural areas in the state (USDA-

NASS, 2019). 

Overall accuracy of the MODIS generated map was assessed with the individual 

accuracies of each land cover type. The producer and user accuracies provide a method to 

evaluate the confusion between different land cover types (Janssen & van der Wel, 1994; 

Carfagna & Gallego, 2005; Brown et al., 2013). User’s accuracy is the likelihood that a 

classified pixel actually represents that category on the ground. Meanwhile, producer’s 

accuracy indicates the probability that a classified pixel in the same category, in fact 

belongs to that class (Story & Congalton, 1986; Brown et al., 2013). Carfagna & Gallego 

(2005) reported producer’s accuracy values ranging from 40 to 80% and user’s accuracy 

between 50 to 90% for crops such as wheat, barley, corn, sunflower, among others. Thus, 

the accuracy of the current classification is reasonable. Moreover, and as it was mentioned 

previously, the agricultural census reported values similar to those obtained through remote 

sensing in the present study.    

Finally, the assessment of the accuracy assumes that the reference data (training 

data set) are totally correct and in many cases this is not completely true (François Mas et 

al., 2003), as the creation of the reference data set is through the examination of aerial 

imagery. Generation of the reference data was performed by assigning a land cover type to 

a sample pixel, but there were cases that assignation of the land cover type was not 

completely clear. For these reasons it is highly recommended to create a reference data set 
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based on physical sampling. However, because of the size of the study area (the state of 

Utah), such practice was not feasible. Collectively, I suggest that the greatest error rate in 

this study was generated by the general nature and spectral overlap of the categories utilized 

in the classification.      

The Utah Association of Conservation Districts (UACD), Utah Department of 

Agriculture (UDAF), and the Natural Resources Conservation Service (NRCS) reported a 

total of 979,803.83 ha dedicated to agricultural activities in the state of Utah (UACD-UDA-

NRCS, 2005), this value is twice the area obtained in this remote sensing assessment. 

However, the UACD-UDA-NRCS report did not differentiate between irrigated or 

farmable areas with rangeland or shrublands used for some agricultural activities such as 

animal grazing. Thus, the irrigated agricultural areas have a big potential to increase if 

irrigation is implemented in those areas without irrigation. 

 
CONCLUSIONS 

 The main goal of the current remote sensing assessment was to estimate the 

irrigated land in the state of Utah in order to gain knowledge about the potential areas that 

can sustain alternative grazing crops such as tannin-containing legumes. The final output 

showed the number of hectares and the regions with the greatest concentration of irrigated 

land in the state. These results were compared with statistical records from the USDA-

NASS to corroborate the accuracy of the values obtained. This study shows that the state 

of Utah has 412,250 ha that could sustain tannin-containing legume crops (e.g. birdsfoot 

trefoil) for grazing during the finishing phase of beef production. The major regions of 

irrigated land were observed in the northern part of the state, at the Box elder and Cache 
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counties; and at the central region of the state, particularly in Millard and Sanpete counties. 

This effort suggests that legume-based grazing systems are a viable option for producers 

in the state, particularly when considering the implementation of mixed crop-livestock 

farming systems where growers could diversify their operations by producing both hay and 

beef. Finally, feeding tannin-containing legumes to cows during the finishing phase is a 

viable alternative to feedlot rations, with greater levels of productivity than other pasture-

based systems, which can lead to a more sustainable production of beef.  
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CHAPTER IV 

SUMMARY 

Livestock production systems are being criticized for the negative environmental 

impacts of the greenhouse gases (e.g., methane and nitrous oxide) they generate during the 

process of raising and finishing animals, and thus alternatives to further reduce 

environmental footprints of beef cattle production represent a significant aspect of 

sustainable farming. This Thesis shows that the use of non-traditional forages such as 

tannin-containing legumes (e.g., birdsfoot trefoil; Lotus corniculatus L.) have the potential 

to optimize the utilization and cycling of nutrients inside the animal, contributing to a 

reduction in environmental impacts during the process of beef production.   

An evaluation of (i) animal performance (DM intake and ADG), (ii) methane 

emissions, and (iii) concentration of nitrogen in urine and blood urea nitrogen was 

performed in beef cattle grazing three different pastures or a feedlot ration with high (50%) 

content of roughage (total mixed ration). The pastures used during grazing studies were: i) 

a tannin-containing legume diet (birdsfoot trefoil; BFT), ii) a non-tanniferous legume (cicer 

milkvetch; CMV), and iii) a typical grass diet (meadow brome; MB). 

Cows grazing BFT showed greater weight gains than cows grazing CMV or MB, 

but similar to cows fed the TMR. Methane emissions per unit of intake from cows grazing 

BFT were similar to (when intake at pasture was assessed using the rising plate meter 

method), or lower than (when intake at pasture was assessed using the fecal 

output/digestibility method) emissions from animals consuming the TMR. This suggests a 

positive effect of condensed tannins or nutrients in BFT on methane abatement. Methane 
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emissions were comparable among animals grazing CMV, MB or fed the TMR. Blood urea 

nitrogen concentrations were similar in cows grazing BFT or CMV, but greater than in 

animals grazing MB or consuming the TMR. Urinary nitrogen concentrations were similar 

among the diet treatments. These results suggest grazing BFT is a viable option to reduce 

environmental impacts by livestock production systems while maintaining levels of 

productivity, relative to traditional feeding systems such as feedlots, or increasing 

productivity relative to grass-feeding systems. 

In order to explore the viability of legume-based feeding systems, a remote sensing 

estimation of the irrigated land in the state of Utah was also implemented in this Thesis. 

This effort was undertaken with the aim of informing future management and research 

projects about the amount of land in the state that can potentially be used to feed and finish 

cattle under legume-based grazing systems. The estimated amount of agricultural land 

under irrigation in the state was 412.250 ha, and the major regions of irrigated land were 

observed in the northern part of the state, such as Box Elder and Cache counties, and at the 

central region of the state in Millard and Sanpete counties. Thus, these findings integrated 

with the positive effects of birdsfoot trefoil on grazing cattle suggest that alternative 

legume-based grazing systems are a viable option for producers in the state, particularly 

when considering the implementation of mixed crop-livestock farming systems, where 

growers could diversify their operations by producing both hay and beef.  

Future research should focus on alternative tannin-containing forages, in addition 

to birdsfoot trefoil, (e.g., sulla [Hedysarum coronarioum L.], crown vetch [Coronilla varia 

L.], small burnet [Sanguisorba minor]), and on forages that contain other secondary 

compounds (e.g., sesquiterpene lactones in chicory [Cichorium intybus]) with potential to 
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reduce environmental impacts and enhance livestock productivity. In addition, the creation 

of a “tanniferous index” may be useful for classifying tannin-containing plants into 

categories that reflect their tannin concentration in the leaf tissues. This index may help 

producers select species that better fir their management and production goals. For 

instance, forages with higher concentration of condensed tannins might be of preference 

when concentrations of protein at pasture are high, such as in legume-based dairy 

production systems or in grazing systems where gastrointestinal parasitism is a concern. 

On the other hand, lower concentrations of tannins may be more advisable for systems 

where beef cows graze on forages with lower contents of crude protein.  

Combinations of a diversity of forages in pasturelands may lead to benefits that are 

larger than when animals graze single species due to positive associative effects. Moreover, 

grazing diverse systems that match biomass production peaks among forage species of 

different phenologies with the dry matter requirement of the animals may contribute to 

enhanced intake on pasture and thus productivity through the year. Thus, future research 

efforts may need to focus on the influence of plant secondary compounds and forage 

diversity at attenuating environmental impacts while improving beef production.  

Finally, research may need to concentrate efforts at improving biomass yield, 

regrowth, and persistence traits in non-traditional forages containing secondary 

compounds, increasing their competitiveness and adaptability, as it occurs with more 

traditional species (e.g., Alfalfa [Medicago sativa] or Ryegrass (Lolium spp]). These 

improved varieties would enhance the likelihood of adoption by producers interested in 

finishing animals at pasture. Thus, animal scientists need to work hand-by-hand with plant 

breeders such that several of these “non-traditional” forage species become more adapted 
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to different ecoregions with concomitant enhancements in productivity and persistence, 

with optimal concentrations of nutrients and plant secondary compounds, which will 

ultimately “breed” more sustainable beef production systems. 


