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II. INTRODUCTION 

II.1. Targeting the mitochondrial transition pore as potential therapeutic target in AP 

Mitochondrial dysfunction is one of the earliest events in the disease [1-4]. It has been revealed, 

that in acinar cells bile acids (BA) and ethanol and fatty acids (EtOH+FA) open the membrane 

transition pore (mPTP) channel via the cyclophilin D (Cyp D) subunit, and by keeping the 

channel opened mitochondrial depolarization, lower ATP synthesis and cell necrosis occur [3, 5, 

6]. Yet, it is still a mystery how pancreatic ductal epithelial cells (PDEC) are affected.  

Nowadays, to experimentally inhibit mPTP (via Cyp D) cyclosporin A (CyA) is the only 

licenced compound [7] . However, the clinical use of CyA is questionable. A trial found that 

CyA could reduce the size and damage of myocardial infarction, but larger studies showed no 

beneficial effects [7-9]. Debio025 (a CyA derivative, Alispovirir, Debiopharm) has been found 

useful against hepatitis C virus (HCV), but surprisingly, some of the patients developed 

pancreatitis, which ended up in a clinical hold on the global Debio025 trials  [10, 11].  TRO40303 

(3,5-seco-4-nor-cholestan-5-one oxime-3-o, TROPHOS, Roche) is another mPTP inhibitor and 

it was not beneficial in a phase 2 trial of cardiac preservation following acute myocardial 

infarction, questioning its effectivity [7, 12, 13]. Both Debio025 and TRO40303 have been 

described as useful in experimental models, but due to the clinical failures they did not reached 

higher levels of clinical trials in AP. Recently,  a novel CyA A derivative; N-methyl-4-

isoleucine cyclosporin (NIM811), was shown to be greatly beneficial in different experimental 

and clinical studies[14-19]. No toxicity or severe or serious adverse effects have been reported in 

the studies in which NIM811 were used, suggesting that it does not have severe 

immunosuppressant activity either [20].  

II.2. Importance of pancreatic ductal fluid secretion  

Clinical and experimental studies indicate that impaired ductal HCO3 − secretion makes the 

pancreas more susceptible to inflammatory diseases such as AP or chronic pancreatitis (CP) [21-

25]. Interestingly, the available data about the pancreatic ductal water transport processes are 

much less than what is known about pancreatic ductal HCO3- secretion, except the general fact 

that the movement of electrolytes is osmotically coupled to water flow. It is assumed by 

numerous studies that there is a physical interaction between the CFTR Cl− channel and certain 

aquaporin (AQP) isoforms [26-28] Henceforth, colocalization of this two channel has been 

revealed in the human pancreas [29]. AQP1 is the major water channel of human red blood cells 

and in the digestive system the main result of AQP1 deletion is manifested in serum 

hypotriglyceridemia and steatorrhea with higher stool trygliceride concentration and increased 



lipase activity [30, 31]. In the peritoneum the lack of AQP1 ends up in significantly reduced 

osmotical water transport. [30, 32-34] Howewer, there is only a few data available about AQPs in 

the pancreas and how these channels interact with other channels of the pancreatic ducts. During 

our study we aimed to characterize the pathophysiological and pathological role of AQPs in the 

pancreatic ductal secretion, one part of my dissertation focuses on the expression and possible 

interaction between CFTR and AQP1 channels in pancreatic ducts. 

II.3. Alteration between acid-base balance and AP 

AP is often co-occurred by alterations in the acid-base balance, however, how changes of blood 

pH influences the outcome of AP is still unknown. Acidosis is often considered as a marker of 

disease severity[35].  It is known that when pancreatic bicarbonate production is altered by local 

or systemic acid load (metabolic acidosis, MA), the resulting lower pH can trigger pancreatic 

enzyme activation and deteriorate cell damage [36]. Moreover, injection of acidic contrast 

solution into the pancreatic duct increased the severity of experimental AP in rats [37, 38]. Takács 

et al. have shown that in patients with  AP the luminal pH of the main pancreatic duct was also 

lower compared to control human samples [23]. These suggest that may the development of AP 

is coupled with the decrease of local pH. Sadly, the interaction between AP and systemic pH is 

still not fully clarified. During our study we developed a new mouse model of chronic metabolic 

acidosis (MA) and induced mild (MAP) or severe (SAP) AP in the mice to study the alterations 

between the diseases. The discovery of how the metabolic acidosis affect the outcome of AP in 

animals could open new therapeutic ways in the treatment of AP. [39]  

III. AIMS 

I. (Publication No.1.): 

a.) Pancreatitis inducing factors open the membrane transition pore (mPTP) channel via 

cyclophilin D activation in acinar cells causing calcium overload and cell death. Notably, there 

is still no available data from how pancreatic ductal epithelial cells are affected by mPTP 

inhibition. Therefore, we aimed to investigate how genetic and pharmacological inhibition 

of mPTP affects the function of pancreatic ductal epithelial cells.  

b.) Genetic or pharmacological inhibition of mPTP improves the outcome of acute 

pancreatitis in animal models. Howewer, clinical testing of different mPTP inhibitors were 

stopped before reaching the “proof of concept” phase 2 clinical trials due to severe problems of 

their effectiveness and/or safety. Thereby, we aimed to test the novel Cyclosporin A 

derivative NIM811 during in vivo animal experiments.  



II. (Publication No.2.): 

 Decreased pancreatic ductal fluid secretion plays a critical role in AP. Therefore, our aim was 

to study the mechanisms and function of aquaporins which are involved in transepithelial water 

flow movements in epithelial fluid secretion in several types of tissues.  

 Specific aim: To investigate the presence of AQP1 water and CFTR ion channels 

in mouse pancreatic tissue slices.  

III. (Publication No.3.):  

 Acid-base abnormality is common in acute pancreatitis (AP). Lowering extracellular pH 

deteriorates the manifestation of AP in rats and decrease of luminal pH in the pancreas 

contributes to the tissue damage in AP in mice. Hence, our aim was to study effect of 

metabolic acidosis during the manifestation of AP in mice.  

Specific aim I.: To develop a mouse model of metabolic acidosis in mice 

Specific aim II: To study the effect of metabolic acidosis on experimental AP.  

IV.MATERIALS AND METHODS 

IV.1. Ethics (Publication No.1.-3.) 

The animal experiments were performed in compliance with European Union Directive 

2010/63/EU and Hungarian Government Decree 40/2013 (II.14.). In our studies all animals 

were euthanized by 200 mg/kg pentobarbital i.p. (Bimeda MTC, Cambridge, Canada).  

IV.2. Solution and chemicals (Publication No.1.-3.) 

All chemicals were obtained from Sigma-Aldrich (Budapest, Hungary), unless otherwise stated. 

2.7-bis-(2-carboxyethyl)-5-(and-6-) carboxyfluorescein-acetoxymethylester (BCECF-AM) and 

Tetramethylrhodamine-methylester (TMRM) were purchased from Termofischer Scientific.  

NIM811 were purchased from MedChem Express Europe (Sweden). Cyclosporin A (CYA), 

caerulein (CER), NIM811, CCCP and fluorescence dies were diluted in dimethyl sulfoxide 

(DMSO) . Table 1 describes the constitution of solutions that we used during the study.  

IV.3. Statistical analysis (Publication No.1.-3.) 

All data are expressed as means ± SEM. Analysis were performed by Sigma Plot Software.  



IV.4. Materials and methods used in publication No.1. 

IV.4.1. Animals 

A total of 70 wild type (WT) and cyclophilin D knockout (Cyp D KO, (B6;129-Ppiftm1Maf/J) 

mice were sacrificed. Cyp D KO animals were provided for us by the Department of Medical 

Biochemistry, Semmelweis University, Budapest, Hungary.  

IV.4.2. Chemicals  

In this study 500µM Chenodeoxycholic acid (bile acid,BA) or 100mM ethanol (EtOH) + 

200µM palmitoleic acid (fatty acid, FA) was used during the fluorescence, confocal microscopy 

and immunostaining measurements, to evaluate the effect of bile acids or the alcohol and fatty 

acid induced damage on the mitochondrial and cell function during the genetic or 

pharmachological inhibition of the mPTP in pancreatic ducts or acinar cells. 100 µM of 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) were used in the mitochondrional 

measurements as a positive control for mitochondrial damage.  2 µM CYA and 2 µM NIM811 

were used to pharmacologically inhibit mPTP. Prior to the fluorescence and confocal 

microscopy, immunostainings, the cells (ducts and acinar cells as well) from the CYA- or 

NIM811- treated groups were pretreated for 25-30 minutes with the compounds (CYA or 

NIM811).  

IV.4.3. Isolation 

Isolation of pancreatic ducts and acinar cells were performed by microdissection and enzymatic 

digestion as described earlier [40, 41]  

IV.4.4. Confocal microscopy  

Mitochondrial membrane potential (Ψ) were determined by Zeiss LSM 880 confocal laser 

scanning microscope (Carl Zeiss Technika Kft., Budaörs, Hungary). BA or EtOH + FA were 

used to induce mitochondrial damage. Isolated pancreatic ducts or acinar cells were incubated 

in standard HEPES solution and loaded with TMRM (Tetramethylrhodamine Methyl Ester 

Perchlorate ,100 nmol/L). In order to monitor apoptotic and necrotic cells in isolated 

pancreatic ducts or acinar cells an apoptosis/necrosis kit was used (ab176750, Abcam). To 

determinate live, necrotic or apoptotic cells, CytoCalcein Violet 450 fluorescent, Apopxin Deep 

Red Indicator and Nuclear Green DCS1 fluorescence dies (ab176750, Abcam) were used.  



IV.4.5. Fluorescent microscopy  

Microfluorometry was used to measure pancreatic ductal HCO3
- secretion as described earlier 

[42, 43] by using BCECF-AM (2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-

Carboxyfluorescein, Acetoxymethyl Ester, 1.5 mmol/L). 

IV.4.6. Videomicroscopy  

In vitro pancreatic ductal fluid secretion (luminal swelling) assays were developed by 

Fernández-Salazar et al, [44] performed by videomicroscopy as described earlier [45].  

IV.4.7. Immunfluorescent staining  

Mitochondria were detected with immunofluorescent staining (TOM20 mitochondrial marker, 

(EPR15581-39, Abcam)). In order to determine mitochondrial localization in isolated 

pancreatic ductal or acinar cells we labeled the mitochondria by the using of TOM20 primary 

antibody (Abcam, EPR15581-39). TOM20 is the central unit of the receptor TOM complex in 

the mitochondrial outer membrane and the role of it is to recognize and translocate cytosolically 

synthetized mitochondrial preproteins [46-48] Isolated pancreatic ducts were frozen in cryomold 

at 20◦C. The cryosections (thickness 7 µm) of the isolated pancreatic ducts from WT and Cyp 

D KO mice were cut by Leica Cryostat. Sections were fixed in 4% paraformaldehyde. Washing 

periods were administered with 1xTBS solution.  Antigen retrieval was performed with 10 mM 

Sodium –Citrate solution at the pH of 6 at 95 ◦C for 15 minutes. Blocking was obtained for 1h 

with 1% goat serum in 5% BSA-TBS solution. After these sections were incubated with 

TOM20 rabbit monoclonal antibody (dilution 1:400, Abcam) overnight incubation at 4◦C. The 

following day the samples were incubated with goat anti rabbit secondary antibody (Alexa fluor 

488, Thermo Fisher, Rockford, IL, United States) for 2 hours at dark in room temperature. The 

nuclei were counterstained with Hoechst 33342 (Termofischer, Rockford,IL,United States) . 

Immunofluorescence staining of the isolated pancreatic acinar cells were performed freshly 

after the isolation procedure with the same conditions as stated above, (except two parameters 

; cells were fixed in 2% paraformaldehyde and dilution for the primary antibody was 1:200) as 

stated above. Both ductal and acinar cell samples were mounted with Fluoromount and then 

analyzed using a Zeiss LSM 880 confocal laser scanning microscope (Carl Zeiss Technika Kft., 

Budaörs, Hungary).  



IV.4.8. In vivo measurements  

IV.4.8.1. Induction of acute pancreatitis  

AP was induced by caerulein (CER,10x50µg/kg) and 4% sodium taurocholate (TAU, 

2ml/kg,4%)[24, 49-51]. We also performed alcohol and fatty acid (intraperitonal injection of 1.75 

g/kg ethanol and 750 mg/kg palmitic acid , EtOH+FA) induced AP as described earlier [25, 

52], however it is not part of this dissertation.   All control groups received physiological saline 

in the same amount as the CER, EtOH+FA or the TAU solutions respectively.  

IV.4.8.2. Oral gavage treatment of the mice  

Oral gavage treatment was performed using plastic feeding tubes (20ga x 38mm, Instech 

Laboratories, USA). NIM811 were solubilized in a vehicle which contained 8.3% polyoxyl 40 

hydrogenated castor oil and 8.3% ethanol [17]. Pre-treatment of the animals by NIM811 was 

performed and mice were gavaged orally once 1 h prior to the induction AP, concentrations of 

NIM811 were 10 mg/kg or 5mg/kg. Dosage of NIM811 was chosen according to a previous 

study in which NIM811 was effective against mitochondrial damage in liver transplantation [17].  

Besides the pretreatment, NIM811 was used as a post-AP treatment as well. NIM811 was 

administered 12 hours after the induction of AP in the TAU or EtOH+FA induced experimental 

pancreatitis models. Concerning the CER induced AP, NIM811 was administered after the 3rd 

injection of CER. 

IV.4.9. Serum amylase measurements  

We collected blood from the mice by cardiac puncture, blood was immediately placed on ice, 

then centrifuged with 2500 RCF for 15 mins at 4°C. Blood serum was collected from the pellet 

and stored at -20°C until use. Pancreas samples were placed into 8% neutral formaldehyde 

solution and stored at -4°C until the hematoxylin –eosin staining was performed. A colorimetric 

kit was used to measure serum amylase activity (Diagnosticum, Budapest, Hungary). 

Absorbance of the samples were detected at 405 nm with the use of FLUOstar OPTIMA (BMG 

Labtech, Budapest, Hungary) microplate reader.  

IV.4.10. Histological analysis  

Formaldehyde-fixed pancreas samples were embedded in paraffin, then were cut into sections 

(3 μm) and hematoxylin-eosin staining were performed by using a standard laboratory method. 

To quantify histological differences a semiquantitative scoring system was used as Kui et al 

described previously [53][55][80][81][ [80][][79][78][77][76][75][74][75][74][73][72][71][70][69][68)[67][66]. 



IV.5. Materials and methods used in Publication No.2. 

IV.5.1. Animals 

CFTR knock out (KO) (background FVB/N) mice were kindly provided by Dr. Ursula Seidler 

(Hannover Medical School,Hannover,Germany). AQP1 KO (background CD4) ( mice were 

supplied by Dr. Alan Verkman (University of Carolina, CA,Unites States) and Dr. Alastair 

Poole (University of Bristol,United Kingdom).  

IV.5.2. Immunfluorescent stainings and detection of AQP1 and CFTR channels in 

mouse pancreas 

7 µm thick cryosections from WT, AQP1, and CFTR KO mice pancreas were fixed in 2% 

paraformaldehyde. Permeabilisation of the slices occured in 10% Tween 20-sodium citrate, 

they were blocked with 5% goat serum. Immunofluorescent double staining for AQP1 mouse 

monoclonal antibody (1:500 dilutions; Thermo Fisher, Rockford, IL, United States) and CFTR 

rabbit polyclonal antibody (1:100 dilutions; Alomone Labs, Jerusalem, Israel) were performed 

by overnight incubation at 4◦C. After the washing periods, slices were incubated with secondary 

antibodies goat-anti-mouse (Alexa fluor 488, Thermo Fisher, Rockford, IL, United States) and 

goat-anti-rabbit (Alexa fluor 568, Thermo Fisher, Rockford, IL, United States) for 120 minutes 

at room temperature in the dark. Nuclei staining were performed with the use of DAPI 

fluorescent dye. Results of the immunostaining were then analyzed using a Zeiss LSM 880 

confocal laser scanning microscope (Carl Zeiss Technika Kft., 10–12 representative pictures 

were taken from the mice (WT, AQP1 KO and CFTR KO) pancreas sections, as described 

earlier.[54] 

IV.6. Methods used in publication No.3. 

IV.6.1. Animals 

We performed our experiments on female FVB/N mice (Charles Rivers Laboratories, 

Wilmington, MA, USA).  

IV.6.2. Development of the new model of MA in mice 

To develop a mouse model of chronic MA, the mice were randomly divided into the following 

4 groups for a 12-day treatment:  

 ammonium chloride (NH4Cl-) administration with drinking water (8.2 ± 0.5 

ml/day/mouse) as described earlier [55, 56] 

 intraperitoneal (i.p.) injections of NH4Cl- (0.5 ml, 0.28 M) on days 1 and 6; 



 administration of NH4Cl- with drinking water (as in group 1) and i.p. injections (as 

in group 2);  

 and controls, receiving NH4Cl-free tap water and 2 i.p. injections of saline on days 

1 and 6. 

IV.6.3. Induction of AP  

Severe AP (SAP) was induced by caerulein (CER,10x50µg/kg), CER was administered i.p.[49]. 

Mild AP was induced by alcohol and fatty acid (i.p. of 1.75 g/kg ethanol and 750 mg/kg palmitic 

acid , EtOH+FA) as described previously [25, 52]. During the experimental model of MA, MAP 

and SAP were induced on day 12 of the acidifying treatment.  

IV.6.4. Measurement and histological analysis  

Laboratory parameters from blood serum and urine were performed by standard methods at the 

Institute of Laboratory Medicine, University of Szeged. Serum amylase measurement and 

histological analysis were performed as described in the previous chapters respectively. For 

blood gas pH measurements, samples of arterial blood (170µl) were collected from the mice in 

heparin and lithium treated and sealed plastic capillaries. Analysis of the arterial blood was 

performed by blood gas analyser (Cobas 221, Roche Ltd., Basel,Switzerland) within 1 minute 

after the blood collection (at room temperature 22ºC).   

V. RESULTS 

 V.1.Results of publication No.1. 

Both genetic and pharmacological inhibition of Cyp D significantly prevented the toxic effects 

of BA and EtOH+FA by restoring mitochondrial membrane potential (Δψ) and preventing the 

loss of mitochondrial mass. In vivo experiments revealed that per os administration of NIM811 

has a protective effect in AP by reducing oedema, necrosis, leukocyte infiltration and serum 

amylase level in AP models. Administration of NIM811 had no toxic effects. 

V.2. Results from publication No.2.  

We have shown for the first time that AQP1 and CFTR are co-localized at the apical membrane 

of pancreatic ductal cells. Lack of CFTR significantly reduced the expression of AQP1, these 

data indicate that CFTR may control the water permeability of ductal cells. Our results also 

indicate that AQP1 interacts with the CFTR Cl- channel and takes part in the formation of 

pancreatic fluid. Moreover, we have found that AQP1 plays role in the pathology of 

pancreatitis. 



V.3.Results from publication No.3. 

During our experiments we have shown experimental evidence to a bilateral link between pH 

and AP. We showed that pre-existing MA worsens the outcome of AP, whereas AP reduces pH 

in the blood which vicious cycle could be one of the main reasons for the high mortality rate in 

severe cases of AP. 

VI. DISCUSSION 

VI.1. Protecting the mitochondrial homeostasis as a novel therapeutic option in AP- 

Publication No.1. 

Dysfunction of mitochondria is one of the main pathophysiological events in the early phase of 

AP in pancreatic ducts and acinar cells as well [2, 57, 58] . It decreases ATP production, causing 

elevation of intracellular calcium concentration; moreover, it negatively influences ATP-

dependent Cl-HCO3
- exchangers, CFTR Cl- channels in ductal cells and enzyme secretory 

processes in acinar cells[2, 4, 6, 25, 58-60] . Henceforth, mitochondrial damage is the main factor in 

determining cell death pathways necrosis and apoptosis. Release of mitochondrial cytochrome 

c into the cytosol causes apoptosis, whereas mitochondrial depolarization leads to necrosis[61] . 

Inhibition of mPTP could prevent both cell death mechanisms in DEC, which is different from 

that seen in acinar cells, where only necrosis could have been prevented. Taking it together, 

inhibition of mPTP seems to be beneficial in both cell types. In the last decade, it has been 

proved that genetic or pharmacological inhibition of mPTP reduces BA- or EtOH+FA-induced 

AC damage as well as augmenting the severity of AP [1, 4, 6, 62]. In the last few years our research 

group revealed that both BA and EtOH+FA induce inhibition of HCO3
- secretion via severe 

mitochondrial damage in PDEC  [25, 59][25, 61][50, 85][50, 85,36, 70] . During our studies we have 

continued the experiments investigating the role of mPTP and its inhibition in pancreatic ductal 

epithelial cells. In the first step, we characterized the role of mPTP (both genetic and 

pharmacological CyA) inhibition in PDEC and found that its inhibition has a strong protective 

effect against the toxic effects of BA or EtOH+FA in ductal cells, suggesting that targeting 

mPTP may have general benefits. Although many mPTP inhibitors have been tested, none of 

them have been successful. CyA itself inhibits calcineurin, which leads to immunosuppressant 

activity and thus could negatively affect the treatment of patients due to hazardous infections. 

Clinical testing of non-immunosuppressive CyA derivatives was also stopped before reaching 

the “proof of concept” phase 2 clinical trials in AP because of its inconsistent behavior in other 

trials due to the facts noted in the introduction. We revealed that NIM811 reduces the 



mitochondrial damage caused by BA or EtOH+FA. Importantly, NIM811 decreased apoptosis 

levels during BA or EtOH+FA treatment in ductal cells. Surprisingly, inhibition of mPTP 

protected pancreatic ductal bicarbonate but fluid secretion during BA or EtOH+FA treatment. 

Considering these results, it is assumed that rescuing intracellular ATP level and the activity of 

Na+/K+-ATPase do not result in overall protection alone and other fluid transport mechanisms 

such as aquaporins may remain diminished [54]. Per os administration of 5 or 10 mg/kg NIM811 

treatment alone had no toxic effect, but significantly reduced the severity of AP.  

VI.2. The role of AQP1 in pancreatic ductal fluid secretion- Publication No.2. 

Concerning, the AQPs role in the pancreatic ductal fluid secretion, by using double 

immunostaining of AQP1 and CFTR we have shown for the first time that AQP1 and CFTR 

are co-localized at the apical membrane of pancreatic ductal cells. Lack of CFTR significantly 

reduced the expression of AQP1, these data indicate that CFTR may control the water 

permeability of ductal cells. Our results also indicate that AQP1 interacts with the CFTR 

Cl- channel and takes part in the formation of pancreatic fluid. Moreover, we have found that 

AQP1 plays role in the pathology of pancreatitis. Earlier, similar results have been found in 

respiratory epithelial cells, where the CFTR channel was mutant or inhibited the water 

permeability of the epithelial cells significantly decreased [26, 63]. This could highlight the 

significance of this water channel in disease of pancreatitis moreover in cystic fibrosis as well.  

VI.3. The vicious cycle between reduced blood pH and AP-Publication No.3. 

Since, in the literature there were no mouse model of MA, first we performed several methods 

of experiments to find the most beneficial MA model to use. Dual administration (oral and i.p.) 

of acidic fluid induced a marked pH drop in the blood without damaging the pancreas. In our 

model of MA , the MA manifested slowly and occured for several days in the mice which is 

very similar to what is happening in patients with MA. Furthermore, in human patients AP can 

manifest in pre-existing MA, for instance during hyperlipidemia or diabetic ketoacidosis [64, 65] 

However, in clinical settings MA typically occurs as a consequence of AP and in most cases it 

does not pre-exist. In the future, it should be a great goal of clinical trials to find the beneficial 

effects of controlled pH management and to search for the optimal fluid resuscitation forms in 

patients with AP and pre-existing MA. During our experiments we have shown experimental 

evidence to a bilateral link between pH and AP. We showed that pre-existing MA worsens the 

outcome of AP, whereas AP reduces pH in the blood which vicious cycle could be one of the 

main reasons for the high mortality rate in severe cases of AP. Future evaluations are needed to 



reveal the exact mechanism of how MA can deteriorate AP, but assumably a complex 

regulatory mechanisms is involved.  

VII. SUMMARY 

VII.1. Conclusions, new therapeutic options in the treatment of AP 

1. NIM811 is a suitable compound to be tested in clinical trials of AP. We provided 

strong evidence that one of the mPTP inhibitors, namely NIM811 is highly effective 

in different experimental pancreatitis models. Since NIM811 had no side-effects and 

passed the important phase 1 stage in the clinical trial process, companies should 

organize phase 2 clinical trials with the use of this novel and promising drug candidate. 

(Publication No.1.) 

2. Protecting fluid secretion could be a new therapeutic option in AP. AQP1 and 

CFTR channels are co-localized in the pancreatic ducts, we hypothesize that absence 

of the channel makes the pancreas more sensitive to pancreatitis, probably due to the 

decreased pancreatic fluid and HCO3
- secretion. (Publication No.2.) 

3. Restoring the normal pH in patients with AP could be a beneficial therapeutic 

application in the treatment of the disease. (Publication No.3.) 
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