
On the Effective Use of Data Dependency for
Reliable Cloud Service Monitoring

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Heng Zhang, M.Sc.

aus Hubei, China

Referenten:
Prof. Thomas Schneider, Ph.D.

Prof. Neeraj Suri, Ph.D.

Tag der Einreichung: 30.09.2019

Tag der mündlichen Prüfung: 18.11.2019

Darmstadt, 2019

D17

Heng Zhang: On the Effective Use of Data Dependency for Reliable Cloud Service Moni-
toring
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 18.11.2019

Jahr der Veröffentlichung der Dissertation auf TUprints: 2019

URN: urn:nbn:de:tuda-tuprints-94644

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

©2019

On the Effective Use of Data Dependency
for Reliable Cloud Service Monitoring

by

Heng Zhang

Erklärung

Hiermit versichere ich, die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle
Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich gemacht.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde
vorgelegen.

Darmstadt, 18. November 2019

Heng Zhang

v

Abstract

Cloud computing is a large-scale distributed computing paradigm that aims at
providing powerful computing and storage capability by dynamically sharing a
pool of system resources (e.g., network bandwidth, storage space, or virtualized
devices) in a multi-tenant environment. With the support of the computing tech-
nology, a plethora of cloud services have been developed for meeting the different
requirements of cloud service customers (CSCs). While cloud service has many
attractive advantages (e.g., rapid service deployment, reliable service availability,
elastic service reconfiguration, or economic service billing), the security assurance
of cloud services is a key concern for the service customers.

Cloud monitoring is an essential mechanism for managing the security assurance
of cloud services. Over the last few years, a large number of monitoring mecha-
nisms have been proposed. The mechanisms are developed for monitoring varied
security problems in the cloud with the common assumption that all the monitoring
information is directly available. These mechanisms can achieve satisfactory moni-
toring performance only if the assumption can be satisfied (e.g., protecting cloud
services from distributed denial of service (DDoS) attacks by checking the traffic
information collected from network monitors). However, the existing mechanisms
are unfortunately incapable of dealing with the security threats that are subtly
crafted by malicious attackers without producing evident attack traces. Due to
that the useful information related to the attacks is difficult to collect, the attacks
can silently bypass the existing monitoring mechanisms and secretly undermine
the victim services. As a result, to develop an effective monitoring mechanism for
securing cloud services becomes a compelling demand.

For motivating the issue, this thesis initially investigates a typical cloud security
attack that can gradually drain system resources in a target cloud without trig-
gering any alarms for highlighting the realistic demand of performing effective
security monitoring in cloud systems. To combat the attack, a pragmatic security
countermeasure is proposed for securing the cloud. To meet the demand, the thesis
focuses on achieving effective security assurance management of cloud services by
addressing the common shortcoming of existing monitoring mechanisms. Using
the data relation (i.e., data dependency) existing in the collected monitoring data
sets, the thesis demonstrates the possibility of leveraging the available informa-
tion and the existing data relation to indirectly monitor cloud security problems
with a novel inference-based security mechanism. Furthermore, the thesis also

vii

Abstract

demonstrates the feasibility of taking advantage of data dependency to obtain the
input information for running the inference mechanism by developing a practical
data ascertaining technique. Finally, this thesis targets addressing potential data
errors that can undermine the reliability of the proposed monitoring mechanism.
Consequently, a reliability assessment mechanism is developed to select suitable
data used by the proposed mechanism for generating reliable monitoring results.

viii

Zusammenfassung

Cloud-Computing ist ein Paradigma des groß angelegten, verteilten Rechnens, das
darauf abzielt, leistungsstarke Rechen- und Speicherkapazitäten bereitzustellen,
indem es einen Pool von Systemressourcen (z.B. Netzwerkbandbreite, Speicherplatz
oder virtualisierte Geräte) in einer von mehreren Nutzern geteilten Umgebung
dynamisch zuteilt. Es wurde eine Vielzahl von Cloud-Services entwickelt, um
den unterschiedlichen Anforderungen von Kuden (Cloud Service Customers oder
CSCs) gerecht zu werden. Während Cloud-Services viele attraktive Vorteile bieten
(z.B. schnelle Servicebereitstellung, zuverlässige Serviceverfügbarkeit, elastische
Service-Rekonfiguration oder wirtschaftliche Serviceabrechnung), ist die Sicherheit
von Cloud-Services für die Servicekunden ein zentrales Anliegen.

Das sogenannte Cloud-Monitoring ist ein wesentlicher Mechanismus für die
Verwaltung der Sicherheit von Cloud-Services. In den letzten Jahren wurde eine
Vielzahl von Überwachungsmechanismen entwickelt. Diese Mechanismen wurden
für die Überwachung verschiedener Sicherheitsprobleme in der Cloud entwickelt,
mit der gemeinsamen Annahme, dass alle zur Überwachung erforderlichen Infor-
mationen direkt verfügbar sind. Folglich können solche Mechanismen nur dann
eine zufriedenstellende Überwachungsleistung erzielen, wenn diese Annahme
erfüllt werden kann (z.B. Schutz von Cloud-Diensten vor Distributed Denial of
Service (DDoS) Angriffen durch Überprüfung der von Netzwerk-Monitoren ge-
sammelten Verkehrsinformationen). Bestehende Mechanismen sind jedoch leider
nicht in der Lage, mit Sicherheitsbedrohungen umzugehen, die von Angreifern
subtil inszeniert werden, ohne offensichtliche Angriffsspuren zu hinterlassen. Da
nützliche Informationen über die Angriffe schwer zu sammeln sind, können die
Angriffe die bestehenden Überwachungsmechanismen umgehen und die angegrif-
fenen Dienste heimlich untergraben. Infolgedessen wird die Entwicklung eines
effektiven Überwachungsmechanismus zur Sicherung von Cloud-Diensten zu einer
zwingenden Notwendigkeit.

Zur Motivation des Problems untersucht diese Arbeit zunächst einen typischen
Cloud-Sicherheitsangriff, der Systemressourcen in einer Ziel-Cloud schrittweise
aufzehren kann, ohne Alarme auszulösen, um die realistische Anforderung ei-
ner effektiven Sicherheitsüberwachung in Cloud-Systemen hervorzuheben. Um
den Angriff zu bekämpfen, wird eine pragmatische Maßnahme zur Sicherung
der Cloud vorgeschlagen. Die Arbeit konzentriert sich auf das Erreichen einer
effektiven Sicherheitsverwaltung von Cloud-Services, indem sie den gemeinsa-

ix

Zusammenfassung

men Mangel an bestehenden Überwachungsmechanismen behebt. Unter Verwen-
dung der in den gesammelten Monitoring-Datensätzen vorhandenen Datenrelation
(d.h. Datenabhängigkeit) demonstriert die Arbeit die Möglichkeit, die verfüg-
baren Informationen und die bestehende Datenrelation zu nutzen, um indirekt
Cloud-Sicherheitsprobleme mit einem neuartigen inferenzbasierten Sicherheitsme-
chanismus zu überwachen. Darüber hinaus zeigt die Arbeit auch die Machbarkeit
der Nutzung der Datenabhängigkeit, um die Input-Informationen für den Betrieb
des Inferenzmechanismus durch die Entwicklung einer praktischen Datenerhe-
bungstechnik zu erlangen. Abschließend befasst sich diese Arbeit mit potenziellen
Datenfehlern, die die Zuverlässigkeit des vorgeschlagenen Überwachungsmecha-
nismus beeinträchtigen können. Daher wird ein Mechanismus zur Zuverlässigkeits-
bewertung entwickelt, um geeignete Daten auszuwählen, die der vorgeschlagenen
Mechanismus zur Erzeugung zuverlässiger Überwachungsergebnisse verwenden
kann.

x

Acknowledgments

I consider myself so lucky that I have the opportunity to work toward the PhD in
my life. It is my pleasure to acknowledge the important people who give me a lot
of support on this exciting academic journey in Technische Universität Darmstadt.

First and foremost, I would like to show my gratitude to my advisor Prof. Dr.
Neeraj Suri, who provides me many insightful research advice and shares a lot of
precious professional experience with me. Thank you for building such a great
research group where every member can get promptly support from your side and
devote himself to pursuing his own research interest.

Besides, I want to show my special appreciation to Prof. Dr. Thomas Schneider
for acting as the referent of the defense and Prof. Dr. Guido Salvaneschi for being
the chair of the committee. I would like to also thank Prof. Dr. Max Mühlhäuser
and Prof. Dr. Reiner Hähnle for being the members of the committee.

Moreover, I am very grateful to all colleagues for the intensive interaction and
productive cooperation over the past years. I would like to thank Salman and Tsve-
toslava for the insightful discussions about the topic of cloud security monitoring.
I also would like to thank Oliver, Nicolas, Yiqun, Stefan and Habib from the system
security team for sharing their knowledge with me. A big thank to both Sabine
and Ute for their great job to support the entire group. In addition, I also want
to show my thanks to former members Jesus, Ruben, Kubilay, Mohammadreza,
Ahmed, Hatem, Daniel, Thorsten and Patrick.

Last but not least, I would like to show my deep gratitude to my family and
friends at this exciting moment. Without your support, I cannot accomplish my
PhD journey alone.

xi

Contents

Erklärung v

Abstract vii

Zusammenfassung ix

Acknowledgments xi

1 Introduction 1

1.1 A Brief Overview of Modern Cloud Systems 5

1.2 A Monitoring Perspective on Dependencies 8

1.3 Research Questions and Contributions 10

1.4 Publications . 13

1.5 Organization . 14

2 Towards Security Monitoring in Modern Cloud Systems 17

2.1 Introduction . 17

2.2 Background . 19

2.3 Models . 20

2.3.1 Attack Model . 20

2.3.2 Victim Model . 21

2.4 Proposed Mitigation Scheme . 23

2.4.1 System Overview . 23

2.4.2 Moderator Description . 25

2.5 Evaluation & Discussion . 30

2.5.1 Experiment . 30

2.5.2 Discussion . 32

2.6 Related Work . 34

2.7 Conclusion . 35

3 Implementing Indirect Service Monitoring Using Dependencies 37

3.1 Introduction . 37

3.2 Basic Concepts . 39

3.2.1 Cloud Service Provisioning & Indirect Monitoring 39

3.2.2 Service Dependency & Characterization 40

3.2.3 Uncertainty & Data Estimation 41

xiii

Contents

3.3 The Proposed Methodology . 41

3.3.1 System Overview . 41

3.3.2 Transformation of Dependency 43

3.3.3 Concrete Design . 43

3.4 Case Study . 50

3.5 Discussion . 53

3.6 Related Work . 54

3.7 Conclusion . 55

4 Performing In-Depth Analysis on Monitoring Information 57

4.1 Introduction . 57

4.2 Background . 60

4.2.1 Existing Threats . 60

4.2.2 Example Interpretation . 61

4.2.3 Data Relation . 62

4.3 Problem Formulation . 63

4.4 Proposed Methodology . 65

4.4.1 Methodology Overview . 65

4.4.2 Methodology Design . 66

4.5 Evaluation . 72

4.5.1 Experimental Settings . 72

4.5.2 Case Study . 73

4.6 Related Work . 80

4.7 Conclusion . 81

5 Optimizing Data Reliability for Sound Monitoring Performance 83

5.1 Introduction . 83

5.2 Background . 86

5.2.1 Challenges . 86

5.2.2 Observations . 87

5.3 Problem Statement . 88

5.3.1 Problem Model . 88

5.3.2 Solution Approach . 89

5.4 Proposed Methodology: Whetstone 89

5.4.1 System Overview . 89

5.4.2 Design Methodology . 90

xiv

Contents

5.5 Evaluation . 95

5.5.1 Experimental Setting . 95

5.5.2 Evaluation on Primitive Results 96

5.5.3 Evaluation on Final Result . 97

5.5.4 Discussions . 98

5.6 Related Work . 99

5.7 Conclusion . 101

6 Summary and Conclusion 103

List of Figures 109

List of Tables 111

Bibliography 113

xv

1 Introduction

Cloud computing is a novel technology paradigm that targets achieving on-demand
service provisioning through flexibly configuring and dynamically sharing a pool
of software, hardware and virtualized resources (e.g., CPU, memory, storage, or
network) among multiple tenants in a large-scale distributed computing system
[MG11]. Empowered by the novel computing technology, cloud services are prolif-
erating across a wide range of business fields for satisfying the varied demand of
the people. For example, Amazon Inc. that is a worldwide cloud service provider
(CSP) offers more than 165 services (e.g., elastic computing, deep learning, big
data storage, or mobile application development) to serve different cloud service
customers (CSCs) such as companies, individuals, organizations, or governments
through its proprietary computing platform termed Amazon Web Service (AWS)
[Ama19]. Other CSPs like Google or Microsoft also provide similar all-in-one
products like Google Cloud [Goo19] or Microsoft Azure [Mic19]. Apart from the
leading providers, a plethora of small and medium size CSPs target rendering
services with distinctive features. For instance, Dropbox offers superior file hosting
service on top of Amazon AWS with the attractive feature of synchronizing and
sharing files among different users [Dro19], while GitHub provides version con-
trolled repositories in the cloud to facilitate software development, code review, or
team collaboration for both the open-source community and business companies
[Git19]. According to the report from Forbes, the global cloud market is projected
to more than 200 billion US dollars [Col18]. Likewise, Gartner has also forecast
that the overall revenue of cloud service market keeps increasing over the next few
years [Gar19]. Briefly, cloud services have deeply integrated into modern business
activities as well as people’s daily lives.

The far-reaching impacts introduced by cloud services has been observed in
many aspects. One of the most crucial aspects is with respect to the security
assurance of cloud services. In practice, plenty of cloud attacks that focus on
secretly compromising victim services have been reported over the past years.
Different from traditional security threats (e.g., brute-force attacks or denial-of-
service (DoS) attacks) that generally produce an enormous amount of attack traces,
cloud attacks tend to carefully cloak their existence in the victim systems and thus
pose an immense challenge to security administrators. For example, Heartbleed
attack is a notorious security threat that has successfully compromised millions of

1

1 Introduction

thousands of cloud services worldwide [NVD14]. The attack exploits the careless
program bug of the OpenSSL library that is widely used for performing transport
layer security (TLS) authentication. In consequence, the attacker can successfully
steal very sensitive information from the CSCs, such as user login credentials, bank
account details, or personal medical records [Die99]. For another example, iCloud,
as a frequently used cloud service for Apple customers, has also suffered from a
very serious attack whereby security attackers can obtain an unauthorized copy of
user data containing highly private photos and other sensitive information of the
victim CSCs [App14]. Both examples explicitly demonstrate the severity of security
threats in the cloud. As a matter of fact, the security vendor McAfee has reported
that up to 80% of Infrastructure as a Service (IaaS) and Software as a Service (SaaS)
users have suffered from at least one security incident [LLC19]. To address the
cloud threats, effective security mechanisms are demanded.

Implementing security monitoring on cloud services is an essential approach
for improving security assurance. Nowadays, many CSPs make use of existing
security mechanisms for monitoring their systems. The existing mechanisms are
initially proposed for dealing with security threats like network traffic attacks
or brutal-force password attacks in traditional information systems. However,
the proposed mechanisms are unfortunately incapable of achieving satisfactory
security performance in a cloud scenario. Specifically, the mechanisms usually
adopt a similar design architecture that relies on a central node to manage the
information collected from all client nodes and generate monitoring results. The
inherent drawback of the mechanisms is rooted in the scalability of the architecture.

While a large number of monitoring mechanisms have been proposed for se-
curing cloud services. The mechanisms have rarely considered the difficulty of
collecting relevant monitoring data in the realistic scenario. Unlike performing
security monitoring on local information systems where the information used by
monitoring mechanisms is accessible, monitoring cloud services often encounter
the information collection problem for due to realistic constraints. As an example,
all CSPs provisioning their services to EU citizens are obligated to manage the
cloud in compliance with GDPR [PE19]. As a result, some sensitive information
is strictly protected and impossible to collect by cloud monitors. The information
collection problem essentially undermines the viability of the existing monitoring
mechanisms for securing cloud services.

To achieve service security monitoring, the prerequisite is to have an insightful
understanding on cloud systems especially regarding the peculiarities that are

2

distinct from other information systems. One distinctive observation is that cloud
systems widely apply virtualization technologies to fulfill resource sharing among
a set of running services [plc15][IBM19][VMw19a][VMw19b]. The technology
supports flexibly isolating and partitioning relevant system resources based on
different service demand [JC16], while it also inflicts hardship for collecting relevant
monitoring information that is strictly isolated from external access. Without the
information, many existing monitoring mechanisms are no longer viable. Another
noteworthy observation is that a cloud system consists of a large number of
coordinated servers (a.k.a server farms) that could be located anywhere of the
world. The distributed servers are cooperating with each others to deliver services
in compliance with respective requirements contracted between CSPs and CSCs.
Considering the physical scale and the structural complexity of the cloud system,
massive information could be continuously collected by the security monitors
that are preconfigured in different locations of the system. Hence, the collected
information is not only too excessive to manage in a prompt manner but also too
heterogeneous to perceive its value for monitoring security problems.

As collecting monitoring information in cloud systems is sometimes a formidable
obstacle, the question arises if it is possible to develop a workaround by leveraging
existing information to indirectly monitor security problems. Cloud attacks are
often subtly crafted to avoid precipitating obvious attack traces. Securing cloud
services against such threats is an arduous task, while it might be possible to
accomplish the task by carefully investigating the collected information and the
existing data relations. Generally, monitoring information (e.g., system call events,
file system operation violations, or user activity logs) reflects the status of the target
system from a very specific perspective. Any operation or behavior, regardless of
malicious or not, taken place in the system can exert an influence on the current
status. Such influences that represent the correlation with the occurred operations
or behaviors are usually implicitly contained in the collected information. Namely,
implementing cloud security attacks can trigger a sequence of system status changes
but the collected monitoring information is unable to provide a straightforward clue
for spotting this attack. If prudently examining the monitoring information together
with the implicitly existing data relations (e.g., from a dependency perspective),
it might be possible to discover profound security hints. In other words, a good
understanding of monitoring data set supports to infer the obscure cloud security
threats. As a result, achieving an in-depth understanding of monitoring information
is a key factor for enhancing monitoring performance. Unfortunately, existing

3

1 Introduction

security mechanisms often overlook the implicit clues and predominantly rely on
the explicit information to perform monitoring tasks.

From a security perspective, some information collected from particular software
components or hardware is non-trivial than others for monitoring a specific secu-
rity problem. Nonetheless, ascertaining the information valuable for pinpointing
security problems is still an open issue. For instance, CPU utilization rate is a key
reference for determining whether a process with extremely high CPU-load has
been exploited by attackers. By contrast, some file system operation (like mounting
a storage devices for reading files via executing “/bin/mount”) is insignificant for
determining the potential process exploitation. The reason behind such a difference
is high CPU workload has been rarely observed in a normal cloud system, while
the file operations that are repetitively executed in the system is less useful for
monitoring security threats. The example presents a very simple scenario where
just two pieces of monitoring information are considered. In a real cloud system,
the collected monitoring information is highly heterogeneous. Unfortunately, the
heterogeneity results in that effectively ascertaining the valuable information very
burdensome, even without considering the existing data relations. As a result, it is
desirable to develop a systematic methodology for successfully distinguishing the
valuable information from the raw data set.

Reliability, as a critical concern for assessing distributed systems, imposes lim-
itation on the achievable monitoring performance of cloud systems [How+88]
[Xin+03][Ses+04]. The results generated by the indirect monitoring methodology
are based on the inferences made from relevant information together with the
corresponding data relations (i.e., dependencies). Theoretically, the reliability of
monitoring results, especially derived by applying some inference-based methodol-
ogy, can be significantly undermined. The overall reliability of monitoring results
keeps degrading as an increasing number of cloud nodes deployed into a cloud
system. It is challenging to timely collect reliable monitoring data in such a large
scale and high dynamic scenario. The latency is likely to exist between the oc-
currence of security problems and the collection of monitoring information. As
a result, many transient security problems are probably overlooked. In spite of
considering the time latency, collecting monitoring information in a reliable way is
still a hard task. The existing monitoring schemas are commonly proposed with
the default assumption that all information collected by cloud monitors is reliable.
As a matter of fact, unpredictable problems can appear in any time when perform-
ing cloud monitoring tasks. For example, the possibility of software component

4

1.1 A Brief Overview of Modern Cloud Systems

malfunction is parallel to the complexity degree of the cloud system. In addition,
the program bug might produce incorrect information under particular conditions
that are contrary to theoretical expectations. If the erroneous information is used
as the input by monitoring mechanisms, the output results are thus unreliable. All
factors create the bottleneck of achieving reliable security monitoring. However,
complementary solutions are unable to successfully address the problem.

Based on the general background, this thesis focuses on

• performing a case study on the state of the art cloud attack for revealing
the characteristics of modern security threats in the cloud and highlighting
the significance of developing effective indirect monitoring mechanisms to
address the major drawback of existing security mechanisms.

• developing a pragmatic inference-based security mechanism for indirectly
monitoring cloud problems by taking advantage of the information collected
by security monitors and relevant data relations existing in the monitoring
data set (i.e., data dependency).

• designing a practical data analysis technique that leverages the dependency
between some monitoring data and the security threats to identify the valuable
input information for enabling the indirect monitoring mechanism.

• devising an effective optimization approach for obtaining reliable monitoring
information involving the monitoring process so as to improve the reliability
of the indirect monitoring mechanism.

The developed mechanisms and techniques target improving the security moni-
toring performance of cloud services. The relevant studies and evaluations have
been conducted for assessing the effectiveness of the corresponding propositions.

The reminder of this chapter is structured as follows. Section 1.1 presents the
basics of contemporary cloud systems and summaries the characteristics. Section
1.2 presents a brief discussion of data dependency from a security perspective.

1.1 A Brief Overview of Modern Cloud Systems

This section presents the background of modern cloud system to provide the
common base for the discussions in this thesis. It explains the noteworthy features
and reviewing the cloud from a utility perspective.

5

1 Introduction

Cloud system is a novel utility for rapidly provisioning on-demand services for
massive CSCs with minimal management cost and optimal resource multiplex-
ing. Compared to traditional IT systems, cloud systems have several distinctive
advantages. First, the system supports flexible pay-as-you-go billing mechanism
that helps CSCs to reduce the expenditure for using cloud services. Furthermore,
the system is pooling system sources that are dynamically allocated for execut-
ing relevant services and promptly collected back to the pool after the execution.
Moreover, the CSCs can perform on-demand reconfiguration (scale up/scale up)
on system resources without the intervention from other parties. In addition, the
system offers alternative interfaces that can be accessed by diverse devices such as
smart phones, tablets, or computers. Last but not least, the system also underpins
elastic service provision according to the rapid change of customer demand.

Cloud systems refer to different concepts according to the specific contexts
[Fox+09]. Precisely, from a hardware perspective, it refers to an enormous amount
of hardware servers and other peripherals (e.g., network connection or storage
devices) that are the infrastructural foundation for running cloud services. From
a software perspective, it refers to a computing system that runs remotely for
providing particular services operated by CSPs. It is worth mentioning that this
thesis puts emphasis on the exact software aspect of the cloud system.

Figure 1.1 depicts a combined view of cloud systems that is composed of the
service model and the deployment model. Based on the different types of cloud
services provisioned to customers, the service model consists of three different com-
ponents as shown in the top-left corner of the Figure. Specifically, 1) Infrastructure
as a Service (IaaS) targets provisioning necessary hardware resources (e.g., CPU,
memory, storage or network) for enabling CSCs to install relevant virtual machines
and operation systems as well as the ancillary applications. The CSCs have the full
control on the installed programs, while they do not involve the management of the
underlying infrastructure. 2) Platform as a Service (PaaS) focuses on providing the
environment where CSCs can create and host customized platforms (e.g., program-
ming development environment, database systems, or software frameworks) by
leveraging the programs, software libraries or relevant services from the underlying
IaaS. Likewise, the CSCs can manage their own platform without the necessity of
dealing with the underlying infrastructure. 3) Software as a Service (SaaS) aims at
directly offering CSCs specific services that are deployed on top of PaaS. A variety
of SaaS examples can be found, such as managing business by SAP, checking email

6

1.1 A Brief Overview of Modern Cloud Systems

Collected Monitoring Data DT ={dT
1, d

T
2, …, dT

m}

business services, web applications,
online streams, etc.

Software as a service (SaaS)

Platform as a service (PaaS)

Infrastructure as a service (IaaS)

software frameworks, data storage
systems, development environment, etc.

virtual machines, storage devices, etc.

R
e

s
o

u
rc

e
 P

o
o

lin
g

R
a

p
id

 e
la

s
ti
c
it
y

B
ro

a
d

 n
e

tw
o

rk
 A

c
c
e

s
s

O
n

-d
e

m
a

n
d

 s
e

rv
ic

e
-s

e
rv

ic
e

F
le

x
ib

le
 B

ill
in

g

Private Cloud Public CloudHybrid Cloud

Figure 1.1: An overview of cloud system that consists of the service model, the deployment
model, and the advantage model

with gmail, or watching online streams via Netflix. The CSCs can use the services
without considering other issues.

Taking the user role into consideration, the deployment model of cloud systems
comprises three components. The first one is public cloud, like Amazon AWS or
Microsoft Azure, that is constructed and operated the cloud system on the premises
of some business companies (or other organizations) for provisioning services to
the public. On the contrary, the private cloud is created for serving exclusive users
who generally belong to the same companies (or organizations). Different from
the public cloud, the private cloud is not necessarily built on the CSP’s proprietary
premises but possible to be hosted in some public cloud. The hybrid cloud is
composed of both types of cloud mentioned above. However, it requires specialized
configuration to guarantee data interoperability and contextual information sharing
among the different types of cloud.

7

1 Introduction

Cloud systems pose some obstacles that introduce tremendous difficulties for
achieving effective service monitoring. First of all, cloud systems are commonly
advocated for the high availability of service provisioning. Without timely discover-
ing the security threats that might result in serious service availability deterioration,
CSPs would suffer from both financial loss and reputation damage. As a large scale
distributed system, the cloud system is very likely to suffer from unknown software
bugs that can unexpectedly trigger serious service interruption. The unforeseeable
bugs are generally not reproducible and extremely hard to monitor. It poses a
significant challenge for using cloud monitoring to manage service availability.
Besides, cloud systems incorporate plenty of commercial software components
(or libraries) that are completely proprietary so that the software APIs are kept
as the business secret for preventing potential external access to internal details.
It is a formidable obstacle to collect useful information for performing service
monitoring tasks. In the end, cloud systems take advantage of the virtualization
technology to multiplex system resources for serving multiple CSCs in a parallel
manner [JC16]. Nonetheless, virtualized environments are not completely immune
to security attacks. For instance, improper virtualization on network might enable
the attackers to retrieve the sensitive information of CSP’s infrastructure details
[Arm+15]. It is worth noticing that the scheduling mechanism of virtual machines
makes it difficult to understand the relevant program details with respect to batch
processing scenarios. Hence, virtualization mechanisms add extra difficulty to
implement effective monitoring on cloud systems. Therefore, it is dispensable to
develop an effective mechanism that can overcome the aforementioned difficulties.

1.2 A Monitoring Perspective on Dependencies

From a monitoring perspective, it is vital to deal with the dependencies existing in
a target system. The dependencies refer to the effect of an object’s attribute change
(e.g., data value variance, program status alterations, or control flow redirection)
that is caused by another object under a given condition in a given system. For
example, the return-to-libc attack is a serious security threat for cloud systems. To
perform the attack, the attackers are depending on writing the crafted content at
the particular return address on the call stack. The content aims at replacing the
original addressing information with a selected subroutine that is existing in the
executable memory of a target process. Consequently, the program control flow

8

1.2 A Monitoring Perspective on Dependencies

is tampered by the attackers. As a result, security mechanisms need to carefully
investigate the dependencies for improving the monitoring performance.

During monitoring a target system, data dependency is the most commonly
observed data relation in the collected monitoring data sets. If some data depen-
dency is exceptionally introduced by some vulnerabilities, security attackers might
take advantage of it for compromising cloud services as reported in [Kru+05]. For
ease of discussion, we succinctly present the exploitation process with a simplified
automaton in Figure 1.2. Specifically, the service is designed to execute privileged

1.2 A Monitoring Perspective on Dependencies

is tampered by the attackers. As a result, security mechanisms need to carefully
investigate the dependencies for improving the monitoring performance.

During monitoring a target system, data dependency is the most commonly
observed data relation in the collected monitoring data sets. If some data depen-
dency is exceptionally introduced by some vulnerabilities, security attackers might
take advantage of it for compromising cloud services as reported in [Kru+05]. For
ease of discussion, we succinctly present the exploitation process with a simplified
automaton in Figure 1.2. Specifically, the service is designed to execute privileged

IVWDWUHDG PPDS UHDG

ZULWH

VHWXLG H[HFYH

DWWDFN

GDWD�GHSHQGHQF\�

Figure 1.2: An example program automaton for highlighting the influence of data
dependency

operations (via system call execve) after successfully passing user identity authenti-
cation (via system call read). Besides, it also records the history of issued operations
together with the relevant information of the user (via the system calls in the
dashed box). While the authentication function unexpectedly contains code flaw
that overlooks necessary boundary check of the relevant parameters before execut-
ing the operations. Hence, security attackers can exploit the flaw by passing crafted
parameters (the system call read in the dashed box) for running malicious codes.
It is hard to monitor the exploitation of the unexpected flaw, while monitoring
relevant system call invocations can exhibit some eccentricities (depicted by excla-
mation marks) by virtue of data dependency. In cloud systems, the dependency
normally originates from the resource allocation mechanism (sharing/contention)
of co-located virtual machines and the function invocation mechanism of relevant
software components in different tiers [Wen+18]. Being subject to the data depen-

9

Figure 1.2: An example program automaton for highlighting the influence of data
dependency

operations (via system call execve) after successfully passing user identity authenti-
cation (via system call read). Besides, it also records the history of issued operations
together with the relevant information of the user (via the system calls in the
dashed box). While the authentication function unexpectedly contains code flaw
that overlooks necessary boundary check of the relevant parameters before execut-
ing the operations. Hence, security attackers can exploit the flaw by passing crafted
parameters (the system call read in the dashed box) for running malicious codes.
It is hard to monitor the exploitation of the unexpected flaw, while monitoring
relevant system call invocations can exhibit some eccentricities (depicted by excla-
mation marks) by virtue of data dependency. In cloud systems, the dependency
normally originates from the resource allocation mechanism (sharing/contention)
of co-located virtual machines and the function invocation mechanism of relevant
software components in different tiers [Wen+18]. Being subject to the data depen-

9

1 Introduction

dency, perceptible data deviation that is introduced by passing crafted parameters
into the service can accordingly appear in other dependent data. Hence, data
dependency offers a pragmatic leverage for underpinning security monitoring.

1.3 Research Questions and Contributions

This thesis adopts a problem driven approach to state a set of research questions,
for which the investigation processes and corresponding results are reported. The
commonality of all the questions is to improve the security assurance of cloud
services with the information that is feasible to collect by cloud monitors. To that
end, the first research question investigates an exemplar attack for unveiling the
characteristics of cloud threats. An effective security approach for mitigating the
exemplar has also proposed. The second research question studies the feasibility of
developing an indirect mechanism to infer the inaccessible information by leverag-
ing data relations (e.g., dependency) existing between the inaccessible information
and the information that can be collected by security monitors. The third research
question explores an effective mechanism to ascertain valuable information from
the raw monitoring data set for performing indirect cloud monitoring tasks. The
last research question discusses the reliability issue of the collected information
that is often taken it for grant as the correct input for generating monitoring results.

Research Question 1 (RQ1): How difficult is it to effectively secure cloud services
against security threats with existing monitoring solutions?

Many cloud systems rely on existing monitoring solutions, which are originally
developed for addressing traditional security threats (e.g., flood attacks or computer
worms) for securing the hosted cloud services. Compared with the traditional
threats that often generate evident attack traces, cloud threats that have been
observed in recent years expose different characteristics. The recent threats are not
only subtly crafted to avoid generating apparent attack traces but also requiring
sufficient expertise to identify the existence. However, existing monitoring solutions
neglect to consider the scenario where no evident attack traces can be observed
and thus incapable of dealing with the novel security threats in the cloud.

Contribution 1 (C 1): Revealing the characteristics of the recent security threats in cloud
systems and proposing a novel security mechanism for addressing the threat

While the existing solutions make use of the collected monitoring information for
securing the cloud, they are rarely paying attention to discerning the characteristics
of security threats that are vital for developing effective monitoring solutions. To

10

1.3 Research Questions and Contributions

that end, this thesis performs a systematic analysis on a typical cloud attack for
revealing the characteristics of cloud threats in Chapter 2. A thorough investigation
is conducted on an application layer distributed denial of service attack that targets
stealthily compromising victim cloud services. By analyzing the pattern of service
requests submitted by remote users (i.e., cloud attackers), it is possible to extract the
characteristics of the attack by gaining an in-depth understanding of monitoring
information. By leveraging the identified characteristics, this thesis proposes a
challenge-response mechanism based security approach to address the threat. The
evaluation is implemented on a large scale testing platform where a set of different
service scenarios are configured for assessing the efficacy of the proposed approach.
The evaluation results demonstrate benign security performance. The contribution
has been reported in the publication “Sentry: A novel approach for mitigating
application layer DDoS threats.” in TrustCom 2016.

Research Question 2 (RQ 2): What is the impediment to improve the security assurance
of cloud services when key monitoring information is inaccessible?

Due to massive technical difficulties (like the virtualization technology) and
legal constraints (like the EU GDPR law [PE19]) imposing on cloud systems, it is
challenging to access some information that is indispensable for monitoring security
problems. Without acquiring the critical monitoring information, it can result in the
deployed security mechanisms unable to function normally. However, monitoring
information is often subject to data dependencies in many cloud systems. It is
possible to develop a workaround to monitor the inaccessible information, while
using the dependencies for monitoring inaccessible information in cloud systems is
a novel topic that has rarely been discussed.

Contribution 2 (C 2): A reliable schema for implementing indirect cloud monitoring by
taking advantage of service dependencies in cloud systems

This thesis investigates the feasibility of inferring inaccessible information with
data dependency and also assessing the reliable degree of the inference results in
Chapter 3. Moreover, a dependency-based Quantitative Aggregation Methodology
termed deQAM has been developed for inferring the value of the inaccessible
information by parameterizing the dependencies. Besides, a bi-directional quan-
tification mapping model has been introduced to bridge the dependency with the
value of monitoring information. For minimizing the uncertainty of the inferred
results, an assessment approach has also been proposed for quantifying the reliable
degree of the results with the 95% confidence interval. The evaluation is conducted
through a case study, by which the evaluation results demonstrate the viability

11

1 Introduction

of the proposition in a cloud scenario. The contribution has been reported in the
publication “deQAM: A dependency based indirect monitoring approach for cloud
services” at SCC 2017.

Research Question 3 (RQ 3): Why is indispensable to ascertain the information that
exerts an influence on the inaccessible information for enabling indirect cloud monitoring?

For protecting cloud services against malicious attacks, some selected information
is used as the input by security mechanisms for monitoring the potential attacks.
While the input information, in some cases, is evident for monitoring some threats
(like using network throughput as the input to monitor DDoS attacks), the input
is often obscure to discern for enabling indirect security monitoring on stealthy
attacks. As a matter of fact, the influence imposed by the attacks can be implicitly
reflected by some correlated information in the monitoring data set. Unfortunately,
it is a complex task to ascertain the valuable input of the important security
implications for conducting indirect monitoring in the cloud.

Contribution 3 (C 3): A monitoring path identification mechanism for ascertaining the
key input information for supporting indirect security monitoring on cloud services

This thesis investigates the potential for making use of data relation (i.e., de-
pendencies) to identify a set of monitoring data termed “monitoring path” that is
used as the input for performing indirect service monitoring in Chapter 4. The
thesis first presents a novel reduction technique, which targets removing irrelevant
monitoring data regarding the specific security threat, to simplify the identification
process. Additionally, this thesis proposes a data ascertaining mechanism to iden-
tify a special set of monitoring data that highlighted as the monitoring path for
pinpointing security threats by leveraging data relations as well as the attributes
of involving data. Moreover, an informative property graph has been presented
to underpin large scale fine-grain monitoring path identification in a convenient
manner. The evaluation is based on the case studies of two realistic cloud security
threats. The results demonstrate the high efficiency for identifying monitoring
paths to underpin indirect cloud monitoring tasks. The contribution has been
reported in the publication “Flashlight: a novel monitoring path identification
schema for securing cloud services” at ARES 2018.

Research Question 4 (RQ 4): How to improve the reliability of indirect monitoring
performance that can be undermined by many practical factors in a cloud scenario?

During conducting indirect security monitoring on cloud services, the infor-
mation collected by security monitors involves the generation of the final results.
In practice, the collected information is frequently suffering from many serious

12

1.4 Publications

problems such as security monitor malfunctioning, unforeseeable data corruptions,
or malicious data tampering. Due to these problems, a reliability concern with
respect to the generated results has arisen. A possible way to obtain reliable moni-
toring results is to improve the reliable degree of the input information used by the
indirect monitoring mechanism. However, determining suitable input information
for supporting reliably indirect cloud monitoring has not been discussed.

Contribution 4 (C 4): A weighted optimization-based approach to obtain reliable infor-
mation for improving the overall monitoring performance

This thesis investigates the feasibility for obtaining reliable monitoring informa-
tion that can be used by the monitoring mechanism in Chapter 5. For effectively
ascertaining the reliable information, the thesis first introduces a technique for
cleansing the erroneous data whose value is far-deviated from the ground truth
in monitoring data set through analyzing the statistical property of the collected
information. Besides, an optimization approach has been proposed for quantifying
the inverse relationship between the reliability and the value deviation of a given
piece of collected data. Furthermore, a weighted aggregation approach has been
developed for determining the reliable monitoring information. The evaluation of
the proposed approach has carried out on diverse experimental configurations. The
results demonstrate the efficacy of the approach by producing the reliable value
for the given information. The contribution has been reported in the publication
“Whetstone: Reliable Monitoring of Cloud Services” at SMARTCOMP 2018.

1.4 Publications

The following publications have, in parts verbatim, been included in this thesis.

[Zha+16b] Heng Zhang, Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj
Suri. “Sentry: A novel approach for mitigating application layer DDoS
threats”. In: 2016 IEEE International Conference on Trust, Security and
Privacy in Computing and Communications. IEEE. 2016, pp. 465–472

[Zha+17] Heng Zhang, Ruben Trapero, Jesus Luna, and Neeraj Suri. “deQAM: A
Dependency Based Indirect Monitoring Approach for Cloud Services”.
In: 2017 IEEE International Conference on Services Computing. IEEE. 2017,
pp. 27–34

[Zha+18a] Heng Zhang, Jesus Luna, Neeraj Suri, and Ruben Trapero. “Flash-
light: a novel monitoring path identification schema for securing cloud

13

1 Introduction

services”. In: 2018 Proceedings of the 13th International Conference on
Availability, Reliability and Security. ACM. 2018, pp. 5–14

[Zha+18b] Heng Zhang, Jesus Luna, Ruben Trapero, and Neeraj Suri. “Whetstone:
Reliable Monitoring of Cloud Services”. In: 2018 IEEE International
Conference on Smart Computing. IEEE. 2018, pp. 115–122

The following publications are related to different aspects covered in this thesis,
but have not been included.

[ZMS18] Heng Zhang, Salman Manzoor, and Neeraj Suri. “Monitoring Path
Discovery for Supporting Indirect Monitoring of Cloud Services”. In:
2018 IEEE International Conference on Cloud Engineering. IEEE. 2018,
pp. 274–277

[MZS18] Salman Manzoor, Heng Zhang, and Neeraj Suri. “Threat Modeling
and Analysis for the Cloud Ecosystem”. In: 2018 IEEE International
Conference on Cloud Engineering. IEEE. 2018, pp. 278–281

[Alb+17] Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, and
Neeraj Suri. “C’mon: Monitoring the compliance of cloud services to
contracted properties”. In: Proceedings of the 12th International Confer-
ence on Availability, Reliability and Security. ACM. 2017, p. 36

1.5 Organization

The reminder of this thesis is organized as follows.
Chapter 2 initiates the discussion of the first research question. It presents a novel

security approach that leverages the characteristics of the collected monitoring data
for unearthing a subtly crafted cloud threat. The evaluation results are presented to
demonstrate the efficiency of the proposition that can help to improve the security
assurance of cloud services.

Chapter 3 discusses the second research question and proposes a systemic
methodology to infer the inaccessible information for realizing indirect monitoring
on cloud problems by making use of the data dependency and data quantification
models extracted from the collected monitoring data set. This chapter also presents
the evaluation of the proposed methodology and its effectiveness.

Chapter 4 proceeds with the discussion of the third research question and studies
data dependency at an in-depth level for identifying the non trivial monitoring

14

1.5 Organization

data to enable the proposed inference process. Apart from that, it proposes an
effective solution to ascertain the monitoring data required by the inference process.
It also demonstrates the details and results of the evaluation process.

Chapter 5 continues with the discussion of the fourth research question and
presents a pragmatic algorithm to improve the reliability of the generated monitor-
ing results by taking advantage of the inverse relation between data error and data
reliability. This chapter also specifies the viability of the proposed algorithm which
is supported by the obtained evaluation results.

Finally, Chapter 6 concludes this thesis with a succinct summary that highlights
the contributions and insights of the thesis.

15

2 Towards Security Monitoring in

Modern Cloud Systems

Security monitoring is an essential approach to secure modern cloud services that
are appealing to CSCs with the advocated technical and economic advantages such
as transparent resource access, scalability, elasticity and multiple others. Imple-
menting effective service monitoring is a key concern for many CSCs. Therefore,
many cloud systems employ existing security mechanisms for performing secu-
rity monitoring tasks. However, different than the traditional threats that can
be managed by the existing monitoring mechanisms, cloud services often suffer
from novel security threats that cannot be effectively dealt with by the existing
mechanisms. To reveal the characteristics of cloud threats, we conduct a case study
on an application-layer distributed denial of service (DDoS) attack that is one of
the difficult threats to mitigate in cloud systems. The attack typically interrupts
target systems by stealthily draining the available resources and resulting in serious
performance degradation and availability problem. With the existing security
mechanisms (e.g., intrusion detection/protection), it is impossible to achieve effec-
tive monitoring on the evolving application layer DDoS attacks. To address the
problem, we perform an in-depth investigation on the security attack and extract
the characteristics of the threats. Based on the characteristics, we propose a novel
and efficient methodology termed SENTRY that specifically aims at securing cloud
services against the threat of application-layer DDoS attacks. We propose SENTRY
as a run time challenge-response based approach. We assess our proposition with
different experimental settings. The evaluation results demonstrate that it manages
to dynamically adapt to varied service load in the cloud and successfully thwart
suspicious service requests from malicious clients.

2.1 Introduction

Distributed denial of service (DDoS) attacks constitute a non-trivial security threat
for cloud service providers where the attacks overload the victim server systems to
result in degraded services. Most DDoS attacks target the easy-to-attack transport
layer (layer 3 of OSI TCP/IP stack) and network layer (layer 4 of OSI TCP/IP stack)
of a communications system. The attacks directed at these layers are designed to

17

2 Towards Security Monitoring in Modern Cloud Systems

flood a network interface with attack traffic in order to overwhelm its resources
and deny its ability to respond to legitimate traffic.

While network attacks are still a significant challenge due to their scale, the DDoS
attacks targeting the application layer may prove to be a more vexing long-term
challenge [Aka15]. This challenge arises due to the increasing number and com-
plexity of web applications along with the large network bandwidths of the systems
hosting these applications [RKK04] where the attack progressively depletes (versus
typical flooding in classical DDoS) the resources from a web or application server.
For example, an attack incident occurred at Bitbucket Data Center1, where the data
center was intermittently out of service for over 12 hours [Gle11]. Furthermore, the
increasing number of web applications and the shortage of techniques to mitigate
DDoS attacks makes them highly attractive targets. Typically, the application layer
DDoS attack (a) produces less network traffic than traditional DDoS attack in net-
work channels making their detection hard, (b) causes higher system overhead with
the same amount of attacking requests traffic than the traditional DDoS attack in
the server side, and (c) displays higher possibility to bypass intrusion and detection
systems than the traditional DDoS attack.

In order to address such application layer DDoS attacks, the thesis proposes a
novel security mitigation scheme called SENTRY. SENTRY takes advantage of the
remote user’s local uplink bandwidth to (a) interactively examine the legitimacy of
the request in order to dynamically mitigate the resource flooding caused by the
application layer DDoS attacks, and (b) to dynamically restrict resource exhaustion
effects. Fundamentally, an uplink bandwidth based challenge-response process is
imposed on predefined types of service requests. Overall, the schema for mitigation
of application layer DDoS attacks makes the following contributions:

• SENTRY works at the middleware/protocol level to alleviate the configuration
workload caused by dealing with lower-level network details, and allows
add-on production line deployment for cloud service providers.

• SENTRY is adaptable to support servers handling varied workload scenarios.

• SENTRY aims to defeat the potential dishonest attempts by launching a phys-
ical bandwidth based challenge-response process to thwart “smart” adver-
saries intending to cheat. Consequently, it blocks suspicious service requests
from dishonest clients.

1A mainstream code-hosting software-as-a-service (SaaS) provider [Atl19].

18

2.2 Background

The evaluation shows that the SENTRY can effectively mitigate application layer
DDoS attacks in practice as demonstrated with four different use cases.

The reminder of this chapter is organized as follows. Section 2.2 presents the
basic characteristics of application layer DDoS attacks. Section 2.3 details the
attacker and victim models on which we quantify the performance impact of these
attacks. In Section 2.4, we detail the design of the attack mitigation scheme. Section
2.5 presents the experimental evaluation to validate the effectiveness of SENTRY.
In Section 2.6, we overview related works on mitigating application layer DDoS
attacks.

2.2 Background

The application layer DDoS attack is a sophisticated DDoS attack that stealthily
depletes the available resources on victim servers. Compared to the traditional
networking layer oriented DDoS attacks, the application layer DDoS attacks present
three main characteristics as follows.

Firstly, the application layer DDoS attack is a workload-enhancing attack that
manifests the denial of service via resource-starving performance degradation
where the resources commonly consist of CPU cycles, I/O, physical memory
and network bandwidth. Although cloud server systems possess massive system
resources, a specific type of resource could still become the bottleneck of the overall
system performance in some cases. For instance, while the Amazon cloud service
has huge network traffic handling capability, an XML and HTTP protocol based
application layer DDoS attack targeting Amazon EC2 resources [VS12] resulted in
a complete saturation of the EC2 resources.

Secondly, the application layer DDoS attack is an asymmetric DDoS attack
[Ran+06]. The application layer DDoS attack targets very specific application
protocols, which entail characteristically high overhead services. The attacker sends
a few but selective high overhead service requests to target servers from multiple
exploited client hosts resulting in excessive system overhead for the target servers to
process them. As a result, the application layer DDoS attack can keep deteriorating
the system performance until the target servers are completely out of service.

Thirdly, the application layer DDoS attack is a stealthy type of attack that initiates
“normal” service requests that then bypass the “anomalous” behavior focused
intrusion detection systems. For example, the authentication service is a necessary
application service in many cloud service systems. But it is vulnerable to the

19

2 Towards Security Monitoring in Modern Cloud Systems

masquerading signature attack that consumes considerable system resources to run
the verification process[MR04]. By distributing the masquerading service requests
across multiple attacking sources, the application layer DDoS attack produces “mi-
nor” traffic changes that elude the (high) traffic analysis based intrusion detection
systems.

Given such characteristics, the need is to develop a mitigation solution that can
block attacking service requests from dishonest clients. To achieve this purpose,
the proposed scheme designs a resource based challenge-response scheme for
mitigating application layer DDoS attacks. The proposed scheme interactively
challenges and validates the service requests from the remote clients in order to
block the suspicious attacking requests.

2.3 Models

In this section, we (a) describe the attacker model used for performing the applica-
tion layer DDoS attacks and (b) present the victim model on which we measure the
performance impact of these attacks.

2.3.1 Attack Model

The goal of the attacker is to overwhelm one or more server resources so that
the legitimate clients suffer from high service latency and low throughput. This
goal can be made by decreasing the quality of the service provided to their clients.
Hence, the first step needed for designing an effective mitigation approach is
to characterize the potential behavior of the attackers. To this end, one of the
possible methods is to identify the high overhead operations associated with the
victim services as depicted in Figure 2.2 which shows the system workload state in
different cases as follows:

Mode A. This is the normal operational case (without attacks) where a server becomes
overloaded while processing a high amount of different user service requests
within a short period. These heterogeneous service requests swarm into the
server continuously as shown in Mode A in Figure 2.1. Different types of
service requests present different appearance ratios in the requests flow and
cause different processing overhead in the server. The salient observation
being that a high-rate of high-overhead services can result in an overload.

20

2.3 Models

Mode B. This is the application layer DDoS attack case where the attackers take advan-
tage of selective high-overhead service requests. The attackers manipulate
the targeted client hosts to send high-overhead types of service requests.
Although the aggregated number of service requests is not necessarily large,
a victim server is overwhelmed, for a specific resource, for processing all the
incoming service requests. This Mode B represents the workload caused by
application layer DDoS attacks in Figure 2.1. Note that the high-overhead
types of service requests characteristically appear very often in application
layer DDoS attack cases than in normal workload cases.

Figure 2.1: The comparison of high system workload scenarios: normal case vs application
layer DDoS attack case

2.3.2 Victim Model

Cloud server systems are designed to simultaneously service high volumes of
clients requesting varied services. The victim model focuses on those services
which are vulnerable to application layer DDoS attacks. In this thesis, we use the
example proposed in [Ran+06] as the victim model, which presents the different

21

2 Towards Security Monitoring in Modern Cloud Systems

system overhead caused by processing different types of service requests in an
online server system. It can be used to categorize service requests into different
classes according to different levels of processing overhead. Based on this example,
we consider an online bookstore hosted on multi-tiered architecture as an example
of e-commerce application. Figure 2.2 shows the variation in processing times for
different service requests in a bookstore application [Ran+06].

0 0.2 0.4 0.6 0.8 1 1.2 1.4

AdminConfirm

OrderInquiry

CustomerReg

SearchReq

OrderDisplay

ProductDetail

Home

SearchResult

AdminResult

NewProducts

BestSellers

BuyRequest

Average response time (sec)

Figure 2.2: Processing times for different dynamic contents requests in an online service
[Ran+06]

As shown in Figure 2.2, the “BestSellers” service request causes remarkably
higher processing overhead than the “AdminConfirm” service request. The reason
for such difference is the different amount of system resources needed to perform
these requests. For example, the “BestSellers” request involves high resource
demanding operations such as inquiring the database, sorting related results and
returning the final result to the user.

In order to facilitate subsequent discussions in this thesis, we make the following
assumptions:

22

2.4 Proposed Mitigation Scheme

I) We assume that the cloud service provider can conduct surveillance on
processing the incoming service requests at the server side. This assumption
has been put in practice by some cloud service providers. For example,
Amazon offers a monitoring product called “Amazon CloudWatch”[Ama15]
that can check the AWS resources situation in an approximate real-time mode.

II) We assume that attackers have full control of the exploited hosts including
manipulating the local system resources of the hosts.

2.4 Proposed Mitigation Scheme

In this section, we propose a resource based challenge-response scheme for mitigat-
ing application layer DDoS attacks. The mitigation scheme (a) actively challenges
the request senders validity, and (b) filters out suspicious requests by verifying the
responses from the senders. In order to launch an application layer DDoS attack,
attacking participants have to send a large number of attacking requests to over-
whelm a target server with enough attack strength which refers to the aggregated
sending rate of attack requests to a target server per second. Therefore, we assume
that attacking participants will make full use of the local bandwidth resources by
sending high overhead service requests more frequently than normal users whose
service requests present a uniform arrival rate [XY09]. In consequence, such high
overhead service requests result in excessive system resources consumption. Thus
it is a critical task for a security mitigation solution to minimize the attack strength
for reducing the system overhead. Hence it is necessary to identify and discard
the high overhead attacking requests from the service request flow by examining
the request responses to specially generated challenge messages. We explain the
proposed mitigation scheme by first describing the system overview and then
detailing the moderator component.

2.4.1 System Overview

The system consists of a cloud client (or remote client), a cloud server and a novel
mitigation component called “Moderator” as depicted in Figure 2.3. The Moderator
is placed at the server side and is responsible for conducting challenge-response
processes against incoming service requests in order to mitigate application layer
DDoS attacks.

The mitigation scheme, as depicted in Figure 2.3, comprises the following steps:

23

2 Towards Security Monitoring in Modern Cloud Systems

1

4

6

52

3

Response flow
Challenge flow

Normal service flow

Service requests flow

Moderator

Cloud Client

 Cloud Server

Figure 2.3: An overview of the system framework that consists of the service interactions
between a cloud system and remote CSCs

1. Step 1. A remote service client sends a high overhead service request flow to
the server system

2. Step 2. The moderator component samples the incoming service requests.
Once the high overhead service request is sampled, a challenge message is
issued and sent to the client.

3. Step 3. The client responds to the challenge message with local bandwidth
resources (This is completely explained in Section 2.4.2).

4. Step 4. The client’s response received by the moderator is verified to check
whether it is valid or not. The moderator will drop that sampled service
request if it is invalid. Otherwise, it will forward this service request to the
server.

5. Step 5 & 6. The requests that are not sampled by the moderator are served
normally by the cloud server.

Typically, challenges are data structures obtained by considering parameters
from the client, such as CPU cycles, memory or bandwidth resources. In this work,

24

2.4 Proposed Mitigation Scheme

we have chosen the client side physical uplink bandwidth as the base for designing
the challenges used in SENTRY. The reason for choosing this are:

I. Most network applications offer their services to remote clients using the
downlink bandwidth resources[Fra+03] (except for few network applications
as peer to peer transmission). This means that using the uplink bandwidth
for the proposed mitigation scheme resource causes a limited performance
influence on these services.

II. The client bandwidth is strictly managed by his/her local Internet service
provider (ISP) and cannot be modified by DDoS attackers. Therefore, client
bandwidth resource becomes a good base to design the challenges due to its
strong speculation-proof property.

2.4.2 Moderator Description

The moderator component manages the challenge and response processes. It works
as an intermediate component for challenging the selected high overhead service
requests and verifying the corresponding responses. Each challenge message
encloses the expected size of the response to be sent back by the senders. At the
same time, it is independent from the server which facilitates the deployment.

The moderator workflow is depicted in Figure 2.4. It consists of several internal
modules, namely Probing Module, Challenge Module, Receiving Module, Relay
Module and Failure Handling Module.

Probing Module

The probing module (PM) is responsible for sampling the incoming service requests
from clients. It works as a flexible sampler with different possible configurations
that can be used to adapt the sampling rate. These configurations are adjusted (by
the server administrator) by modifying the following two parameters:

• Sampling target (STarget): STarget specifies the targeted type of service requests
sampled by the PM. In this thesis, we set the high overhead type service
requests to be the STarget, as these are the type of requests used in the attacker
model (cf., Section 2.3.1). For example, we assume that the service requests
of type “BestSellers” specified in the victim model (cf., Section 2.3.2) are
the sampling targets from all the other request types specified in the victim

25

2 Towards Security Monitoring in Modern Cloud Systems

Figure 2.4: Internal design and process diagram of moderator with respect to a complete
challenge-response process

model. This means, only “BestSellers” requests are sampled from all types of
service requests received by the server.

For example, in Figure 2.5 the session of Client N contains all service requests
with different overhead types. The light dark blocks refer to those low
overhead service requests submitted by Client N. The medium dark blocks
refer to medium overhead service requests from Client N and the deep dark
blocks refer to the high overhead ones. The specific configuration of STarget

depends on how much system resources will be allocated for the moderator
component. The more system resources are available for the moderator, the
more types of service request can be added into STarget.

• Sampling Probability (SProb): SProb specifies the percentage of sampled re-
quests (SProb). For example, if SProb is 20% then one out of five target service
requests is sampled for subsequent challenge-response process. Thus, accord-
ing to the previous example 20% of “BestSellers” type requests are sampled
and sent to the next module.

26

2.4 Proposed Mitigation Scheme

Figure 2.5: A user session-based random service request sampling diagram

Once these parameters are configured, the PM is ready to execute the sampling
task for the moderator. At the end of this process, the successful sampled target
service request (denoted as Req) is sent to the Challenge Module as shown in
Figure 2.4.

Challenge Module

The challenge module (CM) issues challenge messages for every sampled request
received from the PM. The challenge message is a standard HTTP/1.1 response
message with the challenge information embedded in the message body. As there
are different type of service requests, we introduce a weighted challenge algorithm
(based on the algorithms specified in [SW11]) to classify the sampled service
request Req into three different main groups according to their type. Namely,
Group Glow contains requests with low overhead. Group Gmedium contains requests
with medium overhead. Group Ghigh contains requests with high overhead.

In this challenge message, the CM asks the client for a specific amount of binary
data (specified in the challenge message as shown in Figure 2.6). The client sends a

27

2 Towards Security Monitoring in Modern Cloud Systems

response message containing binary data with the specified size as shown in Figure
2.6. The weighted challenge algorithm generates the challenge size (CZ) according
to the type of Req such that:

CZ =

δ, if Req ∈ Glow

(α + 1)δ, if Req ∈ Gmedium

δβ + (α + 1)δ, if Req ∈ Ghigh

(2.1)

where α, β and δ are positive integers that can be configured to customize the
size of the challenge depending on the Req group (low, medium or high). More
details about the algorithm complexity analysis are given in [SW11]. In order
to thwart potential guessing attempts from advanced attackers, all these three
variables’ values are randomly generated within a set of specified ranges. Once
CZ is calculated and generated, it is added to the challenge message as depicted in
Figure 2.6.

HTTP/1.1 200 OK
X-Powerd-By: Tomcat x.x/JBOSS x.x.x
Date: xx
Content-Type:text/html;charset=utf-8
Content-Length:1024
Connection: Closed
 ------------- blank line -------------
Challenge Message
 – Challenge Size: xxxx Byte

POST /testsite/moderator HTTP/1.1
Host: xxx.xxx.xxx.xxx
User-Agent: Mozilla/5.0:
http://xxx.xxx.xxx.xxx/best_sellers?sbuject=COOKING
Cookie:JSESSION=xxxxxxxxxxxxxx
Content-Type:multipart/form-data
Content-Length: xxxx Byte
Content-Disposition:form-
data;name:”file”;filename=”ResponseFileToChallenge”
Content-Type:application/octet-stream
 ------------- blank line -------------
Response Message
– Response : 10101010010111111000000000 ……

Figure 2.6: An example challenge-response message pair regarding a given challenge size
(CZ)

28

2.4 Proposed Mitigation Scheme

Receiving Module

The receiving module (RM) receives and validates the response of the challenge
from the remote client. Its main responsibility is, firstly, to check the actual size of
the challenge response. Then the RM verifies whether the received response size
matches with the challenge response size specified by CM. The RM also uses the
client’s Session ID (denoted by SIDReq) to identify the sender of Req and forward
or discard the client’s service request Req. More specifically, the RM receives the
HTTP request message with a POST method, which is the response to the challenge
message issued by the CM. This response message contains the required data
submitted by the remote client. The RM retrieves the client’s session information
SIDReq from the message header and checks the size of the binary data in the
message body. Then, it compares the retrieved response information from the
clients and the issued challenge information from the CM. If the response matches
the issued challenge message, Req is assumed to be sent from a honest client for
correctly making an uplink bandwidth response to specified challenge size. There-
fore, RM will route this request Req together with its session information SIDReq

to the Relay Module (REM) for further process. On the other side, if the response
mismatches the issued challenge message, Req is marked as a suspicious attacking
request. Therefore, the RM sends this request Req and its session information
SIDReq to the Failure Handling Module (FHM) as depicted in Figure 2.4.

It is worth highlighting that not all the failures in this challenge-response mitiga-
tion process are from attackers. Some legal clients might also occasionally suffer
from some transient connection congestion or hardware failures. In this case, it
is expected that the clients will resubmit their service requests and make correct
responses when challenged again by the moderator. However, attackers can either
not make correct responses to the challenge messages or only a limited number of
attacking service requests can be processed by server systems if they are “smart
enough” to mimic all behaviors of a normal client. For the former case, all attacking
requests are filtered out thoroughly. For the latter case, the attacking strength is sig-
nificantly minimized as only a limited amount of attacking requests get processed
at the server and most of the attacking requests are blocked by unsuccessful uplink
bandwidth resource responses.

29

2 Towards Security Monitoring in Modern Cloud Systems

Relay Module

The relay module (REM) acts as moderator’s output interface and its main responsi-
bility is to forward the sampled service request Req to the server system. Obviously,
any non-sampled service requests are directly relayed to server systems by REM as
shown in Figure 2.4.

Failure Handling Module

The failure handling module (FHM) is an optional module in the design. Once a
sampled service request Req failed to make a correct response to corresponding
challenge message, it will be handled by the FHM. The FHM is responsible to
execute some post-challenge processes, which comprise intrusive IP banning,
request redirecting, user information logging and so on.

2.5 Evaluation & Discussion

In this section, we evaluate the performance of the moderator component for
several configurations. We discuss the results corresponding to each setting, and
subsequently outline the comparisons with contemporary works to illustrate the
advantages of the design.

2.5.1 Experiment

SENTRY consists of three elements as specified in Section 2.4.1 (cf., Figure 2.3):
a web server, a moderator and a cloud client. The web server is implemented
using a Jboss application server and Mysql to offer the database services. We
used the victim model shown in Section 2.3.2 as the web server. The moderator
consists of a set of developed JSP files deployed on the Jboss application server.
The cloud clients are modeled as emulated browsers which are used to emulate
human clients’ operations by sending different type of service requests to the web
server. Emulated browsers send different service requests to the online bookstore
application scenario such as searching books, inquiring Best Sellers, registering
new accounts, confirming orders and so on. Furthermore, we deploy a group of
emulated browsers to act as attack participants in order to frequently submit high
overhead attack requests.

In the experiment, we deployed more than 600 concurrent emulated browsers,
where 100 of them were specially configured as attacking participants to deliberately

30

2.5 Evaluation & Discussion

(a.) Sampling Rate : 0%
S

y
s
t
e
m

L
o
a
d

(
%

)

40

50

60

70

80

90

100

110

120

Time
0 2 4 6 8 10 12 14

(b.) Sampling Rate : 33%

S
y
s
t
e
m

 L
o
a
d

(
%

)

40

50

60

70

80

90

100

110

120

Time
0 2 4 6 8 10 12 14

(c.) Sampling Rate : 66%

S
y
s
t
e
m

L
o
a
d

(
%

)

40

50

60

70

80

90

100

110

120

Time
0 2 4 6 8 10 12 14

(d.) Sampling Rate : 80%

S
y
s
t
e
m

 L
o
a
d

(
%

)

40

50

60

70

80

90

100

110

120

Time
0 2 4 6 8 10 12 14

Figure 2.7: System overhead graph with four different sampling rates (SR): SR = 0,
SR = 33%, SR = 66%, SR = 80%

submit attacking service requests specified by STarget. These attacking service
requests took up to 25% amount of the overall service requests. We configured
the sampling parameter STarget to be modeled as “BestSellers” type request for
referring to high overhead service request (cf., Section 2.3.2), and “Search” type
request for medium overhead service request as specified in Equation 2.1. In
addition, we also configured SProb with different sampling rates (0%, 33%, 66%,
and 80%) to investigate the behavior of the moderator in different situations. Thus,
we measured the system workload at each of the defined four sampling rates. To
perform this, we collected 600 seconds of system workload data after the web
server entered the stable status. The workload graph of the tests is presented in
Figure 2.7. It consists of four sub-graphs for plotting each test. In these sub-graphs,
the X-axis is the testing time (in seconds) and each time unit represents 50 seconds.
The Y-axis shows the server workload (in percentage).

Attack Scenario with SProb = 0

The first experiment presents the server working at full load with the moderator
deactivated. In this case, the overall emulated browsers are connected to the web

31

2 Towards Security Monitoring in Modern Cloud Systems

server to request various kinds of services simultaneously. As shown in Figure 2.7
(a.), the web server’s average work load is full. The server received up to 79097
service requests from the emulated browsers. Therefore, the online bookstore
server is overloaded and the service is likely suffering a denial of service attack.

Attack Scenario with SProb = 33%

In the second experiment, the moderator is activated and the sampling rate is
configured at 33%, which means 1/3 of submitted search and bestsellers requests
are sent to the moderator. As shown in Figure 2.7 (b.), web server’s average work
load is reduced to 88.17%. The server system received 78787 service requests from
emulated browsers, while 5599 service requests failed to get served due to incorrect
responses to challenge messages.

Attack Scenario with SProb = 66%

In the third experiment, the moderator is activated and the sampling rate is
configured with 66%, which means that 2/3 of the submitted search and bestsellers
requests are sent to the moderator. As shown in Figure 2.7 (c.), web server’s average
work load decreased to 81.14%. The server system received 79157 service requests
from emulated browsers. While, 10518 service requests failed to get served due to
their incorrect responses to challenge messages.

Attack Scenario with SProb = 80%

In the fourth experiment, the moderator is activated and the sampling rate is
configured with 80%. As shown in Figure 2.7 (d.), web server’s average workload
further decreased to 62.80%. The server system received 79281 service requests
from emulated browsers. While, 12310 service requests failed to get served due to
their incorrect responses to challenge messages.

2.5.2 Discussion

From these experiments, three specific type of data have been collected and pre-
sented in Table 2.1, namely mean system load, blocking rate and false negative rate.

The mean system load reflects the performance of the moderator component and
the effectiveness of SENTRY. As the first row in Table 2.1 shows a monotonic system

32

2.5 Evaluation & Discussion

Table 2.1: Experimental Results Assessment Table
(N.B. the evaluation value of the sample rate (SR) is respectively assigned as 0, 33%, 66%,
and 80%. Meanwhile, the mean system load, blocking rate, and false negative rate are
reported.)

Data
Moderator Sampling Rate

0 33% 66% 80%
Mean System Load 100% 88.17% 81.14% 62.80%
Blocking Rate 0 7.11% 13.29% 15.53%
False Negative Rate N.A 13.86% 19.47% 22.36%

load decrease from 100% (when moderator is deactivated, SProb = 0) to 88.17%
(with SProb = 33%) and further dropped to 81.14% when the sampling rate raised to
66%. The system load decreases to 62.80%, when SProb is 80%. From the above data,
the application layer DDoS attack threat is successfully mitigated. The reason for
the system load drop is that attack participants are controlled by attacking scripts.
Those scripts are not able to decode moderator’s challenge messages and make
correct bandwidth responses accordingly. In case any attacker is “smart enough” to
mimic human behavior, the limited client side bandwidth resource imposes rigid
restriction on attacking scripts, which can not send too many attacking requests to
achieve the service denial purpose. The blocking rate refers to the percentage of
blocked attacking requests in the entire service request flow when the moderator is
activated. From the second row in Table 2.1, the blocking rate raises from 7.11%
(with 33% sampling rate) to 13.29% (with 66% sampling rate) and then to 15.53%
(with 80% sampling rate). Considering that 25% of the service flows are attacking
requests, these blocking rates can still be maintained at high level. For example, it
can still block up to 77.64% attacking requests in the overall attacking service flow
even when the sampling rate is equal to 80%. The false negative rate shows the
mitigation performance of the moderator component. It refers to the rate of those
attacking requests which SENTRY failed to block. As in the third row in Table 2.1,
the false negative rate increases gradually as long as we increase the sampling rate.
It shows a false negative rate of 13.86% with 33% sampling rate and 19.47% with
66% sampling rate and 22.36% with 80% sampling rate. As a result, the higher the
sampling rate is, the higher the false negative rate is.

33

2 Towards Security Monitoring in Modern Cloud Systems

2.6 Related Work

This section presents a survey on the state of art regarding to addressing application
layer DDoS attacks.

Many researchers have attempted to mitigate the security threat of applica-
tion layer DDoS attacks using a variety of techniques. For example, Stavrou et
al.[Sta+04] proposed a heterogeneous countermeasure against DoS attacks based
on a graphical Turing test which is an enhanced version of the classical CAPTCHA
method[Von+03]. Since the classical CAPTCHA method was breached by the work
from Mori and Malik[MM03]. This graphical Turing test method consumed a
considerable amount of server resources to generate graphical CAPTCHAs for
remote users.

Yen and Lee[YL05] introduced a statistical technique to mitigate the threat of
random querying based application layer DDoS attacks. A potential problem of
their technique is that attacking sources are assumed to generate service requests in
Round-robin mode, which mismatches with the real attacking scenarios. While Xie
et al.[Xie+13] presented an improved semi-Markov model to mitigate application
layer DDoS attack threats by profiling the dynamic access behaviors of aggregated
proxy traffic from remote clients. However, the semi-Markov algorithm complexity
depends on its parameters which are very challenging to choose.

Seufert and O’Brien[SO07] presented a machine learning based defense mecha-
nism to mitigate the DDoS threat. They collected data from the OSI TCP/IP layer
3, layer 4 and layer 7 from all incoming user requests and employed an artificial
neural networks (ANN) to categorize the user types for the isolation purpose.
Unfortunately, it is an expensive computational task to run the ANN algorithm
especially when the traffic is at a very large scale. In contrast, Yu et al.[Yu+09]
developed a light weight application layer DDoS attack mitigation solution by
leveraging the trust property to differentiate attackers from the normal user group.
The trust is derived from a user’s visiting history and encrypted for the storage.
While it can be exploited by attackers to trigger a significant amount of workload
for computing the trust.

Khor and Nakao[KN11] designed a self-verifying Proof-of-Work (sPoW) mitiga-
tion solution against application layer DDoS attack. The sPoW mechanism grants
normal users to access different services by solving different difficulty-level puzzles.
However, it is incapable of defeating high intelligent adversaries who can pass the
puzzle tests.

34

2.7 Conclusion

Furthermore, Wang et al.[Wan+15a] designed a graphical inference model based
mitigation solution in Software Defined Network(SDN) which is an emerging
network architecture decoupling data plane and control plane in traditional network
architectures. However, it is an experimental solution and not feasible to deploy in
contemporary network architectures.

Few works addressed the DDoS problem by applying resource-based schemes.
The resources are rigidly constrained by physical capacity limitations and diffi-
cult to be speculated by malicious attackers. For instance, Abadi et al.[Aba+05]
proposed a memory resource based scheme to defeat adversarial clients by equip-
ping a memory-bounded hard functions. While Walfish et al.[Wal+10] proposed a
bandwidth resource based scheme to make normal clients get served with more
bandwidth resource than abnormal ones by requesting all connected clients to
join a bandwidth resource auction. Moreover, Khanna et al.[Kha+12] proposed
another bandwidth resource based scheme on the shared communication channels.
However, it is a relatively heavy-weight solution for deployments in practice.

This review highlights that existing approaches encounter validity of assumptions
or high cost of implementation as briefly summarized in Table 2.2. Since all these
contemporary security solutions do not satisfactorily or efficiently mitigate the
application layer DDoS attack threat, it forms the premise for SENTRY.

2.7 Conclusion

In this chapter, we investigated the threat of application layer DDoS attacks against
server systems. In order to mitigate this threat, we propose an uplink bandwidth
based challenge-response mitigation scheme (called SENTRY) with flexible miti-
gating capability and strong speculation-proof property. In addition to evaluate
the performance of the proposed mitigation scheme, we implemented SENTRY
in a software component called “Moderator” that is deployed at the server side.
The experimental results collected from the evaluation process demonstrate the
effectiveness of the proposed challenge-response mitigation mechanism. Therefore,
the proposed mitigation scheme can assist servers to thwart the application layer
DDoS attacks by reducing unnecessary system overhead which caused by process-
ing the attacking service requests. In future work, we will focus on addressing the
tunability of the moderator’s sampling parameters to improve performance.

35

2 Towards Security Monitoring in Modern Cloud Systems

Table 2.2: A comparison table for characterizing existing application layer DDoS attack
mitigation schemes from different perspectives

Mitigation Approach Characteristics Comments

Turing test based miti-
gation scheme [Sta+04]

• Graphic Turing Tests • High service latency
• High execution over-
head

Statistic based mitiga-
tion scheme [YL05]

• Statistics based • High false negative rate
• Statistical model de-
pendent

Trust based mitigation
scheme [Yu+09]

• Trust analysis based • False negative rate de-
pending on attacking pro-
file

• Analyzing browsing
behaviors

• Huge amount of log files
required
• Vulnerable to human be-
havior mimic attacks

Machine learning based
mitigation scheme
[SO07]

• Machine learning
based • High execution overhead
• Sample collection
• Feature extraction al-
gorithm needs training

Software Defined Net-
work based mitigation
scheme [Wan+15a]

• SDN based • Communication over-
head depends on SDN
structure

• Control network flow
with separate planes

Hidden semi-Markov
model based mitigation
scheme [Xie+13]

• Statistic based
• Difficulty in model pa-
rameter selection

• Legal users get higher
service possibility

Resource based mitiga-
tion scheme [Wal+10]

• Bandwidth resource
based

• Client status information
required to maintain at the
server side• Legal users get higher

service possibility

36

3 Implementing Indirect Service

Monitoring Using Dependencies

In Chapter 2, we investigate the characteristics of cloud threats and reveal the
challenge for developing effective security mechanisms to address the evolving
threats. To manage the security assurance, cloud service monitoring is a critical
need for both providers and customers to assess the state of resources and the
level of delivery of services. However, existing cloud monitoring methods are often
inapplicable in case the targeted service parameters are inaccessible, e.g., CSPs
do not allow external access to some service parameters for varied reasons (e.g.,
proprietary IPR, privacy issues, security concerns or technical access difficulties).
As a result, alternate cloud service monitoring approaches are needed to address
this issue. In fact, cloud services are not provisioned in isolation and very often
share common resources with other services that naturally introduces service
dependencies between different services. In this chapter, we propose a novel cloud
monitoring approach that targets the dependencies to enable indirect monitoring
of inaccessible service parameters by using the information collected from other
cloud services. We develop an assessment approach to quantify the reliability of
the results generated by the proposed monitoring approach. In the end, we present
a case study to evaluate the applicability of our approach.

3.1 Introduction

Cloud service monitoring is an important quality assurance mechanism for the
actors involved in the provisioning of cloud services. For example, cloud service
monitoring mechanisms are used by Cloud Service Providers to manage cloud
services such as getting up-to-date service information, planning maintenance
tasks or checking the fulfillment of the service agreements also for cloud customers.
Cloud service monitoring mechanisms are also used by third parties, such as by
certification auditors which rely on the monitoring information to issue certificates.

Although cloud service monitoring is crucial for the actors involved in the cloud,
existing cloud service monitoring mechanisms are effective only if the related pa-
rameter information is directly accessible on the provider’s side [Lei+12][Men+12]
[ML13][FH15][LLL15]. However, many providers do not allow external parties

37

3 Implementing Indirect Service Monitoring Using Dependencies

to access specific service parameters for many reasons, such as privacy reasons,
security concerns or lack of proper access interfaces. In these cases, the existing
monitoring mechanisms become inapplicable. As a result, it is necessary to design
a new cloud monitoring mechanism to address this gap.

Given that cloud services often share common resources and work on top of the
same platform or infrastructure1, it is inevitable that dependencies exist between
some cloud services. As a result, these service dependencies can be used for
developing the new cloud service monitoring mechanism which can monitor those
inaccessible parameters of the cloud service by using the parameter information
collected from other cloud services.

For example, a cloud secure storage service does not allow external parties to
directly monitor parameters related to the data security level which is an important
aspect of a SecSLA2. To help cloud service customers validate the SecSLA com-
pliance, third parties such as security auditors can use service dependencies to
indirectly monitor these parameters. In the case of a cloud secure storage service
we can suppose that it works as the combination of three different services, namely
an authentication service (SAuth), an encryption service (SEncypt), and a storage
service (SStore). Therefore, the security auditor can check parameter information
from SAuth to see whether the access is from a legitimate user or it can also ac-
cess to information from SEncypt to see which type of encryption applied on the
user data. However, two major challenges need to be solved for designing an
indirect monitoring mechanism for cloud services: (1) how to quantitatively use
service dependencies for monitoring service parameters, and (2) how to evaluate
the reliability of the result from the indirect monitoring.

We address these challenges by proposing a novel indirect monitoring scheme.
The proposed approach takes advantage of service dependencies for which the
value of service parameters can be quantitatively formulated with the provisioning
level of cloud services, and indirectly monitored by aggregating the relevant
provisioning levels. To the best of our knowledge, our work is the first attempt to
address the indirect monitoring issue in cloud. The contributions are:

1An example is the cloud storage service Dropbox is working on top of AWS S3. cf.
https://aws.amazon.com/customerapps/1955

2SecSLA is a legal agreement negotiated and contracted between the Cloud Service Provider (CSP)
and the Cloud Service Customer (CSC) to guarantee cloud services delivered with the specific
security assurance.

38

3.2 Basic Concepts

1. An indirect cloud service monitoring approach termed dependency-based
Quantitative Aggregation Methodology (deQAM) which parameterizes ser-
vice dependencies to monitor the target parameter’s value.

2. A reliability assessment approach which evaluates the confidence level of the
monitoring result.

3. A case study to validate the applicability of the proposed monitoring ap-
proach.

The reminder of this chapter is organized as follows. Section 3.2 presents some
basic considerations for designing the indirect monitoring approach. Section 3.3
elaborates the proposed monitoring approach. Section 3.4 shows the applicability
of the approach on a case study for deQAM. Section 3.5 discusses the case study
results. Section 3.6 presents the related work, and Section 3.7 concludes the chapter.

3.2 Basic Concepts

This section reviews several basic issues related to designing an indirect cloud
service monitoring approach.

3.2.1 Cloud Service Provisioning & Indirect Monitoring

The provision of cloud services typically involves multiple supporting services
and also multiple service providers where many services or service providers also
share common resources or infrastructure. Taking a cloud secure storage service
for example, it offers the service of encrypting and storing client’s data in cloud
using a service hierarchy such as the one depicted in Fig. 3.1.

With the above service provisioning hierarchy, some parameters of the cloud
secure storage service could be indirectly monitored by third parties without
requiring direct access to these parameters. For example, the data security level is
an important security parameter for CSCs using this cloud secure storage service
(STarget). However, this security parameter is impossible to be directly monitored
due to privacy protection concerns. Other parameters can be monitored by third
parties from other cloud services residing in the same hierarchy. The possible
examples could be the supported encryption algorithm list in the cloud encryption
service (SEncypt), authentication notification messages in the cloud authentication
service (SAuth) or the bug report of the security module in Microsoft Azure (MSA).

39

3 Implementing Indirect Service Monitoring Using Dependencies

Cloud Secure Storage
Service (STarget)

Microsoft Azure
(MSA)

Cloud Encryption
Service (SEncypt)

Cloud Authentication
Service (SAuth)

Dropbox Storage
Service (Sdpbx)

Google App Engine
(GAE)

Google Compute
Engine (GCE)

Amazon Web Services
(AWS)

Amazon Simple
Storage Service (S3)

Figure 3.1: The provisioning hierarchy of an example secure storage service in the cloud

For example, by studying the related parameters collected from other cloud services
in Fig. 3.1, it is possible for third parties to indirectly monitor the parameter data
security level.

3.2.2 Service Dependency & Characterization

Service dependency is the directed relation between different services, which refers
to one service (a.k.a dependent service) subjected to the persistent constrains
from another or multiple services (a.k.a. antecedent service) [Win+09]. Service
dependency specifies the provisioning of services that depends on its antecedent
services, which might affect the provisioning of the dependent service (e.g., degra-
dations or disruptions or failures) [Zho+07]. For the aforementioned example,
the provisioning of the cloud secure storage service (dependent service) depends
on its antecedent services, namely the cloud authentication service and the cloud
encryption service in order to meet the security requirements of the storage service.
Therefore, the service dependency has deep influence on the service provisioning
of cloud services.

40

3.3 The Proposed Methodology

From the monitoring perspective, the following characteristics of service depen-
dency are worth highlighting:

Direction: The dependency direction states the directional information that
identifies the dependent and the antecedent in the service dependency. It can assist
in trimming the service dependencies by removing the irrelevant services.

Type: The dependency type reflects antecedent services imposing different
types of influence on dependent services. The influence is either the decisive
type (enable/disable) or the indecisive type (altering to some extent), affecting the
dependent service provisioning.

Strength: The dependency strength represents the degree of dependent services
relying on their antecedent services. The higher dependency strength implies
the closer service provisioning of dependent services relying on their antecedent
services.

3.2.3 Uncertainty & Data Estimation

Uncertainty is a key issue in designing an indirect monitoring approach. Uncer-
tainty, which is caused by the incompleteness of knowledge about the monitoring
target, deviates the value of the monitoring result from the real value [DM00].

However, the indirect monitoring approach takes the parameter information
from antecedent services without the complete knowledge of the target parameter
in dependent services. Therefore, it is nontrivial to address the uncertainty problem
for the indirect monitoring approach. In practice, a common solution to address the
uncertainty issue is to determine a confidence level (typically 95%) for evaluating
the reliability of the monitoring result.

3.3 The Proposed Methodology

This section presents the details of the dependency-based Quantitative Aggregation
Methodology (deQAM) as the proposed indirect cloud monitoring approach.

3.3.1 System Overview

The dependency-based quantitative aggregation methodology (deQAM) is the
indirect monitoring approach proposed to monitor the parameters of cloud services.
deQAM uses the related parameter information collected from antecedent services
to monitor the dependent service parameter which is difficult to be monitored

41

3 Implementing Indirect Service Monitoring Using Dependencies

directly. deQAM adopts a multi-step process to achieve the indirect monitoring
as shown in the bottom boxed part of Fig. 3.2. Briefly, the “utility mapping" step
converts the parameter value to a utility level as explained in Section 3.3.2. The
“dependency parameterization" step generates the trimmed parameterized service
graph with service dependencies. The “monitoring result inference" step computes
the utility of the target parameter. The “monitoring result generation" step generates
the indirect monitoring result by mapping the target parameter utility back to the
parameter value. The “result reliability evaluation" step addresses the reliability
issue by estimating the monitoring result’s reliability at a 95% confidence level.
These steps are detailed in Section 3.3.3.

 Utility Mapping

Dependency
Parameterization

Monitoring
Result

Inference

Result Reliability
Evaluation

Target Cloud
Services

Antecedent
Cloud ServiceAntecedent

Cloud
Service

Antecedent
Cloud

Service

Related
Information

Computed
Utility

Trimmed
Parameterized
Service Graph

Monitoring
Result with
Confidence

Level

Service
Dependency

Monitoring
Result

Generation

Parameter
Estimator

deQAM

Parameter
Value

Utility of
Target
Parameter

Figure 3.2: The main framework of the proposed indirect monitoring methodology
(deQAM)

42

3.3 The Proposed Methodology

3.3.2 Transformation of Dependency

deQAM treats the service dependency as quantitative constraints on the cloud
service provisioning. It uses utility as the quantitative unit for representing the
influence that the service parameter value has on the service provisioning. deQAM
categorizes the utility into two classes.

Eigen utility: Eigen utility represents the basic provisioning level of the depen-
dent service affected by the value of other parameters in the same service. If the
eigen utility is exceptional (i.e. lower than some thresholds), a serious problem
might have occurred with the service provisioning, such as service dysfunctional,
interrupted or completely down.

Contributed utility: Contributed utility represents the dependent service’s provi-
sioning level affected by the value of parameters of antecedent services. According
to the different types of influence, it is further categorized into two types, namely
the mandatory-type contributed utility and the optional-type contributed utility. Specif-
ically, the mandatory-type contributed utility represents the decisive influence on
the provisioning of the dependent service which decides whether the dependent
service is provisioned or not. The optional-type contributed utility represents the
indecisive influence affected on the provisioning level of the dependent service
which increases the service provisioning level based on the basic provisioning level.

As a result, the utility of the service parameter value is the sum of the eigen
utility and the contributed utility.

3.3.3 Concrete Design

deQAM is a multi-step indirect cloud service monitoring approach that quantita-
tively analyzes the utility as follows.

Step 1. Utility Mapping

deQAM starts the monitoring process by mapping the parameter value Vp, collected
from antecedent services, onto utility Up. Based on the discussion in Section 3.3.2,
we propose two different conversion rules (depicted as f_B for Boolean and f_N for
Numerical) for mapping the parameter value Vp onto utility Up and the inverse
conversion rules (depicted as f−1

_B and f−1
_N) for the back-mapping process.

f_B : Vp 7→ Up =

1 Vp ∈ Sen

0 Vp ∈ Sdis

43

3 Implementing Indirect Service Monitoring Using Dependencies

f−1
_B : Up 7→ Vp =

Vp ∈ Sen Up = 1

Vp ∈ Sdis Up = 0

The parameter value Vp having the dominant influence on the dependent ser-
vice’s provisioning is mapped to the boolean value by using f_B, in which Sen is
the set of the value for enabling the service provisioning (e.g., yes, enable or acti-
vate) and Sdis is the set of the value for disabling the service provisioning (e.g.,
no, disable or inactive). For example, the parameter value of login failure message is
V1 = true/ f alse, its utility is mapped onto U1 = 0/1 by using f_B when the service
provisioning is disabled/enabled.

f_N : Vp 7→ Up =
Vp −Vp_min

Vp_max−Vp_min

f−1
_N : Up 7→ Vp =

Up −Up_min
Up_max−Up_min

The parameter value Vp having the influence of increasing the provisioning level
of the dependent service is mapped to the numerical value in the range of [0, 1] by
using f_N , in which Vp_max and Vp_min are the upper and the lower boundary of
Vp’s varying range. For example, the parameter value of CPU usage rate varies in
the range of [0, 100%]. If the collected CPU usage rate is V2 = 62%, then its utility
U2 is mapped onto 0.62 by using f_N . In a similar way, the parameter value of client
storage quota is an element of the set {250GB, 500GB, 750GB, 1000GB} and can be
regarded as varying in the range of [0, 1] which is divided into four parts. Then the
utility of corresponding elements are mapped onto 0.25, 0.5, 0.75, 1 by using f_N .

Step 2. Service Dependency Parameterization

deQAM characterizes service dependencies with the parameterized service depen-
dency graph which consists of a set of vertexes representing cloud services and
a set of edges representing parameterized dependencies between different cloud
services. The parameterized service dependency graph is defined as:

Definition. A parameterized service dependency graph is a multi-parameter
directed graph denoted with G = (V, E), in which:

• V are the vertexes of Graph G which represents a finite set of cloud services
denoted by V = {S1, S2, ..., Si}. Si means the i-th service.

44

3.3 The Proposed Methodology

 S4

S1

S2

S3

D21 = [α21, β21, γ21] D41 = [α41, β41, γ41]

D32 = [α32, β32, γ32]

E1

E2

E3

G=(V, E)
V={S1, S2, S3, S4 }
E={E1, E2, E3 }
αmn : dependency direction
βmn : dependency type
γmn : dependency strength

Figure 3.3: An example service dependency graph where the dependency are parameter-
ized as a three-parameter vector

• E are the directed edges of Graph G which represents a finite set of depen-
dencies between different services denoted by E = {E1, E2, ..., Ej}, Ej means the
j-th service dependency between two cloud services. Ej is characterized with a
three-parameter vector ~Dmn = [αmn, βmn, γmn] to parameterize service dependencies
obtained from the service provisioning hierarchy as illustrated in Section 3.2.2.

αmn: It is the parameter specifying the target-oriented dependency direction
between two different cloud services. Specifically, if the antecedent service is Sm

and the dependent service is Sn (Sm, Sn ∈ V) and both services are directly or
indirectly affect a given target service, its value is 1. Otherwise, if Sm and Sn does
not affect the given target service, the value of dependency direction is −1.

βmn: It is the parameter representing the different types of influence of the
Sm’s parameter value on the Sn’s service provisioning. Its value is assigned to 0
to indicate the decisive influence dependency, while its value is assigned to 1 to
indicate the indecisive influence dependency.

45

3 Implementing Indirect Service Monitoring Using Dependencies

γmn: It is the parameter defining the rate that the utility mapped from Sm’s
parameter value contributes onto Sn’s service provisioning level caused by the
service dependency. It is a real number in the range of [0, 1].

Based on the parameterized service dependency graph G, deQAM adopts a
target-centric service dependency trimming method which examines dependencies
with regard to the target service (STarget) and recursively checks the correspond-
ing antecedent services to remove irrelevant service dependencies (i.e. service
dependencies do not affect the monitoring result) as specified in Algorithm 1. The
trimming algorithm takes advantage of a set of services (denoted by Sx) and a
set of corresponding parameterized dependency vectors (denoted by Ey) derived
from these services regarding to the target service. By recursively comparing the
dependency direction αxt of every service in Sx, the trimming algorithm can finally
generate the minimized service dependency graph (denoted by G

′
) with regard to

the target service. In addition, the trimming algorithm traverses all nodes (services)
of the graph to do the dependency direction (αxt) comparison. Therefore, the
complexity for the trimming algorithm is O(n), where n is the node number.

Algorithm 1: Target-Centric Service Dependency Trimming Algorithm
Require: parameterized service dependency graph G = (V, E) of i vertexes and j

edges.
Ensure: trimmed parameterized service dependency graph G

′
= (V

′
, E
′
).

1: set Sx ∈ V = {S1, S2, ..., Si}, Ey ∈ E = {E1, E2, ..., Ej};
2: set V

′
= {STarget} and E

′
;

3: while before the element number of V
′

no longer changes do
4: for each element S

′ ∈ V
′

do
5: set St = S

′
;

6: for each element Sx ∈ V
⋂

Sx , St do
7: if Ey ∈ E

⋂
αxt == 1 then

8: add Sx and Ey’s dependency ~Dxt into V
′

and E
′

respectively;
9: end if

10: end for
11: end for
12: end while
13: return Trimmed parameterized service dependency graph G

′
= (V

′
, E
′
)

46

3.3 The Proposed Methodology

Step 3. Monitoring Result Inference

Based on the trimmed parameterized service dependency graph G′, utility Uϕ

of the inaccessible parameter ϕ of the target service STarget is inferred by using
parameterized dependencies. The utility computation process consists of three
different parts as follows:

Eigen utility: The eigen utility UE_ϕ of the inaccessible parameter ϕ of STarget is
decided by the baseline of the service provisioning. It is the threshold of the service
provisioning without considering any dependency from antecedent services.

Mandatory-type contributed utility: The mandatory-type contributed utility
UM_ϕ of the inaccessible parameter ϕ of STarget is computed by using the dependen-
cies which impose the dominant influence on the provisioning of STarget. Due to
the dominant influence of the dependency type, the mandatory-type contributed
utility UM_ϕ is the product of all boolean utilities mapped from the antecedent
services’ parameter value with decisive influence on the service provisioning of
STarget (i.e. when βmn = 0). It can be computed as follows:

UM_ϕ =
l

∏
1

Ul (3.1)

In Equation (3.1), l is the number of service dependencies with βmn = 0 in G
′

and
Ul is the utility mapped from the antecedent service Sl’ parameter value Vl .

Optional-type contributed utility: The optional-type contributed utility UO_ϕ

of the inaccessible parameter ϕ of STarget aggregates the utility computed by all
optional-type service dependencies. However, it requires to compute the utility
caused by the ripple-effect of service dependency which is the phenomenon of the
influence (either quantitative or qualitative) propagation from antecedent services
to dependent services [Koz11]. Therefore, the optional-type utility computation
needs to include both the direct and the ripple-effect optional-type contributed
utility computation. As a result, deQAM computes the optional-type contributed
utility UO_ϕ as:

• Ripple-effect optional-type contributed utility: The ripple-effect optional-type con-
tributed utility U(o.r)

mn is the optional utility indirectly contributed by the parameter
of antecedent service Sm to the parameter of dependent service Sn. Given a three-
node dependency chain in the trimmed parameterized dependency graph G

′
, it

can be represented as {Sm → Sk → Sn}. This dependency chain consists of an

47

3 Implementing Indirect Service Monitoring Using Dependencies

antecedent service Sm, an intermediate service Sk and a dependent service Sn. The
ripple-effect utility U(o.r)

mn propagating from Sm to Sn is computed as:

U(o.r)
mn = (γmk ·Um) · γkn (3.2)

In Equation (3.2), γmk ·Um is the optional utility mapped from Sm’s parameter
value Vm and contributed to Sk. Multiplying the coefficient γkn, it results in the
final optional utility contributed to the inaccessible parameter’s utility of Sn.

• Direct optional-type contributed utility: Based on the ripple-effect optional-type
utility computation method, the direct optional-type contributed utility U(o.d)

mn is
computed as the simplified form, in which the dependency chain contains only
two nodes as {Sm → Sn}. Accordingly, the direct optional-type contributed utility
is computed as:

U(o.d)
mn = γmn ·Um (3.3)

The output of Equation (3.3) is the optional utility mapped from the parameter
value of Sm and contributed to the inaccessible parameter’s utility of Sn.

Based on Equation (3.2) and (3.3), the optional-type contributed utility UO_ϕ of
the inaccessible parameter ϕ of STarget is aggregated as:

UO_ϕ =
p

∑
1

q

∑
1

U(o.r)
mn +

r

∑
1

U(o.d)
mn (3.4)

In Equation (3.4), p is the number of dependency chains related to STarget, q is the
number of all non-adjacent antecedent services of STarget in each dependency chain,
and r is the number of direct antecedent services of STarget.

Inaccessible service parameter utility inference: As a result, utility Uϕ of the
inaccessible parameter ϕ of STarget is computed with the results from the three
different parts as:

Uϕ = UM_ϕ · (UE_ϕ + UO_ϕ) (3.5)

In Equation (3.5), the mandatory-type contributed utility UM_ϕ is the dominance
over the utility Uϕ of the inaccessible parameter ϕ of STarget like the switch.

Step 4. Monitoring Result Generation

The monitoring result generation step maps the derived utility Uϕ back to the
inaccessible parameter’s value Vϕ. To do so, we apply the inverse conversion rules
f−1
_B and f−1

_N in Step 1 for the back-mapping process. However, the special attention

48

3.3 The Proposed Methodology

is required to manage the case of mapping the parameter value Vϕ back to a given
set, because the computed utility may not exactly match any element in the set.
Therefore, we propose to assign the derived utility Uϕ to the nearest utility mapped
from some element value in the set. For example, if the derived utility Uϕ is 0.32
which does not match any utility in the set like {0.25, 0.5, 0.75, 1}. However, its two
adjacent elements are 0.25 and 0.5. As a result, utility Uϕ is replaced by 0.25 which
has the minimum deviation to 0.32 than others.

Step 5. Result Reliability Evaluation

Because the monitoring result is inferred by deQAM indirectly, it suffers from
uncertainty which has to be estimated. Therefore, it is necessary to address the
uncertainty issue by evaluating the reliability of the generated monitoring result
Vϕ of the inaccessible parameter ϕ of STarget.

The deQAM’s inference process relies on the service dependency parameters
αmn, βmn, and γmn from Step 2. As the value of γmn is generally derived by
studying the empirical experimental data or the knowledge of the experts [ZN08],
the incomplete knowledge of γmn is the source of uncertainty for the indirect
monitoring result Vϕ. Therefore, we estimate γmn based on a statistic evaluation
approach to assess the confidence level of the generated monitoring result Vϕ.

The evaluation approach is designed with the assumption that γmn is derived
with the best knowledge of the experts or the best-effort study on empirical
experimental data. In other words, the value of γmn applied in deQAM’s utility
computing process is the most likely approximation of the real strength of the
dependency. Consequently, uncertainty ξmn is defined as the deviation between
the approximation value and the true value of γmn. As a result, the distribution
of uncertainty can reflect the reliability of γmn. Specifically, the variance of the
uncertainty distribution σmn is inversely proportional to the reliability of γmn.
Apart from the variance σmn, the mean of the uncertainty distribution µmn is
set to 0 due to no intentional bias introduced for deriving γmn according to the
assumption. Meanwhile, the Gaussian distribution is commonly used for modeling
the uncertainty problem. Therefore, the distribution of γmn’s uncertainty follows
the Gaussian distribution N(0, σmn). As the value of γmn is independently obtained,
the uncertainty ξ(Vϕ) of the generated monitoring result Vϕ is the aggregation of
all γmn’s uncertainty. Thus, ξ(Vϕ) follows the Gaussian distribution as:

ξ(Vϕ) ∼ N(0, ∑ σmn) (3.6)

49

3 Implementing Indirect Service Monitoring Using Dependencies

However the true value of σmn is generally unknown. Hence, we adopt the mean
of the square products of the uncertainty differences to estimate the true value of
σ̂2

ξ(Vϕ)
obtained from Equation (3.6) as:

σ̂2
ξ(Vϕ)

=
1
t

t

∑
1
(γmn − γmean)

2 (3.7)

In Equation (3.7), γmean is the mean value of all γmn participated in the utility
computation process. While t is the total number of γmn participated in the utility
computation process. Accordingly, a χ2-distribution can be obtained based on
Equation (3.7) as:

χ2(t) ∼ ∑t
1(γmn − γmean)2

σ2
ξ(Vϕ)

=
t · σ̂2

ξ(Vϕ)

σ2
ξ(Vϕ)

(3.8)

Therefore, the χ2-distribution statistic characteristic can be used to determine the
confidence level (1− c) to assess the reliability of the generated monitoring result
Vϕ [Li+14a]. Based on the distribution (3.8), the confidence level 1− c of σ2

ξ(Vϕ)
is

derived to represent the generated monitoring result’s reliability [Sch12] as:

(
∑t

1(γmn − γmean)2

χ2
(1− c

2 ,t)
, ∑t

1(γmn − γmean)2

χ2
(c

2 ,t)
) (3.9)

3.4 Case Study

deQAM is applied to an example cloud service to infer the inaccessible service
parameter as an initial effort to validate the proposed approach. To the best of
our knowledge, it is the first study for conducting indirect monitoring on the
inaccessible parameter of the cloud service.

 S3

S5

S2

S1

 S4

(a)

(a) The raw service provisioning hierarchy for
cloud service S5

 S3

S5

S2

S1

 S4

D25 = [1, 1, 0.8] D35 = [1, 0, 1]

D34 = [-1, 0, /]

D12 = [1, 1, 0.9]

(b)

φS5

φS4φS3

φS2

φS1

(b) The parameterized service dependency
graph for cloud service S5

50

3.4 Case Study

Figure 3.4a depicts the service provisioning hierarchy of a cloud service with
other services. Without loss of generality, we assign the parameters ϕs1 and ϕs2 of
services S1 and S2 (respectively) holding the optional-type dependencies indirectly
and directly to the parameter ϕs5 of the service S5, the parameter ϕs3 of the service
S3 holding the mandatory-type dependencies to the parameter ϕs4 of the service S4
and the parameter ϕs5 of the service S5. The target monitoring parameter ϕs5 , with
the possible value varying range of [0, 100%], is unable to be monitored directly.
However, the other information of the parameter from the other services can be
collected as in Table 3.1. Then, deQAM conducts the indirect monitoring process
as follows:

Table 3.1: Case study: information collected for performing indirect parameter monitoring
(N.B. five different services are considered in the evaluation, while the monitoring
information and dependency are parameterized.)

Parameter Dependent cloud services
Location Service 1 Service 2 Service 3 Service 4 Service 5

Name ϕs1 ϕs2 ϕs3 ϕs4 ϕs5 (Target)
Value Type Numerical Numerical Boolean Boolean Numerical
Variation Range [0,100%] Lv 1/2/3/4/5 (in)activated (un)available [0,100%]
Collected Value 30% Lv 1 activated available N.A
Trimming Status Keep Keep Keep Removed Keep
DepDirection (αmn) α12 = 1 α25 = 1 α35 = 1 Removed N.A
DepType (βmn) β12 = 1 β25 = 1 β35 = 0 Removed N.A
DepStrength (γmn) γ12 = 0.9 γ25 = 0.8 γ35 = 1 Removed N.A

• Step 1. Utility Mapping To monitor parameter ϕs5 , deQAM starts by mapping
the value of the parameters collected from the antecedent services onto utility. By
using the proposed conversion rules f_B and f_N , the utility of the value of the
collected parameters (ϕs1 , ϕs2 , ϕs3) are converted as:

Uϕs1
=

30%
100%− 0

= 0.3

Uϕs2
=

Lv1
{Lv1, Lv2, Lv3, Lv4, Lv5} =

0.2
1.0− 0

= 0.2

Uϕs3
= 1

It is worth noticing that ϕs3 is a Boolean and Vϕs3
is activated.

• Step 2. Service Dependency Parameterization deQAM constructs the parame-
terized service dependency graph G for conducting the utility analysis of ϕs5 . As
in Figure 3.4b, G contains 5 vertexes denoting the 5 different cloud services and

51

3 Implementing Indirect Service Monitoring Using Dependencies

4 edges specifying the dependency with the three-parameter (αmn, βmn and γmn)
vectors. Then, the target-centric dependency trimming algorithm is executed to
remove the irrelevant services based on the inputs of G and αmn. The output of
the algorithm is the trimmed parameterized service dependency graph G

′
which

removes S4 as denoted in dotted form. Since the service dependency ~D34 is irrele-
vant to the utility analysis for monitoring ϕs5 and its directional parameter α34 sets
to −1 in the figure.

• Step 3. Monitoring Result Inference deQAM computes the utility of the
parameters collected from S1, S2 and S3.

∗ Eigen utility: ϕs5 ’s eigen utility UE_ϕs5
is decided by the basic provisioning

level of S5. In this case study, we set UE_ϕs5
to 0.5.

∗ Mandatory-type contributed utility: deQAM computes the mandatory-type
contributed utility UM_ϕs5

by using the monitoring information collected from S3.
As Uϕs3

= 1, the mandatory-type contributed utility is computed as:

UM_ϕs5
=

1

∏
1

Uϕs3
= 1

∗ Optional-type contributed utility: deQAM computes the optional-type con-
tributed utility UO_ϕs5

by using the monitoring information collected from S1 and
S2. According to Equation (3.2) and (3.3), S1’s ripple-effect optional-type util-
ity U(o.r)

15 and S2’s direct optional-type contributed utility U(o.d)
25 are computed

respectively as:

U(o.r)
15 = (γ12 ·Uϕs1

) · γ25 = 0.216

U(o.d)
25 = γ25 ·Uϕs2

= 0.16

By Equation (3.4), ϕs5 ’s optional-type contributed utility UO_ϕs5
is:

UO_ϕs5
= U(o.r)

15 + U(o.d)
25 = 0.376

∗ Inaccessible service parameter utility inference: Based on the above computation,
utility Uϕs5

of the inaccessible service parameter ϕs5 is derived by Equation (3.5) as:

Uϕs5
= UM_ϕs5

· (UE_ϕs5
+ UO_ϕs5

) = 0.876

• Step 4. Monitoring Result Generation deQAM maps utility Uϕs5
back to

ϕs5 ’s value to generate the monitoring result Vϕs5
. By applying proposed inverse

52

3.5 Discussion

conversion rule f−1
_N , the monitoring result Vϕs5

of the inaccessible parameter ϕs5

is generated as follows. Because Uϕs5
is 0.876 and the varying range of Vϕs5

is
[0, 100%], the monitoring result Vϕs5

is derived as:

Vϕs5
=

Uϕs5

Uϕs5_max −Uϕs5_min

· 100% =
0.876
1− 0

· 100% = 87.6%

• Step 5. Result Reliability Evaluation deQAM determines the confidence level
of the generated monitoring result by using Equation (3.9) and the value of γmn

specified in Table 3.1. In this case study, we assess the reliability of the monitoring
result Vϕs5 with the confidence level (1− c) of 95% (i.e. 1− c = 0.95). By checking
the χ2 distribution table [Sch12], we find χ2

(0.05
2 ,3)

= 0.216 and χ2
(1− 0.05

2 ,3)
= 9.348.

According to Equation (3.7) and (3.9) and Table 3.1,

γ12 = 0.9, γ25 = 0.8, γ35 = 1, γmean = (γ12 + γ25 + γ35)/3 = 0.9

σ̂2
ξ(Vϕs5

) =
1
3

3

∑
1
(γmn − γmean)

2 =
0.12 + 0.12

3
= 0.0067

∑3
1(γmn − γmean)2

χ2
(1− 0.05

2 ,3)

=
0.12 + 0.12

0.226
= 0.0926

∑3
1(γmn − γmean)2

χ2
(0.05

2 ,3)

=
0.12 + 0.12

9.348
= 0.0021

As a result, deQAM determines the uncertainty variance σ̂2
ξ(Vϕs5

) of the gener-
ated monitoring result Vϕs5

of inaccessible parameter ϕs5 is 0.0067 and the 95%
confidence level is derived as the interval of (0.0021, 0.0926).

3.5 Discussion

Our case study shows that deQAM can successfully infer the monitoring result by
using the dependencies across cloud services. The study also shows that deQAM
can evaluate the reliability of the monitoring result by giving a 95% confidence
level of the uncertainty estimation. The variance of uncertainty is as small as 0.0067.
This implies that the monitoring result is unlikely to unexpectedly deviate from
the true value of Vϕs5

. Meanwhile, the 95% confidence level is based on the interval
of (0.0021, 0.0926). This narrow confidence interval constrains the randomness of

53

3 Implementing Indirect Service Monitoring Using Dependencies

the uncertainty variance. The narrow confidence interval disables the potential big
deviation of the real uncertainty variance. As the uncertainty variance 0.0067 falls
within the confidence interval, the reliability of the monitoring result is statistically
sound.

Our case study also utilizes different types of parameters commonly existing in
cloud services. For instance, the parameter with a varying range represents the
service parameter with variable status like CPU usage rate as in IaaS. Similarly,
the parameter selected from a set represents the service parameters with several
possible levels like different encryption levels of cloud encryption services. More-
over, the parameter with Boolean value represents the service parameter with the
switch-effect like authentication parameters deciding the access to cloud services.
Therefore, the case study demonstrates deQAM’s capability of handling most of
the common service parameter types used in the cloud.

3.6 Related Work

The indirect monitoring for cloud service is a novel research topic that is only
beginning to garner attention. Thus, some works that likely have potential value
for design the indirect monitoring approach are surveyed below.

One related field is about service dependency though most works in this field
focus on describing the notion of “dependency” from varied perspectives. For
example, Winkler et al. [Win+09] classified the service dependencies into discrete
types for creating the service dependency model. Eppinger et al. [EB12] presented
the design structure matrix (DSM) for refining the service dependency. Likewise,
Qi et al. [Qi+12] proposed a dependency graph to analyze the services by trust.
However, Garvey et al. [GP09][GPS14] proposed a functional dependency network
analysis framework (FDNA) by studying the characteristics of service dependency.
Similarly, Guariniello et al. [GD13][GD14][GD17] proposed the system behavior
modeling methodologies by improving the FNDA.

Another related field is about uncertainty, as the indirect monitoring approaches
have to address the reliability issue by assessing the uncertainty of the generated
monitoring results. For example, Wang et al. [Wan+14] proposed an adapted
backward cloud generator algorithm to address the uncertainty of service quality.
Tang et al. [TT14] proposed a Bayesian based methodology to address the prediction
uncertainty of service level agreement violations in cloud. Furthermore, Huynh et al.
[HBB12] proposed a state-based policy framework to assess the monitoring quality

54

3.7 Conclusion

caused the uncertain. Moreover, Galland et al. [Gal+10] proposed the different
data value estimation algorithms to address the uncertainty. Additionally, Li et al.
[Li+14a] proposed a weighting optimization algorithm to address the uncertainty
concern by assigning different weights to data sources. As contemporary work,
Yin et al. [YT11] proposed a semi-supervised learning method to reduce the
uncertainty.

3.7 Conclusion

Indirect monitoring for cloud services is an emerging challenge introduced by the
inaccessibility of multiple cloud service parameters. However, the existing moni-
toring approaches typically are inapplicable without direct access to those service
parameters. Therefore, we propose deQAM as a dependency-based quantitative
aggregation indirect-monitoring methodology to specifically address this gap.

deQAM introduces the utility to correlate the inaccessible parameter of the
dependent cloud service with the related accessible parameters of antecedent cloud
services by using the service dependency. Furthermore, deQAM also adopts a
multi-step utility computing procedure to infer the inaccessible parameter’s value
as the indirect monitoring result. Additionally, deQAM evaluates the reliability of
the monitoring result by specifying its confidence level.

The advantages of our approach are the capability of monitoring the inacces-
sible cloud service parameters and the adaptability of working in many other
indirectly monitoring scenarios. Currently, deQAM can deal with the static indirect
monitoring case. In the future, we plan to improve deQAM for dealing with the
dynamic monitoring scenario, in which the value of relevant parameters change
over time. Overall, this thesis provides a valuable starting point for exploring
indirect monitoring in cloud.

55

4 Performing In-Depth Analysis on

Monitoring Information

In Chapter 3, we propose a novel indirect monitoring mechanism for managing
the security assurance of cloud services. The proposed mechanism outperforms a
plethora of monitoring schemas that have been proposed over the recent years with
the unique merit of working in the scenario where the key monitoring information is
not directly accessible. To conduct the indirect security monitoring in cloud systems,
a key prerequisite is to obtain a set of selected monitoring data termed “monitoring
path” that is with respect to pinpointing a particular security problem. However,
how to ascertain the monitoring path is still an open issue. In this chapter, we
propose Flashlight as a novel monitoring path identification mechanism to address
the gap where the information of monitoring targets is inaccessible. For this
purpose, we first introduce a novel data reduction technique to filter unnecessary
monitoring information in Flashlight . We also develop a data association approach
for enabling Flashlight to identify the monitoring path by utilizing data relations
and data attributes. Additionally, we present a monitoring property graph to support
fine-grain monitoring path identification and represent relevant identified paths as
well other valuable information. Finally, we evaluate the efficacy of the proposed
mechanism by conducting two case studies on realistic security threats in the
cloud. The evaluation results demonstrate that Flashlight can successfully identify
monitoring paths for underpinning indirect security monitoring on cloud services.

4.1 Introduction

Cloud monitoring is a critical mechanism to help secure cloud services, and at the
same time validating the compliance of security requirements proposed by cloud
service customers (CSCs). It utilizes collected monitoring information for ensuring
data security, managing service performance, protecting user privacy, and other ob-
jectives. Consequently, a variety of cloud monitoring schemas have been proposed
in recent years [DGY10][Bow+11][ML13][Wu+13][Den+14][Sae+14][Wan+15b]. The
proposed monitoring schemas are predominantly developed based on an assump-
tion where the monitoring information is directly accessible. In reality, only a very
few of monitoring information can be accessed by CSCs. For example, CloudWatch

57

4 Performing In-Depth Analysis on Monitoring Information

that targets monitoring applications and resources in Amazon Web Services (AWS)
only provides the CSCs with a small number of monitoring metrics, such as CPU
utilization, disk read/write behaviors, network traffic, and status check reports
[Ama17]. In many cloud services, some monitoring information is also restricted to
be accessed by the CSCs. For instance, the version information of OpenSSL library,
which is adopted by a Software-as-a-Service (SaaS) cloud service provider (CSP)
for securing network communications, is important for monitoring the Heartbleed
attack [NVD14] but cannot be directly accessed for security reasons. Unfortunately,
the proposed schemas cannot deal with this situation where particular monitoring
information is inaccessible. The situation obstructs CSCs to check the security
compliance of the subscribed cloud services.

The challenge of lacking direct access to particular monitoring information has
recently been addressed by an indirect cloud monitoring mechanism [Zha+17]. This
indirect monitoring mechanism is developed based on the observation that cloud
services typically do not function on a standalone basis but could share system
resources in some situation. Resource sharing could introduce data associations
which can be exploited by attackers [HJS01][WXW15][Zha+14]. For example, a
study [Ris+09] reports that the AES [NIS01] and RSA [RSA78] secret keys can be
stolen by exploiting the data association introduced by memory resource sharing
in virtualized environments, while such data associations can also be utilized to
monitor cloud services. The proposed monitoring mechanism particularly takes
advantage of the data association termed “monitoring path”, which is formed by a
set of accessible monitoring data and related data relations, to indirectly infer the
inaccessible monitoring information. For example, the encryption overhead of the
cloud service depends on the adopted encryption method and the size of the target
file to encrypt. By aggregating the monitoring path that is formed by the informa-
tion of the target file size, the adopted encryption method, and the dependency, the
indirect mechanism can infer the information of encryption overhead which cannot
be directly monitored. While the proposed indirect monitoring mechanism exhibits
its unique advantage of monitoring the particular information that is inaccessible
for a variety of reasons (e.g., technical difficulties, intellectual property protection
issues, or privacy concerns), the key problem of ascertaining monitoring paths to
enable the indirect cloud monitoring has not been addressed.

The monitoring path is difficult to ascertain due to several reasons. First, it
is hard to discern the valuable monitoring information that is relevant to help
identify monitoring paths. Massive monitoring data is continuously collected by

58

4.1 Introduction

cloud security monitors, while only a small portion of monitoring data is useful for
spotting potential data associations utilized as the monitoring paths for performing
indirect cloud monitoring tasks. An effective technique for filtering the irrelevant
monitoring data from the collected data is demanded. Second, there is a lack
of quantitative techniques to associate useful monitoring data for generating the
monitoring path. Given a set of monitoring data and a monitoring target, a valid
quantitative technique is required to identify the data association that underpins
the indirect monitoring on the inaccessible information of the monitoring target.
Third, there is an absence of an effective schema that can not only represent the
identified monitoring paths but also further support identifying monitoring paths
in a complex scenario. It is difficult to properly represent the identified monitoring
paths with existing representation mechanisms. Especially, the monitoring data
involved complex data relations (e.g., service dependency, time causality, or data
consistency) introduces additional challenges for identifying monitoring paths.
Without properly ascertaining monitoring paths , the efficacy of the proposed
indirect monitoring mechanism is substantially jeopardized.

In this thesis, we follow the research direction of the emerging indirect cloud
monitoring and thus propose Flashlight as a novel monitoring path identification
mechanism to address the aforementioned gap. Given a set of collected monitoring
data and the related information (i.e., data attributes and data relations), our
proposed mechanism can select useful monitoring data from the collected data
set, identify particular data associations as the monitoring paths, and represent
the identified monitoring paths together with other useful information. To this
end, Flashlight first makes use of the data attributes to obtain valuable monitoring
data by filtering a significant amount of trivial monitoring data. Next, Flashlight
takes advantage of the data relations to identify data associations (i.e., monitoring
paths) by utilizing the statistical characteristics of the collected monitoring data.
Finally, Flashlight proposes a monitoring property graph to represent the identified
monitoring paths and other complex information of the collected monitoring data
(i.e., values, attributes, relations, and associations) which underpins the fine-grain
monitoring path identification. By employing Flashlight, security professionals can
conveniently obtain monitoring paths for performing indirect cloud monitoring
rather than manually conducting a cumbersome monitoring path analysis which is
not only requiring a profound knowledge of all the collected monitoring data but
also strictly subject to the scale of the collected data set.

59

4 Performing In-Depth Analysis on Monitoring Information

To the best of our knowledge, our work is the first monitoring path identification
mechanism for facilitating indirect cloud monitoring. In summary, we make the
following contributions:

1. We introduce a novel monitoring path identification mechanism that can dis-
cern valuable monitoring data and ascertain monitoring paths for performing
indirect cloud monitoring.

2. We propose a novel monitoring property graph with the advantage of repre-
senting complex information (i.e., data value, data attributes, data relations,
data associations, and monitoring paths) in order to improve the efficacy of
the indirect cloud monitoring methodology.

3. We evaluate the efficacy of the proposed mechanism with identifying moni-
toring paths that help indirectly monitor different classes of practical security
threats in cloud.

The remainder of this chapter is organized as follows. Section 4.2 outlines
the issues behind the monitoring path identification. Section 4.3 formulates the
monitoring path identification problem. Section 4.4 details the design of the
proposed mechanism. The effectiveness of the proposition is evaluated in Section
4.5 by performing case studies on real cloud threats. Section 4.6 reviews related
work.

4.2 Background

To motivate the issues, we first present two prominently reported security threats to
highlight the significance of monitoring path identification for achieving effective
service security compliance monitoring by using the indirect cloud monitoring
mechanism. Subsequently, we analyze the reported threats to provide insights on
the monitoring data underpinning our design.

4.2.1 Existing Threats

Our work is motivated by the CSC’s pragmatic requirement of monitoring the
security compliance of cloud services. Effectively monitoring security compliance
requires in-depth understanding of the links among monitoring data collected from
cloud services whose security compliance might be violated by security threats.

60

4.2 Background

The access-driven cache attack

A typical security requirement from the CSC is about the encryption key man-
agement which targets keeping the applied encryption key in safe. However, it is
difficult to monitor the compliance of this security requirement without perceiving
the valid monitoring path. For example, an access-driven cache attack (ADCA)
aims to exploit the timing behaviors of cache accesses so as to compromise the
confidentiality of cloud services. Gullasch et al. [GBK11] present an access-driven
cache attack which enables an unprivileged spying process to recover the secret
key of a running encryption process (AES-128). To conduct such an attack, the
attacker exploits the knowledge of the cache specification, namely the cache access
status (hits/misses), CPU cycles, and AES-128 encryption protocol. It is challenging to
monitor the security compliance which might be violated by this particular attack,
if the interlinked data associations across data elements are not fully understood.

The resource-freeing attack

The CSC also puts emphasis on the business continuity management to assure
the service availability varying within the specified range. Nonetheless, it is
laborious to monitor the compliance of this security requirement without deeply
understanding the monitoring data. For instance, a resource-free attack (RFA)
targets the imperfect isolation mechanism of the virtual machine (VM) hypervisor.
The attacker introduces crafted interference on a victim VM to trigger a performance
bottleneck which leads the victim VM to free up the system resource for the
beneficiary VM. Varadarajan et al. [Var+12] present the RFA case to exploit the
hypervisor isolation policy (i.e., the fair-sharing policy) to free up the network
resource from one web service to another web service, even though both web
services should equally share the network resources. In this case, the attacker
implements the attack by exploiting the knowledge of, CPU utilization, high CPU
overhead service request, and the crafted attack process. Likewise, it is also critical
to discover the compliance violation caused by the RFA attack with effectively
understanding collective data associations.

4.2.2 Example Interpretation

These examples highlight the challenge of monitoring the security compliance of
cloud services without gaining an insight on the collective monitoring data. The
key point for addressing this challenge is to identify the “useful” associations

61

4 Performing In-Depth Analysis on Monitoring Information

across the monitoring data. A data association can be regarded as the monitoring
path, which is formed by a sequence of monitoring data and data relations, used for
monitoring the security compliance. To identify the monitoring path, two dominant
issues need to be properly considered.

First, the monitoring data collected from the cloud carries much more information
than just the data value. Considering to monitor Distributed Denial of Service
(DDoS) attacks, a lot of monitoring data is collected by security monitors. The
value of monitoring data (e.g., the amount of incoming user requests) can provide
important information for monitoring DDoS attacks. Besides, some special types of
monitoring data might have higher criticality than other collected data (e.g., the
file accessing data or the process context data) in the context of the DDoS attack
monitoring. Moreover, monitoring data might be subject to various relations such
as time causality or service dependency. Without a collective understanding of the
monitoring data, it is difficult to identify the monitoring path.

Second, an effective data association technique for identifying the monitoring
path is missing. While a large number of cloud monitoring techniques have been
proposed by researchers [Sha+10][Bow+11][Den+14][Nin+15], these techniques
target monitoring the specific individual data (e.g., parameters, values, or formats).
Given the paucity of data association mechanisms, these approaches cannot prop-
erly monitor the security compliance that may be violated by particular security
threats (e.g., ADCA or RFA) mentioned in Section 4.2.1. Determining such data
associations underlies our proposed approach.

4.2.3 Data Relation

Relations across the monitoring data is indispensable for identifying data asso-
ciations in the raw monitoring data set [Vim+14]. Data relations encompass a
wide range of aspects, such as causality, consistency, or dependency. For example,
data dependency is a common type of data relation existing among many cloud
services. Data dependency is observed between the Heartbleed attack and the
OpenSSL library which is a widely used cryptography library for encrypting the
network connection between a cloud server and its clients. Namely, if the OpenSSL
library supporting the Heartbeat mechanism has the version number of “1.0.1”
(excluding “1.0.1g”) [NVD14], the Heartbleed attack could take effect. Therefore,
the indispensable knowledge on such dependency helps identify data associations.

62

4.3 Problem Formulation

Besides, the attribute of monitoring data is also the critical knowledge that can
be used to facilitate identifying data associations. In this thesis, we consider the
collected data with two key attributes, namely reducibility and criticality.

Reducibility is used to capture the necessity of the monitoring data. For example,
when Dropbox conducts the directory scanning operation (by running the “pcscd”
daemon), this operation can produce a lot of repetitive monitoring information (i.e.,
reading/accessing operations recursively conducted in the specified path) [Xu+16].
From a monitoring perspective, the repetitive data does not convey any additional
useful information. As a result, the repetitive data can be reasonably reduced by
leveraging data reducibility.

Criticality is used to capture the significance of the monitoring data. For every
monitoring target, the collected monitoring data has different levels of importance.
As the ADCA example shows, the monitoring data of cache access status (hits/misses)
has more importance than file accessing status with respect to monitoring the security
compliance that may be violated by this particular security threats. Accordingly,
the collected data can be weighted by taking advantage of the data criticality.

4.3 Problem Formulation

On this background, we now present a formalization of the monitoring path
identification problem.

In this thesis, we consider the scenario that contains a set of monitoring data
D = {d1, d2, · · · , dk} (for some k ∈N) collected by deployed security monitors and
a set of data relations R = {R1, R2, · · · , Rl} (for some l ∈ N) existing among the
collected data. The data relation Ri is a function Ri : {D} → P(D). The output of
the function is a subset Di = {di1, di2, · · · , dij} (for some j ∈ N, 1 6 i 6 l) where
dij is collected monitoring data represented by a 3-tuple dij = (vij, rij, cij). For
monitoring data dij, vij represents its value, rij ∈ {reducible, irreducible} represents
its data reducibility, and cij ∈ [0, 1] represents its data criticality. That is to say, when
the relation Ri functions on the data set D, a corresponding subset of monitoring
data Di can be obtained.

This scenario targets the monitoring data collected by taking advantage of data
relations (e.g., causality, consistency, or dependency) and data attributes (e.g., criti-
cality and reducibility). Notably, data relations and attributes of monitoring data
can be derived by utilizing the expert knowledge or applying existing approaches
[Bia+10][ZYR14][Pap+15]. For the sake of simplicity, we assume that one collected

63

4 Performing In-Depth Analysis on Monitoring Information

monitoring data is subject to only one type of relation. As a matter of fact, even
though the collected monitoring data may be subject to multiple types of rela-
tions, it is necessary to consider one specific type of relation for monitoring the
information of a specific target.

dmn dmn+1 dm’n’dm’n’-1

intermediate data

starting data ending data

data relation data relationdata relation

Figure 4.1: An example monitoring path that is composed of starting data, a set of interme-
diate data, and ending data

With the above definitions, we define a monitoring path p as a structure that
begins from a monitoring data dmn ∈ D(m, n ∈N) via a sequence of intermediate
monitoring data and ends at another monitoring data dm′n′ ∈ D(m

′
, n
′ ∈N). For

each intermediate data of monitoring path p, it associates a predecessor with a
successor. The association between adjacent monitoring data in the monitoring path
reflects relations between the data. As depicted in Figure 4.1, the monitoring path
p is composed of starting data dmn, ending data dm′n′ , and a set of intermediate
data (e.g., dmn+1 or dm′n′−1). Two adjacent data dmn, dmn+1 are required to belong
to a common data relation: dmn, dmn+1 ∈ Ri(D) for some 1 6 i 6 l. By synthesizing
such data associations, monitoring path p bridges the accessible monitoring data
and the inaccessible monitoring target so as to enable the indirect monitoring task.

In this thesis, we propose to identify the monitoring data association by utilizing
the data attributes and the data relations. The monitoring path identification
problem is defined as follows.

- Given a relation set R,

- Given a monitoring data set D, where the collected data dij is equipped with
two data attributes : data reducibility rij and data criticality cij,

B The monitoring path identification problem is to identify a set of monitoring
paths P = {ps; s ∈N} where ps is the sth monitoring path in P .

64

4.4 Proposed Methodology

4.4 Proposed Methodology

In this section, we detail the proposed methodology. We first provide an overview
of the framework of the proposed mechanism. Based on the framework, we explain
the specific design step by step.

4.4.1 Methodology Overview

The key point of the monitoring path identification is to identify the relevant moni-
toring data associations. We take advantage of data relations and data attributes as
discussed in Section 4.2.3 to identify data associations. As a result, we propose a
multi-step monitoring path identification mechanism as depicted in Figure 4.2. The

Cloud Monitoring Data Set

Flashlight

Cloud Monitoring Data Set

Cloud Monitoring Data Set

Monitoring Data Relation

Monitoring Data Set (D)

Monitoring Data Relation

Monitoring Data Relation

3.) Monitoring Path Representation

1.) Reducible Intra-Relation Data AssociationInput Interface

Data Relation Set (R)

Monitoring Data Reduction

Data Association (Same Relation)

2.) Weighted Inter-Relation Data Association

Data Association Weight Computation

Data Association (Different Relation)

Data

Relation

Reduced Data

Identified Data Association (Single Relation)

Computed Association Weight

Identified Monitoring Path

Monitoring Property Graph Generation

Monitoring Property Graph

Figure 4.2: The framework of the proposed multi-process monitoring path identification
methodology

proposed mechanism contains three steps as follows.

65

4 Performing In-Depth Analysis on Monitoring Information

1. Reducible intra-relation data association takes a set of monitoring data D and
a set of data relations R as the input to execute the association process for
deriving the data association with the same relation.

2. Weighted inter-relation data association takes data associations derived from
different relations (Step 1) as input to associate them as a monitoring path.

3. Monitoring path representation takes the relevant information from the previ-
ous steps as the input for representing the identified monitoring paths in the
proposed monitoring property graph where the represented monitoring infor-
mation (i.e., data values, data attributes, data relations, and data associations)
facilitates monitoring path identification when the monitoring data involves
with more complex relations.

4.4.2 Methodology Design

We now detail the proposed multi-step methodology as demonstrated in the
framework that is depicted in Figure 4.2.

Reducible intra-relation data association

To identify the data associations in the monitoring data set, Flashlight first reduces
the input data set by utilizing data attributes (i.e., reducibility) and then ascertains
data associations with the identical relation therein.

In practice, the collected monitoring data set is not necessarily completely re-
quired for conducting the specific monitoring task. Considering the Dropbox
example in Section 4.2.3, we notice that even though a large amount of monitor-
ing data is collected (i.e., the repetitive low-level file system accessing data), the
meaningful monitoring information is about the scanning operation that triggered
the “pcscd" process. In other words, the repetitive low-level data does not provide
much meaningful monitoring information.

Without loss of generality, we explain the data reduction process in Figure 4.3
which consists of five nodes (monitoring data) and six edges (data associations). In
this figure, we use full circles to represent irreducible monitoring data (e.g., dii can de-
note the monitoring data of “pcscd" process), while dashed circles denote reducible
monitoring data (e.g., dii+1 is the monitoring data of the low level file system access-
ing operation occurred in hard disks). The solid edge represents the irreducible
association between a pair of the irreducible monitoring data. In contrast to the

66

4.4 Proposed Methodology

diidii-1
dii+2

dii+3

dii+1

dii-1 dii

Irreducible

Reducible

Irreducible Association Reducible Association

dii-1 : data of /bin/dd

dii : data of /bin/pcscd

dii+1 : data of /dev/sda0

dii+2 : data of /dev/tty1

dii+3 : data of /bin/mount

Raw Data Before Reduction

Necessary Data After Reduction

Figure 4.3: A data reduction example that demonstrates the feasibility of filtering irrelevant
monitoring information

solid edge, the dotted edge represents the reducible association which is introduced
by the reducible monitoring data. In this example, the “pcscd" process is executed
by calling /bin/dd command. Then, the “pcscd" process repetitively performs a
series low level of operations like mounting storage devices (/bin/mount), reading
hard disks (/dev/sda0), or accessing TTY devices (/dev/tty1). From a monitoring
perspective, monitoring information of those repetitive operations does not give
more help and thus can be properly reduced. Therefore, by removing the reducible
monitoring data, the original graph can be reduced to a simpler structure as a two-
node association between dii−1 and dii. This data reduction process is conducted by
examining the value of rij in the triple dij as defined in Section 4.3. To be specific, if
rij equals to “reducible", dij will be removed from the input data set. Otherwise, dij

will be kept in the data set.

After filtering the unnecessary data, Flashlight proceeds to an intra-relation
data association process. By running a relation-based monitoring process (e.g.,
a monitoring process collects several data in terms of the service dependency),
certain monitoring data combinations frequently appear in the collected monitoring

67

4 Performing In-Depth Analysis on Monitoring Information

data set. For example, Transport Layer Security (TLS) handshake request and
response messages frequently appear on Port 443 (i.e., the HTTPS port) during
monitoring the Heartbleed attack. Such data co-appearance indicates the existence
of an association among the monitoring data. The frequency of the co-appearance
also reflects the association degree of the data. With the above observation, the
intra-relation monitoring data association is defined as follows.

Definition 1. Let (dij−1, dij) be a pair of monitoring data subject to the same rela-

tion Ri. The monitoring data association between dij−1 and dij is denoted as A|dij−1

dij
:

dij−1
⊎

dij.

In this thesis,
⊎

is the symbol used for representing the association between two
different objects, such as two different monitoring data or two different monitoring
data associations.

Flashlight adopts two metrics (i.e., the support and the confidence) to characterize
the data association A|dij−1

dij
inspired by work [AS94] that utilizes the two metrics

to quantify statistic properties of different objects to discover existing associations
among the objects.

The support (sup) of the data association A|dij−1

dij
denotes the proportion of the

collected monitoring data sets which include both dij−1 and dij. It captures the
co-appearance rate of two monitoring data by representing with the probability of
the data co-appearance. Hence, the formula for computing support is as follows.

sup(A|dij−1

dij
) = σ(dij−1

⋂
dij) (4.1)

In Formula (4.1), σ(dij−1
⋂

dij) presents the proportion of the monitoring data
sets containing both dij−1 and dij. These data sets are collected by the monitoring
process with utilizing relation Ri.

The confidence (conf) of the data association A|dij−1

dij
denotes the ratio of dij in the

collected monitoring data sets which contain both dij−1 and dij. It captures the
conditional probability of dij’s appearance given dij−1’s appearance. Accordingly,
the formula for computing confidence is given as follows.

con f (A|dij−1

dij
) =

σ(dij−1
⋂

dij)

σ(dij−1)
(4.2)

In Formula (4.2), σ(dij−1) presents the proportion of the monitoring data sets
containing dij−1. Likewise, these data sets are collected by the relation Ri based
monitoring process.

68

4.4 Proposed Methodology

As the monitoring data appearance is regarded as a random variable, the corre-
lation between different data also needs to be considered. A common method to
quantify the random variables’ correlation is to compute the Pearson correlation
coefficient of the given variables. However, the Pearson correlation coefficient is
generally hard to compute [TKS00]. To effectively capture the correlation between
monitoring data, Flashlight introduces the ambiguity which can not only repre-
sent monitoring data correlations but also be easier to determine by applying an
optimized solution as follows.

amb(A|dij−1

dij
) =

√
p(dij−1, dij)

p(dij−1) · p(dij)
· σ(dij−1

⋂
dij) (4.3)

In Formula (4.3), σ(dij−1
⋂

dij) is sup(A|dij−1

dij
), p(dij−1) is the probability of dij−1,

and p(dij) is the probability of dij. p(dij−1, dij) is the joint probability of both data.

By applying Formulas (4.1)(4.2)(4.3), the intra-relation data associations can be
identified over data set Di and the identification results can be presented by an
association vector I(A|dij−1

dij
) = (sup(A|dij−1

dij
), con f (A|dij−1

dij
), amb(A|dij−1

dij
)).

With this data association process, Flashlight can apply it in a step-wise mode for
associating more data subject to the same relation. For example, to associate the
next monitoring data dij+1, Flashlight regards the derived data association A|dij−1

dij
as

a whole (i.e., like one “virtual data”) and applies the intra-relation data association
process to identify the association vector I(A|dij

dij+1
). The data association process

keeps executing until no more data can be associated according to the predefined
threshold or baseline.

Weighted inter-relation data association

In many scenarios, the monitoring path is a combination of multiple data asso-
ciations derived from different data sets subject to different types of relations.
Therefore, the inter-relation data association technique is proposed based on the
following idea: In Step 4.4.2, a set of data associations are derived by leveraging dif-
ferent data relations. To properly select and combine the derived data associations,
the inter-relation data association can be achieved.

To perform the inter-relation data association, we consider two different com-
ponents: the precedent and subsequent. The precedent is the data association that is
about to be combined with another data association. The subsequent is the data
association selected for the combination. The combination of both components can

69

4 Performing In-Depth Analysis on Monitoring Information

be also regarded as a random event where both precedent and subsequent appear at
the same time with respect to monitoring a specific target.

Different from the intra-relation data association where the data is subject to
the same relation, the inter-relation data association needs to select the subsequent
for the precedent. One common practice for making selections is to consider the
criticality of the selection object. As a result, we propose a weighting method for
selecting the subsequent based on considering the criticality.

As the subsequent is a data association that contains a set of monitoring data,
we propose to adopt the mean value of the data criticality in the subsequent as its
weight. Formally, the weight of the data association is defined as follows.

Definition 2. Weight W of a data association is the mean value of the data criticality
of the association which can be computed as

W(A|dih
dio
) = W(dih

⊎
· · ·

⊎
dio) =

1
o− h

j=o

∑
j=h

cij (4.4)

Where, A|dih
dio
(h 6 o; h, o ∈N) represents the data association of dih

⊎ · · ·⊎ dio and
cij is the data criticality of dij.

By comparing weight W, the data association of the maximum value W in all
the identified intra-relation associations is selected as the subsequent for a given
precedent. The association process of precedent and subsequent can be carried out
similarly to the intra-relation data association by regarding the identified associa-
tions as random variables. As a result, the identified inter-relation data association
is regarded as the identified monitoring path which contains a set of monitoring
data subject to different data relations.

Monitoring result representation

After executing the data association processes, Flashlight represents the output
of the monitoring path identification process with a graph. Moreover, the graph
needs to be able to represent complex information, such as the collected monitoring
data, the corresponding data value, the data attribute, the data relation, and the
identified data association so as to support the proposed data association process
to deal with more complex monitoring scenario. Unfortunately, common graphical
methods cannot meet these requirements.

To address this problem, Flashlight introduces the Monitoring Property Graph
inspired by [RN12]. Compared to other graphical representations, the proposed

70

4.4 Proposed Methodology

monitoring property graph is able to represent a variety of information as depicted
in Figure 4.4. The definition of the monitoring property graph is given as follows.

V5

V2

V6

V3

V4V1

Label
a

Label a

La
be

l b

Label
b

Key1 : Value1

Key3 : Value3

Key2 : Value2

Key4 : Value4

Key5 : Value5
Key6 : Value6

Label
c

Lab
el a

Figure 4.4: An example monitoring property graph with 6 vertices, 6 edges, 3 labels, and 6
key-value pairs.

Definition 3. A monitoring property graph G = (V, E, λ, µ) is an edge-attributed
multi-graph, where V is a finite set of vertices which represent the monitoring data dij.

E ⊆ (V×V) is a finite set of edges which refer to the data associationsA|dij−1

dij
. λ : E→ Σ

is a labeling function that specifies the edges E with the selected labels Σ for stating the
association vector I(A|dih

dio
), and µ : V → K × S annotates vertices with key-value pairs,

where k ∈ K (K is the key set) represents the key (e.g., name) and s ∈ S (S is the value
set) represents the value.

Figure 4.4 shows a monitoring property graph consisting of six vertices {V1, V2, V3,
V4, V5, V6} and six edges with three different kinds of labels {labela, labelb, labelc}.
Every vertex is annotated with the key-value pair (e.g., V1 is annotated with Key1

and Value1). Notably, the monitoring property graph is a multi-graph that allows
multiple edges between two vertices. For example, two edges exist between V2

and V6 while each edge has a different label (i.e., Labelb and Labelc). Therefore, the
monitoring property graph can address the challenge that monitoring data involves
multiple relations.

71

4 Performing In-Depth Analysis on Monitoring Information

The proposed monitoring property graph enhances the monitoring path identi-
fication, as it supports the data association process functioning in complex data
relation scenario with fine granularity. Namely, the data association process can be
conducted on selected monitoring information (i.e., data value, data attribute, and
data relation) of the monitoring property graph. As an example, if monitoring data
involves more than one data relation, it can be regarded as a compound of several
“virtual data” where each “virtual data” only involves one single data relation.
Therefore, the data association process can be conducted with finer granularity so
as to effectively identify more monitoring paths.

4.5 Evaluation

We evaluate the effectiveness of the proposed methodology for helping secure cloud
services by performing case studies on two different classes of security threats. The
evaluation tasks focus on addressing two critical questions as follows.

• Can Flashlight identify the monitoring path for supporting indirect cloud mon-
itoring on the known security threats while some key monitoring information
is inaccessible?

• Can Flashlight identify the monitoring path for supporting indirect monitoring
on the unknown cloud security threats with existing monitoring information?

In the following parts, we present the details of the case studies as well as the
related discussions.

4.5.1 Experimental Settings

We evaluate Flashlight’s efficacy of ascertaining monitoring paths to help monitor
real security threats by simulated experiments. To this end, we set up an Apache
web server for simulating a cloud service where the storage functionality is sup-
ported by the installed Samba server (version 4.5.9). Besides, we adopt the HTTPS
protocol to secure the communication between the web server and simulated users.
We adopt the vulnerable OpenSSL library (version 1.0.1) to implement the TLS
protocol for the HTTPS connections. To simulate the situation that only limited
amount of monitoring information is available in real cloud, we deploy a network
monitor to capture the amount of incoming TCP requests (d11), the amount of
port 443 requests (d12), the amount of HTTPS responses (d13), and the amount

72

4.5 Evaluation

Table 4.1: Case Study: An Excerpt of The Collected Monitoring Data Set for Conducting
Monitoring Path Identification
(N.B. Rq_tcp : inbound TCP requests, Rq_443 : inbound port 443 requests,Rsp_https :
outbound https responses, Login_odd : login records from odd places, Op_Root : executed
privileged operations, O_Proc. : process overhead, O_NW : network overhead)

The Information of the Collected Monitoring Data Set
ID d11 d12 d13 d21 d22 d31 d32

Name Rq_tcp Rq_443 Rsp_https Login_odd Op_Root O_Proc. O_NW
Relation R1 R1 R1 R2 R2 R3 R3

Value v11 v12 v13 v21 v22 v31 v32

Reducibility + - - - - - -
Criticality 0.30 0.53 0.41 0.87 0.98 0.79 0.76

Appearance N.A 0.83 0.62 0.34 0.27 0.25 0.18

Appearance N.A 0.45 0.22 0.17

Appearance N.A 0.20 N.A
Appearance N.A N.A 0.10

of odd-place logins (d21). Additionally, we deploy a system activity monitor to
capture the amount of privilege-required operations (d22), process overhead (d31),
and network traffic overhead (d32). Some relevant data is also required to be col-
lected by leveraging expert knowledge or statistics analysis on security databases
like CVSS1, NVD2, or exploit-DB3. In our experiments, the obtained relevant data
consists of data relations (i.e., time causality R1 and service dependency R2), data
reducibility (reducible / irreducible), data criticality, and monitoring data appear-
ance probabilities. We list the collected information in Table 4.1 which contains
three data relations, two data attributes, and four different kinds of normalized
data appearance probabilities.

4.5.2 Case Study

Case I : The Heartbleed Attack

For many cloud services, some security threats are difficult to monitor as the
particular monitoring information for characterizing the threats is inaccessible. For
example, the Heartbleed attack is a notorious security threat that can compromise
the CSC’s security requirements by exploiting the code flaw of OpenSSL cryptogra-
phy library (version 1.0.1). By sending crafted packets, attackers are able to retrieve

1http://www.cvedetails.com
2https://nvd.nist.gov
3https://www.exploit-db.com

73

4 Performing In-Depth Analysis on Monitoring Information

memory content that may contain confidential information (e.g., user passwords,
credit card numbers, or other sensitive information) from the cloud service adopt-
ing the vulnerable OpenSSL library for encrypting service communications over
port 443 [Die99]. However, the OpenSSL version information that can characterize
if the cloud service prone to the Heartbleed attack cannot be directly accessed by
the CSC, as it is restricted by the underlying CSP (i.e., a PaaS provider deploys
the OpenSSL library to offer the encryption function). To highlight Flashlight’s
virtue of ascertaining the monitoring path for indirectly monitoring security threats
without the access to the key information, we perform a case study on identifying
the monitoring path of the abstracted Heartbleed attack.

Flashlight performs the monitoring path identification process by utilizing the
collected information as follows.

Step 1. Reducible intra-relation data association: Flashlight first starts the re-
ducible intra-relation data association process over the data subject to same relation.
Table 4.1 lists three different types of relations: R1(causality), R2(dependency),
and R3(abnormality). Accordingly, three different data sets can be derived :
D1 = {d11, d12, d13}, D2 = {d21, d22}, and D3 = {d31, d32}. As the value of the
collected monitoring data dij does not affect the identification process, Table 4.1
simply denotes the real data value as vij. The listed data is used for performing
association processes.

Prior to running the association process, Flashlight filters the less valuable moni-
toring information from the raw data set. Namely, Flashlight starts with removing
the reducible data which is listed in Table 4.1. In this case, the data reduction
procedure is only applicable on D1 where d11 is marked as reducible. As a result,
the intra-relation data association can be applied on three different data pairs as
d12

⊎
d13, d21

⊎
d22 and d31

⊎
d32.

By (4.1)(4.2)(4.3), the association vector of A|d12
d13

is computed as:

sup(A|d12
d13
) = σ(d12

⋂
d13) = 0.83

con f (A|d12
d13
) =

σ(d12
⋂

d13)

σ(d12)
=

0.45
0.83

= 0.54

amb(A|d12
d13
) =

√
0.45

0.83 · 0.62
· 0.83 = 0.85

74

4.5 Evaluation

Therefore, the relation R1-based data association can be identified as I1 =

(0.83, 0.54, 0.85). Similarly, the association vector ofA|d21
d22

computes as: sup(A|d21
d22
) =

0.34, con f (A|d21
d22
) = 0.65, and amb(A|d21

d22
) = 0.90. Hence, the relation R2-based data

association can be identified as I3 = (0.34, 0.65, 0.90). Additionally, A|d31
d32

is com-

puted as: sup(A|d31
d32
) = 0.25, con f (A|d31

d32
) = 0.68, and amb(A|d31

d32
) = 0.97. Thus, the

relation R3-based association can be identified as I5 = (0.25, 0.68, 0.97).

Step 2. Weighted inter-relation data association: Based on the identified intra-
relation data associations, Flashlight proceeds to execute the weighted inter-relation
data association. As discussed in Section 4.4.2, the key point for performing inter-
relation data association is to select the proper subsequent by considering the data
association weight which is decided by the mean value of the data criticality of a
data association. As a result, the weight of association A|d12

d13
can be computed by

applying Formula (4.4) as

W(A|d12
d13
) = (c12 + c13)/2 = (0.53 + 0.41)/2 = 0.470

Similarly, the weights of association A|d21
d22

is W(A|d21
d22
) = 0.925 and W(A|d31

d32
) =

0.775 respectively. In terms of the computed weights, the selected subsequent for
the precedent A|d12

d13
is A|d21

d22
rather than A|d31

d32
, as W(A|d21

d22
) > W(A|d31

d32
). Therefore,

the vector of the inter-relation data association of A|d12
d13

⊎A|d21
d22

can be computed

as: sup(A|d12
d13

⊎A|d21
d22
) = 0.45, con f (A|d12

d13

⊎A|d21
d22
) = 0.44, and amb(A|d12

d13

⊎A|d21
d22
) =

0.95. The inter-relation (R1 and R2) data association A|d12
d13

⊎ A|d21
d22

is identified by
I2 = (0.45, 0.44, 0.95) as monitoring path p1 for monitoring Heartbleed attacks.

The obtained monitoring path p1, which consists of four monitoring data as
the Port 443 request amount (d12), the HTTPS request amount (d13), the odd-place
login amount (d21), and the privilege-required operation amount (d22), can be
interpreted as follows. By taking advantage of causality (i.e., relation R1), the
association between the HTTPS requests and the OpenSSL responses is identified
as I1 = (0.83, 0.54, 0.95) where the high sup and conf value indicates the evident
co-appearance between HTTPS requests and the corresponding responses observed
on port 443 (the well-known port for HTTPS protocol). In addition, the amb value
is 0.95 which refers to a very strong correlation between the two behaviors. By
leveraging the service dependency (i.e., relation R2), the association between the
odd-place logins and the unexpected privilege escalations is identified as I3 =

(0.34, 0.65, 0.90) that indicates a strong correlation (amb = 0.90) existing between

75

4 Performing In-Depth Analysis on Monitoring Information

the two behaviors at a noticeable rate (sup = 0.34, conf = 0.65). It implies the
privilege-required operations (e.g., service subscription alteration or user password
modification) performed by the “CSC” logged in from odd places with correct
password. Moreover, the inter-relation association of the two identified associations
is computed as I2 = (0.45, 0.44, 0.95) which reveals that a portion (sup = 0.45, conf
= 0.44) of the user requests (i.e., the port 443 activities) are very likely to result in
these privileged operations (amb=0.95).

Case II: The SambaCry Attack.

In practice, many undisclosed threats that can stealthily undermine the security
compliance of cloud services are hard to be monitored as no knowledge about
the threats is available. For instance, the SambaCry attack is a recently exposed
security threat that can violate the cloud service’s security compliance [NVD17].
The attack exploits the vulnerability of Samba services (version 3.5.x ∼ 4.6.4) that
is widely deployed in cloud for offering file and printing services. By uploading a
crafted library encapsulated with malicious codes to a writable shared folder, an
attacker can remotely subvert the cloud systems and perform arbitrary operations
(e.g., privilege escalations). Nevertheless, it is hard to monitor such a threat in
cloud due to a lack of the specific attack details. To demonstrate Flashlight’s merit
of identifying the monitoring path for helping to monitor unknown security threats
with existing monitoring information, we conduct a case study on identifying
the monitoring path regarding the abstracted SambaCry attack that simulates an
unknown cloud security threat.

To support indirectly monitoring the threat, Flashlight identifies the monitoring
path with the collected information as follows.

Step 1. Reducible intra-relation data association: With the obtained association
information (i.e., I1, I3, and I5) derived in the previous case study, Flashlight does not
need to rerun the intra-relation association process and thus can directly proceed
to carry out the inter-relation data association.

Step 2. Weighted inter-relation data association: Flashlight performs weighted
inter-relation data association by considering A|d31

d32
as the precedent, as a strong

data correlation between the process overhead (d31) and the network traffic (d32) is
indicated by a high amb(A|d31

d32
) value (0.97) in the computed I5.

76

4.5 Evaluation

By comparing the identified intra-relation association weights, Flashlight selects
A|d21

d22
as the subsequent for the A|d31

d32
based on the inequality of W(A|d21

d22
) = 0.925 >

W(A|d12
d13
) = 0.470. Therefore, the weighted inter-relation data association vector

for A|d21
d22

⊎A|d31
d32

is computed as: sup(A|d21
d22

⊎A|d31
d32
) = 0.22, con f (A|d21

d22

⊎A|d31
d32
) =

0.45, and amb(A|d21
d22

⊎A|d31
d32
) = 0.77. Thus, the inter-relation (R2 and R3) data

association A|d21
d22

⊎A|d31
d32

is identified as I4 = (0.22, 0.45, 0.77) which is regarded as
the monitoring path p2 for supporting indirectly monitoring the SambaCry attack.

The identified monitoring path p2, which contains monitoring data as the odd-
place login amount (d21), the privilege-required operation amount (d22), the process
overhead (d31), and the network traffic (d32), can also be explained as follows. By
examining the abnormality (i.e., relation R3), the association between the high
overhead of a particular process and the high network traffic is identified as
I5 = (0.25, 0.68, 0.97) where the high amb value 0.97 refers to a very strong corre-
lation between them at an unnoticeable rate (sup=0.25, conf =0.68). As aforemen-
tioned, the association between the odd-place logins and the privilege-required
escalation is identified by leveraging the service dependency (i.e., relation R2) as
I3 = (0.34, 0.65, 0.90) that reveals the privilege-required operations caused by the
users log in from odd places. The inter-relation association between the two data
associations is identified as I4 = (0.22, 0.45, 0.77) which indicates the abnormal
high traffic closely correlating with the odd-place login user’s behavior (amb=0.77)
of initiating the particular brute-force attack process secretly (sup=0.22, conf =0.65).
Specifically, the attack is stealthily mounted by subverting the Samba service with
uploading a crafted library file of attack codes to the user’s writable shared folders.

Monitoring path representation

Flashlight introduces a novel schema termed monitoring property graph for repre-
senting the identified monitoring paths p1 and p2 together with related monitoring
information over the given monitoring data set in Figure 4.5. With the monitoring
property graph, related monitoring information can be comprehensively charac-
terized in a quantitative way. Every collected monitoring data is represented by
a vertex annotated with a key-value pair where the key is the data ID and the
value is a vector representing the data value and data attributes (reducibility and
criticality). For example, the monitoring data of an HTTPS response message is
denoted by a key-value pair as d11 : (v11, reducible, 0.30), where d11 is the key and
(v11, reducible, 0.30) is the value key representing the data value (v11), the data
attributes (reducibility = reducible and criticality = 0.30). Noticeably, the data

77

4 Performing In-Depth Analysis on Monitoring Information

d21

d
11

: TCP Requests

d
12

: Port 443 Requests

d
13

: HTTPS Responses

d
21

: Odd-place Logins

d
22

: Privilege Operations

d
31

: Process Overhead

d
32

: Network Traffic

d
11

: (v
11

, reducible, 0.30)

d
12

: (v
12

, irreducible, 0.53)

d
13

: (v
13

, irreducible, 0.41)

d
22

: (v
22

, irreducible, 0.98)

d
31

: (v
31

, irreducible, 0.79)

d
32

: (v
32

, irreducible, 0.76)

d
21

: (v
21

, irreducible, 0.87)

 I
1
=(0.83, 0.54, 0.85)

I 2
=(0.45, 0.44, 0.95)

 I
3=(0.34, 0.65, 0.90)

 I
4
=(0.22, 0.45, 0.77) I

5
=(0.25, 0.68, 0.97)

I

: Association Vector

d32d31
d22

d12
d13 d11

p2

p1 p1

p1 p2
p2

p
1

: Heartbleed monitoring path
p

2
: SambaCry monitoring path

Figure 4.5: The generated monitoring property graph regarding monitoring two stealthy
cloud security attacks

reduction is shown as a dotted line representing the reducible data d11 and its asso-
ciation with d12 in Figure 4.5. Besides, every data association is represented by an
edge annotated with an association vector. For instance, data association between
d12 and d13 (i.e., A|d12

d13
) is denoted by an edge annotated by the identified association

vector I1 = (0.83, 0.54, 0.85) where each value respectively represents the value
of support (sup), confidence (conf), and ambiguity (amb). Moreover, the identified
monitoring paths can also be represented in this graph, namely monitoring path
p1 : A|d12

d13

⊎A|d21
d22

(highlighted with blue color) and p2 : A|d21
d22

⊎A|d31
d32

(highlighted
with red color). Both monitoring paths contain four different monitoring data.

Discussions The case studies demonstrate Flashlight’s advantages of identifying
monitoring paths in different situations. The details of running the indirect cloud
monitoring approach with the identified monitoring paths (p1 and p2) follow the
descriptions in [Zha+17] and are not further detailed here. Besides, Flashlight also
has several characteristics which are worth mentioning as follows.

78

4.5 Evaluation

Flashlight takes advantage of the basic knowledge (i.e., data relations and data
attributes) to identify monitoring paths which are challenging to be achieved by
pure manual analysis. As security experts require to have very in-depth knowledge
for performing the manual analysis [NCR02], it is very likely for the experts to
overlook some important monitoring paths without sufficient expertise.

While machine learning approaches (like principal components analysis) can also
be used for identifying data associations, the learning process is not only incurring
tremendous computational overhead but also subject to the scale of the monitoring
data set. As the scale/complexity increment of cloud systems, its applicability is
substantially exacerbated. By contrast, Flashlight adopts a statistical-based approach
for identifying monitoring paths to circumvent the aforementioned challenges. In
fact, Flashlight supports executing the intra-relation association processes in a
parallel mode which is particularly suitable for applying in cloud scenarios.

Besides, Flashlight can even support fine-grain monitoring path identifications
by leveraging the monitoring property graph. Specifically, when monitoring data
involves multiple data relations, the multi-graph property of monitoring property
graph enables to replace the vertex representing that multi-relation data with
several virtual vertices where each virtual vertex represents the monitoring data
involving one single data relation. Then, the monitoring path identification process
can be performed as usual.

Overall, Flashlight is proposed for working in a static scenario where all moni-
toring data stays unchanged during the path identification process. However, it
can be adapted for managing the dynamic scenario as the static scenario can be
regarded as a snapshot of the monitoring status in a dynamic cloud system at a
specific time instance. The compiled set of such snapshots (at predefined intervals)
can help capture transitional behaviors.

Threats to validity While Flashlight can theoretically manage to identify moni-
toring paths at any length, proper thresholds on the support/confidence/ambiguity
should be predefined for obtaining meaningful monitoring paths. As the increment
of the path length, the co-appearance rate of monitoring data keeps dropping down.
Without the appropriate threshold settings, the performance of Flashlight might
be undermined as it costs excessive overhead to identify an unnecessary overlong
monitoring path.

79

4 Performing In-Depth Analysis on Monitoring Information

4.6 Related Work

Monitoring path identification for securing cloud services is a novel topic with
little specific coverage and with existing related work focused on general cloud
monitoring and the generic path discovery.

The existing cloud monitoring approaches developed by taking advantage of
different factors (e.g., data relations, timing characteristics, or topology properties)
are applicable only when the monitoring parameter/data is directly accessible. For
example, Deng et al. [Den+14] proposed an access policy-based security tracing
framework called LACT to monitor leaked access credentials with respect to cloud
storage services. However, this framework requires all the relevant monitoring data
to be accessible. Du et al. [DGY10] proposed the ROSIA framework to monitor
malicious service providers within a multi-tenant cloud system by examining the
consistency of data flow. Nevertheless, ROSIA requires the whole data flow to
be accessible. A large number of monitoring methodologies (e.g., RAFT[Bow+11],
MaaS[ML13]), PhisEye[HKB16] are proposed for monitoring different aspects of
cloud services (e.g., service elasticity, transient violations, or data robustness), while
these methodologies become invalid when losing the direct access to the related
monitoring data. Many other monitoring methodologies (e.g., [Wu+13], [Sae+14],
[Agr+07]) are developed by adopting a distributed model to monitor cloud services
by running a series of local cloud monitoring tasks. Unfortunately, the proposed
methodologies also require direct access to all needed monitoring information.

Even though not directly related to the topic, we found some research works
which might be helpful for addressing the monitoring path identification question.
A small number of approaches are proposed for dealing with the path discovery
task on an ad-hoc basis. For instance, CloRExPa [DLS14] is proposed to trace the
malicious data modifications inside cloud systems by making use of the proposed
virtual machine state/action graph. In a cloud scenario, it is challenging to construct
the state/action graphs when necessary information is unavailable. Ravindranath
et al. [Rav+12] proposed a discovery technique to capture the path of the mobile
user transaction by examining the time latency. Yet, this technique is developed
for mobile systems rather than cloud systems. Several discovery approaches (e.g.,
[NCR02], [DY14], [Liu+14]) are proposed by analyzing relevant statistical properties
for locating obfuscated sequences, searching demanded content, or reconstructing
attack scenarios, respectively. While, these approaches are inapplicable for the
cloud scenario where the analysis process takes a lot of effort. Besides, some
discovery techniques are developed by adopting taint-based methods. Naderi et

80

4.7 Conclusion

al. [Nad+15] proposed a hybrid taint-based approach to discover SQL injections,
while Yamaguchi et al. [Yam+15] proposed a taint-based approach to discover
the patterns of unknown vulnerabilities. However, it is hard to perform the taint
process on the monitoring data collected by security monitors from a monitoring
path identification perspective. Various inference-based discovery methodologies
are also proposed. Olivo et al. [ODL15] proposed an inference methodology to
infer a new type of Denial of Service (DoS) attacks by using particular database
attributes. Unfortunately, the methodology is unsuitable for working in a complex
cloud scenario, as it is hard to obtain all the required information. Additionally,
Yadwadkar et al. [YAK14] proposed an approach to infer victim cloud tasks by
using support vector machine to study system features, but the approach incurs
expensive system overhead for performing the machine learning process and the
feature selection process.

4.7 Conclusion

Indirect cloud monitoring is an emerging and promising security approach to
effectively monitor cloud services where particular monitoring information is in-
accessible. To indirectly monitor cloud services, the prerequisite is to perform
monitoring path identification which is a novel topic and still in an incipient stage
in the research community. In this thesis, Flashlight is proposed as a systematic ap-
proach for addressing the monitoring path identification problem by synthetically
leveraging the complex relations and attributes of collected monitoring data. By per-
forming the case studies on real security threats, Flashlight demonstrates its efficacy
of identifying monitoring paths for security professionals indirectly monitoring
cloud services without directly accessing to particular monitoring information.

The advantages of our proposed approach are the capability of managing differ-
ent types of data relations and the possibility to deal with various path identification
scenarios. In the future, we plan to automate Flashlight’s monitoring path identifi-
cation process. Overall, this thesis offers a good starting point for investigating the
monitoring path identification question for securing cloud services.

81

5 Optimizing Data Reliability for

Sound Monitoring Performance

In Chapter 4, we propose a monitoring path identification mechanism to ascertain
proper input information to enable performing indirect security monitoring on
cloud services. In practice, the monitoring information that is collected by various
cloud monitors and used by the indirect monitoring mechanism is often susceptible
to varied reliability issues (e.g., monitor malfunctions, data corruptions, or data tam-
pering). Nowadays, cloud services have become powerful enablers for a variety of
smart computing solutions supporting multimedia, social networking, e-commerce
and critical infrastructures among others. Consequently, as we increasingly depend
on the cloud, the need exists to ensure its effective role as a trustworthy services
platform. Towards this objective, cloud monitoring mechanisms cannot simply as-
sume that the collected information is completely reliable and correct. Hence, how
to obtain reliable information for implementing cloud monitoring is still an open
issue. In this chapter, we propose Whetstone as a novel approach to address the gap
where an efficient approach for ascertaining reliable values from monitoring data
sets is required. Specifically, we introduce a statistical approach to filter defective
data from the collected data set. Besides, we develop an optimization approach
to quantify the reliability of the collected data by leveraging the value deviation
of the collected data. Finally, we propose a weighted aggregation approach to
generate the reliable value based on the obtained information. We evaluate the
proposed approach with different experimental configurations. The experiment
results demonstrate the efficacy of our approach for successfully generating the
maximum likelihood reliable information for improving the overall reliability of
the indirect cloud monitoring mechanism.

5.1 Introduction

Cloud services, by virtue of providing transparent access to back-end distributed
resources, are increasingly underpinning a variety of smart computing projects. For
example, a large-scale Internet of Things (IoT) network may utilize cloud services
to process the massive data collected by the attached IoT devices which lack the

83

5 Optimizing Data Reliability for Sound Monitoring Performance

requisite computational resources to locally process the data [KLS14]. Similarly, a
smart community may desire an intelligent carpooling service to reduce carbon
dioxide (CO2) emissions for protecting the environment. To this end, the carpooling
service takes advantage of a cloud service to compute optimized taxi dispatching
plans [Zha+16a]. Moreover, a smart grid achieves to offer sustainable and economic
electricity distribution by utilizing cloud services to manage the communication of
heterogeneous information [Bae+15]. As the cloud enabled applications proliferate,
the increasingly dependency on the cloud also portends the need to ensure the
cloud as a dependable services platform.

In this context, the monitoring of the cloud operations (for functionality, re-
source optimization and especially the detection of anomalous behaviors) forms an
essential basis for securing cloud services. As a result, a large number of monitor-
ing mechanisms have recently been proposed [DGY10][Bow+11][Wu+13][Mol+13]
[Den+14] [Zha+17]. However, virtually all existing monitoring schemas assume
that the information collected by security monitors is reliably correct. However, this
assumption can be fallacious for a variety of reasons, e.g., security monitor mal-
functions, unpredictable data/network corruptions, or malicious data tampering
[Li+14b]. For instance, security monitors deployed for collecting monitored data
might encounter the problem of transient malfunctions or failures. As a result, the
collected data is unreliable or even completely flawed. Additionally, the monitored
data might be corrupted during recording/transmission phases by unpredictable
factors such as communication channel congestion or noise. Moreover, the mon-
itored data might be intentionally tampered by attackers for bypassing security
mechanisms or for fabricating necessary preconditions for performing subsequent
attacks [Ger+15]. Therefore, to ensure that existing monitoring mechanisms gen-
erate correct cloud services monitoring results, the key point is to ascertain the
reliability of the collected data.

In order to improve data reliability, existing methodologies target obtaining
reliable data value in two steps [KOS11][RY12]. The first step is to measure the
value of a given target multiple times. The second step is to collate the multiple
recorded values to generate a reference representative value. The commonly
adopted aggregation technique is termed Majority Voting that procures reliable
values by taking advantage of a voting process [Li+16]. Specifically, the value
with more votes (i.e., occurrence frequency) contributes more to the final procured
value in the aggregation process. The value generated by using this technique
is the reference “reliable" value with respect to the monitored target. Naturally,

84

5.1 Introduction

the value occurrence directly affects the reliability of the generated mean value.
However, a major drawback of this technique is in overlooking the important fact
that the reliability of the collected values is distinctive [Yu+14]. Supposing that an
unreliable value (e.g., erroneous data) occurs in the collected value set for many
times, the occurrence-based technique fails to generate reliable value. In other
words, this technique is only applicable when every collected value has the same
level of reliability. Therefore, an approach that is able to generate reliable values in
the presence of raw values with differing reliability degrees is needed.

To address this gap, we propose a novel methodology termed Whetstone for
obtaining the reliable monitoring information from the collected data set in this
thesis. To this end, we first adopt a data cleansing approach to filter the unreliable
data by making use of statistical properties of the monitored data. Then, we propose
a data reliability quantification approach by leveraging the relationship of data
reliability and value deviation. Finally, we develop a novel weighted aggregation
approach to generate reliable values based on the reliability of collected values.

To the best of our knowledge, our approach is the first work proposed for
deriving reliable data to support monitoring cloud services. In summary, we make
the following contributions:

1. We propose Whetstone as a novel methodology to generate reliable monitoring
values from collected data by considering the reliability degree of collected
data individually.

2. We propose a quantification approach for ascertaining the reliability of the
monitored data based on an optimization model and theoretically prove the
correctness of the determined reliability results.

3. Our experimental results demonstrate the effectiveness of the proposed ap-
proach to generate the reliable value via a tunable optimization coefficient.

The remainder of this chapter is organized as follows. Section 5.2 describes
the considerations of obtaining reliable value from collected data. Section 5.3
models the reliable value generation problem. Section 5.4 details the design of our
proposed approach. Section 5.5 evaluates the effectiveness of our proposition with
experiments and makes discussions. Section 5.6 reviews the related work.

85

5 Optimizing Data Reliability for Sound Monitoring Performance

5.2 Background

We first review the challenges of developing an effective methodology to obtain
reliable monitoring values. Next, we present the main observations that underpin
the development of our proposed methodology.

5.2.1 Challenges

Monitored data collected by security monitors contains a variety of useful infor-
mation (e.g., abnormal workload variation, unusual service customer logins, or
occasional virtual machine exceptions) for monitoring cloud services. With reliable
monitoring data, cloud monitoring mechanisms are expected to generate correct
monitoring results. In reality, the monitored data suffers from various reliability
problems, such as failures of security hardware (e.g., monitoring devices), errors
of data flows (e.g., communication channels), or manipulations of data sources
(e.g., system log tampering). To address these problems, a common solution is
to repeatedly measure the value of a given target and aggregate the values for
deriving a reliable value. As mentioned in the introduction, a widely adopted
aggregation technique is developed based on the majority voting principle of the
value receiving more votes also more important for the aggregation [Li+16]. In
practice, the occurrence of the collected value is generally utilized as the vote and
the mean of collected values is generally regarded as the reliable value derived by
this technique. The major problem of the technique is that every collected value is
considered as uniformly reliable in the aggregation process. However, erroneous
values and normal values have completely different significance from a reliability
perspective. As a result, it is questionable to simply aggregate the collected values
for the reliable value generation by merely considering the value occurrence.

The reliability of monitoring data is the value that represents the degree of the
collected data free from errors during a monitoring process. From a reliability
perspective, the distance from the collected values to the true value varies. As
depicted in Figure 5.1, the collected values of a monitored data (denoted by green
square / red parallelogram / diamond / triangle) are all deviated from the real
value (denoted by blue point) to some extent. If the collected values have tiny
deviation (e.g., locating inside the small radius (r1) dashed circle), the aggregated
value (denoted by magenta point v1) is closer to the real value. While the collected
values have greater deviation (e.g., locating inside the greater radius (r2) dashed
circle), the aggregated value (denoted by magenta point v2) is less closer to the

86

5.2 Background

real value. These two cases highlight that the reliability of the generated value
is directly affected by the reliability of the collected data. As a result, two main
problems need to be solved for deriving a reliable value from the collected data.

Derived value (v1 , v2)

Collected value (normal data)

Collected value (corrupted data)

r1
r2

Collected value (tampered data)

Collected value (erroneous data)

r1 Value deviation threshold

r2 Value deviation threshold

True value

v1

v2

Figure 5.1: A reliability view of the data value collected by cloud monitors

The first problem is that the collected data might contain defective values which
involve various reliability issues as aforementioned. Hence, a data cleansing
approach that supports filtering defective data from the raw data set is needed for
obtaining a cleansed data set. Even with the cleansed data, another challenge is
to develop a proper aggregation approach that can utilize the cleansed data for
generating reliable values.

5.2.2 Observations

Two issues are frequently observed in cloud monitoring activities which also
constitute the basis for the proposed methodology.

The first observation is that the population of the monitored data value approxi-
mately follows a Gaussian distribution given that the number of collected values is
sufficiently large [Guo+06]. This high volume data collection is typical for cloud
security monitors and thus the relevance of Gaussian distributions. According to
the statistical property of Gaussian distribution, if a value is significantly deviated
from the mean value (i.e., the true value), it has a high likelihood to be defective.

87

5 Optimizing Data Reliability for Sound Monitoring Performance

The second observation is that there is an inverse relationship between the data
reliability and the value deviation regarding a monitored data [Li+14b]. Namely,
the value of reliable monitored data is closer to the true value while the value of
unreliable monitored data is distant from the real value. As an example, system
event logs contain valuable information for securing cloud services. In normal
situation, security auditors/experts can utilize the reliable information extracted
from the event logs (e.g., the log of failed login events) to discover potential
attack behaviors. However, if the log has been tampered by attackers, the critical
information indicating brute-force password attacks against customer accounts can
be deliberately removed. Thus, the tampered data contains the information that is
quite deviated from the real situation reflected by the reliable data.

These observations highlight the typical characteristics of the monitored data. In
the next section, we introduce the proposed approach for generating the reliable
value of the monitored data by taking advantage of these observations.

5.3 Problem Statement

We now present the problem model of generating the reliable values of monitored
data, and outline the relevant notations and terminologies adopted in the thesis.

5.3.1 Problem Model

In this thesis, we particularly consider the problem of generating reliable value of
monitored data for performing security monitoring on cloud services. Structurally,
we describe the problem with an input-output problem model as follows:

• Input
To obtain a reliable value with respect to a monitored target T in a cloud
service, a set of monitored data DT = {dT

1 , dT
2 , · · · , dT

m} (m ∈N) is collected
by a deployed security monitor for m times. The collected data dT

m denotes
the mth measured value of target T. The size of the collected data set DT is m.

• Output
Based on the obtained data set DT, the output is data d̂T that represents
the reliable value of target T by properly aggregating all collected data
dT

1 , dT
2 , · · · , dT

m.

88

5.4 Proposed Methodology: Whetstone

5.3.2 Solution Approach

To obtain the reliable value of monitored data d̂T, our methodology needs to:

• Obtain a set of cleansed data D
′T by precluding defective data (e.g., corrupted

data, erroneous data, or tampered data) from the raw data set DT.

• Measure the cleansed data’s value deviation for taking advantage of the
inverse relationship between the value deviation and the data reliability.

• Determine the reliability degree of every cleansed data in D
′T as a weight for

generating d̂T.

• Aggregate the cleansed data and its corresponding weights to generate the
reliable value d̂T.

5.4 Proposed Methodology: Whetstone

We first present an overview on the Whetstone’s framework before detailing the
design of the proposed methodology.

5.4.1 System Overview

To obtain reliable monitored data, we propose a multi-step methodology termed
Whetstone. Prior to discussing the design details, we present the framework of
Whetstone in Figure 5.2. The framework of our proposed methodology consists of
four major steps summarized as follows.

1. Cleanse defective data: The proposed methodology starts by conducting a
statistical preprocessing process (i.e., Grubbs’ test) to filter defective data
from the raw monitored data set in order to obtain a cleansed data set as the
foundation for supporting subsequent procedures (Section 5.4.2).

2. Measure data deviation: The methodology measures the cleansed data so as to
obtain the value deviation from a reference base (Section 5.4.2).

3. Quantify data reliability: The methodology introduces an optimization ap-
proach to quantify the reliability of every cleansed data by taking advantage
of the obtained deviations (Section 5.4.2).

89

5 Optimizing Data Reliability for Sound Monitoring Performance

Security
Monitor

Reliable
Value

Monitoring
 Target T

Quantify Data
Reliability

Aggregate Reliable
Data

Cleanse Defective
Data

Measure Data
Deviation

Collected Monitoring Data DT ={dT
1, d

T
2, …, dT

m}

Cleansed Data
D’T ={d’T1, d’T2, …, d’Tm’ }

Measured Deviation of D’T
{dM

1, d
M

2, …, dM
m’ }

Determined Weights D’T
{w1, w2, …, wm’ }

Whetstone
Figure 5.2: The framework of the proposed methodology with four different data processing

phases

4. Aggregate reliable data: Whetstone finally aggregates the obtained information
(i.e., the cleansed data and its reliability) to generate a reliable value with
respect to a specific monitored target (Section 5.4.2).

5.4.2 Design Methodology

In this part, we explain the design of the proposed methodology that enables us to
generate a reliable value from the collected data regarding a monitored target.

Cleanse defective data

To obtain a reliable value, Whetstone first requires to cleanse all collected value so
as to obtain a cleansed set for aggregating a reliable value. Considering collected
values follows a Gaussian distribution [Guo+06], we propose to cleanse the collected

90

5.4 Proposed Methodology: Whetstone

values by utilizing the Grubbs’ test which is a statistical method for identifying
far-deviated data in a data set complying with the Gaussian distribution [Gru69].

For a set of collected data, the defective data denotes the most deviated data
(i.e., either the greatest or the smallest one) in the m-element data population DT.
Hence, Whetstone first proposes two hypotheses of the data state as follows.

• H0 : There is no defective data in the collected data set DT.

• Ha : There is exactly one defective data in the collected data set DT.

To test the above hypotheses, Whetstone applies the following two-sided Grubbs’
test formula [Gru69].

G =

max
i=1,2,··· ,m

∣∣∣dT
i − d̄T

∣∣∣
s

=

max
i=1,2,··· ,m

∣∣∣dT
i − d̄T

∣∣∣√
∑m

i=1(dT
i −d̄T)

2

m−1

(5.1)

where i ∈ {1, 2, · · · , m}, G denotes the value of the Grubbs’ test, d̄T represents the
mean value of all collected data in DT, and s is the standard deviation of DT.

After determining the value of G by Formula (5.1), Whetstone can test the hypoth-
esis as follows. Specifically, H0 is rejected at the significance level α if

G >
m− 1√

m

√
(tα/(2m),m−2)

2

m− 2 + (tα/(2m),m−2)2 (5.2)

In (5.2), tα/(2m),m−2) represents the t-distribution with m− 2 degrees of freedom
at the α/(2m) significance level. We set the value of α to 0.05 in the thesis.

Whetstone executes Grubbs’ testing processes in an iterative manner until H0 is no
longer rejected at the specified confidence level α by Formula (5.2). In consequence,
the data that results in the rejections of H0 in the testing process will be removed
from the raw data set. We denote the cleansed data set by D

′T = {d′T1 , d
′T
2 , · · · , d

′T
m′
}

(m
′
6 m; m, m

′ ∈ N) which is a subset of the raw data set DT (i.e., D
′T ⊆ DT).

Accordingly, the size of the cleansed set D
′T is m

′
and the number of removed data

is m−m
′
.

Measure data deviation

After obtaining the cleansed data set D
′T, Whetstone proceeds to quantify the data

reliability. As discussed in Section 5.2.2, high reliability data demonstrates the

91

5 Optimizing Data Reliability for Sound Monitoring Performance

small deviation from the true value, while low reliability data demonstrates the
high deviation from the true value. Therefore, the inverse relationship between
data reliability and value deviation can be utilized as an effective leverage for
ascertaining data reliability. Whetstone takes advantage of the inverse relationship
to quantify the reliability of cleansed data in D

′T.

To this end, Whetstone needs to tackle a major problem of obtaining the value
deviation, as it is challenging to make use of the inverse relationship for data
reliability quantification without knowing the deviation value.

The prerequisite for obtaining a value deviation is to have a reference base that is,
in theory, the true value with respect to a monitored target. Ideally, the deviation
can be measured by applying distance formulas (e.g., Euclidean distance) with the
known reference base. However, the ideal reference base is impossible to acquire
due to the fact that the true value is unknown in practice. To deal with this problem,
it is necessary to introduce an estimated value which functions as the reference
base for value deviation measurement. Considering that the cleansed data in D

′T

is distributed around the true value, the mean value of D
′T is thus meaningful in

estimating the true value. Hence, we introduce an approximated reference base ¯d′T

for measuring value deviations as follows.

¯d′T =
∑m

′

j=1 d
′T
j

m′ (5.3)

where j ∈ {1, 2, · · · , m
′}, ¯d′T denotes the approximated reference base, and d

′T
j

denotes the data in set D
′T.

Based on Equation (5.3), the deviation of the monitored data can be measured by
computing the distance between d

′T
j and ¯d′T as follows.

dM
j = |d′Tj − ¯d′T| (5.4)

where dM
j denotes the measured value deviation between the monitored data d

′T
j

and the base ¯d′T.

Quantify data reliability

Besides the deviation obtained by using Equation (5.4), Whetstone also needs a
proper method to leverage the inverse relationship for quantifying the reliability
of collected data in D

′T. To facilitate the data reliability quantification, Whetstone

92

5.4 Proposed Methodology: Whetstone

introduces the weight w for representing the data reliability. The definition of
weight is presented as follows.

Definition 1. Weight wj ∈ [0,+∞] is a positive value that is used to proportionally
represent the reliability of collected data d

′T
j (for some j = 1, 2, · · · , m

′
).

Noticeably, if the weight is close to the lower bound w = 0, it means that the data
does not contain much valid monitoring information (i.e., the defective data). If the
weight is close to the upper bound w = +∞, it means that the data is absolutely
reliable (i.e., the true value).

With the help of weights, the data reliability quantification problem now can be
addressed by solving an optimization problem based on the inverse relationship.
Specifically, the optimization problem targets finding a particular weight assign-
ment of the cleansed data so as to yield the minimum sum of the product of data
weights and data deviations. For this purpose, a data with great given deviation
needs to be assigned with the most possible small weight. The correctness of such
an weight assignment is supported by Theorem 1 as follows.

Theorem 1. For a finite set of data pairs (dM
j , wj) where dM

j is constant and wj is
bounded (for some j ∈ {1, 2, · · · , m

′}), the minimum sum of dM
j · wj can only be

achieved on condition that a great wj is paired with the most possible small dM
j .

Proof. Let the deviation set D be sorted as dM
1 < · · · < dM

p < · · · < dM
q < · · · < dM

j

and the weight set W also be sorted as w1 < · · · < wp < · · · < wq < · · · < wj

(1 < p < q < j), the minimum value M is M = dM
1 wj + · · ·+ dM

p wj+1−p + · · ·+
dM

q wj+1−q + · · ·+ dM
j w1.

Supposing there exists a value M
′
= dM

1 wj + · · ·+ dM
p wj+1−q + · · ·+ dM

q wj+1−p +

· · ·+ dM
j w1 smaller than M, then it gives the following inequality as

M−M
′
= (dM

p − dM
q)(wj+1−p − wj+1−q) > 0

∵ dM
p < dM

q and wj+1−p > wj+1−q

∴ (dM
p − dM

q)(wj+1−p − wj+1−q) = M−M
′
< 0

It contradicts to the given inequality. Therefore, there is no other value smaller
than M = dM

1 wj + · · ·+ dM
p wj+1−p + · · ·+ dM

q wj+1−q + · · ·+ dM
j w1.

�

Based on the above consideration, Whetstone proposes the following optimization
problem for determining the data reliability.

93

5 Optimizing Data Reliability for Sound Monitoring Performance

Definition 2. Given a set of measured value deviations D = {dM
1 , dM

2 , · · · , dM
m′
}

and a set of weights w = {w1, w2, · · · , wm′ },

minimize
w

f (w, d) =
m
′

∑
j=1

wjdM
j

s.t. f0(w) =
m
′

∑
j=1

α−wj = C

(5.5)

where α > 1 and C ∈ R+ is a positive coefficient. The optimization problem
consists of two proposed functions. Namely, f (w, d) is the proposed objective
function that can be optimized by finding the particular weight assignment specified
in Theorem 1. f0(w) is the constraint function that ensures the optimization of
f (w, d) is feasible. Given weight w is a variable varying within the range [0,+∞],
we introduce an adjustable coefficient C as the bound of the sum of α−wj for making
the optimization process valid.

To make the objective function optimizable, we introduce a new variable β j to
represent α−wj . As a result, weight wj can be represented by,

wj = −log
β j
α (5.6)

To determine the optimal value, the Lagrange function of the proposed optimiza-
tion problem thus can be represented based on Equation (5.5)(5.6) as

L(β j, λ) =
m
′

∑
j=1

(−log
β j
α · dM

j) + λ(
m
′

∑
j=1

β j − C) (5.7)

Given that the sum of the equality constraint function is subject to coefficient C,
we can compute the Lagrange multiplier λ of the Lagrange function (5.7) on the
condition that the partiality derivative of β j is zero.

λ =
1
C

m
′

∑
j=1

dM
j (5.8)

Based on Equation (5.5)−(5.8), we determine the value of weight wj as follows.

wj = − logα

C · dM
j

∑m′
j=1 dM

j

(5.9)

94

5.5 Evaluation

Aggregate reliable data

With the quantified data reliability, Whetstone is able to aggregate the cleansed data
with respect to a monitored target. According to the problem model described in
Section 5.3.1, the aggregated data can be denoted by d̂T. To get rid of the potential
reliability bias, Whetstone proposes a weight-based approach to generate d̂T. In
specific, Whetstone determines d̂T by aggregating all the data in cleansed set D

′T

based on the respective reliability degree derived by Equation (5.9) as follows.

d̂T =
∑m

′

j=1 wjd
′T
j

∑m′
j=1 wj

(5.10)

In Equation (5.10), the aggregated data dT considers the reliability contribution
of every collected data d

′T
j in an uneven manner. Overall, the reliability of d̂T

is dominated by the high-weight data that has the high possibility to be more
approaching to the true value.

5.5 Evaluation

In this section, we evaluate the efficacy of the proposed methodology for generating
reliable data that underpins cloud monitoring. The evaluation is conducted in two
steps: 1.) We assess the effectiveness of Whetstone to generate the primitive result
by cleansing defective monitoring data, 2.) We investigate Whetstone’s performance
towards generating the reliable value by tuning up the value of the optimization
coefficient. We first describe the settings of the evaluation. Then, we provide a
discussion and interpretations of the experimental results.

5.5.1 Experimental Setting

To evaluate the performance of the proposed methodology, we perform the evalua-
tion in the scenario where a set of collected data values is aggregated to generate
a reliable monitoring value. The collected data follows the unknown Gaussian
distribution whose mean is the true value with respect to a monitored target. The
collected data set may partially contain defective data caused by varied reasons.

To simulate the above scenario, we adopt the following experimental settings
for evaluating the proposed methodology. Specifically, we randomly generate

95

5 Optimizing Data Reliability for Sound Monitoring Performance

a set positive values for simulating the values of system overhead collected by
security monitors from a target virtual machine which is used for running cloud
services. The generated data set follows the Gaussian distribution where the
standard deviation is set to σ = 1 and the mean value is set to µ = 80 which is
used as the unknown true value for benchmarking Whetstone’s performance. To
simulate the defective data, we manipulate a percentage of data in the data set by
adding random offsets while keeping the rest data unchanged. Thus, we create
four defective data profiles which respectively contain 5%, 10%, 15%, and 20%
manipulated data.

5.5.2 Evaluation on Primitive Results

We first examine the primitive result generated by Whetstone in data cleanse process.
In order to check Whetstone’s capability of generating more reliable values than
the existing majority voting method, we carry out four rounds of experiments
on the test data set with different numbers of simulated defective data. In each
experiment, we first record the mean value of the data set where the simulated
data is distant from the mean value of the Gaussian distribution µ. Such mean
value is value generated by applying the majority voting method. Next, we execute
the proposed methodology to cleanse the defective data and collect the primitive
result which is the mean value of the cleansed data set.

Figure 5.3 depicts the primitive results that are obtained from the experiments. In
this figure, we present the results of different test sets with different colors. Namely,
the test set with 5% defective data is in blue, the test set with 10% defective data
is in red, the test set with 15% defective data is in orange, and the test set with
20% defective data is in green. From the figure, we observe that Whetstone can
successfully filter most defective data. Compared to the mean value of the raw
data set, the mean value of the cleansed set becomes closer to the benchmarking
line at µ = 80 for every defective data profile. As an example of the test set with
20% defective data (shown in green bar), its mean value gets improved from 78.682
to 79.916 by carrying out the cleansed process. It is worth noticing that Whetstone
successfully filters 15% defective data which is distant from the benchmarking line
in the experiment. The other 5% defective data is overlooked by Whetstone as it is
not greatly deviated from the benchmarking line even with adding the manipulated
offsets. In the rest three experiments, we also observe the similar situation that the
defective data is overlooked only when the value deviation of the defective data is
quite tiny. It is worth mentioning that the primitive result obtained by Whetstone

96

5.5 Evaluation

Figure 5.3: The primitive results derived by cleansing the defective data in the raw data set

outperforms the result derived by the existing work that simply aggregate all data
for generating the mean of the raw data set.

5.5.3 Evaluation on Final Result

After cleansing defective data, Whetstone still needs to deal with the remaining data
to generate a final reliable value. The remaining data (including the overlooked
defective data) is deviated from the true value to different extents. To investigate
the performance of the proposed methodology for generating the reliable value,
we perform a series of experiments on the four cleansed test sets by tuning up the
coefficient C with different values.

Table 5.1 presents the evaluation results collected from these experiments. In this
table, the first column represents the amount of defective data contained in the test
set that is used for evaluating the proposed methodology. The rest of the columns
record the results by adopting different values of the coefficient C. For each value
of C, the generated reliable value (denoted by V_O in the table) is recorded. Apart

97

5 Optimizing Data Reliability for Sound Monitoring Performance

Table 5.1: The final results generated by tuning up the coefficient with different values
(N.B. %

CdS : the percentage of defective data in the cleansed data set, V_O : Optimized
Value, S_W : the symbol of the quantified weight, C : tunable coefficient)

Coefficient Setting (C)
%

CdS
C=2 C=5 C=10 C=50 C=100

V_O S_W V_O S_W V_O S_W V_O S_W V_O S_W
5% 79.987 + 79.989 + 79.992 + 80.014 - 80.080 -
10% 80.002 + 80.005 + 80.008 + 80.030 - 80.106 -
15% 79.975 + 79.978 + 79.982 + 80.015 - 80.167 -
20% 79.931 + 79.935 + 79.940 + 79.983 - 80.213 -

from that, the symbol of the quantified weight (denoted by S_W in the table) is also
recorded in order to check the correctness of the determined weight.

From the experimental results in Table 5.1, we observe that the reliable value
generated by Whetstone keeps approaching towards the true value before crossing
the critical point that denotes the alteration of the weight’s symbol from positive
(+) to negative (−). After crossing the critical point, the generated reliable value
keeps increasing with assigning greater values to C. For example, we tune up
the value of coefficient C to obtain the reliable value for the test set with 20%
defective data by using five respective values as C = {2, 5, 10, 50, 100}. Specifically,
Whetstone generates a reliable value V_O = 79.931 when C = 2. The generated
value 79.931 is closer to the true value 80 than the mean value directly obtained by
the cleansed data set which still contains 5% defective data as mentioned in Section
5.5.2. Tuning up C with greater values, The reliable value generated by Whetstone
at the 95% confidence level also keeps increasing (e.g., V_O = 79.935 when C = 5
and V_O = 79.940 when C = 10). Apart from that, it is worth noticing the alteration
of the weight’s symbols. We can observe that the symbol of weight is positive when
C = {2, 5, 10} while the symbol changes to negative when C = {50, 100}. As a
result, we can regard the critical point located in the range (10, 50). The alteration
of weight’s symbol indicates the validity of the generated value. Considering the
weight is used to represent the reliability degree of collected data, the weight has to
be a positive value as for its practical significance. If the symbol of weight becomes
negative, it indicates that the generated reliable value is invalid.

5.5.4 Discussions

From the collected experimental results, Whetstone successfully demonstrates its
capability of generating reliable values for supporting cloud monitoring. For

98

5.6 Related Work

instance, Whetstone is able to derive a more reliable value than the mean value of
the data set where the reliability of collected the data is difficult to known. In
addition, it can manage to generate reliable values, even if the data set might
contain defective data. Besides, Whetstone also possesses several advantages which
are worth mentioning as follows.

Whetstone can generate reliable monitored data values without assuming all
collected data with equal reliability. Since it is impractical to assume the reliability
of collected data without a careful investigation. From a reliability perspective, it is
questionable for adopting the mean value as reliable value of the collected data.
Whetstone addresses this challenge by quantifying the reliability of collected data
based on its value deviation.

Whetstone introduces a data cleanse process for further improving the reliability
of generated results. By cleansing the defective data from raw data sets, the
remaining data is less-deviated from the true value and thus provides a better
foundation for quantifying the reliability of collected data (w) with higher precision.

Whetstone supports generating the reliable value from a set of collected monitored
data in an automatic way. By keeping tuning up the value of coefficient C, the
generated result keeps approaching towards the true value. Once the tuning up
process yields any negative weight, the automatic process can be terminated and
take the latest result as the most likely reliable value before the symbol alteration.

Whetstone is proposed for generating the reliable monitoring value based on a
static data set in the thesis, while it can be adapted to manage the dynamic data
flow generated by deployed security monitors in cloud systems. As a dynamic
data set can be considered as the compilation of many static data set snapshots
sequentially ordered by a temporal order.

5.6 Related Work

The survey work first reveals that the validity of existing monitoring mechanisms
commonly suffer from the issue of collected data [Ses+04][Yin+07][DGY10][Bow+11]
[Mol+13][Wu+13][Den+14][MZX16][Zha+17][GES17]. For example, Seshaderi et
al., [Ses+04] proposed a hash-based security technique to monitor remote device
state by utilizing the memory information that is assumed to be collected from a
noise-free scenario. Practically, it is challenging for security monitors to collect data
under the influence of the random noise. Ma et al., [MZX16] proposed ProTracer

99

5 Optimizing Data Reliability for Sound Monitoring Performance

as a monitoring approach to address advanced persistent threat (APT) attacks by
making use of the logs of system calls and relate events. While the logs are likely
to be tampered by malicious attackers in many cases, the tampered log information
leads ProTracer to generate incorrect monitoring results. Furthermore, [Yin+07]
et al., proposed a flow-analyzing security method for monitoring malwares. The
proposed method is developed to function with the default prerequisite that the
information captured from data flows is fully reliable. In reality, it is hard to meet
such a requirement without an effective mechanism for checking the reliability of
captured data. Moreover, Gulmezoglu et al., [GES17] proposed a machine learning
based methodology to monitor cloud applications in terms of cache-accessing pat-
terns. Without reliable cache information, it is hard to extract the feature vector that
dominates the correctness of monitoring results generated by this methodology.

To the best of our knowledge, few work particularly targets ascertaining reliable
monitoring value for achieving reliable cloud monitoring. We observe the work
that is relevant to the topic of discovering reliable data for different purposes. For
instance, Mahdisoltani et al., [MSS17] proposed a technique to predict reliable data
for improving the reliability of storage systems by utilizing training data which
requires a lot of effort to prepare. The proposed approach does not require any
extra preparation and can directly work with collected data. Additionally, Zheng
et al., [Zhe+15] proposed a data reliability improvement technique for assigning
task packages in an optimized manner. To elevate data reliability, this technique
carries out an iterative updating process that causes significant computational
overhead. Likewise, Li et al, [Li+14b] proposed a method to improve data source
reliability by adopting a continuous updating process. Compared to both work,
the approach does not need to execute iterations and thus can reduce the computa-
tional overhead. Furthermore, Fan et al., [Fan+15] proposed a statistical technique
to improve data reliability by leveraging the similarity between different topics.
Unfortunately, the value of similarity is hard to obtain due to the reason that the
constraints of the statistical model are sometimes too difficult to meet. By contrast,
the approach does not need to meet strict constraints for applying it. Moreover, Li
et al., [Li+15] proposed an optimization method to improve data reliability while it
is hard to derive the suitable values of the optimization parameters without expert
knowledge. However, the approach supports generating reliable value by using the
suitable optimization parameter.

100

5.7 Conclusion

5.7 Conclusion

Acquiring a reliable value of monitoring data is the key factor that affects the
correctness of monitoring results generated by cloud monitoring mechanisms. For
performing rigorous cloud monitoring, the methodology to obtain the reliable
value of the collected data is still a challenge. Therefore, we propose Whetstone as a
novel multi-step approach to address this gap.

To obtain the reliable monitoring value of monitored data, Whetstone starts
with cleansing the defective data in collected data set by taking advantage of
the significant deviation between the value of defective data and the true value.
Afterwards, Whetstone quantifies the reliability of the cleansed data by leveraging
the relationship of the monitored data reliability inversely proportional to its value
deviation from the true value. Finally, Whetstone successfully generates the reliable
value of the collected data by aggregating the cleansed data with its reliability in a
weighted manner.

The merits of the proposed approach are the capability of generating reliable
value of the collected data and supporting to ascertain the reliable value by tuning
up the value of the constraint coefficient. In the future, we plan to adapt Whetstone
to manage categorical type cloud monitoring data. Overall, the thesis offers a novel
angle for obtaining reliable values of monitored data to support cloud monitoring.

101

6 Summary and Conclusion

Cloud computing is a ubiquitously adopted computing paradigm to facilitate
provisioning various online services to both business and individual users for
meeting the different user requirements. Underpinning by the novel computing
technology, a plethora of cloud systems are developed to simultaneously deliver
different services to multiple CSCs with many attractive advantages such as optimal
resource utilization, high service efficiency, rigorous virtualized isolation, or elastic
service adaptation. Because of the appealing advantages, cloud services have deeply
integrated into people’s daily lives and inevitably imposed profound influence on
the modern world. As the proliferation of cloud services, an important concern
that is about the service security assurance has arisen. To address the security
concern, effective cloud monitoring mechanisms are required for protecting the
running services from realistic security threats. The monitoring mechanisms need
to accurately identify security problems (e.g., obvious attack behaviors, suspicious
exploitation traces, or vulnerable system configurations) by taking advantage of the
information collected by cloud monitors. Hence, how to properly make use of the
collected information plays a critical role for achieving sound cloud monitoring.

A large number of monitoring mechanisms have been proposed to improve the
security assurance of cloud services. The approaches are commonly making use of
the collected information for fulfilling monitoring tasks. A major drawback of the
proposed mechanisms is that the key information used by these mechanisms is often
difficult, if not impossible, to be collected in a real cloud system. In consequence,
the mechanisms are unable to effectively monitor cloud security problems due to
missing the access to the key information. A promising solution to address the
problem is to draw inferences from available information (i.e., collected monitoring
information and existing data relations) to achieve indirectly security monitoring
on target services. For the indirect security mechanism, monitoring results that are
generated by an inference process suffer from the reliability problem. However,
due to the increasing complexity of cloud systems, it is hard to develop an effective
indirect security mechanism that can generate reliable monitoring results.

This thesis investigated the topic of achieving indirect security monitoring on
cloud services from four points of view: First, from a security practice perspective
with the goal of revealing the challenge to directly collect valuable information with

103

6 Summary and Conclusion

respect to monitor subtle security threats in the cloud. Second, from a monitoring
perspective with the goal to explore if and how the collected monitoring information
and the existing data relation (i.e., data dependencies) can be leveraged to infer the
key information that is hard to be collected by security monitors in the real cloud.
Third, from a feasibility perspective with the goal to study how can the input
information that is required for executing the indirect monitoring be identified in
raw monitoring data sets. And fourth, from a reliability perspective with the goal
to assess how the information that involves indirectly monitoring on target services
can be improved for generating reliable results. In summary, the thesis investigated
the following research questions along with the corresponding contributions.

Research Question 1 (RQ1): How difficult is it to effectively secure cloud services
against contemporary security threats with existing monitoring solutions?

Existing security solutions that are originally proposed for monitoring traditional
threats are widely adopted for securing cloud services. Unfortunately, cloud threats
are different than the traditional threats without incurring evident traces. In other
words, the subtly crafted cloud threats demand considerable effort together with
extensive expertise to monitor them. Existing solutions cannot fulfill monitoring
tasks without the support of useful monitoring information regarding evident
attack traces. As a result, they cannot manage the evolving threats in the cloud.

Contribution 1 (C 1): Revealing the characteristics of the recent cloud threat and propos-
ing a novel security mechanism for addressing the threat

In Chapter 2, we perform an in-depth analysis on the cloud threats that are subtly
crated by security attackers for stealthily compromising target services. We carry
out a thorough investigation on the hidden security threat (i.e., application layer
distributed denial of service (AL-DDoS) attack) and manage to profile the threat
characteristics by analyzing the submitted service request pattern. Based on the
attack characteristics, we propose a security approach by introducing a challenge-
response mechanism to effectively address the threat. We implement the proposed
approach on a large scale testing platform with different attack scenarios. In the
end, the evaluation results demonstrate the efficacy of our proposed approach for
achieving satisfactory security performance in a cloud scenario.

Research Question 2 (RQ 2): What is the impediment to achieve service monitoring for
improving the security assurance of cloud services when key information is inaccessible?

Modern cloud systems are subject to a variety of practical technical difficulties
and legal constraints for accessing to some internal information that is critical
for performing security monitoring tasks. Due to the lack of the access to the

104

information, the running security mechanisms cannot correctly monitor relevant
cloud threats. Based on the fact that monitoring information is often holding data
dependencies with other information, a promising workaround can be developed
for achieving indirect cloud monitoring. However, the topic of making use of the
existing dependencies to monitor inaccessible information in cloud systems has
rarely been systematically discussed.

Contribution 2 (C 2): A reliable schema for implementing indirect cloud service monitor-
ing by taking advantage of service dependencies In Chapter 3, we discuss the feasibility
of inferring inaccessible information by leveraging the involving data dependency
as well as quantifying the reliability of the results generated by the inference process.
We present deQAM (dependency-based Quantitative Aggregation Methodology)
as a novel methodology for inferring the information value with the parameterized
dependencies. Besides, we propose a bi-directional quantification model for map-
ping the quantitative relationship between existing dependency and the inaccessible
information. We also propose a reliability assessment approach for specifying the
uncertainty of the inferred results. Finally, We perform a case study to evaluate the
viability of our proposition in a cloud scenario.

Research Question 3 (RQ 3): Why is indispensable to ascertain the information that
exerts an influence on the inaccessible information for enabling indirect cloud monitoring?

Some information that is used as the input by monitoring mechanisms is im-
portant for effectively securing the running services in cloud systems. In some
situations, selecting correct input information for monitoring security threats is
apparent (e.g., selecting network throughput as the input for monitoring flood-
ing attacks), while it is obscure to ascertain the valuable input information for
monitoring on subtle security attacks that do not generate evident monitoring
data. However, cloud security attacks inevitably impose either explicit or implicit
influence on some correlated information that is collected by security monitors.
Unfortunately, to ascertain the information with important security significance is
a complex and indispensable task for performing effective indirect monitoring on
the hidden cloud threats.

Contribution 3 (C 3): A monitoring path identification mechanism for ascertaining the
key input information for supporting indirect security monitoring on cloud services

In Chapter 4, we investigate the potential to taking advantage of existing data
relation like data dependencies for harvesting the relevant monitoring data sets
termed “monitoring paths” that are useful for achieving indirect security monitor-
ing on target services. We introduce a novel data reduction approach for removing

105

6 Summary and Conclusion

irrelevant monitoring data regarding the threat analysis process. We present a data
ascertaining mechanism for identifying the monitoring data sets as “monitoring
paths” to pinpoint secret cloud threats by leveraging both the data relations and
the attributes of the monitoring data. We propose a novel monitoring property
graph for conveniently underpinning fine-grain monitoring path identification in a
large scale scenario. Finally, we conduct two case studies of realistic cloud threats.
The evaluation results demonstrate the efficiency of our approaches for harvesting
monitoring paths to facilitate indirect security monitoring on cloud threats.

Research Question 4 (RQ 4): How to improve the reliability of indirect cloud monitoring
performance that can be seriously undermined by some practical factors?

To implement security monitoring on cloud services, the reliability of monitoring
information plays a dominating role on the overall reliability of the generated
monitoring results, particularly for the results of indirect monitoring mechanisms.
In practice, the information collected by cloud security monitors often suffer from
many unexpected problems such as hardware malfunction, software exception,
or data tampering. The realistic problem arises the serious reliability concern on
the monitoring results generated by security monitoring mechanisms. A possible
solution to address the reliability problem is to improve the reliable degree of the
monitoring information used by the monitoring mechanism. However, improving
the reliability of the collected monitoring information for underpinning effective
cloud monitoring has not been seriously discussed before.

Contribution 4 (C 4): A weighted optimization-based approach to achieve reliable mon-
itoring information for improving cloud monitoring performance

In Chapter 5, we discuss the possibility of improving the reliability of raw
information that is collected by cloud monitors and later used by the proposed
indirect monitoring mechanism. We present an efficient data cleansing method
for filtering the erroneous data that is far-deviated from the ground truth in raw
data set based on the analysis of relevant statistical properties. We also propose a
quantitative optimization approach by taking advantage of the inverse relationship
between data reliability and data deviation. We develop a weight-based aggregation
approach to determine the high reliable monitoring information used by security
monitoring mechanisms. At last, we implement the evaluation with different
experimental configurations in a simulated testing environment. The evaluation
results demonstrate the effectiveness of our approach by improving the overall
reliability of the derived monitoring information.

106

With the proliferation of cloud services, it is of utmost importance for protecting
the services against varied security threats with effective monitoring mechanisms.
To that end, plenty of security mechanisms have been proposed over the past years
for managing service security assurance. The monitoring mechanisms need to
function effectively with the continuously evolving attack techniques as well as the
increasing complexity of cloud systems. We have considered the realistic challenge
of collecting monitoring information, the possibility of implementing indirect cloud
monitoring, the feasibility of ascertaining valuable input monitoring information,
the reliability of the generated monitoring results, and consequently developed
effective approaches to achieve each concern. Such approaches provide the guaran-
tee to the viability of applying dependency-based indirect security techniques to
the distributed large scale modern cloud systems, thereby contributing to reliable
cloud security monitoring.

107

List of Figures

1.1 An overview of cloud system that consists of the service model, the
deployment model, and the advantage model 7

1.2 An example program automaton for highlighting the influence of
data dependency . 9

2.1 The comparison of high system workload scenarios: normal case vs
application layer DDoS attack case . 21

2.2 Processing times for different dynamic contents requests in an online
service [Ran+06] . 22

2.3 An overview of the system framework that consists of the service
interactions between a cloud system and remote CSCs 24

2.4 Internal design and process diagram of moderator with respect to a
complete challenge-response process 26

2.5 A user session-based random service request sampling diagram . . 27

2.6 An example challenge-response message pair regarding a given
challenge size (CZ) . 28

2.7 System overhead graph with four different sampling rates (SR):
SR = 0, SR = 33%, SR = 66%, SR = 80% 31

3.1 The provisioning hierarchy of an example secure storage service in
the cloud . 40

3.2 The main framework of the proposed indirect monitoring methodol-
ogy (deQAM) . 42

3.3 An example service dependency graph where the dependency are
parameterized as a three-parameter vector 45

4.1 An example monitoring path that is composed of starting data, a set
of intermediate data, and ending data 64

4.2 The framework of the proposed multi-process monitoring path iden-
tification methodology . 65

4.3 A data reduction example that demonstrates the feasibility of filtering
irrelevant monitoring information . 67

4.4 An example monitoring property graph with 6 vertices, 6 edges, 3
labels, and 6 key-value pairs. 71

109

List of Figures

4.5 The generated monitoring property graph regarding monitoring two
stealthy cloud security attacks . 78

5.1 A reliability view of the data value collected by cloud monitors . . . 87

5.2 The framework of the proposed methodology with four different
data processing phases . 90

5.3 The primitive results derived by cleansing the defective data in the
raw data set . 97

110

List of Tables

2.1 Experimental Results Assessment Table
(N.B. the evaluation value of the sample rate (SR) is respectively
assigned as 0, 33%, 66%, and 80%. Meanwhile, the mean system
load, blocking rate, and false negative rate are reported.) 33

2.2 A comparison table for characterizing existing application layer
DDoS attack mitigation schemes from different perspectives 36

3.1 Case study: information collected for performing indirect parameter
monitoring
(N.B. five different services are considered in the evaluation, while
the monitoring information and dependency are parameterized.) . . 51

4.1 Case Study: An Excerpt of The Collected Monitoring Data Set for
Conducting Monitoring Path Identification
(N.B. Rq_tcp : inbound TCP requests, Rq_443 : inbound port 443

requests,Rsp_https : outbound https responses, Login_odd : login
records from odd places, Op_Root : executed privileged operations,
O_Proc. : process overhead, O_NW : network overhead) 73

5.1 The final results generated by tuning up the coefficient with different
values
(N.B. %

CdS : the percentage of defective data in the cleansed data set,
V_O : Optimized Value, S_W : the symbol of the quantified weight, C
: tunable coefficient) . 98

111

Bibliography

[Aba+05] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. “Mod-
erately hard, memory-bound functions”. In: ACM Transactions on In-
ternet Technology 5.2 (2005), pp. 299–327.

[Agr+07] Shipra Agrawal, Supratim Deb, KVM Naidu, and Rajeev Rastogi.
“Efficient detection of distributed constraint violations”. In: 2007 IEEE
23rd International Conference on Data Engineering. IEEE. 2007, pp. 1320–
1324.

[Aka15] Akamai Technologies. Akamai state of the internet security report. https:
//www.akamai.com/us/en/multimedia/documents/report/q4-

2015- state- of- the- internet- security- report.pdf. [Online].
2015.

[Alb+17] Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, and
Neeraj Suri. “C’mon: Monitoring the compliance of cloud services to
contracted properties”. In: Proceedings of the 12th International Confer-
ence on Availability, Reliability and Security. ACM. 2017, p. 36.

[Ama15] Amazon Inc. CloudWatch. https://aws.amazon.com/cloudwatch/
details/?nc2=h_ls. [Online]. 2015.

[Ama17] Amazon. List the Available CloudWatch Metrics for Your Instances. http:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_

metrics_with_cloudwatch.html. [Online]. 2017.

[Ama19] Amazon. Amazon Web Services. https://aws.amazon.com. [Online].
2019.

[App14] Apple. Apple Media Advisory. https://www.apple.com/newsroom/
2014/09/02Apple-Media-Advisory/. [Online]. 2014.

[Arm+15] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. “Above the Clouds: A View of Cloud Com-
puting”. In: Berkeley Reliable Adaptive Distributed systems Laboratory
(RADLab) (2015).

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. “Fast algorithms for min-
ing association rules”. In: Proceedings of 20th International Conference
on Very Large Data Bases. Vol. 1215. 1994, pp. 487–499.

113

https://www.akamai.com/us/en/multimedia/documents/report/q4-2015-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/report/q4-2015-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/report/q4-2015-state-of-the-internet-security-report.pdf
https://aws.amazon.com/cloudwatch/details/?nc2=h_ls
https://aws.amazon.com/cloudwatch/details/?nc2=h_ls
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html
https://aws.amazon.com
https://www.apple.com/newsroom/2014/09/02Apple-Media-Advisory/
https://www.apple.com/newsroom/2014/09/02Apple-Media-Advisory/

Bibliography

[Atl19] Atlassian. Bitbucket Data Center. https : / / www . atlassian . com /
software/bitbucket/enterprise/data-center. [Online]. 2019.

[Bae+15] Joonsang Baek, Quang Hieu Vu, Joseph K Liu, Xinyi Huang, and
Yang Xiang. “A secure cloud computing based framework for big
data information management of smart grid”. In: IEEE Transactions on
Cloud Computing 3.2 (2015), pp. 233–244.

[Bia+10] Giuseppe Bianchi, Elisa Boschi, Simone Teofili, and Brian Trammell.
“Measurement data reduction through variation rate metering”. In:
Proceedings of the IEEE INFOCOM 2010. IEEE. 2010, pp. 1–9.

[Bow+11] Kevin D Bowers, Marten Van Dijk, Ari Juels, Alina Oprea, and Ronald
L Rivest. “How to tell if your cloud files are vulnerable to drive
crashes”. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security. ACM. 2011, pp. 501–514.

[Col18] Louis Columbus. Roundup Of Cloud Computing Forecasts And Market
Estimates, 2018. https://www.forbes.com/sites/louiscolumbus/
2018 / 09 / 23 / roundup - of - cloud - computing - forecasts - and -

market-estimates-2018/. [Online]. 2018.

[Den+14] Hua Deng, Qianhong Wu, Bo Qin, Jian Mao, Xiao Liu, Lei Zhang, and
Wenchang Shi. “Who is touching my cloud”. In: European Symposium
on Research in Computer Security. Springer. 2014, pp. 362–379.

[DGY10] Juan Du, Xiaohui Gu, and Ting Yu. “On verifying stateful dataflow
processing services in large-scale cloud systems”. In: Proceedings of the
17th ACM Conference on Computer and Communications Security. ACM.
2010, pp. 672–674.

[Die99] Dierks T and Allen C. The TLS Protocol, Version 1.0. https://www.
ietf.org/rfc/rfc2246.txt. [Online]. 1999.

[DLS14] Roberto Di Pietro, Flavio Lombardi, and Matteo Signorini. “CloRExPa:
Cloud resilience via execution path analysis”. In: Future Generation
Computer Systems 32 (2014), pp. 168–179.

[DM00] Laurent DeLaurentis and Dimitri Mavris. “Uncertainty modeling and
management in multidisciplinary analysis and synthesis”. In: 38th
Aerospace Sciences Meeting and Exhibit. AIAA. 2000, p. 422.

[Dro19] Dropbox. Choose the right Dropbox for you and your business. https:
//www.dropbox.com/plans?trigger=nr. [Online]. 2019.

114

https://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc2246.txt
https://www.dropbox.com/plans?trigger=nr
https://www.dropbox.com/plans?trigger=nr

Bibliography

[DY14] Haitao Du and Shanchieh Jay Yang. “Probabilistic inference for obfus-
cated network attack sequences”. In: 2014 44th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks. IEEE. 2014,
pp. 57–67.

[EB12] Steven D Eppinger and Tyson R Browning. Design structure matrix
methods and applications. MIT press, 2012.

[Fan+15] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng.
“icrowd: An adaptive crowdsourcing framework”. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data.
ACM. 2015, pp. 1015–1030.

[FH15] Florian Fittkau and Wilhelm Hasselbring. “Elastic application-level
monitoring for large software landscapes in the cloud”. In: European
Conference on Service-Oriented and Cloud Computing. Springer. 2015,
pp. 80–94.

[Fox+09] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica.
“Above the clouds: A berkeley view of cloud computing”. In: Dept.
Electrical Eng. and Comput. Sciences, University of California, Berkeley,
Rep. UCB/EECS 28.13 (2009), p. 2009.

[Fra+03] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan,
Deb Moll, Rob Rockell, Ted Seely, and Christophe Diot. “Packet-level
traffic measurements from the Sprint IP backbone”. In: IEEE Network
17.6 (2003), pp. 6–16.

[Gal+10] Alban Galland, Serge Abiteboul, Amélie Marian, and Pierre Senellart.
“Corroborating information from disagreeing views”. In: Proceedings of
the third ACM International Conference on Web Search and Data Mining.
ACM. 2010, pp. 131–140.

[Gar19] Gartner. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5
Percent in 2019. https://www.gartner.com/en/newsroom/press-
releases/2019-04-02-gartner-forecasts-worldwide-public-

cloud-revenue-to-g. [Online]. 2019.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache games–
Bringing access-based cache attacks on AES to practice”. In: 2011 IEEE
Symposium on Security and Privacy. IEEE. 2011, pp. 490–505.

115

https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g

Bibliography

[GD13] Cesare Guariniello and Daniel DeLaurentis. “Dependency analysis
of system-of-systems operational and development networks”. In:
Procedia Computer Science 16 (2013), pp. 265–274.

[GD14] Cesare Guariniello and Daniel DeLaurentis. “Communications, in-
formation, and cyber security in systems-of-systems: Assessing the
impact of attacks through interdependency analysis”. In: Procedia
Computer Science 28 (2014), pp. 720–727.

[GD17] Cesare Guariniello and Daniel DeLaurentis. “Supporting design via
the system operational dependency analysis methodology”. In: Re-
search in Engineering Design 28.1 (2017), pp. 53–69.

[Ger+15] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan
Capkun. “Tampering with the delivery of blocks and transactions
in bitcoin”. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2015, pp. 692–705.

[GES17] Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. “Cache-based
application detection in the cloud using machine learning”. In: Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Commu-
nications Security. ACM. 2017, pp. 288–300.

[Git19] GitHub. Plans for every developer. https://github.com/pricing{#}
feature-comparison. [Online]. 2019.

[Gle11] Glenn Butcher. Atlassian subject to Denial Of Service attack. http://
blogs.atlassian.com/2011/06/atlassian_subject_to_denial_

of_service_attack. [Online]. 2011.

[Goo19] Google. Google Cloud Services. https://cloud.google.com. [Online].
2019.

[GP09] Paul R Garvey and C Ariel Pinto. “Introduction to functional depen-
dency network analysis”. In: The Second International Symposium on
Engineering Systems. Vol. 5. MIT World. 2009.

[GPS14] Paul R Garvey, C Ariel Pinto, and Joost Reyes Santos. “Modelling
and measuring the operability of interdependent systems and systems
of systems: advances in methods and applications”. In: International
Journal of System of Systems Engineering 5.1 (2014), pp. 1–24.

[Gru69] Frank E Grubbs. “Procedures for detecting outlying observations in
samples”. In: Technometrics 11.1 (1969), pp. 1–21.

116

https://github.com/pricing{#}feature-comparison
https://github.com/pricing{#}feature-comparison
http://blogs.atlassian.com/2011/06/atlassian_subject_to_denial_of_service_attack
http://blogs.atlassian.com/2011/06/atlassian_subject_to_denial_of_service_attack
http://blogs.atlassian.com/2011/06/atlassian_subject_to_denial_of_service_attack
https://cloud.google.com

Bibliography

[Guo+06] Zhen Guo, Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. “Tracking
probabilistic correlation of monitoring data for fault detection in
complex systems”. In: The 36th IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE. 2006, pp. 259–268.

[HBB12] Khac Tuan Huynh, Anne Barros, and Christophe Bérenguer. “Mainte-
nance decision-making for systems operating under indirect condition
monitoring: value of online information and impact of measurement
uncertainty”. In: IEEE Transactions on Reliability 61.2 (2012), pp. 410–
425.

[HJS01] Martin Hiller, Arshad Jhumka, and Neeraj Suri. “An approach for
analysing the propagation of data errors in software”. In: 2001 In-
ternational Conference on Dependable Systems and Networks. IEEE. 2001,
pp. 161–170.

[HKB16] Xiao Han, Nizar Kheir, and Davide Balzarotti. “Phisheye: Live mon-
itoring of sandboxed phishing kits”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM.
2016, pp. 1402–1413.

[How+88] John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols,
Mahadev Satyanarayanan, Robert N Sidebotham, and Michael J West.
“Scale and performance in a distributed file system”. In: ACM Trans-
actions on Computer Systems 6.1 (1988), pp. 51–81.

[IBM19] IBM. WebSphere Application Platform. https://www.ibm.com/cloud/
websphere-application-platform. [Online]. 2019.

[JC16] Nancy Jain and Sakshi Choudhary. “Overview of virtualization in
cloud computing”. In: 2016 Symposium on Colossal Data Analysis and
Networking. IEEE. 2016, pp. 1–4.

[Kha+12] Sanjeev Khanna, Santosh S Venkatesh, Omid Fatemieh, Fariba Khan,
and Carl A Gunter. “Adaptive selective verification: An efficient adap-
tive countermeasure to thwart dos attacks”. In: IEEE/ACM Transactions
on Networking 20.3 (2012), pp. 715–728.

[KLS14] Matthias Kovatsch, Martin Lanter, and Zach Shelby. “Californium:
Scalable cloud services for the internet of things with coap”. In: 2014
International Conference on the Internet of Things. IEEE. 2014, pp. 1–6.

117

https://www.ibm.com/cloud/websphere-application-platform
https://www.ibm.com/cloud/websphere-application-platform

Bibliography

[KN11] Soon Hin Khor and Akihiro Nakao. “DaaS: DDoS mitigation-as-a-
service”. In: 2011 IEEE/IPSJ International Symposium on Applications
and the Internet. IEEE. 2011, pp. 160–171.

[KOS11] David R Karger, Sewoong Oh, and Devavrat Shah. “Iterative learning
for reliable crowdsourcing systems”. In: The 24th Annual Conference on
Advances in Neural Information Processing Systems. 2011, pp. 1953–1961.

[Koz11] Heiko Koziolek. “Sustainability evaluation of software architectures: a
systematic review”. In: Proceedings of the joint ACM SIGSOFT Confer-
ence on Quality of Software Architectures and ACM SIGSOFT Symposium
on Architecting Critical Systems. ACM. 2011, pp. 3–12.

[Kru+05] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. “Automating mimicry attacks using static binary
analysis”. In: USENIX Security Symposium. Vol. 14. 2005, pp. 11–11.

[Lei+12] Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin
Satzger, and Schahram Dustdar. “Application-level performance mon-
itoring of cloud services based on the complex event processing
paradigm”. In: 2012 the Fifth IEEE International Conference on Service-
Oriented Computing and Applications. IEEE. 2012, pp. 1–8.

[Li+14a] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan,
and Jiawei Han. “A confidence-aware approach for truth discovery
on long-tail data”. In: Proceedings of the VLDB Endowment 8.4 (2014),
pp. 425–436.

[Li+14b] Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. “Re-
solving conflicts in heterogeneous data by truth discovery and source
reliability estimation”. In: Proceedings of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data. ACM. 2014, pp. 1187–
1198.

[Li+15] Yaliang Li, Qi Li, Jing Gao, Lu Su, Bo Zhao, Wei Fan, and Jiawei Han.
“On the discovery of evolving truth”. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM. 2015, pp. 675–684.

[Li+16] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan,
and Jiawei Han. “A survey on truth discovery”. In: ACM SIGKDD
Explorations Newsletter 17.2 (2016), pp. 1–16.

118

Bibliography

[Liu+14] Chen Liu, Wesley W Chu, Fred Sabb, D Stott Parker, and Joseph
Korpela. “Path knowledge discovery: Association mining based on
multi-category lexicons”. In: 2014 IEEE International Conference on Big
Data. IEEE. 2014, pp. 1049–1059.

[LLC19] McAfee LLC. Navigating a Cloudy Sky. https://www.mcafee.com/
enterprise/en-us/solutions/lp/cloud-security-report-stats.

html. [Online]. 2019.

[LLL15] Bo Li, Jianxin Li, and Lu Liu. “CloudMon: a resource-efficient IaaS
cloud monitoring system based on networked intrusion detection
system virtual appliances”. In: Concurrency and Computation: Practice
and Experience 27.8 (2015), pp. 1861–1885.

[Men+12] Shicong Meng, Arun K Iyengar, Isabelle M Rouvellou, Ling Liu,
Kisung Lee, Balaji Palanisamy, and Yuzhe Tang. “Reliable state moni-
toring in cloud datacenters”. In: 2012 IEEE Fifth International Confer-
ence on Cloud Computing. IEEE. 2012, pp. 951–958.

[MG11] Peter Mell and Tim Grance. “The NIST definition of cloud computing”.
In: NIST Special Publication 800-145 (2011).

[Mic19] Microsoft. Microsoft Azure. https://azure.microsoft.com/en-us/.
[Online]. 2019.

[ML13] Shicong Meng and Ling Liu. “Enhanced monitoring-as-a-service for
effective cloud management”. In: IEEE Transactions on Computers 62.9
(2013), pp. 1705–1720.

[MM03] Greg Mori and Jitendra Malik. “Recognizing objects in adversarial
clutter: Breaking a visual CAPTCHA”. In: IEEE. 2003, pp. 127–134.

[Mol+13] Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram
Dustdar. “Mela: Monitoring and analyzing elasticity of cloud services”.
In: 2013 IEEE 5th International Conference on Cloud Computing Technol-
ogy and Science. Vol. 1. IEEE. 2013, pp. 80–87.

[MR04] Jelena Mirkovic and Peter Reiher. “A taxonomy of DDoS attack and
DDoS defense mechanisms”. In: ACM SIGCOMM Computer Commu-
nication Review 34.2 (2004), pp. 39–53.

[MSS17] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. “Proac-
tive error prediction to improve storage system reliability”. In: 2017
USENIX Annual Technical Conference. USENIX. 2017, pp. 391–402.

119

https://www.mcafee.com/enterprise/en-us/solutions/lp/cloud-security-report-stats.html
https://www.mcafee.com/enterprise/en-us/solutions/lp/cloud-security-report-stats.html
https://www.mcafee.com/enterprise/en-us/solutions/lp/cloud-security-report-stats.html
https://azure.microsoft.com/en-us/

Bibliography

[MZS18] Salman Manzoor, Heng Zhang, and Neeraj Suri. “Threat Modeling
and Analysis for the Cloud Ecosystem”. In: 2018 IEEE International
Conference on Cloud Engineering. IEEE. 2018, pp. 278–281.

[MZX16] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. “ProTracer: Towards
Practical Provenance Tracing by Alternating Between Logging and
Tainting.” In: The Network and Distributed System Security Symposium.
2016.

[Nad+15] Abbas Naderi-Afooshteh, Anh Nguyen-Tuong, Mandana Bagheri-
Marzijarani, Jason D Hiser, and Jack W Davidson. “Joza: Hybrid taint
inference for defeating web application sql injection attacks”. In: 2015
45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE. 2015, pp. 172–183.

[NCR02] Peng Ning, Yun Cui, and Douglas S Reeves. “Constructing attack
scenarios through correlation of intrusion alerts”. In: Proceedings of the
9th ACM Conference on Computer and Communications Security. ACM.
2002, pp. 245–254.

[Nin+15] Jianting Ning, Xiaolei Dong, Zhenfu Cao, and Lifei Wei. “Accountable
authority ciphertext-policy attribute-based encryption with white-box
traceability and public auditing in the cloud”. In: European Symposium
on Research in Computer Security. Springer. 2015, pp. 270–289.

[NIS01] NIST. “Announcing the advanced encryption standard (AES)”. In:
Federal Information Processing Standards Publication 197 (2001), pp. 1–
51.

[NVD14] NVD. CVE-2014-0160. https://nvd.nist.gov/vuln/detail/CVE-
2014-0160. [Online]. 2014.

[NVD17] NVD. CVE-2017-7494. https://nvd.nist.gov/vuln/detail/CVE-
2017-7494. [Online]. 2017.

[ODL15] Oswaldo Olivo, Isil Dillig, and Calvin Lin. “Detecting and exploiting
second order denial-of-service vulnerabilities in web applications”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2015, pp. 616–628.

120

https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2017-7494
https://nvd.nist.gov/vuln/detail/CVE-2017-7494

Bibliography

[Pap+15] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert,
Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Nau-
mann. “Functional dependency discovery: An experimental evalua-
tion of seven algorithms”. In: Proceedings of the VLDB Endowment 8.10

(2015), pp. 1082–1093.

[PE19] European Parliament and Council of the European Union. General
Data Protection Regulation. https://eur-lex.europa.eu/eli/reg/
2016/679/oj. [Online]. 2019.

[plc15] Micro Focus International plc. PlateSpin Recon. https://www.netiq.
com/documentation/platespin-recon-42/. [Online]. 2015.

[Qi+12] Shanshan Qi, Bixin Li, Cuicui Liu, Xiaona Wu, and Rui Song. “A trust
impact analysis model for composite service evolution”. In: 2012 19th
Asia-Pacific Software Engineering Conference. Vol. 1. IEEE. 2012, pp. 73–
78.

[Ran+06] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, and Ed-
ward W Knightly. “DDoS-Resilient Scheduling to Counter Application
Layer Attacks Under Imperfect Detection”. In: Proceedings of the IEEE
INFOCOM 2006. IEEE. 2006.

[Rav+12] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Maha-
jan, Ian Obermiller, and Shahin Shayandeh. “AppInsight: mobile app
performance monitoring in the wild”. In: The 10th USENIX Sympo-
sium on Operating Systems Design and Implementation. USENIX. 2012,
pp. 107–120.

[Ris+09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
“Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds”. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security. ACM. 2009, pp. 199–212.

[RKK04] Supranamaya Ranjan, Roger Karrer, and E Knightly. “Wide area
redirection of dynamic content by internet data centers”. In: IEEE
INFOCOM 2004. Vol. 2. IEEE. 2004, pp. 816–826.

[RN12] Marko A Rodriguez and Peter Neubauer. “The graph traversal pat-
tern”. In: Graph Data Management: Techniques and Applications. IGI
Global, 2012, pp. 29–46.

121

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.netiq.com/documentation/platespin-recon-42/
https://www.netiq.com/documentation/platespin-recon-42/

Bibliography

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method
for obtaining digital signatures and public-key cryptosystems”. In:
Communications of the ACM 21.2 (1978), pp. 120–126.

[RY12] Vikas C Raykar and Shipeng Yu. “Eliminating spammers and ranking
annotators for crowdsourced labeling tasks”. In: Journal of Machine
Learning Research 13.Feb (2012), pp. 491–518.

[Sae+14] Trausti Saemundsson, Hjortur Bjornsson, Gregory Chockler, and Ymir
Vigfusson. “Dynamic performance profiling of cloud caches”. In: Pro-
ceedings of the ACM Symposium on Cloud Computing. ACM. 2014, pp. 1–
14.

[Sch12] Leopold Schmetterer. Introduction to mathematical statistics. Springer
Science & Business Media, 2012.

[Ses+04] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep
Khosla. “Swatt: Software-based attestation for embedded devices”. In:
Proceedings of the 2004 IEEE Symposium on Security and Privacy. IEEE.
2004, pp. 272–282.

[Sha+10] Jin Shao, Hao Wei, Qianxiang Wang, and Hong Mei. “A runtime model
based monitoring approach for cloud”. In: 2010 IEEE 3rd International
Conference on Cloud Computing. IEEE. 2010, pp. 313–320.

[SO07] Stefan Seufert and Darragh O’Brien. “Machine Learning for Automatic
Defence Against Distributed Denial of Service Attacks”. In: IEEE. 2007,
pp. 1217–1222.

[Sta+04] Angelos Stavrou, John Ioannidis, Angelos D Keromytis, Vishal Misra,
and Dan Rubenstein. “A pay-per-use DoS protection mechanism for
the Web”. In: International Conference on Applied Cryptography and Net-
work Security. Springer. 2004, pp. 120–134.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. Pearson Education,
2011.

[TKS00] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. “Indirect associ-
ation: Mining higher order dependencies in data”. In: European Con-
ference on Principles of Data Mining and Knowledge Discovery. Springer.
2000, pp. 632–637.

122

Bibliography

[TT14] Bing Tang and Mingdong Tang. “Bayesian model-based prediction of
service level agreement violations for cloud services”. In: 2014 The-
oretical Aspects of Software Engineering Conference. IEEE. 2014, pp. 170–
176.

[Var+12] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley,
Thomas Ristenpart, and Michael M Swift. “Resource-freeing attacks:
improve your cloud performance (at your neighbor’s expense)”. In:
Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security. ACM. 2012, pp. 281–292.

[Vim+14] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Giovanni
Livraga, Stefano Paraboschi, and Pierangela Samarati. “Fragmentation
in presence of data dependencies”. In: IEEE Transactions on Dependable
and Secure Computing 11.6 (2014), pp. 510–523.

[VMw19a] VMware. VMware Capacity Planner. https://www.vmware.com/de/
products/capacity-planner.html. [Online]. 2019.

[VMw19b] VMware. VMware vCenter CapacityIQ. https://my.vmware.com/
web/vmware/info/slug/datacenter_downloads/vmware_vcenter_

capacityiq/1_0. [Online]. 2019.

[Von+03] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford.
“CAPTCHA: Using hard AI problems for security”. In: International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2003, pp. 294–311.

[VS12] S VivinSandar and Sudhir Shenai. “Economic denial of sustainability
(edos) in cloud services using http and xml based ddos attacks”. In:
International Journal of Computer Applications 41.20 (2012), pp. 11–16.

[Wal+10] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger,
and Scott Shenker. “DDoS defense by offense”. In: ACM Transactions
on Computer Systems 28.1 (2010), p. 3.

[Wan+14] Shangguang Wang, Zhipiao Liu, Qibo Sun, Hua Zou, and Fangchun
Yang. “Towards an accurate evaluation of quality of cloud service in
service-oriented cloud computing”. In: Journal of Intelligent Manufac-
turing 25.2 (2014), pp. 283–291.

123

https://www.vmware.com/de/products/capacity-planner.html
https://www.vmware.com/de/products/capacity-planner.html
https://my.vmware.com/web/vmware/info/slug/datacenter_downloads/vmware_vcenter_capacityiq/1_0
https://my.vmware.com/web/vmware/info/slug/datacenter_downloads/vmware_vcenter_capacityiq/1_0
https://my.vmware.com/web/vmware/info/slug/datacenter_downloads/vmware_vcenter_capacityiq/1_0

Bibliography

[Wan+15a] Bing Wang, Yao Zheng, Wenjing Lou, and YThomas Hou. “DDoS
attack protection in the era of cloud computing and software-defined
networking”. In: Computer Networks 81 (2015), pp. 308–319.

[Wan+15b] Jun Wang, Zhiyun Qian, Zhichun Li, Zhenyu Wu, Junghwan Rhee,
Xia Ning, Peng Liu, and Guofei Jiang. “Discover and tame long-
running idling processes in enterprise systems”. In: Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security. ACM. 2015, pp. 543–554.

[Wen+18] Jianping Weng, Jessie Hui Wang, Jiahai Yang, and Yang Yang. “Root
cause analysis of anomalies of multitier services in public clouds”. In:
IEEE/ACM Transactions on Networking 26.4 (2018), pp. 1646–1659.

[Win+09] Matthias Winkler, Thomas Springer, Edmundo David Trigos, and
Alexander Schill. “Analysing dependencies in service compositions”.
In: Service-Oriented Computing. ICSOC / ServiceWave 2009 Workshops.
Springer. 2009, pp. 123–133.

[Wu+13] Yu-Sung Wu, Pei-Keng Sun, Chun-Chi Huang, Sung-Jer Lu, Syu-
Fang Lai, and Yi-Yung Chen. “EagleEye: Towards mandatory security
monitoring in virtualized datacenter environment”. In: 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE. 2013, pp. 1–12.

[WXW15] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the hyper-
space: high-bandwidth and reliable covert channel attacks inside the
cloud”. In: IEEE/ACM Transactions on Networking 23.2 (2015), pp. 603–
615.

[Xie+13] Y Xie, S Tang, X Huang, C Tang, and X Liu. “Detecting latent attack
behavior from aggregated Web traffic”. In: Computer Communications
36.8 (2013), pp. 895–907.

[Xin+03] Qin Xin, Ethan L Miller, Thomas Schwarz, Darrell DE Long, Scott A
Brandt, and Witold Litwin. “Reliability mechanisms for very large
storage systems”. In: Proceedings of the 2003 IEEE NASA Goddard Con-
ference on Mass Storage Systems and Technologies. IEEE. 2003, pp. 146–
156.

124

Bibliography

[Xu+16] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee,
Xusheng Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. “High
fidelity data reduction for big data security dependency analyses”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2016, pp. 504–516.

[XY09] Yi Xie and Shun-Zheng Yu. “A large-scale hidden semi-Markov model
for anomaly detection on user browsing behaviors”. In: IEEE/ACM
Transactions on Networking 17.1 (2009), pp. 54–65.

[YAK14] Neeraja J Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
“Wrangler: Predictable and faster jobs using fewer resources”. In:
Proceedings of the ACM Symposium on Cloud Computing. ACM. 2014,
pp. 1–14.

[Yam+15] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
“Automatic inference of search patterns for taint-style vulnerabilities”.
In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 797–
812.

[Yin+07] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and En-
gin Kirda. “Panorama: capturing system-wide information flow for
malware detection and analysis”. In: Proceedings of the 14th ACM Con-
ference on Computer and Communications Security. ACM. 2007, pp. 116–
127.

[YL05] Wei Yen and Ming-Fang Lee. “Defending application DDoS with
constraint random request attacks”. In: 2005 Asia-Pacific Conference on
Communications. IEEE. 2005, pp. 620–624.

[YT11] Xiaoxin Yin and Wenzhao Tan. “Semi-supervised truth discovery”. In:
Proceedings of the 20th international Conference on World wide web. ACM.
2011, pp. 217–226.

[Yu+09] Jie Yu, Chengfang Fang, Liming Lu, and Zhoujun Li. “A lightweight
mechanism to mitigate application layer DDoS attacks”. In: Interna-
tional Conference on Scalable Information Systems. Springer. 2009, pp. 175–
191.

[Yu+14] Dian Yu, Hongzhao Huang, Taylor Cassidy, Heng Ji, Chi Wang, Shi
Zhi, Jiawei Han, Clare Voss, and Malik Magdon-Ismail. “The wis-
dom of minority: Unsupervised slot filling validation based on multi-

125

Bibliography

dimensional truth-finding”. In: Proceedings of the 25th International
Conference on Computational Linguistics. 2014, pp. 1567–1578.

[Zha+14] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
“Cross-tenant side-channel attacks in PaaS clouds”. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2014, pp. 990–1003.

[Zha+16a] Desheng Zhang, Tian He, Fan Zhang, Mingming Lu, Yunhuai Liu,
Haengju Lee, and Sang H Son. “Carpooling service for large-scale
taxicab networks”. In: ACM Transactions on Sensor Networks 12.3 (2016),
p. 18.

[Zha+16b] Heng Zhang, Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj
Suri. “Sentry: A novel approach for mitigating application layer DDoS
threats”. In: 2016 IEEE International Conference on Trust, Security and
Privacy in Computing and Communications. IEEE. 2016, pp. 465–472.

[Zha+17] Heng Zhang, Ruben Trapero, Jesus Luna, and Neeraj Suri. “deQAM:
A Dependency Based Indirect Monitoring Approach for Cloud Ser-
vices”. In: 2017 IEEE International Conference on Services Computing.
IEEE. 2017, pp. 27–34.

[Zha+18a] Heng Zhang, Jesus Luna, Neeraj Suri, and Ruben Trapero. “Flashlight:
a novel monitoring path identification schema for securing cloud
services”. In: 2018 Proceedings of the 13th International Conference on
Availability, Reliability and Security. ACM. 2018, pp. 5–14.

[Zha+18b] Heng Zhang, Jesus Luna, Ruben Trapero, and Neeraj Suri. “Whetstone:
Reliable Monitoring of Cloud Services”. In: 2018 IEEE International
Conference on Smart Computing. IEEE. 2018, pp. 115–122.

[Zhe+15] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and
Jianhua Feng. “QASCA: A quality-aware task assignment system
for crowdsourcing applications”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM. 2015,
pp. 1031–1046.

[Zho+07] Jiehan Zhou, Daniel Pakkala, Jukka Riekki, Mika Ylianttila, et al.
“Dependency-aware service oriented architecture and service compo-
sition”. In: IEEE International Conference on Web Services. IEEE. 2007,
pp. 1146–1149.

126

Bibliography

[ZMS18] Heng Zhang, Salman Manzoor, and Neeraj Suri. “Monitoring Path
Discovery for Supporting Indirect Monitoring of Cloud Services”.
In: 2018 IEEE International Conference on Cloud Engineering. IEEE. 2018,
pp. 274–277.

[ZN08] Thomas Zimmermann and Nachiappan Nagappan. “Predicting de-
fects using network analysis on dependency graphs”. In: 2008 ACM /
IEEE 30th International Conference on Software Engineering. IEEE. 2008,
pp. 531–540.

[ZYR14] Hao Zhang, Danfeng Daphne Yao, and Naren Ramakrishnan. “Detec-
tion of stealthy malware activities with traffic causality and scalable
triggering relation discovery”. In: Proceedings of the 9th ACM Sym-
posium on Information, Computer and Communications Security. ACM.
2014, pp. 39–50.

127

	Erklärung
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 A Brief Overview of Modern Cloud Systems
	1.2 A Monitoring Perspective on Dependencies
	1.3 Research Questions and Contributions
	1.4 Publications
	1.5 Organization

	2 Towards Security Monitoring in Modern Cloud Systems
	2.1 Introduction
	2.2 Background
	2.3 Models
	2.3.1 Attack Model
	2.3.2 Victim Model

	2.4 Proposed Mitigation Scheme
	2.4.1 System Overview
	2.4.2 Moderator Description

	2.5 Evaluation & Discussion
	2.5.1 Experiment
	2.5.2 Discussion

	2.6 Related Work
	2.7 Conclusion

	3 Implementing Indirect Service Monitoring Using Dependencies
	3.1 Introduction
	3.2 Basic Concepts
	3.2.1 Cloud Service Provisioning & Indirect Monitoring
	3.2.2 Service Dependency & Characterization
	3.2.3 Uncertainty & Data Estimation

	3.3 The Proposed Methodology
	3.3.1 System Overview
	3.3.2 Transformation of Dependency
	3.3.3 Concrete Design

	3.4 Case Study
	3.5 Discussion
	3.6 Related Work
	3.7 Conclusion

	4 Performing In-Depth Analysis on Monitoring Information
	4.1 Introduction
	4.2 Background
	4.2.1 Existing Threats
	4.2.2 Example Interpretation
	4.2.3 Data Relation

	4.3 Problem Formulation
	4.4 Proposed Methodology
	4.4.1 Methodology Overview
	4.4.2 Methodology Design

	4.5 Evaluation
	4.5.1 Experimental Settings
	4.5.2 Case Study

	4.6 Related Work
	4.7 Conclusion

	5 Optimizing Data Reliability for Sound Monitoring Performance
	5.1 Introduction
	5.2 Background
	5.2.1 Challenges
	5.2.2 Observations

	5.3 Problem Statement
	5.3.1 Problem Model
	5.3.2 Solution Approach

	5.4 Proposed Methodology: Whetstone
	5.4.1 System Overview
	5.4.2 Design Methodology

	5.5 Evaluation
	5.5.1 Experimental Setting
	5.5.2 Evaluation on Primitive Results
	5.5.3 Evaluation on Final Result
	5.5.4 Discussions

	5.6 Related Work
	5.7 Conclusion

	6 Summary and Conclusion
	List of Figures
	List of Tables
	Bibliography

