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A B S T R A C T

In today’s heterogenous computing world, field-programmable gate
arrays (FPGA) represent the energy-efficient alternative to generic
processor cores and graphics accelerators. However, due to their radic-
ally different computing model, automatic design methods, such as
high-level synthesis (HLS), are needed to harness their full power. HLS
raises the abstraction level to behavioural descriptions of algorithms,
thus freeing designers from dealing with tedious low-level concerns,
and enabling a rapid exploration of different microarchitectures for
the same input specification. In an HLS tool, scheduling is the most
influential step for the performance of the generated accelerator. Spe-
cifically, modulo schedulers enable a pipelined execution, which is
a key technique to speed up the computation by extracting more
parallelism from the input description.

In this thesis, we make a case for the use of integer linear program-
ming (ILP) as a framework for modulo scheduling approaches. First,
we argue that ILP-based modulo schedulers are practically usable in
the HLS context. Secondly, we show that the ILP framework enables a
novel approach for the automatic design of FPGA accelerators.

We substantiate the first claim by proposing a new, flexible ILP
formulation for the modulo scheduling problem, and evaluate it exper-
imentally with a diverse set of realistic test instances. While solving an
ILP may incur an exponential runtime in the worst case, we observe
that simple countermeasures, such as setting a time limit, help to con-
tain the practical impact of outlier instances. Furthermore, we present
an algorithm to compress problems before the actual scheduling.

An HLS-generated microarchitecture is comprised of operators, i.e.
single-purpose functional units such as a floating-point multiplier.
Usually, the allocation of operators is determined before scheduling,
even though both problems are interdependent. To that end, we invest-
igate an extension of the modulo scheduling problem that combines
both concerns in a single model. Based on the extension, we present a
novel multi-loop scheduling approach capable of finding the fastest
microarchitecture that still fits on a given FPGA device – an optim-
isation problem that current commercial HLS tools cannot solve. This
proves our second claim.
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Z U S A M M E N FA S S U N G

Heutzutage werden komplexe Probleme in Wissenschaft und Technik
von heterogenen Rechnersysteme gelöst. In diesem Umfeld haben
sich sogenannte field-programmable gate arrays (FPGA) als energieef-
fizientere Alternative zum Rechnen auf normalen Prozessorkernen
oder Grafikkarten etabliert. Bei FPGAs handelt es sich um Halbleiter-
bauteile, die beim Einschalten einen beliebigen Schaltkreis abbilden
können, welcher dann die gewünschten Berechnungen durchführt. Da
sich dieses “Programmiermodell” grundlegend von den Gewohnhei-
ten der Software-Welt unterscheidet, sind die Anforderungen an die
verwenden Entwurfswerkzeuge hoch.

Die Synthese eines Schaltkreis aus einer Problembeschreibung in
einer Hochsprache wie C wird high-level synthesis (HLS) genannt. HLS
kann Hardware-Ingenieure merklich entlasten, weil viele konkrete
Aspekte des Schaltkreises automatisch erzeugt werden. Dies ermög-
licht auch eine schnelle Untersuchung verschiedener Entwurfsalterna-
tiven. In einem HLS-Werkzeug hat die Ablaufplanung (engl. scheduling)
den größten Einfluss auf die Leistung des generierten Schaltkreises.
Eine wichtige Technik, um die Ausführungsgeschwindigkeit weiter
zu verbessern, ist die Fließbandverarbeitung (engl. pipelining) von
Berechnungen. Diese wird durch das Lösen eines zyklischen Ablauf-
planungsproblems (engl. modulo scheduling) ermöglicht.

Diese Dissertation untersucht den Einsatz von mathematischen
Optimierungsmethoden, genauer von ganzzahliger linearer Optimie-
rung (engl. integer linear programming, ILP), zur Lösung von Modulo
Scheduling-Problemen. Es werden zwei Hauptthesen aufgestellt. Ers-
tens, ILP-basierte Verfahren sind praktisch nutzbar im Kontext von
HLS-Werkzeugen. Zweitens, ILP-basierte Verfahren eröffnen neue
Möglichkeiten in der automatischen Synthese von Schaltkreisen.

Als Beleg für die erste These wird eine neue, flexible ILP-Formu-
lierung des Scheduling-Problems vorgestellt und anhand einer Vielzeit
von Problem-Instanzen aus der Praxis evaluiert. Einfache Maßnah-
men wie das Setzen eines Zeitlimits helfen, die theoretisch exponen-
tiellen Laufzeiten beim ILP-Lösen abzufangen. Außerdem wird ein
Algorithmus zur Komprimierung des Problems vor der eigentlichen
Ablaufplanung beschrieben.

Bisher ist es üblich, vor der Ablaufplanung zu bestimmen, wel-
che und insbesondere wie viele sogenannte Operatoren im späteren
Schaltkreis zur Verfügung stehen, um Teilberechnungen (z. B. eine
Multiplikation von zwei Werten) durchzuführen. Tatsächlich sind aber
die Ablaufplanung und Operatorallokation voneinander abhängige
Probleme. Es wird daher eine Erweiterung des Modulo Scheduling-
Problems vorgeschlagen, die beide Problemaspekte gemeinsam mo-
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delliert. Darauf basierend wird ein Scheduling-Verfahren vorgestellt,
welches die schnellste Schaltung findet, die gerade noch auf einen
vorgegebenen FPGA passt – ein Optimierungsproblem, welches in der
Form nicht direkt von kommerziellen HLS-Werkzeugen gelöst werden
kann. Dies belegt die zweite These.
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1
I N T R O D U C T I O N

Field-Programmable Gate Arrays (FPGAs) offer flexible computing cap-
abilities, which are used to solve challenging real-world problems in
domains such as radio astronomy [89], computer vision [39], molecu-
lar simulations [82], model checking [10] and machine learning [58].
In todays heterogeneous and massively parallel computing world,
they are often touted as the energy-efficient alternative to software-
programmable processors and general-purpose computing on graphics
processors. The interest is also not purely academic, as Amazon [3]
and Microsoft [9] have started to use FPGAs in their data centres, and
Apple announced to offer an FPGA-based video accelerator card for
their upcoming workstation computer.

However, in contrast to CPUs and GPUs, which can be programmed with
convenient frameworks and following common software development
practices, FPGAs require a radically different development process to
accommodate their internal structure.

FPGAs are semiconductor chips that provide programmable arrays
of logic and memory elements, which are surrounded by a program-
mable interconnect. Figure 1.1 gives a simplified intuition. Typical
logic elements are Look-Up Tables (LUTs), which are used to imple-
ment arbitrary Boolean functions (see Figure 1.2 for an example) and
Digital Signal Processing Blocks (DSPs), which accelerate arithmetic
functions. The simplest memory elements are Flip-Flops (FFs), which
are often paired with LUTs. Kastner, Matai and Neuendorffer [46] give
an overview on the basic FPGA technology.

At this lowest level, programming an FPGA means loading a stream
of configuration bits onto the device, which sets up the low-level
resources to perform their intended function, and establishes the con-
nections between them. This process happens not only once in the
factory, but every time the device is powered on – hence the name,
“field-programmable”.

However, programming a useful accelerator of any kind at this The largest FPGA
devices available
today exceed one
billion configuration
bits.

level is intractable. Instead, a common abstraction is spatial computing,
as illustrated in Figure 1.3. Several operators are instantiated on the
device, using a certain amount of the low-level resources, and are
connected to form a datapath. The computation progresses as the input
and intermediate values flow through the datapath, and yield the
result after the last operator finishes. Note that there is no (software)
program of any kind being executed. Rather, the engineer designs a
microarchitecture, specifically for the computation.

1
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Figure 1.1: Extremely simplified on-chip structure of an FPGA
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Figure 1.2: A 2-input LUT, implementing the XOR function. The bits in the
column “out” are configurable.
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Figure 1.3: Spatial computing using operators instantiated on the FPGA’s
low-level resources
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Coming up with such a design manually, and writing it down in
terms of Hardware Design Languages (HDLs) such as Verilog and
VHDL, is a tedious and error-prone process, and requires a lot of
experience. It is a common understanding in the community that
productive FPGA design requires better tools. Incidentally, none of
the recently proposed accelerators mentioned above were developed
in an HDL.

High-Level Synthesis (HLS) [14] raises the abstraction level for FPGA
design. In the broadest sense, an HLS tool accepts a behavioural, un-
timed description of the problem, and automatically generates a mi-
croarchitecture comprised of a synchronous datapath and a controller
circuit to control the individual operators in it.

Many HLS tools accept some form of C code as input [61], arguably
because of the language’s ubiquity in computer science. However,
this choice fuelled expectations that HLS might be the holy grail to
make FPGA accelerators accessible not only to hardware engineers,
but to the much larger population of software programmers. Despite
intensive research efforts by both the FPGA vendors and the academic
community, this aim has not become reality yet.

From a compiler engineer’s viewpoint, it is relatively easy to con-
struct a microarchitecture that performs a certain computation. It is,
however, very hard to actually accelerate the computation compared to
a modern software-programmable processor. FPGAs gain their energy-
efficiency by operating at low frequencies (usually between 100–300

MHz), and therefore need to exploit as much parallelism as possible to
bridge the “speed gap” to a single processor core, as even embedded
CPUs operate at 1 GHz and more. The use of the C language is one
part of the problem here, due to its sequential nature, which hinders
the automatic discovery of parallel computations. Often, good HLS
designs also require algorithmic changes, or rewrites of the C code to
match certain idioms understood by the HLS tool.

Still, HLS is a valuable tool to make hardware engineers more
productive, as it gives them the ability to experiment with different
microarchitectures for the same input specification, in order to explore
different trade-offs regarding the performance and resource demand,
without the need to deal with low-level implementation details.

Furthermore, the FPGA community has successfully adopted par-
allel programming environments such as OpenCL [47] to accelerate
complex, real-world scientific applications, e.g. [82, 89, 92]. These ap-
plications are typically comprised of multiple kernels in some form of
processing pipeline. The OpenCL environment handles the data trans-
fers from and to the accelerator and between the kernels. Crucially,
the actual hardware implementing the kernels is constructed using
standard HLS technology. Note that a single kernel implementation
might be replicated tens or hundreds of times to leverage data paral-
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lelism. Then, it is desirable to get the best solution possible – ideally,
a provably optimal one. Investigating improvements to HLS tools is
therefore as current and important as ever.

While the development and maintenance of an HLS tool is a hugeA brief overview can
be found in
Section 2.1.

engineering effort at the intersection of compiler construction and
hardware design, this thesis specifically addresses the core algorithmic
steps that apply to any HLS flow, and in particular, the scheduling
step: for the transformation from the untimed input description to the
synchronous datapath, the operations that make up the computation
need to be scheduled, i.e. a discrete start time is assigned to each of
them. The scheduler is the main source of automatically discoverable
parallelism during HLS, and therefore decisive for the performance of
the generated microarchitecture. In this context, loop pipelining is a key
optimisation technique for HLS from sequential input specifications:
the partially overlapping execution of subsequent loop iterations in-
tended to increase the accelerator’s throughput and the utilisation of
the functional units within the datapath corresponding to the loop’s
computation. To this end, new loop iterations are started after a fixed
number of time steps, called the Initiation Interval (II).

Loop pipelining is usually enabled by modulo schedulers [74], which
were first proposed and actively investigated in the 1990s, when Very-
Long-Instruction-Word (VLIW) processor architectures were popular.
More recently, due to their relevance to HLS, there has been a spike of
interest in the academic community regarding HLS-centric modulo
schedulers [6, 7, 17, 79, 84, 95], coinciding with the previous publica-
tion of parts of this thesis.

1.1 thesis contributions

Modulo scheduling is a hard combinatorial problem. Especially during
the VLIW period, modulo schedulers considered suitable for integ-
ration into a production compiler were heuristic algorithms. Exact
approaches, capable of computing provably optimal schedules, were
also developed, but usually deemed impractical because of their po-
tentially longer runtimes.

We believe that the computing power available today, coupled with the
advances in solver technology for Integer Linear Programs (ILPs), make
it worthwhile to be stubborn, and challenge this old preconception. To
this end, we advocate for ILP-based modulo scheduling because it . . .

• makes the minimisation of the II as part of one linear program
possible, which enables a novel strategy to tackle the Modulo
Scheduling Problem (MSP),
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• delivers optimal solutions for the majority of instances we en-
countered in our extensive experimental evaluation,

• still delivers good solutions with a known quality gap, when
subjected to a limited time budget for particularly large instances,
and

• enables resource-aware modulo scheduling, which combines the
HLS scheduling and allocation steps, and thus allows the explor-
ation of different microarchitectures during the mathematical
optimisation process.

Our novel multi-loop scheduler, SkyCastle, leverages all these prop-
erties to solve the common and practically relevant design problem of
finding the fastest microarchitecture that still fits within given resource
constraints.

This thesis is based on the following peer-reviewed publications:

[63] Julian Oppermann, Andreas Koch, Melanie Reuter-Oppermann and
Oliver Sinnen. ‘ILP-based modulo scheduling for high-level synthesis’.
In: International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, CASES, Pittsburgh, Pennsylvania, USA. 2016

[65] Julian Oppermann, Melanie Reuter-Oppermann, Lukas Sommer, An-
dreas Koch and Oliver Sinnen. ‘Exact and Practical Modulo Scheduling
for High-Level Synthesis’. In: ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS) 12.2 (2019)

[66] Julian Oppermann, Melanie Reuter-Oppermann, Lukas Sommer, Oliver
Sinnen and Andreas Koch. ‘Dependence Graph Preprocessing for
Faster Exact Modulo Scheduling in High-Level Synthesis’. In: Inter-
national Conference on Field Programmable Logic and Applications, FPL
Dublin, Ireland. 2018

[67] Julian Oppermann, Patrick Sittel, Martin Kumm, Melanie Reuter-
Oppermann, Andreas Koch and Oliver Sinnen. ‘Design-Space Explor-
ation with Multi-Objective Resource-Aware Modulo Scheduling’. In:
International Conference on Parallel and Distributed Computing, Euro-Par,
Göttingen, Germany. 2019

[68] Julian Oppermann, Lukas Sommer, Lukas Weber, Melanie Reuter-
Oppermann, Andreas Koch and Oliver Sinnen. ‘SkyCastle: A Resource-
Aware Multi-Loop Scheduler for High-Level Synthesis’. In: International
Conference on Field-Programmable Technology, FPT. 2019

The author was part of research efforts adjacent to the work presen-
ted in this thesis, which resulted in the following peer-reviewed pub-
lications:

[69] Julian Oppermann, Sebastian Vollbrecht, Melanie Reuter-Oppermann,
Oliver Sinnen and Andreas Koch. ‘GeMS: a generator for modulo
scheduling problems: work in progress’. In: Proceedings of the Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded
Systems, CASES, Torino, Italy. 2018
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[79] Patrick Sittel, Martin Kumm, Julian Oppermann, Konrad Möller, Peter
Zipf and Andreas Koch. ‘ILP-Based Modulo Scheduling and Binding
for Register Minimization’. In: 28th International Conference on Field
Programmable Logic and Applications, FPL 2018, Dublin, Ireland, August
27-31, 2018. 2018

[80] Patrick Sittel, Julian Oppermann, Martin Kumm, Andreas Koch and
Peter Zipf. ‘HatScheT: A Contribution to Agile HLS’. In: International
Workshop on FPGAs for Software Programmers, FSP. 2018

1.2 thesis outline

chapter 1 (this chapter) shows the importance of FPGA accelerators
for modern heterogenous computing, the ongoing need for better
HLS to help designers create such FPGA-based accelerators,
and identifies modulo scheduling as a highly influential core
algorithm in any HLS tool.

chapter 2 introduces the fundamental HLS terminology, formally
defines the Modulo Scheduling Problem (MSP), and surveys
existing scheduling approaches.

chapter 3 presents the Moovac formulation, which is the first ILP-
based modulo scheduling formulation that integrates the search
for the optimal II. We discuss and evaluate strategies to use an
exact modulo scheduler in practice.

chapter 4 describes and evaluates a compression algorithm for
instances of the MSP.

chapter 5 introduces the concept of resource-aware modulo schedul-
ing, and evaluates multi-criteria optimisation techniques to effi-
ciently compute the set of all Pareto-optimal trade-off solutions.

chapter 6 combines insights from all the previous chapters to tackle
an integrated scheduling and allocation problem covering an
entire kernel comprised of multiple loops and functions.

chapter 7 summarises the contributions of the thesis, and outlines
future research directions.
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F O U N D AT I O N S

In this chapter, we establish the technical context for the contribu-
tions of this thesis. Readers unfamiliar with the basic HLS and modulo
scheduling terminology find a brief introduction in Sections 2.1 to 2.3.
The fundamentals of linear programming and integer linear program-
ming are explained, for example, in Hamacher and Klamroth [37]
and Wolsey [94]. From Section 2.4 on, we introduce the notation
used throughout the thesis, formally define the Modulo Scheduling
Problem and useful extensions, and survey prior modulo scheduling
approaches.

2.1 common components of high-level synthesis flows

In this section, we will briefly introduce the ingredients that comprise
a typical HLS flow. Refer to De Micheli [18] for a more detailed
discussion of the fundamental concepts in architectural synthesis, and
to Nane et al. [61] for a survey of HLS tools.

2.1.1 Frontend

The frontend is responsible for reading the input specification, and
constructing an Intermediate Representation (IR) suitable for hardware
generation.

As most HLS flows accept languages (or dialects thereof) originating
from a software context, standard compiler technology is employed
in this step. For example, Vivado HLS [91], LegUp [8] and Nymble
[42] use LLVM [53], whereas Bambu [71] is based on GCC [33]. The
prevalent IR used in HLS tools is the Control-Data-Flow Graph (CDFG)
[35].

Consider the C code snippet in Listing 2.1, which does not compute The code fills an
array with a
Fibonacci-like
sequence of numbers,
but instead of
writing back the sum
of the two preceding
cells, it uses a code
sequence from [93] to
compute the number
of 1-bits in the sum.

anything useful, but helps us to illustrate the key concepts. The CDFG
representation of the loop is shown in Figure 2.1. The nodes, which
we call operations, represent the expressions and constants in the
source code. The solid edges model the flow of values between the
operations. There is one solid red edge that indicates a value flow
across iteration boundaries. Here, this is only the case for the loop
counter i, which is represented by the special φ-function customary
in Static Single Assignment (SSA)-IRs [16]. The array arr in the source
code will be mapped to shared memory, and accessed by two load
as well as one store operation. In order to achieve the same order of
the memory accesses as in the software program, the frontend runs a

7
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Listing 2.1: An example loop

...

unsigned arr[N]; arr[0] = 0; arr[1] = 1;

loop1:

for (unsigned i = 2; i < N; ++i)

unsigned a = arr[i-2];

unsigned b = arr[i-1];

unsigned x = (a+b) & 0xFF;

x = ((x * 0x08040201) >> 3) & 0x11111111;

x = ((x * 0x11111111) >> 28);

arr[i] = x;

}

...

load2load1

add2

mul1

mul2

shr1

and1

and2

shr2

sub1 sub2

0xFF

c1

c2

3

28

2 1

phi

store

add1

Figure 2.1: CDFG for code snippet in Listing 2.1. Let c1 = 0x08040201, and
c2 = 0x11111111. Red edges denote inter-iteration dependences.
Dotted edges represent memory dependences.
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dependence analysis [34], and introduces additional edges (dashed in
the example graph) that sequentialise memory accesses where needed.
In our example, only inter-iteration edges are required, because the
dependence analysis can prove that within one iteration, no conflicting
memory accesses will occur. However, the analysis determines that
the store operation writes to a memory address in iteration i, which is
read in iterations i+ 1 and i+ 2. It follows that the store operations
must always precede the next iterations’ load operations.

It is possible and common to represent loop bodies with branches as
a CDFG. As a preparation, if-conversion [59], a standard compiler trans-
formation, is invoked. An operation that is only executed conditionally,
in a branch controlled by a condition p, is afterwards associated with
p as its predicate. In the CDFG representation, this will result in an
additional edge from the predicate to the operation, indicating that its
execution depends on the evaluation result of p.

2.1.2 Operator Library

An HLS environment provides a library of operator implementations,
tailored to each supported target FPGA device. Typical HLS operator
types perform the usual arithmetic and comparison functions, both for
integer and floating-point, and memory/bus accesses. Additionally,
extended math libraries, e.g. providing trigonometric operators, are
common.

Operator types are characterised by the following metrics.

• The latency denotes after how many time steps the operator’s
result is available.

• The blocking time indicates after how many time steps an operator
can accept new inputs. In case an operator is pipelined internally,
its blocking time is less than the latency. Operators that can
accept new input in every time step are called fully-pipelined, and
are often available in HLS operator libraries.

• The delay, or more precisely, an incoming and an outgoing delay,
specified in a physical amount of time, e.g. nanoseconds, which
approximates the propagation time to the first, and from the last
register inside the operator.

• The resource demand, which in the case of FPGAs is an amount
of the low-level resources.

In general, the operator library contains variants for multiple com-
binations of input and output bitwidths, and may provide several
implementations for the same functionality, but with different charac-
teristics to choose from.

The latency and the blocking time are design choices made during
the implementation of the operator template. In contrast, the delay
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Figure 2.2: An operator allocation for the CDFG in Figure 2.1. The rectangle
sizes hint at different resource demands for the operator types.
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Figure 2.3: A schedule for the CDFG in Figure 2.1

and the resource demand are either obtained from an out-of-context
logic synthesis run, or by using a model derived from such runs [61].

2.1.3 Algorithmic Steps

The core algorithmic steps in every HLS flow are allocation, scheduling,
and binding.

In the allocation step, the number of instances, and an implementa-
tion variant (if available), is determined for each operator type. In the
scheduling step, each operation is assigned to a time step. In the bind-
ing step, each operation is bound to an operator instance. Figures 2.2
to 2.4 illustrate these steps for the example CDFG in Figure 2.1.

While the practical consensus is to perform the three steps one after
another, in the order allocation – scheduling – binding, they are all
intertwined and form a classical phase-ordering problem [35].
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…
…

…
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mul1

mul2

shr1

and1

AND

MUL

SHR

Figure 2.4: A binding, shown for a part of the CDFG in Figure 2.1

2.1.4 Controller Generation

HLS tools automatically generate a controller circuit that discretises the We use the term
“time step” in this
thesis, as it describes
the abstract concept,
and there is not
always a 1:1
correspondence
between logical time
steps and actual
clock cycles of
synchronous circuits.

execution of the datapath into time steps, i.e. it starts the operations
according to the computed schedule. Operations in different time
steps are decoupled by registers that hold intermediate results. The
controller can be as simple as a shift register, though more advanced
implementations exist [41].

2.1.5 Backend

The microarchitecture comprised of datapath and controller is now
ready to be emitted in an HDL, and could be handed off to an appro-
priate logic synthesis tool chain for the target device, which in the end
will produce the bitstream required to set the configuration bits for all
on-chip resources and the interconnect.

Note that HLS tools usually generate only a simple interface for data
input and output. In consequence, nowadays the generated module is
integrated into a larger system, such as an OpenCL [47] runtime or
the TaPaSCo accelerator template [50], in order to obtain a complete
design that handles the communication with the outside world.

2.2 key high-level synthesis techniques

We now introduce three key techniques in HLS that are relevant to the
scheduling approaches presented in this thesis.

2.2.1 Operator Chaining

The frequency of the generated circuit is a major factor for the gen-
erated datapath’s performance. Typically, an HLS tool maintains a
desired target cycle time Z for the datapath, which limits the time that
can be spent in a single time step, and, at least theoretically, enables
an operating frequency of 1/Z.

In the example schedule in Figure 2.3, only independent operations
share one time step, while dependent operations are assigned to
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Figure 2.5: Application of operator chaining to the CDFG in Figure 2.1
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Figure 2.6: A multiplication operator, shared between two operations

individual time steps. However, not all operators require the same
amount of time, e.g. logical function and constant bit shifts are trivial
to perform on an FPGA, and have propagation delays� Z.

It follows that chains of dependent operations can be scheduled to
the same time step, as long as the accumulated delay does not exceed
the desired cycle time. In Figure 2.5, we annotate exemplary delays
to a subset of the operations in Figure 2.1, and show the effect of
chaining with a target cycle time of Z = 5 ns.

2.2.2 Operator Sharing

The highest possible performance for a given CDFG is achieved by
the fully spatial microarchitecture, in which an individual operator
is allocated for each operation. Most operator types are simple to
implement on FPGAs, and have resource demands that are negligible
compared to the amount of resources provided by modern devices.
Therefore, it is reasonable for an HLS tool to treat them as practically
unlimited, i.e. instantiate as many operators as needed.

For operator types with non-negligible resource demands, e.g. floating-
point operators, the HLS tool may share operator instances across
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Figure 2.7: Loop pipelining with II=5, for the CDFG in Figure 2.1, with
operator chaining. The CDFG constants have been omitted for
clarity.

several operations, in order to trade a lower overall resource demand
for potentially worse performance. In the generated datapath, these
operators will then be time-multiplexed. Figure 2.6 illustrates the basic
technique: multiplexers route different pairs of inputs to the operator.
The result is routed by a demultiplexer to one of the consumers in
the datapath. The multiplexers and the demultiplexer are switched
by the generated controller circuit. Refer to [55] for a more advanced
operator sharing implementation.

Note that the additionally needed (de-)multiplexers also occupy
FPGA resources on their own. To that end, HLS tools usually only con-
sider operator types for sharing if their resource demands significantly
outweigh the costs for the multiplexing logic.

2.2.3 Loop Pipelining

As mentioned earlier, HLS tools must exploit all available sources of
parallelism in order to achieve a meaningful speed-up compared to
the execution on a software-programmable processor having a higher
clock rate. This is especially true for the synthesis from sequential
languages such as C.

One such source of parallelism is loop pipelining: the partially over-
lapping execution of subsequent loop iterations intended to increase
the accelerator’s throughput and the utilisation of the operators within



14 foundations

the datapath. To this end, new loop iterations are started after a fixedSchedulers that treat
the II as a rational
number have been
proposed [31, 81],

but require
extensions to the

controller generation
that are not available
in current academic

and commercial HLS
tools.

number of time steps, called the Initiation Interval (II).
Figure 2.7 shows the pipelined execution of the example CDFG from

Figure 2.1. We assume the presence of one read and one write port to
the shared memory where the array arr is stored. In consequence, the
load operations cannot be scheduled to the same time step.

In this example, new iterations are initiated every 5 time steps, so
we have II = 5. A lower II is not possible here, as otherwise the inter-
iteration dependence between the store operation in the first iteration
to the right load operation would be violated. Note that the left load
operation depends on the value written two iterations earlier, and
thus can overlap with the store operation in the directly preceding
iteration.

In general, the following considerations highlight the possible bene-
fits of loop pipelining. Let T be the latency of the datapath representing
the loop body. Executing c iterations of the loop without overlap then
takes c · T time steps. Assuming that the loop’s inter-iteration depend-
ences allow it to be executed with an initiation interval II < T, then
executing c iterations will require only (c− 1) · II + T time steps, i.e. the
last iteration is issued after (c − 1) · II time steps and ends after the T
time steps to fully evaluate the result of the datapath. This means that
the smaller the interval is relative to the latency of the datapath, the
higher is the theoretical speed-up achievable through loop pipelining.

Loop pipelining limits the amount of operator sharing that is pos-
sible, and vice versa.

2.3 modulo scheduling

The most practically relevant class of approaches to find a schedule
suitable for loop pipelining is modulo scheduling. The name was coined
by Rau [74], who together with Lam [52] laid most of the groundwork
of the modulo scheduling framework, and refers to the following
situation: Assume the allocation step determined that aq instances of a
shared operator type q should be available for the evaluation of a loop
body. In a non-overlapping execution of the loop iterations, we would
need to schedule the operations so that no more than aq operators
are used in any time step. In contrast, a pipelined execution of the
iterations means that operations from different iterations are started in
the same time step (cf. Figure 2.7). It follows that the aforementioned
constraints with regards to the operator usage now have to consider
congruence classes of time steps, modulo the II.

In the literature, and according to the established scheduling ter-“Resources” vs.
“Operators” minology, modulo scheduling is classified as a resource-constrained,

cyclic scheduling problem. However, in the HLS-for-FPGA context, the
term “resource” usually corresponds to the low-level device resources
such as LUTs and FFs. The operations to be scheduled do not directly
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Table 2.1: Problem signature of the Modulo Scheduling Problem

Symbol Description

input

Q = QSh ∪Q∞ Operator types

QSh Shared operator types

Q∞ Unlimited operator types

aq ∈N, ∀q ∈ QSh Allocation (i.e. number of operator in-
stances) for shared operator type q

bq ∈N, ∀q ∈ QSh Blocking time (number of time steps)
of shared operator q

g = (O,E) Dependence graph

O =
⋃
q∈Q O

q Operations

Oq ∀q ∈ Q Operations using a specific operator
type q

li ∈N0, ∀i ∈ O Latency (number of time steps) of op-
eration i

E ⊆ O ×O Dependence edges

dij ∈N0, ∀(i→ j) ∈ E Edge distance (in number of iterations)

Lij ∈N0, ∀(i→ j) ∈ E Additional edge latency (number of
time steps)

output : A solution S, comprised of

IIS ∈N Initiation interval

tSi ∈N0, ∀i ∈ O Schedule, i.e. a start time for each oper-
ation i

use these resources, but rather require access to a (potentially) limited
number of operators, to fulfil their intended function. To that end, the
terminology in this thesis hinges around the term “operator”.

2.4 formal definition of the modulo scheduling prob-
lem

We now introduce the signature of the basic Modulo Scheduling Prob-
lem (MSP) used throughout this thesis. Tables 2.1 and 2.2 summarise
the notation.

The input is comprised of two main parts, i.e. a specification of the
operator model and the dependence graph representing the computation in
one iteration of a pipelined loop. As a solution to the problem, we seek
a feasible Initiation Interval (II) and a corresponding schedule. This
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Table 2.2: Supplementary notations

Symbol Description

OSh =
⋃
q∈QSh Oq Operations using a shared operator

type

O∞ =
⋃
q∈Q∞ Oq Operations using an unlimited op-

erator type

σ(i) σ : O → Q Operator type used by operation i

σ(i) = q⇔ i ∈ Oq

lij = li + Lij, ∀(i→ j) ∈ E Required number of time steps
between operations i and j

TS = maxi∈O tSi + li Schedule length, i.e. latest finish
time of all operations

definition assumes that the three HLS phases allocation – scheduling –
binding are performed separately and in that order. In consequence,
the operator allocation is a parameter to the MSP, and a valid bindingIn Chapter 5, we

extend the problem
to encompass

scheduling and
allocation

needs to be computed after scheduling.

operator model The set of operator types Q is partitioned into
the sets of shared types QSh and unlimited types Q∞. The HLS tool
allocated aq instances of each shared operator type q ∈ QSh. q is
characterised by its blocking time bq, which means its instances can
accept new input values from a different operation every bq time
steps.

This operator model corresponds to the “block reservation tables”
described by Rau [74], as a single operator is used for bq consecutive
time steps, relative to the operation’s start time. Eichenberger [24]
showed that in this case, a valid binding is guaranteed to exist if the
number of users of an operator type does not exceed its allocation
at any time. A small caveat here is that unrolling the schedule a
certain number of times during hardware generation may be required
if non-fully-pipelined operators are present (cf. Figure 2.10).

dependence graph The dependence graph g = (O,E) is defined
by its sets of operations and edges. The set of operations O is par-
titioned into the sets Oq that group together all operations using a
specific operator type q ∈ Q. This means that each operation i is
associated with exactly one operator type σ(i), as specified by the
mapping function σ. For notational convenience, we also define OSh to
contain operations using any shared operator type, and O∞ to include
operations using an unlimited operator type.

Each operation i is characterised by its latency li, i.e. the number of
time steps after which the operation’s result is available. It is common,
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but not required that all i ∈ Oq derive the same latency from their
operator type.

The dependence edges E model the data flow, and other precedence
relationships between the operations. Each edge (i→ j) has a distance
dij, which indicates how many iterations later the dependence has to
be satisfied. Intra-iteration dependences have dij = 0 and thus require
that i precedes j in the same iteration. Conversely, edges with dij > 1
model inter-iteration dependences, which we also call backedges for
short, as they often point in the opposite direction of the normal data
flow. The dependence graph may contain cycles that contain at least
one backedge, but not every backedge must span a cycle.

An edge may also carry a latency Lij. We introduce lij = li + Lij as We will use the edge
latency to statically
limit the amount of
chaining
(Section 2.2.1), and
in our problem-
compression
algorithm
(Chapter 4).

a shorthand notation for the smallest number of time steps that j can
start after i, according to the edge (i→ j).

Table 2.3 specifies the MSP instance corresponding to our running
example from Figure 2.1.

solution A solution S is comprised of an integer initiation interval
IIS and the schedule, i.e. a start time tSi for each operation i ∈ O. The W.l.o.g., we assume

that the schedule
starts at time step 0.

schedule length TS = maxi∈O tSi + li is defined as the latest finish
time of all operations, and corresponds to the latency of one loop
iteration.

The solution is feasible if and only if the constraints (2.1) and (2.2)
are satisfied.

The precedence constraints (2.1) ensure that enough time steps
separate the start times of the endpoints of a dependence edge (i→ j).
For backedges, the right-hand side of the constraint represents j’s start
time, only dij iterations later, as a new iteration will be initiated every
IIS time steps.

tSi + lij 6 t
S
j + dij · IIS ∀(i→ j) ∈ E (2.1)

The operator constraints (2.2) guarantee that no shared operator
type q is oversubscribed in any congruence class modulo IIS. Recall
that per our operator model, an operation i ∈ Oq exclusively uses
a q-instance in its start time step tSi and the following bi − 1 time
steps. Formally, we enumerate these time steps with the help of β, and
determine the congruence classes in which i uses its operator. Then,
we simply count the number of operations that require a q-instance in
every congruence class x.

∣∣{i ∈ Oq : x ∈ {(tSi +β) mod IIS : ∀β ∈ [0,bq − 1]}
}∣∣ 6 aq

∀x ∈ [0, IIS − 1], ∀q ∈ QSh (2.2)
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Table 2.3: MSP instance corresponding to the CDFG in Figure 2.1. Constants
were omitted for brevity. A valid schedule is shown in Figure 2.7.

Q∞ = {PHI, ADD, SUB, AND, SHR}

QSh = {MUL, LOAD, STORE}

Q = Q∞ ∪QSh

OPHI = {phi}

OADD = {add1, add2}

OSUB = {sub1, sub2}

OAND = {and1, and2}

OSHR = {shr1, shr2}

OMUL = {mul1, mul2}

OLOAD = {load1, load2}

OSTORE = {store}

O =
⋃
q∈Q O

q

E = {(phi→ sub1), (phi→ sub2), (phi→ add1),

(sub1 → load1), (sub2 → load2),

(load1 → add2), (load2 → add2),

(add2 → and1), (and1 → mul1), (mul1 → shr1)

(shr1 → and2), (and2 → mul2), (mul2 → shr2)

(shr2 → store), (add1 → phi)

(store→ load1), (store→ load2)}

bq = 1 ∀q ∈ QSh

aq = 1 ∀q ∈ QSh

li = 1 for i ∈ {phi, load1, load2, store}

li = 0 for all other operations i ∈ O
dadd1 phi = 1

dstore load1 = 2

dstore load2 = 1

dij = 0 for all other edges (i→ j) ∈ E
Lij = 0 ∀(i→ j) ∈ E
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Table 2.4: Chaining extension for the Modulo Scheduling Problem

Symbol Description

input

zin
i , zout ∈ R+, ∀i ∈ O Incoming and outgoing physical delay

(e.g. in nanoseconds) of operation i

Z ∈ R+ Desired cycle time

output A solution S, augmented with

zSi ∈ R+, ∀i ∈ O Physical start time of operation i within
time step tSi

objective Modulo scheduling is usually a bi-criteria optimisation
problem, with the minimisation of the II being the first objective. In
this thesis, if not stated otherwise, we minimise the schedule length
as the second objective. Note that in practice, minimising the II is far We discuss other

possible objectives in
Section 2.7.1.

more important than optimising for any additional objective. To that
end, we will attempt to minimise the tuple (IIS, TS) lexicographically.

2.5 scheduler support for operator chaining

The MSP is defined in terms of abstract time steps, which later cor-
respond to clock cycles in the design generated by the HLS tool. An
adjacent concern for HLS-schedulers is to limit the amount of chaining
that results from the computed schedule, in order to meet a desired
cycle time Z for the generated design (cf. Section 2.2.1).

Table 2.4 summarises a suitable extension to the MSP definition. Each
operation i incurs an incoming and an outgoing physical propagation
delay (zin

i , respectively zout
i ). As part of a solution S, we determine

a physical start time zSi , relative to the beginning of the cycle, for
each operation i. Intuitively, we need to ensure that no chain of data-
dependent operations scheduled to the same time step exceeds the
target cycle time. More precisely, in (2.3) we recursively define the
physical start time of an operation j as the latest physical finish time
of j’s predecessors regarding the dependence edges. Given an edge
(i→ j), a chain is formed (or continued) only if operation i finishes
in the same time step as j starts. Operations amenable to chaining
often have a latency of zero time steps. In this case, there is effectively
only one propagation delay, and we expect the specified incoming
and outgoing delays to be equal. The cycle time constraints (2.4)
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express that an operation j must start early enough in its time step to
accommodate its incoming delay.

zSj = max {zSi + z
out
i | ∀(i→ j) ∈ E : tSi + li = t

S
j } ∪ {0}

∀j ∈ O (2.3)

zSj + z
in
j 6 Z ∀j ∈ O (2.4)

The basic idea to enforce constraints (2.4) is to introduce additional
time steps between operations that would exceed the cycle time when
chained together [15]. For that purpose, we add extra edges (u→ v)

with a latency Luv = 1 to the MSP instance, so that the cycle time
constraints can be transparently considered in the remaining parts of
the HLS flow, e.g. to compute more precise bounds prior to the actual
scheduling.

Algorithm 1 Algorithm to compute chain-breaking edges

1: The algorithm operates on the acyclic subgraph
g ′ = (O, {(i→ j) ∈ E : dij = 0}) of g.

2: for all operations v ∈ O, in topological order do
3: CHLv[v]← 0.0
4: for incoming edges (u→ v) do
5: if Luv > 0 then
6: continue
7: if lu > 0 then
8: CHLv[u]← zout

u

9: continue
10: for all chain-starting operations p ∈ CHLu do
11: CHLv[p]← max(CHLu[p] + zout

u , CHLv[p])

12: for all chain-starting operations p ∈ CHLv do
13: if CHLv[p] + zin

v > Z then
14: introduce chain-breaking edge (p→ v) with Lpv = 1
15: remove p from CHLv

Algorithm 1 outlines a procedure to compute the chain-breaking
edges for a given MSP instance. As preparation, we determine the
acyclic subgraph of the dependence graph, and associate a dictionaryWe assume here that

no operator chaining
occurs along

backedges.

CHLv with each operation v. CHLv[p] denotes the accumulated delay
on the longest chain from p to v.

We visit each operation v in topological order (Line 2), and register
v in its own dictionary (Line 3). Then, we inspect v’s incoming edges
(Line 4). Edges already carrying an extra latency do not propagate any
delays (Line 5) and can be skipped. If the source operation u of the
edge has a non-zero latency, none of u’s incoming chains are extended
by it. We only register u’s outgoing delay (Line 8), and continue with
the next incoming edge.

Otherwise, u is combinatorial. The loop starting in Line 10 propag-
ates u’s incoming chains, suffixed by u itself, to v: in Line 11, we set
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Table 2.5: Chaining subproblem example, for the MSP in Table 2.3

Z = 5 ns

zin
i = Z for i ∈ {phi, load1, load2, store}

zout
i = 0 ns for i ∈ {phi, load1, load2, store}

zin
i = zout

i = 3 ns for i ∈ {mul1, mul2}

zin
i = zout

i = 2 ns for i ∈ {add1, add2}

zin
i = zout

i = 1 ns for i ∈ {and1, and2, shr1, shr2}

load2load1

add2

mul1

mul2

shr1

and1

and2

shr2

sub1 sub2

0xFF

c1

c2

3

28

2 1

phi

store

add1

Figure 2.8: Additional chain-breaking edges (green, edge latency = 1) for the
extended MSP defined by Table 2.3 and Table 2.5

CHLv[p] to the longest delay from p to u, plus u’s outgoing delay, if
that sum is greater than any previous entry for CHLv[p] (e.g. set by
another incoming edge).

After we have processed all incoming edges, we inspect all incoming
delays registered in CHLv in the loop in Line 12. If chaining v to a
chain starting at p would exceed the desired cycle time, as checked in
Line 13, we introduce a chain-breaking edge (Line 14), and remove p
from v dictionary accordingly (Line 15).

Let us assume a desired cycle time of 5 ns, and physical delays as
in Table 2.5 for the running example (Table 2.3). Then, applying the
algorithm above yields the green chain-breaking edges in Figure 2.8.

For the remainder of this thesis, we will not address the chaining
support explicitly, but instead assume that the MSP instance at hand
has been extended to contain the chain-breaking edges as discussed
in this section.
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Figure 2.9: Application of the pigeonhole principle to determine a lower
bound for the II with regards to a shared operator type q with
bq = 1. Each q-instance provides II-many slots to accept inputs
from different operations. If only one q instance is available (as
shown), the II must therefore be at least 4 in order to accommod-
ate operations A–D.

2.6 bounds for the ii search space

Before scheduling, it is common to compute bounds from the MSP
instance that restrict the search space for the smallest feasible II to
sensible values.

2.6.1 Lower Bound

The lower bound IImin is usually defined as in (2.5), i.e. as the max-
imum of the recurrence-constrained minimum II and the operator-
constrained minimum II [74].

IImin = max(IIrec, IIopr) (2.5)

IIrec = max
C∈cycles(G)

⌈∑
(i→j)∈C lij∑
(i→j)∈C dij

⌉
(2.6)

IIopr = max
q∈QSh

{
max

(⌈
|Oq| · bq
aq

⌉
,bq

)}
(2.7)

recurrence-constrained minimum ii The recurrences (cycles)
in the dependence graph impose a lower bound for any feasible II. The
repeated application of the precedence constraint (2.1) to the edges
in a recurrence leads to the form in (2.6). However, computing the
lower bound in this way would require the enumeration of all cycles
in the graph. Instead, we compute IIrec as the optimal solution to the
ILP (2.8)–(2.10), defined for integer variables ti that model the startAs noted by

Dinechin [19], this is
a resource-free cyclic
scheduling problem,
which can be solved

optimally in
polynomial time.

time step for each operation i, and an integer variable II that models
the recurrence-induced II to be minimised.

min II (2.8)

s.t. ti + lij 6 tj + dij · II ∀(i→ j) ∈ E (2.9)

II ∈N, ti ∈N0 ∀i ∈ O (2.10)



2.6 bounds for the ii search space 23

slot 1
slot 2

slot 0
II = 3

C
A

q-instance 1

slot 1
slot 2

slot 0

B
q-instance 2

Figure 2.10: Now considering a shared operator type q with bq = 2. Two
q-instances together provide six slots, which is just enough
to accommodate three operations blocking two slots each. A
valid binding does exist, but will require unrolling the finished
schedule [24].

operator-constrained minimum ii The definition (2.7) of
IIopr follows from the operator constraints (2.2). Considering a shared
operator type q, every q-instance provides II-many slots to accept
inputs from a different operation. These slots correspond to the con-
gruence classes modulo II of the operations’ start times. We have |Oq|

operations that each block their associated operator instance for bq
time steps. It follows that a feasible II must respect the inequality
(2.11).

II · aq︸ ︷︷ ︸
available slots

> |Oq| · bq︸ ︷︷ ︸
required slots

(2.11)

Intuitively, this lower bound is an application of the pigeonhole
principle, as illustrated in Figure 2.9. Figure 2.10 shows the situation
for an operator type with a longer blocking time, and outlines the Shared operator

types in the HLS
context usually are
fully-pipelined, so
this is only a minor
concern.

aforementioned problem of finding a binding after scheduling.
Note that an operation can never be interrupted and continued on

an additional operator instance. To that end, the II must be greater or
equal to the maximum blocking time across all shared operator types.

Consider the running example that has been augmented with chain-
breaking edges in Figure 2.8. Here, we have IIrec = 5, set by the
recurrence spanned by the backedge (store→ load2). Both the LOAD

and MUL operator types have two users. As we allocated only one
instance of each, the IIopr is 2. All shared operator types are fully-
pipelined. Altogether, we compute IImin = 5 for the example.

2.6.2 Upper Bound

A trivial upper bound IImax is the length of any operator-constrained
non-modulo schedule. IIs larger than this value indicate that it would
actually be faster to execute this loop in a non-overlapping manner.
We use a non-modulo SDC scheduler [15] with heuristic operator
constraints to quickly compute such a fallback schedule, and use its
length to define IImax.
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2.7 survey of modulo scheduling approaches

This section highlights common themes in modulo schedulers, and
categorises the landscape of approaches previously presented in the
literature.

2.7.1 Target Architecture

Loop pipelining is most useful when the target architecture provides
multiple parallel functional units. Software-programmable out-of-
order processors rely on dynamic scheduling to derive the appropriate
execution sequences at run-time. Parallel in-order processors (such
as VLIW architectures), or statically scheduled hardware accelerators
created by HLS, however, rely on the compiler/synthesis tool to pre-
compute their execution schedules, almost always by using a modulo
scheduler.

In both application areas, the basic MSP is the same, with the
primary objective being to find a schedule with the minimally feasible
II. Nevertheless, instances from a VLIW context differ from HLS
instances in several aspects, and in consequence, so do the schedulers
proposed to solve them.

resource/operator models VLIW processors provide resources
such as arithmetic logic units, register files, and communication busses,
which are fixed in the processor’s microarchitecture. In consequence,
VLIW modulo schedulers typically face tight resource constraints (2.2)
in each time step and for all operations. Additionally, depending on
the complexity of the microarchitecture, operations may require ac-
cess to several resources in different time steps relative to their start
time, encoded in form of reservation tables [25, 74] that have to be
considered during scheduling to detect potential resource conflicts.
Examples for schedulers proposed with VLIW architectures in mind
are [20, 26, 40, 52, 56, 74].

In contrast, an FPGA is comprised of a fixed number of low-level
resources, which are not bound directly to operations, but rather used
to instantiate operators that perform the intended function. Typically,
operations are associated with only one operator type, resulting in
a much simpler operator model in which it suffices to specify how
many time steps an operator is blocked by an operation, relative to its
start time.

HLS operators also exhibit properties that are not possible in a
VLIW context (cf. Sections 2.2.1 to 2.2.2). First, many operator types
have simple FPGA implementations, allowing the HLS tool to instanti-
ate them as needed. Operations using these operator types therefore
are not “resource-constrained” in the classical sense in the scheduling
problem. Secondly, operators may have a latency of zero time steps,
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and only incur a small physical delay. Therefore, modulo schedulers
targeting HLS (e.g. [7, 17, 95]) may take advantage of the simpler op-
erator model, but need to support unlimited and chainable operators
efficiently.

binding A modulo scheduler must model the binding between the
operations and resources/operators either if it should be optimised
according to a secondary objective (see next paragraph), or if it is
decisive for the feasibility of the computed schedule. As mentioned
in Section 2.4, for HLS operator types it is sufficient to ensure that
the allocated operator instances are not oversubscribed. In contrast,
VLIW modulo schedulers may need to detect more elaborate resource
conflicts [25], depending on the complexity of the processor’s mi-
croarchitecture, and thus are required to consider the binding during
scheduling, typically in form of a Modulo Reservation Table (MRT)
[52]. An MRT is a table with rows for the available resource/operator
instances, and columns for the congruence classes (cf. Figure 3.1). At
most one operation can be assigned to each table cell.

secondary objectives The choice of a secondary optimisation
objective, after finding the smallest feasible II, also largely depends on
a scheduler’s target architecture.

In the simplest case, no secondary objective is imposed at all, which
means that we are only interested in finding any feasible schedule for a
determined II. Minimising the schedule length, which corresponds to
the latency (or makespan) for the computation of one loop iteration, is
common in the HLS context. VLIW modulo schedulers often attempt
to achieve a schedule with a low register demand in the subsequent
code generation step. The direct way to model this objective is to
minimise the maximum number of intermediate values that are live in
any time step [27]. As a simpler alternative, the accumulation of the
lifetimes of such values can be minimised, as, for example, in [19, 40,
56]. Sittel et al. [79] used a similar objective to reduce the number of
distinct connections in a HLS datapath.

The HLS domain, with its application-specific microarchitectures,
allows for the resource demand of the data path to be an optimisa-
tion objective, which was explored by Fan et al. [29] and Šůcha and
Hanzálek [86].

2.7.2 Search Strategies for the II

Almost all known modulo scheduling approaches try to find the
smallest feasible II by attempting to schedule a given MSP instance
with several candidate IIs, until a feasible solution is found. In the
context of one scheduling attempt, the II is a constant parameter.
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Normally, the search begins at the lower bound, IImin, and pro-
gresses to the next II in case no feasible solution was found [74].
Binary search [76, 86] can be used alternatively, assuming that all can-
didate IIs after the first feasible one are also feasible, which Lam [52]
notes may be false, but only for particularly complex VLIW resource
models.

To the best of our knowledge, the only exception to the iterative II
minimisation approach is the constraint programming formulation by
Bonfietti et al. [6].

2.7.3 Heuristic vs. Exact Approaches

Modulo schedules can be determined either by heuristics or by using
mathematical formulations to solve the problem exactly. While heur-
istics are not guaranteed to find the optimal solution (and often only
produce feasible solutions), they usually come with a shorter com-
putation time compared to the exact approaches, which are typically
associated with impractically long runtimes.

Intuitively, what makes modulo scheduling “hard” (even NP-hard in
general [52]) is the interaction of the inter-iteration dependences with
the resource/operator constraints. The former impose deadlines for
the operations, while the latter may require operations to be scheduled
later than their earliest possible start time due to resource/operator
conflicts [74].

We categorise approaches according to the framework they are
formulated within, as it is decisive for the scheduling time, and quality
of results to be expected from a particular algorithm.

no framework Most of the early heuristic approaches were stan-
dalone algorithms [40, 56, 74] that traversed the input graph one or
more times, and determined the start time for the operations one
after the other. These algorithms might get stuck at some point, if the
partial schedule built so far cannot be extended for the next operation.
A common theme to resolve this situation is the use of backtracking,
i.e. the unscheduling of some or all operations before restarting the
scheduling procedure. Codina, Llosa and González [11] explain the
differences in the most relevant approaches, and provide a detailed
performance evaluation.

system of difference constraints Linear programs, defined
in terms of real decision variables, are in general not suitable for
modelling scheduling problems, because the operations’ start time
need to be integer. However, one important theoretical result is that a
linear program has an optimal integer solution if its constraint matrix
is totally unimodular [78].
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This insight has been used by Dinechin [19] in a resource-free VLIW
modulo scheduling approach. Furthermore, the property holds for
Systems of Difference Constraints (SDCs), a subclass of linear programs
in which all constraints take the form x− y 6 c for decision variables
x and y, and a constant integer value c [15].

SDCs are able to capture the kinds of timing constraints required in
an HLS modulo scheduler, including support for operator chaining.
However, there is no exact translation of the operator constraints into
the SDC framework. To that end, several strategies to augment an
SDC-based scheduler to handle the operator constraints have been
investigated.

The approaches proposed by Zhang and Liu [95] and Canis, Brown
and Anderson [7] both use an MRT internally, and share the following
basic procedure. A scheduling attempt starts with the computation of
a non-operator-constrained schedule. Then, the algorithms iteratively
try to assign shared operations to their designated time steps. The
MRT is queried for operator conflicts, and if no conflicts arise, an
operation’s assignment is fixed in the underlying SDC by adding new
equality constraints. Otherwise, a new constraint to move the conflict-
ing operation to the next time step is introduced. The SDC is solved
afterwards to check the feasibility of the current partial schedule.
Should the schedule become infeasible, the ModuloSDC algorithm
[7] uses backtracking to revert some of the previous assignments and
resumes. In contrast, Zhang and Liu [95] propose to prioritise opera-
tions in a way to minimise the perturbation of their assignment to the
MRT, and give up on a scheduling attempt if an assignment results in
an infeasible partial schedule.

The aforementioned approaches, as well as the work by Souza Rosa,
Bouganis and Bonato [84] who combined an SDC with a genetic
algorithm to evolve the assignment of operations to the MRT, have to
be classified as heuristics, because the decoupling of the scheduling
and MRT handling parts. Even if the SDC is minimised according to a
linear objective, e.g. the schedule length, an optimal solution is only
optimal for a particular, heuristically determined MRT assignment. In
consequence, it is impossible to prove that an MSP is infeasible for a
certain II without enumerating all possible MRT assignments.

Recently, Dai and Zhang [17] proposed an exact SDC-based modulo
scheduling approach that models conflicting usage of operators as a
Boolean satisfiability (SAT) problem. The SDC and SAT part of the
formulation are invoked in an alternating way, and improve the re-
spective other model successively, until a feasible schedule is found, or
infeasibility was proven. They report shorter scheduler run-times com-
pared to a preliminary version [63] of the ILP formulation presented
in Chapter 3, and attribute the speed-up to the advantageous scaling
properties of SAT solvers in this setting.
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integer linear programs Previously, the MSP has also been
modelled exactly as an ILP for a single candidate interval II. Several
formulations have been proposed that can be classified roughly accord-
ing to their modelling of the operations’ start times ti, and handling
of the resource/operator constraints.

Time-indexed formulations use binary decision variables txi per op-
eration i and time step x to represent that i starts in x. The resource
usage is constrained by comparing the sum of the txi variables over the
relevant time steps with the number of available resource/operator
instances.

The formulation by Dinechin [20] exclusively uses such binaries
to model the time steps up to a predefined time horizon, i.e. an
upper bound Tmax for the schedule length, as ti =

∑Tmax

x=0 x · t
x
i . As the

formulation cannot be efficiently solved for large instances, a large
neighbourhood search (LNS) heuristic is proposed. It speeds up the
scheduling process as a schedule for II − 1 can easily be constructed
(if it exists) given a feasible solution for II.

Zhao et al. [97] use a time-indexed formulation to implement a
mapping-aware scheduler, which does not work with fixed, predeter-
mined delays to support operator chaining, but considers the actual
mapping of nets to look-up tables during scheduling. However, in
their experiments, adding the technique to the ILP slowed the solver
down significantly.

In the formulation by Eichenberger and Davidson [26], the start
times are decomposed according to the Euclidean division by II, as
ti = yi · II +

∑II−1
x=0 x ·mxi . Here, binary decision variables model the

assignment of the start time to the congruence classes 0 . . . II − 1, but
integer variables yi represent the so-called stage, i.e. the multiple of
II contained in ti. The formulation is a frequent point of reference in
this thesis. To that end, we present the complete formulation, adapted
to our notation, in Section 2.8.1.

Ayala and Artigues [4] compare the aforementioned time-indexed
formulations and report that the one by Eichenberger and Davidson
[26] is always faster on their set of industrial instances. The authors
obtain stronger variants of the formulations by applying a Dantzig-
Wolfe decomposition, but rely on a column-generation scheme to cope
with the increased number of decision variables. Fan et al. [29] extend
the formulation by Eichenberger and Davidson [26] to also compute a
binding, a requirement for their cost-sensitive modulo scheduler.

Formulations using integer variables to directly model the (poten-
tially decomposed) start times promise to work with fewer decision
variables overall. A common element in integer-based formulations
is the concept of overlap variables, i.e. binary variables that express
an ordering relation on the values of the ti mod II. Such formulations
were proposed by Altman, Govindarajan and Gao [2] and Šůcha and
Hanzálek [86]. As the latter (and more recent) formulation is part of



2.8 prior ilp formulations 29

our experimental evaluation in Chapter 5, we present it in our notation
in Section 2.8.2.

other exact approaches In addition to ILPs, the MSP can be
solved with an enumeration scheme and extensive pruning [1], or
Constraint Programming (CP). The CP framework allows to formulate
more powerful constraints, and therefore needs less abstractions as
an ILP model, making an integrated handling of the II minimisation
possible, as shown by Bonfietti et al. [6]. Their approach achieves
competitive or better performance compared to heuristics and ILP for-
mulations by implementing highly problem-specific search strategies
instead of the more generic branch-and-bound techniques typically
employed in ILP solvers.

2.8 prior ilp formulations

The survey in the previous section also yielded the insight that no
generally accepted notation for describing MSP instances exists. To
make the features of the two most relevant works easier to reference
in the following chapters, we present them here in our notation.

2.8.1 Formulation by Eichenberger and Davidson

Eichenberger and Davidson [26] presented the following ILP formula-
tion, which we reference as EDform in the remainder of this thesis.

min T (2.12)

s.t.
II−1∑
x=0

mxi = 1 ∀i ∈ O (2.13)

∑
i∈Oq

bq−1∑
x ′=0

m
(x−x ′) mod II
i 6 aq

∀x ∈ [0, II − 1], ∀q ∈ QSh (2.14)
II−1∑
x ′=x

mx
′
i +

(x+lij−1) mod II∑
x ′=0

mx
′
j + yi − yj 6 dij −

⌊
x+ lij − 1

II

⌋
+ 1

∀x ∈ [0, II − 1], ∀(i→ j) ∈ E (2.15)

li + yi · II +
II−1∑
x=1

x ·mxi 6 T ∀i ∈ O (2.16)

mxi ∈ {0, 1} ∀x ∈ [0, II − 1], ∀i ∈ O (2.17)

yi ∈N0 ∀i ∈ O (2.18)

T ∈N0 (2.19)

The formulation assumes the II to be a parameter, and thus requires
an external driver that supplies candidate IIs until a feasible solution is
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found. Each operation i’s start time is decomposed into a multiple yi
of the candidate II and II-many binariesmxi that encode i’s congruenceThis multiple is also

called the “stage” of
the operation.

class. (2.17)–(2.18) are the corresponding domain constraints. After a
solution S is found, the start time tSi for every operation i ∈ O can be

extracted as tSi = yi · IIS +
∑IIS−1
x=1 x ·m

x
i .

(2.14) count the operations that occupy an operator instance in each
of the congruence classes, taking into account that an operation blocks
a q-operator for bq consecutive time steps. For example, let II = 5

and bq = 2. Then, i uses an instance of q in a particular congruence
class x, say x = 3, if it starts in congruence classes 3− 0 mod 5 = 3 or
3− 1 mod 5 = 2.

The unique feature of the EDform are the 0-1-structured depend-
ence constraints (2.15). “0-1-structured” means that every decision
variable occurs only once, and is multiplied by either -1, 0, or 1. These
constraints have the effect that the LP solutions of the ILP already
are mostly integer (similar to the SDC framework, in which the LP
solution is guaranteed to be integer). In consequence, significantly
fewer branch-and-bound nodes need to be computed during the ILP
solving process [26], and an almost tenfold speed-up over was reached
over a prior version [28]. However, the drawback of this modelling is
that each edge is represented by II-many constraints.

To gain an intuition of how constraints (2.15) work in the simplest
case (refer to [26] for a general, formal derivation), let us assume we
have a candidate interval II = 3, and an edge (u → v) with luv = 1

and duv = 0. This results in the constraints (2.20)–(2.22).

(m0u +m1u +m2u) + (m0v) + yu − yv 6 1 x = 0 (2.20)

(m1u +m2u) + (m0v +m
1
v) + yu − yv 6 1 x = 1 (2.21)

(m2u) + (m0v +m
1
v +m

2
v) + yu − yv 6 1 x = 2 (2.22)

Recall that the edge is supposed to ensure that operation u finishes
before v starts. (2.20) expresses, “if v is scheduled to congruence classNote that

m0i +m
1
i +m

2
i = 1

for all operations i,
due to (2.13).

0, then u must be scheduled an entire stage ahead of v. (2.21) reads,
“if u is scheduled to congruence classes 1–2, then v must be either
scheduled to congruence class 2, or u must be scheduled an entire
stage ahead of v. Lastly, (2.22) means, “if u is scheduled to congruence
class 2, then u must be scheduled an entire stage ahead of v. Together,
these three constraints establish the edge’s desired semantic.

We added the decision variable for the schedule length (2.19), con-
straints (2.16) for its definition, and use it to change the objective (2.12)
to a schedule length minimisation. In our implementation, we only
introduce the constraints for sink nodes in the graph, i.e. operations
without outgoing zero-distance edges.
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2.8.2 Formulation by Šůcha and Hanzálek

We now adapt the unit processing time formulation by Šůcha and
Hanzálek [86] to our notation, which we will refer to as SHform.
In their terminology, “unit processing time” means that all shared
operator types are fully pipelined. They also present a variant of the
formulation suitable for arbitrary blocking times.

The SHform requires that the candidate II is an externally specified
parameter.

Let D =
{
(q, i, j) | ∀q ∈ QSh : ∀i, j ∈ Oq, i < j

}
min T (2.23)

s.t. mj + yj · II −mi − yi · II > lij − II · dij ∀(i→ j) ∈ E (2.24)

mi −mj + II · µ(x)
ij + (1− II) · µ(y)

ij > 1 ∀(q, i, j) ∈ D (2.25)

mi −mj + II · µ(x)
ij − µ

(y)
ij 6 II − 1 ∀(q, i, j) ∈ D (2.26)

− µ(x)
ij + µ

(y)
ij 6 0 ∀(q, i, j) ∈ D (2.27)∑

j∈Oq:i 6=j
µ

(y)
ij 6 aq − 1 ∀i ∈ Oq, ∀q ∈ Q (2.28)

yi · II +mi + li 6 T ∀i ∈ O (2.29)

yi, mi ∈N0 ∀i ∈ O (2.30)

µ(x)
ij, µ

(y)
ij ∈ {0, 1} ∀(q, i, j) ∈ D (2.31)

T ∈N0 (2.32)

In the model, an operation i’s start time is decomposed into two
integer variables (2.30), i.e. the multiple yi of the II, and the index of
the congruence class mi. Within a feasible solution S, the start time tSi
is derived as tSi = yi · IIS +mi.

Constraints (2.24) model the MSP’s precedence constraints (2.1),
albeit in the aforementioned decomposed form.

Constraints (2.25)–(2.27) define the binary variables µ(x)
ij and µ

(y)
ij

(2.31) to the semantic shown in (2.33). These definitions are introduced
for unique pairs of operations using the same shared operator type.
We assume the existence of an arbitrary total order “<” among the
operations, and use the symbol D as a short-hand notation for the
constraints’ domain specification.

µ(x)
ij =

1 mi 6 mj

0 otherwise
µ

(y)
ij =

1 mi = mj

0 otherwise
(2.33)

If µ(y)
ij = 1, i and j cannot share the same operator instance. Constraints

(2.28) count these conflicts per operation, and ensure that enough
operator instances are available for the operation itself, plus all others
it is in conflict with. Note though that we use the weaker form of
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their constraints (9 in [86]) here, i.e. before applying their Lemma 1, as
otherwise the number of constraints in the ILP would be dependent
on the allocation, which in consequence would prevent the resource-
aware extension in Chapter 5.

We add a decision variable for the schedule length (2.32), define
it with constraints (2.29), and request to minimise it (2.23). Again,
these constraints are only required for the graph’s sink nodes in an
implementation of the scheduler.

2.9 research gap

We identify the three main research gaps.

1. There is lack a of comprehensive studies of exact modulo sched-
ulers in the HLS context, arguably also because there is no
representative data set available for comparison.
The SHform is intended to be used in HLS, but evaluated in
[86] with only a handful of instances. All other recent exact
approaches [4, 6, 20] were tested with a data set obtained from aNote that [17] was

published in 2019,
and uses our

benchmark instances.

VLIW software compiler. The available literature therefore does
not address the question if exact modulo scheduling can be prac-
tical in HLS, and how well approaches previously proposed for
a VLIW context work within an HLS environment.

2. ILPs appear to be the most popular framework for exact modulo
scheduling, but the iterative search for the optimal II apparently
has been accepted as compulsory.
We acknowledge the effort by Bonfietti et al. [6] here, but note
that such an approach involves a significant amount of engineer-
ing work using a CP solver library, whereas an ILP model is more
flexible and can be passed almost verbatim to the ILP solver’s
API, where it may benefit from the continuous improvements to
the solver’s internal algorithms without modification.

3. In HLS for FPGA, the amount of loop pipelining should be sub-
ject to the available resources, not pre-allocated operators. We
have two equally important, but competing objectives, which
should be subject to multi-criteria optimisation.
As mentioned earlier, Fan et al. [29] consider the resource de-
mand in their approach, but fix the number of functional units
before scheduling. Šůcha and Hanzálek [86] lay the groundwork
for a variable operator allocation, but do not investigate the
exploration of different trade-off solutions.

We address the first aspect in Chapters 3 to 4. The HLS-specific data
set was made public as part of the HatScheT scheduling toolkit [80].

The ILP-based Moovac formulation, also presented in Chapter 3,
refutes the second point. It enables a novel strategy to tackle the
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MSP due to its integrated II minimisation, which would have not been
possible with the EDform, and would require significantly more linear
constraints with the SHform.

Lastly, we introduce a framework for Multi-Objective Resource-
Aware Modulo Scheduling (MORAMS) in Chapter 5 to address the
third aspect.





3
E X A C T A N D P R A C T I C A L M O D U L O S C H E D U L I N G

In this chapter, we present Moovac, an exact formulation that models “Moovac” is an
acronym for

“Modulo overlap
variable constraint”.

all aspects of the problem defined in Section 2.4, allowing it to compute
an optimal solution. Moovac is an extension of a task scheduling
formulation by Venugopalan and Sinnen [90].

To the best of our knowledge, Moovac is the first ILP-based formula-
tion to integrate the search for the optimal II, but is also competitive in
a traditional, one-candidate-II-at-a-time setting. Moovac delivers high-
quality results faster than both a state-of-the-art heuristic scheduler
and a prior, highly-tuned ILP formulation.

We investigate strategies to improve the practicability of exact mod-
ulo scheduling, namely employing different time limits and upper
bounds for the schedule length. In this context, we propose improve-
ments to an existing bound that lead to significantly better schedule
length estimates. The effects of the different time limits and bounds
on the schedulers’ runtime and solution quality are evaluated in an
extensive experimental study covering 188 loops from two HLS bench-
mark suites.

Please note that the formulations presented in this chapter assume
that all shared operator types are fully pipelined internally, i.e. ∀q ∈
QSh : bq = 1. An extension to arbitrary, and even variable blocking
times will be discussed in Section 6.3.

This chapter is based on:

[65] Julian Oppermann, Melanie Reuter-Oppermann, Lukas Sommer, An-
dreas Koch and Oliver Sinnen. ‘Exact and Practical Modulo Scheduling
for High-Level Synthesis’. In: ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS) 12.2 (2019)

A preliminary version appeared as:

[63] Julian Oppermann, Andreas Koch, Melanie Reuter-Oppermann and
Oliver Sinnen. ‘ILP-based modulo scheduling for high-level synthesis’.
In: International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, CASES, Pittsburgh, Pennsylvania, USA. 2016

3.1 the moovac formulation

We propose to tackle the MSP by including as much information as
possible into an ILP. To this end, we integrate the II minimisation into
the formulation and obtain a bi-criteria problem that we call Moovac-I.
As discussed in Section 2.7, there are various different approaches how
to formulate a scheduling problem as an ILP, using different decision

35
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variables. Recent work on a related scheduling problem has shown
that using overlap variables is more efficient than other approaches
[90], so we take this approach here. Together with a linearisation
of otherwise quadratic constraints, we expect to achieve a problem
structure that can be solved in reasonable time for practically relevant
problem instances. In addition, the entire runtime is used to determine
a feasible and potentially optimal solution, while a practical downside
of single-II approaches is that the time spent on unsuccessful candidate
IIs is ultimately lost.

We also introduce a non-integrated variant of the Moovac formula-
tion that follows the traditional approach to modulo scheduling and
models a single scheduling attempt for a particular candidate II. Thus,
we solve a formulation with only one objective, i.e. to minimise the
schedule length. Solving the MSP then requires an external driver that
traverses the II search space until a feasible solution is found. ThisTraditionally,

increasing candidate
intervals

II = IImin, IImin +

1, . . . , IImax are tried.
We discuss in

Section 3.3.4 why
this is still the most
viable approach for

our set of test
instances.

single-II variant of the Moovac formulation is called Moovac-S.

We start by defining the simpler formulation Moovac-S and then
present the necessary extensions for obtaining the more general Moovac-
I formulation.

3.1.1 Moovac-S

The problem signature of the Moovac-S formulation differs slightly
from the general signature in Table 2.1, as the II minimisation is
handled outside of the linear program that is introduced in the fol-
lowing sections. The bounds to the II search space, IImin and IImax,
are therefore passed to an external driver, which is also responsible
to return the solution’s interval, IIS. During the search, the driver
chooses one or more candidate intervals II that are passed to the ILP.
Inside of the ILP, II is a constant.

decision variables We model the problem with the decision
variables shown in Table 3.1: As stated in the problem signature, the
output we are seeking is a solution S that provides a start time tSi for
every operation i ∈ O. The variables ti directly model them in our
ILP formulation. With the externally specified latency li, an operation
i’s result will be available in time step ti + li. The variable T captures
the latest finish time across all operations.

For every shared operation i ∈ Oq using operator type q ∈ OSh, we
model the binding of one of the aq available instances to i with an
integer variable wi, which contains an index in the range [0,aq − 1].

Due to the nature of the modulo schedule, the start time of every op-
eration ti can be decomposed into a multiple yi of II plus a remainder
mi which is less than II. The start time ti is then ti = yi · II +mi.
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Table 3.1: Moovac-S: Decision variables

Variable and domain Description

T ∈N0 latest finish time (schedule length)

ti ∈N0 ∀i ∈ O start time

wi ∈N0 ∀i ∈ OSh index of operator used by operation

mi ∈N0 ∀i ∈ OSh index of congruence class (modulo II)

yi ∈N0 ∀i ∈ OSh helper in congruence class computation

ωij ∈ {0, 1} ∀i, j ∈ Oq,
1 wi < wj

0 otherwise
i 6= j,
∀q ∈ QSh

µij ∈ {0, 1} ∀i, j ∈ Oq,
1 mi < mj

0 otherwise
i 6= j,
∀q ∈ QSh

We define such variables for all shared operations i ∈ OSh. mi is the
congruence class (modulo II) implied by the current start time ti and
is represented by an integer in the range [0, II − 1]. yi’s value is bound
to the integer division bti/IIc.

operator limit mechanism A valid modulo schedule must not
oversubscribe any of the operator types q ∈ QSh in any congruence
class x ∈ [0, II − 1] (cf. (2.2) in Section 2.4). A common abstraction of
this condition is the MRT [74]. As illustrated in Figure 3.1, an MRT
contains a row for each allocated operator, and a column for each
congruence class (modulo the current candidate II). Heuristic modulo
schedulers often use an MRT as an explicit data structure, and success-
ively assign operations to the cells of the table. In order for a schedule
to be valid, it must be ensured that each cell is occupied by at most
one operation.

While we do not use an explicit MRT in the Moovac formulation,
it is still a useful intuition, as the wi and mi variables belonging to
an operation i ∈ Oq induce an MRT-like structure for operator type
q. Our goal therefore is to model that no pair of operations i, j ∈ Oq
shares an MRT cell. Formally, we wish to enforce

wi 6= wj ∨mi 6= mj ∀i, j ∈ Oq : i 6= j.

However, the inequality relations as well as the disjunction need to be
linearised for the ILP formulation.

To this end, we introduce the following overlap variables on all pairs
of operations i, j ∈ Oq, i 6= j that use the same shared operator type
q ∈ QSh. The binary variable ωij = 1 indicates that i’s operator index
is strictly less than j’s operator index. Analogously, µij = 1 models
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Figure 3.1: MRT as induced by the operations’ w- and m-decision variables.
Each operator type instance can only be used by one operation
per congruence class, thus each cell can be occupied by at most
one operation.

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

ωij ωji

μij μji

w
i-1

w
i

mi
w

i+1
mi+1mi-1… …

…
…

✗

w
j =

 …
mj = …  

✔ ✔ ✔

✔ ✔

✔ ✔ ✔

✔ (“no conflict”) ⇔ ωij + ωji + μij + μji ⩾ 1

Figure 3.2: Consider two operations i and j that compete for the same MRT
cell as indicated in Figure 3.1. This sketch shows the values of the
overlap variables (white = ’0’, grey = ’1’) for different assignments
of wj and mj in relation to wi and mi. For example, in the top
right corner, we assume wj = wi − 1 and mj = mi + 1, which is
an assignment that does not result in a conflict.

that i’s congruence class index is strictly less than j’s congruence
class index. With these variables, we can express wi 6= wj ⇔ wi <

wj ∨wi > wj ⇔ ωij +ωji > 1, and mi 6= mj ⇔ µij + µji > 1. It
follows that i and j are not in conflict if and only if ωij +ωji + µij +
µji > 1 is satisfied. Figure 3.2 demonstrates the interaction between
two operations’ w and m variables and their corresponding overlap
variables.

Note that the externally specified operator allocation aq is modelled
indirectly through the range of operator indices [0,aq − 1] that can
be assigned to the wi variables, or in terms of the MRT intuition,
through the number of rows that can be occupied by operations in
each congruence class. In consequence, we do not explicitly count the
number of operations in a particular congruence class to ensure (2.2).
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constraints Using the decision variables defined in Table 3.1, the
ILP formulation of Moovac-S is described by the objective (3.1) and
constraints (3.2)–(3.16). The constraints related to the operator limit
mechanism are defined for all pairs of different operations using the
same shared operator type. For brevity, we introduce the symbol D to
factor out the domain specification for these constraints.

Let D =
{
(q, i, j) | ∀q ∈ QSh : ∀i, j ∈ Oq, i 6= j

}
min T (3.1)

s.t. ti + lij 6 tj + dij · II ∀(i→ j) ∈ E (3.2)

ωij +ωji 6 1 ∀(q, i, j) ∈ D (3.3)

wj −wi − 1− (ωij − 1) · aq > 0 ∀(q, i, j) ∈ D (3.4)

wj −wi −ωij · aq 6 0 ∀(q, i, j) ∈ D (3.5)

µij + µji 6 1 ∀(q, i, j) ∈ D (3.6)

mj −mi − 1− (µij − 1) · II > 0 ∀(q, i, j) ∈ D (3.7)

mj −mi − µij · II 6 0 ∀(q, i, j) ∈ D (3.8)

ωij +ωji + µij + µji > 1 ∀(q, i, j) ∈ D (3.9)

ti = yi · II +mi ∀i ∈ OSh (3.10)

wi 6 aσ(i) − 1 ∀i ∈ OSh (3.11)

mi 6 II − 1 ∀i ∈ OSh (3.12)

ti + li 6 T ∀i ∈ O (3.13)

ti ∈N0 ∀i ∈ O (3.14)

wi,yi,mi ∈N0 ∀i ∈ OSh (3.15)

ωij,µij ∈ {0, 1} ∀(q, i, j) ∈ D (3.16)

The default objective is to minimise the schedule length (3.1).
We model the dependence edges with (3.2), which are directly

adopted from the precedence constraint (2.1) in the definition of the
MSP.

As both sets of overlap variables are defined by a strictly less relation,
for a given pair of operations i, j, ωij and ωji, as well as µij and µji
cannot be 1 at same time. This is ensured by (3.3) and (3.6).

The overlap variables are bound to their desired values by the pairs
of constraints (3.4)–(3.5) and (3.7)–(3.8), respectively. For brevity, we
explain their function in the context of µij, as the constraints for ωij
work analogously. (3.7) are fulfilled if mi < mj or µij = 0, and (3.8)
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are fulfilled if mi > mj or µij = 1. In these constraints, the second
expression uses the candidate II as a big-M constant, meaning that its
value is big enough to fulfil the constraint regardless of the rest of the
expression. Due to the apparent contradictions, these constraints can
only be fulfilled if and only if mi < mj and µij = 1, or mi > mj and
µij = 0, resulting in the desired behaviour.

As derived above, constraints (3.9) ensure a conflict-free operator
usage for every pair of operations i, j, i.e. the operations are either as-
signed to different operators, mapped to different congruence classes,
or both.

(3.10) define the congruence class index mi as expressed by the
operation’s start time ti modulo II.

(3.11) bound the operator instance indices for each operation using
shared type q to be less than the externally specified limit aq. Analog-
ously, (3.12) ensure that an operation’s congruence class index is less
or equal to the candidate II.

The latest finish time T is defined by (3.13) to be greater or equal to
the finish times of any operation. In our implementation, we restrict
this constraints to sink operations, i.e. operations that do not have
outgoing forward edges (i→ j) with dij = 0.

(3.14)–(3.16) are domain constraints to enforce non-negativity re-
spectively Boolean values for the decision variables.

3.1.2 Moovac-I

The Moovac-I formulation conforms to the problem signature in
Table 2.1.

Note that the structure of the linear program as defined by the
Moovac-S formulation is already independent of the concrete value
of the candidate II: The set of decision variables and constraints is the
same, and only the numerical values in the constraints differ between
scheduling attempts. This is not the case in time-indexed formulations,
such as EDform, in which the numbers of binary variables mxi and
constraints (cf. (2.15) in Section 2.8.1) vary with the candidate II.

In order to integrate the II minimisation into the Moovac-S for-
mulation, we replace the formerly constant candidate II with a new
integer decision variable II that is bounded to the II search space
as IImin 6 II 6 IImax. However, integrating the II minimisation na-
ively has a major drawback: It results in quadratic (i.e. containing a
multiplication of decision variables) constraints (3.7), (3.8) and (3.10).

We linearise constraints (3.7), (3.8) by replacing the occurrence of II
with the upper bound of the II search space, IImax:

mj −mi − 1− (µij − 1) · IImax > 0 ∀(q, i, j) ∈ D (3.17)

mj −mi − µij · IImax 6 0 ∀(q, i, j) ∈ D (3.18)



3.1 the moovac formulation 41

This has no effect on the constraints’ functionality, as the interval value
is used as a big-M constant here.

The remaining quadratic constraints (3.10) are broken down into
individual constraints for all possible values of yi. To this end, we need
to introduce an upper bound ymax for the yi variables. Recall that the
yi variables represent the value bti/IIc in the calculation of operation
i’s congruence class. Given an upper bound Tmax for the schedule
length (and in consequence, for all ti), and using the II search space’s We discuss possible

upper bounds in
Section 3.2.2.

lower bound IImin, the yi variables are bounded by ymax = bTmax/IIminc.
With this bound and introducing new binary variables ψ(x)

i for 0 6
x 6 ymax and all operations using a shared operator type, constraints
(3.10) are replaced by:

ψ
(x)
i = 1→ ti = x · II +mi ∀x ∈ [0,ymax] : ∀i ∈ OSh (3.19)

ymax∑
x=0

ψ
(x)
i > 1 ∀i ∈ OSh (3.20)

ymax∑
x=0

x ·ψ(x)
i = yi ∀i ∈ OSh (3.21)

ψ
(x)
i ∈ {0, 1} ∀i ∈ OSh, ∀x ∈ [0,ymax] (3.22)

The indicator constraints (3.19) conditionally model the modulo An indicator
constraint is of the
form 〈bin〉 =
〈val〉 → 〈cons〉: if
the binary variable
〈bin〉 has the value
〈val〉, the right-hand
side constraint
〈cons〉 must be
satisfied; otherwise,
it may be violated
[36]. Indicator
constraints are
supported natively in
modern ILP solvers.

decomposition for every possible value of yi. Constraints (3.20) force
that at least one of these linearised decompositions is selected for the
solution. Note that the >-constraints are sufficient here, as at most
one ψ(x)

i can be non-zero due to the mutually-exclusive nature of the
decomposition. Constraints (3.21) define the value of yi according
to the selected decomposition. These constraints are not required
for the correctness of the Moovac-I formulation, but make solutions
interchangeable between Moovac-I and Moovac-S, a property we
leverage in Section 3.2.1. Lastly, constraints (3.22) are the domain
constraints for the binary variables representing the possible values of
yi.

Note that a similar extension would be possible for the SHform,
but would incur a higher complexity: as the modulo decomposition is
interwoven with the modelling of the dependence edges (cf. (2.24) in
Section 2.8.2), the linearisation would concern all edges, instead of the
operations using shared operator types. Table 3.3 provides a statistical
breakdown of the instances used in our evaluation, and suggests that
|E|� |OSh|.

The MSP’s bi-criteria objective can now be modelled directly in the
Moovac-I formulation, which is defined by:

min II (3.23)

min T (3.24)

s.t. (3.2) − (3.6), (3.9), (3.11) − (3.16), (3.17) − (3.22)
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3.2 strategies for modulo scheduling in practice

We now discuss the use of time limits, and bounds on the sched-
ule length. A time limit allows to cap the worst-case solution times,
whereas a schedule length bound is required to make the integration
of the II search in the Moovac-I formulation possible, and can help to
narrow down the solution space.

3.2.1 Time-limited Scheduling

Since modulo scheduling is an NP-hard problem [52], we cannot
rule out the possibility to encounter problem instances that lead to
exponential runtimes when solved with the exact approaches, or cause
the heuristic approach to get stuck.

To this end, we impose a time limit λ per candidate II. For all
approaches, this includes the time κ to construct the linear program
via the solver’s API. Combining the exact approaches with a time limit
can lead to non-optimal solutions, however, we retain the ability to
qualify how close to optimality the returned solutions are, as discussed
in the following paragraphs.

optimal solution(s) Our optimisation objective for a given
MSP instance, as defined in Section 2.4, is to find a solution S which
lexicographically minimises the tuple (IIS, TS). Note that multiple
optimal solutions may exist according to this objective. For example,
consider a shared operator type that only provides one instance. The
operations using this type need to be sequentialised, however, the
actual order might make no difference to the resulting II and schedule
length.

We call a solution S optimal if it achieves the minimal interval II?,
and represents a schedule that has the minimal length T? among all
solutions with II?.

moovac-s , edform Each scheduling attempt with the single-II
Moovac formulation as well as with the EDform is executed as one
invocation of the ILP solver, so a time limit of λ− κ can directly be
specified via its API.

When the solver returns from a scheduling attempt for a candidate
interval, II, it reports one of the following outcomes:

• Optimal. A schedule was found, and the solver proved that its
length is optimal.

• Feasible. A schedule was found, but, within the time limit, the
solver was unable to determine whether its length is optimal.

• Unknown. No schedule was found within the time limit. We
conservatively consider the candidate II to be infeasible.
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• Infeasible. The solver proved that the candidate II is infeasible.

Now let IIS be the smallest candidate II for which at least a feasible
modulo schedule was found. IIS is the optimal II if, trivially, IIS = IImin,
or if all candidates x ∈ [IImin, IIS) are known to be infeasible. In case
scheduling for IIS yielded an optimal schedule length, we have also
found an overall optimal solution, otherwise we only have IIS = II?.

modulosdc Recall from Section 2.7.3 that a scheduling attempt
with the ModuloSDC algorithm necessitates constructing and solving
multiple linear programs. We thus do not impose our time limit on the
individual invocations of the LP solver, but instead on the scheduling
attempt as a whole, i.e. including the solver runtimes and all MRT
and backtracking operations.

In case the current candidate II is infeasible, the algorithm would
potentially run until all possible schedules were inspected. To that
end, the algorithm maintains a budget of 6 · |O| backtracking steps
[7] to provide another failsafe for fruitless scheduling attempts. This
mechanism is still in place in our implementation, as otherwise, even
simple problem instances would deplete the whole time budget on
infeasible candidate IIs.

The only situation in which an interval IIS returned by the Mod-
uloSDC scheduler is known to be optimal is if IIS = IImin, as the
algorithm can only run out of time or backtracking steps, but never
prove infeasibility of a candidate II.

The algorithm contains no means to determine the optimality of the
found schedule length.

moovac-i The integration of the II search in the Moovac-I formu-
lation enables a different solution strategy. Instead of performing the
minimisation of the first objective (= the initiation interval) by iterat-
ively solving and minimising multiple ILPs for the second objective
(= here, the schedule length), we can optimise both objectives directly
using a single Moovac-I-ILP.

ILP solvers handle multiple objectives either by attempting to solve
the problem only once with user-specified weights for the objective
functions, or by addressing the different objectives in individual steps,
according to priorities given by the user. The latter, lexicographic
approach is more suitable in the context of the modulo scheduling
problem, because practitioners would almost certainly choose weights
that strongly favour better IIs anyway. Some ILP solvers offer an API
to perform multi-objective optimisation automatically. However, in
order for our approach to be solver-independent, and because it makes
it easier to reason about the solution quality in the presence of time
limits, we implement the lexicographic approach ourselves.
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To this end, we begin by setting a time limit of λ and instruct the
solver to only minimise the II. When the solver returns, it reports one
of the following outcomes:

• Optimal. A solution S was found, and its interval IIS was proven
to be optimal, i.e. IIS = II?.

• Feasible. A solution S was found, but the solver was unable to
determine whether its interval IIS is optimal within the time
limit. We only know that IIS is optimal if it is equal to IImin.

• Unknown. No solution was found within the time limit; give up
and report failure.

The interval computed in the first step, IIS, is fixed during the
second step. This allows us to reduce the complexity of the current
ILP by “downgrading” it to resemble the Moovac-S formulation. We
add a constraint to bind the decision variable II to IIS, and replace
the constraints (3.19)-(3.22) by the simpler Moovac-S version of the
modulo decomposition, ti = yi · IIS +mi, ∀i ∈ OSh.

Again with a time limit of λ, the solver is now instructed to minimise
only the schedule length. Note that this is a warm start made possible
by constraints (3.21), meaning the feasible solution from the first step is
still valid for the modified ILP, and the solver will work on improving
it. Therefore, only two outcomes are possible after the solver returns
the second time:

• Optimal. The solver proved that the current schedule’s length is
optimal.

• Feasible. Within the time limit, the solver was unable to prove
whether the current schedule length is optimal.

The reasoning about the optimality of the solution S is straight-
forward: We have an optimal solution only if both steps yielded an
optimal result according to their respective objective. If optimality can
be proven in the first step, but not in the second step, we trivially
know IIS = II?. It is possible that we just find a feasible interval, but
determine the optimal schedule length for that interval. This situation
is counted as an overall feasible solution.

fallback schedule Recall that we save a resource-constrained
non-modulo schedule from the computation of IImax. This schedule
serves as a fallback in the unfortunate case that all modulo scheduling
attempts fail, and allows the compilation to continue after a guaran-
teed maximum time.

3.2.2 Bounded Schedule Length

Imposing an upper bound Tmax on the schedule length is beneficial for
practical modulo scheduling, as it reduces the overall solution space of
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Figure 3.3: Distribution of modulo schedule lengths, and their bounds. Note
the logarithmic scale on the Y-axis.

the combinatorial problem, and helps the LP solver to give up earlier
on fruitless branches in situations where the infeasibility of a partial
solution is not obvious to the solver, causing it to try increasingly late
start times for operations in the search. Additionally, such a bound is
required to make the proposed linearisation of constraints (3.19) in
the Moovac-I formulation possible.

While we desire Tmax to be as tight as possible, any chosen bound
needs to be an overestimate, i.e. higher or equal to the optimal schedule
length for a given II, in order to prevent the solver to incorrectly rule
out that II as infeasible.

conservative bound Eichenberger, Davidson and Abraham [27]
proposed and proved the following upper bound for the length
of a modulo schedule, which we adapt here to our notation. Let
∆ = max(i→j)∈E lij, i.e. the maximum number of time steps that two
operations connected by a dependence edge must be started apart. We
define

TEDA = |O| · (∆+ IImax − 1) . (3.25)

Intuitively, each operation i ∈ O requires at most ∆ time steps before
the next dependent operation can start, but may need to be deferred
for up to II − 1 time steps due to the modulo operator constraints. We
approximate the actual candidate II with its upper bound IImax here,
because this slightly looser bound retains the same numerical value
across all scheduling attempts.

improved bound Figure 3.3 shows the distribution of best-known
schedule lengths, and corresponding bound values for TEDA, for the
test instances used in our experimental evaluation (Section 3.3.4).
It is obvious that TEDA overestimates the actual schedule length by
roughly an order of magnitude. We propose two improvements to
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Eichenberger’s bound that result in a safe upper bound T IM that is
much closer to the actual modulo schedule length (also shown in
Figure 3.3).

Let ∆i = maxj∈O:(i→j)∈E lij denote the maximum number of time
steps that any successor j of i needs to be started after i. We define
the improved bound as

T IM =
∑
i∈O

∆i︸ ︷︷ ︸
a) assume sequential schedule

+
∑
q∈QSh

|Oq|−1∑
x=0

⌊
x

aq

⌋
· bq︸ ︷︷ ︸

b)
account for shifts due to

modulo operator conflicts

. (3.26)

This definition keeps the basic ideas in Eichenberger’s bound of a)
assuming that in the worst case, all operations need to be scheduled
sequentially, and b) of accounting for the need to shift operations to a
later start time due to the modulo operator conflicts.

Our improvement to a) is straight-forward: Instead of assuming
|O|-many same-sized windows of time steps that are large enough to
accommodate every operation in the MSP, we determine the maximum
number of time steps individually for each operation.

We now quantify the worst-case number of modulo operator con-
flicts more precisely to derive a tighter estimate for b). First, unlimited
operations never need to be shifted as, by definition, they never com-
pete for operators. Next, recall the intuition of the MRT (Figure 3.1)
for an operator type q with one available instance and a blocking time
of bq = 1, and imagine it is successively filled with the operations
{i0, . . . , i|Oq|−1} = Oq competing for that q-instance during schedul-
ing. Operation i0 will not need to be shifted as it is the first operationNote that while the

ILP-based schedulers
discussed in this

work do not operate
in such a way

internally, it is still a
helpful conceptual

model.

to be assigned to the MRT. i1 may need to be shifted for at most one
time step if it conflicts with i0. i2 may need to be shifted for at most
two time steps if it conflicts with i0, and then with i1, which was
already shifted by one time step to resolve its own conflict with i0. In
the worst case, all operations in Oq are initially in conflict for using
the q-instance in the same congruence class. In general, an operation
ix will need to be shifted for at most x time steps, i.e. equal to the
number of operations that are already assigned to the MRT.

This reasoning is easily extended to operator types q that provide
aq > 1 available instances, and have blocking times bq > 1. In that
case, the required conflict-resolving shift amount is equal to bq, and
increases to the next multiple of bq only every aq operations, which

means that an operation ix will need to be shifted at most
⌊
x
aq

⌋
· bq

time steps in the worst case.
Summing the maximum shift amounts for all operations over all

shared operator types, we arrive at the expression in Eq. (3.26-b).
Note that we neither make any assumptions about the particular

conflict-resolving shift amount an individual operation might require,
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nor about the order in which operations are assigned to the MRT, but
rather estimate the maximum number of shifts to be expected for a
set Oq as a whole.

3.3 experimental evaluation

We now compare scheduler implementations based on Moovac-S,
Moovac-I and EDform, and the ModuloSDC scheduler, on a large
set of typical high-level synthesis loops, with regards to the scheduler
runtime τ and the quality of results in terms of the interval IIS and the
schedule length TS of the computed solution S.

3.3.1 Compiler Context

We implemented all schedulers in the Nymble HLS compiler [42].
Nymble is based on the LLVM framework [53], version 3.3 and uses
the framework’s analyses and optimisations.

All function calls in the benchmark programs are inlined exhaust-
ively. The resulting modules are optimised with LLVM’s preset -O2,
but without performing loop unrolling.

intermediate representation Nymble uses a hierarchical
CDFG as its main IR, i.e. the compiler constructs a CDFG for each
natural loop in the input program. Within such a graph, control
information is translated to predicated data-flow, and nested loops are
modelled as operations using a special operator type. This IR allows
us to attempt to modulo schedule loops on all nesting levels and with
arbitrary control structures, without the need to perform preparative
transformations such as if-conversion.

We rely on LLVM’s dependence analysis to discover intra- and inter-
iteration memory dependences. These dependences are encoded as
additional edges in the CDFG, and handled uniformly by the sched-
ulers. Due to a technical limitation, we currently consider all of these
backedges to express loop-carried dependences on the immediately
preceding iteration, leading to conservatively larger IIs. However, we
expect the impact on our results to be small, as in our compiler con-
text, the dependence analysis could only determine exact backedge
distances dij > 1 for less than 0.3 % of the backedges that were
constructed.

The schedulers used the operator allocation in Table 3.2.

3.3.2 Reference Schedulers

We implemented the ModuloSDC scheduler according to [7], but used
a simpler height-based priority function, and changed the objective to
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Table 3.2: Allocation for shared operator types

Operator type # available

Memory Load/Store 1 each

Nested loops 1

Integer Div/other 8/∞
FP Add/Sub/Mul/other 4/4/4/2 each

Table 3.3: Problem sizes

Metric min. med. avg. max.

# operations 19 54 125 2654

# shared ops. 0 4 12 221

# forward edges 28 81 245 6752

# backedges 2 4 42 1222

a schedule length minimisation. Our implementation of the EDform

mirrors Section 2.8.1.

The data-flow graphs constructed by Nymble contain a unique start
operation that is required to be scheduled to time step 0. A corres-
ponding constraint is added to all schedulers.

3.3.3 Test Setup

We used Gurobi 8.0 as (I)LP solver for all schedulers.
The experiments were conducted on 2x12-core Intel Xeon E5-2680

v3 systems running at 2.8 GHz with 64 GiB RAM. The schedulers
were allowed to use up to 8 threads and 16 GiB of memory per loop.

Each experiment was repeated three times to compensate for varying
system load, and for each loop, we include in our evaluation the result
of the “best” modulo scheduling attempt with regard to the smallest
II, schedule length, and lastly, scheduling runtime. The scheduling
runtime always includes the time to construct the respective linear
programs via the Gurobi API. The generated schedules were verified
by RTL simulation of the hardware accelerators generated by Nymble.

3.3.4 Test Instances

The modulo scheduling test instances, i.e. loops/graphs, used in this
evaluation originate from the HLS benchmark applications in the
CHStone [38] and MachSuite [75] collections. We excluded backprop,
bfs/bulk, fft/transpose and nw from MachSuite due to limitations
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sition of their II• within the II search space, i.e. 0 = IImin and
1 = IImax.

in Nymble that prohibited the synthesis of these applications even
without using the modulo schedulers evaluated here. Also, we re-
moved printf statements inside the computational kernels of CHStone’s
aes and jpeg applications.

In total, we obtained 354 loops to modulo schedule. Due to the
exhaustive inlining performed in Nymble, and the presence of small,
idiomatic loops (e.g. array initialisations), we detected that 166 loops
are identical or isomorphic to other loops.

The remaining 188 loops comprise our set of test instances used in
the rest of this evaluation. Table 3.3 characterises the sizes of the cor-
responding MSPs. The histogram in Figure 3.4 shows the distribution
of the best-known intervals II• for the test instances, normalised to
the range between 0 (= IImin) and 1 (= IImax). In summary, the majority
of loops in our test set have a best-known II equal or close to the
lower bound of the search space. To this end, the single-II approaches
in this evaluation traverse the II search space in the traditional as-
cending order. In order to restrict the total runtime per instance in
our experiment to 24 hours, we limit the search to at most 23 can-
didate IIs for the single-II approaches, i.e. we attempt to schedule for
IImin, IImin + 1, IImin + 2, . . . , IImin + 22. All loops in our evaluation have
min(IImax, II•) 6 IImin + 22, i.e. this attempt limit did not preclude any
of the schedulers from finding a feasible solution.

3.3.5 Comparison of Approaches, Time Limits and Bounds

We schedule the test instances with the Moovac-S formulation (de-
noted by MvS), the Moovac-I formulation (MvI), the EDform (EDf),
and the ModuloSDC algorithm (MSDC).

We investigate time limits (Section 3.2.1) τ of 1, 5, 15 and 60 minutes,
and impose either no upper bound on the schedule length (denoted
by∞), or use the bounds TEDA or T IM from Section 3.2.2.

While the time limit and schedule length bound seem independent
on first sight, they both limit the computational effort that the solver
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spends on a particular scheduling attempt. In the case of the schedule
length bound, this limit works indirectly by reducing the branch-and-
bound solution space.

To this end, we present the results of modulo scheduling with the
different time limits and upper bounds together, both in terms of
scheduler runtimes (Tables 3.4 to 3.5) and schedule quality (Tables 3.6
to 3.7).

methodology Our methodology here is twofold: On the one
hand, we provide accumulated runtimes and quality measures for
the computed initiation intervals across all instances as intuitive met-
rics for the performance of a certain configuration K = SCHλTmax , i.e.
a combination of a scheduling approach “SCH”, a bound Tmax for
the schedule length, and a time limit λ. However, this presentation
disregards that all instances are in fact independent of each other. To
this end, we additionally count the number of instances for which a
configuration achieves a particular result, e.g. to schedule an instance
between 10 and 100 seconds, or to prove optimality for a solution. This
allows us to assess to which degree a given configuration is practical
on our representative benchmark set, and highlights the presence of
outlier instances (i.e. with exceptionally long runtimes or low quality
schedules) as well as their influence to the accumulated metrics. Note
that outliers have to be expected for every exact modulo scheduling
approach due to the NP-hard nature of the underlying problem. How-
ever, if their number is small, this does not automatically impair the
scheduler’s practicability. Additionally, a benefit of the ILP method
is that a quality measure (i.e. the branch-and-bound method’s “gap”
value [48]) is available for any feasible solution, which allows the
practitioner to decide to try another scheduler (exact or heuristic) for
the same problem.

We introduce the notion of the best-known interval II• and schedule
length T• to indicate the best solution found across all experiments
conducted in this work, i.e. including all approaches and configura-
tions, as a reference point for loops for which the optimal solution is
not known.

moovac The Moovac-based schedulers outperform the other ap-
proaches in this experiment: The overall fastest configuration is MvI1min

T IM

with an accumulated runtime of 15.7 minutes for all 188 test instances.
At first glance, the MvS615min

T IM configurations, which find the highest-
quality solutions overall, seemingly have a significant advantage con-
cerning the result quality over MvI615min

T IM , but note that the sum of II

differences (column “IIS − II• : Σ”) is concentrated on only three loops
(column “IIS − II• : #”). For all other loops, MvI615min

T IM delivers results
on par with its single-II variant (columns under “# loops with...”).
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MvST IM and MvI
T IM achieve the best trade-off between scheduler

runtime and result quality already with the 1 minute time limit. The
runtimes increase with the time budget, but the result quality is only
improved marginally. In the 60 minute configurations, the solution
space covered by the Moovac-based schedulers for some instances
becomes too large to fit in the 16 GiB allocated to the experiments
(column “OOM”).

MvST IM clearly benefits, in terms of runtime and quality, from the
presence of an upper bound for the schedule length, and from the
tighter estimate that T IM gives compared to TEDA. This effect is even
more pronounced for MvI

T IM , because the value of the bound directly
affects the complexity of the Moovac-I-ILP.

edform Being an exact scheduler as well, the EDform achieves
optimal results for almost as many loops as the Moovac-based ap-
proaches. However, especially with the smallest time budget, it is
unable to find modulo schedules for several large instances (column
“no S”), and runs out of memory for one loop. Given more time, the
solution quality improves, but unfortunately four more loops can-
not be scheduled within the 16 GiB memory limit. The accumulated
runtimes and solution quality is mostly unaffected by the choice of
schedule length bound.

modulosdc As expected, the ModuloSDC algorithm is quite fast,
but lacks the capability to prove optimality of its solutions, and misses
the best-known IIs by at least 77, spread over 20 instances. Starting
with the 5 minute configuration, imposing an upper bound on the
schedule length effectively serves as a third measure (besides time
limit and backtracking budget) to give up on fruitless scheduling
attempts, and limits the overall runtime to roughly 90 minutes. The
quality metrics remain unchanged over the four different time limits.
Curiously, without a bound, one more loop can be scheduled, which
alone contributes an II difference of 77 to MSDCTEDA and MSDCT IM .
The length of the schedule found by MSDC∞ for this particular in-
stance does not come near the values of the bounds, though.

construction time The maximum ILP construction time κ per
scheduling attempt is below 10 seconds for the exact approaches, and
turned out to be negligible compared to the runtime of the solver’s
branch-and-bound algorithm. This excludes loops for which a schedul-
ing attempt ran out of memory, because we did not record the precise
point in time when the memory limit was hit. We also did not record
a separate construction time for the ModuloSDC scheduler, as the
linear program is constantly changed over the course of the algorithm.
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performance profile The performance profile [21] in Figure 3.5
shows a different view on the dataset for the 5 minute experiment, as
it relates the runtimes of different configurations for each individual
loop: for every configuration K and loop (i.e. MSP instance) I, the ratio

τK(I)

min(config.K ′) τK ′(I)
(3.27)

of the scheduler runtime with K and the fastest runtime across all
configurations, is computed. In the plot, we count the number of
loops for which this ratio is less or equal than some factor X for a
configuration K, i.e. the number of loops whose runtime with K is
at most X times worse than the best-known runtime for the loop.
The performance profile can be interpreted as the probability thatDividing the loop

counts by the total
number of loops

yields a probability
value.

a configuration is able to modulo schedule a loop within a certain
performance envelope. The higher the curve the better. For example,
the data point marked with a dark blue square on the MSDC5min

TEDA plot
signifies that the scheduler runtime for 92 loops (= 92/188 ≈ 49%) was
at most twice as long as the fastest runtime across all configurations
in the performance profile. The intersection of the plots with the
“X = 1”-line shows the number of loops for which a configuration
sets the fastest runtime. This data is repeated in the table below the
performance profile.

We observe that MvS5min
T IM is the fastest configuration to schedule 149

of the 188 loops (≈ 79%), followed by MvI5min
T IM with 18 fastest runtimes.

In general, the plots for the Moovac-based configurations (excluding
MvS5min

TEDA) and for the MSDC scheduler rise quickly, meaning that they
are close to the fastest runtime for the majority of instances. The slope
of the plots for EDf indicates that for roughly 75 % of the loops, these
configurations require at least 5x longer than the respective fastest
configuration.

moovac-s vs . moovac-i The performance profile also hints at
a key difference between the Moovac-S and Moovac-I formulations.
The single-II variant is often faster for an individual loop due to the
simpler ILP formulation and the location of the first feasible interval in
the II search space (cf. Figure 3.4). However, the practical advantage ofAs Moovac-I does

not iterate over
candidate IIs, it

spends at most one
time budget λ on the
II minimisation, and
one λ on optimising

the secondary
objective.

MvI is that its runtime is capped at 2 · λ by design, which is reflected
in the much faster accumulated runtimes shown in Tables 3.4 to 3.5.
As discussed above, the quality metrics in Tables 3.6 to 3.7 show that
this novel way of approaching the modulo scheduling problem comes
with almost no loss in solution quality, with MvI

T IM missing the best-
known interval II• for at most two additional instances compared to
MvST IM .
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Table 3.4: Scheduling times for combinations of approaches, time limits and
bounds

Configuration K Loops classified by scheduler runtime τ (188 loops)

< 10 s 10-100 s 100-1k s 1k-10k s > 10k s all

# Σ # Σ # Σ # Σ # Σ Σ [min]

Time limit: 1 minute

MvS ∞ 168 0.7 8 5.9 12 92.0 - - - - 98.5

TEDA
173 0.5 5 2.7 10 82.9 - - - - 86.1

T IM
174 0.4 5 2.8 9 71.3 - - - - 74.5

MvI TEDA
155 0.7 32 26.1 1 2.0 - - - - 28.7

T IM
171 0.5 15 11.2 2 4.0 - - - - 15.7

EDf ∞ 165 1.2 10 6.1 8 60.0 5 112.6 - - 179.8

TEDA
167 1.5 7 3.0 9 55.8 5 112.7 - - 173.0

T IM
167 1.3 9 5.5 7 52.1 5 112.7 - - 171.7

MSDC ∞ 172 0.7 7 4.6 8 46.8 1 17.1 - - 69.2

TEDA
172 1.0 8 5.5 7 44.1 1 16.8 - - 67.5

T IM
172 1.0 8 5.4 7 44.4 1 16.9 - - 67.8

Time limit: 5 minutes

MvS ∞ 168 0.6 3 0.9 8 55.2 9 378.3 - - 435.0

TEDA
173 0.5 3 0.7 4 32.5 8 339.5 - - 373.1

T IM
174 0.4 3 0.8 3 25.1 8 292.8 - - 319.1

MvI TEDA
155 0.7 11 4.2 22 117.1 - - - - 122.0

T IM
172 0.7 5 1.8 11 70.3 - - - - 72.7

EDf ∞ 165 1.2 10 6.4 5 39.8 8 520.1 - - 567.6

TEDA
167 1.5 8 4.4 5 45.6 8 538.0 - - 589.4

T IM
167 1.3 9 5.0 4 34.8 8 552.0 - - 593.2

MSDC ∞ 172 0.7 7 4.6 6 23.8 3 94.9 - - 124.1

TEDA
172 1.1 8 5.6 6 30.5 2 49.0 - - 86.1

T IM
172 1.1 8 5.6 6 30.9 2 48.1 - - 85.5

The loops are classified into time brackets according to the scheduler runtime τ with
a configuration K. Columns “#” show the number of loops that fell into a particular
time bracket. Columns “Σ” show the accumulated scheduling time (in minutes) for the
loops within a time bracket. Loops that caused the scheduler to run out of memory
(cf. Tables 3.6 to 3.7) are accounted for with the maximum available time to them, i.e.
(min(IImax, IImin + 22) − IImin + 1) · λ for the single-II approaches, and λ for MvI.
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Table 3.5: Scheduling times for combinations of approaches, time limits and
bounds (continued)

Configuration K Loops classified by scheduler runtime τ (188 loops)

< 10 s 10-100 s 100-1k s 1k-10k s > 10k s all

# Σ # Σ # Σ # Σ # Σ Σ [min]

Time limit: 15 minutes

MvS ∞ 168 0.7 3 1.0 5 62.4 11 952.1 1 225.0 1241.1

TEDA
173 0.5 3 0.7 3 37.5 8 797.1 1 225.0 1060.8

T IM
174 0.4 3 0.8 2 30.0 8 655.0 1 225.0 911.2

MvI TEDA
154 0.5 12 4.5 20 268.2 2 49.0 - - 322.2

T IM
171 0.5 6 2.0 8 120.3 3 90.1 - - 212.9

EDf ∞ 165 1.2 10 6.8 3 38.7 6 388.4 4 1058.5 1493.5

TEDA
167 1.5 9 6.0 1 15.7 7 436.6 4 1064.3 1524.1

T IM
167 1.3 9 5.1 2 22.8 6 407.5 4 1074.4 1511.2

MSDC ∞ 172 0.7 7 4.8 6 24.1 3 180.7 - - 210.3

TEDA
170 0.8 10 5.9 6 31.3 2 54.1 - - 92.1

T IM
170 0.7 10 5.8 6 31.2 2 52.8 - - 90.6

Time limit: 60 minutes

MvS ∞ 168 0.7 3 0.9 1 2.4 6 422.8 10 5614.8 6041.7

TEDA
173 0.5 3 0.7 1 7.3 2 120.0 9 4996.2 5124.7

T IM
174 0.4 3 0.8 - - 4 250.0 7 4380.1 4631.3

MvI TEDA
155 0.7 11 4.3 4 27.2 18 1140.2 - - 1172.4

T IM
172 0.7 5 1.8 - - 11 720.9 - - 723.4

EDf ∞ 165 1.2 10 6.7 1 8.1 6 407.1 6 4877.1 5300.2

TEDA
167 1.5 9 5.7 - - 6 508.8 6 4886.9 5403.0

T IM
167 1.4 9 5.3 1 7.4 5 373.4 6 4753.0 5140.4

MSDC ∞ 172 0.8 7 4.9 6 26.1 2 52.8 1 420.4 505.0

TEDA
171 0.9 9 5.8 6 32.7 2 49.6 - - 89.0

T IM
172 1.1 8 5.8 6 32.3 2 49.4 - - 88.6
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Table 3.6: Schedule quality for combinations of approaches, time limits and
bounds

Configuration K # loops with ... IIS − II•

II?� II? II• T?� T? T• no S OOM Σ #

Time limit: 1 minute

MvS ∞ 173 183 184 171 182 183 2 - 5 2

MvS TEDA
178 183 184 176 182 183 2 - 4 2

MvS T IM
179 184 185 177 182 182 2 - 2 1

MvI TEDA
167 176 177 166 176 176 11 - 328 9

MvI T IM
179 182 183 177 181 181 5 - 52 3

EDf ∞ 173 176 176 173 176 176 9 1 120 10

EDf TEDA
174 176 176 174 176 176 9 1 115 10

EDf T IM
175 177 177 174 176 176 9 1 114 9

MSDC ∞ 146 166 166 - 152 152 3 - 77 20

MSDC TEDA
143 163 163 - 143 143 4 - 141 23

MSDC T IM
143 163 163 - 143 143 4 - 141 23

Time limit: 5 minutes

MvS ∞ 174 183 184 172 182 183 2 - 3 2

MvS TEDA
179 183 184 177 183 184 2 - 3 2

MvS T IM
179 184 185 177 183 183 2 - 1 1

MvI TEDA
170 177 178 168 177 177 9 - 246 8

MvI T IM
179 182 183 177 182 183 4 - 16 3

EDf ∞ 176 181 181 176 180 180 1 5 34 5

EDf TEDA
176 181 181 176 181 181 1 5 36 5

EDf T IM
177 181 181 177 181 181 1 5 40 5

MSDC ∞ 146 166 166 - 152 152 3 - 77 20

MSDC TEDA
143 163 163 - 143 143 4 - 141 23

MSDC T IM
143 163 163 - 143 143 4 - 141 23

The 188 loops are counted according to properties of the solutions (see Table 3.8)
computed by a given approach.
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Table 3.7: Schedule quality for combinations of approaches, time limits and
bounds (continued)

Configuration K # loops with ... IIS − II•

II?� II? II• T?� T? T• no S OOM Σ #

Time limit: 15 minutes

MvS ∞ 174 183 184 172 183 184 2 - 2 2

TEDA
179 183 184 177 183 184 2 - 3 2

T IM
179 184 185 177 183 183 2 - 1 1

MvI TEDA
172 179 180 170 179 180 6 - 239 6

T IM
179 182 183 177 182 183 4 - 12 3

EDf ∞ 177 181 183 177 181 182 - 5 31 3

TEDA
176 181 183 176 181 183 - 5 31 3

T IM
177 181 182 177 181 182 - 5 32 4

MSDC ∞ 146 166 166 - 152 152 3 - 77 20

TEDA
143 163 163 - 143 143 4 - 141 23

T IM
143 163 163 - 143 143 4 - 141 23

Time limit: 60 minutes

MvS ∞ 174 182 182 172 182 182 2 3 30 4

TEDA
179 182 182 177 182 182 2 3 30 4

T IM
181 183 184 179 182 182 2 2 28 2

MvI TEDA
173 179 180 171 179 180 5 1 238 6

T IM
179 182 182 177 182 182 3 2 30 4

EDf ∞ 178 181 183 178 181 183 - 5 31 3

TEDA
178 181 183 178 181 183 - 5 31 3

T IM
179 181 183 179 181 183 - 5 31 3

MSDC ∞ 146 166 166 - 152 152 3 - 77 20

TEDA
143 163 163 - 143 143 4 - 141 23

T IM
143 163 163 - 143 143 4 - 141 23



3.3 experimental evaluation 57

Table 3.8: Quality metrics for the computed solution S, as used in Tables 3.6
to 3.7

Column Description

II?� counts loops for which IIS is proven to be optimal by the
approach, as discussed in Section 3.2.1

II? counts loops for which IIS is equal to the optimal II

II• counts loops for which IIS is equal to the best-known II
across all experiments, including loops for which II• =
II?

T?� counts loops for which the II and the schedule length are
proven to be optimal by the approach

T? counts loops for which IIS = II?, and TS is equal to the
optimal schedule length

T• counts loops for which IIS = II•, and the schedule length
TS is equal to the best-known length, including loops for
which these values are known to be optimal

no S counts loops for which no solution could be computed
within the time and attempt limits

OOM counts loops for which no solution could be computed
within the memory limit

IIS − II• considers the differences between each computed and
the loop’s best-known II. We set IIS = IImax in case no
solution could be computed, and II• = IImax in case no
solution is known (2 loops)

Σ accumulates the differences

# shows the number of loops that have IIS > II•
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Figure 3.5: Performance profile of the scheduling times (5 minute time limit),
showing the number of loops for which the scheduling time with
a particular configuration is at most X times slower than the
fastest scheduling time for each individual loop. The table shows
the values for the special case X = 1, i.e. the number of loops for
which a configuration defined the fastest scheduler runtime.
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Figure 3.6: Maximum clock frequencies on Virtex-7 after HLS and place &
route for the different schedulers (T IM, 5 min configurations).
Note that the Y-axis starts at 100 MHz.



60 exact and practical modulo scheduling

3.3.6 FPGA Implementation

We used Nymble [42] to generate accelerator modules that are pipelined
according to the schedules computed in the experiments with the T IM

bound and 5 minute time limit. The non-loop parts of the applic-
ations, as well as loops for which a particular scheduler could not
compute a feasible modulo schedule, are not pipelined and rely on the
non-modulo schedules computed by the heuristic fallback scheduler.

TaPaSCo [49] was employed to perform an out-of-context evalu-
ation of these accelerators using Vivado 2018.2 targeting a Virtex-7
xc7vx690tffg1761-2 device. The target frequency was set to 200 MHz
for the CHStone applications, MachSuite::aes and MachSuite::md_grid,
and to 320 MHz for the remaining MachSuite applications.

Figure 3.6 shows the maximum clock frequencies when using the
modulo schedulers, in comparison to a entirely non-pipelined ac-
celerator using only the fallback non-modulo schedule for all loops.
Unfortunately, chstone::aes and chstone::jpeg could not be imple-
mented on the target device due to routing congestion in the Nymble-
generated microarchitecture for any scheduler configuration, and are
therefore excluded in the plot.

Overall, the frequency variations when using the different sched-
ulers are moderate, and none of the approaches (especially not the
non-pipelined one) dominates this experiment. However, note that the
scheduling step is so early in the HLS flow that it cannot directly influ-
ence the later decisions made by the logic synthesis tool that ultimately
determine the design’s cycle time, so this result is not unexpected.

3.4 chapter summary

In this chapter, we presented Moovac, an exact bi-criteria formula-
tion of the Modulo Scheduling Problem that integrates the actual II
minimisation and can be solved optimally by a standard ILP solver.

An extensive experimental study in the context of a high-level
synthesis compiler showed that combining the Moovac formulation
with a short time limit of 1 or 5 minutes per candidate II, and an
improved upper bound for the schedule length, results in a practically
usable modulo scheduling approach that finds optimal IIs in over 95 %
of the test instances, and near-optimal IIs otherwise.

Exact modulo scheduling is justified by the clearly higher quality
of the solutions compared to a state-of-the-art heuristic approach. In
the Moovac formulation, modelling the central modulo-operator-
constraints with overlap variables leads to overall shorter solver
runtimes compared to a prior, well-tuned ILP formulation. Often,
our approach is even faster than the heuristic SDC-based scheduler.
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D E P E N D E N C E G R A P H P R E P R O C E S S I N G F O R
FA S T E R E X A C T M O D U L O S C H E D U L I N G

In Chapter 3, the EDform, which originates from a VLIW compiler
context, performed worse on average than our Moovac-S formulation
on our set of MSP instances taken from an HLS tool flow. However,
given that the EDform has received widespread recognition in the
community [28], we suspect that the slower performance may be partly
due to the characteristics of HLS MSPs.

In this chapter, we present a compression algorithm for HLS MSP
instances that yields problem structures which are more similar in
size and density to instances expected by a VLIW modulo scheduler.
Our work specifically targets exact modulo schedulers that are able
to compute provably optimal solutions regarding a schedule length
minimisation objective. The proposed algorithm retains this property.
Applied to the EDform, we indeed show a mean speed-up of 4.37x
for 21 large instances, which makes it competitive again with the
HLS-tailored Moovac-S formulation.

This chapter is based on:

[66] Julian Oppermann, Melanie Reuter-Oppermann, Lukas Sommer, Oliver
Sinnen and Andreas Koch. ‘Dependence Graph Preprocessing for
Faster Exact Modulo Scheduling in High-Level Synthesis’. In: Inter-
national Conference on Field Programmable Logic and Applications, FPL
Dublin, Ireland. 2018

4.1 analysis

Let us first revisit the relevant HLS and modulo scheduling founda-
tions from Chapter 2.

4.1.1 Instances

Compared to the VLIW context, MSP instances that arise in an HLS
flow are much larger, due to implicit loop-wide if-conversion, and
have denser dependence graphs, due to the additional edges required
to model operator chaining as well as to retain a sequential ordering
of the loop’s memory accesses where needed.

This is apparent in our test MSP set (cf. Section 4.3): The 21 instances
contain 471 operations and 1578 edges (median values). The ratio of
the aforementioned additional, non-data-dependence edges ranges
from 29% to 90% with a median value of 63%.

61
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VLIW processors provide only a handful of functional units, and
also need to limit access to architectural features such as register files
and buses, resulting in tight constraints for all operations. In contrast,
HLS generally aims to create spatially distributed computations (em-
ploying a dedicated hardware operator for each operation). This is
possible, as many resources, e.g. LUTs, exist in abundance. Only a
fraction of the operations needs to be time-multiplexed onto scarce
shared operators, e.g. those performing floating-point arithmetic, or
providing access to an off-chip memory. The spatial approach thus
results in far fewer operator constraints that need to be included in the
HLS MSP than in the VLIW MSP. In our test instances, for example,
the share of operations using a shared operator type ranges between
3% and 29% with a median value of 12%.

4.1.2 Exact Schedulers

Exact modulo schedulers, in contrast to algorithms that rely on heuristic
simplifications (e.g. [7, 40, 56]), model all the aspects of the MSP,
and are therefore able to find provably optimal schedules. They are
often defined in terms of a mathematical framework such as integer
linear programs (e.g. [20, 26, 63]), or constraint programming (e.g.
[6]), and, unfortunately, inherit the frameworks’ exponential worst-
case runtimes to find a solution. Still, they are a viable option in the
context of an HLS system, as logic synthesis and place-and-route often
requires multiple hours even on mid-sized FPGA devices anyway. This
easily amortises the time spent to determine a high quality (provably
optimal) solution by exact modulo scheduling.

However, recall from Section 2.7 that most exact modulo schedulers
were proposed for and evaluated with VLIW-style MSP instances. Us-
ing the EDform as the representative for this class of schedulers, we
showed in Chapter 3 that HLS-style instances require special attention
in the design of a practical exact scheduler. Our Moovac-S formulation
copes well with rather large instances, as the (many) unlimited opera-
tions are represented by a single integer decision variable. Similarly,
a large number of dependence edges is unproblematic, as each edge
results in only one linear constraint ((3.2) in Section 3.1).

In contrast, the EDform uses II-many binary decision variables per
operation, regardless whether the operation is subject to operator con-
straints or not. The authors achieved a significant speed-up by using
II-many, but 0-1-structured constraints to represent dependence edges
((2.15) in Section 2.8.1). These scalability difficulties when scheduling
large and dense dependence graphs, and HLS-typical candidate IIs,
make the EDform the ideal subject to demonstrate the strength of our
proposed approach.

However, we expect other exact VLIW modulo schedulers, such as
the formulations by Dinechin [20] and by Ayala and Artigues [4], to
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benefit from the proposed problem compression as well. A common
feature in these formulations is the use of time-indexed binary decision
variables to model the operations’ start times. This design typically
results in complex linear constraints involving sums of subsets of
these variables. Reducing the number of operations in the problem,
and reducing the density of dependence edges therefore gives ample
opportunity for speed-up when retrofitting these formulations for use
in an HLS setting.

4.1.3 Critical Operations

The key insight for our proposed compression algorithm is that only
some operations in an MSP instance are critical to the exact modelling,
e.g. operations using a shared operator type, while others are not.
Non-critical operations can be scheduled in an as-soon-as-possible
manner, and thus, subgraphs of non-critical operations may be re-
placed by a single edge with a delay equal to the minimum delay
of the subgraph’s longest path. The compression makes it tractable
to discover additional, superfluous dependence edges. Figures 4.1
to 4.4 demonstrate the proposed transformation. After scheduling the
compressed instance, the start times of the critical operations are fixed
in the original problem, and start times for the remaining non-critical
operations can be determined in polynomial time.

Problem compression (or reduction) in general has been explored
in the Operations Research community to make challenging problems
more tractable by excluding non-critical aspects (e.g. [5]). To the best
of our knowledge, ours is the first use of the technique to speed-up
modulo scheduling.

4.2 modulo scheduling with compressed problems

The input to the problem-compressing modulo scheduling approach
presented in this chapter is an instance I of the MSP, conforming to the
problem signature introduced in Section 2.4. We assume that all shared
operator types q ∈ QSh are fully pipelined and thus have bq = 1.

running example In our usual notation, the MSP instance in
Figure 4.1 is defined by the set of operations O = {1, 2, . . . , 11}, the set
of edges E = {(1→ 2), (1→ 3), . . . }, and a simple operator model (not
shown in the figure) that encompasses one unlimited Q∞ = {q∞} and
one shared type QSh = {qSh}, which provides a single operator aqSh =

1. We have Oq
Sh

= {2, 6, 9}, and use a grey contour to distinguish
these operations from the one using the unlimited operator type. The
operation latency li is 1 for all i ∈ O. There are no edge delays, i.e.
Lij = 0 for all (i→ j) ∈ E, and only a single backedge (10→ 3) with
d10 3 = 1 and a dashed line style. All other edges (i → j) ∈ E are
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Table 4.1: Additional notation used in the problem-compressing approach

Symbol Description

I, ICmp Original and compressed instance of
the MSP

OCr ⊆ O Critical operations

pred(v) ⊆ O, ∀v ∈ O Predecessors of operation v

succ(v) ⊆ O, ∀v ∈ O Successors of operation v

ECr ⊆ OCr ×OCr Edges between critical operations.
Note that ECr * E

ECons ⊆ OCr ×OCr Edges constructed based on the result
of the data-flow analysis

EFilt ⊆ ECons Remaining edges after filtering transit-
ively satisfied dependences

EBE ⊆ E Backedges

LPLIN
j [k] ∈N0 ∪ {−∞} Incoming longest-path latency from

preceding critical operation k to op-
eration j

LPLOUT
j [k] ∈N0 ∪ {−∞} Outgoing longest-path latency from

preceding critical operation k to op-
eration j

forward edges with dij = 0. The lower bound for the interval IImin

is 5, due to the recurrence spanned by the backedge. We assume a
non-modulo scheduler would determine a schedule of length 7, and
define IImax accordingly.

Our problem-compressing modulo scheduling approach comprises
three steps. Table 4.1 summarises the additional notation used in the
following sections.

First, given an HLS-style MSP instance I, we derive a compressed
problem instance ICmp with the set of critical operations OCr ⊆ O and
infer a new set of edges ECr ⊆ OCr ×OCr. Then, ICmp is scheduled
with an arbitrary modulo scheduler, e.g. the EDform. The operation
start times obtained from the solution to ICmp are fixed in I. This
makes scheduling I tractable, as it is no longer an operator-constrained
scheduling problem and can thus be solved in polynomial time.
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4.2.1 Construction of a Compressed Problem Instance

Let EBE = {(i → j) ∈ E : dij > 0} be the set of all backedges in E,
pred(v) = {i | ∃(i → v) ∈ E with div = 0} denote the set of prede-
cessors of an operation v, and analogously, succ(v) = {j | ∃(v → j) ∈
E with dvj = 0} denote the set of successors of v.

critical operations The proposed problem compression shall
guarantee that a feasible/optimal solution to ICmp can be completed
to a feasible/optimal solution to I.

The feasibility of I for a candidate interval II is subject to the inter-
action of the backedges (which impose deadlines, i.e. latest possible
start times) and operator constraints (which may require operations to
be scheduled in a later time step than required by their predecessors’
finish times), as defined by (2.1) and (2.2). Additionally, operations
without non-backedge predecessors must be included in OCr to cap-
ture the earliest start times in the schedule.

The schedule length depends, per definition, on the finish times (and
in turn, on the start times) of operations without outgoing forward
edges. These operations, in addition to the operations competing for
shared operators, therefore need to be considered in ICmp to ensure
that an optimal solution for ICmp may serve as the base for an optimal
solution to I.

With this consideration in mind, we define the set of critical opera-
tions OCr to contain

• all operations using a shared operator type, OSh,

• operations at the endpoints of backedges, formally {v | ∃(i →
v) ∈ EBE ∨ ∃(v→ j) ∈ EBE}, and

• operations with either no incoming or no outgoing forward
edges, formally {v | pred(v) = ∅∨ succ(v) = ∅}.

Figure 4.2 depicts the set OCr for the running example: operations
2, 6 and 9 use the shared operator type, 3 and 10 are the endpoints
to the only backedge, and 1 and 11 are the extremal vertices in the
dependence graph.

In contrast, the start times of the remaining non-critical operations
are determined only by the instance’s forward edges when consider-
ing schedule length minimisation as the secondary objective. Entire
subgraphs of non-critical operations can then be scheduled in an
as-soon-as-possible manner between critical operations, given that
enough time steps separate the critical operations. As a consequence,
such subgraphs can be modelled in ICmp by a single edge with the min-
imally required latency to fit the non-critical operations, as discussed
in the next paragraphs.
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Figure 4.5: Longest path length analysis results for all j ∈ O: showing the
values stored in LPLIN

j [k] and LPLOUT
j [k], for reachable preceding

critical operations k ∈ OCr. Cells marked with “-” contain the
value −∞.

overview of edge construction The set of edges ECr is not
a subset of E. Rather, we begin with the construction of a new set
of edges ECons, based on the computed length of the longest path
in E from a critical operation to any other (critical or not) operation.
Then, we filter out edges that are always satisfied, because a longer
path exists between their endpoints, which yields the set EFilt. Lastly,
we include the backedges unchanged from the original instances. To
summarise, we set

ECr = EFilt ∪ EBE. (4.1)

paths Let (v1  vh) denote a path from v1 to vh on the acyclic
part of the dependence graph, i.e. a sequence ((v1 → v2), (v2 →
v3), . . . , (vh−1 → vh)) of pairwise distinct forward edges that connect
a sequence of pairwise distinct operations (v1, . . . , vh). We define the
length of a path (v1  vh) in terms of the operation and edge latencies
as
∑h−1
x=1 lvxvx+1 .

analysis We define a data-flow analysis to compute the length
of the longest path from a critical operation k ∈ OCr to an operation
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j ∈ O. To that end, we associate each operation j ∈ O with two
dictionaries, LPLIN

j [k] and LPLOUT
j [k], which store the incoming and

outgoing longest path length from a critical operation k ∈ OCr. The
domain of the stored values is N0 ∪ {−∞}, where the value −∞ is to
be interpreted as “unreachable”. (4.2) and (4.3) are the corresponding
data-flow equations.

LPLIN
j [k] =


−∞ if pred(j) = ∅

max
i∈pred(j)

LPLOUT
i [k] + lij otherwise

(4.2)

LPLOUT
j [k] =


0 if j = k

−∞ if j 6= k∧ j ∈ OCr

LPLIN
j [k] otherwise

(4.3)

The important distinction from a standard longest-path computation
is the fact that only paths from the nearest preceding critical operations
are considered: for a critical operation k ∈ OCr, equation (4.3) sets
the outgoing path length from itself (j = k) to 0, and resets the path
length concerning all other critical operations to −∞. For the running
example, this happens i.a. at operation 9, as shown in Figure 4.5.

edge construction After computing LPLIN
j [k], we construct new

forward edges between the critical operations:

ECons = {(u→ v),Luv = LPLIN
v [u] − lu |

∀u, v ∈ OCr with LPLIN
v [u] > −∞} (4.4)

Specifically, for all v ∈ OCr, we add an edge from the preceding
critical operations u ∈ OCr, for which LPLIN

v [u] > −∞, to v. The
corresponding edge latency Luv is set to LPLIN

v [u] − lu. We subtract
lu, as otherwise we would account for u’s latency twice later.

Note that ECons is smaller than the transitive hull of E restricted
to OCr, which would per definition connect all critical operations
with each other. In contrast, in situations where all paths connecting
two critical operations u, v ∈ OCr contain at least one other critical
operation, our construction scheme would not add the redundant
edge (u→ v).

Figure 4.3 shows ECons corresponding to the running example.
Where specified, the edge labels now represent a non-zero edge latency,
e.g. L2 9 = 2. For all other edges, the edge latency remains 0.

edge filtering On the intermediate graph (OCr,ECons), it is now
tractable to compute all-pair-longest-path-length information
APLPL(u, v) for pairs of operations u, v ∈ OCr using the Floyd-Warshall
algorithm [32], which we use to filter out superfluous direct edges
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whose implied precedence constraints are satisfied transitively by other
edges: an edge (u→ v) ∈ ECons is removed iff Luv < APLPL(u, v).

The final, compressed version of the running example is illustrated in
Figure 4.4.

complexity In a single pass over E, we precompute the sets EBE,
and pred(i), succ(i) for all operations i ∈ O. Collecting all critical op-
erations OCr requires visiting all operations in O once. As we only con-
sider forward edges when computing LPLIN

j [k], the data-flow analysis
operates on an acyclic graph and reaches its fix point after handling
each operation j ∈ O (which requires inspecting the |pred(j)| prede-
cessors) once in topological order. Performing all these preparation
steps is in O(|O|+ |E|).

Computing ECons has a worst-case runtime of O(|OCr|2), while the
edge filtering step is in O(|OCr|3) due to the longest-path calculation.
However, as HLS-style MSP instances are characterised by |OCr|� |O|,
the resulting runtimes are negligible compared to the runtime of the
actual modulo scheduler even for the cubic parts of the compression
algorithm.

4.2.2 Modulo Scheduling

The compressed problem instance ICmp comprises the sets OCr and
ECr, and inherits all other parameters from the original instance I. We
obtain a solution SCmp with a feasible interval IIS

Cmp
and start times

tS
Cmp

k for all k ∈ OCr from solving ICmp with any modulo scheduler. In
case the nested modulo scheduler does not find any solution to ICmp,
our approach will stop here and report the failure.

4.2.3 Schedule Completion

Lastly, start times for the non-critical operations i ∈ O \OCr have to be
computed. To this end, we solve the following ILP, defined for integer
variables ti:

min T (4.5)

s.t. ti + lij 6 tj + dij · IIS
Cmp ∀(i→ j) ∈ E (4.6)

ti = t
SCmp

i ∀i ∈ OCr (4.7)

ti + li 6 T ∀i ∈ O (4.8)

We obtain start times tSi for all operations i from the corresponding
decision variables in the ILP above. Together with IIS = IIS

Cmp
, as com-

puted in the previous step, this schedule yields a complete solution S
to the original problem instance I.
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complexity The ILP above can be easily transformed into an
SDC [15]. SDCs comprise a special class of ILPs that are optimally
solvable in polynomial time, due to the fact that their LP relaxation is
guaranteed to produce an integer-valued solution.

4.3 experimental evaluation

We evaluate our problem-compressing modulo scheduling approach
on a set of realistic test instances: C applications from the HLS bench-
mark suites CHStone [38] and MachSuite [75] are compiled with Clang
to LLVM-IR [53]. We use LLVM/Clang version 3.3, optimisation preset
“-O2” with loop unrolling disabled, and perform exhaustive inlining.
Nymble [42] constructs per-loop control-data-flow graphs (CDFG),
where the original control flow is replaced by multiplexers and pre-
dicated operations. Nested loops become special operations in the
graph, thus making it possible to modulo schedule all loops in the
application instead of being limited to the most deeply nested ones.
Nymble also constructs edges to retain the sequential order amongst
memory access operations where needed, as determined by LLVM’s
dependence analysis. We use operator latencies and physical delays
from the Bambu HLS framework’s [71] extensive operator library for
a Xilinx xc7vx690 device. For each operator, we choose the lowest-
latency variant that is estimated to achieve a frequency of at least
250 MHz. The edges to limit operator chaining are constructed with
a simple path-based approach similar to [43] and aim to enforce a
maximum cycle time of 5 ns. Note that this is not

4 ns/250 MHz, to
give some headroom
for the rest of the
synthesis flow.

From a total set of 354 loops, we selected 21 unique instances that
took more than 10 seconds to schedule with at least one scheduler con-
figuration. The MSP instances use the following allocation of shared
operator types: memory load (2 available)/store (1), nested loop (1),
integer division (8), floating-point addition (4), FP subtraction (4), FP
multiplication (4), other FP operations (2 each).

In the second step (Section 4.2.2) of our approach, we delegate the
actual modulo scheduling to the EDform as in Section 2.8.1, and to the
Moovac-S formulation as in Section 3.1.1. Both formulations minimise
the schedule length.

We use CPLEX 12.6.3 to solve the Moovac-S and EDform ILPs, as
well as for the ILP used in the schedule construction step (Section 4.2.3).
We set a time limit λ of 3 minutes (minus the time to construct the
linear program via the solver’s API) per scheduling attempt/candidate
II, and try at most 20 candidate IIs per instance, thereby capping its
total runtime to one hour. The solver uses deterministic multithreading
with up to 8 threads. We run up to two scheduling jobs concurrently
[88] on 2x12-core Intel Xeon E5-2680 v3 systems running at 2.8 GHz
with 64 GB RAM. The scheduler runtimes presented here correspond
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to the best (in terms of the computed II, the schedule length, and lastly,
the scheduler runtime) of three runs.

Table 4.2 shows the effects of our algorithm to the input problem
size regarding the signature of the MSP. The instances are named
according to the CHStone/MachSuite benchmark application theyAs both suites

contain an
application named

aes, we refer to
MachSuite’s version

as aes2.

originated from, and distinguished by an arbitrary loop ID assigned
by the Nymble compiler. The size of the original instance I is specified
by the number of operations |O|, edges |E|, operations using a shared
operator type |OSh|, and backedges |EBE|. Recall that OSh ⊆ O and
EBE ⊆ E. For example, instance aes2::2 has 155 operations, of which
34 use shared operator types, as well as 291 edges in total, of which
26 are backedges. The size of the compressed instance is specified
accordingly by the number of critical operations |OCr|, and inferred
edges |ECr|. By construction, the sets OSh and EBE are carried over
unchanged to the compressed problem, and therefore their sizes are
not repeated in the table. In the next column, we report the time
required for the problem compression, including all steps of our
approach without the actual modulo scheduling with the delegate
modulo scheduler.

Table 4.3 shows the effects of our problem compression to the
size of the ILPs, i.e. the number of decision variables VarsX and
the number of linear constraints ConsX, when applying either the
EDform or the Moovac-S formulation to an instance X. We presentAs the number of

variables and
constraints in the

EDform is
dependent on the
candidate II, we

present here the ILP
size for the last (=

successful)
scheduling attempt.

the absolute numbers for the original instance I, and relative to that,
the quantities for the compressed instance ICmp. For example, the
ILP according to the EDform for aes2::2 has roughly 3600 decision
variables initially. After the problem compression, only 26% remain,
i.e. the ILP for the compressed instance requires about 936 variables.
Overall, EDform ILPs are compressed to 15% of variables and 22% of
constraints (excluding dfsin::1), whereas Moovac-S ILPs retain over
83% of their original sizes (geometric means).

In Tables 4.4 to 4.5, overall runtimes to schedule the original in-
stances with and without our proposed problem-compressing ap-
proach are shown, alongside the initiation intervals IIS and the corres-
ponding schedule lengths TS of the respective computed solution S.
Asterisks denote which parts of the solution were proven to be optimal.Refer to Section 3.2

for a more detailed
discussion on the

different optimality
results.

We distinguish four cases: “(*,*)” solutions are optimal according to
both objectives, i.e. a minimum length schedule was found for the
smallest feasible II. In a “(*, )” solution, the IIS is proven to be optimal,
but the solver was not able to find or prove the optimal schedule
length. This typically means that the solver depleted its 3 min time
budget, and we accepted any feasible solution. We only know that
we have a feasible solution “( , )” if at least one scheduling attempt
was aborted due to the time limit without finding a solution, and was
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Table 4.2: Compression results: Problem size

I ICmp

Instance |O| |E| |OSh| |EBE| |OCr| |ECr| time [s]

fft_str.::2 84 290 24 65 29 112 0.02

aes2::2 155 291 34 26 41 92 0.03

aes::2 177 377 29 25 34 81 0.02

gsm::3 194 313 18 12 43 120 0.03

aes2::4 225 683 62 158 69 285 0.05

aes::15 236 439 32 2 37 81 0.03

md_grid::7 300 577 24 53 35 115 0.02

jpeg::87 380 1574 35 102 40 171 0.04

jpeg::63 382 1577 35 102 40 171 0.04

jpeg::47 383 1578 35 102 40 171 0.04

jpeg::59 471 1919 50 223 55 308 0.05

jpeg::19 476 1609 69 363 74 489 0.07

jpeg::41 480 1956 50 224 55 309 0.05

adpcm::2 710 1478 100 82 105 388 0.12

adpcm::1 777 1746 95 141 106 396 0.11

blowfish::1 789 2558 107 42 118 517 0.12

jpeg::17 942 5047 106 1041 111 1210 0.15

mips::1 1076 4441 65 1155 76 1595 0.09

aes::12 1367 3065 205 532 210 911 0.27

aes::4 1374 2816 205 402 212 785 0.31

dfsin::1 2651 38642 67 1222 76 1402 0.10
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Table 4.3: Compression results: ILP size

EDform Moovac-S

Instance VarsI
Vars

ICmp
VarsI

ConsI
Cons

ICmp
ConsI

VarsI
Vars

ICmp
VarsI

ConsI
Cons

ICmp
ConsI

fft_str.::2 6.5k 35% 22.1k 40% 0.4k 85% 1.1k 84%

aes2::2 3.6k 26% 6.3k 32% 1.5k 92% 4.6k 96%

aes::2 8.7k 19% 18.1k 22% 0.7k 79% 1.9k 84%

gsm::3 2.3k 22% 3.4k 36% 0.5k 72% 1.3k 86%

aes2::4 7.9k 31% 22.6k 42% 3.8k 96% 12.4k 97%

aes::15 3.5k 16% 6.0k 18% 1.4k 85% 4.1k 91%

md_grid::7 14.4k 12% 27.0k 20% 1.1k 75% 3.1k 85%

jpeg::87 15.6k 11% 61.1k 11% 1.6k 78% 5.4k 74%

jpeg::63 15.7k 10% 61.2k 11% 1.6k 78% 5.4k 74%

jpeg::47 15.7k 10% 61.2k 11% 1.6k 78% 5.4k 74%

jpeg::59 23.6k 12% 91.8k 16% 2.4k 83% 8.2k 80%

jpeg::19 26.2k 16% 85.3k 30% 4.8k 92% 16.2k 93%

jpeg::41 24.5k 11% 95.5k 16% 2.4k 82% 8.3k 80%

adpcm::2 37.6k 15% 76.2k 26% 9.3k 93% 30.6k 96%

adpcm::1 50.5k 13% 110.8k 21% 8.4k 92% 27.5k 95%

blowf.::1 90.7k 15% 289.1k 20% 18.6k 96% 63.8k 97%

jpeg::17 105.5k 11% 553.3k 23% 9.5k 91% 33.9k 89%

mips::1 34.4k 6% 132.1k 32% 5.7k 82% 19.9k 86%

aes::12 128.5k 15% 283.3k 29% 45.8k 97% 156.5k 99%

aes::4 129.2k 15% 260.7k 28% 46.3k 97% 158.0k 99%

dfsin::1 † 16.7k † 305.3k 6.7k 62% 52.3k 29%

† Timeout during ILP construction for original instance, showing absolute num-
bers for compressed instance.
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Table 4.4: Scheduling results: EDform

I ICmp

Instance time [s] IIS TS time [s] IIS TS speed-up

fft_strided::2 45.04 *74 *77 13.04 *74 *77 3.45

aes2::2 26.77 *20 *21 4.70 *20 *21 5.69

aes::2 18.60 *46 *48 2.92 *46 *48 6.37

gsm::3 0.45 *9 *20 0.25 *9 *20 1.82

aes2::4 1277.49 32 33 703.53 32 33 1.82

aes::15 2.04 *12 *18 0.29 *12 *18 6.99

md_grid::7 15.80 *45 *45 2.20 *45 *45 7.19

jpeg::87 16.26 *38 *47 1.22 *38 *47 13.33

jpeg::63 16.33 *38 *47 1.22 *38 *47 13.41

jpeg::47 15.88 *38 *47 1.27 *38 *47 12.51

jpeg::59 42.08 *47 *55 3.12 *47 *55 13.47

jpeg::19 180.00 *52 61 18.27 *52 *54 9.85

jpeg::41 48.20 *48 *56 3.40 *48 *56 14.17

adpcm::2 180.00 *50 132 39.59 *50 *85 4.55

adpcm::1 1620.00 62 94 758.32 58 72 2.14

blowfish::1 3600.00 - - 3600.12 - - 1.00

jpeg::17 1080.00 - - 86.08 *104 *105 12.55

mips::1 1077.93 29 34 398.66 26 38 2.70

aes::12 3600.00 - - 3600.27 - - 1.00

aes::4 3600.00 - - 3600.31 91 92 1.00

dfsin::1 3240.00 - - 3240.10 - - 1.00

sum [min] 328.38 267.98

geomean 4.37

Asterisks (*) indicate optimality was proven
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Table 4.5: Scheduling results: Moovac-S

I ICmp

Instance time [s] IIS TS time [s] IIS TS speed-up

fft_strided::2 0.54 *74 *77 0.80 *74 *77 0.67

aes2::2 37.24 *20 *21 27.00 *20 *21 1.38

aes::2 2.97 *46 *48 3.35 *46 *48 0.89

gsm::3 36.34 *9 *20 180.03 *9 20 0.20

aes2::4 2520.00 33 33 2700.04 34 33 0.93

aes::15 180.00 *12 18 180.02 *12 18 1.00

md_grid::7 6.20 *45 *45 5.75 *45 *45 1.08

jpeg::87 0.28 *38 *47 0.48 *38 *47 0.59

jpeg::63 0.25 *38 *47 0.48 *38 *47 0.52

jpeg::47 0.28 *38 *47 0.48 *38 *47 0.58

jpeg::59 1.01 *47 *55 1.10 *47 *55 0.92

jpeg::19 1.53 *52 *54 4.65 *52 *54 0.33

jpeg::41 1.05 *48 *56 1.21 *48 *56 0.87

adpcm::2 180.00 *50 94 180.10 *50 92 1.00

adpcm::1 1440.00 61 81 1080.11 59 73 1.33

blowfish::1 3600.00 - - 3571.82 - - 1.01

jpeg::17 8.93 *104 *105 11.47 *104 *105 0.78

mips::1 2160.00 35 34 1980.08 34 34 1.09

aes::12 3600.00 - - 3600.29 - - 1.00

aes::4 3600.00 - - 3600.27 - - 1.00

dfsin::1 24.28 *201 *216 24.89 *201 *216 0.98

sum [min] 290.02 285.91

geomean 0.80

Asterisks (*) indicate optimality was proven
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conservatively classified as infeasible. In the worst case, no solution
was found for any candidate II, for which we note “-” in the table.

The results clearly show that our problem-compressing modulo
scheduling approach significantly speeds-up scheduling with the ED-
form. The accumulated runtime to schedule the 21 test instances is
improved by 18%. The per-instance speed-ups are never below 1x, and
range up to 14x, with a geometric mean of 4.37x. As a side effect, the
solution quality for the largest instances is improved as well: the solver
is able to turn feasible solutions into optimal ones (e.g. jpeg::19), or
finding feasible solutions at all (e.g. jpeg::17). Compared to the solver
runtimes, the time spent for the problem compression and schedule
completion is negligible.

The distribution of the IIs in our set of test instances (cf. Table 4.4)
plays an important role in explaining these substantial performance
gains. Considering that each operation in the EDform is represented
by II-many binary variables, and each edge is expressed by II-many
linear constraints, it is obvious (and evident in Table 4.3) that any
reduction in the input problem size will have a huge impact on the
size of the constructed and solved ILP.

The accumulated runtime with the Moovac-S formulation improves
marginally, but the per-instance speed-ups ranging from 0.2x to 1.33x
indicate that Moovac-S is not amenable to be accelerated by our
problem-compressing approach. We attribute the small positive gains
to the already efficient modelling of non-critical operations and edges
in the Moovac-S formulation, as documented in Table 4.3. Most of
the performance regressions occur on compressed instances that are
already scheduled in very short runtimes in their original versions, and
can be considered negligible in practice. However, instances gsm::3

and aes2::4 incur a loss of solution quality. We believe that this
is caused by a phenomenon called performance variability which is
inherent to ILP solvers. In a nutshell, even small structural changes to
linear programs may significantly influence the solver runtime [57].
As removing redundant constraints and decision variables is at the
core of our approach, it is susceptible to this effect.

4.4 chapter summary

We presented a problem-compression algorithm intended to be used
in conjunction with exact modulo schedulers whose internal structure
does not scale well with the size and density of dependence graphs
typical for HLS-style MSP instances. Applied to the ILP formulation by
Eichenberger and Davidson, we were able to unconditionally speed up
all instances in our benchmark set, and obtain better quality solutions
for the largest loops.

With our new preprocessing of the dependence graphs, the EDform

and Moovac-S formulations are much closer performance-wise on
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HLS-typical MSP instances. However, the two schedulers still exhibit
different strengths and weaknesses, which make each of them better
suited for a certain set of MSP instances.



5
D E S I G N - S PA C E E X P L O R AT I O N W I T H
M U LT I - O B J E C T I V E , R E S O U R C E - AWA R E M O D U L O
S C H E D U L I N G

Up until now, we considered the allocation of operators to be a para-
meter to the MSP. This was a valid assumption, because even though
HLS tools leverage the reconfigurable nature of FPGAs for application-
specific allocations, they usually determine the number of operators
independent of the scheduling phase, despite the fact that both phases
are highly intertwined [35].

To that end, we make the following contributions in this chapter.
First, we present an extension to the formal problem signature of
the MSP from Section 2.4 to make it resource-aware, in the sense that
the operator allocation is variable, computed during the actual mod-
ulo scheduling, and only subject to low-level resources available on
the FPGA device. We adapt the bounds to the II search space to the
new situation, and introduce analogous bounds for the space of pos-
sible allocations. Secondly, we discuss how to efficiently compute all
Pareto-optimal trade-off solutions for such an extended problem. After
experimenting with a standard method from multi-criteria optimisa-
tion, we propose a novel problem-specific approach, which, according
to our evaluation, outperforms the standard method in terms of both
overall runtime and number of trade-off points.

This chapter is based on:

[67] Julian Oppermann, Patrick Sittel, Martin Kumm, Melanie Reuter-
Oppermann, Andreas Koch and Oliver Sinnen. ‘Design-Space Explor-
ation with Multi-Objective Resource-Aware Modulo Scheduling’. In:
International Conference on Parallel and Distributed Computing, Euro-Par,
Göttingen, Germany. 2019

5.1 scheduling framework

Figure 5.1 illustrates the kind of trade-offs we want to explore in this
chapter. Assume we have two shared operator types, ADD and MUL.
On the left, we show the fully-spatial solution, in which an operator
instance is allocated for every operation. This is required to achieve the
best-possible II of 1, resulting in the best throughput. On the right, the
smallest possible allocation is shown, providing only a single instance
of each operator type. As a consequence, we can only execute this
solution with an II of 4. Lastly, in the middle, we show a compromise
between the two extremes, with an II of 2 and two allocated operators
per type.

79
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Figure 5.1: Different trade-offs regarding the throughput (smaller II is better)
and resource demand (fewer allocated operators is better)

In this simple example, we assume that the ADD and MUL operators
have the same resource demand, and therefore show only the number
of allocated operators. In reality, though, different operator types
require different subsets of the the FPGA’s resources. To that end, we
have to model the demand for, and the usage of the resources as part
of the optimisation problem.

This chapter builds upon the work of Šůcha and Hanzálek [86] to
define a theoretical framework in which the intertwined HLS (mod-
ulo) scheduling and allocation problems are modelled together, and
presents methods to compute all Pareto-optimal trade-off solutions.
We do not attempt to assign a practical value to each solution, because
that depends entirely upon what a designer wants to achieve in a
particular situation.

5.1.1 The Resource-Aware Modulo Scheduling Problem

The Resource-Aware Modulo Scheduling (RAMS) problem is an exten-
sion of the MSP as introduced in Section 2.4. Table 5.1 summarises the
proposed modifications to the problem signature.

The FPGA is abstracted to the low-level resource types R it provides.
We have Nr elements of each resource type r ∈ R available for theThese limits can

coincide with the
amount of resources

that are physically
available on the

target FPGA, but
are not required to

(cf. Chapter 6).

allocation of operators. The operator types are additionally character-
ised by their resource demands: Each q-instance, q ∈ Q, occupies nrq
elements of resource type r ∈ R.

The most important modification, compared to the MSP, is that
the allocation is no longer an input parameter to the problem, but
returned as part of a solution S, in form of the individual number of
instances aSq of operator type q ∈ Q.

Table 5.2 summarises supplementary notations used in this chapter.
For conciseness, we introduce (5.1) as an alternative notation to rep-
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Table 5.1: Problem signature modification for the Resource-Aware Modulo
Scheduling problem

Symbol Description

input :

R Resource types

Nr ∈N0, ∀r ∈ R Available number of elements of re-
source type r

nrq ∈N0, ∀q ∈ Q, ∀r ∈ R Resource demand of one instance of
operator type q, regarding resource
type r

aq ∈N, ∀q ∈ QSh Allocation (now an output)

output :

aSq ∈N0, ∀q ∈ Q Allocation, i.e. a number of instanti-
ated operators for each type q

Table 5.2: Supplementary notations

Symbol Description

A = 〈aq1 , . . . ,aq|Q|
〉 Alternative notation for an alloca-

tion, grouping together the indi-
vidual allocations for all operator
types

nr(A) ∈N0, ∀r ∈ R Accumulated resource demand of
an allocation A

Amin, Amax Minimum, maximum allocation

Atr(IIS) Trivial allocation for IIS

fII(S) ∈N Objective function for the II min-
imisation

fRU(S) ∈ [0, 1] ⊂ R Objective function for the re-
source utilisation minimisation

S Set of Pareto-optimal solutions
for an instance of the RAMS prob-
lem

X = 〈IIX,AX, . . . 〉 “Special”, intermediate solution –
denotes the (still variable) com-
ponents of a RAMS solution
within an ILP-based modulo
scheduling formulation
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resent an allocation, i.e. as a vector grouping together the individualWe also consider
unlimited operator

types in the
allocation, because

even though we
know how many

instances we need,
we still have to
account for the
resources they

occupy.

numbers of instances regarding all operator types.

A = 〈aq1 , . . . ,aq|Q|
〉 (assuming Q = {q1, . . . ,q|Q|}) (5.1)

For example, AS denotes the allocation associated with a solution S.
(5.2) defines the accumulated resource demand of an allocation.

nr(A) =
∑
q∈Q

aq ·nrq (5.2)

The new resource constraints (5.3) express that the accumulated re-
source demand resulting from the allocation of a solution S must not
exceed the given resource limits.

nr(AS) 6 Nr ∀r ∈ R (5.3)

5.1.2 The Multi-Objective RAMS Problem

As motivated at the beginning of this chapter, two competing min-
imisation objectives exist in our setting. The first objective function,
fII(S) defined in (5.4), simply extracts the II from a solution S. The
second objective function fRU(S) models the resource utilisation of S.
As shown in (5.5), we sum up the accumulated resource demands for
each resource type, weighted by the resource’s relative scarcity. The
value is then scaled by 1/|R| in order to get a real value between 0 and
1.

fII(S) = IIS (5.4)

fRU(S) =
1

|R|

∑
r∈R

nr(AS)

Nr
(5.5)

The benefit of this definition is that almost any change in the op-
erator allocation is reflected in the value of the objective function,
whereas considering only the maximum relative utilisation among the
resource types (maxr∈R

nr(AS)
Nr

) would potentially map many different
allocations to the same resource objective value.The existence of

different solutions
with the same

objective value
makes it harder for

the ILP solver to
prove the optimality

of a solution.

In contrast to the base MSP, no universally applicable order exists
for these objectives. Instead, we seek to compute a set S of Pareto-
optimal solutions with different trade-offs between the two objectives,
and refer to this endeavour as the Multi-Objective Resource-Aware
Modulo Scheduling (MORAMS) problem.

A solution S ∈ S is Pareto-optimal if it is not dominated by any other
solution X ∈ S, i.e. @S ′ ∈ S with (fII(S ′), fRU(S ′)) < (fII(S), fRU(S)).Less formally, a

solution is
Pareto-optimal if no
solution exists that
is better in terms of

both objectives.

latency Note that we do not consider the schedule length as a
third objective here. The minimisation of the II and the minimisation of
the schedule length both conflict with the resource utilisation objective.
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However, similar as in the traditional MSP, we rather want to “invest”
resources in operators that enable the loop to achieve a lower II,
instead of a shorter schedule length, though allocating more operators
to achieve a smaller II may also benefit the schedule length, as evident
in Figure 5.1. Still, the schedule length should also not be completely
unconstrained, as a an accelerator design with a very long latency
would waste resources in places opaque to the scheduling problem,
e.g. in the controller circuit, or for registers storing intermediate values
for long periods of time. To that end, we will experiment with different
external latency constraints in Section 5.4, modelled as different values
for Tmax, the upper bound for the schedule length.

5.1.3 Bounds

The solution space for the MORAMS problem can be confined by
simple bounds derived from the problem instance.

allocation We introduce the minimum allocation Amin and the
maximum allocation Amax, comprised of conservative lower and upper
bounds for the per-operator type allocation of any solution S, amin

q 6
aSq 6 a

max
q for each q ∈ Q. Note that both bounds may be infeasible

for a given RAMS problem instance, as Amin may provide too few
operators to obey temporal deadlines, and Amax may use too many
resources to fit within the given resource limits.

Per definition, we use as many instances of unlimited operator
types as needed. To reflect that, we fix their allocation to the number
of operations using them (5.6).

|Oq
∞
| = amin

q∞ = aSq∞ = amax
q∞ = |Oq

∞
| ∀q∞ ∈ Q∞ (5.6)

For the remaining shared operator types QSh, we propose the defin-
itions in (5.7) and (5.8). The minimum allocation Amin provides one
instance per type. We assume that nr(Amin) 6 Nr, regarding all re-
sources r, as otherwise the problem instance is trivially infeasible. The
maximum allocation Amax models how many operators of a particular
type would fit on the device if all other operator types were fixed at
their minimum allocation.

∀q ∈ QSh :

amin
q = 1 (5.7)

amax
q = min

{
1︸︷︷︸
(a)

+ min
r∈R:nrq>0

⌊
Nr −n

r(Amin)

nrq

⌋
︸ ︷︷ ︸

(b)

, |Oq|︸︷︷︸
(c)

}
(5.8)

Here, (a) represents the one q-instance already considered in the
minimum allocation, (b) models how many extra q-instances would fit
using the remaining elements of resource r, i.e. when subtracting the
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accumulated r-demand of the minimum allocation. Lastly, (c) limits
the allocation to its trivial upper bound, i.e. the number of operations
that use q.

initiation interval The adaption of the static bounds for the
II search space is straight-forward: For the computation of the lower
bound IImin, we plug in the maximum allocation Amax, and analog-
ously, the computation of the upper bound IImax is subject to the
minimum allocation Amin.

interaction of allocation and ii In an instance of the
RAMS problem, the allocation and the II are not independent. Recall
from Section 2.6 that we used the pigeonhole principle to derive a
lower bound IIopr from the allocation, which was a parameter then.
The main insight was that each operator provides only a limited II-
and blocking-time-dependent number of slots to bind operations to.
The same line of thought still applies when both the II and the alloc-
ation are variables in some solution S. We obtain the lower bounds
(5.9) and (5.10), which can already be employed while a solution is
computed.

IIS >
⌈
|Oq| · bq
aSq

⌉
∀q ∈ QSh (5.9)

aSq >

⌈
|Oq| · bq

IIS

⌉
∀q ∈ QSh (5.10)

Other than the change in notation, the allocation-dependent lower
bound for the II (5.9) is equivalent to (2.7). Inequality (5.10) is the
II-dependent lower bound for the allocation, and results from simply
exchanging the II and the allocation in (5.9).

5.1.4 Trivial Allocation

The smallest-possible II-dependent allocation will play an important
role later in the discussion of the approaches to solve the MORAMS
problem. We call it trivial allocation Atr(IIS) for an interval IIS. The
definition in (5.11) sets the individual allocations for every shared
operator type to be equal to the right-hand side of (5.10).

atr
q(II

S) =

⌈
|Oq| · bq

IIS

⌉
∀q ∈ QSh (5.11)

5.2 extension of existing ilp formulations

The template formulation in Figure 5.2 illustrates how ILP-based mod-
ulo scheduling formulations can be made resource-aware with small
changes. In principle, it suffices to replace formerly constant limits



5.2 extension of existing ilp formulations 85

minimise fRU(X)

subject to formulation-specific dependence constraints (→ 2.1)

formulation-specific constraints that ensure at most aXq
operations using operator type q are occupied in each
congruence class modulo IIX (→ 2.2)

nr(AX) 6 Nr ∀r ∈ R (→ 5.3)

aXq ∈N0, and amin
q 6 aXq 6 a

max
q ∀q ∈ Q

Figure 5.2: Template model for resource-aware modulo scheduling

in the base formulation with integer decision variables modelling the
allocation. For notational convenience, we consider these variables
to be part of an intermediate solution X. Then, one would minim-
ise the ILP according to the objective function fRU(X). The specific
changes required to extend state-of-the-art schedulers are described
in the following. The formulations considered in this chapter expect
and leverage the fact that all shared operator types q ∈ QSh are fully
pipelined and thus have bq = 1.

5.2.1 Formulation by Eichenberger and Davidson

The EDform limits the use of an operator type per modulo slot only on
the right-hand sides of constraints (2.14) in Section 2.8.1. To that end, In (5.12), we also

simplified the
constraints to
assume
fully-pipelined
operator types.

introducing appropriate allocation variables as in (5.12), and changing
the objective are thus the only changes required to their model.∑

i∈Oq
m
x mod IIX

i 6 aXq ∀x ∈ [0, IIX − 1], ∀q ∈ QSh (5.12)

5.2.2 Formulation by Šůcha and Hanzálek

The SHform is the only formulation for which a resource-aware
extension was already proposed [86]. We reimplemented their unit-
processing time formulation, as presented in Section 2.8.2, to be used in
our MORAMS approach. The resource-aware variant simply exchanges
constraints (2.28) by (5.13).∑

j∈Oq:i 6=j
µ

(y)
ij 6 aXq − 1 ∀i ∈ Oq, ∀q ∈ Q (5.13)

5.2.3 Moovac formulation

Both variants of the Moovac formulation, as presented in Section 3.1,
require the same changes to be made resource-aware. The allocation
parameters occur in constraints (3.4), (3.5) and (3.11). In the latter,
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the parameters can be replaced with the the corresponding decision
variables (5.14). Doing the same in (3.4) and (3.4) would result in a
product of variables, though. However, we can linearise these con-
straints by replacing the occurrence of aq, which serves as a big-M
constant here, with the maximum allocation, amax

q , as highlighted in
(5.15) and (5.16).

wi 6 aXσ(i) − 1 ∀i ∈ OSh (5.14)

wj −wi − 1− (ωij − 1) · amax
q > 0 ∀(q, i, j) ∈ D (5.15)

wj −wi −ωij · amax
q 6 0 ∀(q, i, j) ∈ D (5.16)

conflict-counting operator constraints In its current
form, the Moovac formulation computes a binding, i.e. mapping of
operations to concrete operators, in contrast to EDform and SHform,
which only ensure that no more than the allocated number of operators
are used in each modulo congruence class. For a fairer comparison,
we adopted Šůcha and Hanzálek’s idea of counting the modulo slot
conflicts among the operations competing for the same shared operator
type.

To this end, we drop the variables wi and ωij, constraints (3.3) and
(3.9), as well as the newly modified constraints (5.14)–(5.16) from the
formulation. Instead, we add the constraints (5.17).This modelling is

only suitable for
operator types with

a blocking time of 1.
A more general
variant will be

presented in
Section 6.3.

∑
j∈Oq,i 6=j

1− µij − µji 6 a
X
q − 1 ∀i ∈ Oq, ∀q ∈ QSh (5.17)

Recall that the binary variables µij and µji are both zero if and only
if operations i and j are assigned to the same congruence class, and
thus are in conflict. For example, let an operation be in conflict with h
other operations. Then we need at least h+ 1 operators for a feasible
solution. Note that there are |Oq|-many instances of (5.17) that work
together similar to a maximum constraint: the operation with the
highest number of conflicts determines the required allocation for the
operator type.

5.3 approaches for the morams problem

In the following, we discuss two different approaches to solve the
MORAMS problem, i.e. computing a set S of Pareto-optimal solutions
regarding fII(X) and fRU(X), with the help of the RAMS formulations
described above.

5.3.1 ε-Approach

The ε-approach is a standard method from the multi-criteria optimisa-
tion field [23]. Its core idea, given two objectives, is to optimise for only
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Algorithm 2 ε-approach for the MORAMS problem

1: Let ILP be an exact modulo scheduling formulation with decision
variables IIX, aXq , ∀q ∈ Q, and tXi , ∀i ∈ O

2: ILP.construct( )

3: S = ∅
4: loop
5: S = new solution
6: ILP.solveWithObjective( fII(X) )

7: if solver status is not optimal then
8: stop exploration

9: IIS = ILP.value( IIX )

10: ILP.addConstraint( IIX == IIS )

11: ILP.solveWithObjective( fRU(X) )

12: if solver status is not optimal then
13: stop exploration

14: aSq = ILP.value( aXq ) ∀q ∈ Q
15: tSi = ILP.value( tXi ) ∀i ∈ O
16: ILP.removeConstraint( IIX == IIS )

17: ILP.addConstraint( fII(X) > fII(S) + 1 )

18: ILP.addConstraint( fRU(X) 6 fRU(S) − minr∈R 1
Nr·|R| )

19: S = S ∪ {S}
20: return S

one objective, and successively add constraints for the other. In order
to apply the method for solving the MORAMS problem, we need
to employ a RAMS formulation where all components of a solution
are decision variables, such as the Moovac-I formulation with the
extensions discussed above. Algorithm 2 shows pseudocode outlining
our implementation.

standard method The basic functionality of the ε-approach is
realised by the following steps. First, an extreme point according to
fII(X) is computed (Line 6), and a solution S is extracted (Lines 9, 14,
15). Then, for the next iteration, a constraint forcing the resource utilisa-
tion to be less than its current value minus an ε, is added (Line 18), and
the model is again solved with the II minimisation objective (Line 6).
We use ε = minr∈R 1

Nr·|R| , i.e. the smallest possible decrease in the
objective value according to the device resources. This algorithm is
iterated until the successively stronger ε-constraints prevent any new
feasible solution to be discovered.

extension for faster convergence We deviate slightly from
the standard method by lexicographically minimising both the II
and the resource utilisation, to ensure that we obtain the smallest
possible allocation for each interval. This is achieved by fixing IIX to
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its value after the II-minimisation (Line 10), and then optimising for
fRU(X) (Line 11). Afterwards, the constraint on the II is removed again
(Line 16).

As a bonus, we know that the II will increase in each iteration, and
encode this insight in the form of a second, non-standard ε-constraint
regarding fII(X) (Line 17). Here, the ε-value is 1, as the IIX is an integer
variable.

solutions We only accept ILP solutions that were proven to be
optimal by the solver, as suboptimal solutions could yield domin-
ated MORAMS solutions and interfere with the convergence of the
algorithm. Conversely, the set of solutions S returned in Line 20 is guar-
anteed to only contain Pareto-optimal solutions, and no post-filtering
is needed.

5.3.2 Iterative Approach

As an alternative to the ε-approach that requires the II to be a decision
variable, we propose an iterative approach, in which the II is a constantThis approach is

applicable to the far
larger class of

modulo schedulers
that try different

candidate IIs until
the first feasible

solution is found.

parameter for each iteration, to tackle the MORAMS problem.
This approach is outlined in Algorithm 3. We choose successively

larger candidate IIs from the range of possible intervals (Line 4),
construct the ILP parameterised to that II (Line 7), solve it with the
resource utilisation objective (Line 8) and, given that the ILP solver
has proven optimality, retrieve and record the solution (Lines 15 to 17).
In case the solver proves the infeasibility of an attempt, we continue
with the next candidate II (Line 11), as in this situation, not enough
operators can be allocated within the given resource constraints to
make the current candidate II feasible. We stop the exploration if
the solver returns either no solution, or a suboptimal one, due to a
violated time limit.

Dominated solutions are filtered in place (Line 18). Due to the
strictly monotonically increasing progression of the candidate IIs, it is
sufficient to compare the current solution to the last Pareto-optimal
solution Slast (if available). Compared to Slast, the current solution S
needs to have a lower resource utilisation in order to be added to the
result set.

While filtering out the dominated solutions is easy in our setting,
significant time may be wasted in computing them. To this end, we
propose two heuristic rules to skip scheduling attempts that would
result in obviously dominated solutions.

candidate-skipping rule The first rule is shown in Lines 5 to 6.
As discussed above, the iterative exploration with increasing candid-
ate IIs means that we can detect dominated solutions by inspecting
their resource utilisation. Now, if we know a priori that the resource
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Algorithm 3 Iterative approach to the MORAMS problem

1: Let ILP be an exact modulo scheduling formulation with a candid-
ate interval IIX (a parameter), and decision variables aXq ∀q ∈ Q
and tXi ∀i ∈ O

2: S ← ∅
3: Slast ← null
4: for IIX ∈ [IImin, IImax] do . Iterate in ascending order
5: if Slast 6= null and AS

last
= Atr(IIX) then

6: continue with next candidate II
7: ILP.construct( IIX )

8: ILP.solveWithObjective( fRU(X) )

9: if solver status is infeasible then
10: Slast ← null
11: continue with next candidate II
12: else if solver status is not optimal then
13: stop exploration

14: S← new solution
15: IIS ← IIX

16: aSq ← ILP.value( aXq ) ∀q ∈ Q
17: tSi ← ILP.value( tXi ) ∀i ∈ O
18: if Slast = null or fRU(S) < fRU(Slast) then
19: S ← S ∪ {S}
20: Slast ← S

21: if AS = Amin then
22: stop exploration

23: return S

utilisation for a given candidate II cannot be improved over the last
Pareto-optimal solution, we can skip such a candidate II completely. To
that end, we check whether the last solution’s allocation, AS

last
, is equal

to the trivial allocation for the current candidate interval, Atr(IIX). If Recall that the
trivial allocation
represents the
theoretical minimum
number of operators
required to make an
II feasible.

so, we skip the candidate II without invoking the ILP solver.
Li et al. used a similar rule to filter candidate IIs’ based on the

respective trivial allocations [54]. However, their definition disregards
the possibility that these allocations may be infeasible, and therefore
can lead to incorrectly excluded candidate IIs.

early-termination rule The second rule (Lines 21 to 22) stops
the exploration if the minimum allocation Amin is achieved. All remain-
ing solutions would be dominated by the current solution because
the allocation cannot be improved further, and those solutions would
have larger IIs.

Note that both rules can only be applied if the respective minimal
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Table 5.3: Problem sizes

Number of . . . min. median mean max.

operations 14 49 104 1374

shared operations 0 4 16 416

edges 17 81 237 4441

backedges 0 3 23 1155

allocations are feasible, which may not be the case in the presence of
deadlines imposed by either backedges or latency constraints.

5.3.3 Dynamic Lower Bound for the Allocation

In order to make it easier for the ILP solver to prove that it has reached
the optimal allocation for the current II, we propose to include the
bound (5.10) in the models. When using the iterative approach, we
can simply add it as a linear constraint to the formulation, since
IIX is a constant. For the ε-approach, however, (5.10) would be a
quadratic constraint. To linearise it, we introduce binary variables πx

that represent a particular value of IIX according to (5.18)–(5.19).∑
x∈[IImin,IImax]

x · πx = IIX
∑

x∈[IImin,IImax]

πx = 1 (5.18)

πx ∈ {0, 1} ∀x ∈ [IImin, IImax] (5.19)

With the help of these variables, we can now impose constraints (5.20),
inspired by inequality (2.11).

x · aXq > πx · |Oq| · bq ∀x ∈ [IImin, IImax], ∀q ∈ QSh (5.20)

5.4 evaluation

We evaluated the presented MORAMS approaches on a set of 204

realistic test instances. These modulo scheduling problems were ex-
tracted from two different HLS environments: 16 instances originate
from Simulink models compiled by the Origami HLS project [70],
whereas 188 instances represent loops from the well-known C-based
HLS benchmark suites CHStone [38] and MachSuite [75]. The latter
were compiled by the Nymble C-to-hardware compiler as described in
[66], using an operator library from the Bambu HLS framework [71].
Table 5.3 summarises the problem sizes. Our target device was the
Xilinx Zynq XC7Z020, a popular low-cost FPGA found on several eval-
uation boards. As resources, we model the FPGA’s number of lookup
tables (53200), DSP slices (220), and, specifically for the C-based bench-
mark instances, assume the availability of up to 16 memory ports that
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can be used to either read from or write to an address space shared
with the ARM CPU-based host system of the Zynq device.

We performed the proposed design-space exploration using Gurobi
8.1 as ILP solver on 2×12-core Intel Xeon E5-2680 v3 systems running
at 2.8 GHz with 64 GiB RAM. The schedulers were allowed to use up
to 8 threads, 6 hours wall-clock time and 16 GiB of memory per instance.
We report each instance’s best result from two runs, considering first
the number of solutions, and then the accumulated runtime of the
exploration.

As discussed in Section 5.1.2, we consider the latency Tmax as a
separate user constraint here. We scheduled our test instances subject
to three different latency constraints that cover the whole spectrum of
cases: The strongest constraint is to limit the schedule length Tmax to
the length of the critical path TCP. Using the length of a non-modulo
schedule with heuristic resource constraints, TNM, relaxes the opera-
tions’ deadlines slightly. Lastly, we adapt the loose but conservative
bound T IM from Section 3.2.2 to consider the minimum allocation,
which by construction does not exclude any modulo schedule with
minimal length.

In the following discussion, S denotes the set of Pareto-optimal
solutions for a given instance of the MORAMS problem. Let the set Sco

contain all solutions computed by a particular approach, including the
ones that were immediately discarded as dominated in the iterative
approach. Additionally, we define the set Str ⊆ S of trivial solutions,
by which we mean solutions S that have the trivial allocation for their
respective II, formally AS = Atr(IIS).

Figure 5.3 illustrates these metrics and the shape of the solution
space resulting from the exploration with our iterative approach for the
instance representing the Simulink model splin_pf. We picked this par-
ticular instance because it behaves differently under the three latency
constraints, and showcases the effects of our heuristic rules. In the case
Tmax = TCP, many dominated solutions were computed because the
minimal allocation Amin was not feasible, and consequently, the early-
termination rule was not applicable. Also, the candidate-skipping rule
was only able to skip candidate IIs 6–7. For Tmax = TNM, the situation
was significantly relaxed, as we only computed one dominated solu-
tion at II = 8, and were able stop the exploration at II = 9. Lastly,
with Tmax = T IM, all solutions were trivial, and no extra dominated
solutions were computed. The equivalent plots for the ε-approach,
which we omit here for brevity, only contain the orange-coloured
Pareto-optimal solutions by construction. All approaches completed
the exploration for splin_pf within three seconds of runtime.

The results of the exploration across all 204 test instances are sum-
marised in Table 5.4 for the ε-approach of Section 5.3.1, as well as the
iterative approach of Section 5.3.2 together with the EDform, SHform

or Moovac-S formulations. The scheduler runtimes are accumulated
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approach



5.4 evaluation 93

Table 5.4: Design-space exploration results for 204 instances

Tmax = TCP Tmax = TNM Tmax = T IM

Method RT [h] |Sco| |S| |Str| RT [h] |Sco| |S| |Str| RT [h] |Sco| |S| |Str|

ε-approach 12.2 285 285 168 48.4 372 372 302 70.6 321 321 290

iterative:

EDform 2.4 1510 290 170 26.4 498 453 381 34.9 441 422 382

SHform 16.2 1502 289 170 48.1 448 412 341 47.7 416 408 371

Moovac-S 16.0 1492 289 170 48.2 422 379 308 54.3 353 346 312

RT [h] = “accumulated runtime in hours”.

in the columns “RT [h]” to give intuition into the computational effort
required by the different approaches. Note that in practice, one would
not need to schedule a set of instances sequentially. We then count the
number of solutions in the aforementioned categories.

According to the complete exploration, the clear winner is the
resource-aware EDform within our problem-specific, iterative ap-
proach, as it computes the most Pareto-optimal solutions (columns
“|S|”) in the shortest amount of time (columns “RT [h]”), across all
latency constraints, by a large margin. The SHform performs slightly
better than the Moovac-S formulation in the MORAMS setting. We
observe that for the tightest latency constraint TCP, fewer trivial alloca-
tions are feasible than for the other bounds, which causes the iterative
approaches to compute |Sco| � |S|, due to the non-applicability of
the heuristic tweaks in Algorithm 3. On the other hand, the fact that
|S| > |Str| demonstrates that only considering solutions with the trivial
allocation for the respective II (e.g. as suggested in [29]) would, in
general, not be sufficient to perform a complete exploration.

By design, the ε-approach computes only the Pareto-optimal solu-
tions, regardless of the latency constraint (columns “|Sco|” ≡ “|S|”).
However, this benefit is apparently outweighed by the additional com-
plexity introduced by modelling the II as a decision variable in the
Moovac-I formulation, causing the ε-approach to be outperformed by
the EDform.

Note that the accumulated runtimes increase from TCP to T IM across
all methods. While on the one hand, a tight bound such as TCP makes
the operator-constrained scheduling part of the problem harder, on the
other hand it also restricts the ILP search space and thus helps the ILP
solver to prove the optimality of a solution faster. As we accept only
provably optimal solutions during the exploration, it is apparent that
the effects of the second aspect play a greater role in our experiment.
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5.5 chapter summary

We presented a framework to perform a scheduler-driven design-space
exploration in the context of high-level synthesis. Despite of leveraging
ILP-based modulo scheduling formulations, the MORAMS problem
can be tackled in a reasonable amount of time, and yields a variety of
throughput vs. resource utilisation trade-off points.
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S K Y C A S T L E : A R E S O U R C E - AWA R E M U LT I - L O O P
S C H E D U L E R

Modern FPGAs have become large enough to accommodate far more
functionality than one simple computational kernel, opening up new
opportunities and challenges for designers. For example, when using
all available resources, complex multi-phase kernels can be imple-
mented within a single accelerator to reduce the number of context
switches [44, 82]. On the other hand, it is also reasonable to partition
the resources, e.g. to replicate an accelerator for parallel processing
[50], or to share one device among different groups in a research
project [92]. In all of the aforementioned situations, the question is
usually the same:

How to maximise the performance within the given resource constraints?

In this chapter, we present SkyCastle, a resource-aware multi-
loop scheduler that can answer the question above automatically, and
outline how it enables a new way to design hardware accelerators.

This chapter is based on:

[68] Julian Oppermann, Lukas Sommer, Lukas Weber, Melanie Reuter-
Oppermann, Andreas Koch and Oliver Sinnen. ‘SkyCastle: A Resource-
Aware Multi-Loop Scheduler for High-Level Synthesis’. In: International
Conference on Field-Programmable Technology, FPT. 2019

6.1 background

The initially stated question implies an optimisation problem. HLS tools
are an ideal starting point to tackle it, as they can construct microar-
chitectures with different trade-offs for the accelerator’s performance
and resource demand from the same algorithmic specification. This
work targets HLS tools that accept C/C++ code as input. We argue
that the most influential control knob in this context is the amount of
pipelining (cf. Section 2.2.3) used in the microarchitecture. Recall that a
smaller II results in more overlapping of iterations and in consequence,
in a shorter execution time for the whole loop, but also requires more
resources as less operator sharing is possible.

Pipelining is also applicable to functions, where it results in an
overlapping evaluation of the function’s body for different sets of ar-
guments. The same trade-off considerations and scheduling techniques
apply to both forms of pipelining, though.

95
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Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }

double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {

// most probable explanation for "i5"

char maxClause = -1; double maxProb = -1.0;

MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);

double p1 = spn(i1, i2, i3, i4, x+1);

double p2 = spn(i1, i2, i3, i4, x+2);

double p3 = spn(i1, i2, i3, i4, x+3);

maxProb = ... // max(maxProb, p0, p1, p2, p3);

maxClause = ... // argument value for i5 that

// yielded new value for maxProb

}

double pM = spn_marginal(i2, i3, i4, maxClause);

return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.
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First, we provide the formal definition of the Multi-Loop Scheduling
(MLS): an integrated scheduling and allocation problem that models
the interaction between these two core steps (cf. Section 2.1.3) for
HLS kernels containing arbitrarily nested loops and functions. The
MLS problem serves as the theoretical foundation for solving the
aforementioned optimisation problem.

Secondly, we present SkyCastle, a resource-aware multi-loop sched-
uler capable of solving the problem for a subclass of kernels composed
of multiple, nested loops in a single top-level function.

Both the proposed problem definition and the scheduler apply to,
or can be easily adapted to, any HLS flow. However, in order do
demonstrate the practical applicability of the approach, we tailored
the scheduler to be plug-in compatible with the Vivado HLS engine.
To that end, we faithfully extract the actual scheduling and allocation
problems faced by Vivado HLS from its intermediate representation.
Afterwards, we feed the directives required to control pipelining and
the operator allocation according to the solutions determined by our
scheduler back to the synthesis flow.

Vivado HLS’ default settings aim at maximum performance but
may fail in later synthesis steps due to resource demands that exceed
the capacity on the target device. Even with our proof-of-concept
implementation, we are able to guide Vivado HLS to generate syn- Vivado HLS’

proprietary nature
currently prevents a
deeper integration
into the synthesis
flow.

thesisable microarchitectures for three complex kernels on two FPGA
devices. On the larger device, we also explore partitioning the avail-
able resources in order to enable the replication of slightly slower, but
smaller accelerators as a means to further boost the overall perform-
ance. The multi-accelerator solution easily outperforms the theoretical
maximum-performance, single-accelerator design, which is actually
unsynthesisable for two of our three case studies.

6.1.3 Related Work

We discuss the related work with regards to the kind of exploration
used to discover solution candidates to answer the initially stated
research question. For a general overview of modulo scheduling ap-
proaches, refer to Section 2.7.

6.1.4 As Part of the HLS Scheduler

The most direct way to solve the problem is to model it inside the
HLS scheduler. This requires considering the highly interdependent
problems of scheduling and (operator) allocation together, but has
two main benefits: First, the resulting schedules are guaranteed to
be feasible because they were computed by an actual scheduler that
considers all nuances of the problem, such as tight inter-iteration
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dependences that might require more operators than the theoretical
lower bound. Secondly, no external exploration is required.

Our MORAMS study from Chapter 5 is the only work that fits in this
category, but it is not sufficient to answer the problem directly, because
we only modulo-scheduled individual loops under the assumption of
an independent operator allocation, instead of more complex multi-
loop kernels. However, our proposed scheduler builds upon the RAMS

framework and can be seen as a significant extension of the previous
chapter, in order to suit a more practical context.

6.1.5 Pipelining-focussed Exploration

The next category is comprised of approaches that control the amount
of pipelining in a complex kernel by determining target IIs for its
pipelined parts, e.g. stages in a pipelined streaming application [51],
stateless actors in a synchronous data-flow graph [12, 13], or loops
arranged in a directed, acyclic graph [54]. Common aspects in these
works are a) the use of a performance model to choose the IIs, b)
the approximation of latencies of the individual parts, and c) the
derivation of the operator allocation from the II, without checking the
feasibility.

Differences exist in the chosen objectives. Li et al. [54] tackle a
problem very similar to ours: minimise the overall latency of a kernel,
subject to low-level resource constraints, and consider the benefits of
slightly slower, but better replicable implementations.

Cong et al. [12] and Cong, Huang and Zhang [13] and Kudlur,
Fan and Mahlke [51] attempt to minimise the required resources to
fulfil an externally given throughput constraint, and, in consequence,
would need some kind of exploration to find the highest throughput
that still satisfies given resource constraints. Note, though, that these
approaches employ more elaborate models of generated microarchi-
tectures than we do. For example, the cost-sensitive modulo scheduler
[29] used in [51] considers the different bitwidths of operations as
well as the required interconnects and register storage, but crucially,
performs the allocation of functional units before scheduling.

6.1.6 General Design-Space Exploration

General design-space exploration approaches form the last (and largest)
category, whose representatives may be model-based analysis tools
[96, 98], integrated in an HLS flow [30, 73], or consider the HLS tool
as a black box and emit directives to control the microarchitecture
generation [77]. These approaches usually consider other techniques
besides pipelining, such as loop unrolling, function inlining, or parti-
tioning of arrays. Most tools aim to explore a diverse set of solutions
for the (human) designer choose from. A notable exception is the
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Figure 6.1: An example instance of the multi-loop scheduling problem

work of Prost-Boucle, Muller and Rousseau [73], which describes an
autonomous flow that successively applies transformations to improve
the kernel’s latency while obeying low-level resource constraints. How-
ever, internally, the allocation of operators precedes the scheduling
phase.

6.2 the multi-loop scheduling problem

6.2.1 Informal Problem Description

Given an HLS kernel in a structured programming language, com-
posed of multiple, optionally pipelined, loops and functions, we want
to minimise the latency of one activation of the kernel’s unique top-
level function, subject to resource constraints in terms of the low-level
FPGA resources, e.g. look-up tables or DSP slices.

Figure 6.1 shows an example instance of the MLS problem. We have
several dependence graphs that each correspond to the body of a
loop in the kernel, derived e.g. from a CDFG representation inside the
HLS tool. The non-loop parts of functions are treated uniformly as
single-iteration loops at the outermost level. In addition to what is
shown in the example, the general problem definition in Section 6.2.3
will allow multiple, different functions to be called from any graphs of
a function. Also, any function may contain arbitrary loop structures.

Our goal in the scheduling part of the problem is to compute start times
for each operation, and to determine a feasible initiation interval for
graphs originating from pipelined parts of the kernel.

The operations in the graphs require operators, which occupy a
specific amount of the FPGA’s resources. HLS tools may share operators
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among several operations if the resource demand of the operator is
higher than the cost of the additional multiplexing logic. Determining
the number of operators of each type constitutes the allocation part of
the problem, and has a strong influence on the scheduling result.

We introduce the concept of an allocation domain, which provides
the operators for a subset of the graphs. All graphs in an allocation
domain share these operators, but assume exclusive access to them.
This means that the parts of the computation represented by any pair
of graphs in the same allocation domain will be executed sequentially
at runtime. In contrast, graphs in different allocation domains can
execute in parallel due to their independent sets of operators.

Figure 6.1 also presents the canonical examples for these concepts,
inspired by Vivado HLS, which implements operator sharing at the
function level. Here, the two functions, foo and bar, represent the
allocation domains. The former contains four graphs, i.e. the func-
tion body plus the three loops loop1–loop3. The operations in these
graphs share the allocated operators within foo. Function bar contains
only one graph, bar’s body. Nested loops are represented by special
operations (squares in the figure) that reference another graph in the
same allocation domain. Lastly, the function call (rhombus in loop2)
references another graph embedded in its own allocation domain (=
bar), which needs to be instantiated as a special operator type in the
surrounding allocation domain (= foo).

We will implicitly assume these correspondences for the rest of this
chapter, and name the special operations and operators accordingly in
order to keep the following problem definition as intuitive as possible.
Note, however, that the underlying modelling ideas apply to other
resource/operator sharing strategies as well, e.g. sharing only within
the same loop level, in which case each graph would be embedded
into its own allocation domain.

6.2.2 Extended Notation

Tables 6.1 to 6.3 summarise the notation used in this chapter, which
extends the formalism from the previous chapters in a natural way.
Up until now, instances of the scheduling and allocation problems at
hand represented individual loops, and were comprised of operations
and edges in a single dependence graph, and a set of operator types
partitioned into shared and unlimited types. In order to define the
problem signature for an instance of the MLS problem in Section 6.2.3,
we additionally need to distinguish

• multiple functions with their individual subsets of graphs and
operator types,

• predefined and function operator types,

• pipelined and non-pipelined graphs, and
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• normal, loop and call operations.

The set F contains all functions of the kernel, and partitions the sets
of dependence graphs G and operator types Q: a function F ∈ F is
associated with its unique subsets of graphs GF and operator types
QF. The reverse mapping from a given graph or operator to the
surrounding function is established by the function ϕ. We define
ϕ(g) = F⇔ g ∈ GF, and analogously, ϕ(q) = F⇔ q ∈ QF.

We assign a latency lq to each operator type q ∈ Q. Predefined op-
erator types (QPd) have static characteristics extracted from the HLS
tool’s operator library. In contrast, a function operator type q ∈ QFu

references a graph γ(q) in another function, and derives its latency,
blocking time, and resource demands from the other graph’s inter-
mediate scheduling and allocation result. We continue to distinguish
shared (QSh) and unlimited (Q∞) operator types. Note that function
operator types are always considered to be shared. For notational con-
venience, we define subsets QSh

F ,Q∞F ,QPd
F ,QFu

F of these classification
sets per function F. The symbol aq still denotes the allocated number
of instances of operator type q ∈ Q. However, as we now need to
distinguish one allocation per function, we let AF group together the
individual allocations for the operator types in a function F.

We assume to have a constant known trip count cg for each graph
g ∈ G, and let Tg denote its latency. The set Gpl marks graphs that Here, the latency is

synonymous to the
schedule length.

correspond to a pipelined loop or function in the kernel. A pipelined
graph g ∈ Gpl has an initiation interval IIg. We denote the kernel’s
top-level graph as gtop.

Each graph g ∈ G is defined by its set of operations Og, and set
of dependence edges Eg. We distinguish three kinds of operations. A
normal operation i ∈ ONo

g is associated with a predefined operator type
σ(i). A loop operation i ∈ OLo

g represents a nested loop in the graph, Normal operations
are equivalent to the
only kind of
operations in
previous chapters.

and references another graph γ(i) in the same function. Lastly, a call
operation i ∈ OCa

g models a function call in the kernel. It is associated
with a function operator type σ(i), which in turn references the graph
γ(σ(i)) corresponding to the body of the called function.

The definitions above use the function σ to map an operation to its
operator type, and γ to map a loop operation or function operator
type to the referenced graph.

The sets Oqg represent a graph g’s subset of operations that use a
particular operator type q, according to σ(i) = q⇔ i ∈ Oqg for every
normal or call operation i ∈ ONo

g ∪OCa
g .

The remaining symbols in Tables 6.1 to 6.3 carry the same meaning
as before.

6.2.3 Formal Problem Definition

Figure 6.2 defines the signature of the MLS problem. The input is
comprised of the specification of the model components according to
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Table 6.1: Notations to describe the MLS problem: Sets

Symbol Description

R Set of resource types

Q = QSh ∪Q∞ Set of operator types

= QPd ∪QFu

QSh Set of shared operator types

Q∞ Set of unlimited operator types

QPd Set of predefined operator types

QFu Set of function operator types

G Set of graphs

Gpl ⊆ G Set of pipelined graphs

gtop ∈ G Top-level graph of the kernel

Og = ONo
g ∪OLo

g ∪OCa
g , Set of operations in graph g

∀g ∈ G
ONo
g ∀g ∈ G Set of normal operations in graph g

OLo
g ∀g ∈ G Set of loop operations in graph g

OCa
g ∀g ∈ G Set of call operations in graph g

O
q
g ⊆ Og, ∀q ∈ Q Set of operations in g using operator

type q

Eg ∀g ∈ G Set of dependence edges in graph g

F Set of functions

GF ⊆ G, ∀F ∈ F Graphs in function F

G
pl
F ⊆ G, ∀F ∈ F Pipelined graphs in function F

QF ⊆ Q, ∀F ∈ F Operator types in function F

QSh
F ,Q∞F ,QPd

F ,QFu
F Operator types of a certain kind in

function F
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Table 6.2: Notations to describe the MLS problem: Attributes

Symbol Description

Nr ∈N0, ∀r ∈ R Resource limit for type r

lq ∈N0, ∀q ∈ Q Latency (in time steps) of operator
type q

bq ∈N, ∀q ∈ QSh Blocking time (in time steps) of
shared operator type q

nrq ∈N0,∀q ∈ Q, ∀r ∈ R Resource demand of one instance
of operator type q, regarding re-
source type r

aq ∈N0, ∀q ∈ Q Allocation, i.e. a number of instan-
tiated operators for each type q

AF = 〈aq1 , . . . ,aq|QF|
〉 Alternative notation for an alloca-

tion regarding function F, group-
ing together the individual alloca-
tions for all of its operator types

nr(A) ∈N0, ∀r ∈ R Accumulated resource demand of
an allocation A

cg ∈N, ∀g ∈ G Number of iterations for one in-
vocation of graph g

Tg ∈N0, ∀g ∈ G Latency (in time steps) for graph
g

IIg ∈N, ∀g ∈ Gpl Initiation interval (in time steps)
for pipelined graph g

∀g ∈ G :

li ∈N0, ∀i ∈ Og Latency (in time steps) of opera-
tion i

ti ∈N0, ∀i ∈ Og Start time (in time steps) of opera-
tion i

dij ∈N0, ∀(i→ j) ∈ Eg Edge distance (in number of itera-
tions)

Lij ∈N0, ∀(i→ j) ∈ Eg Additional edge latency (in num-
ber of time steps)

lij ∈N0, ∀(i→ j) ∈ Eg Required number of time steps
between operations i and j



104 skycastle : a resource-aware multi-loop scheduler

Table 6.3: Notations to describe the MLS problem: Mappings

Symbol Description

ϕ : G → F Maps graphs to their surrounding
function

ϕ : Q → F Maps operator types to their surround-
ing function

σ : ONo
g ∪OCa

g → Qϕ(g), Maps normal and call operations to
their associated operator type (in the
same function)

∀g ∈ G

γ : OLo
g → Gϕ(g), Maps loop operations to the graph

representing the nested loop (in the
same function)

∀g ∈ G

γ : QFu
F → GF ′ , Maps function operator types to the

graph representing the body of the
called function

∀F, F ′ ∈ F : F 6= F ′

Attributes are either parameters, derived, or part of the solution.

ℱ
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Figure 6.2: Overview of MLS problem model
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the sets in Table 6.1, and the static mappings according to Table 6.3.
Additionally, all attributes from Table 6.2 that are in green colour in
the Figure 6.2 are input parameters. A solution to the problem consists For clarity, we omit

the superscript
previously used to
differentiate
solutions here, as we
only seek to compute
one solution.

of a schedule for each graph (6.1), an II for each pipelined graph (6.2),
and the allocation in each function (6.3).

ti ∀i ∈ Og, ∀g ∈ G (6.1)

IIg ∀g ∈ Gpl (6.2)

aq ∀q ∈ QSh
F , ∀F ∈ F (6.3)

The solution components are highlighted in orange colour in Fig-
ure 6.2.

derived attributes The values of the blue attributes in Fig-
ure 6.2 are derived from other parameters and solution components.
Considering them as part of the problem signature is therefore not
mandatory, but simplifies the model.

First, we define an operation’s latency in respect to the particular
kind of operation. Normal operations adopt the latency of the associ-
ated operator type (6.4). Loop operations have a latency equal to the
number of time steps required to execute the entire loop once, either
with disjoint iterations for non-pipelined loops (6.5), or with overlap-
ping iterations according to the II for pipelined loops (6.6). Functions
are handled as one-iteration loops, therefore only the latency of the
referenced graphs needs to be considered (6.7).

∀g ∈ G :

li = lσ(i) ∀i ∈ ONo
g (6.4)

li = cγ(i) · Tγ(i) ∀i ∈ OLo
g : γ(i) /∈ Gpl (6.5)

li = (cγ(i) − 1) · IIγ(i) + Tγ(i) ∀i ∈ OLo
g : γ(i) ∈ Gpl (6.6)

li = Tγ(i) ∀i ∈ OCa
g (6.7)

(6.8) defines our usual shorthand notation for the smallest number
of time steps that j can start after i, according to a given edge. A
graph’s latency is derived from the start times and latencies of its
operations (6.9).

lij = li + Lij ∀(i→ j) ∈ Eg, ∀g ∈ G (6.8)

Tg = max
i∈Og

ti + li ∀g ∈ G (6.9)

Function operators have a variable blocking time that is equal either
to the latency (non-pipelined functions, (6.10)), or the II (pipelined
functions, (6.11)), of the graph referenced by the operator type. Simil-
arly, they have variable resource demands, which are derived from the
accumulated resource demands of the referenced function’s allocation
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(6.12). Lastly, per definition we allocate as many instances of each
unlimited operator types as we have operations using it (6.13).

bq = Tγ(q) ∀q ∈ QFu : γ(q) /∈ Gpl (6.10)

bq = IIγ(q) ∀q ∈ QFu : γ(q) ∈ Gpl (6.11)

nrq = nr(Aϕ(γ(q))) ∀q ∈ QFu (6.12)

aq =
∑

g∈Gϕ(q)

|Oqg | ∀q ∈ Q∞ (6.13)

feasibility constraints A feasible solution must honour all
precedence constraints expressed by the dependence edges (6.14), en-
sure that no shared operator type is oversubscribed at any time (6.15),
and obey the given resource constraints for the top-level function
(6.16). For pipelined graphs, these constraints resemble the ones from
the definition of the RAMS problem in Section 5.1.1. For non-pipelined
graphs, backedges can be ignored because they are automatically sat-
isfied, and no modular arithmetic is required to check for an overlap
of blocking times, resulting in simplified constraints.

∀(i→ j) ∈ Eg, ∀g ∈ G :ti + lij 6 tj g /∈ Gpl

ti + lij 6 tj − dij · IIg g ∈ Gpl
(6.14)

∀q ∈ QSh
F , ∀g ∈ GF, ∀F ∈ F :

|{i ∈ Oqg : ti 6 x < ti + bq}|

6 aq ∀x ∈ [0, Tg] g /∈ Gpl

|{i ∈ Oq : x ∈ {(ti +β) mod IIg : 0 6 β < bq}}|

6 aq ∀x ∈ [0, IIg − 1] g ∈ Gpl

(6.15)

∀r ∈ R : nr(Aϕ(gtop)) 6 Nr (6.16)

objective The objective is to minimise the latency of the ker-
nel’s top-level function (6.17), which we currently assume to be non-
pipelined.

min Tgtop (6.17)

6.2.4 Bounds

We propose to compute the bounds shown in Table 6.4 before attempt-
ing to solve an instance of the MLS problem. Generally, we inherit the
definitions from the RAMS framework described in Section 5.1.3, and
extend them to recursively handle approximations for loop operations
and function operator types.
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Table 6.4: Bounds for the MLS problem

Symbols Description

amin
q 6 aq 6 amax

q ∀q ∈ QSh
F , Minimum and maximum

allocation for a shared
operator type q in a
function F

∀F ∈ F

lmin
i 6 li 6 lmax

i ∀i ∈ OLo
g ∪OCa

g , Minimum and maximum
latency for a loop or call
operation i in a graph g

∀g ∈ G

Tmin
g 6 Tg 6 Tmax

g ∀g ∈ G Minimum and maximum
latency/schedule length for
a graph g

IImin
g 6 IIg 6 IImax

g ∀g ∈ Gpl Minimum and maximum II
for a pipelined graph g

bmin
q 6 bq 6 bmax

q ∀q ∈ QFu Minimum and maximum
blocking time for a function
operator type q

allocation The minimum and maximum allocations are com-
puted for each function F. For a shared operator type q ∈ QSh

F , we set
amin
q = 1 as in (5.7), and amax

q to the maximum number of instances
that fit within the given resource limits if all other operator types
were fixed at their minimum allocation, according to (5.8). During this
computation, the variable resource demand (regarding a type r ∈ R) of
a function operator type q ∈ QFu

F is approximated as nr(Amin
ϕ(γ(q))), i.e.

the accumulated r-demand of the referenced function’s own minimum
allocation.

latency For each graph g ∈ G, the minimum latency Tmin
g is

defined by the length of the critical path, without considering any
operator limits. For loop and call operations, which have a variable
latency, we use best-case approximations as shown in (6.18)–(6.20).

lmin
i = cγ(i) · Tmin

γ(i) ∀i ∈ OLo
g : γ(i) /∈ Gpl (6.18)

lmin
i = (cγ(i) − 1) · IImin

γ(i) + T
min
γ(i) ∀i ∈ OLo

g : γ(i) ∈ Gpl (6.19)

lmin
i = Tmin

γ(i) ∀i ∈ OCa
g (6.20)

If g is not pipelined, we set its maximum latency Tmax
g to the length

of a heuristic non-modulo schedule (cf. Section 2.6.2) at the minimum
operator allocation for the surrounding function. Otherwise, any of
the previously discussed bounds for the length of a modulo schedule
(e.g. T IM, TNM) can be applied when considering the respective min-
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imum allocation. In both cases, we use the corresponding worst-case
approximations for the variable latencies, according to (6.21)–(6.23).

lmax
i = cγ(i) · Tmax

γ(i) ∀i ∈ OLo
g : γ(i) /∈ Gpl (6.21)

lmax
i = (cγ(i) − 1) · IImax

γ(i) + T
max
γ(i) ∀i ∈ OLo

g : γ(i) ∈ Gpl (6.22)

lmax
i = Tmax

γ(i) ∀i ∈ OCa
g (6.23)

initiation interval Recall from Section 2.6 that the lower
bound for a graph g’s interval IImin

g is defined as max(IIopr
g , IIrec

g ). In
order to compute IIrec

g , we use the best-case latency approximations
(6.18)–(6.20) as above. For IIopr

g , we plug the surrounding function’s
maximum allocation Amax

ϕ(g), as well as the minimum blocking times
bmin
q for function operator types q ∈ QFu, into formula (2.7).

blocking time Function operator types q ∈ QFu have a variable
blocking time that corresponds either to the latency or II of the refer-
enced graph. To that end, we simply propagate the respective lower
and upper bounds in (6.24)–(6.27).

bmin
q = Tmin

γ(q) γ(q) /∈ Gpl (6.24)

bmin
q = IImin

γ(q) γ(q) ∈ Gpl (6.25)

bmax
q = Tmax

γ(q) γ(q) /∈ Gpl (6.26)

bmax
q = IImax

γ(q) γ(q) ∈ Gpl (6.27)

6.2.5 Compatibility with Vivado HLS

Vivado HLS imposes two additional restrictions on the nesting of
pipelined graphs.

OLo
g = ∅ ∀g ∈ Gpl (6.28)

bσ(i) | IIg ∀i ∈ OCa
g , ∀g ∈ Gpl (6.29)

First, pipelined loops cannot contain other loops (6.28). Secondly, the
blocking times of all function operator types used in a pipelined
graph must divide the graph’s II (6.29). Note that all operator types
predefined in Vivado HLS’ library are fully pipelined, i.e. they have a
blocking time of 1.

In the implementation of SkyCastle, we handle the chaining of
combinatorial operations and the accesses to on-chip memory and
AXI4 ports in a way that faithfully reproduces Vivado HLS’ behaviour.
As a concession to the clarity of this chapter, these implementation
details are omitted here.
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6.3 extensions for moovac

As a preparation for the definition of the SkyCastle formulation in
Section 6.4.2, we present modifications to the underlying Moovac

formulation in the context of a single graph g, and call the result
mMoovac (“modified Moovac”).

6.3.1 Alternative Modulo Decomposition

When we made the II a decision variable in the Moovac-I formulation
in Section 3.1.2, we faced a product of decision variables in the modulo
decomposition, and thus needed to linearise constraints (3.10). We
chose to enumerate the possible values of the y variables then (3.19).

However, recall from Section 5.3.3 that we encoded dynamic lower
bounds for the interaction of the II and the operator allocation (5.20)
with the help of binary variables πx that indicate whether the II has
a particular value x. It is apparent that we can use these variables
to linearise constraints (3.10) in an alternative way, by imposing one
constraint per II value, instead of one constraint per value of an opera-
tion’s y variable (6.30). Constraints (6.31) ensure that the π variables
are assigned properly, and lastly, (6.32) are the domain constraints for
the new variables.

πxg = 1→ ti = yi · x+mi ∀x ∈ [IImin
g , IImax

g ]

∀i ∈ Oqg , ∀q ∈ QSh (6.30)∑
IImin
g 6x6IImax

g

πxg = 1
∑

IImin
g 6x6IImax

g

x · πxg = IIg (6.31)

πxg ∈ {0, 1} ∀x ∈ [IImin
g , IImax

g ] (6.32)

6.3.2 Alternative Operator Constraints

In the Moovac formulation, linear constraints (3.3)–(3.9) model the
operator constraints (2.2). In order to ensure that no more than aq
instances of a shared operator type q ∈ QSh are used at any time by the
operations of a graph g ∈ G, we require that each pair of operations
competing for the same operator type is either scheduled to different
congruence classes (modulo II), bound to different operators, or both.

In this section, we perform two modifications: first, we again drop
the explicit computation of a binding between the operations and
operator instances, and instead resort to counting conflicts across all
pairs of operations using the same operator type. We already used
this idea, which originates from the work of Šůcha and Hanzálek [86],
albeit in a more ad-hoc manner, in Chapter 5. Secondly, we propose a
formulation approach to detect conflicts between pairs of operations
which supports general, and even variable, blocking times.
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Figure 6.3: Interaction of the m, µ and χ variables in the alternative model-
ling of the operator constraints
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elling of the operator constraints, simplified for fully-pipelined
operator types with a blocking time of 1



6.3 extensions for moovac 111

In the following paragraphs, we will reason about pairs of operations
i, j ∈ Oqg using the same shared operator type q ∈ QSh. We assume the
presence of an arbitrary total order < among these operations, which
lets us denote subsets of unique pairs, e.g. with i < j.

operator constraints via conflict counting We say two
operations i, j are in conflict, indicated by a newly introduced binary
variable χij = 1, if they cannot use the same q-instance due to overlap-
ping blocking times. As this relation is symmetric, we only encode it
for i < j. (6.33) express that we need to allocate at least one q-instance
more than the maximum number of conflicts any operation is part of,
as both operation i and all conflicting operations require access to a
q-instance. (6.34) are the domain constraints for the new variables.∑

j∈Oqg :i<j

χij +
∑

j∈Oqg :i>j

χji 6 aq − 1 ∀i ∈ Oqg (6.33)

χij ∈ {0, 1} ∀i, j ∈ Oqg : i < j (6.34)

conflict detection with variable blocking times Fig-
ure 6.3 illustrates the space of possible congruence class assignments,
mi and mj, for a unique pair of operations i, j. The green areas enclose
non-conflicting assignments, i.e. both operations can use the same
operator. Per definition, we want to express this situation as χij = 0.
All other assignments in the red areas result in overlapping blocking
times in either the same or adjacent iterations, which prevent i and
j from sharing one q-instance. The conflict should be expressed as
χij = 1.

The different areas are bounded by four inequalities betweenmi and
mj, as visualised by the lines in Figure 6.3. The arrowheads indicate
on which side of the line the inequality is satisfied.

Coincidentally, the figure shows the situation for IIg = 16 and
bq = 4. An assignment of mi = 4 and mj = 8 corresponds to a point
in the upper green area, enclosed by lines 1 and 2. Setting mi = 3

and mj = 5 obviously leads to overlapping blocking times of the
operations, and represents a point in the middle area of conflict, where
neither inequality 2 nor 3 are satisfied. As a last example, consider
mi = 14 and mj = 2, which implies a point in the bottom right red
area. Here, enough time steps separate both operations in the current
iteration to have non-overlapping blocking times. However, i starts so
late in the iteration that its blocking time overlaps with operation j in
the next iteration. Hence, i and j are in conflict.

We introduce four binary variables, µ(1)
ij–µ

(4)
ij, for each unique pair Our implementation

actually uses a
manual linearisation
of these constraints
with tight big-M
constants. This
mechanical
transformation is
omitted here for
brevity.

of operations, to express if a particular inequality is satisfied by the
current assignment of mi and mj. The indicator constraints (6.35)–
(6.42) bind these variables to 1 if the respective inequality is fulfilled,
and to 0 if is is not.
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From Figure 6.3, it is apparent that exactly three satisfied inequalities
correspond to non-conflicting assignments of mi and mj, whereas
conflicting assignments fulfil only two inequalities. This means we
can define a conflict variable χij by simply counting the number of
satisfied inequalities in (6.43). If the value of the sum is 2, χij must be
1, otherwise the sum equals 3, and χij is set to 0. (6.44) are the domain
constraints for the new binaries.

∀i, j ∈ Oqg : i < j, ∀q ∈ QSh :

µ(1)
ij = 1→ mj 6 mi + IIg − bq (6.35)

µ(1)
ij = 0→ mj > mi + IIg − bq + 1 (6.36)

µ(2)
ij = 1→ mj > mi + bq (6.37)

µ(2)
ij = 0→ mj 6 mi + bq − 1 (6.38)

µ(3)
ij = 1→ mj 6 mi − bq (6.39)

µ(3)
ij = 0→ mj > mi − bq + 1 (6.40)

µ(4)
ij = 1→ mj > mi − IIg + bq (6.41)

µ(4)
ij = 0→ mj 6 mi − IIg + bq − 1 (6.42)

3− χij 6 µ
(1)
ij + µ

(2)
ij + µ

(3)
ij + µ

(4)
ij 6 3 (6.43)

µ(1)
ij, µ

(2)
ij, µ

(3)
ij, µ

(4)
ij ∈ {0, 1} (6.44)

conflict detection with simple blocking times Note
that for the common case of bq = 1, inequalities 1 and 4 are always
satisfied, as illustrated in Figure 6.4. This means we can drop the
variables µ(1)

ij and µ(4)
ij, as well as their definitions, and simplify the

constraints defining χij (6.43) to the form in (6.45).

1− χij 6 µ
(2)
ij + µ

(3)
ij 6 1 ∀i, j ∈ Oqg : i < j, ∀q ∈ QSh : bq = 1

(6.45)

6.4 resource-aware multi-loop scheduler

In general, the MLS problem is not a linear optimisation problem.
However, with SkyCastle, we propose a solution strategy using in-
teger linear programming (ILP) that is capable of handling a realistic,
non-trivial subclass of kernels, as will be demonstrated in Section 6.5.
Currently, kernels need to be legal for Vivado HLS compilation, and
may contain multiple, optionally pipelined loops that may call mul-
tiple pipelined functions.

Our basic idea here is to solve the problem hierarchically, one func-
tion at a time. Figure 6.5 shows the flow, and illustrates the subclass of
MLS problems solvable by SkyCastle. First, we leverage the iterative
MORAMS approach presented in Section 5.3.2 to precompute solu-
tions for the functions called from the top-level function. Then, the
SkyCastle ILP formulation, presented in Section 6.4.2, simultaneously
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Figure 6.5: Flow of the SkyCastle scheduler

• schedules all loops,

• selects one of the precomputed solution for each called function,
and

• determines the operator allocation

for the kernel’s top-level function.

6.4.1 Precomputing Solutions

Due to the preconditions stated above, function operator types ref-
erence graphs that are pipelined, and contain neither loop nor call
operations. Therefore, we can apply the iterative MORAMS approach
based on the resource-aware EDform (see Section 5.2.1) to compute a
set of solutions Sq for a function operator type q ∈ QFu used in the
top-level function.

Recall that a solution S ∈ Sq is computed by minimising the resource
demand for a candidate interval IISq, then fixing the resulting allocation,
and finally minimising the latency. S is characterised by its interval
IIS, latency TS, and allocation AS. Per definition in Section 5.1.2, the
set Sq contains only solutions that are Pareto-optimal with regards
to the II and the resource demand. However, in order to prevent
trivially infeasible MLS problem instances due to the blocking time
constraints (6.29), we compute additional solutions to ensure that Sq
and Sq ′ contain solutions for the same set of IIs if q and q ′ ∈ QFu

occur together in at least one pipelined graph. Alternatively, we could
interpolate solutions with a compatible II from the set of Pareto-
optimal solutions by inserting empty congruence classes into the
schedule, but, considering that call sites are often located inside of
loops, the increased function latency would matter here, and might
noticeably deteriorate the overall solution quality.
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Figure 6.6: Outline of the SkyCastle ILP for the example instance from
Figure 6.1. Not all decision variables are shown.

6.4.2 SkyCastle ILP Formulation

Before we present the actual formulation, let us gain an intuitive
overview of its inner workings. Assume that in the example instance
from Figure 6.1, the graphs loop2, loop3 and bar are pipelined, and
foo and loop1 are not. Figure 6.6 outlines the components of the
SkyCastle ILP model for this situation.

On the left-hand side, we recognise the four scheduling subproblems
corresponding to the four graphs in function foo. Pipelined graphs
result in resource-aware modulo scheduling problems, whereas non-
pipelined graphs yield resource-aware operator-constrained schedul-
ing problems. The problems are linked through the definition of theWe assume that the

kernel’s control-flow
is structured, and in

consequence, the
loop hierarchy is a

tree.

variable latencies of loop operations, according to the nesting structure
of their loops in the kernel. The operator allocation for foo is shared by
all scheduling problems. The allocation is subject to the given resource
constraints in terms of the FPGA’s low-level resource types (omitted
in the figure).

On the right-hand side, we hint at the presence of several precom-
puted solutions for function bar. In the formulation, a binary decision
variable indicates whether a particular solution is selected. Based on
this selection, the variable latency, blocking time and resource demand
for the function operator type bar is set. The scheduling problem
loop2, which contains a call operation associated with this operator
type, transparently handles these formerly constant values.
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The SkyCastle ILP formulation builds upon the resource-aware
scheduling technique from Chapter 5 to handle the allocation part
of the MLS problem, and uses multiple instances of the mMoovac

formulation, as presented earlier in this chapter (Section 6.3). For the
non-modulo scheduling problems, we introduce a simplified, non-
modulo variant of mMoovac that remains exact and resource-aware.

We introduce the formulation part by part in the following paragraphs.
The complete ILP consists of the objectives (6.68)–(6.69), subject to the
constraints (6.70)–(6.112) and the domain constraints (6.56)–(6.67).

parameters When constructing the ILP for a function F, we con-
sider the following model components to be parameters:

• The specification of operations, operators and resources accord-
ing to Table 6.1.

• The static mapping functions of Table 6.3.

• The precomputed values of the bounds introduced in Section 6.2.4.

• The characteristics of the precomputed solutions for function
operator types, as described in Section 6.4.1.

• The values of attributes, marked as either “parameter” or “de-
rived” in Figure 6.2, as listed in (6.46)–(6.55). This includes the
given resource limits (6.46). As mentioned in Equation (6.55), all
predefined operators in Vivado HLS’ operator library are fully
pipelined (6.50).

In order to distinguish symbols that will occur both as parameters
and decision variables, e.g. an operation’s latency, we will underline
the parameters from now on.

Nr ∈N ∀r ∈ R (6.46)

cg ∈N ∀g ∈ GF (6.47)

aq =
∑
g∈GF

|Oqg | ∀q ∈ Q∞F (6.48)

lq ∈N0 ∀q ∈ QPd
F (6.49)

bq = 1 ∀q ∈ QPd
F ∩QSh

F (6.50)

nrq ∈N0 ∀q ∈ QPd
F , ∀r ∈ R (6.51)

li = lσ(i) ∀i ∈ ONo
g , ∀g ∈ GF (6.52)

dij ∈N0 ∀(i→ j) ∈ Eg, ∀g ∈ GF (6.53)

Lij ∈N0 ∀(i→ j) ∈ Eg, ∀g ∈ GF (6.54)

lij = li + Lij ∀(i→ j) ∈ Eg : i ∈ ONo
g , ∀g ∈ GF (6.55)
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decision variables Our formulation uses the decision variables
defined in (6.56)–(6.62), and bounded according to Section 6.2.4, to
model the corresponding components in the problem definition in
Section 6.2.3.

Tg ∈N0 ∀g ∈ GF (6.56)

IIg ∈N0 ∀g ∈ Gpl
F (6.57)

aq ∈N ∀q ∈ QSh
F (6.58)

lq ∈N0 ∀q ∈ QFu
F (6.59)

bq ∈N ∀q ∈ QFu
F (6.60)

ti ∈N0 ∀i ∈ Og, ∀g ∈ GF (6.61)

li ∈N0 ∀i ∈ OLo
g ∪OCa

g , ∀g ∈ GF (6.62)

Our formulation uses the following additional, internal decision
variables.

sSq ∈ {0, 1} ∀S ∈ Sq ∀q ∈ QFu
F (6.63)

ñrq ∈N0 ∀q ∈ QFu
F , ∀r ∈ R (6.64)

πxg ∈ {0, 1} ∀x ∈ [IImin
g , IImax

g ], ∀g ∈ Gpl
F (6.65)

yi ∈N0, mi ∈N0 ∀i ∈ Og : i /∈ OLo
g ∧ σ(i) ∈ QSh

F

∀g ∈ Gpl
F (6.66)

µ(1)
ij,µ

(2)
ij,µ

(3)
ij,µ

(4)
ij, ∀i, j ∈ Oqg : i < j, ∀q ∈ QSh

F

χij ∈ {0, 1} ∀g ∈ GF (6.67)

(6.63) model that a precomputed solution is selected for a function
operator type. (6.64) represent the accumulated resource demand for
all allocated instances of a function operator type. (6.65) correspond toThe decision

variables in
(6.65)–(6.67) stem

from the mMoovac

formulation of the
scheduling

subproblems.

a particular value of a graph’s II. (6.66) are used to decompose the start
time of an operation i in a pipelined graph g as ti = yi ∗ IIg +mi. We
call mi the modulo slot, i.e. the congruence class modulo the graph’s
II. (6.67) help to govern the maximum concurrent use of the shared
operator types. As we only need to define these variables for unique
pairs of operations, we assume the presence of an arbitrary total order
< among the operations.

objective We consider two objectives, and optimise lexicographic-
ally. The primary objective (6.68) is, as in the general MLS problem,
to minimise the latency of the top-level graph, Tgtop . As a practical
consideration, we seek to find the most resource-efficient solution in
case multiple solutions with shortest possible latency exist. To that
end, the secondary objective (6.69) is to minimise the accumulated,
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weighted resource demand (cf. fRU(S), defined in (5.5) in Section 5.1.2).
Note that the term in parentheses is equivalent to nr(AF).

min Tgtop (6.68)

min
1

|R|
·
∑
r∈R

1

Nr
·

 ∑
q∈Q∞F

aq ·nrq +
∑

q∈QPd
F ∩QSh

F

aq ·nrq +
∑
q∈QFu

F

ñrq


(6.69)

resource constraints (6.70) model the MLS problem’s re-
source constraints (6.16) for a resource type r ∈ R. Using the ñrq-
variables here avoids the product of decision variables.∑

q∈Q∞F
aq ·nrq +

∑
q∈QPd

F ∩QSh
F

aq ·nrq +
∑
q∈QFu

F

ñrq 6 Nr (6.70)

operator constraints In order to satisfy the operator con-
straints (6.15) in the MLS problem, we implement the conflict-counting
mechanism discussed in Section 6.3.2. (6.71) express that we need to
allocate at least one q-instance more than the maximum number of
conflicts any operation is part of.∑

j∈Oqg :i<j

χij +
∑

j∈Oqg :i>j

χji 6 aq − 1 ∀i ∈ Oqg , ∀g ∈ GF, ∀q ∈ QSh
F

(6.71)

These constraints rely on the correct definition of the conflict variables
χ, which we will establish separately for modulo and non-modulo
subproblems.

selection of solutions (6.72)-(6.74) are indicator constraints
that derive the latency, blocking time and resource demand of a func-
tion operator type q ∈ QFu

F from a precomputed solution (cf. Sec-
tion 6.2.3). (6.75) enforce that exactly one solution is picked.

sSq = 1→ lq = TSγ(q) ∀S ∈ Sq (6.72)

sSq = 1→ bq = IISγ(q) ∀S ∈ Sq (6.73)

sSq = 1→ ñrq = aq ·nr(ASϕ(γ(q))) ∀S ∈ Sq, ∀r ∈ R (6.74)∑
S∈Sq

sSq = 1 (6.75)
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variable latencies (6.76)–(6.78) propagate the variable latencies
of the loop and call operations in every graph g ∈ GF. (6.79) and (6.80)
define the graph’s latency for fixed and variable latency operations.

li = cγ(i) · Tγ(i) ∀i ∈ OLo
g ∧ g /∈ Gpl (6.76)

li = (cγ(i) − 1) · IIγ(i) + Tγ(i) ∀i ∈ OLo
g ∧ g ∈ Gpl (6.77)

li = lσ(i) ∀i ∈ OCa
g (6.78)

ti + li 6 Tg ∀i ∈ ONo
g (6.79)

ti + li 6 Tg ∀i ∈ OLo
g ∪OCa

g (6.80)

modulo scheduling problems Every pipelined graph g ∈ Gpl
F

implies one modulo scheduling problem, for which we instantiate the
constraints of the mMoovac formulation (Section 6.3).

We adopt the already linear precedence constraints (6.14) in the MLS
problem as (6.81) and (6.82), again differentiating fixed and variable
latency operations.

ti + lij 6 tj + dij · IIg ∀(i→ j) ∈ Eg : i ∈ ONo
g (6.81)

ti + li + Lij 6 tj + dij · IIg ∀(i→ j) ∈ Eg :/∈ ONo
g (6.82)

(6.83) define the binary variable πxg to be 1 iff the value of IIg is
x. Using these variables and multiple indicator constraints (6.84), we
linearise the decomposition of an operation’s start time into a multiple
of the II and the modulo slot.∑

IImin
g 6x6IImax

g

πxg = 1
∑

IImin
g 6x6IImax

g

x · πxg = IIg (6.83)

πxg = 1→ ti = yi · x+mi ∀x ∈ [IImin
g , IImax

g ]

∀i ∈ Oqg , ∀q ∈ QSh
F (6.84)

(6.85) model Vivado HLS’ constraint (6.29) regarding the blocking
times of function operator types: For each solution S, we determine
a set of viable IIs for g that restrict the feasible values for IIg if S is
selected.∑

x∈[IImin
g ,IImax

g ] : IISγ(q) | x

πxg > s
S
q ∀S ∈ Sq, ∀q ∈ QFu

F (6.85)

In order to establish the correct behaviour for the conflict variables
used in the operator constraints (6.71), we instantiate the constraints
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from Section 6.3.2 as follows: For function operator types, we use the
most generic form as in (6.86)–(6.94).

∀i, j ∈ Oqg : i < j, ∀q ∈ QFu
F :

µ(1)
ij = 1→ mj 6 mi + IIg − bq (6.86)

µ(1)
ij = 0→ mj > mi + IIg − bq + 1 (6.87)

µ(2)
ij = 1→ mj > mi + bq (6.88)

µ(2)
ij = 0→ mj 6 mi + bq − 1 (6.89)

µ(3)
ij = 1→ mj 6 mi − bq (6.90)

µ(3)
ij = 0→ mj > mi − bq + 1 (6.91)

µ(4)
ij = 1→ mj > mi − IIg + bq (6.92)

µ(4)
ij = 0→ mj 6 mi − IIg + bq − 1 (6.93)

3− χij 6 µ
(1)
ij + µ

(2)
ij + µ

(3)
ij + µ

(4)
ij 6 3 (6.94)

For the remaining predefined and shared operator types, we use
the simper form (6.95)–(6.99).

∀i, j ∈ Oqg : i < j, ∀q ∈ QSh
F ∩QPd

F :

µ(2)
ij = 1→ mj > mi + 1 (6.95)

µ(2)
ij = 0→ mj 6 mi (6.96)

µ(3)
ij = 1→ mj 6 mi − 1 (6.97)

µ(3)
ij = 0→ mj > mi (6.98)

1− χij 6 µ
(2)
ij + µ

(3)
ij 6 1 (6.99)

The following bounds help to restrict the ILP solution space further:
(6.100) encode a slightly weaker form of the dynamic lower bound
(5.20) from Section 5.3.3 for the shared operator types. (6.101) mandate
that IIg is greater or equal to the longest blocking time of any selected
function operator type.

x · aq > πxg · |Oqg | · bmin
q ∀x ∈ [IImin

g , IImax
g ], ∀q ∈ QSh

F (6.100)

IIg > sSq · IISγ(q) ∀S ∈ Sq, ∀q ∈ QFu
F (6.101)

non-modulo scheduling problems Every non-pipelined graph
g ∈ GF \ G

pl
F imposes a resource-constrained, or rather, operator-

constrained, scheduling problem, for which we instantiate a non-
modulo variant of the mMoovac formulation as follows.

We again directly include the precedence constraints (6.14) from the
MLS problem as (6.102) and (6.103).

ti + lij 6 tj ∀(i→ j) ∈ Eg : i ∈ ONo
g (6.102)

ti + li + Lij 6 tj ∀(i→ j) ∈ Eg : i /∈ ONo
g (6.103)

With (6.104)–(6.112), we basically use the same modelling technique
as for the modulo scheduling problems to define the conflict variables
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for two operations i and j. The only differences are that we consider
the operations’ start times instead of their congruence classes, and can
discard inequalities 1 and 4, as the overlapping of iterations is not a
concern here.

1− χij 6 µ
(2)
ij + µ

(3)
ij 6 1 ∀i, j ∈ Oqg : i < j, ∀q ∈ QSh

F (6.104)

∀i, j ∈ Oqg : i < j, ∀q ∈ QFu
F :

µ(2)
ij = 1→ tj > ti + bq (6.105)

µ(2)
ij = 0→ tj 6 ti + bq − 1 (6.106)

µ(3)
ij = 1→ tj 6 ti − bq (6.107)

µ(3)
ij = 0→ tj > ti − bq + 1 (6.108)

∀i, j ∈ Oqg : i < j, ∀q ∈ QSh
F ∩QPd

F :

µ(2)
ij = 1→ tj > ti + 1 (6.109)

µ(2)
ij = 0→ tj 6 ti (6.110)

µ(3)
ij = 1→ tj 6 ti − 1 (6.111)

µ(3)
ij = 0→ tj > ti (6.112)

6.5 case studies

6.5.1 Kernels

In the following sections, we introduce our three kernels SPN, FFT
and LULESH. Figures 6.7 to 6.9 illustrate the nesting structure of the
underlying MLS problems. The dependence graphs are not shown,
however we outline which shared operator types and memory ports
are used, and how many users they have.

spn Sum-Product Networks (SPNs) [72] are a relatively young type
of deep machine-learning models from the class of Probabilistic Graph-
ical Models (PGMs), for which inference has been successfully acceler-
ated in prior work [83]. An SPN captures the joint probability distri-
bution of its input variables in the form of a directed, acyclic graph.
The graph comprises three different kinds of nodes: Weighted sums,
products and, as leaf nodes, univariate distributions, which can for
example be modelled as histograms [60].

The SPN kernel, as outlined in Listing 6.1, combines three inference
processes for an example SPN from the NIPS corpus [22]. Assuming
given values for the input variables i1 to i4, we seek to find the most
probable explanation for the missing input feature i5 in a first step. For
this purpose, we iterate over all 256 possible values of i5 and evaluate
the SPN (loop MPE, which has been manually unrolled by a factor 4
and is pipelined). After that, we marginalise [72] input variable i1, and
compute a conditional probability using the most probable explanation
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Figure 6.9: MLS problem structure for LULESH kernel

for i5. SPN is a small kernel, but not memory-bound, and therefore is
well suited to demonstrate the benefits of accelerator replication.

fft Our second kernel, FFT, is the fft/transpose benchmark from
MachSuite [75]. One invocation processes a 512 byte chunk of input.
We wrapped the FFT8 macro in a function fft8, and disabled inlining
for it as well as for the twiddles8 function. The top-level function
contains 11 loops in total, out of which three loops are pipelined and
call either one or both of the functions. FFT therefore challenges the
scheduler to obey the blocking time constraints (6.29).

lulesh Our LULESH kernel represents one iteration in the
CalcFBHourglassForceForElems function from the serial version of
the Livermore Unstructured Lagrangian Explicit Shock Hydrodynam-
ics proxy application [45]. In order to make the code compatible with
Vivado HLS, we hardcoded dynamic array sizes to the default values
in the application. We replaced the cubic root function by the power
of 13 , as not even one cbrt operator would fit on the XC7Z020 device
together with the minimal allocation of the other operator types. In
order to obtain a best-effort HLS version of the code, we inlined the
CalcElemFBHourglassForce function and restructured the loops in it.
Additionally, we extracted common functionality into new functions
calcHM and calcHxx. The resulting three loops and two functions
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are all pipelined. This kernel contains the most complex allocation
problem of our case studies, as non-trivial computations in the loops
compete with the variable allocation and solution selection of function
operators.

6.5.2 Experimental Setup

Our current SkyCastle implementation considers Look-Up Tables
(LUTs), Flip-Flops (FFs), Block RAMs (BRAMs) and Digital Signal Pro-
cessing Blocks (DSPs), i.e. the typical low-level resource types on Xilinx
devices. We target the ZedBoard (XC7Z020: 53,200 LUT; 106,400 FF;
280 BRAM; 220 DSP) at 100 MHz and the VCU108 evaluation board
(XCVU095: 537,600 LUT; 1,075,200 FF; 3,456 BRAM; 768 DSP) at 200

MHz, and compose bitstreams for complete SoC designs, comprised
of one or more accelerators, with TaPaSCo 2019.6 [50] and Vivado
2018.3.

In order to accommodate TaPaSCo’s SoC template, as well as to
give the logic synthesis tools some headroom, we make 85% (Zed-
Board) respectively 70% (VCU108, more complex template due to
PCIe interface) of the resources available to the allocation of operators
during scheduling. The MLS problem instances are extracted from
Vivado HLS 2018.3 operating with medium effort levels for scheduling
and binding, and using a target cycle time of 4 ns (VCU108) or 8 ns
(ZedBoard) without clock uncertainty. We marked loops and functions
for pipelining without specifying the II.

SkyCastle uses the Gurobi 8.1 ILP solver, which was allowed to
use up to 8 threads and 16 GB RAM per kernel. The experiments
were performed on 2×12-core Intel Xeon E5-2680 v3 systems running
at 2.8 GHz with 64 GiB RAM. We set time limits of 15 min for the
primary objective (minimisation of the latency, (6.68)), and 5 min for
the secondary objective (subsequent minimisation of the resource
demand, (6.69)). The same limits were in place for the computation
of the solutions for the function operator types, but recall that the
primary objective is to minimise the resource demand here. If the
solver is unable to prove optimality within the time limit, we accept
the feasible solution, and record the optimality gap, relative to the
solver’s best lower bound.

For the larger VCU108 board, we experiment with different rep-
lication factors 1 6 ρ 6 8, and set the resource limits passed to the
scheduler according to (6.113).

Nr =
available r-elements on FPGA − headroom

ρ
∀r ∈ R

(6.113)

On the much smaller ZedBoard, we only used ρ = 1.
For the configurations labeled “SC-xρ”, as referenced in the follow-

ing discussion, we computed a solution adhering to these resource
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constraints with SkyCastle, emitted pipeline and allocation directives
accordingly, and ran Vivado HLS again with them. The configuration
labeled “VHLS” denotes the baseline maximum performance that
Vivado HLS constructs without the SkyCastle optimisation.

6.5.3 Results

Table 6.5 summarises the high- and low-level synthesis results. Column
“Latency” shows the latency (in cycles) of one activation of the kernel’s
top-level function, as reported by Vivado HLS. SkyCastle’s estimation
of the Vivado HLS’ cycle count (not shown) is very precise and differs
by at most 2.4%, which shows that we model enough of Vivado
HLS’ scheduling peculiarities to meaningfully tackle the problem. The
next column “Util.” extracts the utilisation of DSP slices, which were
always the scarcest resource type in our evaluation, from the HLS
report. SkyCastle’s estimation of DSP slices is almost perfect, and is off
by at most three, because Vivado HLS appears to ignore the allocation
directives for the combined floating-point ADD/SUB core in some
situations. The estimation error for LUTs and FFs is below 10%, but
ranges up to 70% for BRAMs. The reason for the high deviation in
the latter case is that the majority of BRAM is used by components
that are not operators themselves, and thus do not occur in the MLS
problem. However, as mentioned above, the BRAM utilisation was
never crucial in our experiments.

The remaining columns characterise results of composing a bit-
stream comprised of “# Acc.”-many accelerators.

Most importantly, column “Freq.” shows SkyCastle accomplished
its mission: While neither FFT nor LULESH fit on the devices with the
default VHLS flow, we computed synthesisable configurations for up
to four replica. For both kernels, the scheduler determined ρ = 5 to be
infeasible even with maximum resource sharing. SPN does fit once on
the larger device with the default flow, but this configuration cannot be
replicated. Again, all SkyCastle configurations yielded working multi-
accelerator designs. Note that the SC-x1 configuration for the VCU108

is slower and uses less resources than the VHLS configuration. This is
because Vivado HLS violates the target cycle time slightly (but without
consequences in this particular situation), whereas SkyCastle strictly
obeys this user constraint and computes a more conservative solution.

The last column, “Throughp.” states the theoretical throughput
achievable with each multi-accelerator design, calculated as(

# Acc.
Latency · Freq.

)
. When viewed together with the column “Latency”,

the benefits of scheduling for better replicability become apparent. For
all three kernels, SC-x2 already yields a better throughput than the
maximum performance VHLS configuration. SPN reaches its theoretical
peak performance with a 7-way accelerator, whereas the other kernels
profit from any additional replication.
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The biggest challenge for SkyCastle was to schedule LULESH for the
2-way accelerator design. The feasible solution had an optimality gap
of 5.2% after optimising the primary objective for 15 min, and a gap
of 0.09% remained after 5 min spent on the secondary objective. In all
other cases, the ILP solver either returned optimal solutions, or the
remaining optimality gap was in the same ballpark as the inaccuracies
in the latency estimation. Note that we computed the solutions for the
function operator types only once per exploration of the replication
factors. Altogether, using the aforementioned time limits, the entire
process took 51 minutes for LULESH targeting the VCU108, and well
below 20 minutes for the other configurations.

6.6 chapter summary

We formalised a novel, general scheduling and allocation model for
the common problem of minimising the latency of a complex HLS
kernel subject to low-level resource constraints. This model is the
foundation for SkyCastle, our proposed resource-aware multi-loop
scheduler, which currently handles a subset of kernels compatible
with Xilinx Vivado HLS.

In the future, we plan to investigate improvements or alternatives to
the precomputation of solutions for the function operators, which we
believe will allow us to treat an arbitrary nesting structure in a uniform
way. Also, our approach would benefit tremendously from a vendor-
supported, high-level synthesis counterpart to the XDL interface [62],
as we currently can only feed the II and the operator allocation back to
Vivado HLS in the form of directives. Should such an interface become
available in the future, SkyCastle could be easily adapted to replace
the built-in scheduler.
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Table 6.5: Scheduling and system composition results

Kernel Board Config HLS Composition

Latency Util. # Freq. Throughp.

[Cyc.] [%] Acc. [MHz] [1/µs, theo.]

SPN ZedBoard VHLS 175 226.8 1 failed

SC-x1 366 76.8 1 100 0.55

VCU108 VHLS 212 65.0 1 200 0.94

2 failed

SC-x1 277 36.3 1 200 0.72

SC-x2 278 33.5 2 200 1.44

SC-x3 402 22.0 3 200 1.49

SC-x4 408 16.9 4 200 1.96

SC-x5 659 12.6 5 200 1.52

SC-x6 663 10.8 6 200 1.81

SC-x7 665 9.4 7 200 2.11

SC-x8 787 8.3 8 200 2.03

FFT ZedBoard VHLS 4479 883.2 1 failed

SC-x1 5534 82.7 1 100 0.02

VCU108 VHLS 4682 247.5 1 failed

SC-x1 4700 64.7 1 155 0.03

SC-x2 4918 34.2 2 159 0.06

SC-x3 5721 23.3 3 194 0.10

SC-x4 6641 17.3 4 187 0.11

LULESH ZedBoard VHLS 533 528.2 1 failed

SC-x1 656 82.7 1 100 0.15

VCU108 VHLS 610 150.4 1 failed

SC-x1 622 69.3 1 200 0.32

SC-x2 681 34.4 2 200 0.59

SC-x3 745 22.8 3 200 0.81

SC-x4 863 17.7 4 200 0.93

Target frequencies: 100 MHz (ZedBoard), 200 MHz (VCU108)
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C O N C L U S I O N

We conclude this thesis by summarising the key contributions and
insights, and outline future research directions.

7.1 on the practicality of ilp-based modulo scheduling

While it certainly required a bit of stubbornness in the beginning, we
believe to have found strong arguments in favour of ILP-based modulo
scheduling.

quality of solutions With the exact, ILP-based formulations
investigated in this thesis, an off-the-shelf ILP solver was able to
compute provably optimal solutions for the majority of instances from
our representative data set of scheduling problems from three different
HLS environments.

detection of infeasibility In contrast to exact approaches,
heuristic modulo schedulers cannot detect the infeasibility of a can-
didate II. Instead, they can only run out of time or backtracking steps
[7, 74] before giving up and trying the next II.

fine-granular control over runtime The MSP is without
doubt a hard combinatorial problem, and our evaluations always
contained a few instances that marked the end of scalability for the
exact schedulers. However, by taking measures as simple as setting a
time limit, we can control the maximum time spend per scheduling
problem in practice, and resort to heuristic alternatives if a particular
instances is too challenging for the ILP-based scheduler. Our eval-
uation suggests that short time limits between 1 and 5 minutes are
sufficient, which seems acceptable considering the rest of the FPGA

synthesis process is usually measured in hours of run time.
Our proposed solution strategy for the Moovac-I formulation gives
users even more control, because they can specify separately how much
time they want to expend on the II minimisation and the secondary
objective.

soft failure mode To pick up the last point, an additional benefit
of ILP-based scheduling is that even if a given time budget is depleted
without finding an optimal solution, it is often the case that a feasible
solution is present. Recall that the ILP-solver maintains a gap between
a lower bound for the optimal objective value, and the incumbent’s
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objective value. Based on the gap value, a user can decide whetherThe “incumbent” is
the currently best

available integer
solution.

they want to give the solver just a little more time, or abort the
process. Scheduling approaches that incrementally legalise a solution,
regardless whether they operate heuristically [7] or exactly [17], do
not exhibit a similarly soft failure mode.

portability An ILP formulation is a very compact representation
of a scheduling approach, and often fits on a single page in a con-
ference paper. Schedulers defined in other frameworks might only
be reported incompletely, or require significantly more effort to be
reproduced, for example, to re-implement the problem-specific solving
algorithm in the CP framework [6], or to orchestrate both an LP and
SAT solver working in unison to produce a schedule [17].

7.2 on the flexibility of the moovac formulation

The experimental evaluation conducted in the course of this thesis
yielded no clear winner among the ILP formulations Moovac, EDform

and SHform regarding the scheduling runtimes.
However, the modelling approach underlying Moovac turned out

to be the most adaptable to different requirements, as is apparent in
Table 7.1, which summarises the capabilities of the different formu-
lations. “Variable II” means the II can be made a decision variable.
Formulations with “bq > 1” support operators that are not fully-
pipelined. The column “Binding” denotes that a formulation produces
a binding between operations and operators. Lastly, the “RA” indicates
that all approaches can be extended to resource awareness in the sense
of Chapter 5.

Across Moovac and mMoovac, we presented two different linear-
isations of the modulo decomposition (3.10), made possible because
the decomposition is decoupled from the handling of the dependence
edges (3.2). The Moovac operator constraints yield a binding, but only
support fully-pipelined operator types. In the mMoovac extensions,
we added support for arbitrary and even variable blocking times.
While not implemented during this thesis, the latter modelling can
also be extended to compute a binding.

The II cannot be made a variable in the EDform, because the num-
ber of variables and constraints depend on its value. In the general-
processing-time-variant of the SHform, constraints (12)–(13) in [86]
prevent a Moovac-I-style linearisation, because the II (“w” in their
notation) is not a big-M constant there.

7.3 on new design methods for hardware accelerators

The ILP modelling techniques discussed in this thesis matter beyond
their theoretical appeal, because they open the door for a new, more
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Table 7.1: Fomulation capabilities

Variable II bq > 1 Binding RA

EDform (Section 2.8.1, [26]) - X (X) [29] X

SHform (Section 2.8.2, [86]) (X) - - X

Formulation with general
processing time from [86]

- X X X

Moovac (Section 3.1) X - X X

mMoovac (Section 6.3) X X (X) X

X: supported (X): possible, not implemented here - : not supported

automated HLS design method. The SkyCastle multi-loop scheduler
is a culmination of the insights gathered during the course of this
thesis. Its main feature is its ability to answer the question, “what
is the fastest microarchitecture for a kernel that fits within the given
resource constraints?” – a question that state-of-the-art commercial
HLS tools cannot answer automatically.

7.4 outlook

Based on the insights gained in this thesis, we identify the following
research avenues for future work.

a quantitative survey of modulo scheduling approaches

To the best of our knowledge, there is no comprehensive experimental
evaluation of more than a few modulo scheduling approaches under
the same conditions. To that end, it would be interesting to reim-
plement the most promising approaches from the last three decades
in a common framework, and expose them to a variety of schedul-
ing problems. First steps in this direction have already been made:
HatScheT [80], the holistic and tweakable scheduling toolkit, aims to
be a collection of scheduler implementations (and already supports
all schedulers discussed in this thesis), as well as a friendly envir-
onment to foster research into new approaches. GeMS, a generator
for modulo scheduling problems, randomly constructs scheduling
problems according to a rich set of parameters, including a mode that
constructs infeasible MSP instances [69]. GeMS therefore could be
used to augment an existing benchmark set with synthetic instances
to cover sparsely covered combinations of instance characteristics.

oracle Once a data set as outlined in the previous paragraph is
available, we envision the design of an oracle, capable of selecting the
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most promising scheduling approach for a given problem instance.
For example, “easy” instances could be solved to optimality with an
exact scheduler, whereas instances suspected to be “hard” could be
delegated to a heuristic algorithm. This could be based on a statistical
analysis, or using machine learning. In any case, coming up with a
concise definition of “easy” and “hard” in this context is an open
research problem.

component selection and compiler transformations

The SkyCastle ILP formulation supports operator types with variable
latencies, blocking times and resource demands. Currently, we use this
mechanism to let the ILP select a particular solution for a pipelined
function globally, i.e. for all users of the operator type. We envision
two modifications that would provide an additional practical benefit.

First, the selection could be made locally, for each individual op-
erator. For example, assume that the operator library provides two
implementations of a floating-point multiplier: a slower core using
only LUT resources, and a faster one using the scarcer DSPs slices. A
combined scheduling and allocation approach such as SkyCastle

could then balance the use of the FPGA resources. Sun, Wirthlin and
Neuendorffer [87] tackled this problem using heuristic algorithms –
with the techniques presented in this thesis, it could be solved optim-
ally.

Secondly, many compiler transformations can be expressed on
graphical IRs [85]. We could use the aforementioned selection mech-
anism to decide whether to apply a particular transformation during
scheduling. For example, in [64], we investigated domain-specific
transformations for biomedical simulation models. A common pattern
in this context is ex+c1 · c2, for a variable x and constants c1, c2. The
expression can be constant-folded into ex · (ec1 · c2), or ex+(c1+lnc2),
saving either a floating-point addition or multiplication. Within a com-
bined scheduling and allocation problem, one form can be preferable,
e.g. the second form in case the allocated multipliers are busy, but
unused adders are available.

integration into opencl flows We mentioned in Chapter 1

that the FPGA community whole-heartedly adopted the OpenCLUnfortunately, both
Intel’s and Xilinx’
OpenCL flows are

proprietary, and
offer no interface to

offload the HLS core
steps to an external

tool yet.

ecosystem [47] to construct application accelerators for real-world
problems. A selling point for FPGA engineers is that they can describe
the application as a set of OpenCL kernels, and use so-called channels
to connect the kernels to form larger pipelines. This area would benefit
greatly from an automated approach to distribute the FPGA resources to
the individual kernels in a way that maximises the overall performance.
We believe SkyCastle could be extended to handle this situation,
as after all, such a pipeline would map to a multi-loop scheduling
problem with an allocation domain per kernel.
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