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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der elektrothermischen 3D Feld- und Schaltungssimulation
für die Berechnung von Ausfallwahrscheinlichkeiten dünner Drähte. Beispielhaft werden Ausfallwahrschein-
lichkeiten von Bonddrähten in Chip-Gehäusen aus dem Feld der Mikro- und Nanoelektronik betrachtet. Das
in dieser Arbeit verwendete Fehlermodell basiert auf der Temperatur der Bonddrähte unter Verwendung
elektrischer Anregung.

Da Bonddrähte im Vergleich zur Größe des umgebenden Chip-Gehäuses sehr dünn sind, stellen die unter-
schiedlichen geometrischen Skalen eine numerische Herausforderung dar. Anstatt der lokalen Verwendung
sehr feiner Gitter wird eine 1D–3D Kopplung eingeführt. Für eine konsistente Diskretisierung werden die
singulären Draht-Beiträge durch de Rham-Ströme modelliert. Hierbei liegt ein besonderes Augenmerk auf
einer konsistenten 1D–3D Kopplungsbedingung, sodass sich eine physikalische Lösung ergibt. In der gekop-
pelten Formulierung agieren die Drähte als lösungsabhängige singuläre Linienquellen, was zu verringerten
Konvergenzraten des numerischen Lösungsverfahrens führt. In dieser Arbeit wird demonstriert, dass ein ab-
gestuftes 3D Gitter sowie ein Kopplungsradius größer Null in einer Erholung der Konvergenzrate resultiert.
Darüber hinaus wird gezeigt, dass diese Art von Problem eng mit der Fluidströmung in porösen 3D-Medien
mit 1D-Frakturen verwandt ist.

Neben der Berechnung von elektromagnetischen Feldern werden heutzutage in vielen Workflows auch Schal-
tungssimulationen erfolgreich eingesetzt. Für einen effizienten Schaltungsentwurf wird ausgehend von dis-
kretisierten Feldmodellen ein Verfahren zur automatisierten Generierung von Netzlisten vorgestellt. Unter
Verwendung eines orthogonalen Gitterpaares ergibt sich eine direkte Korrespondenz zwischen Gitterobjekten
und Schaltungselementen. Da die resultierende Schaltung mit einem beliebigen Schaltungssimulator simu-
liert werden kann, werden z.B. die Behandlung von Nichtlinearitäten und die Zeitintegration in den Schal-
tungslöser verlagert. Darüber hinaus ermöglicht dieser Ansatz eine direkte Art der Feld-Netzwerk Kopplung,
indem alle zusätzlichen Schaltungselemente zu der das Feldproblem repräsentierenden Netzliste hinzugefügt
werden können. Ein weiterer Vorteil ergibt sich aus den oftmals verfügbaren Schnittstellen von Schaltungssi-
mulatoren zu anderen Software-Paketen, die dank der erhaltenen Schaltungsbeschreibung ebenfalls genutzt
werden können. Beispielhaft sei hier die Schnittstelle zwischen Xyce und Dakota genannt, die Methoden zur
Quantifizierung von Unsicherheiten ermöglicht.

Die vorgestellten Methoden werden anhand von numerischen Testbeispielen verifiziert. Angetrieben von den
Zielen des nanoCOPS-Projektes wird für die industrielle Anwendung der Ergebnisse dieser Dissertation bei-
spielhaft die Berechnung der Ausfallwahrscheinlichkeit eines Chip-Gehäuses betrachtet. Die Wahrscheinlich-
keit für einen Systemausfall wird exemplarisch anhand der Ausfallwahrscheinlichkeiten einzelner Bonddräh-
te mit unsicherer Geometrie evaluiert. Für den vorliegenden Fall kleiner Ausfallwahrscheinlichkeiten folgt,
dass klassische Methoden wie die Monte-Carlo Simulation eine sehr hohe Anzahl an Samples benötigen. Als
Abhilfe wird ein hybrides iteratives Verfahren verwendet, das ein genaues 3D Feldmodell mit einem kosten-
günstigen polynomiellen Ersatzmodell kombiniert, sodass eine hohe Genauigkeit bei geringen Rechenkosten
erreicht wird.
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Abstract

This thesis deals with the electrothermal 3D field and circuit simulation of structures containing thin wires
to evaluate their failure probability. Failure probabilities of wires in chip packages from the field of micro-
and nanoelectronics are considered as an example. The failure model used in this thesis is based on the
temperature of the bond wires under electric operating conditions.

Since bond wires are very thin compared to the size of the surrounding chip package, the different geometric
scales rise numerical challenges. Instead of locally applying very fine grids, a 1D–3D coupling approach is
introduced. For a consistent discretization, the singular wire contributions are modeled by the powerful
framework of de Rham currents. Particular focus lies on a consistent 1D–3D coupling condition to ensure a
physical solution. In such a setting, the wires act as solution-dependent singular line sources resulting in a
deteriorated convergence rate of the numerical method. It is demonstrated that a graded 3D grid and a non-
zero coupling radius result in a recovered convergence rate. Furthermore, it is shown that this kind of problem
is closely related to fluid flow in porous 3D media with 1D fractures.

Apart from the calculation of electromagnetic fields, circuit simulation has been successfully integrated into
many workflows. To realize circuit designs in an efficient way, a method to automatically generate netlists
describing general discretized field problems is presented. Using a pair of orthogonal grids, a one-to-one
correspondence between grid objects and circuit elements is obtained. The resulting circuit can then be
solved with any state-of-the-art circuit simulator, circumventing the need for handling the nonlinearities or
for a custom time integration scheme. Moreover, the approach allows a straightforward field-circuit coupling
by adding any additional circuit elements to the generated netlist that represents the field problem. Often,
circuit simulators provide interfaces to other useful software packages that may be exploited thanks to the
obtained circuit description. One example is given by the interface between Xyce and Dakota to allow for
uncertainty quantification methods.

The proposed techniques are verified using numerical test examples. Driven by the goals of the nanoCOPS
project, a possible industrial application of the outcomes of this thesis is demonstrated by the computation
of the system failure probability of a chip package. The system failure probability is evaluated based on
the failure probabilities of the individual bond wires of uncertain geometry. For small failure probabilities,
classical Monte Carlo techniques require a very high number of samples. As a remedy, a hybrid iterative
sampling scheme combines the accurate 3D field model with a cheap polynomial surrogate model, yielding
accurate results at a low computational cost.
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1 Introduction

In the field of micro- and nanoelectronics, improving the capabilities of electronic devices is always of high
interest. During the last decades, this resulted in a continuous downscaling of the feature sizes [158]. Thus,
high power densities are an increasing problem and a sophisticated thermal design is required. If an electronic
design is not carefully checked for thermal issues, the degeneration of materials, performance restrictions or
even system failure may occur. This becomes particularly pronounced when considering power electronics
such as power transistors [131, 148], see Figure 1.1a [150]. Hence, today’s complexity in the design and
fabrication of electronic components leads to a great significance of numerical simulations. In particular,
coupled electrothermal (ET) simulations become an indispensable tool for the design of electronic devices.
This bi-directional coupling is established by Joule losses on the one hand and by temperature-dependent
material parameters on the other hand. In this thesis, we consider the efficient electrothermally coupled
field and circuit simulation of thin wires and the evaluation of the corresponding failure probabilities. As
an application example, the system failure probability of a microelectronic chip package with bond wires of
uncertain geometry is of interest, see Figure 1.1b.

This introductory chapter outlines the ideas of this thesis in the following way. First, Section 1.1 gives an ex-
planation and motivation for computational electromagnetics (CEM) and provides a brief historical overview.
The state-of-the-art numerical techniques in CEM are discussed in Section 1.2. Finally, Section 1.3 outlines
the goals of this thesis.

(a) (b)

Figure 1.1: (a) Typical layout of a power transistor [150]. (b) Microelectronic chip package with substrate
(dark yellow), conducting regions (yellow), and bond wires of uncertain geometry (red) [133].
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1.1 Computational Electromagnetics and a Historical Overview

Nowadays, engineering products have become very complex, requiring a detailed analysis of the underlying
physics. Often, experiments are not possible, since theymay be too complicated, expensive, or risky. Addition-
ally, measurements are always subject to uncertainties, introduced for instance by the measurement devices
themselves. Instead, fundamental laws of physics allow the construction of accurate models and correspond-
ing solution techniques are of interest. Although many analytical methods exist, they are only applicable in
the case of very simple geometries. All these reasons underline the relevance of numerical simulations for
the analysis of engineering problems [181]. In contrast to physical experiments, simulations may be used
already at an early design stage at very low cost, which is crucial for an efficient workflow [23]. This point
is especially pronounced in the aerospace industry, in which, e.g., Boeing replaced 90% of the experiments
in wing development by simulation [65].

In the field of electromagnetics (EMs), Maxwell’s equations provide a precise model for the fields and their
interaction with the environment [122]. Solving these equations for complex problems requires computa-
tional methods, motivating the field of computational electromagnetics (CEM). Methods in CEM often lead
to two-dimensional (2D) or three-dimensional (3D) field simulations, and we must assess their accuracy, a
task typically carried out by steps known as verification and validation [171]. For general problems, different
techniques are available. After a simulation tool is developed, a first verification is typically conducted by the
construction of simple numerical examples, for which analytical solutions exist. Even if an analytical solution
is not directly available, the method of manufactured solutions allows to choose the excitation such that the
exact solution is known [171, 188]. However, the verification and validation of complex problems relies on
the comparison to other codes or to measurements. In CEM, fields of application, especially in micro- and na-
noelectronics, include the simulation of high speed silicon electronics, nanophotonic devices, electromagnetic
compatibility, wave propagation, and antennas.

Let us consider the field of CEM from a historical perspective. One of the first numerical methods for EM
analysis was the finite difference time domain (FDTD) scheme as proposed by Yee in the 1960s [254]. Its
name dates back to a paper by Taflove in 1980 [214]. This method became popular and is still a standard
approach for high-frequency EM simulations [213]. One of its key advantages is its simplicity to implement
a full wave solver. About ten years after Yee’s article, in the 1970s, Weiland [240] introduced the finite in-
tegration technique (FIT) as an extension to the FDTD scheme. It preserves basic topological properties of
the continuous equations [59] and allows for non-Cartesian and unstructured grids [182]. Furthermore, the
FIT is embedded into the mathematical profound framework of differential forms [28] and yields unique,
physical solutions [241]. Later developments of FIT led to the usage of integral unknowns to obtain an exact
implementation of Maxwell’s equations [242]. Compared to FDTD, FIT is more efficient in terms of mem-
ory requirements and computing time. Moreover, it allows to conveniently consider semiconductors [191],
mainly due to the regular patterns in electronic designs.

After the introduction of the finite element (FE) method in the 1950s [62, 230], it became very popular
especially in the field of solid and structural mechanics. Therefore, the CEM community was very interested
to adapt it also for problems in the field of EMs. Doing so, it appeared natural to consider the nodal elements
from mechanics also for EM fields. However, this resulted in spurious modes, also known as spurious solutions,
ghost modes, or unphysical solutions, which do not satisfy the full set of Maxwell’s equations [124, 212].
Despite the presence of spurious modes, the far-field solution remains correct, which is the reason why they
remained undiscovered for quite a long time. Spurious modes are attributed to the inability of nodal basis
functions to model the null space of the curl-curl operator properly. Another reason for spurious modes
lies in the continuity conditions at material boundaries, which cannot be fulfilled by nodal basis functions.
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(a) (b)

Figure 1.2: Different methods to realize coupling in simulation. (a) Strong (monolithic) coupling, (b) weak
(iterative) coupling. This figure is based on [61].

Even if tangential continuity is enforced by an FE approximation, normal continuity is required as well. This
dilemma resulted in the introduction of Nédélec elements into the field of CEM [166]. Later, the framework
of Whitney forms was realized to be suitable as well [26, 31, 244]. Using Whitney forms, degrees of freedom
are associated with nodes, edges, facets, or volumes of the grid. Therefore, Whitney forms are also known
as node-, edge-, facet-, and volume-elements.

1.2 State of the Art

With the history of CEM outlined in Section 1.1, we now come to the current state and to the currently active
research topics in the field of CEM. In general, one is interested in the simulation of complex problems in
the most efficient ways. However, many issues arise due to the modern problem sizes in contrast to the finite
capabilities of computers. Thus, we need improved numerical methods, supercomputers, high performance
clusters, and parallel computations. For the latter, algorithms suited for parallel computer architectures are
required [196]. It is interesting to realize that modern software packages such as CST DESIGN STUDIO [67],
ANSYS HFSS [4], and EMPro [130] spend the largest amount of time for geometry manipulations and
meshing [23, 121].

With the vision of simulating the world as a whole, we require the coupling of different methods and solvers.
Thus, a significant amount of research is currently conducted in the fields of multi-physics, multi-scale, multi-
rate, and multi-domain techniques [108, 194], terms that are explained in the following. The term multi-
physics refers to the coupling of different physical phenomena. One example is given by ET field simula-
tion, which is important for the design of state-of-the-art nano-electronic devices [192]. Multi-scale and
multi-rate techniques refer to problems that involve spatial and temporal scales of different orders of mag-
nitude [194]. Furthermore, the term multi-domain refers to different formulations and discretizations for
different parts of the model, motivated by differences in dimension, materials, physical behavior, and numer-
ical challenges. One example is given by domain decomposition, which tackles a problem by a divide-and-
conquer approach [13, 205]. Multi-domain methods exhibit the advantages of reducing the overall number
of degrees of freedom (DoFs), they may reduce the condition number, and they may allow for parallelization.
All these coupling approaches result in a currently observed merging of already existing simulation-software
companies. Solvers combining electromagnetics, structural dynamics, fluid dynamics, and thermodynamics
are already available and indispensable for large classes of engineering problems [108, 151, 192]. However,
guarantees on stability and numerical efficiency for these coupled methods do not yet exist and remain an
open research topic [61].

Many coupled formulations can be classified into a strong (monolithic) or a weak (iterative) approach [61],
see Figure 1.2. The former refers to the situation in which both subproblems are combined into one system of
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equations that is solved as a whole. In the latter approach, both subproblems are solved independently and
the interdependent data is exchanged iteratively. At first sight, a strong coupling might appear more natural.
However, due to already available simulation tools, one might prefer a straightforward weak coupling of the
individual black-box solvers as an alternative to the integration of one black-box into the other to obtain a
monolithic solver. Moreover, if one of the subproblems touches already the limit of the available computational
capacity, a monolithic coupling may simply not be possible. On the other hand, an iterative coupling can be
done on the implementation level, i.e., by coupling different software packages; on the modeling level, i.e.,
by coupling different models within one software package; on the simulation level, i.e., by iterating between
differently discretized models; or on the algebraic level, i.e., by iterating between the blocks of a coupled
linear or nonlinear system of equations. In other words, a weak coupling allows to use different simulation
tools, different spatial and temporal discretization schemes, different resolutions, and may allow for parallel
computations. However, convergence may be slow or not even guaranteed, a problem especially significant
for transient problems. One popular method to increase the convergence of iterative methods is the waveform
relaxation (dynamic iteration) [139].

In engineering, circuit models are very popular for a compact description of possibly complex problems. For
setting up these models, mostly hand calculations are used, which are not capable of considering nonlinear
effects nor non-trivial geometries. Moreover, many circuit models are restricted to a limited operation range,
e.g., a constant operating temperature. No generic method for the construction of physical equivalent cir-
cuits exists. However, some specific methods are proposed in the literature [12, 88, 225, 246]. Combining
circuit solvers with field solvers leads to field-circuit couplings [74, 195, 228]. They are a subclass of hybrid
discretizations [73, 136, 208] and can be classified as multi-domain methods, see above. Realizing such a
field-circuit coupling, a field solver can be called from the circuit solver [191] or vice versa [19, 195]. One
common approach is the generation of lookup tables by the field solver in an offline step, which then can be
used by the circuit solver during simulation. More details about available techniques for circuit generation
and simulation are given in Section 6.1.

Another important field of research is the quantification of uncertainties. Any uncertainty may be aleatoric,
i.e., random, or epistemic, i.e., an uncertainty due to incomplete knowledge. The field of uncertainty quan-
tification (UQ) uses stochastic models to give quantitative information about the corresponding uncertainty.
State-of-the-art techniques include classical Monte Carlo (MC) methods [45, 143], generalized polynomial
chaos (gPC) [250], stochastic collocation [10, 251], and stochastic Galerkin methods [11, 251]. A compar-
ison between the MC method and gPC is provided, e.g., in [250]. Currently active research is conducted
on promising techniques such as sparse grids [40], tensor train decomposition [174], and adaptive sparse grid
collocation [93, 146], with a comparison provided, e.g., in [145]. In the field of UQ, repeated evaluations
of a field model are often required, motivating the necessity of multi-fidelity models [165, 175]. If models
of different fidelities are available, the computational efficiency may be improved by their alternating use
during repeated evaluations of large field models.

Finally, let us come to the applications of interest in this thesis. For the packaging of micro- and nanoelectronic
devices, bond wires are one of the cheapest and mostly used electric connections between the chip and the
package. One of the reasons is the fast and fully automated procedure for establishing their connections.
Typically, bond wires are made of aluminum, copper, or gold, and their size shrinks along with the general
shrinkage of electronic devices [158]. Due to this shrinkage and the resulting increase in power densities,
the breakage of bond wires became an important source of failure [155]. The computation of corresponding
failure probabilities requires accurate models, giving rise to the requirement of 3D electrothermally coupled
field simulation. The main problem when including bond wires into these simulations is their small diameter
in relation to the size of the computational domain. Therefore, we require surrogate models for the wires
to be coupled to the surrounding domain. One approach is the use of analytical models [82, 167], but they
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often do not model all relevant effects. A common approach for general EM problems is to include the wires
directly in the field simulation by assigning a perfect conductance to the corresponding edges of the grid.
Thus, resolving the diameter of the wires is circumvented. However, when thermal considerations enter
the simulation, a perfect thermal conduction would lead to a significant modeling error. Thus, alternative
approaches are required.

1.3 Research Goals

This thesis deals with the efficient ET field and circuit simulation of thin wires embedded in 3D domains and
the evaluation of failure probabilities. The proposed methods are applied to a microelectronic chip package
with twelve bond wires of uncertain geometry as shown in Figure 1.1b. In practice, a chip package contains
hundreds of bond wires, which further motivates the need for an efficient embedding of thin wires into 3D
simulations. Since these bond wires are commonly subject to very high current densities, their steady-state
temperatures are of interest. The goals of this thesis are

• to provide a general tool for the ET simulation of micro- and nanoelectronics devices. Due to the regular
patterns in electronic devices, FIT is the major discretization scheme considered;

• the computation of bond wire failure probabilities under uncertain manufacturing conditions;

• the development of a thin wire model suitable for the inclusion in the ET simulation of 3D field problems
such as a microelectronic chip package. In particular, the temperatures of the individual wires must be
determined by numerical simulation;

• to obtain an automated method for the extraction of ET and EM circuits from 3D field problems. With
such a model available, model order reduction (MOR) techniques for circuits can be applied to obtain
an efficient surrogate model to be used for UQ methods, e.g., together with the available interface
between the Xyce simulator [128] and the Dakota package [1].

1.4 Summary

This first chapter gave an introduction to the field of computational electromagnetics (CEM) and motivated
its relevance for modern engineering problems. To provide the background of this thesis, we summarized
the state-of-the-art of the relevant topics. Namely, different kinds of couplings, the construction of circuit
models, the quantification of uncertainties, and the use of bond wires were discussed. Moreover, currently
active research topics were pointed out. To further define the relevance of this work, the research goals were
outlined in the final section of this chapter.
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2 Field and Circuit Modeling

This chapter introduces the field and circuit descriptions of the electromagnetic (EM) and thermal models
used throughout this thesis. While using the modern vector analysis as the calculus in this thesis, we shall
not forget the historical background of this powerful mathematical tool [66, 209]. Mainly in the nineteenth
century, there was a long search for a convenient system to describe physical laws conveniently. For the
description of a system in a high dimensional space, an algebra for multiple variables is required. At that
time, the double algebra of complex numbers was already established and served as the starting point to ex-
tend its 2D description to the third dimension. Three major systems, the Hamilton, the Graßmann, and the
Gibbs-Heaviside system evolved during that period. The first significant success was contributed to Hamil-
ton who published the quadruple algebra of quaternions in 1843. The idea of quaternions is based on one
number describing the magnitude and three numbers describing the rotation of a vector. However, its main
drawback was the missing property of commutativity of vector multiplication. In 1844, Graßmann published
the first full exposition of his system which also included the nowadays well-known inner and outer prod-
ucts. Although many mathematicians struggled with the abstract writings of Graßmann, his system used
already many principles from modern vector analysis. In the period between 1840 and 1900, the Hamil-
tonian and the Graßmannian system existed alongside each other, with the quaternionic system receiving
much greater attention. While the former was mainly popular in Great Britain and the United States, the
latter was dominant in the German community. In 1884, the triple algebra of modern vector analysis was
published independently by Gibbs and Heaviside. Along with many other useful concepts, it introduced two
different products of vectors, the well known scalar (dot) and vector (cross) products. The main reasons for
the breakthrough of vector analysis include the beneficial algebraic properties and the reasonable intellectual
effort required to learn its concept [209]. While Maxwell wrote parts of his “Treatise on Electricity and Mag-
netism”, published in 1873, still in Hamilton’s quaternionic system, the Gibbs-Heaviside system of modern
vector analysis evolved to be the dominant one by 1910. Thus, it is an evident choice to exploit the latter
in this thesis. However, for metric-independent formulations, we also introduce concepts from the field of
differential geometry and algebraic topology.

This chapter is organized as follows. In Section 2.1, Maxwell’s equations and the constitutive laws are in-
troduced. Section 2.2 presents different low frequency approximations. The thermal description is covered
in Section 2.3, establishing the fundamental principles of heat transport. Bringing EMs and thermal effects
together, Section 2.4 provides the electrothermal (ET) model of interest in this thesis. For a physically correct
solution of the considered ET model, we require initial and boundary conditions (BCs) as discussed in Sec-
tion 2.5. Section 2.6 presents the fundamentals of circuit theory and introduces the modified nodal analysis
(MNA), which is the underlying technique upon which any modern circuit simulator is based. Finally, the
treatment of thin wires, as considered in this thesis, requires to discuss distributed current sources in Sec-
tion 2.7 and we give an introduction to differential forms in Section 2.8.
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2.1 Maxwell’s Equations

Let us consider the position ~x ∈ D ⊂ R3 within the domain D and its boundary Γ := ∂D, and the time
t ∈ I ⊂ R with the time interval I = (t0, t1]. The spatial domain D is visualized in Figure 2.1. Any
EM field in D underlies the set of Maxwell’s equations [122]. For a facet S and a volume V , they read

−
∫
∂S

~E(~x, t) · d~L =

∫
S

∂

∂t
~B(~x, t) · d~S, (2.1a)

∫
∂S

~H(~x, t) · d~L =

∫
S

(
∂

∂t
~D(~x, t) + ~J(~x, t)

)
· d~S, (2.1b)

∫
∂V

~D(~x, t) · d~S =

∫
V
%(~x, t)dV, (2.1c)∫

∂V

~B(~x, t) · d~S = 0, (2.1d)

with suitable initial and boundary conditions (BCs) on Γ, see Section 2.5. Here, the used quantities are the
electric field ~E, themagnetic field ~H, the electric flux density ~D, themagnetic flux density ~B, the electric current
density ~J , and the electric charge density %, which all depend on position ~x and time t. In general, the electric
current density ~J is composed of the conductive, convective, and impressed current densities ~Jc, ~Jcv, and ~Ji,
respectively, such that

~J(~x, t) = ~Jc(~x, t) + ~Jcv(~x, t) + ~Ji(~x, t). (2.2)

First, the conductive current density is driven by the electric field and will be defined in the following. Sec-
ondly, the convective current density ~Jcv = %~v results from the movement of free charges, with their ve-
locity ~v. Thirdly, the impressed current density acts as a source and is specified independently. To guar-
antee the uniqueness of the solution, Maxwell’s equations are supplemented with the constitutive rela-
tions

~D(~x, t) = ε0 ~E(~x, t) + ~P (~x, t), ~B(~x, t) = µ0

(
~H(~x, t) + ~M(~x, t)

)
, ~Jc(~x, t) = σ(~x, t) ~E(~x, t),

where ε0 and µ0 are the permittivity and the permeability of vacuum, respectively, and σ is the electric con-
ductivity. For the physical background and exact definition of σ, the reader is referred to [109, Section 7.1].
Instead, we focus on the polarizations given by the electric polarization ~P and the magnetic polarization or
magnetization ~M . These polarizations represent the electric and magnetic dipoles on a molecular level and
generally exhibit a nonlinear dependence on the fields. As long as the fields are not too strong, the polariza-
tions are given by

~P (~x, t) = ε0χe(~x) ~E(~x, t), ~M(~x, t) = χm(~x) ~H(~x, t),

where χe and χm are the electric and magnetic susceptibilities [99, 138], which we assume to be time in-
dependent. The susceptibilities describe a change of the field strength and lead to the introduction of the
relative permittivity and the relative permeability defined as

εr(~x) := 1 + χe(~x), µr(~x) := 1 + χm(~x),

respectively. Magnetic materials are divided into diamagnetic, paramagnetic, and ferromagnetic materials,
for which µr < 1, µr > 1, and µr � 1, respectively. Values of σ, εr, and µr for certain materials are listed,
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D

ΓDir
σ = ΓDir

λ

ΓNeu
λ

ΓNeu
σ = ΓRob ∪ ΓNeu

λΓRob

Figure 2.1: Spatial domain D with boundary Γ. The boundary is subdivided according to the corresponding
BCs. In this illustration, the electric Dirichlet boundary ΓDir

σ coincides with the thermal Dirichlet
boundary ΓDir

λ , while the electric Neumann boundary ΓNeu
σ is the union of the thermal Neumann

boundary ΓNeu
λ and the Robin boundary ΓRob.

e.g., in [109]. In general, materials can be anisotropic and dispersive, which results in tensor-valued and
frequency-dependent values for εr and µr, respectively. In this thesis, due to the applications of interest and
without loss of generality, we consider isotropic materials that do not depend on frequency nor the strength or
direction of the EM field. However, as we will see in Section 2.3, we allow a possible temperature dependence
of the materials. This gives us the simplified relations

~D(~x, t) = ε(~x) ~E(~x, t), ~B(~x, t) = µ(~x) ~H(~x, t), ~Jc(~x, t) = σ(~x) ~E(~x, t), (2.3)

where we refer to ε := ε0εr and µ := µ0µr simply as the permittivity and the permeability of a material,
respectively.

2.2 Low Frequency Approximation

In many applications, it is not required to consider the full set of Maxwell’s equations but to use appropri-
ate approximations instead. Often, the propagation of waves and radiative effects can be neglected due to
the size of the considered geometry. If the geometry is small compared to the wavelength, the fields propa-
gate instantaneously and a quasi-stationary approximation becomes valid. For homogeneous materials, the
corresponding condition is stated by [79, 109]

∆ � v

f
=

1

f
√
εµ
, (2.4)

where f is the frequency, ∆ := diam(D) is the diameter of the domain, and v is the speed of propagation. If
an inhomogeneous permittivity or permeability is involved, appropriate modifications of (2.4) are discussed
in [79]. To formulate a quasi-stationary approximation, we apply the Helmholtz theorem [99] which allows
us to decompose the fields into irrotational and solenoidal parts with subscripts 0 and s, respectively. With the
time derivative ∂t, the Helmholtz decomposition for the electric field reads

~E(~x, t) = ~E0(~x, t) + ~Es(~x, t), ∇× ~E0(~x, t) = 0, ∇ · ~Es(~x, t) = 0, (2.5)
~E0(~x, t) = −∇ϕ(~x, t), ~Es(~x, t) = −∂t ~A(~x, t), (2.6)
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Approximation Validity range Ampère’s law

Full Maxwell No restriction ∇× ~H = ∂t ~D + σ ~E + ~Ji
Quasi-stationary (Darwin) ∆ � v

f ∇× ~H = ∂t ~D0 + σ ~E + ~Ji

Quasi-static ∆ � v
f and σ � fε ∇× ~H = ∂t ~D0 + ~Ji

Displacement-current-free (MQS) ∆ � v
f and σ � fε ∇× ~H = σ ~E + ~Ji

Eddy-current-free (EQS) ∆ � v
f and ∆ � δ ∇× ~H = ∂t ~D0 + σ ~E0 + ~Ji

Table 2.1: Overview of the most popular cases of low frequency approximations compared to the full Maxwell
case. The required condition and the corresponding form of Ampère’s law are given for each case.

where the electric scalar potential ϕ and themagnetic vector potential ~A are introduced. Being able to write ~E0
in terms of a scalar potential results from the Poincaré lemma [31] together with the choice of the Coulomb
gauge∇· ~A = 0. We realize at this point that the formulation of any quasi-stationary approximation requires
a choice of the gauging while the formulation of Maxwell’s equations is gauge independent. The most general
quasi-stationary approximation consists of neglecting the solenoidal part of the electric displacement current
~Ds in Ampère’s law by assuming ‖∂t ~Ds‖ � ‖ ~J + ∂t ~D0‖ [79]. We recall that we neglect convective currents
and obtain the quasi-stationary form of Ampère’s law given by

∇× ~H(~x, t) = ∂t ~D0(~x, t) + σ(~x) ~E0(~x, t) + σ(~x) ~Es(~x, t) + ~Ji(~x, t). (2.7)

Together with (2.1a), (2.1c), (2.1d), and (2.3), the relations (2.6) and (2.7) constitute what is also known
as the Darwin model which is valid under the condition (2.4) [79, 137].

Starting from (2.6) and (2.7), many applications allow to specify additional approximations. The most pop-
ular cases are [79]

1. the quasi-static field for poor conductors σ � fε giving ‖σ ~E0‖ � ‖∂t ~D0‖ and ‖σ ~Es‖ � ‖∂t ~Ds‖,

2. the displacement-current-free field for good conductors σ � fε giving ‖∂t ~D0‖ � ‖σ ~E0‖, and

3. the eddy-current-free field valid if ∆ � δ giving ‖σ ~Es‖ � ‖∂t ~D0 + σ ~E0 + ~Ji‖,

where δ is the skin depth and the second case being the reverse of the first. In addition to the names given
above, case 2 is commonly known as the magnetoquasistatic (MQS) approximation, and case 3 is known
as the electroquasistatic (EQS) approximation. To summarize all considered low frequency approximations,
Table 2.1 gives an overview including the required condition and the corresponding form of Ampère’s law.
Apart from the formal conditions listed in Table 2.1, a feeling of the appropriate approximation can also
be gained from the limit case of zero operating frequency. In this case and under the assumption of perfect
conductors and perfect insulators, any system behaves as a static system. If this limit case results in vanishing
magnetic fields, the system is EQS; if this limit case results in vanishing electric fields, the system is MQS.
Practical examples of EQS and MQS models can be found, e.g., in [109].

In this thesis, we are mainly concerned with applications from the field of micro- and nanoelectronics. For
most electronic devices, inductive and wave propagation effects are negligible [79]. On the other hand,
capacitive currents for instance in metal oxide semiconductor field effect transistors (MOSFETs) are very
relevant. Thus, the displacement current cannot be ignored. This leaves us with the EQS approximation of
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Maxwell’s equations, see Table 2.1, which reads

∇× ~E(~x, t) = 0, (2.8a)

∇× ~H(~x, t) = ∂t ~D(~x, t) + σ(~x) ~E(~x, t) + ~Ji(~x, t), (2.8b)

∇ · ~D(~x, t) = %(~x, t), (2.8c)

∇ · ~B(~x, t) = 0, (2.8d)

using differential operators instead of the integral form. Note that, by abuse of notation, we denote the
irrotational fields ~D0 and ~E0 in the EQS case simply by ~D and ~E. Applying the divergence operator to (2.8b),
using the constitutive laws (2.3), and the electric scalar potential as introduced in (2.6), we obtain the
governing equation of EQS given by

∇ · (ε(~x)∇ϕ̇(~x, t)) +∇ · (σ(~x)∇ϕ(~x, t)) = ∇ · ~Ji(~x, t), (2.9)

where ϕ̇ denotes the time derivative of ϕ. Throughout this thesis, we use three equivalent notations for a time
derivative: ∂

∂t , ∂t, and the above dot notation. For most practical problems, a closed form solution to (2.9) is
not available and a numerical discretization scheme becomes necessary. One possible choice is the finite inte-
gration technique (FIT) for which Section 3.3 provides all the required details.

The stationary limit of the EQS case is of particular importance in this thesis and is referred to as the electroki-
netic problem. In addition to the assumptions as required for the EQS approximation, the stationary case is es-
tablished by allowing only constant charge transport. Thus, Ampère’s law simplifies to

∇× ~H(~x, t) = σ(~x) ~E(~x, t) + ~Ji(~x, t),

and (2.9) becomes
∇ · (σ(~x)∇ϕ(~x, t)) = ∇ · ~Ji(~x, t), (2.10)

and we refer to (2.10) as the governing equation of electrokinetics. Its left-hand side can be decomposed
into balance, constitutive, and kinematic part given by [152]

∇ · ~Jc(~x, t) = 0, ~Jc(~x, t) = σ(~x) ~E(~x, t), ~E(~x, t) = −∇ϕ(~x, t), (2.11)

respectively, which becomes important when considering the approximative properties of spatial discretiza-
tion schemes as discussed in Chapter 3.

2.3 Principles of Heat Transport

Any EM problemwith at least a partly conducting domain raises Joule losses resulting in the generation of heat.
Let us here recall the fundamental principles of heat transfer [20, 142]. In general, the term heat describes the
energy that is stored within a domain or transported across the boundaries of a domain. Greater amounts
of heat yield a higher temperature. Typically, the direction of heat transfer is determined by temperature
gradients and is always oriented towards decreasing temperatures.

There are three dominating heat transfer principles: conduction, convection, and radiation. First, conduction
is driven by the interaction of neighboring molecules that possess a certain kinetic energy according to the
temperature of the molecules. While there is no molecular motion at zero temperature, temperatures greater
than zero lead to a random motion yielding collisions of neighboring molecules. Due to these collisions, the
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kinetic energy is transferred from one molecule to another. Thus, conduction is based on interactions on a
molecular scale without any macroscopic motion involved. Secondly, convection is based on the physical mass
transport mostly due to the heating of gases or liquids. It is classified into forced convection that causes mo-
tion of a fluid by outer forces; and natural convection, which is driven by a spatially nonuniform distribution
of density. The latter can be due to an inhomogeneous temperature distribution or due to a nonuniform con-
centration of a fluid mixture. In this thesis, we focus only on natural convection caused by an inhomogeneous
temperature distribution. In a gravitational field, due to buoyancy effects, this results in an upward motion of
heated fluids and a downward motion of cooled fluids. Apart from conductive and convective effects, every
body emits radiation in form of EM waves. Since waves also propagate in vacuum, see Section 2.1, radiative
heat transfer does not require any transport medium.

Let us now introduce the mathematical description of heat transfer. We do not delve into molecular processes;
instead, we use the macroscopic model of the heat equation. First, with the temperature T , we define the
thermal power density as

Qρc(~x, t) := ρ(~x)c(~x)Ṫ (~x, t),

where the volumetric mass density ρ and the specific heat capacity c make up the volumetric heat capacity ρc.
The constitutive Fourier’s law defines the heat flux as

~q(~x, t) := −λ(~x)∇T (~x, t), (2.12)

where λ is the thermal conductivity, which is highest for solid bodies, followed by liquids, and gases. Values
of ρ, c, and λ for certain materials are listed in, e.g., [234]. With these definitions, we can write the transient
heat equation in integral form as∫

V

[
ρ(~x)c(~x)Ṫ (~x, t)−Qi(~x, t)

]
dV =

∫
∂V

[λ(~x)∇T (~x, t)− ~qi(~x, t)] · d~S, (2.13)

where Qi and ~qi represent any impressed volumetric thermal flow and thermal flux density, respectively. In
this thesis, we neglect impressed thermal fluxes and treat impressed volumetric thermal sources to result
exclusively from Joule losses given by

Qi(~x, t) = QJ(σ(~x, t), ϕ(~x, t)) = σ(~x)(∇ϕ(~x, t) · ∇ϕ(~x, t)). (2.14)

In general, when thermal effects are considered, all constitutive parameters become a function of the temper-
ature. However, for most problems considered in this thesis, the temperature dependence of the electric con-
ductivity is dominant andwe neglect the dependence of all other constitutive parameters.

2.4 Coupled Electrothermal Problem

With the Joule losses as defined by (2.14), heat is generated by EM problems whenever conducting materials
are involved. Then, the electric conductivity σ becomes a function of the temperature and a link between (2.1)
and the transient heat equation (2.13) is established. In this thesis, as described in Section 2.2, we focus on
the EQS case and consider the ET coupling of (2.9) and (2.13) given by

∇ · (ε(~x)∇ϕ̇(~x, t, T )) +∇ · (σ(~x, T )∇ϕ(~x, t, T )) = ∇ · ~Ji(~x, t), (2.15a)

−ρ(~x)c(~x)Ṫ (~x, t) +∇ · (λ(~x)T (~x, t)) = ∇ · ~qi(~x, t)−QJ(σ, ϕ), (2.15b)

where σ and ϕ are now functions of the temperature T .
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Figure 2.2: Maxwell and thermal houses linked by the Joule losses and the temperature-dependent electric
conductivity to form the ET house inspired by [77, 224]. The diagonal links represent the time
derivative, the vertical links represent differential operators, and the horizontal links represent
the constitutive laws.

Considering the coupled ET problem given by (2.15), Figure 2.2 shows its illustration based on the Tonti dia-
grams [77, 224]. We refer to this illustration as the continuous ET house which shows all quantities involved
in (2.15) and their individual relations. The figure consists of two parts showing the Maxwell house on the
left-hand side and the thermal house on the right-hand side. Each part comprises diagonal, vertical, and
horizontal links. The diagonal links represent the time derivative, the vertical links represent the differential
operators, and the horizontal links represent the constitutive laws. From a differential form perspective, see
Section 2.8, the vertical links correspond to applying the exterior derivative and the horizontal links corre-
spond to applying the Hodge operator. Thus, the quantities on the left of each diagram represent straight
forms, while the quantities on the right represent twisted forms. The ET coupling given by (2.15) links the
two houses by the Joule lossesQJ and the temperature-dependent electric conductivity σ. In contrast to other
illustrations of the thermal part [3, 91], we choose the negative temperature gradient as the primal 1-form
in analogy to the definition of the electric 1-form.

2.5 Initial and Boundary Conditions

Due to the finite computational capabilities of a computer, any computational domain must be truncated,
giving rise to the requirement of initial conditions and BCs. The specification of initial conditions requires
to impress a valid field distribution at t = t0 that complies with the specified BCs. Since the subprob-
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Homogeneous Dirichlet Homogeneous Neumann

EM field ~nD × ~E = 0 ~nD × ~H = 0

Electric current ~nD · ~J 6= 0 ~nD · ~J = 0

Magnetic flux ~nD · ~B = 0 ~nD · ~B 6= 0

Table 2.2: Homogeneous Dirichlet and Neumann BCs for the scalar potential formulation given by (2.15a)
and their implications on the tangential and normal components of the EM field. The vector ~nD
is the outer unit normal of D. In EMs, Dirichlet and Neumann BCs are also termed electric and
magnetic BCs, respectively.

lems (2.15a) and (2.15b) can be treated separately, we discuss the BCs for both subproblems one after
another.

For the electric subproblem, setting the tangential electric field at the boundary Γ to zero is known as an
electric BC and is equivalent to a wall for the magnetic flux. Due to ~E = −∇ϕ, a prescribed electric potential
on the boundary corresponds to electric BCs as well. On the other hand, setting the tangential magnetic field
at the boundary Γ to zero is known as a magnetic BC and is equivalent to a wall for the electric current. For the
electric potential formulation as used in (2.15a), the electric and magnetic cases correspond mathematically
to Dirichlet and Neumann conditions, respectively. They read

ϕ(~x, t) = ϕDir(~x, t), ~x ∈ ΓDir
σ , t ∈ I,

−~nD · (σ(~x)∇ϕ(~x, t)) = ~JNeu(~x, t), ~x ∈ ΓNeu
σ , t ∈ I,

where ~nD is the outer unit normal of D, ΓDir
σ is the electric Dirichlet part of the boundary, and ΓNeu

σ is the
electric Neumann part of the boundary, see Figure 2.1. Additionally, ϕDir describes a prescribed electric
potential, and ~JNeu is a prescribed electric current through the boundary. Table 2.2 shows a summary of the
BCs discussed here.

For the thermal subproblem, the BCs are classified into first, second, and third kind, also termed Dirich-
let, Neumann, and Robin type, respectively [142]. Dirichlet conditions prescribe temperature values on the
boundary, Neumann conditions prescribe the thermal flux through the boundary, and Robin conditions de-
scribe a temperature-dependent flux passing through the boundary. Dirichlet and Neumann conditions are
expressed as

T (~x, t) = TDir(~x, t), ~x ∈ ΓDir
λ , t ∈ I,

−~nD · (λ(~x)∇T (~x, t)) = ~qNeu(~x, t), ~x ∈ ΓNeu
λ , t ∈ I,

where ΓDir
λ is the thermal Dirichlet part of the boundary, and ΓNeu

λ is the thermal Neumann part of the bound-
ary, see Figure 2.1. Additionally, TDir describes a prescribed boundary temperature, and ~qNeu is a prescribed
heat flux through the boundary. Convective and radiative boundaries are both described by Robin conditions,
which read

−~nD · (λ(~x)∇T (~x, t)) = r(T (~x, t))− r(T∞), ~x ∈ ΓRob, t ∈ I,

where r(T ) = hcvT + εRσRT
4 for combined convective and radiative BCs. Here, hcv is the heat transfer

coefficient which typically depends on the fluid properties, the properties of the convection process, and the
geometrical configuration. Furthermore, σR is the radiation coefficient or Stefan-Boltzmann constant, and εR
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is the emissivity. The amount of radiative emission depends on the body’s surface temperature, with the
maximum reached by ideal black bodies, thus termed black body radiation. For any real body, its radiation
is correctly described by introducing the emissivity εR ∈ [0, 1], which models the deviation of the real body
from a black body. Typical values for εR are found in [234].

2.6 Circuit Theory and Modified Nodal Analysis

Nowadays, the majority of electronic designs is based on circuit simulation. This became possible thanks to
the introduction of standard tools such as OrCAD PSpice [173], Xyce [128], and Cadence Spectre [44]
that revolutionized the electronics industry. Most modern circuit simulators are based on the modified nodal
analysis (MNA) [104, 117], which is an extension of the standard nodal analysis. In addition to the stan-
dard nodal analysis, the MNA simplifies the processing of voltage sources and current-dependent circuit
elements in an efficient manner. In this section, we follow [47] and briefly review some fundamentals of
circuit theory and the MNA. Kirchhoff’s current and voltage laws are derived and form the basics for circuit
analysis.

Any circuit can be understood as a directed graph consisting of interconnected nodes and branches. Let vi
be one of the Nn nodal potentials in a circuit and bn one of Nb directed branches. With the incidence matrix
A ∈ {−1, 0, 1}Nn×Nb linking nodes and branches, the voltage-potential relation is given by

V = A>v.

The entries of A are given by

ain :=


1, if the branch bn is directed away from node ni,
− 1, if the branch bn is directed towards node ni,
0, if the node ni is neither starting nor ending point of bn.

With this definition, the exemplary voltage Vn on the branch bn directed from ni to nj reads Vn = vi − vj .

For time invariant geometries, the current continuity equation reads∫
∂V

~J · d~S +

∫
V
%̇dV = 0, (2.16)

for an arbitrary volume V . By considering a volume Ṽi around an arbitrary circuit node ni and assuming
that capacitive charges are located either fully inside or outside of Ṽi, the total charge and also the charge’s
change rate in Ṽi is zero. Therefore, (2.16) becomes∫

∂Ṽi

~J · d~S = 0.

If ∂Ṽi is composed by a finite number s of conductors with cross-sectional areas Ãn, Kirchhoff’s current law
(KCL) is obtained as

s∑
n=1

In =
s∑

n=1

∫
Ãn

~J · d~S = 0, (2.17)
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Figure 2.3: KCL example for (a) a single node and (b) multiple nodes. The net current flow into a node must
be zero. These figures are taken from [47].

where In is the total current through the facet Ãn, see Figure 2.3a. To express (2.17) for all nodes in the
circuit, see Figure 2.3b, the incidence matrix A can be used such that

AI = 0, (2.18)

where I ∈ RNb is a vector of all currents allocated to the branches.

In a circuit, the basic branch elements are conductors, capacitors, inductors, as well as voltage and current
sources. As these elements are allocated to branches, sets of NG, NC, NL, NV and NI branches are defined,
respectively. Hence, A can be arranged into a block matrix with sub-blocks for these elements [104], read-
ing

A =
[
AG AC AL AV AI

]
.

An exemplary circuit consisting of a current source, two resistors and two capacitors together with the cor-
responding block structure of A is shown in Figure 2.4. A similar subdivision is done for the current and
voltage vectors, giving

I> =
[
I>G I>C I>L I>V I>I

]
,

V> =
[
V>
G V>

C V>
L V>

V V>
I
]
.

With these definitions, the branch voltages read

VG = A>
Gv, VC = A>

C v, VL = A>
L v, (2.19a)

VV = A>
V v, VI = A>

I v, (2.19b)

and (2.18) becomes
AGIG + ACIC + ALIL + AVIV + AIII = 0. (2.20)

The relation between voltages and currents for the different branches is established by constitutive diagonal
matrices that contain the element-wise material parameters. These are the conductance, capacitance, and
inductance matrices G, C, and L, respectively. Expressing the corresponding source branches by means of the
source voltages Vs and source currents Is, this relation becomes

IG = GVG, IC = CV̇C, IL = L−1

∫
VL dt, (2.21a)

VV = Vs, II = Is. (2.21b)
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Figure 2.4: Circuit example and its branch matrices. This figure is taken from [47].

Combining (2.19), (2.20), and (2.21), we obtain the MNA formulation

ACCA>
C v̇+ AGGA>

Gv+ ALIL = −AIIs − AVIV, (2.22a)

LİL = A>
L v, (2.22b)

A>
V v = Vs. (2.22c)

Note that in contrast to the standard MNA theory, (2.22) still requires regularization, typically done by the
introduction of a reference node, typically called the ground node. Furthermore, solving (2.22) requires a
time stepping scheme, see Section 3.4 for a general overview. For time stepping schemes as specifically used
in circuit simulation, see, e.g., [190]. In practice, most circuit simulators use the trapezoidal rule or backward
differentiation formula (BDF) schemes, which both are multi-step methods. If largely different time scales
are involved, multi-rate methods enable an efficient circuit simulation as reported on for instance in [103,
176, 183].

2.7 Distributed Current Sources

EM sources are often concentrated in a very small region. This allows point and line sources to be reasonable
models for small circular electrodes or for thin wires, respectively. With thinwe refer to any wire with a radius
that is much smaller than the diameter of the domain, a condition stated by r � ∆.

We now follow [109, Chapter 7] to define distributed current sources. The notion of distributions originates
from the book by Schwartz entitled “Theory of Distributions” [200]. In the electrokinetic problem (2.10),
the right-hand side can also be expressed by a volume distribution of current sources denoted by s with units
A/m3 such that

∇ · (σ∇ϕ) = ∇ · ~Ji = −s, (2.23)

which is understood in a weak sense. This distribution s allows to formally introduce point, line, and surface
current sources given by

Ip := lim
s→∞
|V |→0

∫
V
sdV, Kl := lim

s→∞
|S|→0

∫
S
sdS, Js := lim

s→∞
|L|→0

∫
L
sdL,

respectively. Here, V denotes an arbitrary volume, S denotes an arbitrary facet, and L denotes an arbitrary
edge. Based on [109], Figure 2.5 shows an illustration of these three types of distributed current sources.
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Figure 2.5: Distributed current sources for (a) a point current source Ip, (b) a line current source Kl, and
(c) a surface current source Js. In (d), (e), and (f), possible physical realizations using insulated
wire feeds are shown for the three cases. This figure is based on [109].

Physical realizations of such current sources can be implemented by using insulated wire feeds as shown in the
lower part of Figure 2.5. Using these definitions, (2.23) in integral form reads∫

∂V
σ∇ϕ · d~S = −Ip,

∫
∂V
σ∇ϕ · d~S = −

∫
LK

Kl dL,
∫
∂V
σ∇ϕ · d~S = −

∫
SJ

Js dS, (2.24)

for a point, line, and surface current source, respectively. Here, LK refers to the line on which Kl is defined,
and SJ denotes the surface on which Js is defined. For a homogeneous domain D filled with a material of
conductivity σ, the solution to the point and line current case of (2.24) is obtained by evaluating concentric
integrals around the corresponding source. Then, the electric potential and the field are obtained in spherical
coordinates with the radial distance r and the unit vector ~er as

ϕ =
Ip
4πσ

1

r
+ C, ~E =

Ip
4πσ

1

r2
~er,

for the point current case and with an arbitrary constant C ∈ R. Similarly, for line current sources using
cylindrical coordinates with the radial distance r, we obtain

ϕ = − Il
2πσ

ln
(
r

r0

)
, ~E =

Il
2πσ

1

r
~er,

for an arbitrary reference radius r0 > 0 and Il :=
∫
LK

Kl dL.

2.8 Introduction to Differential Forms and de Rham Currents

Although the vector field representation in (2.1) is the most commonly known version of Maxwell’s equations,
more general descriptions exist. In particular, vector analysis notations require a notion of metric and a screw-
sense of the underlying coordinate system. A more general concept originates from the mathematical field
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of differential geometry and is known as the concept of differential forms [41, 89, 123], which are defined as
fields of multilinear mappings from Rp to R, where p is the degree of the form [31]. Differential forms are
defined on manifolds, which can be seen as a generalization of the Euclidean space R3. Differential forms
are expressions on which integrals operate [77]. The great benefit of their usage is the elimination of any
metrical notion from Maxwell’s equations yielding a unified formalism for the concepts of electromagnetism.
However, a metric enters once constitutional relations are considered, requiring the introduction of the Hodge
operator, see below. Apart from electromagnetism, differential forms are also used in disciplines like classical
mechanics, optics, and quantum mechanics.

In general, let us refer to a differential form of degree p concisely as p-form and denote the space of p-forms on
the domain D by Dp(D). The familiar concept of gradient, curl and divergence generalizes in the framework
of differential forms to the concept of the exterior derivative or exterior differential d. Thus, the well-known
vector identities ∇ × (∇ψ) ≡ 0 and ∇ · (∇ × ~F ) ≡ 0 generalize to d(dω) ≡ 0 for any scalar field ψ, any
vector field ~F , and any differential form ω. Defining operations on differential forms introduces the field of
exterior calculus. Apart from the degree, differential forms classify into straight and twisted forms. In the
literature, straight forms are often referred to as even or ordinary forms while twisted forms may be referred
to as odd or impair forms. The connection between straight and twisted forms is introduced by the Hodge
operator denoted by ? that maps straight p-forms into twisted q-forms, where q := (n − p), and n is the
dimension of the domain D. These connections are also illustrated in Figure 2.2, which was introduced in
Section 2.4.

Let us now apply the concept of differential forms to EMs and the transient heat equation in 3D space. We fol-
low [30, 41, 77] towrite downMaxwell’s equations using differential forms, giving

de = −∂tb, (2.25a)

dh̃ = ∂td̃+ j̃, (2.25b)

dd̃ = %̃, (2.25c)
db = 0, (2.25d)

with the straight 1-form e representing the electric field and the straight 2-form b representing the mag-
netic flux density. Furthermore, h̃ is a twisted 1-form representing the magnetic field, d̃ is a twisted 2-form
representing the electric flux density, j̃ is a twisted 2-form representing the electric current density and %̃ is
a twisted 3-form representing the electric charge density. We recall that this form of Maxwell’s equations does
not require anymetric at all. The transient heat equation using differential forms reads

∂tQ̃ = dq̃ + Q̃s,

with the twisted 2-form q̃ representing the heat flux density and the twisted 3-form Q̃ and Q̃s describ-
ing the thermal power density and the thermal source term, respectively. The Hodge operator establishes
the link between straight and twisted forms and thus links (2.25a)–(2.25d) by introducing the constitutive
laws

b = ?µh̃, d̃ = ?εe, j̃ = ?σe, q̃ = ?λt,

with the straight 1-form t = −dT , where T is a straight 0-form representing the temperature. At last, let
us introduce a notion of energy and power in this framework. Energy and power quantities are represented
by twisted forms and result from the wedge product or exterior product of a straight form with a twisted
form. For instance, the power density of a field is described by a twisted form given by the wedge product
e∧ j̃ [27]. Table 2.3 gives an overview of physical quantities in the framework of differential forms. Some of
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Straight forms Twisted forms

0-forms temperature, electric scalar potential –

1-forms thermal tension, electric field, magnetic fieldmagnetic vector potential

2-forms magnetic flux density thermal heat flux, electric flux density,
electric current density

3-forms – power density, charge density

Table 2.3: Straight and twisted differential forms and examples of physical quantities.

these quantities have already been introduced here, others are mentioned additionally, and this list does not
claim to be complete.

We further introduce continuous de Rham currents that represent distributions on differential forms and
thus, a generalization to differential forms and chains [75]. Originally, the term current was motivated by the
nature of a current being 1D in 3D space. In EMs, de Rham currents are important to appropriately represent
singular sources, such as line and surface currents as well as point and surface charges. In this thesis, this
framework is important for the inclusion of line currents arising from thin wires. A q-current maps from
n−q-forms with compact support inD to real numbers and is independent of any metric. We largely avoid the
formalism of exterior calculus and instead, identify differential forms with their vector proxies. In particular,
we can identify D0(D) with C∞

0 (D) and D1(D) with (C∞
0 (D))3.

Quantities such as energy or power densities are represented by 0-currents, see [229]. More precisely, using
a test function v, a power density Q gives rise to a 0-current

Q(v) :=

∫
D
Qv dV, v ∈ C∞

0 (D). (2.26)

On the other hand, physical currents such as the electric current density and the thermal heat flux as well as
surface and line currents give rise to 1-currents. For convenience, we use ~Jα with α ∈ {ε, σ, λ} to have at hand
a general notation for the electric displacement current ∂t ~D, the electric conductive current ~Jc, and the ther-
mal heat flux ~q, respectively. Using this notation, ~Jα gives rise to a 1-current

Jα(~v) :=

∫
D
~Jα · ~v dV, ~v ∈ (C∞

0 (D))3.

Now, we illustrate how (2.15) can be reformulated in the setting of de Rham currents. We start with the elec-
trokinetic part given by (2.10), neglect any impressed field, multiply (2.10) with the test function v ∈ C∞

0 (D),
integrate over D, and integrate by parts such that∫

D
∇ · ~Jσv dV = −

∫
D
~Jσ · ∇v dV = divJσ(v) = 0, (2.27)

in the sense of distributions, where the electric current reads ~Jσ := −σ∇ϕ. Here, we used the general
relation [8]

divK(v) = −K(∇v), ∀v ∈ C∞
0 (D), (2.28)
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for any 1-current K. Similarly, (2.27) holds also for ~Jα, representing additionally the displacement current
and the thermal heat flux. Moreover, by the definition of (2.26), the de Rham 0-currents associated to ρc Ṫ
and QJ are given by

Qρc(v) =

∫
D
ρcṪ v dV, QJ(v) =

∫
D
QJv dV,

for all v ∈ C∞
0 (D), respectively. Hence, the de Rham current reformulation of (2.15) without impressed fields

reads

div(Jε + Jσ)(v) = 0, (2.29)
Qρc(v) + divJλ(v) = QJ(v), (2.30)

for all v ∈ C∞
0 (D). Using this formulation, we will see in Section 3.3 that the concept of de Rham currents is a

mathematical tool that aids the construction of a discrete representation of a field description [216].

2.9 Summary

For the simulation of an engineering problem, the first step consists of finding a suitable model. Starting from
Maxwell’s equations, we realized that a low frequency formulation is sufficient for the electric description of
the relevant applications in this thesis. Due to the increasing necessity of thermal analysis in the design
of electronic devices, we discussed the fundamental principles of heat transport to arrive at the coupled
electrothermal (ET) formulation as the governing model in this thesis. Since we are also interested in circuit
simulation, we recalled the generally applied method for circuit simulation, known as the modified nodal
analysis (MNA). To prepare for the thin wire model to be presented in Chapter 5, we closed this chapter by
the discussion of distributed current sources and we gave an introduction to differential forms and de Rham
currents.

21





3 Discretization

Most relevant problems exhibit complex geometries or nonlinearities such that closed form solutions of the
underlying partial differential equations (PDEs) are not available. This motivates the need for numerical tech-
niques to obtain an approximate solution. During the last century, several techniques have been developed.
The most prominent examples include finite elements, finite volumes, finite differences, finite integration,
cell method, boundary element method, isogeometric methods, and hybrid methods, where the latter uses
a combination of at least two other methods. Any of these methods allows to solve PDEs up to a certain
error. In the best case, this error is known or at least can be estimated. To increase the accuracy of any
method, the most common approaches are h- and p-refinement, referring to a refinement of the spatial mesh
and to an increase of the approximation order, respectively. Other approaches include, e.g., defect correc-
tion, which is used to estimate a part of the numerical error and subtract it from the obtained solution [24].
Over the years, several commercial tools established themselves on the market. Some examples for electro-
magnetic (EM) field simulation include CST DESIGN STUDIO [67], ANSYS HFSS [4], and EMPro [130].
Well-known circuit simulation tools are for instance OrCAD PSpice [173], Xyce [128], and Cadence Spec-
tre [44].

The purpose of this chapter is the introduction of the numerical techniques that are used throughout this
thesis. We start very generically with some useful concepts from algebraic topology in Section 3.1 and the
definitions of chains, cochains, and discrete de Rham currents in Section 3.2. Section 3.3 describes the fi-
nite integration technique (FIT), which is the principal spatial discretization technique used in this thesis
and fits elegantly in the framework of differential forms [28]. Therein, we introduce the topological no-
tions and the material approximation that constitute the Maxwell grid equations (MGEs). Furthermore, we
discuss the discrete Joule losses, the inclusion of boundary conditions (BCs), notions about the computa-
tional grid and a graded grid in particular, and distinguish FIT from other schemes. Section 3.4 explains
the idea of time integration by referencing some known schemes and by applying a particular choice to
the problem at hand. Methods to solve the underlying linear system of equations are discussed in Sec-
tion 3.5. Finally, to quantify the accuracy of a scheme, precise error definitions are required and given in
Section 3.6.

3.1 Some Useful Concepts from Algebraic Topology

In this section, let us recall a few concepts from algebraic topology. Following Tonti [221, 223, 224], we
introduce the notions of global variables, cell complexes, and orientation. Covering these topics enhances the
understanding of discretization schemes and the choice and description of the computational mesh. While we
only touch the surface of these concepts, a more detailed and more formal description of algebraic topology in
the context of computational electromagnetics (CEM) is available for instance in [100].
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Configuration Variables

Energy Variables

Source Variables
constitutive laws

Figure 3.1: Physical variables can be classified into configuration, source, and energy variables [223]. Con-
figuration and source variables are linked by the constitutive laws and their product gives energy
variables.

Physical variables can be classified into configuration, source, and energy variables, see [221, 223]. Figure 3.1
shows the relation between these variables. While constitutive laws link configuration and source variables,
energy variables are obtained by the multiplication of configuration and source variables. One might argue
that the true value of any of these variables is given by measurements, corresponding to the evaluation of
a field function on a finite region of space. This is the motivation and the definition of a global variable:
the integrated value of a field function on a finite region of space that can be obtained by measurements.
Some examples for global variables in the field of EMs are the electric charge content, the electric current,
the electric voltage, the magnetic flux, and the electric flux. They correspond in vector field formulation
to the electric charge density, the electric current density, the electric field, the magnetic flux density, and
the electric flux density, see Section 2.1. In contrast to the vector field formulation, global variables are
continuous through the separation surface of two materials.

Let us now define the notion of a cell complexwhich generalizes the concept of a computational mesh [223]. In
the case of a 3D space, there are p-cells with p = 0, 1, 2, 3, which represent points, lines, facets, and elements,
respectively. It is important to distinguish the terms face, coface, and facet. The q-cells with q < p that are part
of the boundary of a p-cell are called the q-faces of the p-cell. Reversely, those q-cells with q > p that share a
common p-cell are called q-cofaces of the p-cell. On the other hand, the term facet is reserved to explicitly refer
to a 2-cell in general. While a face of a p-cell belongs to the boundary of the p-cell, a coface of a p-cell belongs
to its coboundary. Here, we omit the precise definitions of the above terms and refer to Figure 3.2 to get an
intuition for the 3D space involving points, edges, facets, and elements.

To work with cell complexes in physical sciences, the association of physical variables to their cells was in-
troduced in [36]. The correct association of quantities with the appropriate type of cell is very important;
otherwise, the problem of spurious modes may occur [124, 212]. For a correct allocation, due to the sep-
aration into configuration and source variables, it is convenient to introduce a secondary cell complex in
addition to the primal one. Configuration variables are allocated to cells of the primal complex, while source
variables are allocated to cells of the secondary complex that is typically chosen to be geometrically dual to
the primal one, see Section 3.3.6. Another important property of a pair of the primal and dual cell com-
plexes is the adjointness of the resulting gradient on the primal complex and the negative divergence on
the dual complex, which is shown for the coboundary operator in [152]. The coboundary operator is a dis-
crete generalization of the commonly known gradient, divergence, and curl operators, see Section 3.2. For
properly formed complexes, the adjointness of the discrete gradient and the negative divergence operators is
fulfilled [224].

The use of a dual cell complex is further motivated by the existence of two types of orientations [152, 223],
a concept which is entirely ignored when vector analysis formulations are used. In general, we distinguish
between internal and external orientation, also known as inner and outer orientation. For example, the

24



p = 0 p = 1 p = 2 p = 3

Figure 3.2: Faces, cofaces, boundary, and coboundary of p-cells in the case of a 3D rectilinear grid. The cases
p = 0, 1, 2, 3 are shown and represent points, edges, facets, and elements, respectively. While a
p-cell is shown in gray, its faces are shown in green making up its boundary. Similarly, its cofaces
are shown in orange and make up its coboundary.

internal orientation

external orientation

−1

+1

p = 0 p = 1 p = 2 p = 3

Figure 3.3: Illustration of internal and external orientation in 3D space. The internal orientation of a p-cell
determines the external orientation of an (n− p)-cell. This figure is inspired by [223].

internal orientation of an edge is a sense of direction when moving along the edge. On the other hand, the
external orientation of an edge is a sense of turning around the edge. A special case is the internal orientation
of a point, which can be oriented as a source or as a sink. Due to the typical convention to orient a point as
a sink and the contradicted convention to orient elements as a source (i.e., to orient their boundary by their
outgoing normal), the characteristic minus sign in front of the gradient term such as in (2.6) and (2.12) is
required for compensation. Figure 3.3 illustrates the concept of internal and external orientations for points,
edges, facets, and elements in 3D space, and we refer to [223] for a more detailed explanation. While internal
orientation is an independent notion, external orientation depends on the orientation (and thus, also on the
dimension) of the surrounding space, which is typically defined by a screw sense. As stated by Veblen and
Whitehead [235], when a dual cell complex is considered, the internal orientation of a primal p-cell induces
the external orientation of a dual (n − p)-cell, where n is the dimension of the surrounding space. Let us
remark that the role of primal and dual complexes can easily be interchanged; however, we choose to follow
the common convention that all cells of a primal complex exhibit internal orientation while all cells of the
dual complex exhibit external orientation. This is also depicted in Figure 3.3, where p-cells and (n− p)-cells
are organized on top of each other. To bring orientation and allocation of physical variables into context,
Table 3.1 shows the type of orientation of thermal and EM quantities and their allocation to the different
cells.
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Object Cell type Internal orientation External orientation

Points 0-cell temperature, electric scalar potential –

Edges 1-cell thermal tension, electric field, magnetic fieldmagnetic vector potential

Facets 2-cell magnetic flux density thermal heat flux, electric flux density,
electric current density

Elements 3-cell – power density, charge density

Table 3.1: Allocation of thermal and EM quantities to different geometric objects and corresponding types of
cells. Additionally, the type of orientation associated with the different quantities is given.

3.2 (Co-)Chains, Discrete de Rham Currents, Discrete Hodge Operators

Let us introduce chains, cochains, discrete de Rham currents, and the discrete Hodge operator. These notions
form the discrete counterpart to differential forms, which were introduced in Section 2.8. We require only
some basic notions and refer to [100, 115] and references therein for further details.

A p-chain for p-cells as introduced in Section 3.1 is defined as

Cp :=
∑
i

nic
i
p,

where cip is a p-cell with multiplicity ni. The concept ofmultiplicity corresponds to an integer number assigned
to each cell and can be seen as a weighting. A negative multiplicity corresponds to a negative orientation.
The notion of chains allows algebraic manipulations of domains and enables the representation of an entire
discretized geometry. The boundary ∂cp of an oriented p-cell is the (p − 1)-chain composed by the linear
combination of those (p−1)-cells that have a nonempty intersection with cp. The individual orientations and
multiplicities follow from the incidences of the (p − 1)-cells with the p-cell and are thus induced by cp. It is
interesting to note that the boundary of a p-cell has no boundary. As an example, the boundary of a surface
is given by a closed loop and thus, does not have a boundary itself. Having defined the boundary of a cell,
we may now define the boundary of a p-chain as

∂Cp :=
∑
i

ni∂c
i
p.

Therefore, the boundary of a p-chain is given by the linear combination of the boundaries of the cells cip,
taking into account their multiplicities.

A p-cochain is a linear mapping of a p-chain into the real numbers. It can be identified with coefficient
vectors of the same dimensions as the respective chains [8]. Typically, cochains are used for the represen-
tation of fields since they are the proper description of physical variables on a cell-complex. An example
is given by the charge density ρ(3), which is a 3-cochain that leads to the total charge QC for a 3-chain C3

by
〈C3, ρ

(3)〉 = QC ,

where the bracket-notation is commonly used to denote the evaluation of a cochain on a chain. Note that we
choose a chain as the first argument and a cochain as the second argument in the bracket notation, which
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might be in conflict with the notation of other authors. Using this concept, it allows to write, e.g., the balance
and kinematic equations of thermostatics using chains and cochains as

〈C3, Q
(3)〉 = 〈∂C3, ~q

(2)〉, 〈C1, ~G
(1)〉 = 〈∂C1, T

(0)〉,

respectively. Here, Q(3) is a 3-cochain evaluated on a 3-chain C3 to yield the heat associated to C3. This heat
equals the heat flux described by the pairing of a 2-cochain ~q (2) leaving the 2-chain ∂C3. Similarly, the temper-
ature difference is described by the pairing of a 1-cochain ~G(1) evaluated on a 1-chain C1. This temperature
difference equals the pairing of a 0-cochain of the temperature T (0) evaluated on ∂C1.

Let us now give a more precise definition of the boundary operator ∂ and the coboundary operator δ. The
former establishes a connection between chains of different degrees on the same cell-complex, while the latter
establishes a connection between cochains of different degrees on the same cell-complex. The boundary
operator ∂ is formally defined as a map from a p-chain to a (p − 1)-chain. Since a p-cell is a special case of
a p-chain, this definition carries over to cells. However, the boundary of a p-cell usually consists of multiple
(p − 1)-cells, i.e., it is given by a (p − 1)-chain. As mentioned in Section 3.1, the boundary of a cell does
not have a boundary. The same concept applies to chains, resulting in the property ∂∂ ≡ 0. On the other
hand, the coboundary operator δ maps p-cochains to (p+1)-cochains. From a vector analysis perspective, the
coboundary operator acts as the discrete generalization of the commonly known differential operators∇,∇·,
and ∇×. Thus, similar as for the exterior derivative in the framework of differential forms, see Section 2.8,
δδ ≡ 0 holds true.

In analogy to the continuous de Rham currents as introduced in Section 2.8, we introduce their discrete
counterpart here. A discrete de Rham current of dimension p and degree n− p is a functional that maps from
p-cochains to the real numbers. Similar to the continuous case, a discrete p-current can be identified with a
p-chain and hence, represented by coefficient vectors. Therefore, p-chains as well as (n − p)-cochains both
qualify as de Rham currents [8]. The entries of their coefficient vectors can be computed in a particular
basis. In the context of a discretization based on a cell complex, the canonical basis is given by the cells of
the complex. For example, the canonical basis for the electric current represented by the discrete de Rham
current J would be given by the set of 2-cells in the cell complex. In other words, these 2-cells correspond
to facets in a computational mesh.

Lastly, we introduce the discrete Hodge operator as a mapping from p-cochains on the primal complex to
(n− p)-cochains on the dual complex. With the knowledge of de Rham currents, an equivalent definition ap-
plies [8]. Since (n−p)-cochains can also be seen as currents, the discrete Hodge operator maps from cochains
to currents. We denote the discrete Hodge operator by Fα, where α is a material coefficient, representing
the finite-dimensional approximation of ?α, see Section 2.8. Depending on the explicit implementation of a
Hodge operator, a specific numerical scheme is obtained, see Section 3.3.7. With the definition of a discrete
Hodge operator at hand, the notion of discrete energy becomes possible. Let e and h̃ denote coefficient vec-
tors describing the discrete electric and magnetic fields on the primal and dual cell complexes, respectively.
Then, for linear materials, 1/2〈Fεe, e〉 describes the discrete electric energy and 1/2〈Fµh̃, h̃〉 describes the
discrete magnetic energy, where 〈·, ·〉 represents the dot product [27]. For a consistent formulation and an
appropriate refinement strategy, these discrete energies are expected to converge to their continuous coun-
terparts.
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3.3 Finite Integration Technique for Electrothermal Coupling

After the finite integration technique (FIT) was first introduced in 1976 to solve Maxwell’s equations [240],
it received great popularity in the community of CEM. Originally, the theory was developed for frequency
domain applications [242]. Nowadays however, FIT is mainly used for high frequency problems in the time
domain. Particular attention was attributed to FIT due to the software package Maxwell’s equations using
the finite integration algorithm (MAFIA) [217] that was the first distributed 3D code for radio-frequency field
simulation. The applicability of FIT covers the range from statics over harmonics up to time-dependent fields.
Its main features are low memory requirements and its consistent formulation such that analytical properties
of EM fields in the discretized space are maintained. In particular, the solenoidality of the discrete fields is
fulfilled, circumventing the problem of spurious modes and parasitic charges, a topic discussed in [124, 212].
Furthermore, the integral formulation does not require any knowledge of the weak form or concepts from
functional analysis, enabling even undergraduate students to understand and apply the basic principles. In
case of an orthogonal dual grid structure, diagonal material matrices are obtained, see Section 3.3.2. This
diagonality property allows to use an explicit time integration scheme, making up for the efficiency of the
time domain leap-frog scheme [223, 242]. Another advantage of the leap-frog scheme constitutes in its
discrete energy conservation [198]. In this thesis, the FIT receives particular attention due to its convenient
consideration of semiconductors [191].

The drawbacks of FIT are mainly related to the restrictions of the typically employed rectilinear grid, see Sec-
tion 3.3.6. It results in a staircase approximation that can result in very poor accuracy even for simple geome-
tries [119, 170]. To overcome the staircase error, several techniques are available. The most popular ones are
the usage of conformal mesh techniques [60], partially filled cells [189], triangular filling techniques [199],
tetrahedral filling technique [160], subgridding [218], cell methods [64], and the well-known perfect bound-
ary approximation [132]. Some of these techniques involve non-regular and non-orthogonal grids, for which
corresponding theory is available as well [182, 197]. Approaches for non-orthogonal meshes date back to
the first methods for finite difference time domain (FDTD) in 1983 [118], resulting in non-diagonal but still
symmetric material matrices. Even tetrahedral meshes together with FIT may allow for diagonal material
matrices if an appropriate lumping technique is used [32].

The goal of this section is the precise formulation of the classical FIT for a thermal coupling to Maxwell’s
equations. First, Section 3.3.1 introduces topological notions such as the grid topology, incidence matrices,
and the allocation of physical quantities to the grid objects. A great advantage of FIT is the diagonal structure
of the material matrices as it will be presented in Section 3.3.2. Putting all ingredients together, Section 3.3.3
provides the corresponding semi-discrete Maxwell’s equations obtained by FIT, also known as MGEs. Taking
thermal losses into account, Section 3.3.4 defines the discrete representative of the Joule losses. Before the
semi-discrete equations can be solved, BCs must be applied, a topic discussed in Section 3.3.5. The quality
of a solution depends also on the employed computational grid and may require a grading if singularities
are involved, see Section 3.3.6. Lastly, the relation of FIT to other discretization schemes is discussed in
Section 3.3.7.

3.3.1 Topological Notions

The FIT requires a domain D to be discretized by a grid pair given by the primal grid G and its dual G̃. Such
a dual grid pair can be seen as a special choice of a dual cell complex, see Section 3.1. For more details
about the properties and the construction of a grid, see Section 3.3.6. For p = 0, 1, 2, 3, the p-cells in the
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Description Normal Index

i-th primal point Pi i

i-th dual point P̃i ĩ
n-th primal edge Ln n

n-th dual edge L̃n ñ
n-th primal facet An n

n-th dual facet Ãn ñ
i-th primal element Vi i

i-th dual element Ṽi ĩ

Table 3.2: Normal and index notation format for different grid objects. This table is taken from [47].

grid G are given by primal points Pi, i = 1, . . . , NP, primal edges (links) Ln, n = 1, . . . , NE, primal facets
(areas) An, n = 1, . . . , NF, and non-overlapping primal elements (volumes) Vi, i = 1, . . . , NV, respectively.
Similarly, the grid G̃ consists of dual points P̃i, i = 1, . . . , ÑP, dual edges L̃n, n = 1, . . . , ÑE, dual facets
Ãn, n = 1, . . . , ÑF, and dual elements Ṽi, i = 1, . . . , ÑV. The grids G and G̃ are dual to each other in the
sense that a primal edge Ln intersects a dual facet Ãn and a primal point Pi is located inside a dual element
Ṽi and vice versa. For a rectilinear grid, the grid staggering is depicted in Figure 3.4. Due to this duality, the
number of primal and dual grid objects fulfills

NE = ÑF, NF = ÑE, NV = ÑP, NP = ÑV.

As mentioned above, we write Ln for the n-th edge of the primal grid and we emphasize the duality of edges
and facets by using the same index. Thus, Ãn is the dual facet corresponding to the primal edge Ln and
L̃n is the dual edge corresponding to the primal facet An. Let us further introduce a short (index) notation
for geometric objects. If Ln or An are used as an index, we simply write n instead. Whether n refers to an
edge or a facet should become clear from the context. For the dual objects, we use ñ instead of L̃n or Ãn.
The notation for points and elements and their duals is realized accordingly. In Table 3.2, we summarize this
notation.

The grid counterparts of the continuous field quantities, which have been introduced in Chapter 2, are allo-
cated to points, edges, facets, or elements and are collected in column vectors. For a consistent allocation,
the degree of the underlying differential form, or rather of the corresponding cochain, dictates the dimension
of the corresponding geometric object, see Sections 2.8 and 3.2. Due to this convention, the discrete fields
fulfill all required continuity conditions by construction. Typical examples from EMs are the discrete electric
potentials ϕ ∈ RNP , voltages _e ∈ RNE , currents

__

j ∈ RNF and charges
___q ∈ RNV that are allocated to primal

points, edges, facets and elements, respectively. The number of bows indicates the dimension of the corre-
sponding geometric object. Nevertheless, we typically write q instead of

___q for conciseness. Defining all other
grid quantities accordingly, their allocation is shown in Figure 3.4. If we want to indicate a grid quantity, e.g.,
an electric field, to be allocated to an edge Ln that is part of the boundary of a facet Ak, i.e., Ln ∩ ∂Ak = Ln,
we use the indexed notation _ek;n. Recalling the concept of internal and external orientation as introduced in
Section 3.1, the visualization in Figure 3.4 suggests an external orientation of

__

b on the primal grid and an
internal orientation of

_

h on the dual grid, contradicting the convention of internal orientations on the primal
grid and external orientation on the dual grid [224]. However, in the FIT community, this type of visualization
is a common choice and does not influence the calculation of the fields.

The FIT uses discretized field quantities represented by vectors whose entries are defined by means of inte-
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Figure 3.4: Staggered pair of primal and dual element for a rectilinear grid with the allocation of the discrete
electric, magnetic and thermal quantities. This figure is taken from [47].

gration with respect to the corresponding geometrical object, such that

ϕe
i := ϕ(Pi),

_een :=

∫
Ln

~E · d~L,
__
b
e
n :=

∫
An

~B · d~S, qei :=

∫
Ṽi

%dV,

where an analogous definition applies for the remaining field quantities of interest. The superscript e indicates
that these quantities are exact values, representing the value of the integrated field. The degrees of freedom
(DoFs) computedwith FIT are approximations of these exact quantities and given by, e.g.,

ϕ ≈ ϕe, _e ≈ _ee,
__

b ≈
__

b
e
, q ≈ qe.

Due to the integration, these terms are called grid voltages instead of discrete fields, grid currents (fluxes) in-
stead of discrete current (flux) densities and grid charges instead of discrete charge densities.

To relate grid quantities on different entities of each grid to each other, topological matrices, representing the
continuous differential operators, are used. In particular, relations between

• points and edges,

• edges and facets, and

• facets and elements

are established. First, the incidence between grid points and edges is given by the discrete gradient matrix
G ∈ {−1, 0, 1}NE×NP with the entries

Gni :=


1, if Pi ∈ ∂Ln and Pi is the end point of Ln,

− 1, if Pi ∈ ∂Ln and Pi is the start point of Ln,

0, if Pi /∈ ∂Ln.

Secondly, the discrete curl matrix C ∈ {−1, 0, 1}NF×NE denotes the incidence between grid edges and facets
given by the entries

Ckn :=


1, if Ln ∈ ∂Ak and Ln is oriented the same way as ∂Ak,

− 1, if Ln ∈ ∂Ak and Ln is oriented the opposite way than ∂Ak,

0, if Ln /∈ ∂Ak.
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Finally, the discrete divergence matrix S ∈ {−1, 0, 1}NV×NF denotes the incidence between grid facets and
elements giving the entries

Sik :=


1, if Ak ∈ ∂Vi and Lk is oriented the same way as ∂Vi,
− 1, if Ak ∈ ∂Vi and Lk is oriented the opposite way than ∂Vi,
0, if Ak /∈ ∂Vi.

The dual gradient matrix G̃ ∈ {−1, 0, 1}ÑE×ÑF , the dual curl matrix C̃ ∈ {−1, 0, 1}ÑF×ÑE , and the dual diver-
gence matrix S̃ ∈ {−1, 0, 1}ÑV×ÑP are defined in analogy. Thanks to the duality of the grids, we obtain the
relations G = −S̃>, G̃ = −S> and C = C̃> [59]. Since the topological matrices are metric-independent, they
are closer to an implementation of the coboundary operator δ than to the differential operators ∇, ∇·, and
∇×, see Section 3.2. Therefore, in analogy to δδ ≡ 0, these matrices fulfill the important topological prop-
erties CG = 0, SC = 0 and, equivalently, C̃G̃ = 0, S̃C̃ = 0, respectively. Here, 0 is a vector of zeros of suitable
dimension. Note that all the relations in this paragraph also hold for unstructured finite element (FE) meshes
at least as long as a Delaunay-Voronoi grid pair is given, see Section 3.3.6.

3.3.2 Material Approximation

This section deals with the approximation of the material distribution in the domain D. As mentioned in Sec-
tion 2.1, we focus only on standard isotropic and non-dispersive materials, and refer to [135] for gyrotropic
and anisotropic materials, and to [105, 207] for dispersive materials. We follow [59, 242], allocate the ma-
terial coefficients to the primal elements, and derive the material relations that link quantities on the primal
grid to quantities on the dual grid and vice versa. In particular, for the problems considered in this thesis,
material matrices are introduced to relate

• quantities allocated to primal edges to quantities allocated to dual facets,

• quantities allocated to primal facets to quantities allocated to dual edges, and

• quantities allocated to primal points to quantities allocated to dual elements.

Since the introduction of material matrices requires a metric, it is time to define geometric matrices that
contain the measures of edges, facets, and elements for both primal and dual mesh. The geometric matrices
are denoted by DS, DA, and DV for the lengths of the primal edges, the areas of the primal facets and the
volumes of the primal elements, respectively. Accordingly, D̃S, D̃A, and D̃V contain the measures for the
dual objects. These matrices are diagonal matrices with the corresponding measures on the diagonal. As an
example, we define the matrix of primal edge lengths as

DS := diag(L1, . . . , LNE),

while the other geometric matrices are defined equivalently. For a convenient numbering scheme, imple-
mentations of these matrices often include zero values on the diagonal corresponding to so-called ghost cells
that are not part of the computational domain. However, throughout this thesis, we assume that these ghost
entries have been eliminated.

Let us now provide the precise definition of the material matrices. First, we define the matrix Mα ∈ RÑF×NE

relating quantities on primal edges to quantities on dual facets as

Mα( · ) := D̃Aα
avg( · )D−1

S := diag

α
avg
1 ( · )|Ã1|
|L1|

,
α
avg
2 ( · )|Ã2|
|L2|

, . . . ,
α
avg
ÑF

( · )|Ã
ÑF

|

|LNE |

, (3.1)
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where α ∈ {σ, ε, λ} and the αavg
n are averaged material values defined on dual facets and obtained by a

suitable averaging scheme [59]. Additionally, it is indicated that possible dependencies of the materials,
such as the temperature dependence of σ, propagate to a dependency of the matrix itself. Perfect electric
conducting (PEC) regions are handled apart from the material matrices by forcing the corresponding electric
grid voltages to zero. Secondly, we define the matrix Mν ∈ RÑE×NF relating quantities on primal facets to
quantities on dual edges as

Mν := D̃Sν
avgD−1

A := diag

ν
avg
1 |L̃1|
|A1|

,
ν
avg
2 |L̃2|
|A2|

, . . . ,
ν
avg
ÑE

|L̃
ÑE

|

|ANF |

, (3.2)

where the νavgn are averaged reluctivity values defined on dual edges and obtained by a suitable averaging
scheme [18, 242]. Lastly, we define the matrix Mρc ∈ RÑV×NP relating quantities on primal points to quan-
tities on dual elements as

Mρc := D̃Vρc
avg := diag

(
ρc

avg
1 |Ṽ1|, ρcavg2 |Ṽ2|, . . . , ρcavg

ÑV
|Ṽ

ÑV
|
)
, (3.3)

where the ρcavgi are averaged volumetric heat capacities defined on dual elements and obtained by a suitable
averaging scheme [52]. In the case of an orthogonal grid pair together with the case of isotropic materials or
anisotropic materials for which the principal axes of anisotropy coincide with the coordinate axes, Mα, Mν ,
and Mρc are diagonal matrices with non-negative entries. The diagonal entries of Mε, Mλ, Mν , and Mρc, as
well as the entries of Mσ for σ > 0, are even strictly positive.

With the above definition of thematerial matrices, the discrete constitutive relations read
__

j c = Mσ
_e,

__

d = Mε
_e,

_

h = Mν

__

b, __q = Mλ
_t , Qρc = MρcṪ, (3.4)

and we call Mσ the electric conductance matrix, Mε the electric capacitance matrix, Mν the magnetic reluctance
matrix, Mλ the thermal conductance matrix, and Mρc the thermal capacitance matrix. Due to the involved
material approximation, it is important to note that the relations (3.4) are in general not valid for the exact
integral quantities with superscript e. The here obtained material matrices can be interpreted as the FIT
implementations of the discrete Hodge operator, which was introduced in Section 3.2. Since the choice
of the Hodge implementation determines whether a scheme is consistent, it is of major importance for any
numerical method [33]. We recall that consistency along with stability are the key properties for a convergent
scheme.

To illustrate the involved material approximation, we consider the electric conductivity as an example. The
exact electric grid current for facet Ãn is approximated by

__
j
e
n =

∫
Ãn

~J · d~S = −
∫
Ãn

(σ∇ϕ) · d~S ≈ −σ
avg
n |Ãn|
|Ln|

∫
Ln

∇ϕ · d~L = (Mσ)nn
_een,

and for quasi-uniform grids, see Section 3.3.6, it is well known that

_een =
__
j
e
n

|Ln|
σ
avg
n |Ãn|

+O(∆γ), with ∆ := max
n=1,...,NE

|Ln|. (3.5)

Here, γ = 3 for equidistant grids and a homogeneous material distribution, and γ = 2 otherwise. In other
words, the FIT material approximation is at least second-order convergent in space. However, to derive the
convergence rate of the solution from the material approximation, we require further analysis as shown in
the following.
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For electrostatics, it can be shown that the error in computing the electric grid voltage is bounded by the
error in the material approximation [216, 242], viz.

‖_ee − _e‖ε ≤ ‖_ee −M−1
ε

__

d
e
‖ε,

which results for quasi-uniform grids in a final error of

‖_ee − _e‖ε = O(∆γ),

where γ = 2 for equidistant grids and a homogeneous material distribution, and γ = 1 otherwise. For high
frequency problems in the frequency domain, there holds

‖
_

he −
_

h‖µ + ‖_ee − _e‖ε = O(∆γ),

where γ = 2 for equidistant grids and a homogeneous material distribution, and γ = 1 otherwise. The norms
as used above are defined as

‖_ee − _e‖ε := ‖_ee − _e‖>Mε‖_ee − _e‖, ‖
_

he −
_

h‖µ := ‖
_

he −
_

h‖>M−1
ν ‖

_

he −
_

h‖.

However, it was shown in [157] that the Yee scheme is globally second-order convergent even on a nonuniform
grid, an effect known as supraconvergence. This observation carries over to the FIT as well.

3.3.3 Grid Equations

Having established the notion of primary grid G and dual grid G̃ together with the corresponding topological
andmaterial matrices, Maxwell’s equations (2.1) upon such a grid pair read [242]

−C_e = M−1
ν

d
_

h
dt
, (3.6a)

C̃
_

h = Mε
d_e
dt

+
__

j , (3.6b)

S̃
__

d = q, (3.6c)

S
__

b = 0, (3.6d)

and are commonly referred to as the Maxwell grid equations (MGEs). Casting also the heat equation (2.13)
into a spatially discrete form [3, 58], we obtain

MρcṪ− S̃MλGT = QJ − S̃__qi, (3.7)

where QJ is defined on dual elements and represents the discrete vector of the Joule losses. For details on the
computation of QJ, see Section 3.3.4. The impressed thermal fluxes are given by their discrete representative
__qi. Restricting (3.6) to the electroquasistatic (EQS) case, see Section 2.2, and carrying out the coupling
to (3.7), the discretization of (2.15) is obtained and reads

S̃MεGϕ̇+ S̃Mσ(T)Gϕ = −S̃
__

j i,

MρcṪ− S̃MλGT = QJ − S̃__qi.
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To lighten the notation, we introduce Kα := −S̃>MαG giving

Kεϕ̇+ Kσ(T)ϕ = −S̃
__

j i, (3.8a)

MρcṪ+ KλT = QJ − S̃__qi. (3.8b)

Alternatively, let us sketch the idea of obtaining (3.8) when starting from the de Rham current formulation
given by (2.30). Discretizing (2.30) can be carried out by choosing standard lowest order nodal functions on a
rectilinear grid, also referred to as nodal Whitney functions. Whitney functions are the discrete counterpart of
differential forms; hence, discrete currents are defined as maps from the space of Whitney functions into the
real numbers. In this way, by denoting discrete de Rham currents with the same symbols as their continuous
counterparts, we obtain the discrete counterpart of (2.30) as

divJσ(Nk) = 0, (3.9a)
Qρc(Nk) + divJλ(Nk) = Qw(Nk), (3.9b)

where Nk refers to the nodal Whitney function associated with node Pk. Next, we require the discrete
counterpart of (2.28) at the grid level, which reads

divK(Nk) = −K(∇Nk) +BC, (3.10)

for any discrete 1-current K and possible boundary contributions BC, see [8]. This boundary contribution
is omitted for the time being and is further discussed in Section 3.3.5. By applying (3.10) to the current Jα

and evaluating the Whitney functions on the grid, we obtain

divJα(Nk) = −j>αGek = −(G>jα)k, (3.11)

with the coefficient vector jα of the current ~Jα, and the unit basis vector ek, see again [8]. Applying (3.11)
to (3.9), we obtain the discrete system

−G>jσ(ϕ) = 0, (3.12a)

MρcṪ− G>jλ(T) = 0, (3.12b)

which is equivalent to (3.8) as long as impressed sources are neglected.

After carrying out the discretization of all relevant electrothermal (ET) quantities, we can introduce the
discrete ET house as shown in Figure 3.5. The topology and the different links that make up the house are
explained in detail in Section 2.4. Due to the integral nature of FIT as a discretization scheme, all units are
free of metrical notions. Nevertheless, metric enters through the implementation and construction of the
material matrices. We stress that approximations are only introduced when following one of the horizontal
links, representing the constitutive laws realized by the material matrices. In practice however, one may be
interested in field values at arbitrary positions ~x or in integral quantities evaluated on p-cells that are not
part of the grid, giving rise to additional interpolation errors. In contrast to other illustrations of the thermal
part [3, 91], we choose the negative temperature gradient as the primal 1-form in analogy to the definition
of the electric 1-form.
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Figure 3.5: Discrete Maxwell and thermal house linked by the Joule losses and the temperature-dependent
conductance matrix to form the discrete ET house inspired by [77, 224].

3.3.4 Discrete Joule Losses

The heat powers generated by the Joule losses are calculated by [3]

Q̂J = diag(_e)Mσ
_e,

with the vector Q̂J ∈ RÑF that allocates the thermal losses to the control elements V̂n with the volume
|V̂n| = |Ãn||Ln|. The control element V̂n is located along the edge Ln with a transverse extension of |Ãn|.
Figure 3.6 shows such an element for a pair of primal edge Ln and dual facet Ãn. To include all calculated
heat contributions as sources in the heat equation, they need to be distributed from the control elements
V̂n to the corresponding neighboring dual elements. For the case of a rectilinear grid, half of each control
element contributes to a dual element such that

(QJ)i =

6∑
n=1

1

2

(
Q̂J

)
n
,

where n is a local counter that loops over all control elements that intersect the dual element Ṽi. From a
topological perspective as introduced in Section 3.1, n iterates over all 2-faces corresponding to the 3-cell Ṽi;
or equivalently, n iterates over all 1-cofaces corresponding to the 0-cell Pi. For all dual elements, the Joule
losses are collected in a vector given by

QJ =
1

2
|S̃|Q̂J,

where we exploit the dual divergence matrix S̃.
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y

Figure 3.6: Visualization of the control element V̂n for a pair of primal edge Ln and dual facet Ãn for the case
of a rectilinear grid. This figure is taken from [46].

3.3.5 Implementation of Boundary Conditions

Due to the finite computational capabilities of a computer, any computational domain must be truncated,
giving rise to the requirement of BCs. For the continuous field problem, we discussed BCs already in Sec-
tion 2.5. Here, we follow [48] and discuss BCs for the numerical implementation and focus on the discrete
ET approximation given by (3.8). The discussion of BCs for the electric and thermal subproblems is inde-
pendent; thus, we discuss one after another. Since both subproblems use scalar nodal degrees of freedom,
Dirichlet conditions refer to prescribed values at the nodes, and Neumann conditions refer to prescribed val-
ues of the flux through the boundary. For the electric part using scalar nodal degrees of freedom, Dirichlet
conditions are often referred to as electric BCs, while Neumann conditions are referred to as magnetic BCs,
see Table 2.2.

To impose Dirichlet BCs for the electric part, we follow [114] and introduce the notion of active nodes,
see Figure 3.7a. More precisely, the Na

P active nodes associated with ΓDir are obtained by removing all
nodes that are contained in the closure of ΓDir. Then, with the restriction operators Ra

P ∈ {0, 1}Na
P×NP and

RDir
P ∈ {0, 1}NDir

P ×NP (denoted as trace operator T in [114]), we decompose the electric potential into ac-
tive nodal potentials ϕa = Ra

Pϕ and prescribed nodal potentials contained in the closure of ΓDir given by
ϕDir = RDir

P ϕ. An alternative is to nullify the boundary entries in the corresponding material matrix [193,
Section A.1.3]. Based on these definitions, we can reduce (3.8) as

Ra
PKε(Ra

P)
>ϕ̇a + Ra

PKσ(T)(Ra
P)

>ϕa = −Ra
PKε(RDir

P )>ϕ̇Dir − Ra
PKσ(T)(RDir

P )>ϕDir

by incorporating Dirichlet conditions and neglecting impressed sources. To further shorten notation, we
introduce

Ka
α(T) := Ra

PKα(T)(Ra
P)

>,

KDir
α (T) := Ra

PKα(T)(RDir
P )>,

and we obtain the electrical part with BCs given by

Ka
εϕ̇

a + Ka
σ(T)ϕ

a = −KDir
σ (T)ϕDir − KDir

ε ϕ̇Dir.

Due to the typical choice of the dual grid at the boundaries, see Section 3.3.6, homogeneous Neumann
conditions are automatically fulfilled.

Thanks to the similar mathematical structure of the thermal part, Dirichlet and Neumann conditions are
imposed exactly as done for the electric part. Additionally, thermal problems may require convective and
radiative BCs, which are identified as Robin type. It is important to realize that this kind of BC is naturally
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ΓNeu

ΓDir

(a) Electrical grid with mixed boundaries (b) Thermal grid augmented for Robin boundaries

Figure 3.7: (a) Active nodes for Dirichlet and Neumann boundaries, and (b) augmented grid. The primal
grid is shown in black, whereas the dual grid is shown in red. Dirichlet and Neumann boundaries
are indicated by ΓDir and ΓNeu, respectively. Active nodes are shown by the bullets while active
boundary facets are indicated by the (red) arrows in (b). These figures are based on [114] and
taken from [48].

associated with boundary elements, and not with boundary nodes [152]. For incorporating Robin BCs,
it is convenient to consider the augmented dual grid [114], where NΓ

P = ÑΓ
F dual facets (primal points)

on the boundary are introduced that complete the boundaries of the dual elements, see Figure 3.7b. For
the augmented dual grid, the boundary contribution BC in (3.10) does not vanish. Following [114], the
additional term is quantified as

BC = (RΓ
P )

>R̃Γ
F jλ(T),

arises, where RΓ
P ∈ {0, 1}NΓ

P ×NP and R̃Γ
F ∈ {−1, 0, 1}ÑΓ

F ×ÑF denote the restriction operators to the primal
boundary nodes and to the boundary dual facets of the augmented dual grid, respectively. Furthermore, jλ
denotes the coefficient vector corresponding to the thermal flow through the boundary. Note that the signs
in R̃Γ

F are chosen in such a way that the orientation of the restricted fluxes with respect to the outer normal
is taken into account. For convective boundaries, let MΓ

h := diag(hki |ÃΓ
ki
|) ∈ RNΓ

P ×NΓ
P , where ki refers to the

index of the i-th boundary node, i = 1, . . . , NΓ
P , and Ã

Γ
ki

:= ∂Ṽki∩Γ is the part of the element Ṽki that touches
the boundary Γ. Let T∞ ∈ RNP be a constant vector containing the entries T∞. Then, by using the discrete
Robin BC

R̃Γ
F jλ(T) = MΓ

hR
Γ
P (T− T∞), (3.13)

and the notationMΓ := (RΓ
P )

>MΓ
hR

Γ
P , we obtain the thermal problemwith Robin BCswhich reads

MρcṪ+
(
Kλ(T) +MΓ

)
T = QJ +MΓT∞. (3.14)

By the usage of MΓ
h, which can be thought of as a material matrix, it is understood that Robin BCs can

be treated by constitutive equations at the boundary [152]. Similarly, radiative BCs would result in an
equivalent equation as (3.13), but with a fourth-order temperature term. To also add Dirichlet BCs to (3.14),
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we introduce the abbreviations

Ma
ρc := Ra

PMρc(Ra
P)

>,

MDir
ρc := Ra

PMρc(RDir
P )>,

KΓ,a
λ := Ra

P(Kλ +MΓ)(Ra
P)

>,

KΓ,Dir
λ := Ra

P(Kλ +MΓ)(RDir
P )>,

such that the discrete ET system including BCs reads

Ka
εϕ̇

a + Ka
σ(T)ϕ

a = −KDir
σ (T)ϕDir − KDir

ε ϕ̇Dir, (3.15a)

Ma
ρcṪ

a + KΓ,a
λ (T)Ta = Ra

PQJ + Ra
PM

ΓT∞ −MDir
ρc Ṫ

Dir − KΓ,Dir
λ TDir. (3.15b)

Note that instead of (3.14), we can also write

MρcṪ+ Kλ(T)T = QJ −
(
RΓ
P
)>R̃Γ

F jλ(T)︸ ︷︷ ︸
=:QΓ(T)

, (3.16)

and hence, the Robin thermal BC, describing a heat exchange with the environment by, e.g., convection or
radiation, can also be expressed by a source heat power density QΓ.

3.3.6 Computational Grid and Grading

Most numerical techniques require a mesh to discretize the computational domain. We use the term mesh
as a general term for a domain’s tessellation of arbitrary dimension. However, we restrict ourselves to the
practical one-, two-, and three-dimensional cases and refer to the corresponding meshes as 1D, 2D, and 3D
meshes, respectively. In general, we distinguish between structured in contrast to unstructured meshes and
equidistant, uniform, or homogeneous meshes in contrast to non-equidistant, non-uniform, or inhomogeneous
meshes. Structured meshes exhibit regular connectivity of their elements such that it is not required to store
the individual incidence relationships. On the other hand, unstructured meshes exhibit irregular connectivity
and thus, require additional memory, but allow for a more accurate approximation of curved geometries.
In this thesis, we denote any structured mesh by the term grid and use the term Cartesian grid for a grid
consisting of edges of unit length only. In a mesh termed equidistant, uniform, or homogeneous, every
edge has the same length. If at least one edge has a different length, the mesh is called non-equidistant,
non-uniform or inhomogeneous. Let us also introduce the notion of a simplex element in n-dimensional
space [203]. It is defined by the minimal possible nontrivial element in that space and thus, it is spanned by
n+ 1 vertices. With this definition, the simplex element in 1D is a line, in 2D it is a triangle, and in 3D it is
a tetrahedron.

We begin with the definition of a 1D grid G being a discretization of a possibly bent line. Any 1D grid is a
structured grid and can be either homogeneous or inhomogeneous. Figure 3.8a and 3.8b show a homoge-
neous and an inhomogeneous 1D grid for a bent line, respectively. To quantify the resolution of a 1D grid,
we use the average length of its edges and denote it by h. Note that for homogeneous grids, all edges have
the same length given by h.

In 2D, a simplex element is identified as a triangle and to this end, we consider a 2D mesh to be assembled
by triangles, also called a triangulation. A triangle is termed right-angled if one of its interior angles equals
90° and is termed oblique otherwise. An oblique triangle is further classified into acute if all interior angles
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(a) (b)

Figure 3.8: (a) Homogeneous and (b) inhomogeneous 1D grid G. The resolution of both grids is quantified
by using the average edge length h.

C
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B
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C
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Figure 3.9: (a) An acute, (b) a right-angled, and (c) an obtuse triangle with the notation of their circum-
centers C and barycenters B. Note that the circumcenter of an obtuse triangle lies outside of
the triangle whereas the barycenter lies always in the triangle. For equal-sided triangles, the
circumcenter and the barycenter fall together.

are smaller than 90°, and obtuse if any angle is larger than 90°. This classification is depicted in Figure 3.9
and becomes relevant when the circumcenter C of a triangle is considered. The circumcenter exists for
any triangle; however, as shown in the figure, it may lie inside or outside of the triangle. Additionally, the
figure shows the barycenter B of each triangle, which always lies inside of a triangle. For an equilateral
triangle, the circumcenter and barycenter coincide. When constructing a dual mesh, a one-to-one relation
of primal elements and dual points is important. Therefore, a dual point must always lie inside of a primal
element. This gives rise to certain restrictions for the shape of a triangle. A well-known choice is the Delaunay
triangulation [76], which starts with an arbitrary number of points and constructs a triangular mesh with
these points as its vertices. Its main prerequisite is that the circumcircle of each triangle must not contain any
other point. This procedure results in maximizing the smallest angle over all triangles and thus avoids narrow
triangles, which are known as sliver triangles. Algorithms to generate a Delaunay triangulation fromN initial
points exhibit at best the complexity O(N logN) [210]. As an example, Figures 3.10a and 3.10b show a
Delaunay triangulation for a given set of points. In 3D, triangles become tetrahedra, and the circumcircle
used to determine a Delaunay triangulation becomes a circumsphere.

To construct a dual mesh, two major approaches are commonly followed [223]. The first approach uses
the barycenters of the triangles as the dual points while the second approach uses the circumcenters as the
dual points. While the former approach exhibits the advantage that the barycenter always lies inside of a
triangle, the latter approach yields a dual mesh that is orthogonal to the primal mesh. Since the orthogonality
condition is important to obtain diagonal material matrices, see Section 3.3.2, choosing the circumcenters is
much more common. This choice falls together with what is known as a Voronoi tessellation [238, 239], which
is uniquely determined by a given set of points. Each region of this tessellation contains one of these points,
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(a) (b)

(c) (d)

Figure 3.10: (a) Delaunay triangulation in black with barycentric dual mesh in red. Some median lines that
define the barycenters are shown. (b) Delaunay triangulation in black with Voronoi dual mesh
in red making up a Delaunay-Voronoi tessellation. Some circumcircles that define the circum-
centers used for the Voronoi dual are shown. (c) Homogeneous Cartesian grid consisting of unit
squares with a Voronoi dual grid for which all circumcircles are shown. (d) Inhomogeneous
rectilinear grid with a Voronoi dual grid for which all circumcircles are shown. Note that for any
rectilinear grid, barycenters and circumcenters fall together.

called the seed or site of the region and falls together with a primal point in our case. The main property of a
Voronoi tessellation is that any point in a region is closer to its seed than to any other point in the set of points.
This premise determines a unique segmentation for a given set of points in a space of any dimension. Themost
efficient algorithms to generate the Voronoi tessellation from a given set of N points exhibit the complexity
O(N logN). Once a Voronoi tessellation is constructed, the primal Delaunay triangulation follows directly
as its dual. For an exemplary Delaunay triangulation, the corresponding barycentric and Voronoi duals are
shown in Figures 3.10a and 3.10b, respectively. Additionally, some medians and circumcircles to determine
the barycenters and circumcenters, respectively, are shown. The concepts explained here for the dual 2D
mesh extend in a straightforward manner also to the 3D case.

For a rectilinear grid as commonly used together with FIT, homogeneous and inhomogeneous examples are
shown in Figures 3.10c and 3.10d, respectively. If a rectilinear grid is homogeneous and composed of unit
squares in 2D or unit cubes in 3D, it is termed Cartesian grid. In 2D, an element is given by a rectangle for
which its barycenter and circumcenter lie always inside of the rectangle. Moreover, in the case of a rectangle,
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Figure 3.11: Convergence of a standard stationary ET model problem.

these points fall together which unifies the concept of barycentric and Voronoi dual grids. At the boundary
of a regular grid, it is a common choice to cut off the dual edges when they touch the primal boundary. Such
a dual grid is referred to as one with degenerated dual edges at the primal boundary. Due to their ease of
implementation and due to the mostly rectangular structures in electronic devices, the most general mesh
used for any implementation in the context of this thesis is a 3D inhomogeneous rectilinear grid. However, if
no further restrictions are mentioned, the theory holds also for unstructured meshes, as long as a Delaunay-
Voronoi pair is given. Another commonly used term is a regular grid, which compared to rectilinear grids
additionally demands congruent elements and includes curvilinear grids that are not considered in this thesis.
The construction of a rectilinear grid in 2D can be carried out by applying the Cartesian product to two straight
1D grids. Furthermore, following the same procedure, a rectilinear 3D grid is constructed by the Cartesian
product of three 1D grids yielding hexahedrals for the primal and also for the dual elements. Any 3D primal
grid constructed by this approach is denoted by G and consists of non-overlapping elements composed of
points, edges, and planar facets. Any 3D dual grid that is constructed as a Voronoi dual to G with degenerated
edges at the primal boundary is denoted by G̃. For all grids G, the step sizes h and h̃ for primary and dual
grid, respectively, are defined as the average edge lengths given by

h :=
1

NE

NE∑
n=1

|Ln|, h̃ :=
1

ÑE

ÑE∑
n=1

|L̃n|,

with a notation as introduced in Section 3.3.1. Any grid G is called quasi-uniform if

min
n=1,...,NE

|Ln| ≥ Cdiam(D) max
n=1,...,NE

|Ln|,

with an arbitrary constant C. The property of quasi-uniformity is relevant, e.g., to determine the expected
convergence rates of FIT, see Section 3.3.2.

As discussed in Section 3.3.2, the error of any solution obtained by FIT is dominated by the material approxi-
mation and is expected to converge with an order between one and two. To confirm this theoretical argument
numerically, we consider a 1D stationary electrothermal model problem with a material jump at the center of
the domain. Note that a 1D problem in FIT is realized by a 3D geometry with only one cell in y- and z-direction
to mimic a 1D behavior. The excitation is applied in terms of Dirichlet BCs and the stationary electric and
thermal subproblems are solved one after another. For this problem, an analytical solution is available and it is
used to study the convergence rate of the relative error ε3D

L2(Th), see Section 3.6 for the exact definition of the
error. Figure 3.11 shows that the solution exhibits optimal second-order accuracy which is in accordance with
the theory. However, if the solution exhibits any singularity, the standard theory is not valid any more and the
convergence rate deteriorates [163, 232]. For elliptic boundary value problems, a possible remedy to recover
the optimal convergence rate is the employment of a graded grid [7].
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Figure 3.12: Cross-sectional view of (a) an equidistant 3D grid G1, (b) a locally graded grid G∆/8
0.5,4, and (c)

a globally graded grid G0.5, where the grading region Dg is shown in gray. Annotated are the
domain size ∆ and the grading radius b. These figures are taken from [48].

We follow [7, 48] to provide the definition of a graded grid. In this context, we use the term refinement to
denote that additional grid lines are inserted to an already existing grid. On the other hand, if the total num-
ber of grid lines remains constant, the process of shifting the position of the grid lines towards a singularity
is denoted as grading. However, a grading may also include a refinement if graded grid lines are inserted
into an already existing grid. This is the strategy followed here and it is explained in the following. Let us
consider a 3D domain D with a line on which the solution is singular. We assume that an initial, equidistant
grid G1 is given, see Figure 3.12a. As the 3D grid is constructed by the Cartesian product of individual 1D
grids, it is sufficient to describe the grading strategy for a 1D grid. Based on [7], the 1D grading around a
singular point x0 is applied using the layers

ri = b

(
i

N

) 1
µ

, with i = 0, . . . ,N , (3.17)

where N ∈ N is the number of grading layers, µ ∈ (0, 1] ⊂ R is the grading strength and b > 0 is the
radius of the inserted grading. Note that µ = 1 results in an equidistant refinement whereas µ → 0 yields a
grading towards the singularity. Furthermore, b is chosen such that no grid points of G1 fall in the grading
region Dg ⊂ D. The only exception to this rule is a possible grid point at x0. After applying the Cartesian
product to the individually graded 1D grids, a locally graded 3D grid is obtained and denoted by Gb

µ,N , see
Figure 3.12b. For a grading with N grading layers with the assumption that x0 was part of G1, 2N 1D points
are added. Due to the regular 3D grid, this results in a propagation of the grading along the coordinate
directions. Thus, 2N additional 1D points result in (2N + 1)2 − 1 additional points for a 2D grading and
(2N + 1)3 − 1 additional points for a 3D grading. For line sources which are the main source of singularities
in this thesis, a 2D grading is required.

With the local grading as introduced above, a global grid grading can be defined as a specific choice of the local
grading. Let an initial grid contain the singular point only. Then, by choosing the grading radius b = ∆/2, the
grading given by (3.17) results in a grading on the entire computational domain D such that Dg = D. A grid
obtained by this special choice is denoted by Gµ, see Figure 3.12c. Note that an additional choice of µ = 1
results in an equidistant grid G1 without any refinement nor grading. To investigate the influence of a graded
grid on problems with singular solutions, two test cases were set up. The first test case is a point source
centered in a unit cube and subject to the Laplace problem, for which the BCs are set in accordance with
the exact solution. The relative error ε3D

L2(ϕh) for three grids of different gradings is plotted in Figure 3.13a.
Although the problem is simpler than the one analyzed in Figure 3.11, the convergence rate is deteriorated
significantly. However, if the grading is intensified for µ → 0, the convergence rate recovers and is expected
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Figure 3.13: Convergence of (a) the point source test case and (b) the line source test case for different
globally graded grids.

to reach the optimal convergence rate in the limit case. The second test case is a line source and is set up
in analogy to the point source case. Figure 3.13b shows the corresponding results again for three different
grid gradings. Similar to the point source case, the convergence rate is deteriorated and recovers for stronger
gradings. For this test case, the theory predicts first order convergence at least for an FE discretization [201].
Comparing both test cases, the point source case suffers from amuch higher deterioration than the line source
case. In general, if a point source is seen as a 0D source in 3D, and the line source as a 1D source in 3D, a
high discrepancy between surrounding space and the dimensionality of the singular source results in a strong
deterioration of the convergence rate.

3.3.7 Relation to Other Discretization Schemes

The main advantage of FIT is the straightforward derivation of diagonal, symmetric, and positive definite
material matrices given by (3.1), (3.2), and (3.3). When other discretization schemes are considered, this
is not always the case. In this section, we want to shed some light on other techniques and their relation
to FIT, which is employed in this thesis. For instance, the difference between the FE method and FIT boils
down to the choice of implementing the Hodge operator [114, 216], which constitutes in the definition of
the material matrices. First, we briefly put finite difference (FD), finite difference time domain (FDTD) and
finite volume (FV) methods into perspective. Then, we give more details about the FE method and the cell
method (CM) in comparison to FIT.

While FIT carries out the approximation by the definition of the material matrices, see Section 3.3.2, FD
methods solve PDEs by approximating the derivatives by FDs. However, there are strong relations to FD
schemes such as mimetic FD schemes [38, 233] and the FDTD method [215]. The former allows for an
enhanced grid variety and the latter provides a very efficient explicit solver for high frequent wave prop-
agation problems. Seen from this perspective, the FIT contains FDTD as a subset by the definition of the
leap-frog scheme [223, 242]. While FD and also FE schemes use the discretization of field functions, FV
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schemes resemble the FIT in the sense that global variables, see Section 3.1, are used for the formula-
tion.

When comparing FIT to the FE method for EM problems [203], a well-known complementarity can be formu-
lated, see [33]. While the FE method uses only one explicit grid, an underlying dual grid is implicitly defined
by the basis functions that define a spread element around each node [152]. Using a Galerkin approach,
sparse, but non-diagonal positive definite matrices given by

(
MFE

α

)
ij
:=

∫
D
α~wi · ~wj d~x, (3.18a)(

MFE
ν

)
ij
:=

∫
D
ν ~Wi · ~Wj d~x, (3.18b)(

MFE
ρc

)
ij
:=

∫
D
ρcNiNj d~x, (3.18c)

are obtained, where α ∈ {ε, σ, λ}. Here, N , ~w, and ~W are nodal, edge, and facet basis functions, respec-
tively [29, 166]. To obtain diagonal matrices for a tetrahedral mesh, linear basis functions together with an
appropriate mass lumping for the material matrices can be used [25, 32]. An equivalent approach consists
of approximating the integrals in (3.18) by the midpoint rule. In both cases, the resulting matrices coincide
with those constructed by FIT [25].

The last method to consider here is the CM [221]. Instead of a mesh or a grid, the CM is based on the more
general concept of a cell complex, see Section 3.1. In practice however, such a cell complex boils down to a
mesh-based discretization. Since the CM is also applied to unstructured meshes, a Voronoi dual is not always
possible to be built in three dimensions; thus, a barycentric dual mesh is typically used [2], see Section 3.3.6.
Due to the barycentric dual mesh, the two meshes are not mutually orthogonal, resulting in non-diagonal
material matrices, see Section 3.3.2. The matrices obtained by the CM when using linear interpolation coin-
cide with those obtained by the FE method with linear basis functions [221]. On the other hand, if quadratic
interpolation is used, non-symmetric matrices are obtained. In contrast to all other numerical methods which
use a vector analysis formulation as the starting point, the CM starts directly from a discrete formulation us-
ing global variables, as introduced in Section 3.1. Due to all properties discussed here, the CM may also be
seen as a FIT-like technique on structured or unstructured meshes [222].

3.4 Time Integration Methods

For the numerical solution of PDEs, discretization schemes are required. By applying a spatial discretization
to a time-dependent PDE, it is reduced to an ordinary differential equation (ODE). In this context, methods for
solving the resulting ODE are often referred to as amethod of lines, temporal discretization or time integration.
The available theory for the numerical solution of ODEs is vast, including some excellent textbooks [42, 98,
106]. Here, we give only an overview of the most common approaches in the context of the topics covered in
this thesis. Typically, if higher order time derivatives are present in an ODE, it can be rewritten as a first order
ODE. Thus, the treatment of first order ODEs suffices for any practical problem. The available approaches
can be classified into one-step in contrast to multi-step schemes. A one-step method is characterized by the
fact that it requires only the most recent time step to compute the solution for the new time step. Conversely,
multi-step methods require a combination of multiple already computed time steps to advance in time. For
the purposes of this thesis, we focus mainly on one-step methods and briefly discuss the leap-frog method
as one example of a multi-step method. Furthermore, any time integration method can be an explicit or an
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implicit scheme. Explicit schemes offer the advantage that an explicit formula is obtained to compute the
solution for the next time step. However, the stability region for explicit schemes is limited and a stability
criterion that provides the maximal allowed time step must be fulfilled [107]. On the other hand, implicit
schemes are often unconditionally stable, but require to solve a possibly nonlinear system of equations in
each time step. Apart from solving a ODE in the time domain, it can also be solved in the frequency domain
by exploiting the Fourier transform [34]. Nevertheless, if a broad band solution is of interest, time domain
methods are commonly more efficient.

Let us consider a general ODEwith right-hand side g and initial condition y(t0) = y0 given by

dy
dt

(t) = g(t, y(t)).

To solve (3.4), simple time integration schemes are described by the class of θ-methods [179], which read
for time step (i+ 1)

1

∆t

(
y(i+1) − y(i)

)
= θg

(
t(i+1), y(i+1)

)
+ (1− θ)g

(
t(i), y(i)

)
,

for 0 ≤ θ ≤ 1 and the step width ∆t. The case θ = 0 refers to the explicit or forward Euler method, θ = 1
refers to the implicit or backward Euler method, both being first order convergent in time. Furthermore, the
case θ = 1/2 refers to the implicit Crank-Nicolson scheme, also known as implicit midpoint rule, being at best
second order convergent in time. Apart from the θ-method, another important class of one-step methods
is given by Runge-Kutta schemes, of which explicit and implicit variants exist [42, 98, 106]. Formally, this
class also includes the explicit and implicit Euler methods, but is mostly important due to its higher order
schemes. The most popular higher order scheme from this class is the classical Runge-Kutta method, which
is an explicit scheme of fourth order.

When coupled problems are considered, very different time scales may appear, leading to the necessity of
multi-rate methods [94]. However, in this thesis, we assume comparable time scales and focus on the treat-
ment of thin wires, circuit extraction, and the evaluation of failure probabilities instead. One particularly
suited time integration method for coupled problems is the method of fractional steps, often also referred to
as method of splitting or operator-splitting [179, 252]. Its idea is to split the spatial differential operator, or
the corresponding matrix in the semi-discrete case, into a sum of components of simpler structure. To apply
the method of fractional steps to the semi-discretized electrothermal problem given by (3.8), we first neglect
impressed sources and rewrite (3.8) formally as(

ϕ̇

Ṫ

)
+

(
K−1
ε Kσ(T) 0

0 M−1
ρc Kλ

)(
ϕ
T

)
=

(
0

M−1
ρc QJ

)
. (3.19)

Then, following [179], (3.19) can be split into

ϕ(i+1/2) −ϕ(i)

∆t
+ K−1

ε K(i)
σ ϕ(i+1/2) = 0,

T(i+1) − T(i+1/2)

∆t
+M−1

ρc KλT(i+1) = M−1
ρc Q

(i+1/2)
J .

This splitting allows to successively solve the electric and thermal subproblems for each time step, and cir-
cumvents the necessity of solving a large coupled system at once. The method of fractional steps exhibits
the desired property that it retains the first order convergence of the implicit Euler method [179]. Moreover,
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(linear in ϕ)
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(nonlinear in T)
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J T(i+1)

ϕ(i+1/2)

next time step: i := i+ 1

Figure 3.14: Solution procedure for time step i of the fractional step method applied to the electrothermally
coupled problem (3.15). Note that the inflation of ϕa,(i+1/2) and Ta,(i+1) in terms of the corre-
sponding Dirichlet values is not shown explicitly. The inflated vectors are given as ϕ(i+1/2) and
T(i+1), respectively.

for an at least positive semi-definite matrix in (3.19), it is unconditionally stable [147]. Thanks to the posi-
tive semi-definiteness of the material matrices, see Section 3.3.2, this condition is guaranteed. Applying this
method to (3.15), in which BCs are considered as well, we obtain

Ka
ε

ϕa,(i+1/2) −ϕa,(i)

∆t
+ Ka

σ
,(i)ϕa,(i+1/2) = −KDir

σ
,(i)ϕDir,(i) − KDir

ε ϕ̇Dir,(i), (3.20a)

Ma
ρc

Ta,(i+1) − Ta,(i+1/2)

∆t
+ KΓ,a

λ Ta,(i+1) = Ra
PQ

(i+1/2)
J + Ra

PM
ΓT∞ −MDir

ρc Ṫ
Dir,(i) − KΓ,Dir

λ TDir,(i). (3.20b)

Figure 3.14 visualizes the principle of the fractional step method. For time step i, the Dirichlet potentials
and the currently computed temperature distribution are used to solve (3.20a) for ϕa,(i+1/2). Then, from
ϕ(i+1/2), obtained by inflating ϕa,(i+1/2) with the Dirichlet potentials, the Joule losses Q(i+1/2)

J are computed
to solve (3.20b) for Ta,(i+1). The last step for time step i involves inflating Ta,(i+1) by the Dirichlet tempera-
tures such that T(i+1) is used for the next time step.

Another scheme of major importance in CEMs is the multi-step leap-frog algorithm, which is second order
accurate [223, 242]. It is very efficient for high frequency time domain problems and for non-conducting
domains reads

_

h(i+1)
=

_

h(i) −∆tMνC_e(i+1/2),

_e(i+3/2) = _e(i+1/2) +∆tM−1
ε

(
C̃

_

h(i+1) −
__

j
(i+1)

)
.

Its efficiency results from the explicit scheme enabled by the diagonality of the material matrices, see Sec-
tion 3.3.2. Moreover, due to the high frequent nature of the considered problems, the time step required for a
reasonably accurate solution typically fulfills the stability criterion of the explicit scheme.

Apart from choosing a suitable time integration method, the choice of the time steps is at least as crucial.
The total number of time steps determines the computational burden since at each time step, a possibly
nonlinear system of equations must be solved. While a small time step results in an accurate solution but a
long computation, a large time scale results in higher errors or even instabilities. For a flexible compromise of
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both, adaptive time stepping schemes are available, which can be seen as a problem of optimal control [85,
98, 206]. One straightforward implementation of an adaptive time stepping is based on the Richardson
extrapolation [106]. Its idea is to use a method of order p to compute the solution for two steps of size h and
one step of size 2h. Then, the combination of the results yields an approximation of the order p + 1, which
can be used to assess the necessity for further refinement.

3.5 Solving Systems of Equations

Most numerical techniques require at some stage the solution to a possibly large system of equations. Typ-
ically, due to the local interactions of the differential operator on a computational mesh, the system matrix
is sparse. This sparsity enables to use efficient techniques for storing a matrix in a computer’s memory. An
overview of the most common techniques can be found for instance in [14, 187]. Moreover, a sparse system
allows for efficient solvers that will be discussed in this section.

If the original problem is nonlinear, a linear system is obtained by first applying, e.g., a fixed point iteration
scheme or Newton’s method. While the latter exhibits a convergence rate of second order, it requires the
computation of the Jacobi matrix which may lead to a non-diagonal differential material matrix [81], see
Section 3.3.2. On the other hand, a fixed point iteration scheme may only achieve an acceptable convergence
rate when relaxation is used. A relaxation scheme is given by x(i+1) = x(i) + α∆x(i) with α ∈ (0, 1] and is
typically used either to achieve convergence or to improve the convergence speed of an iterative scheme. For
time domain methods, it has been observed that Newton’s method may be especially useful when large time
steps are used [81].

Let us now come to the problem of solving a linear system in the context of CEM. We consider a general linear
system given by

Ax = b, (3.21)

where A ∈ CN×N is a matrix of size N , and x ∈ CN , b ∈ CN are vectors of size N . Here, C is the set of
complex numbers. In CEM, typical values of N range from a few thousand to several millions, depending
on the individual problem. The required effort to solve (3.21) for x depends mainly on the system’s size N
and the condition number of A. The condition number for an Euclidean and a normal matrix A reads [110,
226]

κ(A) =
λmax(A)
λmin(A)

,

where λmin and λmax are the smallest and largest eigenvalue of A, respectively. A higher value of N and/or
κ results in an increased effort to solve (3.21). In the field of CEM and other computational sciences, high
condition numbers may result for instance from computational meshes with degenerated elements or from
a high difference in the coefficients of different materials. To solve (3.21), many techniques are known; an
extensive description, a historical overview, and a list of freely available implementations is given in [110].
These methods can be classified in direct and iterative so-called relaxation or splitting methods [97, 126, 187,
226]. Especially when using iterative methods, the exact solution of (3.21) is typically not available; instead,
an approximate solution x̃ is computed. To assess the quality of x̃ without having the exact solution at hand,
the error bound

εLS =
‖x̃− x‖
‖x̃‖

≤ cond(A)
‖r‖

‖A‖ · ‖x̃‖
(3.22)
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is available, where εLS is the relative error attributed to the linear system solve and r = Ax̃−b is the residual
associated to the approximate solution [110]. For more details about the error components of any solution
obtained in the field of CEM, see Section 3.6

Direct methods use dedicated algorithms to construct an inverse of A by factorization such that an exact
solution of (3.21) up to machine precision is obtained in a finite number of arithmetic steps. Often, the
efficiency of direct methods depends strongly on the ordering of the equations and the unknowns. Therefore,
heuristic reordering methods as the minimum degree algorithm are used to achieve further speedup [187].
Furthermore, compared to iterativemethods, direct methods are less sensitive to a bad condition ofA. Popular
algorithms to solve (3.21) by direct methods include Gaußian elimination, LU decomposition, and Cholesky
factorization [97, 126, 226]. The latter works only for symmetric and positive definite matrices, but requires
half as many operations when compared to LU decomposition. In general, solving (3.21) with direct methods
requires O(N) steps, each requiring O

(
N2

)
iterations, resulting in a total complexity of O

(
N3

)
. Thanks to

the obtained factorization, a set of problems with constant matrix A but a varying right-hand side b can
be solved with low additional cost. However, if A reaches a certain size, the inverse construction becomes
unfeasible mainly due to memory limitations. For really large systems as they appear in complex 3D examples
in CEM, iterative methods have to be used.

Iterative methods start with an initial guess of the solution and successively improve it until a desired accu-
racy is reached. In the worst case, these methods require O

(
N2

)
operations for each of the O(N) steps, but

in many cases, an improved complexity is achieved. In the ideal case however, a total complexity of O(N)
is possible, but in practice, complexities of less than O

(
N2

)
are already quite satisfying. Details on iterative

solvers and a comparison between the individual methods are, e.g., available in [14, 126, 187, 226]. This
class of methods is further divided into stationary and non-stationary methods. Stationary methods are typ-
ically easy to implement but are not guaranteed to converge. Popular examples listed in order of ascending
convergence rate are the Jacobi method, the Gauß-Seidel method, and the successive overrelaxation (SOR)
method. A variant of the latter is the symmetric successive overrelaxation (SSOR), which is seldom faster
than SOR, but may be useful as a preconditioner, a topic discussed in Section 3.5.1. All of these methods guar-
antee convergence only under specific conditions; however, these are often satisfied for practical problems. In
contrast, non-stationary methods are harder to apply, but very effective when a good preconditioner is used.
The most important type is the class of Krylov subspace methods that generate the increment directions based
on the residual. Well-known examples are the generalized minimal residual (GMRES) method and the con-
jugate gradient (CG) method [126, 187, 226]. The former also works for non-symmetric matrices, features a
monotonically decreasing error but requires to store all incremental directions. Thus, it is typically restarted
after a certain number of iterations. On the other hand, the CG method is based on the Lanczos algorithm
and is only applicable to the solution of symmetric, positive definite systems. Anyhow, it is often successfully
used also for symmetric indefinite systems [125]. The CG method is known to converge after N iterations
and only requires to store the two last incremental directions. However, to obtain a desired accuracy, the re-
quired number of iterations may be much less thanN but it is proportional to the square root of the condition
number. Extensions of the CG method for non-symmetric matrices are, e.g., the biconjugate gradient (BiCG)
method based on a Petrov-Galerkin approach, the quasi-minimal residual (QMR) method, and the stabilized
biconjugate gradient (BiCGSTAB) method [126, 187, 226].

A comparison of different methods to solve linear systems of equations by iterative methods is shown in
Table 3.3 [110, Chapter 11]. The methods subject to comparison are the Cholesky method for dense and
sparse matrices, the Jacobi method, the Gauß-Seidel method, the optimal SOR method, the standard CG
method, the preconditioned conjugate gradient (PCG) method, and the multigrid (MG) method. The data is
based on the application of a FD method discretizing an elliptic boundary value problem on an equidistant
rectilinear grid of N points in each direction. For each method, ignoring the proportionality constants, the
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Method 2D 3D

Dense Cholesky N6 N9

Jacobi N4 logN N5 logN
Gauß-Seidel N4 logN N5 logN
Band Cholesky N4 N7

Optimal SOR N3 logN N4 logN
CG N3 N4

PCG N2.5 N3.5

Full MG N2 N3

Table 3.3: Computational cost of solving elliptic boundary value problems using FD combined with iterative
methods as a function of the number of pointsN along each dimension of an equidistant rectilinear
2D or 3D grid. The estimates were taken from [110, Chapter 11].

computational cost is shown for the 2D and 3D cases and represents the optimally achieved value for each
individual method. Despite the fact that one method may be cheaper than another, Table 3.3 does not contain
any information about reliability, robustness, or ease of implementation of a method. Thus, the presented
data is very problem-dependent and gives only a rough indication of the capability of the individual methods.
For more details on this subject, see [110].

3.5.1 Preconditioners

To improve the convergence properties of a non-stationary method, preconditioners are commonly applied.
Their idea is to reduce the condition number of a linear system such as (3.21) by the multiplication with an
approximate inverse of A yielding a modified system for which the iterative solver converges much faster, see
Section 3.5. Using a suitable preconditioner, iterative methods become robust even for non-gauged systems
that exhibit a singular system matrix A. The most popular method to solve large problems with symmetric
and positive definite system matrix is the PCG method featuring low memory requirements and a super-
linear convergence behavior. The choice of the preconditioner is often more crucial than the choice of the
iterative method itself. It must be inexpensive to compute and at the same time a good approximation of
the inverse of A. Well-known and effective candidates are the (block) Jacobi preconditioner, the symmetric
Gauß-Seidel preconditioner, the incomplete LU decomposition, the incomplete Cholesky factorization and
the use of SSOR [14, 126, 226]. At the time of writing, the most efficient methods for preconditioning
are domain decomposition methods [205], and the usage of MG techniques that date back to the works of
Brandt [35].

In the field of CEM, multigrid (MG) techniques are used for over twenty years [116]. Often, people also
use the term multilevel which is a slightly more general term not requiring the notion of a grid. While there
is an extensive amount of literature on MG methods as for instance [39, 243], the reader may be referred
to an excellent paper that gives a compact explanation and a historical overview of the subject [80]. The
idea of MG techniques is to combine results obtained from a hierarchy of grids. In particular, the solutions
on a fine grid are enriched by correction terms obtained from the solution on coarser grids. Thus, MG
techniques require the matrix and the right-hand side for different levels of refinement. This results in a
more involved implementation than for a single grid iterative method, but provides the benefit of efficiency
and high convergence rates. For a large class of problems, MG techniques promise a complexity of O(N),
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where N is the size of the system matrix A; however, in general, at least a complexity of O(N logN) is
achieved [243]. Moreover, while the convergence rate of basic iterative methods may deteriorate for large
systems, MG methods provide a grid independent rate of convergence [243]. MG methods can further be
classified as geometric and algebraic MG methods. In contrast to the geometric MG method, algebraic MG
methods exhibit the advantage to qualify as black box solvers since they solely rely on algebraic properties
of the linear system. As an example, for a nonlinear magnetostatic problem, it has been shown that the
computation of the FE solution is reduced by a factor of 6 when using the algebraic MG method instead of
an SSOR-CG solver [154].

3.6 Error Definitions

In this section, we introduce error measures to quantify the error of a numerical result. First of all, let us
distinguish between the different types of errors that are typically committed when running a simulation for a
real world problem. Before any equation is established, the modeling step is subject to the modeling error εM.
Then, a PDE is obtained and one requires a spatial and temporal discretization for its solution, see Sections 3.3
and 3.4, described by the errors εSD and εTD, respectively. Once all these steps are completed, a possibly
nonlinear system of equations needs to be solved, see Section 3.5. The nonlinearity is typically handled
by, e.g., a fixed point iteration or Newton’s method, committing an error εNL attributed to the linearization.
Solving the resulting linear system may introduce an additional error, denoted as εLS. Finally, all these steps
are subject to a machine’s precision, giving rise to the machine error εPC. The total error ε is given by the
sum of the individual errors, thus,

ε = εM + εSD + εTD + εNL + εLS + εPC.

As we are mainly interested in the error committed by a specific numerical method, we focus on the error
εSD, for which error definitions based on [48] are given in the following. Due to the 1D–3D coupling as
discussed in Chapter 5, we require error definitions for 1D and 3D quantities. For a general definition, let u
and u denote any 3D and 1D discrete solution vectors on a grid G, respectively, and let u and u denote any
exact continuous solution in 3D and 1D, respectively. To define an error measure, we first need to define
the norms in which these measures are to be defined. Typically, an approximation to the continuous L2

norms

‖u‖1DL2 :=

(∫
Λ
u2 ds

)1/2

, ‖u‖3DL2 :=

(∫
Ω
u2 dV

)1/2

, (3.23)

for the 1D and 3D cases, respectively, is desired. Here,Λ andΩ refer to the 1D and 3D domains in which the er-
rors are evaluated, respectively. A discrete approximation of (3.23) is given by

‖u‖1DL2,h :=
(
u>DS̃u

)1/2
, ‖u‖3DL2,h :=

(
u>D̃Vu

)1/2

Ω
, (3.24)

where DS̃ is a diagonal matrix with the 1D dual lengths on the diagonal and is defined in analogy to the
geometric matrices in 3D, see Section 3.3.2. Furthermore, the notation ( · )Ω restricts the discrete vectors or
matrices to the evaluation domain Ω.

Now, we have all the prerequisites to define the relative error norms of interest. First, we define

ε1DL2(uh) :=
‖uh − u‖1DL2,h

‖u‖1D
L2,h

, ε3DL2(uh) :=
‖uh − u‖3D

L2,h

‖u‖3D
L2,h

, (3.25)
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where uh and uh refer to the approximate FIT solutions on a grid G. Secondly,

δ1DL2 (uh) :=

∣∣∣‖uh‖1DL2,h − ‖u‖1DL2

∣∣∣
‖u‖1D

L2

, δ3DL2 (uh) :=

∣∣∣‖uh‖3DL2,h
− ‖u‖3D

L2

∣∣∣
‖u‖3D

L2

, (3.26)

where the norm of the analytical solution is compared to the norm of the FIT solution. Lastly, if the exact
solution is not available, we use

∆1D
L2(uh) :=

∣∣∣‖uh‖1DL2,h − ‖u‖1DL2,h

∣∣∣
‖u‖1D

L2,h

, ∆3D
L2(uh) :=

∣∣∣‖uh‖3DL2,h
− ‖u‖3D

L2,h

∣∣∣
‖u‖3D

L2,h

, (3.27)

where u and u are FIT solutions computed on a very fine grid.

3.7 Summary

This chapter provided a detailed explanation of the different steps to obtain an approximate solution of a con-
tinuous 3D field problem. We started the discussion with some useful concepts from algebraic topology and
the notions of chains, cochains, discrete de Rham currents, and Hodge operators. Then, we introduced the
finite integration technique (FIT) to spatially discretize the governing electrothermal (ET) coupled problem.
Among other ingredients, FIT requires a material approximation, a computational grid, and the implemen-
tation of boundary conditions (BCs). To not restrict ourselves to one specific discretization scheme, we also
discussed the relation of FIT to other schemes, such as the finite element (FE) method. After we obtained
the semi-discretized formulation, the next steps involved the temporal discretization and the step of solv-
ing the resulting (non-)linear system of equations. Finally, we provided some useful error definitions to
be used in subsequent chapters for the assessment of numerical errors and the corresponding convergence
rates.
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4 Evaluation of Failure Probabilities

In this chapter, the efficient computation of failure probabilities of electric devices is discussed. Uncertainties
in material and geometrical properties stemming from tolerances in the manufacturing process may result
in unexpected behavior. These manufacturing tolerances often result in small failure probabilities, which
are particularly challenging to compute. Nowadays, in electronics, thermal designers use empirical knowl-
edge in the form of guidelines or other inefficient and heuristic methods to avoid thermal problems in their
designs. However, this may lead to inaccurate modeling and overdesign, asking for more sophisticated meth-
ods.

For an accurate prediction of the manufactured functionality, numerical simulations are becoming increas-
ingly popular. Using relevant uncertain parameters as inputs, uncertainty quantification (UQ) techniques
help to understand the influence of manufacturing tolerances on the performance of a device. The evaluation
of failure probabilities becomes possible, yet the computation of small failure probabilities is numerically chal-
lenging. These small probabilities inevitably occur in the context of a six sigma design goal. With predicted
failure probabilities at hand, a yield analysis before themanufacturing step is possible.

One approach to compute small failure probabilities was first presented by Li and Xiu in [141] and uses
combinedMonte Carlo (MC) sampling of the original computational model with a polynomial approximation.
Such a hybrid approach uses the computationally cheaper but less accurate polynomial model as long as a
sample far away from the failure region is considered. Once a sample falls within the vicinity of the failure
region, the original expensive model is used to ensure accurate results. The threshold deciding which model
needs to be evaluated, is determined iteratively as outlined in [141]. This iterative procedure minimizes the
number of full model evaluations, yielding accurate results at a low cost. Thanks to the non-intrusive idea
of this method, it can be readily embedded in the context of this thesis. A possible extension to additionally
compute rare failure probabilities, i.e., below 1× 10−5, can be realized by, e.g., the usage of importance
sampling as presented in [140].

Parts of this chapter closely follow [50] and it is organized as follows. We start with Section 4.1 to provide
some fundamentals of probability theory and to introduce the most important concepts and notations. Then,
Section 4.2 defines the failure probability with the help of a performance function. To compute failure prob-
abilities efficiently, we use a sampling scheme based on MC together with a surrogate model, see Section 4.3.
Finally, Section 4.4 presents a hybrid iterative algorithmwhich circumvents the problem that even an accurate
surrogate model may lead to significantly wrong failure probabilities.

4.1 Fundamentals of Probability Theory

One concern of this thesis is the quantification of uncertainties that dominate the solution of a problem. Pos-
sible sources for uncertainties in a device are, e.g., tolerances in the manufacturing process or the variability
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of involved parameters. The goal of uncertainty quantification is to quantify the impact of any uncertain
input parameter on a quantity of interest obtained from the output. Once such a quantification is achieved,
costly and time-consuming over-engineering of a product can be avoided. For this purpose, we require some
basic notions from probability theory that are the topic of this section.

We closely follow [250] to introduce the probabilistic terms as required in this thesis. To this end, we de-
fine the objects that make up a probability space given by the triplet (Ω,A, P ), with the outcome space Ω,
the σ-algebra A and the probability P . First, we define the outcome space Ω by taking as an example the
experiment of throwing a coin with the possible outcomes heads or tails. In this case, the outcome space
Ω = {heads, tails} contains two elements. For an ideal coin, the outcome is not predictable and thus referred
to as random. This motivates the introduction of a random variable Y = Y (ω̂) ∈ {0, 1}, where ω̂ ∈ Ω is a
possible outcome of an experiment. Each numerical value of a random variable is assigned to one element
of the outcome space. Here, we choose 1 to represent heads and 0 to represent tails. In general, a problem
may require to use multiple (continuous or discrete) random variables, giving Y = (Y1, Y2, . . . , YN ) with N
elements. An N -dimensional random variable is a function defined on Ω, reading Y : Ω → RN . We denote
a realization of a random variable Y by y. We further introduce a σ-algebra A of Ω as a collection of subsets
that satisfies certain conditions. These conditions include for instance non-emptiness of A and the inclusion
of Ω inA. For more details on the conditions, the reader is referred to [250]. The third object of a probability
space is the probability P . It measures the likelihood of an event to occur. For example, the probability of
tail is expressed as

P ({ω̂ : Y (ω̂) = 0}) = p.

According to the law of large numbers, the value of p can be obtained by a very large number of repetitions of
an experiment. In our (ideal) coin example, this gives a probability of both possible outcomes in Ω to equal
0.5 which agrees with our empirical observations. In practice, it is important to distinguish between input and
output variables, see Figure 4.1. Typically, the distributions of the input variables are given by measurements
and subject to uncertainty. Then, after stochastic modeling and simulation, the output uncertainty can be
determined in the quantity of interest (QoI) Q, e.g., the temperature of bond wires. If, reversely, uncertain
output quantities are given, solving an inverse problem yields the uncertain input parameters. The output
variable is often a QoI Q that is given as a functional g of the solution. For instance, if T is the temperature
field representing the solution, Q(Y) = g(T (Y)) describes the quantity of interest being dependent on Y.

To quantify the probability of a continuous random variable falling within a particular range of values, a
probability density function fY is used. It is defined such that

FY (x) =

∫ x

−∞
fY (y)dy,

where FY (x) ≥ 0 and
∫∞
−∞ fY (y)dy = 1. Here, FY is the distribution function of the random variable Y

defined as
FY (x) = P (X ≤ x) := P ({ω̂ : Y (ω̂) ≤ x}).

With the definition ofFY , the probability that Y belongs to an interval (a, b] reads

P ({ω̂ : a < Y (ω̂) ≤ b}) = FY (b)− FY (a),

for a < b. Popular probability density functions include the uniform, Gaußian, andWeibull distributions.

In general, one is interested in characteristic values that quantify the uncertainty of a random variable. Such
values are known as statistical moments, with the first two being the mean value or expectation, and the
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Figure 4.1: Propagation of the uncertainty in the input variables to the QoI at the output of a simulation. If
uncertainties are involved, the steps of stochastic modeling and simulation yield uncertainties in
the output variable. This output could be characterized by, e.g., the temperature of bond wires.

variance. These two are also the most commonly used ones. The expectation of a random variable Y with
density fY represents the most likely value of Y and is defined as

E[Y ] :=

∫ ∞

−∞
x fY (x)dx.

On the other hand, the variance is given by

σ2Y := var(Y ) :=

∫ ∞

−∞
(x− E[Y ])2fY (x)dx,

where σY is known as the standard deviation of Y .

4.2 Failure Probability

Failures occurring in technical applications due to manufacturing tolerances (resulting in, e.g., uncertain
geometries) are of stochastical nature. The calculation of failure probabilities is of particular importance
to avoid undesired configurations of an engineering device and to prevent the destruction of material or a
significant loss of performance.

Following [141], a failure shall be modeled with the help of a performance function g : RN → R that describes
a failure when g < 0. Those points of the observation space Γ ⊂ RN that result in a negative performance
function constitute the failure region, denoted as ΓF. Any uncertainty shall be modeled by the realization
y : Ω → Γ of a random variable Y in Γ. Each of the entries in Y is distributed according to a probability
density function fY . For the case of two uncertain input variables y1 and y2, Figure 4.2 depicts schematically
the rectangular observation space Γ and its subspace ΓF, separated by the solid line. With the definition of
the characteristic function

1ΓF(y) =

{
1, y ∈ ΓF,

0, y /∈ ΓF,
(4.1)
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y2

Γ

ΓF

|gsur| = δ

Figure 4.2: Separation of a 2D observation space Γ into a safe region and a region of failure. Additionally,
the region is decomposed into a gray region where the full model is evaluated, and a white
region, where the surrogate model is evaluated. Full model evaluations within the gray region
are triggered by |gsur| = δ with the threshold δ. This figure is taken from [50].

the failure probability is given by

PF =

∫
Γ
1ΓF(y)fY (y)dy. (4.2)

4.3 Monte Carlo Sampling and Surrogate Model

To compute the failure probability, the integral in (4.2) may be approximated using numerical sampling.
This evaluation can become very demanding since the complexity often scales exponentially with the num-
ber of considered parameters, an issue commonly known as the curse of dimensionality [17]. In this section,
we present two examples of sampling schemes, namely the family of MC method and stochastic colloca-
tion.

Commonly, failure probabilities are approximated using MC sampling [45, 143]. The MC method is based
on the generation of M random input samples according to the probability distribution fY of the random
variable Y [250]. For each selected sample, a deterministic problem is obtained, resulting in a set of M
solutions forM deterministic problems. TheseM solutions allow to compute statistical moments such as the
expectation value and the variance. Since we are interested in the calculation of failure probabilities, we can
use the MC method to approximate the integral in (4.2) by

PF ≈
1

M

M∑
j=1

1ΓF(y
j),

with a random sample yj drawn according to the probability distribution fY . One advantage of the MC
method is that it does not suffer from the curse of dimensionality. However, its complexity highly depends
on the cost to evaluate 1ΓF(yj) and its convergence speed is relatively slow, given by O(1/

√
M) [45]. Im-

provements to MC include the quasi MC method [78] which chooses the samples in a deterministic se-
quence, or the multilevel MC method [92, 96], which makes use of different fidelities of the model to evalu-
ate.

To reduce the cost required to evaluate 1ΓF , let us adapt the non-intrusive stochastic collocation procedure pre-
sented in [10], also known as generalized polynomial chaos (gPC) [250]. Thanks to its non-intrusiveness, this
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method is readily applicable to the governing electrothermal (ET) problem of this thesis given by (2.15). In the
simplest case of tensor grid collocation, with collocation points ŷm, m = 1, . . . , (p+ 1)N and polynomial de-
gree p, we approximate the QoIQ such that the performance function follows as

g(y) ≈ gsur(y) =
(p+1)N∑
m=1

g(ŷm)Lm(y),

where Lm are multivariate Lagrange polynomials. After setting up this surrogate model, only polynomial
evaluations are required, reducing the computational cost substantially. However, stochastic collocation is
subject to the curse of dimensionality; thus, it becomes prohibitively expensive when the number of param-
eters is high. Only under very strict assumptions on the regularity of the solution and the randomness of
the input, the curse may be surpassed [54]. In all other cases in which a high number of uncertain input
parameters is involved, more sophisticated methods such as sparse grids [168] or low-rank tensor approxima-
tions [145] can be used to mitigate the curse. In the following, the failure region evaluated with gsur instead
of g is denoted by Γsur

F and the associated failure probability reads

P sur
F =

∫
Γ
1Γsur

F
(y)fY (y)dy ≈ 1

M

M∑
j=1

1Γsur
F
(yj). (4.3)

4.4 Hybrid Approach to Compute Small Failure Probabilities

Now, we assume that a surrogate model such as the one obtained by stochastic collocationmethod is available,
see Section 4.3. While the evaluation of a surrogate model is more efficient than the evaluation of the
corresponding full model, the computed failure probabilities can be inaccurate. It has been shown that this
shortcoming may persist even if a very accurate surrogate model is employed together with a large number of
samples [141]. As a remedy, a hybrid iterative scheme, combining the accurate partial differential equation
(PDE) model with the efficient surrogate model is described here [141].

The idea is to evaluate the surrogate model only when the considered sample lies far away from the failure
region, i.e., |gsur(yj)| larger than a certain threshold δ. Once |gsur(yj)| becomes smaller than this threshold
and thus close to the failure region, the original model is used to evaluate 1ΓF instead of 1Γsur

F
. This idea is illus-

trated in Figure 4.2 and reduces the problem to the one of finding an adequate value for δ.

One possible approach to determine δ is an iterative method [141] as outlined in the following. First, the sur-
rogate model is evaluated for the full set of samples to obtain {gsur(yj)}Mj=1. This allows to evaluate 1Γsur

F
with

implicitly givenΓsur
F and hence an initial value of the hybrid failure probability given by

P
hyb,(1)
F := P sur

F

is obtained. Then, the full model is evaluated for the δM < M samples that are the closest to the failure
region. For these samples, 1surΓF

is replaced with 1ΓF in the failure probability estimate. If the associated
change in the failure probability estimate exceeds a certain tolerance η, the hybrid failure probability for
step (k+1) is updated with the δM full model evaluations. Then, the next δM samples are selected and the
procedure is repeated until

|P hyb,(k+1)
F − P

hyb,(k)
F | ≤ η.

The described procedure is listed in Algorithm 1, where it is understood thatM/δM is an integer.

57



Algorithm 1 Iterative algorithm to compute the hybrid failure probability using an expensive computer model
g and a cheaper surrogate model gsur. The tolerance η determines the termination of the algorithm. This
listing is taken from [50].
1: procedure hybrid(g, gsur,M , δM , y, η)
2: setM (1) = 0 . Initialization
3: evaluate P hyb,(1)

F = P sur
F using (4.3)

4: sort {yj}Mj=1 as {y
j
asc}Mj=1 s.t. {|gsur(y

j
asc)|}Mj=1 ascends

5: for k = 1 toM/δM do . Iteration
6: defineM1 =M (k) + 1
7: defineM2 =M (k) + δM
8: evaluate g({yjasc}M2

j=M1
) yielding 1ΓF({y

j
asc}M2

j=M1
)

9: set ∆P hyb,(k)
F = 1

M

∑M2
j=M1

(
−1Γsur

F
(yjasc) + 1ΓF(y

j
asc)

)
10: set P hyb,(k+1)

F = P
hyb,(k)
F +∆P

hyb,(k)
F

11: if |P hyb,(k+1)
F − P

hyb,(k)
F | ≤ η then

12: return P hyb,(k+1)
F

13: end if
14: updateM (k+1) =M (k) + δM
15: end for
16: return P hyb,(k+1)

F
17: end procedure

Algorithm 1 ensures that the error in the computed failure probability decreases as the accuracy of the
surrogate model increases, in contrast to sampling the surrogate model alone [141]. However, the result
might depend on the choice of the step size δM and the tolerance η, which have to be determined em-
pirically. As an alternative to this iterative approach, if an error estimator is available, the value of the
threshold δ may be estimated a posteriori yielding full control on the accuracy of the failure probabil-
ity.

Mathematically [141], the resulting hybrid failure probability is given by

P
hyb
F =

∫
Γ
1
Γ
hyb
F
(y)fY (y)dy ≈ 1

M

M∑
j=0

1
hyb
ΓF
,

with
1
Γ
hyb
F

= 1{gsur<−δ} + 1{|gsur|<δ}∩{g<0}.

Here, the compact notation of, e.g., {g < 0} is short for {y | g(y) < 0}.

4.5 Summary

The major purpose of this chapter was to introduce the evaluation of failure probabilities. We started off
with some fundamentals of probability theory. Important terms such as probability space, outcome space,
σ-algebra, probability, and random variable were defined. We provided the precise definition of a failure
probability and used a performance function to decide whether a failure occurs. For the computation of
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failure probabilities, we motivated the necessity of a sampling scheme such as the classical Monte Carlo (MC)
sampling. However, for small failure probabilities, pure MC becomes prohibitively expensive and the use of a
polynomial surrogate model was discussed. To overcome the problem of inaccurate failure probabilities even
when using an accurate surrogate model, we introduced a hybrid scheme as first presented in [141]. This
hybrid scheme allows for a compromise between accuracy and low computational cost. To determine the
threshold parameter δ that decides whether to use the full or the surrogate model, we proposed an iterative
algorithm. The drawback of this algorithm lies in the parameters δM and η that require an empirical choice.
For a more sophisticated method to obtain the threshold δ a posteriori, an error estimator would give full
control on the accuracy of the failure probability estimate.
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5 Numerical Approach for the Simulation of Thin Wires

in a 3D Setting

In micro- and nanoelectronic applications, bondwires are used to connect the chip to its surrounding package.
Compared to the sizes of the other components in a chip package, the radius of the wires is typically very
small. Due to this fact, we speak of a thin wire and we are interested to include thin wires in the package-level
simulation of electronic devices. The problem is challenging due to the different spatial scales of the wires and
the surrounding package, requiring locally very fine meshes, which results in a high computational cost. The
approach adapted here, which is not restricted to electronic applications, consists of modeling wires as 1D
structures and of computing the solution using an additional 1D equation. Originally, this studywasmotivated
by problems in the scope of the EU FP-7 project nanoCOPS [149].

In computational electromagnetics (CEM), different approaches circumventing the problem of resolving the
thin wires using locally refined meshes have been developed. From analytical models to complex numerical
models, approaches of different fidelities are available. While analytical models allow a fast characterization
of a thin wire, sophisticated numerical models enable a more detailed analysis at the cost of a high com-
putational effort. Most commonly however, the influence of a wire is modeled by an infinitely thin, perfect
electric conducting (PEC) wire together with the modification of the material properties in its neighborhood.
This approach has been verified in numerous publications by comparison to other solvers or measurements;
however, convergence analyses of this type of methods are not available. Moreover, the PEC approach is very
specific to electric problems, for which conductors exhibit conductivities that are several orders of magnitude
higher than those of insulators. When considering other disciplines, such as thermal conduction, the values
for the different materials show a much lower discrepancy. Therefore, the absolute material values have to
be taken into account and a different wire model is required.

This chapter closely follows [48] to address an alternative numerical approach for the simulation of 3D prob-
lems involving thinwires. It is based onmodeling a thinwire as a 1D lineΛ as shown in Figure 5.1. In this case,
the necessity of very fine grids is relaxed and substantial computational savings are obtained. By embedding
the 1D wire model into the surrounding 3D geometry, the bent geometry of a wire can be incorporated with-
out suffering from a staircase approximation within the rectilinear grid. Staircase approximations are very
common for thin wire approximations in CEM and the associated drawbacks are discussed in Section 3.3.2.
Due to the dimensional gap, a 1D wire embedded in 3D space represents a singular substructure. Such sin-
gular substructures are frequently encountered and dealt with in CEM [169, 231, 248]. An appropriate tool
to model singularities in CEM is the framework of de Rham currents [75] and their discrete counterparts [8].
We employ these concepts and present a detailed mathematical model both on the continuous as well as on
the discrete level. Furthermore, we show that the problem at hand is closely related to fluid flow in porous 3D
media with 1D fractures as studied, e.g., in [53, 70, 71]. Hence, mathematical tools for elliptic problems with
Dirac measures [72] can be applied. The approach followed here is also similar to that of immersed boundary
methods, in which singular source terms are used to represent the structural parts of fluid-structure inter-
actions [112]. A careful formulation of the 1D–3D coupling condition is essential to obtain a stable scheme
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2r → Λ

Figure 5.1: 1D wire model on line Λ as an approximation to the real wire of radius r.

yielding a physical solution. We provide elliptic model problems that are used to investigate the numerical
errors and the corresponding convergence rates. The transient electrothermal (ET) simulation of a simpli-
fied microelectronic chip package as used in industrial applications is presented in Section 7.2. Although we
employ the finite integration technique (FIT) for this problem, generalizations to other schemes are straight-
forward and follow from their close relation to FIT, see Section 3.3.7.

This chapter is structured as follows. In Section 5.1, we present the 1D–3D ET coupled problem including
de Rham currents, specific details concerning the 1D–3D coupling, and the corresponding discretization. In
Section 5.3, we relate our approach to a finite element (FE) method for flow problems with 1D fissures [53,
70, 71]. Finally, numerical convergence rate studies for a simplified elliptic model problem are presented in
Section 5.4. In particular, a simplified 0D–2D coupling, and the straight and bent wire case for the 1D–3D
case are investigated.

5.1 Continuous Formulation of the 1D–3D Coupling

First, we consider the ET formulation for a single wire embedded in a 3D domain D. Due to the typically
very small radius of a wire compared to the domain size ∆, we model a wire as a line Λ with zero radius
embedded in D, see Figure 5.1. Furthermore, we establish a 1D domain Λ and connect it to the 3D domain
by using a wire parameterization Λ = {~xΛ(s), s ∈ Λ = (0, 1)} defined by ~xΛ that maps from Λ to Λ. To
distinguish quantities associated to the 3D domain D from those associated to the 1D domain Λ, we denote
the latter by an overline. In the following, a formulation for this coupling is presented for the continuous and
for the discrete setting.

We consider capacitive effects only for the thermal 3D part and examine the coupling of an electrokinetic
problem with the transient heat equation. Due to the small wire radius, we assume that the resistive losses
in the wires are dominating and we neglect the losses in the 3D domain. Here, we use the Dirac distribution
δΛ to formulate the coupled 1D–3D ET problem as

−∇ · (σ(~x, T )∇ϕ(~x, t)) = qσ(~x, ϕ)δΛ, ~x ∈ D, t ∈ I, (5.1a)

− ∂

∂s

(
σ
(
s, T

) ∂
∂s
ϕ(s, t)

)
= qσ(s, ϕ), s ∈ Λ, t ∈ I, (5.1b)

ρ(~x)c(~x)∂tT (~x, t)−∇ · (λ(~x)∇T (~x, t)) = qλ(~x, T )δΛ, ~x ∈ D, t ∈ I, (5.1c)

− ∂

∂s

(
λ(s)

∂

∂s
T (s, t)

)
= qλ(s, T ) +Q

w
(ϕ), s ∈ Λ, t ∈ I, (5.1d)

which is understood in a weak sense, and the quantities on the 3D domain have been defined in Sections 2.1,
2.2, and 2.3. In addition, the quantities on the 1D domain are the electric potential ϕ, the temperature T ,
the 1D wire material coefficients given by σ = |A|σw/|d~xΛ

ds | and λ = |A|λw/|d~xΛ
ds |, where |A| is the wire’s

cross-sectional area, and σw and λw are the electric and thermal conductivities of the wire’s material. The bi-
directional ET coupling is established by the temperature-dependent materials and the 1D resistive lossesQw.
As mentioned in Section 2.3, the temperature dependence of λ, ρ, and c is neglected. In addition to (2.15),
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the 1D–3D formulation requires a coupling for the electric currents (thermal flows) and for the electric po-
tentials (temperatures), manifested on the right-hand sides of (5.1a)–(5.1d). The former is reflected by the
contributions qσ (qλ) from the 1D to the 3D domain, and by qσ (qλ) from the 3D to the 1D domain. With
finite contact conductivities βσ (βλ) between the 1D and the 3D domain, the coupling is similar to [70, 72]
and it reads

qσ = βσ((Πϕ) ◦ ~xΛ − ϕ),

qλ = βλ((ΠT ) ◦ ~xΛ − T ),

where βσ = | dds~xΛ|βσ ◦ ~xΛ and βλ = | dds~xΛ|βλ ◦ ~xΛ. In our setting, we neglect the contact resistance
(β → ∞), resulting in qσ and qσ (as well as qλ and qλ) canceling each other. This yields the coupling
conditions ∣∣∣∣ dds~xΛ

∣∣∣∣qσ(~xΛ(s), ϕ) = qσ(s, ϕ), s ∈ Λ, (5.1e)∣∣∣∣ dds~xΛ
∣∣∣∣qλ(~xΛ(s), T ) = qλ(s, T ), s ∈ Λ, (5.1f)

ϕ(s, t) = Πϕ(~xΛ(s), t), s ∈ Λ, t ∈ I, (5.1g)
T (s, t) = ΠT (~xΛ(s), t), s ∈ Λ, t ∈ I. (5.1h)

Here, the coupling of the electric potential (temperature) is established by the coupling operator Π that will
be defined in Section 5.1.2. Note that no explicit boundary conditions (BCs) for the 1D case are required due
to the strong coupling by Π. On the other hand, the initial conditions and the BCs for the 3D case have been
introduced in Section 2.5.

5.1.1 de Rham Currents

After a general introduction of de Rham currents was given in Section 2.8, we now apply the concept to
the additional wire contribution. Since de Rham currents are a mathematical tool applicable to any physical
discipline, the term current applies to electric and thermal quantities equally well. With α ∈ {σ, λ}, the
1-current on the oriented wire curve Λ reads

Iα(~v) :=

∫
Λ
Iα(~x)~t · ~v d~x ~v ∈ (C∞

0 (D))3,

with a line current Iα, ~x ∈ Λ, and the unit tangent vector ~t. The space Ck
0 contains k-times differentiable

functions on the computational domain D (without wires) with homogeneous Dirichlet conditions at the
boundary. Note that the current Iα may vary along the line Λ since we allow a current exchange between Λ
and its surrounding.

We recall the de Rham current reformulation of the ET problem given by (2.30) and rewrite it while neglecting
electric displacement currents,

divJσ(v) = 0, (5.2a)
Qρc(v) + divJλ(v) = QJ(v). (5.2b)

From now on, we account for the presence of N wires by an additional index i resulting in ~xiΛ now mapping
from Λ

i to Λi. The embedding into the 3D domain is achieved by considering the 1D current Iiα := −αi∂su
i
α
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and the associated de Rham current Ii
α [75] and mapping them to the 3D domain by applying a coordi-

nate transformation. Here, α ∈ {σ, λ}, and uα represents uσ := ϕ and uλ := T . More precisely, we set

Ii
α(~v) = Ii

α((~x
i
Λ)

∗~v) =

∫
Λ
Iiα~t

i · ~v d~x

=

∫
Λ
Iiα ◦ ~xiΛ

(
~t i ◦ ~xiΛ

)
·
(
~v ◦ ~xiΛ

)∣∣∣∣d~xiΛds

∣∣∣∣ds
=

∫
Λ
I
i
α

(
~t i ◦ ~xiΛ

)
·
(
~v ◦ ~xiΛ

)∣∣∣∣d~xiΛds

∣∣∣∣ds,
(5.3)

for all ~v ∈ (C∞
0 (D))3. Here, (~xiΛ)

∗ denotes the pullback by ~xiΛ and we used the substitution ~x = ~xiΛ and the
relation Iiα = Iiα ◦ ~xiΛ. After applying (2.28) to (5.3), we obtain

div(Ii
α)(v) = −

∫
Λ
I
i
α

(
~t i ◦ ~xiΛ

)
·
(
∇v ◦ ~xiΛ

)
ds, ∀v ∈ C∞

0 (D), (5.4)

and the de Rham current for N wires is obtained from the single wire 1-currents as Iα :=
∑N

i=1 Ii
α. What

remains is the de Rham current representation of the Joule lossesQJ := Qw, whereQw describes the 1D Joule
losses and the 3D losses are neglected. Using (2.26), these losses are expressed by

Qw,i(v) = Qw,i
((~xiΛ)

∗v) =

∫
Λ
Q

w,i
v ◦ ~xiΛ ds, ∀v ∈ C∞

0 (D), (5.5)

whereQw,i
:= σi

∣∣∂sϕi
∣∣2. Again, the contribution forN wires is given byQw

:=
∑N

i=1Q
w,i.

With these definitions at hand, adding (5.4) and (5.5) to (5.2) yields the 1D–3D ET coupled problem in terms
of de Rham currents given by

div(Jσ + Iσ)(v) = 0, (5.6a)
Qρc(v) + div(Jλ + Iλ)(v) = Qw(v), (5.6b)

for all v ∈ C∞
0 (D).

5.1.2 Coupling Operator

In this section, we come to the definition of the coupling operator Π as used in the coupling conditions (5.1g)
and (5.1h). Due to the singularity of the 3D solution at Λ, a direct coupling of the 1D and the 3D solution at Λ
is not possible. Instead, following the 1D–3D coupling as applied to blood flow through human tissues [72],
we use an averaging scheme given by

Πuα := γ
1

2π

∫ 2π

0
uα(~x(s, rcpl, ϑ))dϑ, (5.7)

where uα represents uσ := ϕ and uλ := T , and γ is a scaling coefficient. Note that (s, rcpl, ϑ) refer to
cylindrical coordinates around Λ, where rcpl is the coupling radius, see Figure 5.2. Typically, we choose
rcpl � r, to circumvent resolving the wire radius r by the mesh.
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ϑ

rcpl
�s

Λ

Figure 5.2: Cross-section of a wire with its radius confined to a line Λ in s-direction. Further denoted are the
coupling radius rcpl and the angle ϑ around the wire. This figure is taken from [48].

For a 3D Laplace problem with Dirac right-hand side as given by (5.1a) and (5.1c), cylindrical coordinates, a
domain D of infinite extension, and an electrically perfectly conducting Λ being a straight line that coincides
with the z-axis, the solution has the form

uα(~x(s, r, ·)) = −qα(~x(s, 0, ·), uα)
2πα

log
(
r

r0

)
, (5.8)

where r0 is a reference radius. Taking this logarithmic dependence into account, a consistent coupling scheme
requires the scaling coefficient to be given by

γ = log(r/r0)/ log(rcpl/r0)

such that it scales from the averaged value at the coupling radius rcpl to the physical value of the line source
solution at the wire radius r. With this definition of γ, applying (5.7) to (5.8) yields the corresponding 1D
solution given by

u(s) = −qα(~x(s, 0, ·), u)
2πα

log
(
r

r0

)
. (5.9)

Note that this choice of γ is motivated by Λ to be electrically perfectly conducting. However, we employ this
coefficient γ also in the more general case of a finite conductivity. The consistency of the 1D–3D coupling is
observed since the usage of (5.9) as source term in (5.1a) and (5.1c) results again in the 3D solution given
by (5.8). Finally, for arbitrary curves Λ, the above solutions are valid in a sufficiently small neighborhood
of Λ.

5.2 Discrete Formulation of the 1D–3D Coupling

The discretization of the 1D–3D ET coupled problem is carried out using the FIT [58, 240, 242], mainly
motivated by its natural relation to discrete differential forms [33]. We emphasize that no conceptual diffi-
culty would arise when a comparable discretization scheme as, e.g., Whitney FE, would be used instead [29].
A more detailed discussion of this aspect and the numerical discretization errors is given in Sections 3.3.7
and 5.3. In this section, we focus on the discretization of the wire contribution based on the de Rham
current formulation (5.6). In particular, we extend (3.9) with the wire contribution such that we obtain

div(Jσ + Iσ)(Nk) = 0, (5.10a)
Qρc(Nk) + div(Jλ + Iλ)(Nk) = Qw(Nk), (5.10b)

with BCs to be applied as presented in Section 3.3.5. Here, Nk refers to the nodal Whitney function as-
sociated with node Pk, see Section 3.3.7. Notice that continuous de Rham currents are typically defined
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Figure 5.3: 1D discretization of wire i visualized using lumped elements for the example of N1D,i = 6 points.
The wire’s current Ii is discretized using piecewise constant basis functions. This figure is taken
from [48].

on C∞
0 while the discrete counterpart is given by discrete de Rham currents defined on functions that

are not necessarily zero on the boundary [8]. In the following, we will derive the algebraic expressions
for Jα and Qw that are required for the implementation of (5.10). This procedure results in a system
of differential algebraic equations (DAEs), which can be implemented and solved for with standard algo-
rithms.

We model each wire part as a 1D element giving a series connection of N1D,i − 1 elements for wire i. Then,
the FIT-discretization of Iα results in a piecewise constant discretization on every wire part (curved element)
Λi
j for wire i = 1, . . . , N and j = 1, . . . , N1D,i with |Λi

N1D,i | = 0, cf. Figure 5.3. In the 1D domain, the
partitioning of Λi results in a partitioning of Λi by dividing [0, 1] using the points {sij}, j = 1, . . . , N1D,i. Let
Pi
s ∈ {−1, 0, 1}(N1D,i−1)×N1D,i denote the partial derivative operator of wire i, defined as

(
Pi
s

)
kj

:=


1, if j = k + 1,

− 1, if j = k,

0, otherwise.

Furthermore, in analogy to the 3Dmaterial matrices as defined in Section 3.3.2, let

Mi
α := diag

(
αi
1, . . . , α

i
N1D,i−1

)
(5.11)

represent the electrical (thermal) 1D wire mass matrix, where αi
j = αw|A|/|Λi

j |. Then, the FIT discretization
of the 1D currents and thermal flow reads

Iiα = −Mi
σP

i
su

i
α. (5.12)
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 X =

[
−1 0 1 0 0
0 0 −1 1 0

]

Figure 5.4: An exemplary wire located among five arbitrary grid points of which points 1, 3 and 4 coincide
with 1D grid points. The corresponding coupling matrices RN and X are shown. This figure is
taken from [48].

We proceed by discretizing (5.4) as

divIi
α(Nk) = −

N1D,i−1∑
j=1

I
i
α,j

∫ sij+1

sij

(
d
ds
~xiΛ

)
· (∇Nk ◦ ~xiΛ)ds

= −
N1D,i−1∑

j=1

I
i
α,j

(
Nk(~x

i
Λ(s

i
j+1))− Nk(~x

i
Λ(s

i
j))

)
= −

N1D,i−1∑
j=1

I
i
α,j

(
(Ri

N)j+1,k − (Ri
N)j,k

)
= −((Pi

sR
i
N)

>Iiα)k,

(5.13)

where we have introduced the coupling matrix Ri
N ∈ RN1D,i×NP by (Ri

N)j,k := Nk(~x
i
Λ(s

i
j)). Note that, in

view of (5.13), no approximation of the possibly bent wire geometry by the underlying 3D grid is required.
This constitutes as the main advantage of the proposed 1D–3D coupling approach. To simplify notation, we
further introduce Xi ∈ R(N1D,i−1)×NP as Xi := Pi

sRi
N, see Figure 5.4, and infer the vector representation for

divIi
σ by combining (5.12) and (5.13) as(

divIi
α(N1), . . . ,divIi

α(NNP)
)>

= (Xi)>Mi
αP

i
sϕ

i.

We remark that the coupling matrix Ri
N can be understood as the discrete counterpart of the pullback

(~xiΛ)
∗. For the simple case when the 1D points are directly obtained by pulling back the 3D grid points,

Ri
N ∈ {0, 1}N1D,i×NP becomes an operator that restricts to those points of the grid which are connected to

wire i and it contains only one non-zero entry in each row. In the general case of a rectilinear grid, each 1D
point is allocated in a grid element defined by 8 points, this operator becomes Ri

N ∈ RN1D,i×NP , and contains
8 non-zero real-valued entries in each row, obtained by Whitney interpolation. In any case, the sum of all
entries in each row is always equal to one.

To account for the 1D Joule losses, we introduce the vector Qw,i, allocated at 1D edges, withN1D,i−1 entries
each given by

Q
w,i
j = −Iiσ,j(P

i
sϕ

i)j ,

representing the discretized heat power of wire i with Iiσ,j being the current at the 1D element Lj . Starting
from (5.5), the Joule losses of the wire part are discretized as

Qw(Nk) =

N∑
i=1

N1D,i−1∑
j=1

1

2
Q

w,i
j

(
Nk(~x

i
Λ(s

i
j+1)) + Nk(~x

i
Λ(s

i
j))

)
=

N∑
i=1

N1D,i−1∑
j=1

1

2

(
Xi
abs

)
j,k
Q

w,i
j =: (Qw)k,

(5.14)
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where the entries of Xi
abs are given by the absolute values of the entries of Xi. Let Ti

avg := 1
2X

i
absT contain

the averaged temperatures for each element of wire i. We account for nonlinearities in the wire material
parameters as αi

j((T
i
avg)j).

The last ingredient for the discretization is the discretized version Π ∈ RN1D×NP of the coupling operator Π
as introduced in Section 5.1.2. It is obtained by interpolating ~x∗ΛΠuα to the points of the 1D grid to yield the
relation

ui
α = Πiuα, (5.15)

for wire i. Finally, by introducing the lumped wire stiffness matrix Kw
α as

Kw
α :=

N∑
i=1

Kw,i
α =

N∑
i=1

(Xi)>Mi
αP

i
sΠ

i,

we conclude

divIα(Nk) = (Kw
αuα)k. (5.16)

We recall the stiffness matrix Kα = G>MαG, see Section 3.3.3, and collect the 1D potentials (temperatures)
of all wires in a matrix denoted by ϕ ∈ RN×N1D (T ∈ RN×N1D). Then, the discrete algebraic 1D–3D ET
coupled problem is obtained by extending (3.8) with the wire contributions given by (5.14) and (5.16) and
reads

Kσ(T)ϕ+ Kw
σ (T)ϕ = 0, (5.17a)

MρcṪ+ KλT+ Kw
λT = Qw(ϕ,T), (5.17b)

where impressed sources have been neglected. With K̂α(T) := Kα(T) + Kw
α(T) and Q̂(ϕ,T) := Qw(ϕ,T), we

can write (5.17) in a more compact form given by

K̂σ(T)ϕ = 0, (5.18a)

MρcṪ+ K̂λT = Q̂(ϕ,T). (5.18b)

After applying BCs to (5.18) as discussed in Section 3.3.5, we obtain

K̂a
σ(T)ϕ

a = −K̂Dir
σ (T)ϕDir, (5.19a)

Ma
ρcṪ

a + K̂Γ,a
λ Ta = Ra

PQ̂J + Ra
PM

ΓT∞ −MDir
ρc Ṫ

Dir − K̂Γ,Dir
λ TDir, (5.19b)

where K̂Dir
σ := Ra

PK̂
Dir
α (RDir

P )>, KΓ,a
λ := Ra

P(K̂λ+MΓ)(Ra
P)

>, and KΓ,Dir
λ := Ra

P(K̂λ+MΓ)(RDir
P )>. System (5.19) is

a DAE and can be integrated in time by using a suitable integration scheme, see Section 3.4. In particular, we
use the implicit Eulermethod together with a fractional stepmethod [236].

5.3 Relation to Flow Problems with Fissures

Let us further analyze the 1D–3D coupling and consider a simplified elliptic model problem, which repre-
sents, for instance, the electrical subproblem given by (5.1a), (5.1b), and (5.1g). We show that the dis-
cretization of this model is closely related to a finite element approach to a 1D–3D coupled problem of
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blood flow through tissues with thin tubular structures for the vessels as analyzed in [70–72]. More pre-
cisely, we show that the simplified elliptic wire problem is obtained in the limit of infinite permeability of
the vessel-tissue interface. We thereby rely on the well-known similarities between the FE method and the
FIT approach, see Section 3.3.7. Several papers consider a singular Dirac right-hand side for elliptic prob-
lems in an FE context [6, 9]. It should be emphasized that in the present approach, as well as in [53,
70–72], the singular 1D contribution depends on the solution itself, which further complicates the prob-
lem.

In a first step, we introduce a weak formulation together with the associated solution spaces for the model
problem, where, for simplicity, we assume a linear conductivity. Furthermore, we consider only one wire
parameterized by Λ = {~xΛ(s), s ∈ Λ = (0, 1)}, such that its index can be omitted. We denote with uα and uα
the 3D and 1D component of

−∇ · (α∇uα) = qα(uα)δΛ + f, (5.20a)

− d
ds

(
α
d
ds
uα

)
= qα(uα), (5.20b)

where, in comparison to (5.1a)–(5.1d), an arbitrary function f has been added to act as a non-singular source
term. A major difficulty in the analysis is the singularity of uα at Λ. In particular, uα exhibits a logarithmic
singularity, see Section 5.1.2, and does not belong to the standard space H1(D). Instead, the solution space
can be identified with the weighted Sobolev space Vδ := H1

δ (D), see [70, Section 2], where the weight is
given by the distance to Λ to the power of 2δ with δ ∈ (0, 1). On the other hand, the 1D variables belong to
the space V := H1(Λ). We consider homogeneous Dirichlet BCs on D for simplicity and incorporate possible
inhomogeneous Dirichlet BCs directly into the solution spaces. The weak form of (5.20a) reads, find uα ∈ Vδ,
such that

〈α∇uα,∇v〉D = (qα, trΛv)Λ + (f, v)D, ∀v ∈ V−δ, (5.21)

where 〈·, ·〉D refers to the duality product of Vδ and V−δ, whereas (·, ·){Λ,D} refers to the L2-inner product
on {Λ,D}. Additionally, trΛ denotes the trace operator that maps from V−δ to L2(Λ). In the ET setting of
this thesis, the left-hand side of (5.21) represents the divergence of the 3D electric current (thermal flow),
whereas the first term on the right-hand side represents the electric current (thermal flow) transport density
from the 1D subdomain into the 3D surrounding. The weak form of (5.20b) reads, find uα ∈ V , subject to(

α
d
ds
uα,

d
ds
v

)
Λ

= (qα, v)Λ, ∀v ∈ V , (5.22)

see [70] for details. In [72], the law for qα is chosen as qα = β((Πu) ◦ ~xΛ − uα), where β = | dds~xΛ|β ◦ ~xΛ,
and β refers to the permeability coefficient for the vessel-tissue blood transfer. Note that the densities qα and
qα in (5.21) and (5.22) are related through qα = | dds~xΛ|qα ◦ ~xΛ.

The coupled formulation reads, find (uα, uα) ∈ Vδ × V subject to

〈α∇uα,∇v〉D +

(
α
d
ds
uα,

d
ds
v

)
Λ

=
(
β(~x∗ΛΠuα − uα), ~x

∗
Λv − v

)
Λ
+ (f, v)D, (5.23)

for all (v, v) ∈ V−δ × V . The corresponding FE formulation reads, find (uFEα,h, u
FE
α,h) ∈ Vh × V h, subject to

〈
α∇uFEα,h,∇vh

〉
D +

(
α
d
ds
uFEα,h,

d
ds
vh

)
Λ

=
(
β(~x∗ΛΠu

FE
α,h − uFEα,h), ~x

∗
Λvh − vh

)
Λ
+ (f, vh)D, (5.24)
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for all (vh, vh) ∈ Vh×V h, representing standard piecewise linear, globally continuous polynomial basis func-
tions. The 3D polynomials coincide with the nodal Whitney basis functions of Section 5.2. The connection
from FE to FIT is established by introducing grid-dependent inner products as follows〈

αuFITα,h, vh
〉
D,h

:= v>Mαuα, (5.25a)

(αuFITα,h, vh)Λ,h := v>Mαuα = v>diag
(
α1, . . . , αN1D−1

)
uα, (5.25b)

(β uFITα,h, vh)Λ,h := v>Mβuα := v>diag
(
β1, . . . , βN1D

)
uα. (5.25c)

Here, Mβ is implicitly defined and βj = βj |Λ̃j |, where |Λ̃j | = (|Λj−1|+ |Λj |)/2 is the length of a 1D dual
element. Then, we seek (uFITα,h, u

FIT
α,h) ∈ Vh × V h, subject to〈

α∇uFITα,h,∇vh
〉
D,h

+

(
α
d
ds
uFITα,h,

d
ds
vh

)
Λ,h

=
(
β(~x∗ΛΠu

FIT
α,h − uFITα,h), ~x

∗
Λvh − vh

)
Λ,h

+ (f, vh)D,h. (5.26)

Problem (5.26) is equivalent to the matrix system of equations given by

G>MαGuα = R>
NMβ(Πuα − uα) + f, (5.27a)

P>
s MαPsuα = −Mβ(Πuα − uα). (5.27b)

Multiplying (5.27b) with R>
N and adding it to (5.27a) we obtain

G>MαGuα + R>
NP

>
s MαPsuα = f, (5.28)

which is the same as (5.17) without the thermal transient part and the source term f. We note that our cou-
pling does not require the implementation of the complicated boundary term on the right-hand side of (5.24).
In contrary to (5.17), the coupling condition (5.15) is not directly contained in (5.27), but recovered in the
limit β → ∞. In our setting, β represents a contact conductivity and hence, we consider the limit of perfect
conduction between 1D and 3D part. Indeed, (5.27b) is equivalent to

−
(
Mβ

)−1P>
s MαPsuα = (Πuα − uα), (5.29)

and passing to the limit β → ∞ yields Πuα − uα = 0.

A strategy to bound the total error of the numerical scheme could consist in using the relation to the FE
method, established above, and the triangle inequality as

‖uα − uFITα,h‖ ≤ ‖uα − uFEα,h‖+ ‖uFEα,h − uFITα,h‖. (5.30)

D’Angelo [70] has shown that the FE error of the 3D variable is bounded by

‖uα − uFEα,h‖ ≤ C1h‖uα‖V 2
1+ε

+ C2h‖uα‖H1(Λ), (5.31)

with ε ∈ (0, δ), provided that the solution is sufficiently regular, β small enough and the mesh grading strong
enough. The same estimate was established for the 1D variable in a suitable norm. The norm ‖ · ‖ appearing
in (5.31) is defined as

‖ · ‖ := ‖α1/2∇ · ‖L2
δ(D),

where in L2
δ(D) the weight is again given by the distance to Λ to the power of 2δ. Moreover, V 2

1+ε refers to a
Kondratiev-type weighted space, see [70] for details. The second term on the right-hand side of (5.30) repre-
sents the difference between the FE method and FIT. It is equivalent to a mass lumping error in an FE context,
see [179, 220]. Standard techniques for estimating this error rely on increased smoothness assumptions on
the solution and yield an O(h) bound. In our case, due to the wire singularity, this analysis would be fairly
non-standard. Furthermore, the well-posedness of the system (5.28)–(5.29) and the limit β → ∞ for the
continuous problem (5.23) and its FE approximation (5.24) are not included in [70] and have to be analyzed
separately. These analysis steps are beyond the scope of this thesis.
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Parameter Description Value

∆ Side length of D 1m
σ Conductivity of D 1S/m
r Radius of wire 1 µm
A Cross-sectional area of wire πr2

σw Conductivity of wire 1015σ

r0 Reference radius
√
∆2/π

Ω Evaluation domain [0, 0.45∆]× [0,∆]× [0,∆]

Table 5.1: Descriptions and values of the parameters as used for the numerical thin wire examples [48].

5.4 Numerical Examples

In this section, the proposed 1D–3D coupling is verified using elliptic model problems. For all implementa-
tions, the temperature dependence of all materials is neglected and thus, linear problems are considered. For
all examples presented here, either an analytical or a solution on a very fine mesh was used as the reference.
The Matlab code to generate the presented results is freely available [49]. Additionally, Appendix B presents
a verification using a proprietary software as the reference.

The model problems consist of one wire embedded in a homogeneous cube such that an exact representation
of the domain D using a rectilinear grid is possible. These problems are closely related to the point and line
source cases as investigated in Figure 3.13. However, the present 1D–3D coupling involves solution-dependent
singular sources, which further complicates problem. In particular, we consider three different models in this
section. First, the coupling is realized point-wise using an external circuitry resulting in a 0D–2D coupling
approach. Secondly, a straight wire embedded in the cube is simulated in a 1D–3D coupling approach.
Thirdly, the general case of a bent wire is considered. For the first two models, an analytical reference
solution is available whereas a fine reference is used to study the convergence of the third model. For these
model problems, the electrical problem given by (5.19a) is solved.

The grids G and G for the 1D and the 3D parts, respectively, and the grading of G were introduced in Sec-
tion 3.3.6. For all wires considered in this section, an equidistant 1D grid G is employed and the corresponding
step size is denoted by h. Note that for the numerical implementation, the 1D grid points of G coincide with
3D grid points of G. Therefore, for straight wires and equidistant 3D grids, the 1D step size h is always a
multiple of the 3D step size h.

The considered cubical domain D is of side length ∆ = 1m and of homogeneous conductivity σ = 1 S/m.
In all examples, the wire’s radius is r = 1µm and its cross-sectional area is A = πr2. The conductivity of
the wire is given by σw = 1015σ manifesting an electrical example opposing thermal examples for which
σw ≈ 102σ. In Appendix B, the verification is also carried out for a thermal example using σw = 102σ.
As discussed in Section 5.1.2, the coupling coefficient γ = log(r/r0)/ log(rcpl/r0) is used with a reference
radius r0 that we choose as the radius of an equivalent cylindrical, or circular in the 2D case, geometry such
that r0 =

√
∆2/π. With equivalent, we refer to a geometry of equal cross-sectional area as the cube. All

error definitions used in this section are defined in Section 3.6 and the errors are evaluated in the evaluation
domain Ω = [0, 0.45∆] × [0,∆] × [0,∆]. To resolve Ω, additional grid points are inserted if required. As a
reference, Table 5.1 summarizes the description and values of the parameters that were used for all numerical
examples in this section.
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Figure 5.5: (a) 2D cross-section of a brick-shaped resistor with wire-shaped inner PEC electrode connected
to an external circuit. (b) Inner electrode is replaced by a 0D representation and the coupling
circle is shown as a dashed curve. (c) Magnification of the coupling circle while also depicting
the actual wire radius r and the wire’s current I. These figures are taken from [48].

5.4.1 0D–2D Coupling

In this section, we consider a brick-shaped resistor with parameters as given in Table 5.1. The PEC wire
of radius r and the surrounding boundary serve as the resistor’s inner and outer electrodes, respectively.
We consider the 2D cross-section of the brick-shaped resistor and establish the coupling by connecting the
inner and outer electrodes using a series connection of lumped resistor and voltage source, see Figure 5.5a.
Applying the parameters as shown in Table 5.1, we use the thin wire assumption for the inner electrode and
model it by a single point as shown in Figure 5.5b. Under these conditions, the coupling is identified as
a 0D–2D coupling. The dashed circle depicts the coupling circle of radius rcpl as required by the coupling
condition (5.7), shown in a magnified view in Figure 5.5c. To avoid resolving the inner electrode, this
coupling radius is chosen to rcpl = maxl

(
Lxy
l

)
� r, where Lxy

l iterates over the lengths of all edges in the 2D
domain, i.e., perpendicular to the wire.

Let the resistance per unit length of the resistor be given by

R′
int =

log(r0/r)
2πσ

,

let the resistance of the external resistor beR′
0 = 1Ωm, and let the applied voltage be V0 = 1V. Then, the po-

tential ϕ at the inner electrode is of interest. For the current per unit length I ′0 = V0/(R
′
0 +R′

int) and a homo-
geneous conductivity σ, the analytical 2D solution of Laplace’s equation reads

ϕ(r) = − I ′0
2πσ

log
(
r

r0

)
, (5.32)

in accordance with Section 5.1.2. Here, r0 =
√
∆2/π is the distance from the origin to the reference potential.

After applying the coupling condition (5.7) to (5.32), the 0D potentialϕ = Πϕ is obtained.

Adjusting (5.17a) to the here considered 0D–2D coupling, it simplifies to

G>MσGϕ+ R>
NG

′
0ϕ = 0, (5.33)

where, by abuse of notation, the matrices are 2D modifications of the usual 3D matrices and G′
0 = (R′

0)
−1.

We exploit the method of manufactured solutions [171, 188] by imposing the reference solution ϕ on the
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Figure 5.6: Convergence of (a) ε1DL2 and (b) ε3D
L2 with respect to h and different grid choices for the 0D–2D

coupling. For the grid notations as used in the legend, see Section 3.3.6. These figures are taken
from [48].

boundary Γ, apply the BCs to (5.33) as described in Section 3.3.5, and solve the resulting system to obtain
the FIT solution ϕh. Note that the implementation of FIT in 2D was carried out by using one edge of constant
length in z-direction together with a symmetric excitation. Thus, the solution behaves two-dimensionally
and we denote by h the average edge length of all edges in x- and y-direction. Using the analytical solution
of (5.32) as the reference, the convergence of the relative errors ε3D

L2 and ε1DL2 , see Section 3.6, for different
grids with respect to h is shown in Figure 5.6. First, we observe for ε1DL2 that an equidistant grid G1 gives a
convergence rate far lower than one. Secondly, using a globally graded grid, the convergence order can be
improved to a value around one. Thirdly, a locally graded grid G10−4

1,10 gives only a slightly higher convergence
rate than G1. The convergence rates for the 2D error ε3D

L2 behave similarly.

5.4.2 1D–3D Straight Wire Coupling

In this section, we consider the 1D–3D coupling of a straight wire to the surrounding 3D domain. The
wire is oriented in z-direction and located in the xy-center of a cube of side length ∆ that we refer to as
the computational domain D, see Figure 5.7a. We again use the parameters as summarized in Table 5.1.
Additionally, for the locally refined grids Gb

1,10 and Gb
0.5,10, we use b =

1
3 minl

(
Lxy
l

)
. For this setting, according

to Section 5.1.2, admissible 3D and 1D solutions are given by

ϕ(r, z) = −I
′(z)

2πσ
log

(
r

r0

)
and ϕ(z) = −I

′(z)

2πσ
log

(
r

r0

)
, (5.34)

where we choose I ′(z) = I ′0z/∆ and I ′0 = 1A/m.

The analytical solution (5.34) is impressed on the boundary Γ. Then, (5.19a) is solved for the 3D solu-
tion ϕh and the 1D solution ϕh. In Figure 5.8, ϕh is plotted on Λ while ϕh is plotted on D \ Λ for G0.5,
h ≈ 1.822× 10−2m, and h = 3.125 × 10−2 to compare rcpl = 0m and rcpl = maxl(Lxy

l ). Although only a
small difference is observed, the latter solution is more accurate, see below. In Figures 5.9 and 5.10, the
convergence of the errors ε3D

L2 and δ1DL2 , respectively, is shown. In Figure 5.9a, the convergence of ε3D
L2 with

respect to h is shown for h = 3.125×10−2, rcpl = maxl(Lxy
l ) and different choices of the 3D grid. For the local
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Figure 5.7: (a) Straight and (b) bent wire embedded in a cube of side length ∆. In both cases, the conduc-
tivities of cube and wire are annotated and in (b), additional PEC cubes are used. These figures
are taken from [48].

gradings Gb
1,10 and Gb

0.5,10, the asymptotic convergence order is around one, independent of µ and similar to
the order for an equidistant grid G1. For a globally graded grid G0.5, we observe a significantly higher con-
vergence order than for the grid G1. In Figure 5.9b, the influence of the coupling radius rcpl on the error and
on the convergence order is investigated. For a zero coupling radius, the 1D solution is taken directly from
the 3D solution in the coupling points where the 3D solution is singular. Therefore, as expected, the error
is large and the convergence is very slow. For rcpl > 0m, a convergence order of around three is observed
while the solution and the order is independent of the exact choice of rcpl. In Figure 5.10, the convergence
of δ1DL2 is shown with respect to h for a fixed but different h for each 3D grid choice. For large h, a wire is
modeled rather by point sources along Λ than by a line source. For the limit case of h→ 0 however, the line
source case is recovered and the error with respect to the line source reference solution becomes smaller. The
convergence is of almost second order and independent of the 3D grid and/or grading choice. This indicates
that the 1D discretization error is dominating for the considered error measure and the considered grids. On
the other hand, for the here considered grids, the errors ε1DL2 , ε1DH1 , and δ1DH1 are smaller than 1× 10−4 and do
not show further improvements for a refinement of the 1D grid. This behavior is attributed to a dominance
of the 3D discretization error for this setting.

5.4.3 1D–3D Bent Wire Coupling

In the general case, thin wires follow arbitrary curves. Therefore, in this section, we investigate the case of
a single bent wire. Again, we use the parameters of Table 5.1 on a cube D as the computational domain.
To set up a model of a bent wire with path Λ, we apply a parameterization using a Bézier curve given by

~xΛ(s) =

 d/2

y0(1− s)2 + (2y0 + 4H)s(1− s) + y0s
2

z0(1− s)2 + (z0 + z1)s(1− s) + z1s
2

, (5.35)

where we introduced the start coordinate ~x0 := (x0, y0, z0)
> = ~xΛ(0) = (0.5, 0.02, 0.02)>m and the end coor-

dinate ~x1 := (x1, y1, z1)
> = ~xΛ(1) = (0.5, 0.02, 0.98)>m, as well as the bending height H = 0.7∆. The points
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Figure 5.8: Values of ϕh on Λ and ϕh on D \ Λ for G0.5, h ≈ 1.822 × 10−2m and h = 3.125 × 10−2 for the
straight wire 1D–3D coupling. The results are shown for (a) rcpl = 0m and (b) rcpl = maxl(Lxy

l ).
These figures are taken from [48].
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Figure 5.9: Convergence of ε3D
L2 with respect to h for the straight wire 1D–3D coupling and h = 3.125× 10−2.

The results are shown for (a) different grid choices and (b) for G0.5 and different choices of rcpl.
For the grid notations as used in the legend, see Section 3.3.6. These figures are taken from [48].
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Figure 5.10: Convergence of ε1DL2 with respect to h for a fixed (but different) h for each 3D grid and for the
straight wire 1D–3D coupling. For the grid notation as used in the legend, see Section 3.3.6.
This figure is taken from [48].

~x0 and ~x1 of the wire are embedded in PEC cubes of side length∆PEC = 40mm, see Figure 5.7b. This setup is
in analogy to the typical case that a wire connects two PEC contact pads.

The grids are constructed by starting with an equidistant 1D grid for the parameter s giving a characteristic 1D
step size h. Then, the 3Dwire points are determined by (5.35) and, together with the boundary points in each
direction, form the basis of the 3D grid. Additional grid lines are inserted due to the error evaluation domain
Ω, because of the PEC cubes and between the wire and the boundary y = ∆. The number of grid lines used
for the latter is given by bN1D/4c, denoting the floor value of the division.

We apply 0V at the PEC electrode at ~x0, 1 V at the PEC electrode at ~x1, solve (5.19a) and consider the 1D
solution as quantity of interest (QoI). We use a coupling radius of rcpl = 1 × 10−2/κ, where κ ≈ 6.08m−1

is the maximum Frenet-Serret curvature [90, 202] along the curve. In the following, we refer to the 1D
and 3D reference solutions ϕ and ϕ as the solutions computed on a fine grid using h ≈ 1.884× 10−2m and
h = 1.563× 10−2. In Figure 5.11a, ϕh is shown with respect to the wire parameterization s and Figure 5.11b
shows the solution ϕh on Λ and ϕh on D \ Λ using a 3D visualization. Investigating the convergence of the
error, we plot ∆1D

L2 and ∆3D
L2 with respect to h in Figure 5.12 using ϕ and ϕ as the reference. For both ∆1D

L2

and ∆3D
L2 , we observe a convergence order close to two.

5.5 Summary

This chapter introduced the 1D–3D coupling approach as required for an efficient inclusion of thin wires
into 3D electrothermal (ET) field simulation. The continuous formulation required de Rham currents and
a suitable coupling operator to obtain a consistent bi-directional coupling scheme. Then, the discretization
could be carried out by introducing discrete de Rham currents together with nodal Whitney functions. The
1D discretization of the wires is carried out via piecewise constant basis functions. By this 1D–3D coupling,
resolving the thin wires in the 3D grid is circumvented, yielding to substantial computational savings. For the
underlying theory, we could show that our approach coincides with the problem of fluid flow in porous 3D
media with 1D fractures. In particular, the thin wire coupling follows in the limit case of an infinite permeabil-
ity between the 3D medium and the 1D fracture. Finally, we verified the proposed approach using suitable
numerical examples. These examples showed that the deteriorated convergence rates can be alleviated when
a graded grid and a non-zero coupling radius are applied.
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Figure 5.11: Results for the bent wire 1D–3D coupling for rcpl = 1×10−2/κ. (a) 1D solution ϕh with respect
to the wire parameterization s. (b) Values of ϕh on Λ and ϕh on D \ Λ for the grid sizes of
h ≈ 1.884× 10−2m and h ≈ 1.563× 10−2. These figures are taken from [48].
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Figure 5.12: Convergence of (a) ∆1D
L2 and (b) ∆3D

L2 with respect to h for the bent wire 1D–3D coupling and
rcpl = 1× 10e−2/κ. The results were calculated for h = {0.5, 0.25, 0.125, 0.0625, 0.03125} using
a fine reference solution at h = 1.5625× 10−2. These figures are taken from [48].
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6 Circuit Extraction from 3D Field Problems

In order to analyze complex electromagnetic (EM) problems, three main routes can be identified. First, a
numerical approach for solving the full set of Maxwell’s field equations offers the advantage of capturing all
relevant effects but can be very demanding in terms of computational resources. Secondly, behavioral models
can be set up by fitting parameters according to obtained measurements. Thirdly, one may use compact
models to obtain a reduced representation of a complex system. These compact models may contain simple
and linear elements such as resistors, capacitors, and inductors; but they may also contain complicated and
nonlinear models such as diodes and transistors. Moreover, a generic way to create these models is needed.
Section 6.1 provides a survey of currently available techniques. We extend this toolbox by a method that
extracts circuit models in an automated procedure. Since the description of circuits is organized in netlists,
algorithms to generate the corresponding netlists are provided. Originally, this approach was motivated by
problems related to the EU FP-7 project nanoCOPS [149].

We closely follow [46, 47] and describe the automated generation of a circuit description for 3D electrother-
mal (ET) and EM field problems. Based on a finite integration technique (FIT) discretization, see Section 3.3,
a one-to-one correspondence between grid objects and circuit elements is obtained. In contrast to Yee’s finite
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Field Problem

Discretize
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SPICE
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Integrator
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Circuit
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Time

Integrator

Solve Field
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Solution
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Figure 6.1: (a) One grid element is represented by a circuit node. Connections to neighboring cells are
carried out via lumped elements. (b) The left branch of the diagram shows the standard solution
approach by using a field solver. The right branch illustrates the approach described herein to
generate a netlist that is then fed to a circuit simulator. These figures are taken from [47].
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difference (FD) scheme employed by Ramachandran et al. [180], FIT is a structure-preserving discretiza-
tion strategy and its integral quantities translate naturally into the framework of circuit descriptions, see
Section 3.3. Alternatively, equivalent approaches such as the cell method (CM) or the finite element (FE)
method can be used if an orthogonal dual grid pair is available, see Section 3.3.7. In the present approach,
neighboring elements in the primal grid interact via circuit elements as illustrated in Figure 6.1a. Thus,
the size of the resulting circuit depends on the geometrical size of the problem and on the resolution of the
computational grid. In this manner, we obtain an exact grid representation of the field equations that we
map transparently into circuit stamps. The values of the lumped elements making up a stamp are directly
taken from the entries of the material matrices. The resulting circuit can then be solved with state-of-the-art
circuit simulators, circumventing the need for a dedicated field solver including its handling of nonlinearities
and time integration. Moreover, existing interfaces between circuit simulators and other useful software
packages can be exploited. One example is given by the interface between Xyce and Dakota to allow for
uncertainty quantification (UQ) methods [1, 128]. Figure 6.1b summarizes this approach. Furthermore, the
present methodology allows for straightforward field-circuit coupling by inserting the stamps of the addi-
tional lumped devices. Therefore, the circuit extraction is especially useful for an accurate representation of
small devices in a larger circuit.

The outline of this chapter is as follows. Section 6.1 presents the currently available techniques to generate
and to simulate compact circuit models. Then, the circuit representation of ET field problems is the content
of Section 6.2. How to extract circuit stamps for EM field problems is presented in Section 6.3. Finally, we
show numerical examples in Section 6.4 to verify the proposed approach.

6.1 Available Techniques for Circuit Generation and Simulation

For many years, electrical engineers employ circuits models to describe the behavior of complex devices.
One of the first works concerned with equivalent circuits was presented by Kron [134]. Nevertheless, the
generation of such compact models can be a tedious task often requiring empirical knowledge. To generate
a circuit model, different techniques are available and an overview is provided, e.g., in [161]. For instance,
mathematical analysis and physical insight allow to construct circuits representing the problem at hand as
presented by Choi et al. [56]. A circuit’s topology and the required component values can also be obtained
from experimental results as done by Moumouni and Baker [159] and other groups. Another approach
followed for instance by Codecasa et al. [63], Eller [83], Wittig et al. [246], and Yang [253], is to apply
model order reduction (MOR) techniques directly to the field formulation of the problem from which a circuit
description can be found more easily [63]. The resulting elements may have non-physical values, but the
system description remains valid. Now, if one is able to represent an EM problem by means of an electric
circuit, one can use any circuit simulator to obtain the solution. The most popular representatives are SPICE
programs that were introduced in the 1970s [164] and are still used as a synonym for circuit solvers. In the
beginning, the thermal part was simply treated by an extra node of constant temperature [111, 153]. Later,
extensions to deal with thermal problems using circuits were developed within the SPICE framework [111,
237]. The mathematical tool employed by most SPICE-like programs is still the modified nodal analysis
(MNA) presented by Ho et al. [117] in the 1970s, see Section 2.6.

First approaches to combine numerical field simulation with circuit elements were proposed in the 1990s.
These were based on the finite difference time domain (FDTD) scheme [178, 211, 219, 227] because of
the topological similarities between the FD scheme and circuits. Later, the insertion of lumped elements
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into FE schemes in time or frequency domain was developed by Guillouard et al. [101, 102]. These ap-
proaches became known as field-circuit coupling and result in hybrid systems that may be difficult to solve.
The corresponding mathematical structure of these problems is known as differential algebraic equations
(DAEs) [37]. Due to these reasons, the topic of field-circuit coupling has evolved into an important re-
search field [19, 129, 193, 195]. For example, a possible field-circuit coupling method consists of the direct
insertion of lumped circuit elements into the field model by applying these to edges of the discretization
grid [247].

To extract compact EM circuits from a given 3D field problem in a generic way, numerous approaches are
found in the literature. In the partial element equivalent circuit (PEEC) method presented by Ruehli [184,
185], equivalent circuits are derived from integral equations, allowing for a combined EM circuit solution
both in frequency and time domains. However, PEEC requires empirical approximations in addition to the
applied discretization. Based on the boundary element method, which is another integral method, Milsom
presented the automated circuit generation for quasistatic approximations [156]. The method presented
therein yields circuits whose size depends on the electrical dimensions of the problem. Many methods for
application-specific circuit extraction based on the device or system response are also available [5, 55, 186].
A methodology for the generation of equivalent circuits based on the semi-discrete Maxwell’s field equations
was also proposed by Ramachadran et al. [180]. Therein, Yee’s discretisation scheme is employed to cast
Maxwell’s curl equations as the concatenation of interacting fundamental circuits in which voltages and
currents model the sought electric and magnetic fields. In this manner, circuit stamps are required for both
primal and dual edges and their interaction is organized by voltage-controlled voltage sources (VCVSs) and
current-controlled current sources (CCCSs), respectively.

To handle the ET coupling in a circuit simulation framework, two general approaches are mainly available:
the relaxation method which consists of the iterative coupling of an electric circuit with an external thermal-
only field simulator [15, 57, 177, 249], and the monolithic approach which consists of the direct coupling
of the electric circuit with a thermal circuit [68, 204], see Figure 6.2. The latter approach allows to run the
simulation directly on the full ET circuit without any additional software package and thereby avoids the
weak coupling between solvers. To extract compact ET circuits from a given 3D field problem in a generic way,
various methods have been proposed. Some of them are based on existing EM simulation methods and have
been extended in functionality to also cover the ET case, as for instance done by Lombardi et al. [144] for
the PEEC. Generating compact models from the calculated or measured response function is another popular
approach and has been followed by Evans et al. and Bernardoni et al. [21, 86]. For thermal problems,
methods that derive an equivalent circuit directly from the mesh can also be found [69, 245], but none of
them accounts for the ET coupling. Karagol and Bikdash [127] presented an approximate representation
obtained from a graph-partitioning algorithm of an FE mesh resulting in a medium-sized ET circuit. Another
approach for ET simulations consists of a lumped-element representation of every element in the mesh and
has been proposed by Hsu and Vu-Quoc [120].

6.2 Circuit Representation of Electrothermal Field Problems

In this section, we neglect inductive effects and derive the circuit representation of transient ET field problems
as given by (2.15). Note that the electric part of the problem requires a regularization which is typically done
by choosing a reference (ground) node with the electric potential ϕgnd = 0. The ground potential ϕgnd is one
of the entries of the discrete potential vector ϕ as used in the discretized ET problem given by (3.8). To gen-
erate the netlist corresponding to (3.8), the electric and thermal subproblems are considered separately. The
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Figure 6.2: Methods for electrothermal simulation using circuit simulators. (a) Relaxation method that cou-
ples an electric circuit solver to a thermal field solver. (b) Monolithic coupling which establishes
the thermal coupling to electric circuits directly by the introduction of thermal circuits.

connection is subsequently established by the Joule losses and the temperature-dependent electric conductiv-
ity. In Sections 6.2.1 and 6.2.2, the netlist generation for the electroquasistatic (EQS) case and the thermal
case is presented, respectively. The procedure of including temperature-dependent materials in the circuit
description is discussed in Section 6.2.3. As the last step, the implementation of initial and boundary condi-
tions (BCs) is described in Section 6.2.4. With all these ingredients, we are able to formulate an algorithm
for the automated ET netlist generation as presented in Section 6.2.5.

6.2.1 Electroquasistatic Circuit Representation

We concentrate on the EQS subproblem given by (2.15a). As a reference, let us here repeat its FIT discretiza-
tion (3.8a), reading

S̃MεGϕ̇+ S̃MσGϕ = −S̃
__

j i, (6.1)

with BCs yet to be applied. Since inductances are neglected in the EQS case, the MNA formulation (2.22)
simplifies to

ACCA>
C v̇+ AGGA>

Gv = −AIIs − AVIV, (6.2a)

A>
V v = Vs. (6.2b)

Then, by inspection of (6.1) and (6.2), we are led to the following equivalences:

• The incidence matrices AC and AG can be identified with the FIT divergence matrix S̃.

82



ni nj

M−1
σ;m̃m

Mε;m̃m
−

+
ϕi(S̃

__

j i)i

ϕgnd

−
+ (ϕDir)i

Figure 6.3: Equivalent electroquasistatic circuit stamp for the exemplary grid point Pi and the grid edge Lm

connecting Pi to another grid point Pj . This figure is taken from [47].

• The capacitance matrix C can be identified with the FIT capacitance matrix Mε.

• The conductance matrix G can be identified with the FIT conductance matrix Mσ.

• The incidence matrices AV and AI can be identified with the identity matrix.

• The nodal voltages v correspond to the FIT degrees of freedom ϕ.

• The source currents AIIs are given by the divergence of the impressed currents S̃
__

j i.

• The source voltages Vs correspond to the Dirichlet potentials ϕDir, which are defined with the ground
node ϕgnd as their reference node.

• These equivalences also prevail themselves in the physical units.

In summary, the field-circuit relations for EQS read

AG =̂ AC =̂ S̃, (6.3a)
G =̂ Mσ, C =̂ Mε, (6.3b)

AV =̂ AI =̂ I, (6.3c)
v =̂ ϕ, (6.3d)

Is =̂
__

j i, (6.3e)

Vs =̂ ϕDir, (6.3f)

where I is the identity matrix of corresponding size. To find the circuit stamp of each edge in the grid
upon which (3.8a) holds, we employ the equivalences of (6.3) from which the circuit topology is derived.
From (6.3a), conductors and capacitors are placed along the branches of the circuit. According to (6.3b),
the values of the conductors and capacitors are directly taken from the corresponding FIT material matrices.
To this end, the temperature dependence of the materials is neglected and will be discussed in Section 6.2.3.
Current and voltage sources are connected between a circuit node and ground as indicated by (6.3c). Further-
more, (6.3d) shows that the circuit’s nodal potentials are equal to the potentials at the grid points. According
to (6.3e), the current sources in the circuit represent the divergence of the FIT impressed currents. Finally, if
Dirichlet BCs are imposed, voltage sources in the circuit represent FIT Dirichlet potentials as given by (6.3f).
More details about the circuit implementation of BCs are given in Section 6.2.4. To summarize, if we consider
an exemplary grid point Pi and the grid edge Lm connecting Pi to another grid point Pj (or in other words,
one of the 1-cofaces of the 0-cell Pi, see Section 3.1), we obtain a representative EQS circuit stamp as shown
in Figure 6.3.
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(a) (b)

Figure 6.4: Topology of thermal circuit models involving thermal resistors and thermal capacitors. The most
prominent examples are known as (a) Cauer models and (b) Foster models.

6.2.2 Thermal Circuit Representation

In this section, we describe the circuit representation of the subproblem described by (2.15b). As a reference,
let us here repeat its FIT discretization (3.8b), reading

MρcṪ+ KλT = QJ − S̃__qi. (6.4)

By comparing the thermal subproblem (6.4) to the electric subproblem (6.1), the equation structure is very
similar. Nevertheless, thermal capacities are not subject to spatial differences and thus do not link to neigh-
boring nodes. Instead, they influence the change rate of the absolute temperature of a node. Thus, thermal
capacitors are placed along branches connecting each node to a reference node at zero temperature. This
reference node is an additional non-physical node that is introduced to obtain a consistent circuit representa-
tion. In the literature, this approach is also referred to as the Cauer model representing a discretized image of
the heat flow [16]. An equivalent approach is the Foster model, in which the capacitances are placed between
the circuit nodes and the parameters are adjusted accordingly. In the Foster model, the heat propagation is
instantaneous and does not account for the fact that an object requires some delay before changing its tem-
perature. Therefore, it represents a valid behavioral model, but does not describe all physical phenomena
correctly. Figure 6.4 shows the topology of Cauer and Foster models, while algorithms to transform them
into each other are available in the literature [95].

The MNA formulation of (6.2) must be extended by the additional thermal reference ground node such that
it reads

ÂCCÂ>
C
˙̂v+ ÂGGÂ>

G v̂ = −ÂIIs − ÂVIV, (6.5a)

Â>
V v̂ = Vs, (6.5b)

with

ÂC :=
[
I −1

]
, ÂG :=

[
AG 0

]
, ÂI :=

[
I −1

]
, v̂> :=

[
v> vgnd

]
,

where 1 is a column vector of ones of appropriate size and vgnd = Tgnd = 0. With these definitions, the
equivalences between the thermal formulation of (6.4) and theMNA formulation of (6.5) are readily obtained
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Figure 6.5: Equivalent thermal circuit stamp for the exemplary grid point Pi and the grid edge Lm connecting
Pi to another grid point Pj . This figure is taken from [47].

as

AC =̂ AV =̂ AI =̂ I, (6.6a)

AG =̂ S̃, (6.6b)
G =̂ Mλ, C =̂ Mρc, (6.6c)

v =̂ T, (6.6d)

Is =̂ S̃__qi −QJ (6.6e)

Vs =̂ TDir, (6.6f)

where TDir represents the temperatures at Dirichlet boundary points, see Section 3.3.5. To derive the circuit
stamps upon which (6.4) holds, we employ the equivalences in (6.6) from which the circuit topology is
derived. From (6.6a), we infer that capacitances as well as voltage and current sources are directly connected
between a circuit node and the thermal ground. As in the EQS case, conductors connect two neighboring
nodes in the circuit as seen from (6.6b). According to (6.6c), the values of the conductors and the capacitors
are taken directly from the FIT material matrices. To this end, the temperature dependence of the materials
is neglected and will be discussed in Section 6.2.3. As seen from (6.6d), the nodal potentials represent
the sought temperatures. The current source is the sum of the divergence of impressed heat fluxes and
the negative Joule losses, see (6.6e), where the latter are represented by current-controlled current sources
(CCCSs). Finally, if Dirichlet BCs are given, these are modeled by voltage sources in the circuit as stated
in (6.6f). More details about the circuit implementation of BCs are given in Section 6.2.4. To summarize, if
we consider an exemplary grid point Pi and the grid edge Lm connecting Pi to another grid point Pj (or in
other words, one of the 1-cofaces of the 0-cell Pi, see Section 3.1), we obtain a representative thermal circuit
stamp as shown in Figure 6.5.

To further highlight the equivalences between electric and thermal circuits, let us briefly comment on these
relationships. Many quantities in electrical circuits can find their equivalent in thermal circuits. For exam-
ple, electric potentials are equivalent to temperatures while electric currents are equivalent to heat fluxes.
Table 6.1 summarizes some of these equivalences.

6.2.3 Temperature-Dependent Circuit Components

Most materials exhibit a temperature-dependent behavior. For the problems considered in this thesis, the
dominant temperature dependence is attributed to the electric conductivity of the involved materials, see
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Electrical circuit Thermal circuit

Electric potential (V) Temperature (K)
Electric voltage (V) Temperature difference (K)
Electric current (A) Thermal heat flux (W)
Electric charge (C) Thermal energy (J)

Electric conductance (S) Thermal conductance (W/K)
Electric capacitance (F) Thermal capacitance (J/K)

Table 6.1: Equivalences between electric and thermal quantities in circuit representations. This table is taken
from [47].

Section 2.3. In this section, we describe how to account for its temperature-dependent when generating
the corresponding SPICE netlist. Nevertheless, for the temperature dependence of other materials such as
the thermal conductivity or the volumetric mass density, the presented approach can be applied accord-
ingly.

Since the SPICE elements that represent the electric conductivities are conductors allocated to circuit branches,
see Section 6.2.1, we first need to define the temperature of a branch bm. To this end, we take the av-
erage temperature T avg

m of the nodes interconnected by the branch bm. In other words, it is the temper-
ature of the 0-faces of the 1-cell bm, see Section 3.1. Assuming that the temperature dependence of the
electric conductivity is known, the temperature-dependent electric conductance of branch bm is given by

Gm(T avg
m ) = σavgm (T avg

m )
|Ãm|
|Lm|

, (6.7)

where σavgm is the averaged conductivity of the branch bm, in analogy to the one defined for a dual grid facet
in Section 3.3.2. As described in Section 6.2.5, we implement (6.7) by means of behavioral sources in the
SPICE language.

6.2.4 Circuit Implementation of Initial and Boundary Conditions

When a coupled problem of more than one transient differential equation is considered, each subproblem
requires its own initial conditions and BCs. Therefore, we impose these conditions on the EQS and thermal
subproblems separately. However, certain equivalences allow us to follow the same procedure for both sub-
problems. For a general overview of initial conditions and BCs for ET problems, see Sections 2.5 and 3.3.5
for the continuous and discrete case, respectively.

Since every SPICE dialect supports directives to specify initial conditions, we impose these conditions directly
in the netlist. Dirichlet BCs are represented in the circuit by voltage sources between the Dirichlet nodes
and the ground node. Homogeneous Neumann conditions are automatically fulfilled by construction since
no edge or branch leaves the domain. For simplicity but without loss of generality, we do not consider
inhomogeneous Neumann conditions for the present approach of automated circuit extraction. A Robin BC
can be understood as the thermal conduction between a boundary node and an external node n∞ at the
fixed ambient temperature T∞. Therefore, Robin BCs are represented in the circuit by conductors connected
between the boundary nodes and n∞ as shown in Figure 6.6. We collect the relevant BCs and their circuit
implementation in Table 6.2.
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T∞ = const

Figure 6.6: Circuit view of Robin BCs. This figure is taken from [47].

Boundary condition Implementation

Dirichlet Lumped voltage sources
Homogeneous Neumann No edges leaving the circuit

Robin Additional non-physical ground

Table 6.2: Considered BCs and their circuit implementation. This table is taken from [47].

6.2.5 Electrothermal Netlist Generation

Now, we possess all the required ingredients to formulate Algorithm 2 for the automated generation of ET
SPICE netlists from field problems discretized by FIT. For every grid edge Lm that connects the grid points Pi

and Pj (in other words, Lm is the common 1-coface of the 0-cells Pi and Pj), where i < j, the temperature-
dependent electric conductance, the electric capacitance, and the thermal conductance are written to the
netlist to connect the nodes ni and nj of the circuit (lines 2–4). Due to the possible nonlinearity of the
electric conductivity, see Section 6.2.3, a behavioral source is used, where Vij is the voltage between node ni
and nj . Initial conditions for the electric part can be included using a pre-charging of the electric capacitors,
denoted by the directive ic in the netlist. Here, we use zero initial conditions as an example. Additionally,
for every grid point Pi, the thermal capacitance and the CCCS representing the Joule losses are added to the
netlist to connect node ni and the ground node gnd of the circuit (lines 7 and 8). Initial conditions for the
thermal part are stated by specifying the initial temperature T0 as the pre-charging of the thermal capacitors.
If Pi is specified as an electric (thermal) Dirichlet node, an additional voltage source connecting node ni and
the ground node of the circuit is inserted (lines 9–14). Furthermore, if an impressed current (heat flux)
flows out of the dual element surrounding the point Pi, an additional current source is added to the netlist
connecting node ni and the ground node of the circuit (lines 15–20).

6.3 Circuit Representation of Electromagnetic Field Problems

In this section, we neglect thermal effects and derive the circuit representation of general 3D EM field prob-
lems as given by (2.1). However, the thermo-EM coupling can be established analogously. First, we introduce
an auxiliary set notion to collect specific edges and facets of the grid. Then, the Maxwell grid equations
(MGEs) given by (3.6) are transparently mapped into an electric circuit that fully describes the problem at
hand. For the generation of a circuit description corresponding to the magnetic vector potential formulation,
see [47]. Therein, specific circuit stamps that realize absorbing boundary conditions (ABCs) are introduced
as well [84, 162].

In the following, we will take sums over specific edges or facets of the grid. Since the edges and facets in the
neighborhood of a specific edge Lm are of interest, we introduce sets containing collections of these edges
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Algorithm 2 ET SPICE netlist generation. This listing is taken from [47].
1: for each edge Lm ∈ G between primal grid points Pi and Pj do
2: write BGelm ni nj I=VijGm(T

avg
m )

3: write Celm ni nj Mε;m̃m ic = 0
4: write Rthm niT njT M−1

λ;m̃m

5: end for
6: for each node Pi ∈ G do
7: write Cthi niT gnd Mρc;̃ii ic = T0
8: write BLossi gnd niT I=QJ,i(t)
9: if Pi is electric Dirichlet node then

10: write VDirEli ni gnd ϕDir
i (t)

11: end if
12: if Pi is thermal Dirichlet node then
13: write VDirThi niT gnd TDir

i (t)
14: end if
15: if an impressed current flows out of Pi then
16: write IimpEli ni gnd (S̃

__

j i(t))i
17: end if
18: if an impressed heat flux flows out of Pi then
19: write IimpThi niT gnd (S̃__qi(t))i
20: end if
21: end for

and facets and label them with the superscript m. Let us remark here that the concepts of algebraic topology,
as introduced in Section 3.1, are very useful for a precise definition of the relation between different grid
entities. Let Am be the set of all facets in which Lm is embedded, or in other words, let Am be the set of
2-cofaces of the 1-cell Lm, see Section 3.1. For a rectilinear grid, these facets are shown in Figure 6.7. All
edges that are embedded in the facets contained in Am are collected in the set Lm, where this definition
also implies Lm ∈ Lm. We denote by Lm,0 the resulting set after extracting the very edge Lm from Lm, that
is Lm,0 := Lm \ {Lm}. In other words, Lm,0 contains the 1-cells that belong to the boundary of the chain
given by the linear combination of all 2-cells in Am. Additionally, we denote the sets of edges that form
the boundary of a facet Ak ∈ Am by Lm

k and Lm,0
k , where again, Lm,0

k does not contain the edge Lm. The
definitions of the sets Lm, Lm,0, Lm

k and Lm,0
k are visualized in Figure 6.7 for the case of a rectilinear grid.

For such a grid, Lm, Lm,0, Lm
k and Lm,0

k contain 13, 12, 4 and 3 edges, respectively. Lastly, the dual edges
that form the boundary of the dual facet Ãm are collected in the set L̃m

m̃.

We now derive the circuit description that represents the MGEs given by (3.6). The goal is to find an expres-
sion for the electric voltage on one primal edge such that a circuit stamp for each edge is obtained. Let Lm be
the edge of interest with its corresponding dual facet Ãm. To find the voltage _em on Lm, let us consider the
pair of interlocked oriented facets Ak and Ãm as illustrated in Figure 6.8. For this part of the grid, it suffices
to consider only the k-th row of (3.6a) and the m̃-th row of (3.6b) giving

−
∑
n∈Lm

k

Ckn
_ek;n =M−1

ν;k̃k

d
_
hk̃

dt
, (6.8a)
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Lm

(a) Lm

Lm

(b) Lm,0

Lm

Ak

(c) Lm
k

Lm

Ak

(d) Lm,0
k

Figure 6.7: Edge Lm and the four facets collected in Am = {A1, . . . , A4} for a 3D rectilinear grid. The
highlighted edges illustrate the sets (a) Lm, (b) Lm,0, (c) Lm

k , and (d) Lm,0
k . These figures are

taken from [47].

Ak

Ãm

Ckn = −1

Ckn = 1 _em

Ckn = 1

_
hk̃

C̃m̃k̃ = 1

C̃m̃k̃ = −1

Figure 6.8: A pair of interlocked oriented primal and dual facets Ak and Ãm for the case of a rectilinear grid,
respectively. The values of Ckn and C̃m̃k̃ for the edges Ln of Ak and the edges L̃k of Ãm are
annotated. This figure is taken from [47].

and ∑
k̃∈L̃m

m̃

C̃m̃k̃

_
hm̃;k̃ =Mε;m̃m

d_em
dt

+Mσ;m̃m
_em +

__
j i;m̃, (6.8b)

where convective currents have been neglected. Note that m = m̃ and k = k̃, and the difference in the nota-
tion is used solely to underline whether the object is allocated to the primal or to the dual grid. From (6.8a),
the magnetic grid voltage

_
hk̃ allocated to edge L̃k reads

_
hk̃ = −Mν;k̃k

∑
n∈Lm

k

Ckn

∫
_ek;n dt. (6.9)

By inserting (6.9) in (6.8b) for all
_
hm̃;k̃, the voltage

_em on edgeLm is implicitly given by

−
∑
k̃∈L̃m

m̃

∑
n∈Lm

k

C̃m̃k̃Mν;k̃kCkn

∫
_ek;n dt =Mε;m̃m

d_em
dt

+Mσ;m̃m
_em +

__
j i;m̃.

Since Lm is contained in Lm
k , we can extract the contribution of Lm from the sum on the left-hand side such

that
MΣ

ν;m̃m

∫
_em dt+

∑
k̃∈L̃m

m̃

∑
n∈Lm,0

k

__
j c;m̃k̃n +Mε;m̃m

d_em
dt

+Mσ;m̃m
_em +

__
j i;m̃ = 0, (6.10)
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__
j i;m̃ M−1

σ;m̃m

(
MΣ

ν;m̃m

)−1
Mε;m̃m

__
j c;m̃11

__
j c;m̃k̃n

nm

_em

Figure 6.9: Circuit stamp of a primal edge Lm with material matrices mapped into RLC lumped elements as
stated by (6.10). VCCSs account for the interaction with neighboring edges. This figure is taken
from [47].

where

MΣ
ν;m̃m :=

∑
k̃∈L̃m

m̃

C̃m̃k̃Mν;k̃kCkm =
∑
k̃∈L̃m

m̃

Mν;k̃k, (6.11a)

__
j c;m̃k̃n := C̃m̃k̃Mν;k̃kCkn

∫
_ek;n dt. (6.11b)

Still considering the edge Lm, m = m̃, k = k̃, and k̃ ∈ L̃m
m̃, the properties C = C̃>, C̃m̃k̃ ∈ {−1, 1} and

Ckm ∈ {−1, 1} result in C̃m̃k̃ = Ckm and thus, their product equals to unity. However, the product C̃m̃k̃Ckn

can be either −1 or 1 as illustrated in Figure 6.8. Equation (6.10) is the Kirchhoff’s current law (KCL)
associated with the primal edge Lm with _em representing the voltage drop along the edge. In fact, according
to the definitions of the field quantities in (6.10), it is easy to realize that

• _em has unit of voltage (V),

•
__
j i,m̃ has unit of current (A),

• Mε;m̃m is positive and has unit of capacitance (F),

• Mσ;m̃m is positive and has unit of conductance (S),

• MΣ
ν;m̃m is positive and has unit of reluctance (H−1),

•
__
j c;m̃k̃n has unit of current (A).

Thus, by using voltage-controlled current sources (VCCSs) to model
__
j c;m̃k̃n accounting for the contributions

from neighboring edges, we can directly represent (6.10) with the circuit stamp depicted in Figure 6.9, which
preserves the voltage drop between the terminals ofLm. There are as many of these stamps as primal edges in
the 3D grid G, and all of them interact via VCCSs. The concatenation of these elementary stamps constitutes
the electric circuit representing the EM problem at hand.

In Algorithm 3, the steps to generate the netlist corresponding to the EM circuit representation for the entire
grid are listed. A circuit stamp, as shown in Figure 6.9, needs to be created for every edge Lm in the grid,
being realized by a loop in the algorithm. In each iteration, a resistor, an inductor, and a capacitor with the
values taken from the material matrices is added (lines 2–4). If an impressed current source shall be placed
along Lm, an independent current source is used (lines 5–7). Finally, an inner double loop is required to
insert the controlled current sources that model the influence of the edges in the neighborhood. For this
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Algorithm 3 EM SPICE netlist generation. This listing is taken from [47].
1: for edge Lm ∈ G do
2: write Rm nm gnd M−1

σ;m̃m

3: write Lm nm gnd (MΣ
ν;m̃m)−1

4: write Cm nm gnd Mε;m̃m

5: if an impressed current is placed on Lm then
6: write Im gnd nm

__
j i;m̃

7: end if
8: for edge L̃k ∈ L̃m

m̃ do
9: for edge Ln ∈ Lm,0

k do
10: write Fmn gnd nm _ek;n gI

m̃k̃n
11: end for
12: end for
13: end for

purpose, we choose to insert CCCSs being controlled by the current MΣ
ν;ñn

∫
_ek;n dt with a gain of (lines 8–

12)
gI
m̃k̃n

:= C̃m̃k̃Mν;k̃kCkn(M
Σ
ν;ñn)

−1.

By abuse of notation, we denote the controlling device by _ek;n.

6.4 Numerical Examples

In this section, the presented methodology to generate circuit stamps representing 3D field problems is ap-
plied to several representative numerical examples. In Section 6.4.1, we use the netlist extraction method as
described in Section 6.2 on an ET model problem consisting of a 3D field problem corresponding to the series
connection of a capacitor and a resistor. Applying an external voltage, the transient heating due to the result-
ing current is simulated using SPICE, and then compared to a reference solution obtained by a field solver. To
quantify the scalability of state-of-the-art circuit simulators, a convergence study with up to 1 000 028 circuit
elements and 400 024 unknowns is presented. In Section 6.4.3, we apply the method of circuit extraction for
EM field problems as described in Section 6.3 to compute the resonant frequencies of a rectangular cavity
with perfect electric conducting (PEC) boundaries. For this example, the availability of an analytic formula
for the resonant frequencies permits a direct error assessment. For all presented examples, the Matlab code
to generate the corresponding netlists from the discretized 3D field problem is freely available [51]. All cir-
cuit simulations in this section were carried out using the freely available LTspice in its version 4.22x with
default settings. Thus, LTspice uses the modified trapezoidal rule together with an adaptive time integration
scheme, and a sparse LU decomposition to solve the linear systems of equations. On the other hand, the
field solver is based on FIT, see Section 3.3, uses the fractional step method as described in Section 3.4, and
applies Matlab’s backslash operator to solve the resulting linear systems.

6.4.1 Electrothermal RC Block

To verify the netlist extraction method for an ET problem, we consider the Joule heating in a 3D field model
represented by a series connection of a resistor and a capacitor. The temperature dependence of the electric
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Figure 6.10: Geometry of the ET test case. The series connection of a resistive part and a capacitive part
is excited with a voltage source Vapp imposed as a Dirichlet condition. This figure is taken
from [47].

Symbol Description 0 < x < ` ` < x < `+ d

σ (S/m) Electric conductivity 1× 10−4 0
εr Relative permittivity 1 3.9

λ (W/K/m) Thermal conductivity 401 1400
ρc

(
J/K/cm3

)
Volumetric heat capacity 3.48 2.10

α (1/K) Temperature coefficient 3.9× 10−3 –

Table 6.3: Material properties at the reference temperature T0 = 293K for the ET test case. This figure is
taken from [47].

conductivity is manifested via the temperature coefficient α = 3.9 × 10−3 1/K. The relevant configuration
is realized by a brick of two different materials as shown in Figure 6.10. The brick is of dimension 0.4 ×
0.1× 0.1µm3, with the resistive part having a length of ` = 0.3µm, and the capacitive part having a length of
d = 0.1µm. At x = 0 and x = ` + d, PEC electrodes are used. Table 6.3 summarizes all material properties
at a reference temperature of T0 = 293K.

An equidistant spatial grid with 9 × 9 × 9 cells is employed and the simulation time amounts to t1 = 13µs.
We use Algorithm 2 to generate the corresponding netlist, where we use behavioral sources instead of CCCSs
for a straightforward incorporation of the Joule losses. For the adaptive time stepping as applied by LTspice,
we choose initial time step of ∆tinit = 0.13µs. To counteract the lower order time stepping scheme of the
field solver, the non-equidistant time axis obtained by LTspice is refined by a factor of three before it is used
for the fractional stepping. A voltage Vapp = 1 kV(1− exp(−t/τ)) with τ = 0.1t1 is applied at the electrodes
as shown in Figure 6.10. Using this setting, two simulations are run. The first run neglects the temperature
dependence of the conductivities and thus a linear setting ensues. The second run accounts for the temper-
ature dependence of the electric conductivity via the temperature coefficient α entailing a nonlinear setting.
To observe the transient behavior, we select the resistor–capacitor interface point ~x0 = (`, 0, 0) as observation
point and plot the potential and temperature in Figure 6.11.

For a quantitative error assessment of the solution, we define themeasures

∆ϕ =
maxi‖ϕCir(ti)−ϕFIT(ti)‖2

maxi‖ϕFIT(ti)‖2
, ∆T =

maxi‖TCir(ti)− TFIT(ti)‖2
maxi‖TFIT(ti)‖2

, (6.12)
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Figure 6.11: Results of the ET test case at ~x = ~x0 for (a) the electric potential ϕ and (b) the temperature T. A
comparison between the FIT and circuit simulation results is shown for the linear and nonlinear
cases. These figures are taken from [47].

where ϕCir, ϕFIT, TCir and TFIT are the potential and temperature solution vectors obtained via circuit and
FIT simulation, respectively. To calculate these errors, the circuit solution is interpolated to the time axis
employed by the FIT solution using cubic spline interpolation. Let us remark that the quantities in (6.12)
are not errors in the classical sense since none of the solutions is exact. The computed differences amount
to∆lin

ϕ ≈ 0.36% and∆lin
T ≈ 0.48% for the linear case and∆nlin

ϕ ≈ 0.42% and∆nlin
T ≈ 0.44% for the nonlinear

case. The remaining error is assumed to be attributed to the different time integrators.

6.4.2 Convergence of Circuit Simulation

To analyze the convergence of the solution obtained by circuit simulation, we consider a 1D stationary ET ex-
ample with an available analytical solution. We use the example from Figure 6.10, which exhibits 1D behavior
for a symmetric excitation. In particular, we neglect the transient and impressed terms in (3.8), generate the
corresponding netlist using Algorithm 2, and solve the problem using LTspice. While using only one element
in y- and z-direction, the number of elements in x-direction is varied. Figure 6.12 shows the convergence of
the relative error ε3D

L2(T)with respect to the analytical solution, giving the expected second order convergence.
For the finest resolution of 80 024 unknowns, a relative error of ε3D

L2 ≈ 5.652×10−9 is achieved and it stagnates
for further refinements. This error is obtained by an LTspice simulation which requires about 410 s on an Intel
Core i7-3820 with 16GB of memory. However, more optimized circuit simulators for large circuits are avail-
able. Using Xyce [128] to solve the problem on the same machine demonstrates this benefit by requiring only
about 40 seconds. Pushing the capabilities of Xyce to a limit, the simulation of a refinement with 1 000 028
circuit elements and 400024 unknowns finished after about 14 minutes.

6.4.3 TE and TM Modes in a Cubic Resonant Cavity

In this section, we verify the method presented in Section 6.3 for the circuit representation of EM field
problems. To this end, a lossless rectangular resonant cavity with PEC boundaries and outer dimensions of
a × b × d = 0.1 × 0.2 × 0.2m3 is considered and its resonant frequencies are computed. In such a resonant
cavity, depending on the excitation and the BCs, transverse electric (TE) and transverse magnetic (TM) modes
are established at the cavity’s resonant frequencies [122]. This cavity example is quite illustrative and easy
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Figure 6.12: Second order convergence in space of the relative temperature error ε3D
L2(T) obtained by field

and circuit simulation with respect to the analytical solution of the stationary ET problem. The
result for the circuit simulation is taken from [47].

to implement because it suffices to not print the circuit stamp associated with tangential edges on the wall,
meaning that the associated stamps are short-circuited. The homogeneous material within the cavity is
specified by the relative permittivity εr = 2 and the relative permeability µr = 1. The resonant frequencies
can be calculated by means of the formula [99]

fmnp
r =

c0
2
√
µrεr

√(m
a

)2
+
(n
b

)2
+

(p
d

)2
,

where c0 is the speed of light and {m,n, p} are the indices of the resonant modes, given by the natural
numbers including zero. For these resonant frequencies, the TE and TM field components are given by

Hmnp
z =Hmnp

0 cos
(mπ
a
x
)
cos

(nπ
b
y
)
sin

(pπ
d
z
)
, (6.13a)

Emnp
z =Emnp

0 sin
(mπ
a
x
)
sin

(nπ
b
y
)
cos

(pπ
d
z
)
, (6.13b)

respectively, where Hmnp
0 and Emnp

0 are the corresponding field amplitudes. For a TE (TM) mode mnp to
exist, Hmnp

z (Emnp
z ) must not become zero.

To simulate the excitation of modes within the cavity, we discretize the interior of the cavity using a rectilinear
grid of 10 elements in each direction and apply PECs upon all cavity walls. Then, we obtain the resonant
frequencies by solving the generalized eigenvalue problem given by

C̃MνC_e =
(
2πfFITr;E

)2Mε
_e,

where a resonant frequency is denoted by fFITr;E . Alternatively, we can use appropriate excitations to analyze
the resulting field at a set of given frequencies. For example, TMmodes are excited by using an electric current
source allocated at a primal edge that is oriented along the positive z-direction and attached to the central
grid point. In a similar manner, TE modes are excited by means of a looping electric current source located
in the cavity center. We then solve the discretized problem given by

(C̃MνC− ω2Mε)
_e = −jω

__

j i

for a set of angular frequencies ω, where
__

j i is the current source vector whose entries are all zero except at the
corresponding source edges. The frequency axis from 0.5 to 3GHz is discretized using 2000 points for the TM
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Figure 6.13: Integrated fields with respect to frequency for the (a) TE and (b) TM modes by using FIT and
by using circuit simulation. These figures are taken from [47].

Mode mnp fFITr;E fCirr;TE fFITr;TE fCirr;TM fFITr;TM fmnp
r εr;TE (%) εr;TM (%)

011 0.746 0.746 0.747 — — 0.749 0.0471 —
110/101/012/021 1.180 1.169 1.169 1.180 1.180 1.185 0.0030 0.0086

111 1.293 1.293 1.293 1.293 1.293 1.298 0.0270 0.0216
121 1.575 1.575 1.575 1.574 1.574 1.590 0.0354 0.0262
013 1.620 1.621 1.620 — — 1.676 0.0050 —
122 1.853 1.853 1.853 1.860 1.861 1.836 0.0244 0.0465

Table 6.4: Analytical and simulated resonant frequencies in GHz for several resonant modes and the corre-
sponding relative errors. Due to the modes in the cavity being degenerated, an exact identification
of the mode indices from the plots in Figure 6.13 is not possible. This table is taken from [47].

excitation and 3000 points for the TE excitation. The results are evaluated on one edge for each excitation
type. For the TM case, an edge in positive z-direction connected to the central grid point is used while for
the TE case, an edge in positive x-direction connected to the point (5,6,10) cm is used. In Figure 6.13, the
integrated fields _ex(ω) and _ez(ω) along these edges are plotted with respect to frequency. From the peaks in
the plots, the corresponding resonant frequencies fFITr;TE and fFITr;TM are identified. Note that we have used the
function findpeaks of Matlab R2017a to identify the peaks in the plot.

To verify our circuit extraction method for EM problems, we generate the netlist of the resonant cavity
according to Algorithm 3 and simulate the resulting circuit in LTspice by performing an AC analysis in the
same frequency range as before. Due to the integral term in the expression for

__
j c;m̃k̃n in lines 8–12 in

Algorithm 3, a direct translation into VCCSs is not possible. Instead, behavioral sources or CCCSs can be used.
We then identify the circuit voltages corresponding to _ex(ω) and _ez(ω) and plot them directly in Figure 6.13
for a comparison. The circuit resonant frequencies fCirr;TE and fCirr;TM are again identified by means of the peaks
and we collect the computed resonant frequencies for the first few modes in Table 6.4. Note that, according
to (6.13), the TM-mode does not exist form = 0. Additionally, the errors

εr;TE :=

∣∣∣fFITr;TE − fCirr;TE

∣∣∣
fFITr;TE

, εr;TM :=

∣∣∣fFITr;TM − fCirr;TM

∣∣∣
fFITr;TM

are presented. For all modes, these errors are smaller than 0.1%.
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6.5 Summary

Circuit simulation is still a very important method used by electric engineers to design electronic devices.
First, we recalled currently available methods for the construction of these circuits. In the main part of
this chapter, we proposed a novel method for the generic automated netlist generation corresponding to 3D
electrothermal (ET) field problems. We introduced the individual circuit stamps as required for the elec-
troquasistatic (EQS) and the thermal subproblems. Then, we discussed temperature-dependent materials
and the specification of initial and boundary conditions (BCs). With all required information at hand, we
were able to provide an algorithm for the automated ET netlist generation such that an exact representation
of the discretized field problem is obtained. Moreover, we applied a similar procedure to obtain a circuit
representation for general electromagnetic (EM) field problems. To close this chapter, some numerical exam-
ples showed the convergence of the circuit simulation when using the netlists as generated by the proposed
algorithms.
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7 Application to Problems in Micro- and

Nanoelectronics

In the scope of the nanoCOPS project [149], methods applicable to problems in micro- and nanoelectronics
were developed. Particular focus lay on the fields of power electronics and nanoelectronic devices. For the
design of nanoelectronic devices, electrothermally coupled field simulation is indispensable [192]. Thanks to
the dominating rectangular geometries in these applications, see Figure 1.1a, a finite integration technique
(FIT) discretization is very practical; thus, it is also used by Magwel, one of the industrial members of the
nanoCOPS-consortium. Moreover, micro- and nanoelectronic chip designs may be decomposed into 2D layers
to allow for efficient simulations. This chapter presents two examples of application from the field of micro-
and nanoelectronics. However, the area of possible applications is vast and may even originate from other
disciplines, such as blood flow in thin tubular structures in a human body [53, 70, 71]. First, electrothermal
(ET) simulation for thermal-aware placement in digital circuit designs is discussed in Section 7.1. Secondly,
in Section 7.2, we compute failure probabilities of bond wires in a microelectronic chip package using a
coupled 1D–3D ET simulation.

7.1 Thermal-Aware Placement in Digital Circuit Design

One field of applications in which ET considerations are of high importance is the design of integrated circuits.
Such a design process typically consists of the steps known as circuit design, physical design, verification,
and fabrication. First, during the circuit design, the desired functionality is built and verified using a circuit
simulator. Secondly, a layout of the resulting circuit is generated during the physical design step, which
includes the placement and routing of the different standard cells. Thirdly, before the final fabrication, the

(a)

Tmin

Tmax

(b)

Figure 7.1: (a) Current density distribution within the interconnects of a circuit design. (b) Three-
dimensional heat map as the result of the in-house FIT solver.
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verification step may include different simulation runs to ensure that a robust and functional chip is obtained.
It is important that an estimation of a layout’s robustness is carried out as early as possible, such that enough
time and options for corresponding countermeasures remain available. Especially during the physical design
step, thermal considerations are of major importance such that they enter the algorithms for the placement
of the standard cells. This requirement becomes increasingly pronounced due to the continuous shrinking of
the size of the components in the field of electronics.

One of the most important failure mechanisms in integrated circuits is electromigration, which itself is highly
dependent on the temperature. Thus, high temperature locations would be inconvenient for standard cells
which are critical to electromigration. Most placement algorithms calculate standard cell locations iteratively;
hence, numerical simulations may be executed between these iterations to gain additional information. In
the classical approach, numerical simulations are carried out outside the physical design step without a direct
feedback for the placement algorithms. However, for an efficient thermal-aware placement, ideally, the nu-
merical simulations must be carried out directly within the placement software to enable a direct feedback for
an iterative improvement of the design. One step in this direction was proposed by [22] with the introduction
of a layout-driven discretization which reduces discretization time and hence enables an efficient numerical
simulation in between the iterations of the placement algorithm.

As an example, Figure 7.1a shows the interconnects of an integrated circuit design. The color indicates the
current density of the different connections which results in heat sources due to Joule losses. Computing these
losses, the resulting temperature distribution can be obtained as the solution to the heat equation. Using FIT
to solve this equation, such an exemplary temperature distribution is shown in Figure 7.1b. One advantage
of using FIT for this problem is that the regular placement grid as typically used in electronic designs may be
used directly as the rectilinear computational grid for the field solver.

7.2 Microelectronic Chip Package

In this section, an industry-relevant microelectronic chip package model is modeled for ET field and circuit
simulation. The material for this section was partly taken from [47, 48, 50]. Figures 7.2a and 7.2b show
X-ray pictures of the package, where Figure 7.2a shows a top view of the package and Figure 7.2b shows
a perspective view. The chip itself resides at the center of the package and is connected via bond wires to
the contact pads at the boundary of the package. Since package designers are interested in the reliability of
these bond wires, we compute failure probabilities using suitable algorithms, see Chapter 4. An example of
failing bond wires is shown in Figure 7.2b, in which the bond wires have suffered from a high stress level
that resulted in a breakage of the wires.

For the simulation, the computational domain D represents the chip package modeled as shown in Fig-
ure 7.2c, with a computational grid generated by CST DESIGN STUDIO. For simplicity, we assume all ma-
terial characteristics to be linear and refer to Appendix A for more details about the chip geometry and its
parameters. Section 7.2.1 demonstrates the computation of the bond wire temperatures that are efficiently
modeled and discretized by the 1D–3D coupling method as presented in Chapter 5. Then, an ET circuit is
extracted using the automated ET netlist generation algorithm from Chapter 6 to demonstrate the agree-
ment of circuit and field simulation. With the computation of wire temperatures available, the probability
of system failure is defined in Section 7.2.3. Next, the hybrid iterative algorithm from Chapter 4 is used to
compute the system failure probability in Section 7.2.4. Finally, Section 7.2.5 assesses the computational
efficiency of a surrogate model for the determination of failure probabilities when using the hybrid iterative
algorithm.

98



(a) (b) (c)

Figure 7.2: (a) Top view and (b) perspective view of X-ray pictures of a microelectronic chip package [150].
In (b), some wires have broken due to thermal stress. (c) Model of the chip package with applied
bond wires [48].

7.2.1 Temperature of Bond Wires

The bond wire failure model used in this chapter is solely based on a wire’s temperature. Therefore, we
compute the temperature distribution for the different wires using the ET model given by (5.1). For each
wire, the 1D–3D coupling as presented in Chapter 5 is carried out using a coupling radius rcpl = H

2
κ and

N1D = 4 1D points, where H is the height of the bond wires, κ is their maximal Frenet-Serret curvature [90,
202]. In addition to the initial 3D grid as generated by a proprietary meshing tool, the grid lines are inserted
at the 1D wire discretization points and at the 1D–3D coupling points, yielding 297 648 3D nodes and an
average step size of h ≈ 4.05× 10−5m. The time discretization is given by Nt = 10 time steps with t1 = 1 s
and we apply a voltage of Vapp = 0.1V along each wire. For h = 1/3, we solve (5.19) using the fractional step
method as discussed in Section 3.4 and obtain the results for ϕh(t1), ϕh(t1), Th(t1), and Th(t1) as shown in
Figures 7.3 and 7.4. The presented results demonstrate the capability to predict the temperature distribution
in a chip package including the temperature profile of the bond wires.

7.2.2 Circuit Model

Now, let us apply the circuit extraction method as described in Chapter 6 to the 3D microelectronic chip
package as shown in Figure 7.2c. For this example, only wire 9 is included in the model. The field problem is
discretized as described in Chapter 3 and Algorithm 2 is used to generate the corresponding ET netlist. The
resulting netlist contains 101 147 circuit elements to describe a field problem that has been discretized on a
3D grid with 9660 nodes. Running a transient analysis of this netlist, a relative error of ∆ϕ ≈ 0.23% and
∆T ≈ 0.17% compared to the field simulation is achieved. For the definition of these error measures, see
Chapter 6. Figure 7.5a compares the temperature of the hottest point in the chip package obtained by FIT and
circuit simulation. The 3D temperature distribution in the chip package resulting from circuit simulation is
shown in Figure 7.5b. In summary, for a 3D ET problem, we achieve a good agreement of the circuit simulation
results compared to those obtained by the corresponding field solver and we assume the remaining error to
be attributed to the different time integrators. We recall that the possibility to replace a field model by a
netlist without any loss of accuracy opens many perspectives in the simulation of electronic devices, e.g., it
allows to embed complicated field behavior in traditional circuit models.

99



0 0.2 0.4 0.6 0.8 1

0

50

100

Wire parameterization s

1D
so
lu
tio

n
ϕ

h
(t

1
)
in

m
V

wire 1
wire 2
wire 3
wire 4
wire 5
wire 6
wire 7
wire 8
wire 9
wire 10
wire 11
wire 12

(a)

{ϕh(t1),ϕh(t1)}
in V

(b)

Figure 7.3: Resulting electric solution for the ET chip package simulation using grids with h ≈ 8.51× 10−5m
and h = 1/3. (a) 1D solution ϕh(t1) for the 12 wires attached to the 3D chip package. For the
wire numbering, see Figure 7.2c. (b) 3D solution ϕh(t1) at z = 150µm in the xy-plane. These
figures are taken from [48].
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Figure 7.4: Resulting thermal solution for the ET chip package simulation using grids with h ≈ 8.51× 10−5m
and h = 1/3. (a) 1D solution Th(t1) for the 12 wires attached to the 3D chip package. For the
wire numbering, see Figure 7.2c. (b) 3D solution Th(t1) at z = 150µm in the xy-plane. These
figures are taken from [48].
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Figure 7.5: (a) Temperature at the hottest point of the chip package obtained by FIT and circuit simulation.
(b) Temperature distribution in the chip package obtained by circuit simulation. These figures
are taken from [47].

7.2.3 System Failure Probability

One reason why bond wires are subject to failure is given by Joule heating effects that stem from the cur-
rents in the wires. We define a system failure as the breakage of at least one of the bond wires in the chip
package. We thereby assume that a system’s failure originates predominantly from the bond wires them-
selves and hence neglect any other possible source of failure. Due to manufacturing tolerances, the geometry
of the bond wires is subject to uncertainty, which we model by the realization y of a random variable, see
Chapter 4. To avoid resolving this uncertainty in the grid, we model the geometrical uncertainty by the
electric and thermal conductances of the wires such that they become dependent on y. Then, based on the
discrete problem (5.18), the ET solution becomes dependent on y and we obtain the stochastic setting as

K̂σ(T, y)ϕ(t, y) = 0, (7.1a)

MρcṪ(t, y) + K̂λ(y)T(t, y) = Q̂(ϕ,T, y), (7.1b)

where the wire contribution is included in K̂σ and K̂λ. In contrast to (5.18), we explicitely denote the time
dependence. To evaluate the ET problem for failure, we use the performance function g(y) = g(ϕ(y),T(y)),
see Chapter 4.

Let us first define the failure condition for a single wire and come to the precise definition of system failure
afterwards. The breakage of a single bond wire may be induced by stress, electromigration, or other reasons,
and is modeled by a critical temperature Tcr that we assume to be equal for all wires considered here. Then,
a failure occurs when the wire’s maximal temperature Tw := maxj=1...N1D T exceeds the critical temperature
Tcr at any instant in time, where T = ΠT as defined in (5.15). The corresponding condition is given by

max
t∈I

Tw(t, y) > Tcr, (7.2)

and the performance function g reads

g(y) = −max
t∈I

Tw(t, y) + Tcr. (7.3)
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Symbol Description Value

Tcr Critical temperature 523K
N No. of uncertain wires 2
M No. of samples 1× 105
p Polynomial degree of surrogate 1
η Tolerance for hybrid algorithm 1× 10−10

Table 7.1: Settings for the computation of the hybrid failure probability.

For a system of N bond wires, we define a system failure to occur if any of these wires fails, resulting in the
corresponding condition given by

max
i=1,...,N

max
t∈I

Tw,i(t, y) > Tcr.

It has been observed that the maximum over all bond wires gives rise to a non-smooth performance func-
tion [145]; hence, it is difficult to approximate with polynomials. Therefore, for an efficient surrogate ap-
proximation, we use (7.3) to compute the failure probability P hyb

F,i for every wire independently, see Chapter 4
for the general definition of failure probabilities. This also requires the repetitive application of Algorithm 1
to every wire, as the {yj}Mj=1 are reordered for each wire. In general, the event of a failure of a single wire
is not independent from the event of a failure of another wire. Hence, we deduce from the basic axioms of
probability theory, that the system failure probability can be estimated as

P
hyb
F,s ≤

N∑
i=1

P
hyb
F,i . (7.4)

7.2.4 Hybrid Failure Probability

Now, we apply Algorithm 1 to compute the hybrid system failure probability of the chip package with bond
wires of uncertain geometry. The goal of a bond wire designer is to dimension the bond wires such that a
small failure probability at minimal cost is obtained. For simplicity, we assume the lengths of the wires to be
predetermined by the package, leaving the wires’ diameter as the design parameter. The uncertain quantities
y are modeled as the relative change of the bond wire lengths. Therefore, we assume that the diameter of
a wire is precisely controlled by the manufacturing process and that wire i is solely subject to an uncertain
length li = li0/(1− yi), with a deterministic length li0.

For simplicity, we choose bond wires 1 and 2 to be subject to an uncertain length, while the parameters
of all other wires are assumed to be known exactly. Thus, N = 12 wires are included in the problem, but
only N = 2 uncertain parameters are involved, simplifying the setup of the surrogate model. For the high-
dimensional case of N = 12, we refer to [145]. For both wires, we choose yj to be uniformly distributed in
the interval [E[Y ]− σ2Y ,E[Y ] + σ2Y ], with E[Y ] = 0.17 and σ2Y = 0.048. In this section, a first order surrogate
(p = 1) withM = 1× 105 samples is used. The tolerance to determine the termination of the hybrid iterative
algorithm is chosen to η = 1× 10−10. We further assume that a designer has specified the radius of all wires
and we compute the corresponding failure probability using Algorithm 1. The settings as used for the hybrid
iterative algorithm are summarized in Table 7.1.

We apply a constant voltage Vapp = 40mV over the bond wires and convective thermal boundary conditions
(BCs) at all boundaries with the heat transfer coefficient hcv = 25W/(m2K), resulting in a stationary thermal
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Figure 7.6: Expected value of the temperature of bond wire 9 over time with 6σT variation in blue evaluated
using the hybrid iterative algorithm with δM = 10. The horizontal red line shows the critical
temperature Tcr as a reference for the failure condition. This figure is taken from [50].

state. Figure 7.6 depicts the expected value of the temperature of bondwire 9 as a result of the hybrid iterative
Algorithm 1 with δM = 10. The red horizontal line shows the critical temperature Tcr as a reference for the
failure condition. Furthermore, error bars showing the 6σT -deviation are plotted, where σT is the standard
deviation of the temperature. As such, σT is a statistical moment measured at the output, see Section 4.1 for
the difference between input and output variables. At the end time t1 = 50 s, this standard deviation is given
by σT = 1.10K.

From Figure 7.6, we see that a small but nonzero failure probability is expected since the 6σT deviation crosses
the reference line for a wire failure. Note that in proper six sigma design, the upper limit of the six sigma
interval would be expected to be entirely below the red line. However, the present setting was chosen such
that an exemplary nonzero hybrid failure probability may be computed.

We recall that the quantification of failure probabilities based on even very accurate surrogate models may
be inaccurate [141]. Hence, we use Algorithm 1 to compute the failure probability of each wire separately
with different values for δM . Since wires 9 and 10 are the shortest wires in the model, they exhibit a higher
conductance than all other wires. Together with the voltage-driven excitation, the highest temperatures are
observed for these two wires. Due to this setting, the used number of samples does not resolve the very rare
failure probabilities of the other wires and they compute to zero.

The resulting evolutions of the hybrid failure probabilities of wire 9 and 10 are shown in Figure 7.7. The com-
puted failure probability for wire 9 reads P hyb

F,9 ≈ 0.013 and the one for wire 10 reads P hyb
F,10 ≈ 0.0071. It can be

observed that the computed value of the failure probability changes only slightly during the execution of the
algorithm. The reason for the small variation is that a change in the failure probability only occurs if a sample
falls within the very small threshold region, see Figure 4.2. Additionally, we note that the number of required
iterations until convergence depends highly on the value of δM . Moreover, the algorithm might not converge
if δM is too small. This is, e.g., observed for δM = {2, 4} in the case of wire 9 and for δM = {2, 4, 6, 8} in
the case of wire 10, see Figure 7.7. Hence, to ensure the accuracy of the final probability estimate, repetitive
runs of Algorithm 1 with different choices of δM are recommended.

Apart from the failure probability of a single wire, an estimate for the system failure probability was given
in Section 7.2.3. With (7.4) and for the different values of δM , the results range from 0.0191 to 0.0200,
see Table 7.2. However, we recall that the results for δM = {2, 4, 6, 8} have not converged as observed from
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Figure 7.7: Hybrid failure probability (a) P hyb
F,9 and (b) P hyb

F,10 over iteration k for bond wires 9 and 10, respec-
tively, and different choices of δM . These results are based on [50].

δM 2 4 6 8 10

P
hyb
F,s 0.0191 0.0192 0.0197 0.0197 0.0200

Table 7.2: Hybrid system failure probability P hyb
F,s for different δM . These results are based on [50].

Figure 7.7. As alreadymentioned, the failure probability of all other wires was computed to zero since none of
theMonte Carlo (MC) samples falls neither in the failure region nor in the threshold region defined by δ. Thus,
the algorithm for these wires converges directly after the first iteration.

7.2.5 Efficiency of Surrogate Model

For the results as presented in Section 7.2.4, the surrogate model is constructed using a tensor grid with
(p+ 1)N collocation points for which the full model needs to be evaluated. Therefore, the effort to con-
struct the surrogate model depends on the number of uncertain parameters and on its polynomial degree.
Furthermore, the number of required iterations to execute Algorithm 1 depends on the choice of δM as it
is visible from Figure 7.7. In Table 7.3, the total number of full model calls to calculate the hybrid failure
probability of wires 9 and 10 is given as a function of the polynomial degree p and the iteration parameter
δM . Comparing surrogate degree 1 and 2 under the condition that convergence was observed for the chosen
δM , it is seen that the accuracy of the higher order surrogate leads to less iterations and therefore less full
model calls. Furthermore, for degree 3, it is observed that the algorithm terminates directly after only one
iteration.

The cost of using a surrogate with p = 3 is comparable to the case p = 2. However, the hybrid itera-
tive algorithm with surrogates of degree p > 3 requires a more expensive setup without giving more ac-
curate results. In the best case of p = 2 and δM = 2, the system failure probability for this example is
obtained by using only 22 instead of M = 1× 105 full model evaluations in the case of pure MC sam-
pling.
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Wire p
δM

2 4 6 8 10

9
1 16 20 106 108 114
2 11 13 15 17 19
3 18 20 22 24 26

10
1 12 40 46 44 124
2 11 13 15 17 19
3 18 20 22 24 26

Table 7.3: Number of full model calls to compute the hybrid failure probabilities for wires 9 and 10 in depen-
dence of the surrogate polynomial level p and the iteration parameter δM . The number of model
calls to set up the surrogate model is included in the data. These results are based on [50].

7.3 Summary

In this final chapter, possible applications of the presented methods have been pointed out. First, the im-
portant field of thermal-aware placement of electronic components in digital circuit design was discussed.
Considering the predicted temperature distribution already in the placement and routing steps, hot spots in
the final design can be avoided. By this approach, a more homogeneous temperature distribution is obtained,
which may yield a longer lifetime of the individual components and thus, of the entire device. Secondly, the
electrothermal (ET) simulation of a microelectronic chip package including bond wires was presented. To
determine the temperatures of the different wires, the thin wire approach from Chapter 5 was applied. Fur-
thermore, using Algorithm 2 from Chapter 6 to extract an ET circuit from the 3D field problem with the
wires inserted as lumped elements, a good agreement of field and circuit simulation was achieved. After
establishing a way of computing the temperature of the bond wires, we were able to compute failure prob-
abilities for the individual wires, yielding a system failure probability for the considered microelectronic
chip package. To evaluate this system failure probability efficiently, we used a hybrid iterative algorithm
together with a polynomial surrogate model, see Chapter 4 for details. The efficiency of the considered
surrogate model was assessed by collecting the number of full model calls for different polynomial levels
of the surrogate, and for different values of the empirical parameter δM as used by the hybrid iterative
algorithm.
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8 Conclusions and Prospects

Driven by the impressive developments in micro- and nanoelectronics during the last decades, this thesis
dealt with the evaluation of failure probabilities of thin wires in chip packages. Due to the steadily shrinking
feature sizes in electronics, power densities increase and thermal problems arise. These thermal issues moti-
vate the application of electrothermal (ET) field and circuit simulation, which was used to determine failure
probabilities of bond wires in chip packages.

One particular challenge for the simulation of problems involving thin wires is the discrepancy between the
typically small diameter of the wires compared to the size of the surrounding package. As an alternative
to resolving the wires in the 3D grid, it has been shown that a 1D–3D coupling can lead to substantial
computational savings. The main challenge of this problem was identified to be the solution-dependent line
source term in the 3D domain. Using the theory of de Rham currents to describe the arising singularities,
a consistent continuous and discrete formulation of the 1D–3D ET coupling has been derived. To put this
work into context, it has been shown that the considered problem is closely related to fluid flow in porous
3D media with 1D fractures as, e.g., investigated by [53, 70, 72]. In particular, the thin wire formulation
follows from the limit case of an infinite permeability between the 3D medium and the 1D fracture. The
coupling condition follows the work in [53, 70, 72] to average the 3D solution at a coupling radius around a
wire to define the 1D solution. In this thesis, it became evident that an additional scaling factor is required
to yield a physical solution. It was shown numerically that a grid grading towards the 1D wire alleviates
the deteriorated convergence rate and that the solution is independent of the coupling radius. However, the
latter is only true for straight wires, or in a sufficiently small neighborhood of a bent wire. Moreover, a direct
coupling when using a zero coupling radius reduces the order of convergence. Apart from the implementation
for the purposes of this thesis, the proposed approach was also implemented by an industry partner in the
nanoCOPS project using a coarse 1D grid and a zero coupling radius.

To provide a generic method for the construction of equivalent circuit models, a method for the loss-free
automated generation of netlist descriptions for general 3D ET and electromagnetic (EM) problems has been
presented. The topology of each circuit stamp associated with primal grid edges has been derived using the
finite integration technique (FIT) for the spatial discretization. However, there is no general restriction to
apply the present approach also to other discretization schemes, such as the finite element (FE) method.
Exploiting the similarities of the topological FIT matrices and the non-reduced circuit incidence matrix as
used in the modified nodal analysis (MNA), the FIT-discretized ET formulation was mapped into a circuit
that can be solved by any SPICE-like program. When temperature-dependent materials are involved, the
corresponding nonlinear circuit elements can be described by behavioral sources. To include thin wires in
the circuit model, the 1D–3D coupling approach was used together with a coarse 1D discretization and a zero
coupling radius such that additional circuit elements represent the wires. For the generation of EM circuits,
the full set of Maxwell’s equations was used as the starting point and transformed into a set of circuit stamps,
each representing a primal grid edge. Thanks to the straightforward mapping from the 3D field discretiza-
tion into a circuit, no further approximations are introduced, i.e., the circuit is an exact representation of the
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discretized field problem. Thus, state-of-the-art circuit solvers can be exploited to deal with the coupling,
the nonlinearities, and the time integration. With this generic and accurate method at hand, many perspec-
tives for the simulation of electronic devices open up, e.g., it allows to embed complicated field behavior in
traditional circuit models.

To investigate numerical errors and convergence rates of the proposed methods, well-chosen model problems
were investigated. Moreover, the ET simulation of a chip package including bond wires was presented.
Being interested in the failure probability of the entire system, it was assumed that failure originates from
the overheating of a bond wire. Therefore, the failure probability of a single wire was considered, where
failure was defined by its temperature exceeding a certain critical value. Due to the typically small failure
probabilities for bond wire designs, classical Monte Carlo (MC) sampling would require a very large number
of samples; thus, a hybrid iterative approach was used. This hybrid approach is understood as a compromise
between running an expensive 3D field solver and the cheap evaluation of a polynomial surrogate model as
an alternative. As a result, the hybrid system failure probability could be computed with a substantial saving
of full model evaluations. Furthermore, it was shown that a more accurate surrogate model leads to a faster
convergence of the iterative algorithm. When choosing the surrogate model, one has to consider the trade-off
of its setup cost against the gain in computational efficiency. Nevertheless, compared to pure MC sampling,
even the simplest surrogate models showed a significant speedup. The drawback of the presented algorithm
lies in the parameters δM and η that need to be determined empirically.

With the results from this thesis, further research perspectives opened up. An extension of the proposed
1D–3D coupling to the full Maxwell case including nonlinearities is part of future research. This extension
would also allow to compute mutual capacitances of the wires, as it is often requested by engineers. Further-
more, an error bound for the coupling radius as a function of the wire’s curvature requires further analysis.
Depending on the application, the 3D losses may become relevant and must be included despite the fact that
the 3D energy tends to infinity. From the theoretical point of view, existence and uniqueness of the wire cou-
pling needs to be established for the case of an infinite permeability, which is not included in the FE analysis
presented in [70]. Additionally, the error analysis for the special case of the FIT discretization is still open.
Concerning the circuit extraction, a combination of the methods for the ET and EM problems would result
in fully coupled thermo-EM circuit stamps. Until now, the EM circuit extraction was only outlined for linear
materials, leaving nonlinear material characteristics for future research. However, one can follow similar
ideas to those presented in the ET case. To incorporate wires into the obtained circuit description, a coupling
radius greater than zero or a finer 1D discretization would lead to more accurate results. For the efficient
simulation of the resulting large circuits, dedicated model order reduction (MOR) techniques for circuits can
be applied [87, 113, 172]. For the computation of failure probabilities, an error estimator used in conjunc-
tion with the hybrid scheme could provide guidance to assess which samples require a full model evaluation
in order to guarantee full control of the corresponding results [43].
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A Geometry of the Chip Model and Simulation Settings

The microelectronic chip model with numbered wires is shown in Figure A.1. The subdomain modeled by
conducting parts, such as the chip in the middle of the domain, and the contact pads, is denoted by Dcon,
whereas Dins denotes the insulating subdomain. Furthermore, the wires are denoted by Λ with wire radius r.
Electrical signals are imposed on contact electrodes ΓDir,l ⊂ ∂D and transferred to the chip by the bond wires.
The chip itself is used as the ground electrode. The contact pads are centered in z-direction with a height
of 100 µm. The curvature of the wires is given by (5.35) and a wire height H, where ~x0 and ~x1 differ for
the different wires. We model each bond wire with a uniform cross-section A. We assume linear materials,
which are given by copper for all conducting parts and by a specific epoxy resin for the insulating parts. The
parameters, their descriptions and values are listed in Table A.1.

ΓDir,l

DinsDcon

Λ

Figure A.1: Computational domain D with boundary ∂D consisting of a microelectronic chip package with
bond wires. The package is modeled with a homogeneous conducting domain Dcon (chip in the
center and contact pads located around the chip) and an insulating background domain Dins.
The boundary part of a contact pad with index l is denoted by ΓDir,l ⊂ ∂D. Furthermore, the
wires are denoted by Λ. This figure is taken from [48].
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Parameter Description Value

A cross-sectional area of wire πr2

σcon electric conductivity of Dcon 5.96× 107 S/m
σins electric conductivity of Dins 1S/m
λcon thermal conductivity of Dcon 401W/(Km)
λins thermal conductivity of Dins 0.87W/(Km)
ρcon volumetric mass density of Dcon 8930 kg/m3

ρins volumetric mass density of Dins 1500 kg/m3

ccon specific heat density of Dcon 390 J/(Kkg)
cins specific heat density of Dins 882 J/(Kkg)
σw electric conductivity of Λ σcon
λw thermal conductivity of Λ λcon
ϕinit initial potential 0 V
Tinit initial temperature 300K
T∞ ambient temperature 300K

Table A.1: Parameters for the microelectronic chip package simulation.
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B Verification of 1D–3D Coupling Using COMSOL

In addition to the verification of the 1D–3D coupling approach as presented in Chapter 5, let us consider the
comparison to a proprietary tool in which a thin wire is represented by the mesh as a three-dimensional ob-
ject. Here, we use COMSOL Multiphysics for the comparison of the straight and bent wire couplings for an
electric and a thermal example. We define an electric example by σw = 1× 1015σ and a thermal example by
σw = 1× 102σ. Those model parameters that are not mentioned here are chosen according to the numerical
examples in Chapter 5. For the straight wire coupling as presented in Section 5.4.2, Figure B.1 and Figure B.2
show the solution for r = 1× 10−3m with respect to y at z = 0.5m (perpendicular to the wire) and with re-
spect to the 1D coordinate s (along the wire) for an electric and a thermal example, respectively. For the bent
wire coupling as presented in Section 5.4.3, Figure B.3 and Figure B.4 show the solution for r = 1× 10−2m
and rcpl = 1× 10−1/κ with respect to z at y = 0.3m (intersecting the wire at two points) and with respect
to the 1D coordinate s (along the wire) for an electric and a thermal example, respectively. In all cases, the
solutions agree up to a certain error, which consists of the discretization error due to the different discretiza-
tions and the modeling error of the thin wire approach. The smaller error for the electric examples can be
explained by σw/σ to be very large, yielding a very weak 1D–3D coupling.
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Figure B.1: Comparison of the straight wire 1D–3D coupling with COMSOL Multiphysics for an electric
example and r = 1× 10−3m.
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Figure B.2: Comparison of the straight wire 1D–3D coupling with COMSOL Multiphysics for a thermal
example and r = 1× 10−3m.
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Figure B.3: Comparison of the bent wire 1D–3D coupling approach with COMSOL Multiphysics for an elec-
tric example and r = 1× 10−2m.

0 0.2 0.4 0.6 0.8 1

0.5

z in m

ϕ
h
in

V

COMSOL
1D–3D

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1D coordinate s

ϕ
h
in

V

COMSOL
1D–3D

Figure B.4: Comparison of the bent wire 1D–3D coupling approach with COMSOL Multiphysics for a ther-
mal example and r = 1× 10−2m.
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