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Abstract. Fatigue strain signal were analysed using data segmentation and data clustering. For 

data segmentation, value of fatigue damage and global statistical signal analysis such as 

kurtosis was obtained using specific software. Data clustering were carried out using K-Mean 

clustering approaches. The objective function was calculated in order to determine the best 

numbers of groups. This method is used to calculate the average distance of each data in the 

group from its centroid. Finally, the fatigue failure indexes of metallic components were 

generated from the best number of group that has been acquired. Based on four data collect 

from two different roads which are D1, D2, the index value generated is not the same for all of 

data because due to K-Mean clustering, the best group is different for each of the data used. 

The maximum indexes generated are different for two types of road and namely the index 4 for 

D1 and index 5 for D2. Due to the road surface condition, higher distributions of the 

best groups give higher values of index and reflect to higher fatigue damage experienced by the 

system. 

1. Introduction 

Many engineering failures especially in mechanical engineering field involve a great loss in term of 

life and property. Phenomenon of fatigue failure is major factors contribute to the failure of products, 

component and structures in this field. Basically fatigue failure often occurs when repeated stresses 

imposed on the structural components within a certain time. More than 50% of mechanical failures 

lead by fatigue failure and mostly it unpredictable [1]. 

 Material fatigue is a one of the most safety issues for structures subject to the cyclic loads and the 

cause of failure in a majority cases. In the automotive industry, most of the components are subjected 

in service to fatigue loading which may result in failures [2]. Most industries are susceptible to fatigue 

failure due to repetitive loading used every day. Nowadays, there are many techniques and tools 

developed to detect and prevent fatigue failure. Those techniques need to do the laboratory test, data 

collection, specific tools and software in order to do fatigue assessment [3]. 

 Fatigue feature classification is a new analysis in fatigue related field and not been studied widely. 

Fatigue feature classification should be studied in order to produce a new standard and enable a 

design to the same reference level. When referring to some related studies. Mao et al. [4] had 

introduced a safety index of fatigue failure for ship structure details. In their research, the expected 

fatigue damage and its coefficient are estimated using Gussian and Bayesian process in order to 
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develop the index. In addition, fatigue life under Gaussian load was also performed in order to 

compute a fatigue risk of a component and the safety index [5]. 

 In this paper, the main focus is developing a new fatigue feature classification using the data 

editing, segmentation and clustering approach to predict fatigue life of suspension car system names 

as fatigue failure indexes. Fatigue failure indexes are very important in component design in order to 

predict components life and to prevent sudden breakdown or failure [6]. Thus the developing a new 

fatigue failure indexes for automotive component will give a great advantage to automotive industry. 

Besides that, it will reduce maintenance cost, replacement a time saving.  

 

2. Literature Background 

2.1 Global Signal Statistical Parameters 

In fatigue research area, the signals consist of a measurement of cyclic loads, i.e. force, strain, and 

stress against time. Time series typically consists of a set of observations of a variable were taken at 

equally spaced intervals of time. Global signal statistical parameters are frequently used to classify 

random signals and monitor the pattern of analyzed signals. For a signal with a numbers of data point 

n in a sampled sequence, the mean is given by: x  
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 In the fatigue signals, the calculation of the root-mean-square (r.m.s.) and the kurtosis are very 

important in order to retain a certain amount of the signal amplitude range characteristics. Both values 

are defined respectively as [7]:  
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wherexj is the amplitude of signal. 

 

 

2.2 Total Fatigue Damage 

Three major approaches have widely been used toanalyse fatigue damage or fatigue life, namely 

thestress-life approach (S-N), the strain-life approach(ε-N) and the linear elastic fracture 

mechanics(LEFM) [8]. However, the strain-life approach (ε-N)is used for the analysis as the case study 

was relatedto low cycle fatigue, which is a suitable approach toanalyse random data collected from 

automotive components. ThePalmgren-Miner linear cumulative damaging rule normallyassociated 

with the established strain-life fatigue damaging models, i.e. the Coffin-Manson, the Morrow, and the 

Smith-Watson-Topper (SWT). Nevertheless, the Coffin-Manson relationship only considers the 

damaging calculation at zero mean stress. However, in real situation, some of the realistic service 

situations involve nonzero mean stresses. For example, in a case of the loading being predominantly 

compressive, particularly for wholly compressive cycles, the Morrow mean stress correction effect 

provides more realistic life estimates and seems to work reasonably well for steels. The strain-life 

model is mathematically defined as the following expression [9]. 
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 where εa is the true strain amplitude, σ’f is the fatigue strength coefficient, E is the material 

modulus of elasticity, σm is the mean stress, Nf is the numbers of cycle to failure for a particular stress 

range and mean, b is the fatigue strength exponent, ε’f is the fatigue ductility coefficient, and c is the 

fatigue ductility exponent. The fatigue damage caused by each cycle of repeated loading is calculated 

by reference to material life curves, such as S-N or ε-N curves. The fatigue damage D for one cycle 

and the total fatigue damage ΣD caused by cycles are expressed respectively as [10]:  
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whereNi is the numbers of cycle within a particular stress range and mean. 

 

 

2.3 Feature Classification 

To extracting the information from the data columns, it is important for researcher to find the methods 

that can divide the data into specific parts and analysed each part in optimum [11]. Segmentation 

divided the non stationary times series segments with the constant statistics value. Therefore, 

segmentation technique can identify accurately and quickly the location changes in statistical signal 

[12]. Segmentation enables to divide the time series data and organised into several sections that have 

the same criteria [13]. Recently, many methods have been designed to segment the data as accurately 

as possible, but most of the methods have an own name and application. Thus, the segmentation 

algorithms in time series can be divided into three main groups which is sliding windows, top-down 

and bottom-up [14]. 

Clustering is a process a division of data into the same groups whereas the data in the groups will 

have the similar character and behaviour. There are two category of the clustering which is 

partitioning and hierarchical. For partitioning clustering, generally result in a set of M clusters, each 

object belonging to one cluster and each cluster may be represented by a centroid or a cluster.K-means 

is a fast and popular method to perform clustering because it easier to manage the huge of data [15]. 

The basic intuition behind K-means is the continuous reassignment of objects into different clusters so 

that the within-cluster distance is minimized. It uses an iterative algorithm divided in two phases to 

minimize the sum of point-to-centroid distances, over all K clusters[14]. Objective functions for K-

means define as following expression: 
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 and mean of point cj. 
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3. Methodology 

Four data obtained from the suspension and lower arm is collected during the test at highway and 

country road. The highway and country road is then referred as D1 and D2 in this paper. The 

suspension and lower arm is attached with strain gauge in order to collect the strain signal during the 

test at D1 and D2 road. The data is recorded for 60 second with sampling frequency 500Hz gives 

30000 discrete data[9]. This sampling frequency is chosen to be at 500Hz as the value was enough to 

record the data because of the strain gauge sensitivity in recording the changes of the strain response 

that exit during the test. 

Figure 1shows the sequence method for data collection toward car suspension system. The strain 

gauge is attached at high stress region of the suspension and lower arm. The high stress region can be 

determined using finite element analysis (FEA). Strain gauge then connected to the data acquisition 

system for the purposed of strain signal data collection. The strain data is collected in the time history 

domain. The strain signal data after that is analysed using global statistical analysis in order to find the 

statistical parameter i.e kurtosis, root mean square (r.m.s)and fatigue damage that use for data 

clustering. 

 
Figure 1.Sequence method for data collection toward car suspension system 

 

Data segmentation and clustering is done by using Matlabsoftware. Data segmentation one of the 

processes divides data into certain section or segment. Segmentation method can be grouped into three 

categories such as sliding windows, top-down and bottom-up [14]. Segmentation using bottom-up 

method is the best approach segmentation for time history signal. Clustering data is analysed using K-

mean approach as a clustering algorithm. Cluster with certain centroid is formed with the different 

colour for every object. The clustering is analysed based on the changing of fatigue damage. The best 

cluster is determined based on function objective value through Euclidean distance calculation. 

Euclidean distance gave the distance value for every cluster to centroid. The classification later is 

generated from the clustering data. The fatigue failure indexes are generated based on classification 

result. 
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4. Results and Discussion 

Figure 2 (a) shows the data distribution with two group point for D1 road. The positions of the 

centroid are very close between each other and concentratewith the increasing of kurtosis. It show that 

the K-means clustering susceptible in initial centroid because the intake of random centroid point. 

Roughly, it can been seen more than two groups could be formed from the distribution of the data 

because there is a point that has far distances away from it centroid 

 The formation of the clusters can clearly see for three point centroid as shows in Figure 2 (b). There 

was a little difference in the distribution according to the groups of the fatigue damage in red and 

yellow. The four centroid point of data distribution as shows in Figure 2 (c) more organized than 

Figure 2 (d). Each of the centroid has a data distribution with uniform distances. The five centroid 

point of data distribution shows a little visible difference compared to the four centroid as the data 

seemingly too close between each group with low fatigue damage. Number of different group used to 

see the density distribution of the data in group. The data with the lower number of centroid have a 

high density distribution and the objective function also high. 

 

 
                                 (a)                                                                        (b) 

 

 
(c)                                                                       (d) 

 

Figure 2.Kurtosis distributions of fatigue damage for D1 road condition; (a) two centroid, (b) three 

centroid, (c) four centroid, (d) five centroid 

 

 The clustering for the D2 road is start from two groups to five groups. Figure 3 (a) shows that the 

two centroid points is far between each other. However, both of the groups have a clear boundary 

between each other. This situation happen because of the data distribution is not too dense with each 

other because the surface D2 road always changing. Figure 3 (b) shows the group’s formation seen 

more clearly for three points centroid. For the each group, there are a clear separation of data 

distribution and all of the data linear with the fatigue damage value. It also has a high kurtosis value 

with the ratio 1:1 after normalised in the data distribution and it namely outlier data 

 The distribution data for four and five centroid point as shown in figure 3 (c) and (d) is more 

organised compare to the two and three cnteroid point. Each of the centroid have a distribution data 

with a uniform distances. The boundary of the groups is clearly showed and the kurtosis ratio 1:1 still 
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retained as a outlier data. However, the data with five groups is chosen as a best group because it have 

a small objective function. 

 
(a)                                                                        (b) 

 
  (c)                                                                       (d) 

Figure 3.Kurtosis distributions of fatigue damage for D2 road condition; (a) two centroid, (b) three 

centroid, (c) four centroid, (d) five centroid 

 

 The maximum objective function value for D1 road occurs at data with two centroid as shown in 

Table 1. The objective function value is decrease with the increasing of centroid number but only for 

the data with five centroid has less objective function value than the data with four centroid. It show 

that the data with five group not necessary to generated because it only scattered the data getting away 

from the centroid. Therefore, the four clusters is enough for the D1 road. For the D2 road, the 

maximum objective function value also occurs at data with two centroid as shown in Table 1. The 

objective function value for five clusters is the best for D2 road. The increase to more than five 

centroid may cause the objective function value decreasing, but the clusters distribution after that not 

have many difference with the five clusters data.  

 

Table 1. Average objective function value for D1 and D2 road. 
 Objective Function value for 

D1 Road 

Objective Function value for 

D2 Road 

C=2 6.89 8.48 

C=3 4.96 7.91 

C=4 4.23 6.52 

C=5 4.33 5.84 

 

 Fatigue failure index is generated using the data with four centroid as shown in Figure 4 for D1 

road. The index from 1 to 4 is given for each group. The indexes that have a high value represent the 

group data that have high fatigue damage. Thus, it give a high probability of fatigue failure occurs. 

Index 1 to 3 is classification as an index with low fatigue damage. Index 4 is classified as index with 

high fatigue damage. 
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Figure 4.Selection of group to generate the index for D1 road 

For D2 road, the fatigue failure index is generated using the data with five centroid as shown in 

Figure 5. Indexes from 1 to 5 are given for each group and have a high value represent the group data 

that have high fatigue damage. Group 1 with a green distribution point has a low fatigue damage value 

and it namely as an index 1. The second group with purple distribution data is namely as index 2. The 

third group with blue distribution data is namely as index 3. The second last group with the yellow 

distribution data start to show the high fatigue damage and it namely as index 4. For the last group 

with red distribution data is namely as index 5 shows the high fatigue damage. The outlier data is 

recognised for the data distribution at kurtosis ratio 0.7 and above. Although, the outlier data is not 

include in the group that given an index, this data cannot remove because it give the high amplitude 

for overall data. 

 

Figure 5.Selection of group to generate the index for D2 road 

5. Conclusion 

The fatigue failure index that generated using K-means clustering method is a new approach in fatigue 

study. Based on clustering process the data is cluster according to the required parameter and the best 

group can be determined. The objective function is calculated and the lower value of objective 

function show the K-means clustering is well organised data. From the results, it show that index 1 

represent the low fatigue damage that occurs for the component. The increasing of the index number 

show more dominant of the effect of fatigue damage for the component. Index 4 for D1 road and index 

5 for D2 road represent the high fatigue damage for the component. The high index number represent 

the high fatigue damage occurs for the system. 

Index 1 Index 2 Index 3 Index 4 

Index 5 

Index 1 

Index 2 

Index 3 

Index 4 

1st International Conference on Mechanical Engineering Research 2011 (ICMER2011) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 36 (2012) 012031 doi:10.1088/1757-899X/36/1/012031

7



 

 

 

 

 

 

Acknowledgments 

Authors would like to express their gratitude to Universiti Kebangsaan Malaysia (Research funding: 

UKM-KK-FRGS0188-2010 & UKM-OUP-NBT-28-135/2011) for supporting this research 

 

6. References 

[1] Stephens R I, Fatemi A, Stephens R R& Henry O F 2001 Metal Fatigue in Engineering. John 

Wiley & Son, Inc: New York. 

[2] Fourlaris G, Ellwood R and Jones T B 2007 The reliability of the test results from simple test 

samples predicting the fatigue performance of automotive component J. Material & 

Design28(4) 1198-1210 

[3] Dong C L, Chang S H 2009 CAE (computer aided engineering) driven durability model 

verification for the automotive structure developmentJ. Finite Element in Analysis Design45(5) 

324-332. 

[4] Mao W, Rychlik I &Storhaug G 2008 Safety Index of Fatigue Failure for Ship Structure Details 

Department of Mathematical Science Chalmers University of Technology, University of 

Gothenburg. 

[5] Bengston A And Rychlik I 2009 Uncertainty in fatigue life prediction of structures subject to 

Gaussian loads J. Probabilistic Engineering Mechanics24 224-235 

[6] Romaniv O N and Tkach A N 1987 A structural analysis of the kinetic fatigue failure curve of 

constructional steels J. Materials Science23(5) 441-453 

[7] Nuawi M Z, Abdullah S, Abdullah S, Arifin A and Haris S M 2009Matlab: a comprehensive 

reference for engineers, Malaysia: McGraw-Hill Sdn. Bhd 

[8] Stephens R I, Dindinger P M and Gunger J E 1997 Fatigue damage editing for accelerated 

durability testing using strain range and SWT parameter criteria. Int. J. of fatigue19(8) 599-606 

[9] Oh C S 2001 Application of wavelet transform in fatigue history editing Int J. of fatigue23(3) 

241-250 

[10] Abdullah S 2005 Wavelet Bump Extraction (WBE) for editing variable amplitude fatigue 

loadings Ph.D, Thesis the University of Sheffield 

[11] Jeffrey D S 2007 Joint segmentation of multivariate astronomical time series: Bayesian 

sampling with a hierarchical model. IEEE Trans on Signal Processing55 414-420 

[12] Lopatka M, Laplanche C, Adam O, Motsch J F and Zarzycki J 2005 Non-stationary time-series 

segmentation based on the Schur prediction error analysis IEEESP 13th Workshop on Statistical 

Signal Processing 2005 

[13] Lemire D 2007 A better alternative to piecewise linear time series segmentation Proc. of SIAM 

Data Mining 2007 

[14] Keogh E, Selina C, David H and Pazzani M 2001 Segmenting time series: insight and 

recommendations J. of IEEE Trans on Fuzzy Systems 

[15] Nopiah Z M, Abdullah S and Khairir M I 2008 Segmentation and scattering of fatigue time 

series data by kurtosis and root mean square Proc. Int. Conf. on Signal Processing System 64-68 

[16] Alvarez F M, Troncoso A, Riquelme J C and Riquelme J M 2007 Partitioning-clustering 

technique applied to the electricity price time series Proc. IDEAL’07 8
th
 Int. Conf. on Intelligent 

Data Eng. And Automated Learning 

 

 

. 

 

1st International Conference on Mechanical Engineering Research 2011 (ICMER2011) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 36 (2012) 012031 doi:10.1088/1757-899X/36/1/012031

8




