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Abstract. The usage of electrical discharge machining (EDM) is increasing gradually owing to 

its capability to cut precisely, geometrically complex material regardless hardness. Many 

process parameters greatly affect the EDM performance and complicated mechanism of the 

process result the lag of established theory. Hence, it becomes important to select the proper 

parameter set for different machining stages in order to promote efficiency. In view of these 

barriers, it is attempted to establish a model which can accurately predict the material removal 

rate (MRR) of titanium alloy by correlating the process parameter. Effect of the parameters on 

MRR is investigated as well. Experiment is conducted utilizing the graphite electrode 

maintaining negative polarity. Analysis and modelling is carried out based on design of 

experiment as well as response surface methodology. The agreeable accuracy is obtained and 

thus the model can become a precise tool setting the EDM process cost effective and efficient.  

Moreover, high ampere, short pulse-off time and low servo-voltage combined with about 250 

µs pulse-on time generate the highest MRR.  

1. Introduction 

In EDM, the tool (anode) and the work piece (cathode) are immersed in a dielectric medium separated 

from each other by a small gap of the order of about 5-100 µm [1]. A controlled spark is generated 

between the two electrodes by applying a voltage (~200V) which breaks down the dielectric medium 

causing the voltage falls to about 25-30 V (discharge voltage) and the current to rise to a constant 

value set by the operator [2]. During machining electrons start flowing from cathode to anode which 

ionizes the dielectric medium and form a plasma channel between the cathode and anode. Some of the 

electrodes materials are melted and vaporized resulting material removal owing to intense heat 

generated in the plasma. The growth of the plasma channel, energy sharing between electrodes, 

process of vaporization, formation of recast layer, plasma-flushing efficiency, and temperature 

sensitivity of thermal properties of the work material are a few physical phenomena that render the 

machining process highly complex and stochastic [3]. The mathematical consideration of all these 

complex phenomena is very difficult. Therefore, mathematical prediction of material removal rate 

when compared with the experimental results shows wide variation.   
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Many process parameters greatly affect the electrical discharge machining performances. 

Consequently, it becomes important to select properly the process parameter set for different 

machining stages in order to promote efficiency [4]. Although, the desired process parameters can be 

determined based on experience or handbook values, it is a great challenge to ensure that the selected 

parameters are perfect for a particular material and environment. 

In EDM process, parameter selection are often far from the optimum and at the same time selecting 

optimization parameters is costly and time consuming [5]. To improve the production rate and to 

decrease the dependence on experience, it is necessary to establish an optimization model in EDM 

process. A number of works has been carried out in modelling division using different types of 

material such as copper–steel (EN-8), die Steel, CK45 steel, C40 steel, Tungsten Carbide, tool steel 

1.2714, AISI D2 tool steel, Ti-6Al-4V, Ti-15-3, etc. [5-16]. However, until now no study is noticed in 

electrical discharge machining considering titanium alloy Ti-5Al-2.5Sn workpiece and graphite tool. 

In these circumstances, this paper aims to develop a mathematical model for material removal rate 

of titanium alloy Ti-5Al-2.5Sn based on design of experiment (DOE) and response surface 

methodology. The selection of this material was made taking into account its wide range of 

applications in airframes, jet engines, steam turbine blades, aircraft engine, compressor blades, missile 

fuel tanks and structural parts, etc. [17]. Four process parameters namely, peak current, pulse-on time, 

pulse-off time and servo-voltage are taken into account as input parameters of the model. The 

experimental work is performed as DOE utilizing graphite electrode as tool with negative polarity. 

Besides, the influence of the process parameters on material removal rate is investigated as well as 

attempt is made to estimate the maximum MRR. 

2. Experimental procedure  

The experiments were carried out utilizing a numerical control programming electrical discharge 

machine known as ‘‘LN power supply AQ55L”. The EDM has the provisions of movement in three 

axes such as longitudinal (X-axis), lateral (Y-axis) and vertical direction of electrode (Z-axis) and has 

also a rotary U-axis with maximum rpm ±40. In this research, titanium alloy Ti-5Al-2.5Sn was taken 

into consideration as workpiece material and cylindrical graphite tool was applied in order to machine 

the workpiece. Process parameters namely, peak current, pulse-on time, pulse-off time and servo-

voltage were selected in accordance with the literature review as well as preliminary experiment to 

connect these parameters with output criteria MRR. Pulse-on time refers the duration of time in which 

the current is allowed to flow whilst pulse-off time is the duration of time between the sparks per cycle 

[18] and [19]. Each cycle has an on-time and off-time that is expressed in units of microseconds. Since 

all the work is done during on-time, the duration of these pulses and the number of cycles per second 

(frequency) are important. 

Peak current is the amount of power used in discharge machining, measured in units of amperage, 

and is the most important machining parameter in EDM [20]. Peak current (Ip) is the maximum current 

during spark. Servo-voltage is a reference voltage that can be set by operator. If the average gap 

voltage is higher than the servo reference voltage the feed speed increases. In contrast, the feed speed 

decreases or the electrode is retracted when the average gap voltage is lower than the servo reference 

voltage. MRR is an important indicator of the efficiency and cost effectiveness of the electrical 

discharge machining technique [9]. Material removal rate (mm
3
/min) is calculated by measuring the 

average amount of material removed and the machining time as follows [6]: 

 (min)  timemachining)(g/mm   workpieceofdensity 

 (g)  workpieceof weight in reduction
min)/ (mm MRR

3

3


                     (1) 

It can also be expressed as  

 

tρ

W
MRR=

w

w



1000
        (2) 
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 21 W=WWw                   (3) 

where Ww is the weight loss of the workpiece in gm  

W1 is initial weight of work piece 

W2 is final weight of work piece 

ρw is the density of the workpiece material (density of Ti-5Al-2.5Sn is 4.41 g/cm
3
) 

t is the machining time in minutes. 

A well-designed experimental plan can substantially reduce the number of experiments [7]. This is 

the why; experimental design via central composite design of response surface methodology (RSM) 

was developed with an attempt to formulate the mathematical relations using smallest number of 

experiments possible. The coded levels for all process parameters used are displayed in table 1. The 

listing of experimental parameters is scheduled in table 2. Each experiment was conducted for fixed 

period, 40 minutes. A new set of the workpiece and graphite tool were applied for each run and total 

62 experimental run, including one replication were carried out according to the design of experiment. 

The other process parameters were kept constant during experiments. In order to evaluate the amount 

of material removal the workpiece was weighed before and after machining using a digital single pan 

balance (maximum capacity=210 gm, precision=0.1 mg). 

Table 1. Machining parameters and their levels. 

Process parameters Designation Level 1 Level 2 Level 3 Level 4 Level 5 

-2 -1 0 1 2 

Peak Current, Ip  (A) X1 1 8 15 22 29 

Pulse-on time, Ton (µs) X2 10 95 180 265 350 

Pulse-of time, Toff  (µs) X3 60 120 180 240 300 

Servo-voltage, Sv (V) X4 75 85 95 105 115 

 

Table 2. Experimental settings.  

Working parameters Description 

Work piece material  Ti-5Al-2.5Sn 

Size of work piece  22 mm × 22 mm × 20 mm   

Electrode material  Graphite 

Size of electrode ϕ 20 mm × 50 mm (length) 

Electrode polarity Negative 

Dielectric fluid Commercial Kerosene 

Applied voltage 120 V 

Flushing pressure 0.15 MPa 

Machining time 40 Minute 

3. Modelling using RSM 

The design of experiments (DOE) technique is a powerful work tool which allows us to model and 

analyse the influence of determined process variables over other specified variables, which are usually 

known as response variables. These response variables are unknown functions of the former design 

variables, which are also known as design factors. Response surface methodology is an interaction of 

mathematical and statistical techniques for modelling and optimizing the response variable models 

involving quantitative independent variables [8]. Through the use of the response surface methodology 

of DOE and applying regression analysis, the modelling of the desired response to several independent 

input variables can be gained.  

 

In RSM, the independent process parameters can be represented in quantitative form as: 

Y = f (X1, X2, X3, . . . Xn) ± ε           (4) 
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where Y is the response MRR, f is the response function, ε is the experimental error, and X1, X2, X3, . . 

., Xn are independent variables. 

The form of f is unknown and may be very complex. Therefore, RSM aims at approximating f by a 

suitable lower ordered polynomial in some region of the independent process variables. If the response 

can be well modelled by a linear function of the independent variables, the equation (4) can be written 

as: 

  nn XXXY ...........22110        (5) 

In the case of present study whilst the number of the independent variables is four, the linear 

equation is formed as follows: 

443322110 XXX      X   Y        (6) 

On the other hand, the second-order model is normally used when the response function is 

nonlinear. However, if the model is not well fitted by the linear function then a higher order 

polynomial such as the quadratic model can be used. In the present study, both the linear model and 

second-order (quadratic model) model have been studied. The experimental values are analysed and 

the mathematical model is then developed that illustrate the relationship between the process variable 

and the output.  

The mathematical model based on a second-order polynomial is given as follows: 

  


j

n

jiji

iij

n

i

iii

n

i

ii XXXXY
,1,1

2

1

0            (7) 

where Y is the corresponding response, Xi is the input variables, Xi
2
 and XiXj are the squares and 

interaction terms, respectively, of these input variables. βo, βi, βij and βii are the unknown regression 

coefficients. In this work, equation (7) can be rewritten according to the four variables used as: 

433442243223411431132112

2
444

2
333

2
222

2
111443322110 XXXXXXX

X XXXX X XXX XX X

      X   Y








   (8) 

where X1, X2, X3, and X4 are four input variables as peak current (Ip), pulse-on time (Ton), pulse-off 

time (Toff) and servo-voltage (Sv), respectively. 

4. Results and discussion 

4.1 Mathematical model  

In this work, RSM is utilized for determining the relations between the various EDM process 

parameters with the various machining criteria and exploring their effects on the material removal rate. 

After knowing the values of the measured response, the values of the different regression coefficients 

of mathematical equation are estimated. The mathematical model based on the response surface 

methodology is developed by utilizing test results obtained through the entire set of experiments. 

Both linear and non-linear regression models were examined and the acceptance was based on high 

to very high coefficients of correlation (R) calculated as well as model adequacy. The first-order and 

second-order mathematical equation are executed using the same experimental data. It is essential to 

check the adequacy of the fitted models, because an incorrect or under-specified model can lead to 

confusing evaluation of the response. It can be verified whether the model is under specified by 

checking the fit of the model. The model adequacy checking includes the test for significance of the 

regression model, model coefficients, and lack of fit. Analysis of variance (ANOVA) as shown in 

table 3 and table 4 was performed in support of both linear and non-linear model owing to the 

aforesaid motives. 
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It is observed that the standard error, S (0.206950) for quadratic equation is smaller than the value 

of S (2.04202) for linear equation. Then again, the value of R
2
, R

2
-adjusted and R

2
-predicted in the 

table 4 are greater than that of table 3. The lower value of S and higher value of R
2
 shows the 

adequacy of the model. Consequently, the regression model with quadratic terms is more adequate and 

significant over the model with linear terms.  

Furthermore, if the p-value of residual error is less than the α-level, it means that the model does 

not accurately fit the data. The p-value for the lack-of-fit in the case nonlinear model is 0.095, which is 

larger than 0.05 (i.e. α=0.05, or 95% confidence). Hence, the lack-of-fit term is insignificant as it is 

desired. The fit summary recommended that the second order model is statistically significant for 

analysis of MRR.  

Table 3. Analysis of variance for single order model of MRR. 

Source Degree of 

freedom 

Sum of 

squares 

Mean 

squares 

F-ratio P 

Regression 14 1025.74 256.434 61.50 0.000 

Linear 4 1025.74 256.434 61.50 0.000 

Residual error 16 108.42 4.170   

Lack-of-Fit 10 108.30 5.415 285.59 0.000 

Pure Error 6 0.11 0.019   

Total 30 1134.15    

Standard deviation (S) = 2.04202  

R
2 
= 90.44%      

R
2
-adjusted = 88.97%    

R
2
-predicted = 85.41%     

 

Table 4. Analysis of variance for second order model of MRR. 

Source Degree of 

freedom 

Sum of 

squares 

Mean 

squares 

F-ratio P 

Regression 14 1133.47 80.962 1890.38 0.000 

Linear 4 1025.74 256.434 5987.49 0.000 

Square 4 89.36 22.339 521.59 0.000 

Interaction 6 18.38 3.063 71.51 0.000 

Residual error 16 0.69 0.043   

Lack-of-Fit 10 0.57 0.057 3.01 0.095 

Pure Error 6 0.11 0.019   

Total 30 1134.15    

Standard deviation (S) = 0.206950  

R
2 
= 99.94%      

R
2
-adjusted = 99.89%    

R
2
-predicted = 99.70%     

 

Finally, the second order model of MRR can be obtained as follows putting the values of the 

coefficients that obtained through response surface methodology. 

 

voffvonoffon

vpoffponp

offonp

voffonp

STSTTT

SITITI

STTI

STTIMRR

 103.28692 102.31268-  103.31059

  0.0131805-  108.90482- 103.80572 

108.94884 106.58753 108.58835-  0.0321069 

 0.127086- 0.0591216- 0.0480985   1.284594.93853   

4-4--5

4-4-

2
v

4-2-52-52









    (9) 
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4.2 Confirmation test  

The developed model is also validated through confirmation test and the results are presented in table 

5. It is apparent that the error between the observed value and predicted value of MRR is in the range 

of 1.82-9.19% having a mean error as 4.29%. Accordingly, the developed regression model is 

demonstrated to be a practical and effective way for the evaluation of tool wear rate in EDM process. 

Table 5. EDM conditions in verification test. 

Peak 

current (A) 

Pulse-on time 

(µs) 

Pulse-off time 

(µs) 

Servo-voltage  

(V) 

MRR (mm
3
/min) Error 

(%) Experimental Predicted 

15 180 120 85 9.7939 9.9726 -1.82 

29 320 120 85 31.0053 31.5841 -1.87 

5 95 120 85 1.5230 1.3830 9.19 

     Average 4.29 

4.3 Effect of process parameters on MRR 

An attempt is also made to investigate the effect of the input parameters as peak current, pulse-on 

time, pulse-off time and servo-voltage on material removal rate. The figure 1–3 shows the influences 

of the process parameters. It is obvious in the figure 1 that the increase of peak current increases the 

material removal rate. This is due to the fact that increasing peak current increases the discharge 

energy which results more material removal. Thus, material removal more increases with peak current 

and the similar observation was found in the research of Lee and Li [21] and Singh et al. [22]. The 

material removal rate increases as the pulse-on time increase up to certain value of on time (250 µs) 

hereafter the MRR decreases with on time. At too long pulse duration, the spark intensity is decreased 

in the discharge spots because of the expansion of the plasma channel [23]. Accordingly, the long 

pulse-on time lowers the material removal rate.   
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Figure 1. 3-D surface plot of the effect of Ip and Ton on MRR. 
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Figure 2. 3-D surface plot of the effect of Ip and Toff on MRR. 
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Figure 3. 3-D surface plot of the effect of Ip and Sv on MRR. 
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It is perceived from figure 2–3 that the increase of pulse-off time as well as servo-voltage reduces 

the material removal rate. The pulse off time is the time during which no energy is applied to the 

workpiece surface. Therefore, the short pulse off time create accessibility the application of heat 

energy on the workpiece surface for long duration and consequently the material is eroded at faster 

rate [24]. The short pulse-off time combined with lower servo-voltage generates the maximum 

material removal rate. Electrode’s speed towards the workpiece together with gap width depends on 

servo-voltage. Longer ignition delay is occurred when the average gap voltage is higher than the servo 

reference voltage. On the contrary, when the average gap voltage is lower than the servo reference 

voltage results a smaller ignition delay. In another word, the high servo-voltage causes longer ignition 

delay and lower servo-voltage reduces the ignition delay. Therefore, as servo-voltage increase the 

ignition delay increases reducing the material removal rate and the controversy is also true. Han and 

Kunieda [25] and Kunieda et al. [20] also found the similar effect of servo-voltage on material 

removal. 

5. Conclusions 

This study is accomplished for the development of MRR model aiming to make the EDM cost 

effectiveness. The developed model is checked through the ANOVA henceforward confirmation test 

is performed to test the validity of the model. The result from analysis of variance exhibits that the 

model having satisfactory fitness. The confirmation test reveals the error from 1.82% to 9.19 with a 

mean error as 4.29% which is acceptable as less than 10%. Thus, the RSM model can be used tool to 

predict the MRR successfully making the EDM technique as cost effective and efficient. Moreover, 

the influences of the parameter is investigated and observed that peak current and pulse-on time have 

almost the similar effect and the converse response is apparent in the case of pulse-off time and servo-

voltage. High ampere combined with short off-time and low servo-voltage yield maximum MRR 

while the pulse-on time is about 250 µs.  
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