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1 Scope and methodology of maritime transport decarbonisation 

1.1 The relevance of geographic scope  
While maritime transport considered for this study refers to those ships calling at the 
Port of Rotterdam, it is clear that this is no match of maritime transport at the global 
scale. It refers to a specific fraction of maritime freight transport with vessels that 
technically and operationally comply with the existing environmental regulations 
under the umbrella of the International Maritime Organisation (IMO) as well as the 
European Union (EU), the Netherlands and the City and Port of Rotterdam. Cur-
rently, this is focused on regulations concerning emissions of air pollutants with con-
ventional engine designs as well as quality of fuels used. 

At the same time, Rotterdam is one of the bigger ports that attract larger vessels. Ty-
pical for the largest ships in operation, those are on average less old and more energy 
efficient. Vessel age is important not only because newer designs tend to be intrinsi-
cally more efficient but also because aging of vessels results in an increasing diffe-
rence between technical design efficiency and diminishing factual efficiency caused 
by the decay of relevant technical components (ICCT 2013). For these reasons, it can 
be assumed that vessels calling at the Port of Rotterdam are on average less old, 
technically more advanced and subject to stricter monitoring and maintenance than 
at the global scale of maritime shipping. In principle, a complete stock taking of ves-
sels calling at the Port of Rotterdam as compared to the global fleet would be possible 
but is beyond the scope of this study. 

Thus it is unclear to which exact extent greenhouse gas (GHG) intensities of vessels 
calling at the Port of Rotterdam are below those on average at the global scale. Not-
withstanding this, it needs to be kept in mind that this makes a difference that has an 
impact on existing baseline reductions of CO2 emissions as well as the remaining fu-
ture potential. Thus potentials for further reductions per individual strategy and of 
any combination of strategies considered for ships calling at the Port of Rotterdam 
may be somewhat lower than on average at the global scale of maritime shipping. 

Beyond geographic scope, even more differentiation is required with regard to cruise 
ships with a relatively high willingness to pay of customers as opposed to vessels for 
freight transport where profit margins are slimmer. Thus cruise ships even though 
depicting very high energy intensities resulting from substantial facilities for ac-
comodation and entertainment may to some extent be regarded as frontrunners in 
terms of technical progress some of which may trickle down to vessels for maritime 
freight transport and thus allow to decarbonise maritime shipping in general. How-
ever cruise ships are a special niche market of maritime passenger transport and not 
within the scope of this study. 

1.2 Principle strategies for decarbonisation in maritime transport 
In principle, following the ASIF approach, decarbonisation in the freight transport 
sector may rely on changes in demand for transport services (Activity), shares of 
modes of transport used (Structure), energy intensity per mode used (Intensity) and 
the use of decarbonised fuels or entire propulsion systems (Fuel) (Schipper et al. 
2000). 
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Demand for transport services is very relevant for decarbonisation but for the most 
part beyond the scope of this study. However it is clear that decarbonisation of whole 
economies will largely result in abolishing the use of fossil energy carriers which may 
have profound repercussions on related demand for maritime freight transport that 
has played a significant role since the industrial revolution. In a decarbonised world 
substantially less fossil energy carriers will be transported (Pastowski 2005). At the 
same time, some volume of carbon-neutral hydrocarbons will be produced based on 
renewable energy for trade and will hence need to be transported. Modal structure 
can be disregarded with maritime shipping as more energy efficient modes are 
simply unavailable and other modes (in particular air transport) can not reasonably 
be used for the bulk of intercontinental freight transport. 

Technical and organisational changes are important categories for distinguishing po-
tential strategies for the decarbonisation of energy use in maritime shipping. How-
ever some of them can not be considered in isolation. E.g. certain technologies may 
for the most part be important enabling factors for the implementation of new opera-
tional strategies (e.g. technologies that allow to systematically monitor energy use of 
vessels) or operational practices may need to be adapted following the implementati-
on of new technologies (e.g. new propulsion designs). 

Thus besides changes in demand for transport services resulting from decarbonisati-
on, there are basically two pillars of strategies for maritime transport and likewise 
other transport modes: 

n The first pillar is based on technical or operational innovation with existing ships 
and propulsion systems that result in an increase in energy efficiency and, conse-
quently, a reduction of carbon emissions per ton-mile. It is clear that applying 
strategies for higher energy efficiency on their own will never result in a complete 
decarbonisation of maritime shipping (Loyd’s Register 2016). At the same time, 
with these strategies the achievement of absolute reductions in CO2 emissions 
from maritime shipping will heavily depend on the further growth of demand for 
transport services. The implementation of effciency measures often brings about 
reduced cost of transport services which may induce additional demand (rebound 
effect) that to some extent will counteract the initially envisaged absolute emission 
reduction. 

n The second pillar of decarbonisation in maritime shipping rests with the imple-
mentation of decarbonised energy either with existing propulsion systems, hybrid 
or entirely new designs. 

Deep decarbonisation of maritime freight transport requires a combination of both 
pillars: Starting with low hanging fruits, additional gains in efficiency may result in 
early reductions of emissions and cost that may enhance the pace of related innovati-
on activity and the diffusion of new technology and operational practices. 

As far as efficiency gains are not technically bound to conventional propulsion sys-
tems, those will also reduce the effort and cost required while switching to alternative 
fuels and propulsion systems. Decarbonised propulsion as the second pillar is a 
prerequisite for deep decarbonisation with future growth of maritime freight trans-
port, regardless how much efficiency can be increased. 
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Thus the first pillar allows for early emission reductions while the second pillar will 
require more time owing to the fundamental changes required for the broad imple-
mentation of decarbonised fuels with regard to entirely new propulsion technology 
penetrating the fleet as well as the build-up of infrastructure required for the produc-
tion and distribution of such fuels. 

1.3 General scope of technologies and operational strategies for 
decarbonisation of maritime freight transport 
In principle, there are plenty of technical and organisational strategies that might be 
deployed to decarbonise maritime freight transport. In order to shed some light on 
this and derive assumptions for quantitative scenarios for the Port of Rotterdam, the 
aim of this report was to provide illustrative figures for what currently seem to be the 
main strategies for decarbonisation of maritime freight transport. 

It was not possible to undertake a complete review of existing studies that have re-
viewed existing estimates on the potential increases in energy efficiency or reduc-
tions in carbon emissions from all such strategies. Thus a few studies have been sel-
ected that cover the range of technical and operational solutions. Those have been  
combined with the results of a recent review of such studies (Bouman et al. 2017) in 
order to provide an impression of the orders of magnitude as well as the existing 
diversity of such estimates. 

In the selection process of individual technical and operational strategies for this 
study those have been disregarded where potential efficiency gains have been esti-
mated in the literature to be below 1 per cent. Thus the compilation of strategies in 
Annex 1 is not necessarily complete. This was primarily done for reasons of lucidity 
of the whole excercise and does not preclude future potentially more significant con-
tributions from excluded strategies in particular resulting from break-through inno-
vation activity. The result is a snapshot of currently available strategies and their li-
kely contributions to increasing energy efficiency and reducing carbon emissions. 

The main issues existing with the kind of studies and estimates reviewed are caused 
by the following factors that make it difficult to draw definitive quantitative results 
from them: 

n Varying degrees of differentiation versus extent of aggregation and patterns of 
clustering of the various strategies; 

n Different time horizons that – taking into account time required for the imple-
mentation of particular strategies – necessarily have an impact on their potential 
for decarbonisation; 

n Studies that estimate the relative effect of strategies when applied to individual 
vessels or types of vessels versus those that try to quantify relative potentials loo-
king at geographically varying and time-specific fleets with their respective levels 
of implementation already achieved; 

n Operational strategies like slow steaming which will need to be politically adjusted 
(e.g. speed limits); and 

n Operational strategies where the outcome is highly dependent on the difficult to 
predict further sectoral economic development and patterns of world trade (e.g. 
capacity utilisation at fleet levels). 
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Further to this, efficiency gains quoted for individual strategies may not be additive 
and generally there is a lack of data on vessel fleets regarding the current state of dif-
fusion of technologies or operational practices. The mentioned review of studies con-
cludes that the median values of efficiency gains of studies at the fleet level are 35% 
for 2020, 39% for 2030 and 73% for 2050. (Bouman et al. 2017)  

However the current state of fleet penetration per individual strategy is far from well-
known, which renders estimating aggregate efficiency and CO2 reduction potentials 
of likely efficiency gains difficult. There are not many ships that are identical and the 
deployment of retrofits depends on operational characteristics of use (e.g. cargo type) 
and preferences of individual ship owners versus ship operators as well as the indust-
ry’s business cycle and the price for heavy fuel oil (HFO). 

A recent study that conducted a survey with selected ship owners and operators has 
shed some light on the extent of implementation of individual strategies for increas-
ing energy efficiency with existing vessel fleets (Rehmatulla et al. 2017) . Generally, 
the study concludes that strategies for higher energy efficiency have been imple-
mented to a smaller extent than assumed in the bulk of the literature. At the same 
time there is a clear mismatch between strategies that are expected to have a high ef-
fect on energy efficiency and carbon abatement and their low levels of implementa-
tion. 

Opposed to the insufficient evidence on the level of implementation of strategies for 
increasing energy efficiency, the current implementation of decarbonised fuels used 
with conventional propulsion systems or entirely new propulsion systems is very 
scarce with current vessel fleets. Thus these cases can be neglected for purposes of 
assessing the related current state of achieved emission reductions. 

In this study, nuclear reactors are not considered as alternative propulsion systems 
for the decarbonisation of maritime shipping. In principle, the technology is available 
as used with some military vessels and ice-breakers. However the particular risks and 
costs associated with the utilisation of this technology as well as potential proliferati-
on of nuclear technology and materials mainly imply a shift from the risks of climate 
change to those of nuclear. Owing to the substantial damages that may arise from fai-
lure during operation of nuclear reactors and sites for disposing of longlived nuclear 
waste, it is difficult to determine whether such a shift may result in any net benefits. 

Generally it can be stated that at the global scale there is plenty of renewable energy 
available based on hydro power, solar radiation, wind power, power from waves and 
ocean currents and geothermal energy.  Hence in principle, there is no need to 
deploy strategies for decarbonisation that pose substantial risks with regard to other 
sustainability issues than climate change (e.g. irreversible loss of biodiversity, crow-
ding out of food production through utilisation of biomass for fuels, radiation from 
nuclear reactors). 
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2 Assessment of strategies for transport decarbonisation 

2.1 Assessment criteria: Technology readiness 
Technology Readiness Levels (TRL) have been defined by NASA for space missions 
and those can be translated into TRL for technologies and operational practices used 
for maritime shipping as provided in the following Table. 

Table 1  Description of TRLs for technologies applied with maritime vessels 

TRL 1 Basic principles observed and reported 
TRL 2 Technology concept and/or application formulated 
TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept 
TRL 4 Component and/or breadboard validation in laboratory environment 
TRL 5 Component and/or breadboard validation in relevant environment 
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or sea) 

TRL 7 System prototype demonstration in a maritime environment 
TRL 8 Actual system completed and “seaworthiness qualified” through test and demonstration (ground or 

sea) 
TRL 9 Actual system “seaworthiness proven” through successful mission operations 

 

Source: Adapted from Mankins (2004). 

TRLs are generally high for technical efficiency strategies that regard hull, rudder 
and propeller designs as well as conventional propulsion and auxiliary power sys-
tems. The same goes for the use of alternative power with conventional propulsion 
systems which if at all only require limited technical adaptations applied to existing 
engines. 

Operational strategies for increased energy efficiency are primarily based on modifi-
cations of the utilisation of existing technology. However some limited additional 
technologies that e.g. provide information on current energy use as well as meteoro-
logical and other conditions for the area a vessel is operating in might be important 
enabling factors for increasing operational efficiency. This particularly refers to so-
phisticated monitoring of energy consumption with regard to the technical state of 
the propulsion and auxiliary power systems as well as real-time monitoring of rele-
vant variable conditions during the operation of vessels at sea like wind or ocean cur-
rents. 

Major technical changes regarding propulsion systems and complementary fuelling 
and maintenance infrastructure for maritime vessels arise with the implementation 
of new decarbonised propulsion systems and fuels. In this case, the technology rea-
diness of a propulsion technology on its own is an insufficient yardstick as compared 
to technologies for increasing energy efficiency that do not require any new comple-
mentary infrastructure (see section 2.3). 

2.2 Assessment criteria: Diffusion of technology with new ships or retrofits 
While implementation of new technologies for energy efficiency will to a substantial 
extent happen with newly-build ships, without retrofitting of existing ships the upt-
ake of new technology may require a rather long time. Taking into account the eco-
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nomic lifetime of maritime vessels reaching 25 to 30 years in global operation, the 
ability of technical strategies to serve as retrofits is of utmost importance. However 
retrofits may lack economic efficiency with relatively old ships, given a short remai-
ning life expectancy and hence limited efficiency gains and cost reductions that can 
be expected from such retrofits until the end of use. 

Opposed to this, the age of individual ships is less important for the implementation 
of operational strategies for increased energy efficiency that can be applied with 
much less investment. Alternative propulsion systems are far less likely to serve as a 
retrofit as investment will typically be higher and the whole technical design of a ship 
can only be adapted with new capacity in order to achieve the best possible match 
with a particular new decarbonised propulsion technology. 

2.3 Assessment criteria: System integration readiness 
Technology Readiness Levels usually refer to single technologies and their state of 
development and applicability for real world use. However it is not seldom that sin-
gle technologies require a suitable framework of complementary technologies, infra-
structures and operational practices for successful real world implementation. Wit-
hout such a complementary framework in place, some technologies may entirely fail, 
even though their individual TRLs may have achieved a very high level. Fuel-cell-
electric cars are good examples of such technologies that heavily depend at least on a 
sufficient initial hydrogen production and distribution infrastructure (Sauser et al. 
2010). This wider system context of some new technologies may be referred to as 
System Integration Readiness (SIR). Without sufficient SIR, a single technology will 
find very limited practical application even if its isolated TRL has reached a mature 
level. 

SIR can be relevant with strategies for increased energy efficiency that are dependent 
on sufficient maintenance facilities at ports, staff development etc. With maritime 
transport, a sufficient level of SIR is of particular importance with new decarbonised 
fuels and entire propulsion systems. Maritime vessels often operate internationally 
over large distances. Thus at each port that they may be calling at it is of utmost im-
portance that the provision of the respective decarbonised energy carrier as well as 
facilities for technical maintenance of the propulsion system are already in place. 

Opposed to the broad availability of production and fueling infrastructure for HFO, 
other propulsion technologies entirely lack any such infrastructure. The only way to 
overcome such a situation is a stepwise approach that initially is focused on certain 
niches of application. Such niches may exist where ships permanently and exclusively 
operate on defined routes. This makes the provision of the respective fuel much ea-
sier for early application than it would be with a geographically dispersed implemen-
tation of fuel production and distribution combined with typically very limited num-
bers of ships initially demanding such fuels. 

Thus in order to overcome an initially low level of SIR of new decarbonised propulsi-
on systems, co-ordinated efforts are required to develop corridors of maritime ship-
ping including major ports that allow for the early implementation of decarbonised 
propulsion systems without immediately having to deal with the multitude of poten-
tial destinations and relevant ports. 
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2.4 Assessment criteria: Efficiency improvement and carbon abatement 
Abatement of carbon emissions is the prime objective of decarbonisation. However 
efficiency gains with energy use in maritime shipping may bring about more or less 
absolute carbon emissions depending on the carbon intensity of energy used. This 
means that energy intensity reductions with rather carbon intensive energy like HFO 
translate into high absolute reductions of CO2 emissions. With lower carbon intensi-
ties of energy use like e.g. fuels based on CO2 and renewable power (power to fuels), 
the absolute effect of efficiency gains on CO2 emissions will be substantially smaller. 
At the same time, increased energy efficiency will require smaller volumes of decar-
bonised energy to be produced and distributed. 

2.5 Assessment criteria: Selectivity regarding ship type and size or energy 
supply 
Strategies for decarbonisation in the maritime shipping sector may not be equally 
useful with all ship types and sizes. E.g. sails can not easily be applied with container 
ships where the containers pile up on board and need to be easily accessible at con-
tainer terminals. 

Moreover decarbonised fuels and whole propulsion systems require different storage 
devices and main propulsion components that need to be located on a ship in a way 
that the loading capacity is not compromised and the weight distribution can be op-
timised. 

This is particularly relevant with decarbonised energy carriers with substantially lo-
wer energy densities in terms of volume or weight. Battery-electric ships are a parti-
cularly critical example of this, as energy densities of existing battery technologies 
are such low that volume and weight of the energy required on board of large vessels 
in intercontinental traffic would substantially reduce the potential payload. Thus bat-
tery-electric concepts will only be relevant for short distance shipping as long as 
energy densities of batteries are not greatly increased over existing systems. 

2.6 Assessment criteria: Interdependence with other strategies 
Individual strategies for decarbonisation can more or less interact with other strate-
gies in ways that might even turn them mutually exclusive. For instance, technical 
strategies may be effective with conventional but inappropriate with new propulsion 
systems. This is particularly true for strategies that allow to improve conventional 
main or auxiliary engine efficiency. The implementation of new propulsion systems 
render such strategies obsolete. 

Moreover individual strategies for increased energy efficiency may target the same 
subsystem in a way that is exclusive or that the combined effect may not be significa-
ntly larger than that of each strategy on its own. An example of this are various hull 
coatings that are mutually exclusive. 

A combination of propulsion systems may allow to achieve geographically diverse re-
quirements in particular when one fuel can instantaneously be substituted for 
another during operation. However hybrid designs of whole propulsion systems may 
exacerbate issues regarding limited capacity available for payload. 
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2.7 Assessment criteria: Main risks and barriers 
Many of the technical strategies for reducing specific fuel consumption and emissi-
ons from ships analysed here date back to earlier efforts of this kind which had resul-
ted from the two major rises in crude oil prices in the mid senventies and early eigh-
ties of the last century (IMarEST 2011). This is partly due to the fact that numerous 
of the technologies used can be regarded as moving targets where designs have been 
gradually improved based on experience and laboratory studies as well as CAD and 
computer simulation. 

However innovation in maritime shipping has always somewhat lagged behind in 
particular with new technologies and operational practices that might fatally fail un-
der rough conditions at sea (DNV 2017). This is particularly evident with main and 
auxiliary engine, propeller and rudder technology which are critical elements under 
rough conditions when failure of those may result in shipwreck. Moreover with all 
technical and organisational strategies, major obstacles impeding implementation 
may arise from an insufficient track record and proof of seaworthiness combined 
with risk aversion on the part of ship owners and operators as well as insurance 
companies. 

Beyond technical and economic causes for inertia, there is also an institutional one. 
Usually, the operator of a ship is not the owner which results in a principal agent and 
split incentive situation (ICCT 2011). For instance, the ship owner has to invest in or-
der to let the benefits of increased efficiency be achieved by the charterer (Raucci et 
al. 2017). This will only work for ship owners, as far as operators are willing to pay 
proportionately higher rates. In particular during periods of vessel overcapacity and 
low HFO prices, this may not come true. There is very limited evidence that charte-
rers are prefering more efficient vessels and willing to pay premium charter rates 
that might incentivise ordering more efficient vessel designs on the part of ship ow-
ners. (Prakash et al. 2016). 

Last not least in a world of unconstrained carbon use in the shipping industry, volati-
lity in crude oil and hence HFO prices might render investment in energy efficiency 
of vessels profitable or unprofitable (Faber et al. 2016). This depicts the high level of 
uncertainty whether such investment will turn out to be profitable within a reasonab-
le period of time. However estimates suggest that growing fuel prices by roughly 40 
per cent may result in an increase in cost-effectively abated carbon emissions by 25 
per cent up to 2030 (DNV 2010). 

2.8 Assessment criteria: Co-benefits 
While existing risks and barriers of decarbonisation strategies might impede their 
successful application, there may also be relevant co-benefits that foster decarbonisa-
tion. One important co-benefit that can be achieved through decarbonising maritime 
shipping is reducing emissions of black carbon. Current internal combustion engine 
designs and fuels used in maritime shipping imply relatively high emissions of black 
carbon. The particular relevance for climate change results from the deposition of 
black carbon on snow, ice sheets and glaciers which reduces the albedo thus absor-
bing more solar radiation giving rise to a local temperature increase and speeding up 
of melting (Boggild, Goelles 2015). Maritime ships operating e.g. in the North Atlan-
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tic may already have an important share in the deposition of black carbon on ice 
sheets and glaciers in Greenland as well as the whole Arctic. As soon as a temporarily 
ice-free Northwest Passage will become a reality which might happen midcentury 
from ongoing climate change (Smith, Stephenson 2013), this will attract substantial 
traffic of cargo vessels and cruise ships taking advantage of this and result in a 
further increase in the deposition of black carbon in the Arctic. 

Other substantial co-benefits of decarbonisation in maritime shipping are lower 
emissions of air pollutants at sea or in harbour areas that can be achieved through 
increased efficiency as well as fuel switching. Likewise such strategies may result in 
less noise from propulsion. Such co-benefits are particularly helpful for ports that are 
located close to human settlements where other sources of air pollutants or noise ha-
ve already been substantially reduced and hence the relative contribution of operati-
onal activity at a port to overall emissions has greatly increased. 

Another important issue is the level of toxicity and ecotoxicity at sea of energy car-
riers used for propulsion. This foremost refers to the current use of HFO and diesel 
fuel and spillage from normal operation at sea as well as from sinking of vessels. 
While some decarbonised energy carriers have a substantially smaller ecotoxicity 
footprint (e.g. methanol) others (e.g. ammonia) can be serious biological hazards 
(Thomas, Parks 2006). 

2.9 Assessment criteria: Role of ports 
Emissions of CO2 from maritime shipping have been estimated to amount to on 
average 3.1 per cent of all global CO2 and 2.8 per cent of all GHG emissions  in the 
2007 to 2012 period (IMO 2015). Most of those emissions occur in international wa-
ters and are not accounted for in national inventories of CO2 emissions. The Kyoto 
Protocol has excluded international shipping and aviation from national inventories 
owing to difficulties involved with allocating such emissions to individual countries. 
Instead the IMO and its member countries are responsible for the reduction of CO2 
emissions from international maritime transport. 

Thus at first glance ports seem to have a limited role the reduction of CO2 emissions 
in the maritime transport sector. However operation of vessels in international wa-
ters is difficult to monitor and influence, while vessels calling at ports can be inspec-
ted and regulated. 

Beyond the need to reduce CO2 emissions of port-related operations, the develop-
ment of ports can be restricted by a multitude of issues which directly or indirectly 
are associated with climate change. These are rises in the sea level, flooding and mo-
re frequent storm events which may heavily impact on port facilities that will need to 
be adapted to these effects of a changing climate (Messner et al. 2013). Other restric-
tions for port development result from emissions of air pollutants in port areas which 
are closely related to propulsion technologies and operational practices. 

Thus technical and operational strategies for decarbonising maritime freight trans-
port might to a large extent be influenced by ports. This may at the same time be hel-
pful while dealing with the mentioned restrictions for port development. (UNCTAD 
2015) 
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Ports can influence the decarbonisation of maritime shipping in various ways. De-
carbonisation efforts may be focused on ports and the facilities that have a direct im-
pact on the carbon intensity. This refers in particular to the provision of stationary 
logistics services at a port which includes loading and unloading, warehousing etc. 
Moreover ports can deliver decarbonised power to ships at berth. (Weenen et al. 
2016) 

Beyond this, ports can take an active role with regard to operation of maritime ship-
ping outside the port area. It is clear that responsibility for CO2 emissions from mari-
time shipping at sea does not rest with the ports that vessels are calling at. However, 
ports can work as incubators for the diffusion of innovative technologies and modes 
of operations at sea that allow to decarbonise maritime shipping. This refers to tech-
nologies and operational practices for increasing energy efficiency as well as the im-
plementation of technologies that allow to switch to decarbonised fuels and entire 
propulsion systems. 

It would be too difficult for ports to assesss the technical state of individual maritime 
vessels. Thus in order to foster the role of ports in the overall decarbonisation of ma-
ritime transport, regulations need to be implemented that allow ports to easily assess 
the energy efficiency and carbon intensity of vessels (see section 3.5). 

Ports can also take a major role in shifting hinterland freight transport to more cli-
mate friendly modes which among other factors is dependent on sufficient 
transshipment facilities to inland navigation and rail transport. This may also bring 
about positive side-effects with regard to the number of trucks entering the port area 
and related traffic jams. 
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3 Structure and description of selected strategies for 
decarbonisation 

3.1 Structure of strategies for decarbonisation through energy efficiency in 
maritime transport 
Strategies for decarbonisation through energy efficiency refer to what can be done at 
the level of ship owners and operators as well as suppliers of ships or technical retro-
fits as well as complementary infrastructure and services. While these strategies can 
in principle be implemented by the above-mentioned stakeholders, under market 
conditions there may be insufficient incentives to do so to the extent necessary to 
achieve deep decarbonisation of maritime shipping. 

Maritime vessels have depicted considerable improvements in energy efficiency 
during the 1980s. Efficiency then decreased after 1990, while recent years again 
brought about improvements. (Faber et al. 2016)  Regarding the need to achieve 
deep decarbonisation, such varying developments in regard to vessel efficiency are 
not helpful. Thus a regulatory framework is required that is comprised of a combina-
tion of policy instruments that put sufficient incentives in place to foster the applica-
tion of strategies for decarbonisation. 

Strategies for decarbonising maritime freight transport by increasing energy effi-
ciency can broadly be subdivided into technical and operational measures that allow 
to increase efficiency of energy use during operation of vessels at sea and ports. The 
tables in Annex 1 provide an overview of the most important of both strategies that 
may be applied. The following sections will not go into the details of all strategies 
mentioned in the tables. Instead, only a limited number of major strategies for in-
creased energy efficiency are highlighted for illustrative purposes. 

Strategies for technical efficiency can be further broken down into those that are in-
dependent of the kind of propulsion system used. Those refer to measures that are 
related to hull as well as rudder and propeller design.  

Further technical strategies for increasing energy efficiency are closely related to 
conventional propulsion and auxiliary power systems and are focused on upgrading 
either through entirely new designs or retrofitting components of existing designs. 

Another highly relevant technical strategy related to a ship’s hull, propeller and rud-
der is automated underwater monitoring and maintenance. Sufficient maintenance 
has a substantial impact on whether the efficiencies of hull, propeller and rudder can 
be kept in tune with the specified design. Automated underwater monitoring and 
maintenance allows to perform this important strategy without dry-docking while 
calling at a port and without having to resort to monitoring and maintenance per-
formed by divers. This offers substantial advantages regarding cost and time hence 
increasing the likelyhood that an optimal state of maintenance can be preserved. 

3.2 Selected operational strategies for increased energy efficiency: Ship 
size 
It is not entirely clear whether ship size is a technical strategy or an operational one. 
Of course building larger ships requires appropriate technology but ship size is also 
closely related to demand for transport services on a particular route and the size of a 



Background Report PoR Transport– WP 1 Wuppertal Institute 

18 | Wuppertal Institute 

ship needs to be a good match. Consequently, deploying ever growing ships is not a 
general tendency but focused on those routes where the growth in volume and fre-
quency of transport demand suggests to do so. 

Generally, the historical success of maritime shipping is closely related to the growth 
of vessel sizes that has allowed to reduce cost per ton-mile exploiting typical econo-
mies of scale. Besides reduced capital and labour cost per unit, these cost reductions 
are closely related to energy use. The size of a ship and the length of its waterline are 
important determinants of its hydrodynamic resistance and energy use per ton-mile. 
Thus larger ships can cruise at higher speeds without running into prohibitively high 
energy cost or energy cost can be reduced while a certain cruise speed is maintained. 

Depending on the type of goods transported and related ship types, optimisation 
through growing ship size has so far been focused more either on achieving higher 
cruise speeds or reductions of energy consumption. With on average higher capital 
intensity and lower densities of containerised goods, opting for higher cruise speeds 
with container vessels has been straightforward from an economic perspective. Op-
posed to this, increasing sizes of bulk carriers transporting relatively heavy goods 
with lower capital intensity was motivated more by trying to reduce energy cost per 
unit of goods transported. 

There are ambiguities as to which extent ship size may contribute to the decarbonisa-
tion of single loops as opposed to whole logistics chains. With increasing vessel sizes 
the effects may not be exactly the same depending on whether looking at it from the 
perspective of an individual vessel on a given route or from a systems perspective. If 
a larger ship can be used to transport exactly the same volume of freight on a loop 
from one port to another which has previously been done with numerous smaller 
ships, a higher level of energy efficiency can be expected. 

However deploying larger vessels is often based on the implementation of geographi-
cally bigger hub and spoke systems. This means that energy use for transshipment 
and a longer logistics chain deploying additional feeder vessels and transport modes 
used for hinterland transport may be relatively more important than just the loop 
between two ports. (Hassel et al. 2016) 

In maritime shipping, hub and spoke systems usually involve using numerous smal-
ler vessels as feeders and by that may on average increase transport distance. 
Another option is letting super large vessels call at several ports which compromises 
capacity utilisation between those ports. Another source for ambiguity is longer hin-
terland transport resulting from carrying goods on a larger vessel that can only call at 
geographically more concentrated ports. 

The aforementioned means that the effect of increasing maximum ship sizes on 
energy efficiency is ambiguous. Beyond the factors mentioned, the effect on energy 
efficiency largely depends on whether higher energy efficiency is deployed to increase 
cruise speeds or to accommodate growing transport demand from larger geographic 
areas. However in a scenario where cruise speeds are reduced (see following section) 
larger ships might contribute to achieving higher energy efficiency. 
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3.3 Selected operational strategies for increased energy efficiency: Slow 
steaming 
Given the substantial role of hydrodynamic drag of ships for energy efficiency, opti-
mising vessel speed has always played an important role in shipping economics. In 
particular during the seventies and early eighties of the last century with relatively 
high HFO prices, vessel overcapacity and related low freight rates, slow steaming al-
lowed to reduce fuel consumption and to increase economic efficiency (Michaelis 
1997). 

Conversely, when demand for vessel capacity is high as well as freight rates and while 
HFO prices are low there is an opposite economic incentive to increase vessel speeds 
in order to achieve more ton-miles and hence annual turnover per unit of capacity 
(Wan et al. 2018). Besides speeds of individual vessels depict a substantial variety 
some of which can not be explained by type of vessel or its energy efficiency (Prakash 
et al. 2016). There are various other detrimental or positive side-effects of slow 
steaming concerning shipping economics and supply chains which can not be dis-
cussed here in detail (see e.g. Mander 2017). 

While depending on the quantity of speed reduction, slow steaming may allow to 
achieve substantial energy efficiency gains on a ton-mile basis. However the reduced 
productivity (annual ton-miles) of slow steaming ships will result in more ships in 
operation for a given demand for sea-borne freight transport to be performed within 
a certain period. Thus some portion of the reduced emissions per ship will be shifted 
to other vessels and there will be more vessels in operation. (McCollum et al. 2009, 
IMO 2015) 

As mentioned, slow steaming is not exactly a new strategy. It has gained importance 
again resulting from the financial crisis in 2007 and the build-up of substantial glo-
bal vessel overcapacity that still exists (IMO 2015). In order to let slow steaming 
permanently deliver significant contributions to decarbonisation, it would require to 
be introduced as a generalised measure instead of being temporarily applied by ship 
operators depending amongst other factors on global vessel capacity, the industry’s 
business cycle and the price for HFO. Thus without any legal obligations or perma-
nent incentives that can counterbalance the effects of high demand for shipping ser-
vices and low HFO prices, it is unlikely that slow steaming will be applied as a stan-
dard procedure (DNV 2017). 

3.4 Selected operational strategies for increased energy efficiency: 
Optimising the utilisation of vessel capacity 
In principle, utilisation of capacity is one of the most important organisational stra-
tegies for reducing energy use and carbon emissions per ton-mile. However this stra-
tegy is also a core area of already existing efforts to increase the economic efficiency 
of maritime freight transport. Thus there may be no low hanging fruits and still exis-
ting potential may require co-operation between competitors and, therefore, be diffi-
cult to achieve. 

Moreover many goods require specialised vessels and trade in those goods is more or 
less a one-way street between exporting and importing countries. This primarily re-
fers to bulk goods like crude oil, coal, iron ore, agricultural products etc. where there 
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is no or much less trade in similar goods to the opposite direction, which results in 
specialised vessels running empty. 

Even with container shipping it is well-known that there are more containerised 
goods to be transported e.g. from Asia to Europe than the other way round. In 2013, 
on the trade route North Asia-Europe roughly 9.2 million TEU were shipped West 
bound while just 4.5 million TEU were shipped East bound (World Shipping Council 
2017). Thus as long as the spatial structure of world trade remains to be that unba-
lanced, it will be impossible to achieve a high on average utilisation of vessel capacity 
in maritime freight transport. 

3.5 Insights regarding the implementation of new technologies and 
operational practices for increasing energy efficiency 
In principle, technologies for increased energy efficiency of existing propulsion sys-
tems are relatively easy to implement with single ships, once the respective technolo-
gy has become available for commercial application because no or only minor chan-
ges in complementary infrastructure are needed. 

However in order to overcome barriers for implementation of such new technologies 
and operational practices, it may be required to initiate more international imple-
mentation projects with governments and partners from industry that allow to estab-
lish sufficient track records in terms of various ship types and actual operation at sea. 

The intense business cycle in the maritime shipping industry and volatility of fuel 
prices (HFO) pose substantial economic risks for investment in energy efficiency, re-
gardless whether with new capacity or retrofits. Dynamic technical energy effciency 
standards for ships may help overcome inertia resulting from such economic instabi-
lity as far as these can only be met through the implementation of additional effi-
ciency measures. 

Thus efficiency standards may play a vital role in the diffusion of strategies for in-
creasing energy efficiency in that they create a regulatory framework that promotes 
the diffusion of new technology and operational practices independent of highly vari-
able incentives caused by the substantial volatility in the industry’s business cycle 
and HFO prices (DNV 2010, Faber et al. 2016). 

In this regard, it is helpful that the IMO has introduced the Energy Efficiency Design 
Index (EEDI) as well as the Ship Energy Efficiency Management Plan (SEEMP) in 
2011. Complementary to this, the European Union is implementing the Monitoring, 
Reporting and Verification Directive (MRV) which obliges shipyards, owners and 
operators to review the technical state of ships. In principle, this opens up an easy as-
sessment of individual vessels regarding their energy efficiency by stakeholders like 
shippers or ports that would otherwise hardly be possible. (Johansson et al. 2017) 

However the EEDI only covers new ships with dynamic minimum efficiency stan-
dards according to vessel type and size. Taking into account an average age of 25 
years for maritime vessels it will require quite bit of time to achieve any substantial 
effect of the EEDI at the fleet level (Smith et al. 2016a, International Transport Fo-
rum 2018). Moreover, using the IMO EEDI database, a recent study has cast doubt as 
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to whether the EEDI standards for 2025 are strict enough based on findings that 
many ships recently built already comply with them (T&E 2017). 

In principle and similar to maritime shipping, there is a bulk of technical and opera-
tional strategies that may be used to increase the energy efficiency of transport mo-
des that are used for hinterland freight transport, starting from ports to the destina-
tions of goods for further manufacturing and, eventually, final consumption. Modes 
of transport primarily used for this are inland navigation, railways, and road freight 
transport. Air transport is of minor importance for hinterland transport originating 
from ports but contributes to the extent of fossil fuel use resulting from total trans-
port activity in Europe most of which is imported using maritime vessels. The multi-
tudes of strategies for enhanced energy efficiency that may be deployed by each mode 
of hinterland freight transport is beyond what can reasonably be influenced by ports 
and thus an in-depth analysis beyond the scope of this study. 
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4 Energy carriers and propulsion technologies for transport 
decarbonisation 

4.1 Energy carriers and propulsion technologies for decarbonising maritime 
and hinterland freight transport 
Beyond energy efficiency, alternative propulsion systems used with complementary 
energy carriers are prime technical strategies for decarbonising all modes of freight 
transport. There is an entire portfolio of options available or under development that 
may play a role in the decarbonisation of the various modes of freight transport using 
more or less decarbonised energy carriers. The most important aspect of such energy 
carriers is to which extent they can be regarded as decarbonised and what conse-
quences of their use have to be faced in terms of the achievement of other sustainabi-
lity criteria. 

It is clear that all modes of freight transport have specific technical and operational 
properties that may be more or less conducive to using particular energy carriers. 
E.g. direct use of electricity via overhead wires is well-established with railways but 
will pose substantial issues with other modes. 

With regard to this, by far most important are the volumetric and gravimetric energy 
densities of energy carriers that have an impact on the size of on-board storage re-
quired for typical operation and hence the payload that can be transported. Next to 
this, using decarbonised energy carriers requires appropriate propulsion technolo-
gies that may be more or less suitable to the operating conditions of the respective 
mode. 

Moreover, using particular energy carriers requires sufficient production capacity 
and supply infrastructure to be in place. Given the required contributions to decar-
bonisation can be achieved, the cost of the production of energy carriers and their 
distribution as well as those associated with the implementation of the respective 
propulsion technology will be decisive. However, there are still uncertainties as to 
what options will be most cost-effective under which conditions. 

From today’s perspective the portfolio of principally available options for decarbonis-
ing transport energy use is at least comprised of: 

n Compressed or liquefied natural gas as a fuel (LNG, CNG) for internal combustion 
engines; 

n Biogas as a fuel with internal combustion engines; 
n Biodiesel or -ethanol as fuels with internal combustion engines; 
n Direct electricity use from renewable production with electric propulsion systems; 
n Indirect electricity use from renewable production with storage in batteries; 
n Indirect electricity use from renewable production with hydrogen and fuel cells; 
n Indirect electricity use from renewable production with CO2-reuse for Power-to-

fuels and internal combustion engines; and 
n Indirect electricity use from renewable production with hydrogen or CO2-reusing 

methanol and fuel cells. 
Generally, the mentioned scope of options is already larger than appropriate to be 
implemented given that each fuel requires its own production system and distributi-
on infrastructure where economies of scale can be expected to be significant deter-
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minants of cost effectiveness. This means that implementing a limited number of de-
carbonised energy carriers for the operation of each mode of transport is to be prefe-
rred over a large diversity of options. 

Moreover, once any such system has been implemented it may be difficult to be pha-
sed out again in order to switch to other energy carriers that provide lower carbon in-
tensities needed for the achievement of the total extent of decarbonisation but that 
may require more time to be introduced. This is most relevant for natural gas that if 
at all (methane leakages) can only deliver limited contributions to decarbonisation 
and that will eventually need to be phased out again. 

Similarly - depending on feedstock and technology used - biofuels may even be coun-
terproductive (biodiesel from palm oil Gärtner et al. 2007) for decarbonisation and 
result in unwanted side-effects in terms of crowding out of land use for nutritional 
purposes as well as losses in biodiversity. Thus as long as no sustainably produced 
volumes of biofuels are available based on new production technologies and feed-
stocks, biofuels need to be phased out for more sustainable options. 

Ultimately, the selection of decarbonisation options for each mode of transport needs 
to strike a balance with regard to: 

n Potential relative and absolute contribution to decarbonisation as compared to 
conventional fuels; 

n Compatibility with other sustainability criteria (air pollution, land use, biodiversi-
ty); 

n Suitability regarding the operating conditions of individual transport modes (e.g. 
rough conditions at sea in maritime transport, energy densities and resulting ne-
cessary on-board storage facilities as well as logistics required for delivery); 

n Flexibility of use with conventional (internal combustion engine) and – at a later 
stage – more advanced propulsion technologies (fuel cells); 

n Ability to serve as a blend to conventional fuels thus working as a stepping stone 
on the way to more advanced decarbonisation options; and 

n Time required for implementation. 
From an energy efficiency perspective, direct electricity use from renewable produc-
tion can be expected to deliver the highest contributions to decarbonisation as com-
pared to all other options resulting from the high efficiency involved with a limited 
number of conversion processes. However, overhead wires are well-established with 
railways but not at all with other modes. Thus with road freight direct electricity use 
may be taken into consideration while with other transport modes it can be ruled out. 

In particular with maritime transport, inland navigation, and aviation, direct use of 
renewable electricity is simply no option except for the limited use of photovoltaics or 
wind on board of vehicles. Moreover direct electricity use with transport operations 
comes with the disadvantage of creating additional demand for electricity also at 
times when electricity based on renewable production is in short supply. Opposed to 
this, producing transport energy based on renewable power that can easily be stored 
at times and places with abundant production and then transported to the place of 
use offers the advantage to make contributions to the stabilisation of an overall ener-
gy system that is based on renewable energy. 
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Figure 1 Hydrogen from renewable electricity and fuels derived from it reusing CO2 

* The extent of decarbonisation depends on the use of electricity from renewable sources like solar ra-
diation or wind during the generation of hydrogen and with further downstream processes. 

Source: WI 

Besides producing energy carriers like diesel or methanol based on renewable power 
can at least partly be outsourced to regions of the world where e.g. solar radiation or 
wind are more intense as well as constant. This allows to deploy lower production 
cost resulting from the higher capital productivity involved with the more intensive 
utilisation of production facilities. 

Another P2F option that does not even require any carbon is ammonia that can be 
drawn from renewably produced hydrogen and nitrogen from the atmosphere. How-
ever ammonia can not be used as a blend with conventional fuels and infrastructure 
available for fuels will not seamlessly work with it. Besides it needs to be stored pres-
surised and is more hazardous with regard to ecosystems and human health than e.g. 
methanol. 

For the reasons mentioned, converting renewable power into hydrogen that may 
further be processed with CO2 from industry or ultimately the atmosphere into liquid 
fuels like Fischer-Tropsch diesel or methanol is an option that may offer substantial 
advantages in the short and medium term. 

While direct use of hydrogen with fuel cells is not at all a mature technology with any 
mode of transport except for some military submarines, hydrogen used for Fischer-
Tropsch diesel synthesis or methanol synthesis with CO2 can be converted into liquid 
fuels that may be used with existing or slightly modified internal combustion engi-
nes. Moreover, these fuels can easily be transported and stored or blended with con-
ventional fuels. At the same time, the hydrogen as well as the methanol path open up 
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the option to electrify propulsion systems at a later stage when hydrogen fuel cells or 
direct methanol fuel cells might have matured and have become cost effective as 
compared to internal combustion engines. 

An option that is still relatively high on the agenda and that is increasingly being 
used with big container vessels or cruise ships is natural gas as LNG which has been 
fostered by stricter regulations of NOX and SOX emissions and diminishing prices for 
natural gas from fracking in North America (DNV 2010, Wärtsilä 2017). The propul-
sion technology is available with many modes of transport and, for the most part, 
large scale distribution infrastructure is readily in place. However the lower energy 
density even of LNG reduces the payload capacity of vessels used for freight transport 
(RAE 2013) and the CO2 reduction potential of roughly 20 per cent over conventional 
fuels is too limited taking into account the very high overall emission reductions re-
quired for decarbonisation in the long run. 

At the same time, methane leakages can pose substantial issues from this particularly 
potent GHG counteracting any effective reductions in GHG emissions (Bouman et al. 
2017). Downstream methane leakages have to be expected to a higher extent with 
transport operations than with stationary use. With all modes of transport accidents 
happen and and in particular conditions of operation at sea (e.g. vibrations, corrosi-
on from sea water etc.) are generally more conducive to leaking from on-board facili-
ties. 

Preventing leakages requires delicate technical concepts and strict maintenance and 
control with the application of methane as a transport fuel. A focus of application 
may be LNG tankers, where technical standards are well above average and the inevi-
table boil-off from the large tanks may be used for propulsion. 

While fossil methane can be substituted using methane based on biomass or from 
power to gas processes, the leakage issue might effectively preclude using methane as 
an energy carrier for transport purposes in a decarbonised world. As a consequence, 
the fossil natural gas path can only be an interim solution and methane will need to 
be phased out in the long run. 

4.2 Assessment of energy carriers and propulsion technologies by mode of 
freight transport 
Energy use of the various modes of freight transport may in two distinct ways be re-
levant for port operation: 

n Firstly, a port works as a hub between maritime freight transport and hinterland 
transport via inland navigation, rail and road freight transport. A port thus needs 
to supply the energy used by all modes of transport relevant for port operation to 
allow for their seamless integration. 

n Secondly, transport energy use and that of other sectors may have a strong impact 
on goods transported to and from ports as well as related transshipments. 

Both freight transport and transport energy use are very relevant for the Port of 
Rotterdam and will need to adapt to the transitioning to a decarbonised transport 
system and overall economy. Switching of transport modes from fossil fuels to decar-
bonised energy may depict certain similarities. However, each mode of transport re-
quires tailored solutions based on its physical and technical characteristics as well as 



Background Report PoR Transport– WP 1 Wuppertal Institute 

26 | Wuppertal Institute 

its specifics of operation. Thus it makes sense to qualitatively assess options for de-
carbonised energy use by mode of transport which is here focused on freight trans-
port but similarly applies to passenger transportation. 

In maritime shipping, the most promising medium-term options for decarbonising 
energy use rest with the application of the P2F options Fischer-Tropsch diesel or me-
thanol involving hydrogen from renewable electricity and reuse of CO2 from indust-
rial sources or the atmosphere. Both can be implemented with existing conventional 
drivetrains and distribution infrastructures except for plants for producing these 
fuels. 

At a later stage, methanol might be combined with direct methanol fuel cells (DMFC) 
allowing to electrify propulsion. Hydrogen might also play a role, once fuel cells are 
cost effective. However hydrogen requires more sophisticated transportation and 
storage and needs to be handled with more care in order to rule out fatal accidents 
resulting from leakages and combustible mixtures with air. 

 

Table 2  Decarbonised energy for maritime shipping 

  
Current 
Use 

CO2  
Reduction TRL SIR 

Trans-
formation 

Time  
Horizon 

Co-
benefits Risks 

HFO dominant fossil high high impossible n. a. - outdated 

Diesel minor fossil high high impossible n. a. - outdated 
Sustaina-
ble Bio-
diesel no 

varies by 
input high high 

sustaina-
ble input ? b. medium ? - table/tank 

P2F/CO2 
Diesel no very high * limited high possible u. medium 

air  
pollution - 

LNG niche 
limited/ 
fossil high medium 

sustaina-
ble bio-
methane b. medium ? 

air  
pollution 

outdated, 
leakages 

Sustaina-
ble Bio-
methane no 

varies by 
input high medium 

sustaina-
ble input ? b. medium ? 

air  
pollution 

table/tank, 
leakages 

P2F/CO2 
Methanol no very high * 

medi-
um medium possible u. medium 

air  
pollution - 

Ammonia no very high * limited limited possible b. medium 
air  
pollution toxicity 

P2F Hy-
drogen FC niche very high * limited limited possible b. medium 

air  
pollution - 

Explanatory notes: TRL - Technology Readiness, SIR - System Integration Readiness, u. medium: full implementa-
tion until medium time horizon, b. medium: full implementation beyond medium time horizon. * depending on use 
of renewable electricity. Source: WI 

With inland navigation, options for decarbonising energy use are similar to those 
available for maritime shipping. An exception is that inland navigation is not subject 
to the corrosive force of sea water and rough conditions at sea which might turn me-
thane into a relatively lower risk and suitable option, in particular when it is not de-
rived from fossil sources. 

Battery electric drives are imaginable at least as a niche application for short distance 
inland shipping while broader use of batteries as energy storage systems in the ship-
ping sectors will require revolutionary advances in energy densities of batteries. 
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Table 3  Decarbonised energy for inland navigation 

  
Current 
Use 

CO2  
Reduction TRL SIR 

Trans-
formation 

Time  
Horizon 

Co-
benefits Risks 

Diesel 
domi-
nant fossil high high impossible n. a. - outdated 

Sustainable 
Biodiesel no 

varies by 
input high high 

sustaina-
ble input ? b. medium ? - table/tank 

P2F/CO2 
Diesel no very high * limited high possible u. medium 

air  
pollution - 

LNG no 
limited/ 
fossil high medium 

sustaina-
ble bio-
methane b. medium ? 

air  
pollution 

outdated, 
leakages 

Sustainable 
Biomethane no 

varies by 
input high medium 

sustaina-
ble input ? b. medium ? 

air  
pollution 

table/tank, 
leakages 

P2F/CO2 
Methanol no very high * medium medium possible u. medium 

air  
pollution - 

Ammonia no very high * limited limited possible b. medium 
air  
pollution toxicity 

P2F Hydro-
gen FC no very high * limited limited possible u. medium 

air  
pollution - 

Battery-
electric no very high * limited limited 

short  
distance 
niche b. medium 

air  
pollution - 

Explanatory notes: TRL - Technology Readiness, SIR - System Integration Readiness, u. medium: full implementa-
tion until medium time horizon, b. medium: full implementation beyond medium time horizon. * depending on use 
of renewable electricity. Source: WI. 

While road vehicles do not operate globally but within geographically more limited 
continental areas, more diversity regarding energy carriers used in different regions 
is imaginable than with maritime shipping or aviation which to a large extent operate 
globally. An option currently under discussion in Sweden and Germany is direct 
electricity use with lorries on motorways following the build-up of overhead wires 
and the utilisation of vehicles that combine a conventional drive train with an electric 
one and two current collectors. 

However this option faces several challenges. The implementation path towards mo-
torways with overhead wires lacks at least the visibility of how the necessary invest-
ment into such an infrastructure may be financed taking into account a long-lasting 
build-up period and initially very low spatial coverage of the motorway network and 
limited turnover from its use. At the same time, it is unclear whether logistics service 
providers will invest into more costly hybrid vehicles, given initially very low spatial 
coverage of the electrified motorway network. Moreover, such a system is difficult to 
operate in the Netherlands or Germany alone as important European transit count-
ries but would require an EU-wide approach. 

With road freight there are strong arguments in favour of power-to-fuel energy car-
riers that can initially be blended with conventional fuels and that may use the exis-
ting supply infrastructure. Methanol (and ethanol) is clean-burning and has been 
demonstrated to work with stationary internal combustion engines. Owing to the wi-
de-spread use as a chemical feedstock, distribution infrastructure largely exists and 
can be adapted to the needs of bunkering ships at lower cost than an equivalent LNG 
infrastrucure. (Ellis, Tanneberger 2015) At the same time, the methanol path might 
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be used to electrify drive trains at a later stage, once DMFCs have become cost effec-
tive. 

 

Table 4  Decarbonised energy for road freight 

  
Current 
Use 

CO2  
Reduction TRL SIR 

Trans-
formation 

Time  
Horizon 

Co-
benefits Risks 

Diesel 
domi-
nant fossil high high impossible n. a. - outdated 

Sustaina-
ble Bio-
diesel blending 

varies by 
input high high 

sustaina-
ble input ? b. medium ? - table/tank 

P2F/CO2 
Diesel no very high * limited high possible u. medium 

air  
pollution - 

LNG niche 
limited/ 
fossil high medium 

sustaina-
ble bio-
methane b. medium ? 

air  
pollution 

outdated, 
leakages 

Sustaina-
ble Bio-
methane no 

varies by 
input high medium 

sustaina-
ble input ? b. medium ? 

air  
pollution 

table/tank, 
leakages 

P2F/CO2 
Methanol no very high * medium limited possible u. medium 

air  
pollution - 

Ammonia no very high * limited limited possible b. medium 
air  
pollution toxicity 

P2F Hy-
drogen FC 

military 
niche very high * limited limited possible b. medium 

air  
pollution - 

Direct  
Electric no very high * medium limited 

highway 
niche? b. medium 

air  
pollution investment 

Battery-
electric niche very high * 

High/ 
medium limited 

last mile 
niche u. medium 

air  
pollution - 

Explanatory notes: TRL - Technology Readiness, SIR - System Integration Readiness, u. medium: full implementa-
tion until medium time horizon, b. medium: full implementation beyond medium time horizon. * depending on use 
of renewable electricity. Source: WI. 

Moreover hydrogen or batteries are options for the electrification of drive trains for 
road transport in particular with vehicles covering the last mile of delivery in urban 
areas. Conventional delivery vehicle manufacturers did not respond to evolving mar-
ket demand. Thus in 2014, logistics service provider Deutsche Post DHL has ac-
quired a vehicle manufacturing start-up (StreetScooter). The objectives were to speed 
up the process of switching to electric drive-trains with its delivery vehicle fleet and 
even to sell such vehicles (Weiss, Brautlecht 2017). Having successfully started with 
smaller sized delivery vehicles, the company has teamed up with Ford Motor for pro-
ducing larger delivery vehicles and even for looking into heavy duty vehicles with 
hydrogen fuel cell-electric drives. 

The transformation necessary for decarbonising rail transport with direct electricity 
use is largely about upstream emissions and shifting to carbon-neutral production in 
the electric utility sector. An exception are railway tracks where the low frequency of 
trains will not justify the investment in overhead wires. As another exemption, 
shunting locomotives operate at locations where transshipment activity precludes 
electric wires over the track. For these niches of rail transport, either diesel propulsi-
on may persist with diesel provided from carbon-neutral P2F production or a switch 
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to already existing battery-electric or hydrogen fuel cell-electric propulsion (Adolf et 
al. 2017) is possible. 

 

Table 5  Decarbonised energy for rail freight 

  
Current 
Use 

CO2  
Reduction TRL SIR 

Trans-
formation 

Time 
Horizon 

Co-
benefits Risks 

Direct  
Electric dominant very high * high high 

grid  
electricity u. medium 

air  
pollution - 

Diesel niche fossil high high impossible n. a. - outdated 
P2F/CO2 
Diesel no very high * limited high possible u. medium 

air  
pollution - 

P2F/CO2 
Methanol no very high * limited medium possible u. medium 

air  
pollution - 

Ammonia no very high * limited limited possible b. medium 
air  
pollution toxicity 

P2F Hydro-
gen FC niche very high * limited limited possible b. medium 

air  
pollution - 

Battery-
electric niche very high * medium medium 

shunting 
niche u. medium 

air  
pollution - 

Explanatory notes: TRL - Technology Readiness, SIR - System Integration Readiness, u. medium: full implementa-
tion until medium time horizon, b. medium: full implementation beyond medium time horizon. * depending on use 
of renewable electricity. Source: WI. 

With aviation the options at hand for decarbonising energy use are most limited. 
While kerosene produced from sustainable biomass or P2F might be implemented as 
a drop-in solution using existing turbines and supply infrastructure, electrification 
via hydrogen will require substantial changes in many components of the overall avi-
ation system. Such a transformation might take more time than available until 2050. 

 

Table 6  Decarbonised energy for air freight 

  
Current 
Use 

CO2  
Reduction TRL SIR 

Trans-
formation 

Time  
Horizon 

Co-
benefits Risks 

Kerosene dominant fossil high high impossible n.a. - outdated 
Sustaina-
ble Bioker-
osene no 

variable/ 
input limited medium 

sustaina-
ble input b. medium ? - 

table/ 
tank 

P2F/CO2 
Kerosene no very high * medium medium possible u. medium 

air  
pollution - 

P2F Hy-
drogen FC no very high * limited limited possible b. medium 

air  
pollution - 

Explanatory notes: TRL - Technology Readiness, SIR - System Integration Readiness, u. medium: full implementa-
tion until medium time horizon, b. medium: full implementation beyond medium time horizon. * depending on use 
of renewable electricity. Source: WI. 

4.3 Insights obtained from the fuel switch analysis 
Alternative fuels and propulsion systems require co-ordinated efforts where techno-
logy readiness of individual components like propulsion technology or fuel produc-
tion and distribution on their own are necessary but not sufficient preconditions of 
application and geographically widespread operation. This refers to the System In-
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tegration Readiness (SIR) of options mentioned in section 2.3 that goes beyond TRL 
for individual system components. 

In the long run, those technologies and fuels are of particular interest that allow to 
switch from carbon-intensive propulsion systems to decarbonised propulsion sys-
tems in a way that the overall envisaged emission reduction for GHG can be met up 
to 2050. 

With the exception of rail transport, that predominantly uses direct electricity for 
traction, maritime shipping and all other modes for hinterland transport currently 
use basically the same or very similar fuels based on crude oil. Options principally 
available as low carbon fuels and predominantely discussed in existing studies are 
natural gas and fuels based on biomass. The Dutch government has committed itself 
to increasing the use of LNG and sustainable biofuels with inland navigation and 
short-sea shipping (SER 2014). 

The advantages of LNG and biofuels are that they do already exist and their system 
integration appears to be much easier than for certain other decarbonised energy 
carriers. For instance hydrogen based on renewable power largely lacks production 
facilities, can not easily be transported and distributed using existing facilities and 
requires new propulsion technologies and hence at least retrofitted or entirely new 
vehicles. 

For inland navigation and aviation, where direct electricity use can be disregarded, 
the options remaining will be liquid fuels based on sustainably produced biomass or 
renewable power and CO2 (PtF). For aviation, the energy density required is very 
high in order to keep volume of fuel carried on long distance flights manageable and 
hence payload at a sufficient level. Thus options for aviation are kerosene based on 
either biomass or renewable power and CO2. Another option may be hydrogen that 
will need to be liquefied to keep the volume stored on board of aircraft limited. 

Generally, fossil fuels (crude oil, coal and natural gas) have been very important 
goods transported in the maritime transport sector both in terms of tons carried and 
ton-miles performed. While decarbonisation will advance with all transport modes, 
energy carriers used will transition from fossil fuels to decarbonised energy. Both ty-
pes of energy carriers can to some extent be supplied locally and hence will to a va-
rying extent need to be imported and transported by maritime shipping and the mo-
des required for hinterland transport (Pastowski 2005, Sharmina et al. 2017). 

Beyond the transport sector, decarbonisation will result in much less fossil fuels and 
more decarbonised energy carriers to be transported: Coal use will have to be abolis-
hed, while crude oil and petroleum products will have to shrink substantially. Natu-
ral gas will to a far lesser extent be influenced by decarbonisation of the transport 
sector than by changes in stationary use. 

Biomass has become a focus area of strategies to decarbonise energy use in many 
sectors. So far, production capacity remains to be bound to available arable land also 
required for other uses like food production. Moreover it remains to be based on 
energy intensive inputs which may result in mediocre reductions of CO2 emissions. 
Other biomass options under discussion like algae are still in their infancy laboratory 
stage. So-called second or third-generation biomass-based fuels will need to be as-
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sessed in terms of their real-world energy input and technical installation require-
ments, once they have reached a relevant development stage. 

Thus the share of fuels based on biomass might grow provided the issues with up-
stream emissions can be resolved and related land-use can be focused on areas not 
required for food production or the preservation of biodiversity. However this is un-
clear from today’s perspective. 

Instead of fuels from limited biomass, those that are based on renewable electricity 
and CO2 (P2F) might grow substantially. Some portion of these fuels will need to be 
imported as far as they can not cost-effectively be produced in Europe. Besides 
availability of renewable power, CO2 from other industrial sources will be required 
which might pose issues in an advancing decarbonisation process. Ultimately, CO2 
will need to be extracted from the atmosphere or other natural sources (geo-thermal) 
to allow for sufficient supplies for P2F. Issues with the availability of CO2 might be 
another reason to opt for hydrogen that can operate without any carbon input but 
still lacks the availability of cost-effective fuel cells. 

There are still substantial uncertainties regarding the potentials of the various fuel 
options discussed from a technical feasibility perspective and also taking into ac-
count evolving demand from other sectors. 
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5 Summary 
Even though maritime shipping offers the highest energy efficiency of all modes of 
transport, there is still substantial technical and operational potential. However, 
existing estimates of further potentials of individual strategies vary greatly. 

This can be interpreted as indication that evidence on the state of the world’s mer-
chant fleet of maritime vessels concerning the implementation of strategies for  ener-
gy efficiency is still limited. In order to resolve this, the implementation of monito-
ring and control regulations is underway and will provide a clearer picture and work 
as an incentive that will enhance the uptake of technical and operational innovation. 

Summing up the aforementioned regarding decarbonised fuels, there are sufficient 
options for decarbonisation of all transport modes up to 2050 even though – in par-
ticular for aviation – the number of viable options is much more limited for some 
modes of transport. With electrified rail freight, decarbonisation will simply proceed 
hand in hand with the decarbonisation of the electric utility sector. 

While not all options can usefully be implemented simultaneously, the main challen-
ge is about identifying a limited set of optimal decarbonised fuels per mode of trans-
port. Decarbonised fuels need to be a good match regarding the operational charac-
teristics of the respective mode of transport. 

Moreover, decarbonised fuels that can be used as a blend to conventional fuels with 
existing internal combustion engines and related infrastructure offer substantial ad-
vantages in that they can serve as stepping stones into a future where entirely new 
propulsion systems will be required. Even more so, fuels that can be used both with 
internal combustion engines and fuel-cell electric drives will foster the overall trans-
formation of transport energy use to decarbonisation. The latter is particularly true 
for methanol, that combines a relatively high energy density at normal conditions re-
garding temperature and pressure with a toxicity footprint that is not only better 
than that of conventional fuels but also than that of some of the other candidate fuels 
for decarbonisation (e.g. FT diesel, ammonia). 

Natural gas (as CNG or LNG) has the advantage of a relatively wide-spread distribu-
tion infrastructure and that internal combustion engines can be adapted with limited 
effort. However even if upstream and downstream methane leakages can be kept to a 
minimum, the potential reduction in CO2 emissions from the use of natural gas over 
other conventional fuels is rather limited as compared to the overall ambition level. 

Therefore it is questionable whether substantial efforts for the utilisation of natural 
gas are very helpful to make the ultimate very ambitious reduction in CO2 emissions 
become real. In particular to the extent that downstream emissions of methane need 
to be expected resulting from technical malfunctioning of components during normal 
transport operation or accidents, substantial contributions from natural gas to pro-
tecting the global climate as the ultimate end of decarbonisation in the transport sec-
tor are questionable. 

Generally, options for decarbonisation of transport energy use based on biomass will  
depend on whether issues with energy intensive inputs and land use can be resolved 
which is far from clear from today’s perspective. Thus bio-methane will for the most 
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of it depend on the same limited biomass feedstocks and ultimately arable land as li-
quid biofuels. 

Power-to-fuels that utilise CO2 like Fischer-Tropsch diesel or methanol might be 
long-term solutions as far as they are based on renewable electricity and as long as 
sufficient CO2 emissions from other sources are available or, ultimately, CO2 is di-
rectly used from the atmosphere. Methanol is not limited to use with internal com-
bustion engines but can further proceed to electric drives, once the direct methanol 
fuel cell technology has matured. 

Ammonia offers the advantage of being an entirely carbon-free technology but can 
not serve as a blend and has an unsustainable environmental footprint for humans 
and ecosystems if spillage occurs. So far Ammonia has primarily been considered for 
use with power stations by cracking the NH3 into H2 and nitrogen prior to combus-
tion of the H2 in a gas turbine. (ISPT et al. 2017) 

Hydrogen is another option that is independent of available sources for CO2 but is re-
latively complicated to store, transport and distribute and still lacks more afordable 
and mature fuell cell technology. However except for aviation, where on-board stora-
ge is particularly tricky, hydrogen fuel cell electric propulsion systems could in the 
long run be used with all modes of freight transport. 

All Power-to-Fuel (P2F) options are as much dependent on the availability of suffi-
cient renewable electricity supplies as electricity directly used for decarbonising rail 
freight or any other mode. However it appears unlikely that all renewable power and 
CO2 inputs required for P2F can be made available in Europe on its own. Therefore 
most likely certain fractions of P2F energy and hydrogen will need to be imported. 
This allows to deploy lower production cost in regions of the world where solar radia-
tion is more intense or where there is more constant wind available. 

Thus some of the options for decarbonisation considered here do already or in future 
will serve as stepping stones into a decarbonised future of transport energy use. 
Others however, are most likely interim solutions (methane, biofuels) or will require 
more time for the further development of technical components and build-up of rela-
ted infrastructure for production and distribution (hydrogen). 

Maritime shipping, inland navigation, road freight and aviation basically have to 
transition from a limited diversity of fuels based on crude oil to carbon neutral 
electricity and fuels derived from it (P2F). Opposed to railways, direct electricity use 
is currently only considered for lorries on highways which is difficult with regard to 
the necessary investment in wiring and the required hybrid vehicle drives. For the 
other transport modes considered it can be disregarded. 

Battery-electric drives may become a niche in inland shipping and harbour activity 
where the weight and bulk of batteries can be kept relatively small owing to short dis-
tance operation. However, this niche and its impact on overall emissions from mari-
time shipping and inland navigation will be of minor importance. From today’s per-
spective, it would require substantial advances in battery technology to turn it into a 
viable option for any long distance transport. 
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6 Annex 1: Assessment of strategies for decarbonising maritime shipping 
Grouped 
Strategies 

Individual 
Strategies 

Ship Tech-
nology Read-
iness Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-
ment (EI)/ Carbon 
Abatement (CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits 

Role of 
Ports 

Energy 
Efficiency:         
Hull Design 

Hull Form TRL9 No Installation and 
maintenance 

EI 3% (Michaelis 1997) 
CA 2-30% (Bouman et 
al. 2017) 

Variable with 
ship type 

Slow steam-
ing will reduce 
effect 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 

Light 
weight 
design 

  No Installation and 
maintenance 

CA 0.1-22% (Bouman 
et al. 2017) 

Variable with 
ship type 

Slow steam-
ing will reduce 
effect 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 

Bulbous 
Bow Re-
shaping 

TRL9 Yes Installation and 
maintenance EI up to 20% Basically unlim-

ited 

May foster 
effect of slow 
steaming 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 

Air  
Lubrication 

TRL9 
(Rehmatulla 
et al. 2017) 

Yes Installation and 
maintenance 

3% (Smith et al. 2016b) 
5-15% (ICCT 2011) CA 
1-15% (Bouman et al. 
2017) 

Tankers/ dry 
bulk (10-15%) 
container (5-
9%) 

May rule out 
certain hull 
coatings 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 

Silicone 
Hull  
Coating 

  Yes Installation and 
maintenance 

EI <1% (Smith et al. 
2016b) 

Basically unlim-
ited 

May rule out 
other hull 
coatings 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 

Polymer 
Hull  
Coating 

  Yes Installation and 
maintenance 

EI <2% (Smith et al. 
2016b) 

Basically unlim-
ited 

May rule out 
other hull 
coatings 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 

Future Hull 
coating   No Installation and 

maintenance 
EI 10% (Smith et al. 
2016b) 

Basically unlim-
ited 

May rule out 
other hull 
coatings 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall 
efficiency 
obligations 
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Grouped 
Strategies 

Individual 
Strategies 

Ship Tech-
nology Read-
iness Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-
ment (EI)/ Carbon 
Abatement (CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

Energy 
Efficiency:         
Rudder and 
Propeller 
Design 

Rudder 
Bulb   Yes Installation and 

maintenance 

EI 2% (Smith et al. 
2016b)  
5% (IMO 2009) 

High speed 
vessels  
(IMO 2009) 

  
Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Pre-swirl 
Stator Duct 

TRL9 
(Rehmatulla 
et al. 2017) 

Yes Installation and 
maintenance 

EI 0-6%  (Smith et al. 
2016b)   

Rules out 
Contra Rotat-
ing Propeller 
and Vane 
Wheel (Smith 
et al. 2016b) 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Vane Wheel   Yes Installation and 
maintenance 

EI 3% (Smith et al. 
2016b)  
10% (IMO 2009) 

  

Rules out 
Contra Rotat-
ing Propeller 
(Smith et al. 
2016b) 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Contra 
Rotating 
Propeller 

TRL9 
(Rehmatulla 
et al. 2017) 

Yes Installation and 
maintenance 

EI 8-15% (Smith et al. 
2016b)  
3-6% (IMO 2009) 

particularly 
beneficial with 
Ro-Ro/ contain-
er vessels (IMO 
2009) 

Rules out 
Vane Wheel 
(Smith et al. 
2016b) 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Stern 
Wedges   Yes Installation and 

maintenance 
EI 3-7% (Smith et al. 
2016b)     

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

End Plated 
Propeller   Yes Installation and 

maintenance 
EI 2-8% (Smith et al. 
2016b)     

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 
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Grouped 
Strategies 

Individu-
al Strate-
gies 

Ship Tech-
nology Read-
iness Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-ment 
(EI)/ Carbon Abatement 
(CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

  Hull 
Cleaning 

TRL9  
(Krikke 2015) Yes 

Service  
availability 

EI 5% (Krikke 2015)  
1-10% (IMarEST 2011) 
depends on prior state 

Basically unlim-
ited, no variabil-
ity by ship type 
and weight 

  HFO Price 

Less air 
pollution/ 
less dry-
docking 

Promotion of 
service supply 

Energy 
Efficiency:         
Autono-
mous Un-
derwater 
Monitoring 
and Mainte-
nance 

Propeller 
Polishing 

TRL9  
(Krikke 2015) Yes Service  

availability 

EI 5%  (Krikke 2015) 2.5-
8% (IMarEST 2011) de-
pends on prior state 

Basically unlim-
ited, no variabil-
ity by ship type 
and weight 

  HFO price 

Less air 
pollution/ 
less dry-
docking 

Promotion of 
service supply 

  
Rudder 
Blade 
Repair 

TRL9 Yes Service  
availability 

EI depends on prior state Basically unlim-
ited   HFO price 

Less air 
pollution/ 
less dry-
docking 

Promotion of 
service supply 
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Grouped 
Strategies 

Individual  
Stratgies 

Ship Tech-
nology 
Readiness 
Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-ment 
(EI)/ Carbon Abatement 
(CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

Energy 
Efficiency:         
Conven-
tional Pro-
pulsion 
and Auxil-
iary Power 
System 
Upgrading 

Heat Re-
covery: 
Rankine 
Cycle 

TRL9 
(Rehmatulla 
et al.) 

Yes Installation and 
maintenance 

EI 3-4% (Smith et al. 
2016b) 

Basically unlim-
ited 

Mutually exclu-
sive with other 
heat recovery/ 
obsolete with 
decarbonised 
propulsion 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Heat Re-
covery: 
Organic 
Rankine 
Cycle 

TRL9  
(IMO 2009) 

Yes Installation and 
maintenance 

EI 2-4% (Smith et al. 
2016b) 

Basically unlim-
ited 

Mutually exclu-
sive with other 
heat recovery/ 
obsolete with 
decarbonised 
propulsion 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Turbo-
compound-
ing 

  Yes Installation and 
maintenance 

EI 2-4% (Smith et al. 
2016b) 

Basically unlim-
ited 

Obsolete with 
decarbonised 
propulsion 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Turbo-
compound-
ing Parallel 

  Yes Installation and 
maintenance 

EI 2-3% (Smith et al. 
2016b) 

Basically unlim-
ited 

Obsolete with 
decarbonised 
propulsion 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 

Diesel-
electric 
Machinery 

TRL9  
(Krikke 
2015) 

Yes Installation and 
maintenance 

EI 5-8% (Krikke 2015)  
CA 2-45% (Bouman et al. 
2017) 

Basically unlim-
ited 

Obsolete with 
decarbonised 
propulsion 

Split incen-
tives/ HFO 
price 

Less air 
pollution 

Statutory 
overall effi-
ciency obliga-
tions 
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Grouped 
Strategies 

Individual 
Strategies 

Ship Tech-
nology Read-
iness Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-
ment (EI)/ Carbon 
Abatement (CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

Energy 
Efficiency:         
Operational 
Strategies 

Increasing 
Ship Size TRL9 Yes 

Complementary 
port infrastruc-
ture 

CA 4-83%  
(Bouman et al. 2017) 

Depends on 
freight volume 
and frequency 

  
Feeder 
traffic and 
more calls 

Less air 
pollution 

Enabling role of 
port facilities 

Slow 
Steaming TRL9 Yes 

Complementary 
technology/ 
qualification 

EI ranging from  
15-19%/ 36-39% (ICCT 
2011, IMarEST 2011)  
to 45% (Gilbert et al. 
2014) 

Basically unlim-
ited, very low 
variability by 
ship type 

Slot manage-
ment and port 
efficiency 

Demand/ 
HFO price/ 
capital cost/ 
off-design 
operation 

Less air 
pollution 

Port efficien-
cy/slot man-
agement 

Port  
Efficiency 

TRL9  
(Krikke 2015) Yes 

Complementary 
technology/ 
staff qualifica-
tion 

EI 5% (Krikke 2015)     

Basically unlim-
ited, no variabil-
ity by ship type 
and weight 

Slow steaming   Less air 
pollution 

Un-/loading 
efficiency 

Capacity 
Utilisation TRL9 Yes High CA 5-50%  

(Bouman et al. 2017) 
Spatial and ship 
type   

Spatially 
unpaired 
demand 

Port effi-
ciency   

Hinterland 
modal shift TRL9 Yes Network  

capacity   RoRo, bulk, 
container   

Limited 
network 
capacity 

Less 
conges-
tion in 
port area 

Transhipment 
facilities and 
networks  

Voyage 
Optimisa-
tion 

TRL9  
(Krikke 2015) Yes 

Complementary 
technology/ 
qualification 

EI 4% (Krikke 2015) 
0.6-7% (IMarEST 2011) 
CA 0.1-48% (Bouman 
et al. 2017) 

Basically unlim-
ited, no variabil-
ity by ship type 
and weight 

Slot manage-
ment and port 
efficiency 

  Less air 
pollution 

Real-time slot 
management 

Crew Train-
ing and 
Awareness 

TRL9  
(Krikke 2015) 

Yes 
Complementary 
technology/ 
qualification 

EI 5% (Krikke 2015)     Basically unlim-
ited 

May foster 
gains from other 
operational 
strategies 

  Less air 
pollution 

Provision of 
training courses  

Dynamic 
Mainte-
nance 
Planning 

TRL9  
(Krikke 2015) Yes 

Complementary 
technology/ 
qualification 

EI 5% hull/ 5% propeller 
(Krikke 2015) 

Basically unlim-
ited     

Propor-
tionately 
less air 
pollution 

Provision of 
training courses  

Trim Opti-
misation 

TRL9  
(Krikke 2015) Yes 

Complementary 
technology/ 
qualification 

EI 5% (Krikke 2015)     Basically unlim-
ited     Less air 

pollution 
Provision of 
training courses  

Engine 
Condition 
Monitoring 

TRL9  
(Krikke 2015) 

Yes 
Complementary 
technology/ 
qualification 

EI 4% (Krikke 2015)  Basically unlim-
ited     Less air 

pollution 
Provision of 
training courses  

Monitoring 
Energy Use 

TRL9  
(Krikke 2015) 

Yes 
Complementary 
technology/ 
qualification 

EI 3% (Krikke 2015)     Basically unlim-
ited     Less air 

pollution 
Provision of 
training courses  
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Grouped 
Strategies 

Individual 
Strategies 

Ship Tech-
nology Read-
iness Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-
ment (EI)/ Carbon 
Abatement (CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

Fuel 
Switching:    
Conven-
tional Pro-
pulsion 
Decarbon-
ised Fuel 

Liquefied 
Natural Gas 
(LNG) 

TRL9  
(Krikke 2015) 
(IMO 2016a) 

Yes 

Complementary 
technology/ 
distribution 
infrastructure/ 
staff qualifica-
tion 

CA 4% (Krikke 2015) 
20%  (IMO 2016a)  
5-30% (Bouman et al. 
2017) 

Basically unlim-
ited, straight-
forward with 
boil-off on LNG 
carriers  

May rule out 
other propulsion 
systems unless 
hybrid design 

Methane 
leakages/ 
lock-in with 
ICE/ fuel 
bunker 
network/ 
HFO price 

Less air 
pollution 

Statutory GHG 
limits/ provision 
of fuelling infra-
structure 

Biodiesel TRL 9 Yes Complementary 
technology 

CA 30-90% less direct 
GHG (IPCC 2014) 25-
84% (Bouman et al. 
2017) 

Basically unlim-
ited limited 
biomass supply 

May rule out 
other propulsion 
systems unless 
hybrid design 

Land use 
change/ 
seawater 
ecotoxicity/ 
lock-in with 
ICE/ HFO 
price 

Less air 
pollution 

Statutory GHG 
limits/ provision 
of fuelling infra-
structure 

P2F  
FT-Diesel 

TRL9 Yes Complementary 
technology CA  

Basically unlim-
ited renewable 
electricity sup-
ply 

May rule out 
other propulsion 
systems unless 
hybrid design 

Seawater 
ecotoxicity/ 
lock-in ef-
fect with 
ICE/ HFO 
price 

Less air 
pollution  

Statutory GHG 
limits/ provision 
of fuelling infra-
structure 

P2H2  
Ammonia   

Un-
clea
r 

Complementary 
technology/ 
distribution 
infrastructure/ 
staff qualifica-
tion 

  

Basically unlim-
ited renewable 
electricity/ H2 
supply 

May rule out 
other propulsion 
systems unless 
hybrid design 

Toxicity/ 
seawater 
ecotoxicity/ 
lock-in ef-
fect with 
ICE/ HFO 
price 

  

Statutory GHG 
limits/ provision 
of fuelling infra-
structure 

Biomass 
Methanol   Yes 

Complementary 
technology/ 
distribution 
infrastructure/ 
staff qualifica-
tion 

CA  
Basically unlim-
ited limited 
biomass supply 

May rule out 
other propulsion 
systems unless 
hybrid design 

Land use 
change/ 
lock-in with 
ICE/ fuel 
bunker 
network/ 
HFO price 

Less air 
pollution  

Statutory GHG 
limits/ provision 
of fuelling infra-
structure 

P2F  
Methanol 

TRL9  
(IMO 2016b) 

Yes 

Complementary 
technology/ 
distribution 
infrastructure/ 
staff qualifica-
tion 

CA significant GHG 
reductions if produced 
from biomass with clean 
energy (IMO 2016b) 

Basically unlim-
ited renewable 
electricity sup-
ply 

May rule out 
other propulsion 
systems unless 
hybrid design 

Lock-in with 
ICE/ fuel 
bunker 
network/ 
HFO price 

Less air 
pollution  

Statutory GHG 
limits/ provision 
of fuelling infra-
structure 
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Grouped 
Strategies 

Individual 
Strategies 

Ship Tech-
nology Read-
iness Level 

Ret
rofit 

System  
Integration 
Readiness  

Efficiency Improve-
ment (EI)/ Carbon 
Abatement (CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

Fuel Switch-
ing:    De-
carbonised 
Propulsion 
Systems 

P2F Metha-
nol/ Direct 
Methanol 
Fuel Cell-
electric 

Premature 
stage of 
DMFC 

Un-
like-
ly 

Complementary 
technology/ 
distribution 
infrastructure/ 
staff qualifica-
tion 

CA 100% direct 

Basically unlim-
ited renewable 
electricity sup-
ply 

May rule out 
other propulsion 
systems unless 
hybrid design/ 
may turn  tech-
nical efficiency 
for conventional 
propulsion ob-
solete 

Upstream 
emissions/ 
fuel bunker 
network/ 
HFO price 

No direct 
air pollu-
tion 

Statutory GHG 
limits/ provision 
of fueling infra-
structure 

P2H2/Fuel 
Cell-electric 

Limited mili-
tary use 
TRL5-6 (Adolf 
et al. 2017) 

Un-
like-
ly 

Complementary 
technology/ 
distribution 
infrastructure/ 
staff qualifica-
tion 

CA 100% direct (Gilbert 
et al. 2014) 2-20% 
(Bouman et al. 2017) 

Basically unlim-
ited renewable 
electricity sup-
ply 

May rule out 
other propulsion 
systems unless 
hybrid design/ 
may turn  tech-
nical efficiency 
for conventional 
propulsion ob-
solete 

Upstream 
emissions/ 
fuel bunker 
network/ 
HFO price 

No direct 
air pollu-
tion 

Statutory GHG 
limits/ provision 
of fueling infra-
structure 

Sails (Wind 
Power) 

Untested in 
commercial 
use (Gilbert et 
al. 2014) 

Yes 
Complementary 
staff qualifica-
tion 

CA 10-50% (Smith et al. 
2016b) 

 Not applicable 
with container 
vessels and dry 
bulkers 

Dependent on 
other propulsion 
system 

Limited 
space on-
board for 
sails, HFO 
price 

Propor-
tionately 
less air 
pollution 

Statutory GHG 
limits 

Kites (Wind 
Power) 

Limited com-
mercial use 
(Gilbert et al. 
2014) 

Yes 
Complementary 
staff qualifica-
tion 

CA 5% (Smith et al. 
2016b) 2-20% (ICCT 
2011) 

Over 30m ves-
sel length/ 
speed restricted 
at 16 knots 
(Gilbert et al. 
2014) 

Dependent on 
other propulsion 
system 

Operation 
may be 
difficult with 
kites, HFO 
price 

Propor-
tionately 
less air 
pollution 

Statutory GHG 
limits 

Flettner 
Rotors 
(Wind Pow-
er) 

Limited com-
mercial use 
(Gilbert et al. 
2014) 

Yes 
Complementary 
staff qualifica-
tion 

CA 10-30% (Smith et al. 
2016b) 3,5-12% (ICCT 
2011) 

Up to 60,000 
dwt (Gilbert et 
al. 2014) not 
applicable with 
container ves-
sels and dry 
bulkers 

Dependent on 
other propulsion 
system 

Limited 
space on-
board for 
rotors, HFO 
price 

Propor-
tionately 
less air 
pollution 

Statutory GHG 
limits 
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Grouped 
Strategies 

Individual 
Strategies 

Ship Tech-
nology Read-
iness Level 

Retrofit 
System 
Integration 
Readiness  

Efficiency Improve-
ment (EI)/ Carbon 
Abatement (CA) 

Selectivity Interdepend-
encies  

Risks/ 
Barriers 

Co-
benefits Role of Ports 

Fuel 
Switching: 
Decarbon-
ised Power 
at Berth 

Cold Ironing 
with Grid 
Electricity 

TRL9 (Krikke 
2015) Yes 

Comple-
mentary 
staff qualifi-
cation 

CA depends on grid 
electricity 3-10% (Bou-
man et al. 2017) 

Basically unlim-
ited 

Obsolete with 
on-board de-
carbonised 
power 

  
Less air 
pollution 
at ports 

Provision of 
grid infra-
structure 

Cold Ironing 
with Re-
newable 
Power 

TRL9 (Krikke 
2015) Yes 

Comple-
mentary 
technology/  
staff qualifi-
cation 

CA up to 100% Basically unlim-
ited 

Obsolete with 
on-board de-
carbonised 
power 

  
Less air 
pollution 
at ports 

Provision of 
grid infra-
structure 



Background Report PoR Transport– WP 1 Wuppertal Institute 
  

42 | Wuppertal Institute 

7 References 
Adolf,  Jörg; Arnold, Karin; Balzer, Christoph H.; Fischedick, Manfred; Louis, Jurgen; Pastowski, Andreas; Schabla, 
Uwe; Schüwer, Dietmar (2017): Shell Hydrogen Study - Energy of the Future? Sustainable Mobility through Fuel 
Cells and H2, Hamburg: Shell Deutschland Oil GmbH 

Boggild, T.; Goelles, C.E. (2015): Albedo Reduction Caused by Black Carbon and Dust Accumulation: a Quantitive 
Model Applied to the Western Margin of the Greenland Ice Sheet, The Cryosphere Discussions, 9, 1345-1381 

Bouman, Evert A.; Lindstad, Elizabeth; Rialland, Agathe I.; Stromman, Anders H. (2017): State-of-the-art Technolo-
gies, Measures, and Potential for Reducing GHG Emissions from Shipping – A Review, Transportation Research 
Part D, 52, 408-421 

DNV (2010): Pathways to Low Carbon Shipping. Abatement Potential towards 2030, Hovik (Norway): Det Norske 
Veritas 

DNV (2017): Low Carbon Shipping towards 2050, Hovik (Norway): Det Norske Veritas 

Ellis, Joanne; Tanneberger, Kim (2015): Study on the Use of Ethyl and Methyl Alcohol as Alternative Fuels in Ship-
ping, Southampton: Loyd’s Register Marine 

Faber, Jasper; Hoen, Maarten ’t; Vergeer, Robert;  Calleya, John (2016): Historical Trends in Ship Design Efficiency: 
The Impact of Hull Form on Efficiency, Delft: CE 

Gärtner, Sven; Pastowski, Andreas; Reinhardt, Guido A.; Rettenmaier, Nils (2007): Rain Forest for Biodiesel? Eco-
logical Effects of Using Palm Oil as a Source of Energy, Frankfurt a. M.: WWF Germany 

Gilbert, P.; Bows-Larkin, A.; Mander, S.; Walsh, C. (2014): Technologies for the High Seas: Meeting the Climate 
Challenge, Carbon Management, 5, 4, 447-461 

Hassel, Edwin van; Meersman, Hilde; Voorde, Eddy Van de; Vanelslander, Thierry (2016): Impact of Scale Increase 
of Container Ships on the Generalised Chain Cost, Maritime policy and management 43:2, 192-208 

ICCT (2011): Reducing Greenhouse Gas Emissions from Ships, Cost Effectiveness of Available Options, Washing-
ton DC: The International Council on Clean Transportation 

ICCT (2013): Long-term Potential for Increased Shipping Efficiency through the Adoption of Industry-leading Prac-
tices, Washington DC: The International Council on Clean Transportation 

IMarEST (2011): Reduction of GHG Emissions from Ships, Marginal Abatement Costs and Cost Effectiveness of 
Energy-Efficiency Measures, IMO Marine Environment Protection Committee 62nd Session MEPC62/INF.7 8 April 
2011, Institute of Marine Engineering, Science and Technology 

IMO (2009): Second IMO GHG Study, London: International Maritime Organization 

IMO (2015): Third IMO Greenhouse Gas Study 2014, London: International Maritime Organization 

IMO (2016a): Studies on the Feasibility and Use of LNG as a Fuel for Shipping, London: International Maritime Or-
ganization 

IMO (2016b): Methanol as Marine Fuel: Environmental Benefits, Technology Readiness, and Economic Feasibility, 
London: International Maritime Organization 

IPCC (2014): Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth As-
sessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press 

ISPT et al. (2017): Power to Ammonia. Feasibility Study for the Value Chains and Business Cases to Produce CO2-
free Ammonia Suitable for Various Market Applications, Amersfoort (NL): Institute for Sustainable Process Techno-
logy 

International Transport Forum (2018): Decarbonising Maritime Transport: Pathways to Zero-carbon Shipping by 
2035, Paris: OECD/ITF 

Johansson, Lasse; Jalkanen, Jukka-Pekka; Kukkonen, Jaakko (2017): Global Assessment of Shipping Emissions in 
2015 on a High Spatial and Temporal Resolution, Atmospheric Environment 167, 403-415 

Krikke, M. (2015): Retrofitting Ships with New Technologies for Improved Overall Environmental Footprint. RETRO-
FIT Project Final Report, Rotterdam: Netherlands Maritime Technology Foundation 

Loyd’s Register (2016): Low Carbon Pathways 2050, London: Lloyd's Register Group Limited 



Background Report PoR Transport– WP 1  References 

 

Wuppertal Institute | 43 

Mander, Sarah (2017): Slow Steaming and a New Dawn for Wind Propulsion: A Multi-level Analysis of Two Low 
Carbon Shipping Transitions, Marine Policy, 75, 210-216 

Mankins, John C. (2004): Technology Readiness Levels. A White Paper, Advanced Concepts Office, Office of Space 
Access and Technology, edited version from April 6 1995, NASA 

McCollum, David; Gould, Gregory; Greene, David (2009): Greenhouse Gas Emissions from Aviation and Marine 
Transportation: Mitigation Potentials and Policies, Arlington (VA): Pew Center on Global Climate Change 

Messner, S.; Moran, L.; Reub, G.; Campbell, J. (2013): Climate Change and Sea Level Rise Impacts at Ports and a 
Consistent Methodology to Evaluate Vulnerability and Risk, WIT Transactions on Ecology and the Environment, Vol. 
169, 141-153 

Michaelis, Laurie (1997): Special Issues in Carbon/ Energy Taxation: Marine Bunker Fuel Charges, Annex I Expert 
Group on the United Nations Framework Convention on Climate Change Working Paper No. 11 (OCDE/GD(97)77), 
Paris: Organisation for Economic Cooperation and Development 

Pastowski, Andreas (2005): Impacts of Energy Use on Demand for Freight Transport: Past Development and Future 
Perspectives, eceee 2005 Summer Study Proceedings, Chapter: 3,283, pp.697-708, Stockholm: European Council 
for an Energy Efficient Economy 

Prakash, Vishnu; Smith, Tristan; Rehmatulla, Nishatabbas; Mitchell, James; Adland, Roar (2016): Revealed Prefe-
rences for Energy Efficiency in the Shipping Markets, London: UCL Energy Institute 

Raucci, C.; Prakash, V.; Rojon, I.; Smith, T.; Rehmatulla, N.; Mitchell, J. (2017): Navigating Decarbonisation: An Ap-
proach to Evaluate Shipping’s Risks and Opportunities Associated with Climate Change Mitigation Policy, London: 
UMAS 

Rehmatulla, N.; Calleya, J.; Smith, T. (2017): The Implementation of Technical Energy Efficiency and CO2 Emission 
Reduction Measures in Shipping, Ocean Engineering 139, 184-197 

RAE (2013): Future Ship Powering Options: Exploring Alternative Methods of Ship Propulsion, London: Royal 
Academy of Engineering 

Sauser, Brian; Gove, Ryan; Forbes, Eric; Ramirez-Marquez, Jose Emmanuel (2010): Integration Maturity Metrics: 
Development of an Integration Readiness Level, Information Knowledge Systems Management 9, 17–46 

Schipper, Lee; Marie-Lilliu, Celine; Gorham, Roger (2000): Flexing the Link between Transport and Greenhouse Gas 
Emissions – A Path for the World Bank, Paris: International Energy Agency 

SER (2014): A Vision on Sustainable Fuels for Transport: Key Findings of the SER Vision Programme, Towards a 
Sustainable Fuel Mix for Transport in the Netherlands, The Hague: Ministry of Infrastructure and the Environment 

Sharmina, Maria; McGlade, Christophe; Gilbert, Paul; Larkin, Alice (2017): Global Energy Scenarios and their Impli-
cations for Future Shipped Trade, Marine Policy 84, 12–21 

Smith, Laurence C.; Stephenson, Scott R. (2013): New Trans-Arctic Shipping Routes Navigable by Midcentury, 
PNAS vol. 110, no. 13, E1191-E1195 

Smith, T.; Raucci, C.; Hosseinloo, Haji S.; Rojon I., Calleya J.; Suárez de la Fuente, S.; Wu P., Palmer K. (2016a): 
CO2 Emissions from International Shipping. Possible Reduction Targets and their Associated Pathways, London: 
UMAS 

Smith, T.; Raucci, C.; Hosseinloo, Haji S.; Rojon I., Calleya J.; Suárez de la Fuente, S.; Wu P., Palmer K (2016b): 
CO2 Emissions from International Shipping. Possible Reduction Targets and their Associated Pathways, Appendix B 
– Technology and Operational Intervention Assumptions, London: UMAS 

T&E (2017): Statistical Analysis of the Energy Efficiency Performance (EEDI) of New Ships Built in 2013-2017, Brus-
sels: Transport & Environment 

Thomas, George; Parks, George (2006): Potential Roles of Ammonia in a Hydrogen Economy, A Study of Issues 
Related to the Use of Ammonia for On-Board Vehicular Hydrogen Storage, Washington DC: U.S. Department of 
Energy 

UNCTAD (2015): Review of Maritime Transport 2015, Geneva: United Nations Conference on Trade and Develop-
ment 

Wan, Zheng;  Makhloufi, Abdel el; Chen, Yang; Tang, Jiayuan (2018): Decarbonizing the International Shipping In-
dustry: Solutions and Policy Recommendations, Marine Pollution Bulletin 126, 428–435 



Background Report PoR Transport– WP 1 Wuppertal Institute 
  

44 | Wuppertal Institute 

Wärtsilä (2017): LNG as a Marine Fuel Boosts Profitability while Ensuring Compliance, Helsinki: Wärtsilä Corporati-
on 

Weenen, Rob de Leeuw van;  Menist, Menno; Geest, Wouter van der; Newton, Sean; Lagerwerf, Olaf (2016): 
Sustainable Logistics for Europe: The Role of Ports, Zoetermeer (NL): Panteia 

Weiss, Richard; Brautlecht, Nicholas (2017): Even Germany’s Post Office Is Building an Electric Car: Why a No-frills 
Postal Van Spells Disruption for the Auto and Oil Industries, www.bloomberg.com, last access December 5 2017 

World Shipping Council (2017): Trade Routes, http://www.worldshipping.org, last access December 12 2017 


