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In recent years, research fields, including ecology, bioacoustics, signal processing, and machine
learning, have made bird sound recognition a part of their focus. This has led to significant advance-
ments within the field of ornithology, such as improved understanding of evolution, local biodiver-
sity, mating rituals, and even the implications and realities associated to climate change. The
volume of unlabeled bird sound data is now overwhelming, and comparatively little exploration is
being made into methods for how best to handle them. In this study, two active learning (AL) meth-
ods are proposed, sparse-instance-based active learning (SI-AL), and least-confidence-score-based
active learning (LCS-AL), both effectively reducing the need for expert human annotation. To both
of these AL paradigms, a kernel-based extreme learning machine (KELM) is then integrated, and a
comparison is made to the conventional support vector machine (SVM). Experimental results dem-
onstrate that, when the classifier capacity is improved from an unweighted average recall of
60%—-80%, KELM can outperform SVM even when a limited proportion of human annotations are
used from the pool of data in both cases of SI-AL (minimum 34.5% vs minimum 59.0%) and

LCS-AL (minimum 17.3% vs minimum 28.4%).

I. INTRODUCTION

Bird sounds offer a plethora of information to aid our
understanding of bird mating routines and evolutionary
changes.' Recognition of bird species via sound can make
development of automated long-term bird species monitor-
ing more feasible, and can be an effective tool for measuring
the state of nature,” tracking climate change,® and assessing
biodiversity within local ecosystems.*’

Throughout the past two decades, ornithologists, ecol-
ogists, and engineers in both signal processing and
machine learning have been working collaboratively
toward applications for automatically classifying bird
sound based only on audio recordings. In the early work of
Mcllraith and Card,® two-layer perceptrons were used to
classify six bird species, with correct identification ranging
from 82% to 93%. Somervuo ef al.” studied a parametric
model-based bird sound classification, and reported that
average recognition accuracy for single syllables was
between 40% and 50% for 14 common North-European
Passerine bird species. Chen and Maher proposed a spec-
tral peak track method that achieved 95% recognition
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accuracy in noisy environments from 12 natural bird spe-
cies and 16 synthesized syllables.® Fagerlund employed
mel-cepstrum parameters and low-level signal parameters
within a support vector machine (SVM) classifier to
improve accuracy to up to 91% and 98% for six and eight
differing species, respectively.” Selin ez al. introduced an
encouraging method based on wavelet decomposition that
achieved up to 96% accuracy for eight bird species.'® Lee
et al. presented a method using two-dimensional cepstral
coefficients combined with Gaussian mixture models
(GMMs) and vector quantization (VQ) to correctly classify
nearly 84% of syllable-based units from 28 bird species."’
The authors in Ref. 11 furthered their study by using a
novel feature set based on image shape to achieve approxi-
mately up to 95% accuracy among 28 bird species.'> An
algorithm of frequency tack extraction and tonal-based
features, considering background noise, were studied in
Refs. 13 and 14, respectively. Briggs et al. proposed a
multi-instance multi-label (MIML) framework in Ref. 15
for classification of multiple simultaneous bird species.
Jancovi¢ and Kokier proposed a novel method based on
penalised maximum likelihood in Ref. 16. In recent years,
the LifeCLEF Bird task'’ was proposed to provide the
research community with a database collected from a large
scale of bird species, which included 501 species within
14 027 audio recordings in 2014, extended to 1500 species



with 36496 audio recordings in 2017. Lasseck used a
method combined with large scale feature sets and seg-
ment probabilities in Ref. 18, which outperformed other
submitted methods in LifeCLEF Bird task in 2014. An
unsupervised feature learning method was proposed by
Stowell and Plumbley,'® which was also proven to be effi-
cient in the BirdCLEF 2014 contest. It is noticeable that
some state-of-the-art deep learning methods were investi-
gated in bird sound classification and showed promising
results.’ % In particular, it was a five-layer convolutional
neural network (CNN) fed with bird sounds’ spectrograms
that won the BirdCLEF 2016 contest.”’

Another direction for reducing manual annotation was
to specifically focus on the detection of syllables from bird
sound recordings. Kogan and Margoliash made a compara-
tive study on the use of dynamic time warping (DTW) and
hidden Markov models (HMMs) for bird song element rec-
ognition within recordings.*® This study showed that DTW-
based techniques require expert knowledge to select suit-
able templates, and HMMs needed more training examples
than DTW templates. Another method based on evolving
neural networks for unsupervised bird sound syllable classi-
fication was studied by Ranjard and Ross,”* in which a
DTW-based distance measure was designed to give an
insight into the relationship of spectrogram structures
between syllables. Tachibana et al. reported that a linear-
kernel SVM can achieve around 99% recognition accuracy
in day-long recordings (26055.8 = 17672.3 syllables).”
Tan et al. proposed an algorithm based on DTW and sparse
representation to classify up to 81 phrase classes of
Cassin’s Vireo (Vireo Cassinii).*® In their study, using only
limited training data (1-5 samples per phrase), classifica-
tion accuracies of 94% and 89%, respectively, on manually
and automatically segmented phrases was reached. A
template-based algorithm based on DTW and prominent
(high-energy) time-frequency regions of training spectro-
grams was studied in Ref. 27; this method can outperform
DTW and HMMs in most training and test conditions. In
addition, this method is robust when implemented with
data sets of limited sizes and within noisy background
conditions.

Despite this, there are still few studies that focus on the
reduction of human expert annotation for unlabeled bird
sound data (segmented syllables or continuous recordings).
The unavoidable truth is that expert human annotation is
time-consuming, expensive, and an undesirable task for
many. Previous surveys®® have shown that, in a typical data
mining project, data collection, cleaning, and annotation
alone will require ~80% of the entire time needed for the
project. Specifically within the study of bird sound, there are
large amounts of unlabeled audio recordings made in the
field by ornithologists and amateurs, which bring forth a
huge challenge for annotators. Therefore, the study of active
learning (AL) for bird sound classification is significant to
this domain.

In this study, two AL methods are investigated and com-
pared, sparse-instance-based active learning (SI-AL) and
least-confidence-score-based active learning (LCS-AL),
which have been shown to be efficient in a preliminary study

made by the authors.?® Then, a kernel-based extreme learn-
ing machine (KELM)**?! is introduced, and its capacity
compared with the conventionally used SVM classifier’?
when implemented in the two AL methods mentioned previ-
ously. Furthermore, a detailed comparison between algo-
rithm efficiency and robustness will be illustrated. This
article will be organised as follows: Section II will give a
brief summary of related prior work. The methodology and
databases used will be described in Sec. III. Experimental
results are presented in Sec. IV, and the discussion in Sec. V
before concluding remarks in Sec. VI.

Il. RELATION TO PRIOR WORK

Inspired by the success of AL in speech emotion recog-
nition,>® such methodology was introduced for bird
sound.” To the best of our knowledge, this was the first
time AL was applied for use with bird sound classification.
In preliminary work on classifying 60 species of birds by
sound using AL via SVM, we found that AL can reduce up
to 35.2% human annotated works compared with randomly
selecting samples. Extreme learning machines (ELMs)*
were introduced first for bird sound classification in Ref.
34. ELM can outperform other conventional classifiers
when fed with large scale acoustic features extracted by the
openSMILE toolkit.>> As for AL, investigated and com-
pared were two kinds of state-of-the-art techniques, i.e., SI-
AL and LCS-AL. For SI-AL, its capacity was extended for
a two-class classification in Ref. 33 to multi-class classifi-
cation in this study. Unlike Ref. 33, which selected samples
with a medium confidence score, in this work, the samples
predicted with least confidence scores were used.
Combining ELM with AL is studied in Refs. 36-38. In
these studies, the authors reported that ELM-based AL can
be superior or at least comparable to SVM. Motivated by
the success of these related works, the capacity of ELM and
AL into the bird sound classification task was explored.
The main contributions of this work compared with Ref. 29
are the use of an updated database of bird sounds, which
includes 86 rather than 60 species of bird.?° Second, the
confidence score was modified through the use of “margin
sampling,”*"° which, when estimating the trained classi-
fier’s “confidence,” is more stable and efficient than the
“cross entropy” used in Ref. 29. In addition, changing a
new classifier is demonstrated, e.g., KELM can consider-
ably improve the performance of AL for bird sound classifi-
cation. Finally, detailed experiments on the comparison of
efficiency and robustness for both SVM- and KELM-based
AL algorithms are proposed.

lll. METHODOLOGY AND DATABASE
A. Passive learning vs AL

To cope with issues of data scarcity, “passive learning”
(PL) is a conventionally used method that randomly
and independently selects samples from unlabeled data (see
Fig. 1), asking for human experts’ annotation. This method
is extremely time-consuming and costly.*® The detailed steps
of PL are shown in Algorithm 1.
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Algorithm 1: PL

Repeat:

(1) Randomly select K samples ¢ from the unlabeled set ®

(2) Let human expert annotate the selected subset ¢

(3) Remove ¢, from the unlabeled set @, i.e., ® « @\ ¢,

(4) Add w,, to the labeled set 'V, i.e., ¥ < ¥ U ¢,

End: When iteration reaches a defined number, or the trained classifier
achieves a certain performance on the validation set

AL uses the “most informative” samples (see Fig. 1) as
manual labels, and has a variety of methods to define these
samples.*” In this work, two approaches are compared, i.e., SI-
AL and LCS-AL. SI-AL (see Algorithm 2) is used as a method
to deal with the unbalanced distribution of this bird sound cor-
pus. K samples from data are randomly selected. Such data
have been classified by a pre-trained classifier as a “sparse
class” (the most informative) sample for each iteration. In
LCS-AL (see Algorithm 3), the “least-confidence-score” sam-
ples ranked by a pre-trained classifier are treated as the most
informative samples. It should be noted that the algorithm will
select all of the candidate data (i.e., “sparse-instance” or least-
confidence-score) if the number of them is less than K for both
Algorithms 2 and 3. Specifically, for Algorithm 2, which will
randomly select, as in Algorithm 1 if there are no instances
classified as sparse-instance in that iteration.

Algorithm 2: SI-AL

Repeat:

(1) Train a classifier 5 based on the labeled set ¥

(2) Randomly select K samples ¢, from the unlabeled set @ that are pre-
dicted by U to be the sparse class, whose number is less than a threshold,
i.e., Ky < Kpax X sparse_fraction, where Kj is the sample numbers of one
certain class, K.« is the maximum sample numbers among all data, and
sparse_fraction is a predefined ratio

(3) Let human expert annotate ¢

(4) Remove ¢, from the unlabeled set @, i.e., ® «— @\ ¢,

(5) Add ¢ to the labeled set 'V, i.e., ¥ — ¥ U ¢,

End: When iteration reaches a defined number, or the © achieves a certain
performance on the validation set

Algorithm 3: LCS-AL

Repeat:

(1) Train a classifier U based on the labeled set ¥

(2) Predict the unlabeled data @ by U, and rank the data by its prediction
confidence score

(3) Randomly select K samples ¢, from the last ¥% of ranked data in ®
(4) Let human expert annotate ¢

(5) Remove ¢ from the unlabeled set @, i.e., ® «— O\ ¢,

(6) Add ¢y to the labeled set ', i.e., ¥ — Y U ¢

End: When iteration reaches a defined number, or the U achieves a certain
performance on the validation set

B. SVM vs ELM

SVMs** have played an important role in classification
and regression tasks for the past two decades. In theory,
SVMs are given a set of training samples {(x;,)}\_,, where
X; € R is a feature vector in d-dimensional space, and ¢; is
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the predicted label of the corresponding sample. SVM aims
to find the maximum margin separating hyperplane, solving
the optimisation problem

o 1 n
minimize : Lsym = 5 E fith(jO(jQ(Xi,Xj) — E O,
i=1 i—1

subjectto : > ity =0, 0<a; < C, Vi. 1)
=1

Here, the o; corresponds to the Lagrange multiplier of a
training sample (x;, ;), C; is a pre-defined parameter, Q(x;, X;)
is the kernel function, which could be defined as linear, poly-
nomial, radial basis, or sigmoidal. For classification of a given
test sample, a decision function is defined as

flx) = Z 0;t;Q(x;,X;) + b. )
i=1

In this case, b is the bias. The posterior probability of
SVM estimation for a test sample can be approximated by a
sigmoid function

1
1 +exp(A(f(x) +B)’

P(tlf (%)) sym = &)

A, and B is the parameter to be determined by solving a regu-
larised maximum likelihood problem from Ref. 41.
Originally inspired by biological learning, ELMs were
first proposed for single hidden layer feedforward neural net-
works (SLFNs).3 031 The output function of ELM is defined as

filx) =h(x)B, “)

where B = [B,,B,,.... B,]" is the vector of output weights
between the hidden layer of m nodes to the /> 1 nodes of
output, and h(x) = [k (X), h2(X), ..., h,(x)] is the output row
vector of the hidden layer corresponding to the input x. ELM
aims to achieve both the smallest training error and the
smallest norm of output weights

minimize : || ?‘ +C.|Hp - T||32’ (&)

where 0, >0, 0, >0, {,n=0,1/2,2,...,400, H is the
hidden layer output matrix

h(xl) hy (Xl) hm(xl)
H=1 =1 & , ©)
h(X") hl (Xn) hm(xn)

and T is the target (label) matrix: T = [t --- /]’
In this study, KELM>'#? s adopted, and uses a kernel
matrix for ELM as follows:

Qpm = HHY @)

where Qg = h(xi)h(x;) is a kernel function that could be
defined as linear, polynomial, radial basis, or wavelet. In a mul-
ticlass case, the predicted label of a given test sample is the
index number of the output node that has the highest output



value corresponding to the given test sample, i.e., the predicted
label of a given test sample x is as described in Ref. 42,

label(x) = argmax f:(x), 3)
te{1.2,....m}

and the posterior probability of KELM’s P(#|fj(X))g y €sti-
mation can be estimated by feeding the output fi(x) into a
“softmax” function® as

P (tlfe(%)) gpm = _explfe(x) o

Z exp(f:(x))

The margin sampling,>’? calculates the difference between
the first and second largest posterior probabilities to repre-
sent the confidence score. The larger difference means the
higher confidence score of the corresponding instance.

C. Acoustic feature set

Motivated by the bird sound classification success in
Ref. 34, the openSMILE feature extraction tool kit is used to

TABLE I. LLDs in the ComParE feature set. RMS, root-mean-square; ZCR,
zero-crossing rate; RASTA, representations relative spectra; MFCCs, mel-
frequency cepstral coefficients; SHS, subharmonic summation; HNR, har-
monics to noise ratio.

Group A (59)

Loudness, modulation loudness, RMS energy, ZCR,
RASTA auditory bands 1-26, MFCCs 1-14,

Energy 250-650 Hz, energy 1-4 kHz,

Spectral Roll-off Point 0.25,0.50,0.75,0.90, spectral flux,
entropy, variance, slope,

skewness and kurtosis, harmonicity,

sharpness (auditory), centroid (linear)

Group B (6)

FO0 via SHS, probability of voicing, jitter (local and delta),
shimmer, log HNR (time domain)

FIG. 1. The diagram of PL and AL for
unlabeled bird sound data annotations.
Compared with PL, AL can find the
most informative unlabeled data for
asking human annotations.

extract large scale acoustic features for further machine
learning steps. In this work, we chose the “ComParE” fea-
ture set,** shown to be efficient in a preliminary study.? The
low-level descriptors (LLDs) used in ComParE feature set
are listed in Table I. With functionals (refer to Ref. 45)
applied to the LLDs, in total there 6373 features are
extracted from bird sound data. Before feeding into the clas-
sifier, all the features extracted from the bird sound data
were standardized to eliminate the effect of outliers.

D. Bird sound database

The bird sound data used were provided by the Museum
fur Naturkunde Berlin (MNB),50 Berlin, Germany. The orig-
inal database contains 273 species (subspecies) of bird sound
within 6487 audio recordings. 86 species (5060 audio
recordings) were chosen, which have a minimum of 20 audio
recordings. The minimum, maximum, and average time
duration of these recordings is 0.330s, 59.033 s, and 2.835s,
respectively. The entire time duration of the used database is
approximately 4.0 h. As shown in Table II, among each spe-
cies of bird sound, 20% (x1043) of instances were randomly
selected for the validation set. To make a comparison of
algorithms’ efficiency and robustness, two scales of initial
supervised training sets were set up, i.e., 10% and 20% from
each species of bird sound, which generates 539 and 1030
instances, respectively. Finally, the rest of the data will be
the unlabeled pool data set, imitating the human annotation
process by feeding the real labels of the pool data to the
classifiers.

TABLE II. The number of instances and percentage of total bird sound data-
base in experiments.

Initial Pool Validation z
539 (10%) 3478 (710%) 1043 (20%) 5060 (100%)
1030 (20%) 2987 (60%) 1043 (20%) 5060 (100%)
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IV. EXPERIMENTAL RESULTS
A. Experimental setup

The experiments on PL and AL are all implemented in
the environment of MAaTLAB R2016b by MathWorks (Natick,
MA). SVM is implemented by the popular toolkit LIBSVM*®
in a C executable environment. ELM is implemented in
MATLAB. Based on a fair comparison, the kernels of both SVM
and KELM are set as the polynomial kernels (refer to Ref. 47)

K(x;, X)) = (7,X7x; + ). (10)

Here, ¢ and d are set empirically to 1 and 10, respectively,
by the previous preliminary experiments. The y,-value is an
empirically defined parameter, which is set to be 1/6373 and
1 for SVM and KELM, respectively. The parameters C; and
C, are set to be the same as ten by previous experiments

FIG. 2. (Color online) Comparison of
UARs vs number of human labeled
instances between algorithms with 539
initial supervised training instances:
(a) by SVM; (b) by KELM. The mea-
sures for PL are shown with 20 inde-
pendent runs.

selected from the grids of 10’5, 10’4, ...,10%10%. The
sparse_fraction (mentioned in Algorithm 2) and 9%
(mentioned in Algorithm 3) are set to be 0.5% and 10%,
respectively. All the experiments were made on the same
desktop personal computer (PC) with the CPU’s configura-
tion of Intel Core " i17-4790@3.60 GHz (Santa Clara, CA).
The evaluation metric of classification performance is
the unweighted average recall (UAR),*® which is defined as

m
Z Recall,

UAR ==L (11)
m

Here, m is the number of classes, and Recall,. is the cor-
rect accuracy of the xth class. In this study, UAR is more
reasonable as the evaluation metric than accuracy due to the
unbalanced distribution of bird species. To make an effective

FIG. 3. (Color online) Comparison of UARs vs number of human labeled instances between algorithms across 20 independent runs (both for the averaged
UAR and standard deviation): (a) by SVM with 539 initial supervised training instances; (b) by SVM with 1030 initial supervised training instances; (c) by
KELM with 539 initial supervised training instances; (d) by KELM with 1030 initial supervised training instances. The charts only illustrate the UARS in com-

mon iterations of PL, SI-AL, and LCS-AL.
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comprehensive comparison, this study will use all of the
pool data set during the final iteration of each algorithm.

B. Comparison of PL and AL

In the experiments comparing the performance of PL
and AL, the initial size was set to 539 (refer to Table II).
Figure 2 shows the UARs achieved by the trained classifier
vs the corresponding human labeled instances in the pool
data set. For both SVM and KELM, AL is more efficient in
improving the trained classifier’s performance than PL
(except SVM-SI-AL). In particular, LCS-AL can achieve the
best recognition performance during its earlier iterations.
Twenty randomly replicating experiments were run on PL;
however, the maximum UARs of PL still yield to ALs
(except SVM-SI-AL). It should be noted that, in these
experiments, LCS-AL is superior to SI-AL for finding the
most informative samples. In particular, for SVM, SI-AL
cannot improve the classifier’s performance compared with
PL [see Fig. 2(a)]. Compared with PL, AL tends to have a
slight decrease after reaching its highest point. This is due to
the most informative samples being fed into the classifier;
other samples bring uncertain information to the model.

C. Comparison of robustness

To compare the robustness of different AL methods,
ie.,, SVM-SI-AL, SVM-LCS-AL, KELM-SI-AL, and
KELM-LCS-AL, two scales were selected from the initial
training set, 539 and 1030 (refer to Table II). Both scales are
randomly generated and equally fed into different algorithms
by 20 independent replica runs. The averaged UAR and

TABLE III. The percentage (%) of used human labeled instances when the
performance (UAR) was increased from 60.0% to 80.0% with 539 initial
supervised training instances. The bold entries represent the best perfor-
mance of each AL algorithm.

FIG. 4. (Color online) The percentage
of used human labeled instances in
total pool data when the performance
(UAR) was improved from 60.0% to
80.0%: (a) with 539 initial supervised
training instances; (b) with 1030 initial
supervised training instances. The val-
ues are averaged across 20 independent
runs.

standard deviation of the 20 independent runs are shown in
Fig. 3 (results are given by common iterations among differ-
ent algorithms). In such a study, LCS-AL is the fastest algo-
rithm and can improve classifier performance at early
iterations for both SVM and KELM. Compared with PL,
LCS-AL can improve the classifier’s performance using
much less human labeled instances and with less instability
(smaller standard deviation than PL). In Fig. 3, it can be seen
that SI-AL is not superior to PL for SVM. However, SI-AL
can reduce the number of human labeled instances, and
improves the robustness when applied to KELM.

KELM performance is superior to SVM when trained
by an initial data set (see Figs. 2 and 3). To make a fair com-
parison of SVM and KELM for their capacity to reduce
human annotation work, the algorithms’ performance is
evaluated by observing a common range of improvement for
UAR (from 60.0% to 80.0%). Figure 4 shows the percentage
(in statistical box plots) of used human labeled instances in
the pool data set within the UAR range from 60.0% to
80.0% by varied algorithms. KELM can outperform SVM
on reducing human annotations by each corresponding learn-
ing strategy, i.e., PL, SI-AL, and LCS-AL.

V. DISCUSSION

Tables IIl and IV illustrate the percentage of human
labeled instances used in the pool data set when UAR was
improved from 60.0% to 80.0% by each algorithm within 539
and 1030 initial training instances, respectively. We list the
minimum, maximum, mean, and median values of percentage
(in %) from 20 independent runs. For SVM, SI-AL was not as

TABLE IV. In this case, the initial supervised training instances were
increased to 1030. The table shows percentage (%) of used human labeled
instances when the performance (UAR) was increased from 60.0% to 80.0%.
The bold entries represent the best performance of each AL algorithm.

Minimum Maximum Mean Median Minimum Maximum Mean Median
SVM PL 57.5 71.2 65.8 65.5 SVM PL 60.3 80.3 76.7 79.9
SI-AL 59.0 71.2 66.8 66.9 SI-AL 61.3 86.6 77.6 79.9
LCS-AL 28.4 50.9 40.0 39.0 LCS-AL 32.7 49.7 40.6 43.0
KELM PL 51.8 69.0 61.5 63.3 KELM PL 53.6 80.3 67.0 67.0
SI-AL 34.5 51.8 38.0 374 SI-AL 46.9 60.3 53.5 53.6
LCS-AL 17.3 28.8 23.9 23.0 LCS-AL 20.1 335 26.1 26.8
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TABLE V. Significance levels of the averaged UARs obtained from the sta-
tistical comparison (one sided Student’s #-test) between iteration: 4—18 with
539 initial supervised training instances [800-3478 instances for SVM-PL,
200-2732 (averaged) instances for SVM-SI-AL, 800-2674 (averaged)
instances for SVM-LCS-AL, 800-3478 instances for KELM-PL, 200-2906
(averaged) instances for KELM-SI-AL, 800-2927 (averaged) instances for
KELM-LCS-AL].

TABLE VI. Significance levels of the averaged UARs obtained from the
statistical comparison (one sided Student’s #-test) between iteration: 4—15
with 1030 initial supervised training instances [800-2987 instances for
SVM-PL, 200-2552 (averaged) instances for SVM-SI-AL, 800-2550 (aver-
aged) instances for SVM-LCS-AL, 800-2987 instances for KELM-PL,
200-2334 (averaged) instances for KELM-SI-AL, 800-2287 (averaged)
instances for KELM-LCS-AL].

superior as PL for reducing human annotations, and used even
more human labeled instances than PL to improve the classi-
fier’s UAR from 60.0% to 80.0%. SVM-LCS can reduce
approximately 20%—-29% (within 539 initial training instan-
ces) to more than approximately 30%—35% (within 1030 ini-
tial training instances) human labeled instances from pool
data set compared with PL. SI-AL works well for KELM,
which reduces approximately 17%-25% to 6%—20% human
annotation work by PL. KELM-LCS-AL is the best one in
this study, and reduces approximately 35%—40% to approxi-
mately 33%—47% human labeled instances than PL. Finding
from this that, within more initial training instances, AL can
be stronger at locating the most informative samples, leading
to less human labeled instances.

The significant levels (by one sided Student’s t-test*) of
averaged UARs by comparing different algorithms are shown in
Tables V (within 539 initial training instances) and VI (within
1030 initial training instances), respectively. To eliminate the
effect of early iterations’ instability, one sided Student’s z-test
was set at the beginning of the fourth iteration. The comparison
range will be a common length for each algorithm, i.e., the 4th
to 18th iteration by each algorithm within 539 initial training
instances, and the 4th to 15th iteration by each algorithm within
1030 initial training instances. The comparisons are made
between a pair of differing strategies listed in the left column
and the top row of each table (see Tables V and VI). The signifi-
cance levels are presented by grayscale shading based on the
values p < 0.05, p<0.01, and p < 0.001. KELM was found to
be the best algorithm among all, then comes KELM-SI-AL.
SVM-LCS-AL is superior to SVM-PL and SVM-SI-AL
(p <0.01), yet yields more with KELM-LCS-AL.

From this study, it has been found that LCS-AL is far
more efficient than SI-AL for SVM, specifically, SVM-SI-
AL did not show any improvement compared with SVM-PL.
This may be the reason that LCS-AL is well-matched to
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SVM’s boundary-learning behavior.”* In particular, a
“sampling margin” has been used in LCA-AL, which
focuses on distinguishing the two most similar possible clas-
ses of a given sample. Furthermore, KELM’s higher perfor-
mance over SVM in this study could be explained in two
ways. First, when a same kernel was used, SVM tends to
find a solution sub-optimal to KELM’s solution.>! Then,
KELM can be directly applied into multi-class cases while
SVM has to convert and indirectly solve the multi-class
problems to some type of binary classification problems,
which might change the application property and
distribution.®!

VI. CONCLUSION

This study proposed a kernel-based extreme learning
machine—based active learning (KELM-AL) method for bird
sound classification in which we compared the KELM-based
AL and SVM-based active learning (SVM-AL) to find
improvement for recognition performance, and also to evalu-
ate robustness through differing initial training sets.
Experimental results showed that KELM-AL can reduce up
to 47% human labeled instances, while SVM-AL can reduce
up to 37% human labeled instances when compared to PL.
Among AL, LCS-AL was superior to SI-AL within a one
sided Student’s r-test at p <0.01 (for SVM) and p < 0.05
(for KELM). Future work will include the comparison of
more advanced AL methods via KELM in the classification
of bird sound, focusing on methods to handle such large
amounts of unlabeled bird sound data.
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APPENDIX: BIRD SPECIES USED IN THIS STUDY

The Latin names and the instance numbers of the bird sound database used in this study are listed in Table VII.

TABLE VII The Latin name and the number of instances for each bird species.

Latin name Instances Latin name Instances Latin name Instances
Acrocephalus arundinaceus 59 Acrocephalus palustris 37 Acrocephalus scirpaceus 59
Aegolius funereus 50 Alauda arvensis 24 Anthus petrosus 24
Anthus pratensis 38 Anthus trivialis 44 Asio otus 70
Athene noctua 22 Botaurus stellaris 22 Caprimulgus europaeus 20
Carpodacus erythrinus 31 Certhia brachydactyla 42 Certhia familiaris 22
Chloris chloris 34 Chroicocephalus ridibundus 21 Corvus corax 21
Cyanistes caeruleus 36 Dendrocopos major 53 Dendrocopos medius 50
Dendrocopos minor 28 Dryocopus martius 53 Emberiza calandra 68
Emberiza citrinella 86 Emberiza hortulana 279 Emberiza rustica 32
Emberiza schoeniclus 119 Erithacus rubecula 26 Ficedula hypoleuca 44
Ficedula parva 35 Fringilla coelebs 261 Fringilla montifringilla 23
Fulica atra 59 Gallinula chloropus 28 Garrulus glandarius 24
Hirundo rustica 23 Jynx torquilla 20 Locustella naevia 23
Lophophanes cristatus 64 Lullula arborea 22 Luscinia luscinia 133
Luscinia megarhynchos 179 Motacilla alba 24 Muscicapa striata 23
Oriolus oriolus 23 Parus major 145 Passer domesticus 23
Passer montanus 22 Periparus ater 187 Phalacrocorax carbo 29
Phoenicurus ochruros 43 Phoenicurus phoenicurus 155 Phylloscopus bonelli 64
Phylloscopus canariensis 38 Phylloscopus collybita 132 Phylloscopus ibericus 129
Phylloscopus sibilatrix 34 Phylloscopus trochilus 133 Pica pica 20
Picus canus 54 Picus viridis 28 Podiceps cristatus 27
Podiceps grisegena 31 Poecile montanus 20 Porzana parva 23
Porzana porzana 66 Prunella modularis 26 Rallus aquaticus 113
Regulus ignicapilla 20 Regulus regulus 20 Saxicola rubetra 79
Sitta europaea 37 Strix aluco 34 Sylvia atricapilla 110
Sylvia borin 54 Sylvia communis 76 Sylvia curruca 43
Sylvia melanocephala 50 Sylvia nisoria 39 Troglodytes troglodytes 58
Turdus merula 156 Turdus philomelos 124 Turdus pilaris 54
Turdus viscivorus 61 Tyto alba 25
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