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Abstract
In this paper, we propose a method for automatically detecting
various types of snore sounds using image classification convo-
lutional neural network (CNN) descriptors extracted from audio
file spectrograms. The descriptors, denoted as deep spectrum
features, are derived from forwarding spectrograms through very
deep task-independent pre-trained CNNs. Specifically, activa-
tions of fully connected layers from two common image classifi-
cation CNNs, AlexNet and VGG19, are used as feature vectors.
Moreover, we investigate the impact of differing spectrogram
colour maps and two CNN architectures on the performance
of the system. Results presented indicate that deep spectrum
features extracted from the activations of the second fully con-
nected layer of AlexNet using a viridis colour map are well
suited to the task. This feature space, when combined with
a support vector classifier, outperforms the more conventional
knowledge-based features of 6 373 acoustic functionals used in
the INTERSPEECH ComParE 2017 Snoring sub-challenge base-
line system. In comparison to the baseline, unweighted average
recall is increased from 40.6% to 44.8% on the development
partition, and from 58.5% to 67.0% on the test partition.
Index Terms: convolutional neural networks, deep learning,
snore sound, spectral features, computational paralinguistics

1. Introduction
Aside from negatively impacting the quality of life of those af-
fected [1, 2], snoring can also be a marker of Obstructive Sleep
Apnea (OSA) [3] which, after insomnia, has the highest preva-
lence of all sleep disorders, affecting approximately 3–7 % of the
middle-aged men and 2–5 % of middle-aged women [4–6] in the
general population. OSA is characterised by repetitive episodes
of partial or complete collapses of the upper airway during sleep,
causing impaired gaseous exchanges and sleep disturbance [7].
As a chronic condition that is caused by an obstruction of the
upper airways during sleep, OSA can lead to an increased risk of
cardiovascular and cerebrovascular diseases [8, 9]. An integral
part of successful treatment is locating the site of obstruction and
vibration [10], which is the subject of the INTERSPEECH 2017
ComParE Snoring sub-challenge [11]. The challenge requires
participants to identify four different sources of vibration from
audio snore samples: epiglottis, oropharyngeal lateral walls,
tongue, and velum.

An audio perspective on the analysis of snoring has made use
of, among others, amplitude [12], frequency [13] and wavelet fea-
tures [14]. Agrawal et al. show that palatal (velum) and tongue-
based snoring differ significantly in peak-frequency. While the
former’s median peak frequency was observed at 137 Hz, the
latter’s was located at 1 243 Hz [15]. Among their subjects, they
also measured peak frequencies of snores originating from the

tonsils (part of the oropharyngeal lateral walls) and the epiglottis
at 170 Hz and 490 Hz, respectively. Furthermore, Xu et al. show
that the audio spectra of snores after upper level and lower level
obstructive apnea differ [16]. Similarly, Qian et al. performed
Snore Sound (SnS) classification by fusing different acoustic
features and found spectral features to be amongst the best per-
forming [14].

As convolutional neural networks (CNNs) have become
increasingly popular in machine learning research, their applica-
tion has branched out from visual recognition tasks to other areas,
including audio analysis [17, 18]. Schluter et al. used a CNN
on spectrograms for musical onset detection [19], whilst Eghbal
et al. used them for the detection and classification of acoustic
scenes and events [20]. Similar to the work proposed herein,
Huang et al. used spectrograms of speech together with a CNN
to perform emotion recognition [21]. Results presented in [21],
indicate their CNN proposed system is more robust to noise and
other confounding factors than more established computational
paralinguistic paradigms.

It is worth noting that these papers all used their own cus-
tom CNN architectures and train their nets for the task at hand.
As training requires a considerable amounts of data, time and
computational power, research efforts into how best to leverage
pre-trained CNNs for other tasks has been undertaken [22]. In
this context, descriptors extracted from large pre-trained deep
CNNs have become a popular and effective choice for many
visual recognition systems [23]. Sharif et al. investigated the
performance of these descriptors on a series of problems that
are minimally related to the object recognition task (specifically
ImageNet [24]) used for training the CNN (OverFeat [25]) they
employ [26]. To date, very little research has been undertaken ex-
ploring deep CNN feature representations for audio processing;
to the best of our knowledge, they have only been used together
with spectrograms for Music Information retrieval [27].

Our approach to the INTERSPEECH ComParE 2017 Snor-
ing sub-challenge is therefore motivated by the following. First,
spectral features have been found to be effective for SnS analysis.
Second, CNNs have been used successfully in connection with
speech and audio related tasks, and finally, CNN-descriptors are
dominant image processing features. Thus, we propose a system
that makes use of both spectrograms and pre-trained CNNs to
produce features that can be used for SnS classification.

The rest of this paper is laid out as follows: In Section 2, we
describe how our deep spectrum system is built. This is followed
by a description of our experimental set-up and the results our
system achieved in comparison to the challenge baseline in Sec-
tion 3. Finally, we draw conclusions from our results and give a
perspective on future research in Section 4.
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Figure 1: Design of our proposed system. Spectrograms are generated from whole audio files and plotted with the Python matplotlib
package. We then use these plots as input for pre-trained CNNs and extract the activations of fully connected layers as large deep
spectrum feature vectors (a). Finally, we use these vectors to train linear support vector machine (SVM) (b).

2. Proposed System
An overview of the proposed system is depicted in Figure 1. It
consists of two main components: a) a pre-trained deep CNN
which is used for the extraction of deep spectrum features from
spectrogram plots, and b) support vector machine (SVM) classi-
fiers which are trained for classification on the extracted feature
vectors.

2.1. Spectrogram Creation

We transform the snore samples into a format that can be pro-
cessed by the pre-trained CNNs by creating spectrograms of
the audio files. We use Hanning windows of width 16 ms, and
overlap 8 ms, and compute the power spectral density on the dB
power scale. For this and the creation of the actual plots, we use
the Python package matplotlib [28]. We analyse the impact of
three ‘standard’ spectrogram colour mappings to find a good rep-
resentation of the snore samples: jet which is the default colour
map of matplotlib and varies from blue (low range) to green
(mid range) to red (upper range); gray which is a sequential
grey-scale mapping which varies from black (low range) to grey
(mid range) to white (upper range); and finally, viridis which is
a perceptually uniform sequential colour map varying from blue
(low range) to green (mid range) to yellow (upper range). Fur-
ther, the plots are scaled and cropped to square images without
axes and margins to comply with the input needed by the CNN.
Our spectrograms have an intermediate size of 387× 387 pixels,
and are then further scaled down to 224× 224 (for VGG19) and
227× 227 pixels (for AlexNet).

Example plots as used by our final system for each class of
the Snoring sub-challenge are shown in Figure 2. It is worth
noting that, even with the human eye, some clear distinctions
between the spectrograms of different classes can be made.

2.2. Deep Spectrum Feature Extraction

Having created the spectrogram plots for the snore samples,
we now use pre-trained CNNs to extract our deep spectrum
features. We obtain the models and weights for AlexNet [29]
and VGG19 [30] via the publicly available CAFFE [31] toolkit.
AlexNet was utilised as it was the first large, deep CNN to be
successfully applied to the ImageNet task in 20121. VGG19 was
chosen because of its popularity for creating CNN descriptors
of images. Both deep CNNs were trained on approximately 1.2
million images from theImageNet corpus [29, 30].

Whilst both of these nets are large deep CNNs that use a
combination of convolutional, maxpooling, fully connected lay-

1In both the classification and localisation tasks they secured the
first place competing against traditional image analysis approaches:
http://image-net.org/challenges/LSVRC/2012/results.html

Table 1: Overview of the architectural similarities and differ-
ences between the two CNNs used for the extraction of deep
spectrum features, AlexNet and VGG19. conv denotes convolu-
tional layers and ch stands for channels.wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww�

AlexNet VGG19
input: RGB image

1×conv
size: 11; ch: 96; stride: 4

2×conv
size: 3; ch: 64; stride: 1

maxpooling
1×conv 2×conv

size: 5; ch: 256 size: 3; ch: 128
maxpooling

1×conv
size: 3; ch: 384

4×conv
size: 3; ch: 256

maxpooling
1×conv

size: 3; ch: 384
4×conv

size: 3; ch: 512
maxpooling

1×conv
size: 3; ch: 256

4×conv
size: 3; ch: 512

maxpooling
fully connected fc6 4 096 neurons
fully connected fc7 4 096 neurons

fully connected 1 000 neurons
output: soft-max of probabilities for 1000 object classes

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww�
ers and recitified linear units [32] as activation functions, there
are several key differences between their respective architec-
tures. AlexNet consists of five convolutional layers, followed
by three which are fully connected, of which the last is used to
perform the 1 000-way classification on ImageNet by applying
softmax. VGG19 on the other hand is made up of 19 layers that
are grouped in five stacks of convolutional layers with maxpool-
ing and, like in AlexNet, three fully connected layers. While
AlexNet uses varying kernel sizes for each convolutional layer,
VGG19 only uses small 3×3 kernels on all of them. An overview
of similarities and differences of the two CNN architectures used
in our work is given in Table 1.

For the deep spectrum feature extraction, our spectrogram
plots are forwarded through the pre-trained networks and the
activations from the neurons on the first and second fully con-
nected layers (fc6 and fc7) are extracted as feature vectors. The
resulting feature set has 4 096 attributes - one for every neuron in
the CNN’s fully connected layer. Doing this for both networks
and three different sets of spectrograms (one for each of the
colour maps we used) results in 2× 2× 3 = 12 distinct feature
sets that can then be compared for their suitability to perform
automated SnS classification [33].
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(a) V (devel 0001.wav) (b) O (devel 0007.wav) (c) T (devel 0144.wav) (d) E (devel 0008.wav)

Figure 2: Representative spectrograms for the different types of snore sounds using the best performing colour map viridis. Each one of
the four classes relating to the point of vibration (V: velum, O: oropharyngeal lateral walls, T: tongue base, E: epiglottis) produces a
unique spectral image. The samples from which these spectrograms have been extracted are given in parentheses.

2.3. Classification

As per the INTERSPEECH 2017 ComParE Snoring sub-
challenge requirements [11], we perform classification of the
snore audio samples into the four classes which reflect the place
of obstruction causing the snore: Velum (V), Oropharyngeal (O),
Tongue (T), and Epiglottis (E). This is achieved by training linear
SVM on the extracted feature sets. We use SVM because of its
robustness to smaller amounts of training data.

3. Experiments
3.1. Database

The INTERSPEECH 2017 ComParE Snoring sub-challenge is
based on the Munich-Passau Snore Sound Corpus, which con-
tains 828 snore samples from four classes. Each one of these
classes relates to one source of vibration (cf. Section 2.3). For
the challenge, the corpus has been split equally into training,
development, and test partitions [11].

The classes have uneven distribution, with substantially
more V samples [11]. Therefore, we perform upsampling of
our data, by replicating samples from the O, T, and E classes
proportional to their relative frequency. We use the same upsam-
pling factors as those used in the challenge baseline system. This
results in all classes having approximately the same number of
samples. For a detailed description of the corpus and the class
distributions the reader is referred to [11].

3.2. Experimental Settings

We evaluate our deep spectrum features for all combinations of
CNN-descriptors and spectrogram colour maps, resulting in 12
different configurations (cf. Table 2). Features are extracted from
spectrograms of three different colour maps either by using fc6/7
activations of both AlexNet and VGG19. We use the LibLIN-
EAR library with the L2-regularised L2-loss dual solver [34] via
the WEKA machine learning toolkit [35] and optimise the SVM
complexity parameter C ∈ [10−6; 10−1] on the development
partition. For each configuration, we present the two best results
of adjusting C. As preliminary evaluations (results not given)
indicated that normalisation and standardisation of our data nega-
tively impacted on classifier performance; neither technique was
applied. The performance of our configurations is scored using
Unweighted Average Recall (UAR), as specified in the challenge
baseline [11].

Table 2: Results for the snore sub-challenge using linear SVM
on four different CNN-descriptors (AlexNet fc6, AlexNet fc7,
VGG19 fc6, and VGG19 fc7) extracted from spectrograms with
three different colour maps (gray, jet, and viridis). Unweighted
Average Recall (UAR %) is used as measure and C is optimised
on the development partition. The chance level is 25.0 % UAR.
On the test set only five trials were allowed to be uploaded.

CNN-descriptor Colour Map C devel test

AlexNet fc6

gray 10−1 39.7 –
10−3 42.0 –

jet 10−4 36.2 –
10−6 36.8 –

viridis 10−4 43.5 –
10−5 41.6 –

AlexNet fc7

gray 10−1 38.2 –
10−2 38.2 –

jet 10−2 37.4 –
10−4 38.8 –

viridis 10−3 47.4 63.3
10−4 44.8 67.0

VGG19 fc6

gray 10−3 28.4 –
10−4 30.7 –

jet 10−2 31.2 –
10−3 31.4 –

viridis 10−4 38.5 –
10−5 37.4 –

VGG19 fc7

gray 10−2 29.9 –
10−3 31.5 –

jet 10−1 31.7 –
10−2 31.3 –

viridis 10−2 39.5
10−3 39.0 –

3.3. Fusion

Finally, we evaluate the effects of three different fusion scenar-
ios on our system: First, we fuse the deep spectrum features
extracted from the spectrograms of the different colour maps to
investigate if a specific mapping contains important information
that cannot be found in the others. Second, we perform fusion
of the different CNN layers used for feature extraction. Third,
descriptors of different CNN architectures are fused to analyse
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Table 3: Comparison of fusion strategies for our deep spectrum
feature system. We fuse different colour mappings, layers and
CNN architectures all on both feature (feat.) and decision (dec.)
level. We use linear SVM for feature level fusion (optimising
C on the development partition) and use the best SVM models
obtained during development of the non-fusion configurations.
For a detailed description of which colour maps, layers, and
CNN architectures are fused the reader is referred to Section 3.3.

UAR [%]
Fusion Model devel test

feat. dec. feat. dec.

Colour-Map Fusion 38.1 42.2 – –
Layer Fusion 43.8 46.1 – 63.8
CNN Fusion 44.7 46.4 57.4 62.0

if they complement each other. This leaves us with three models
to evaluate: Fusing features extracted from AlexNet’s fc7 layer
for all three colour maps (Colour-Map Fusion), combining the
features extracted from both of AlexNet’s fully connected layers
fc6 and fc7 (Layer Fusion) and, finally, fusing features extracted
from fc7 of AlexNet and VGG19 (CNN Fusion). We use the best
performing colour map viridis for layer and CNN fusion.

In all of these scenarios, both feature and decision level
fusions are evaluated. We perform feature level fusions by con-
catenation and classification via linear SVM, and decision level
fusions by majority voting of the best non-fused linear SVM
configurations, i. e., we use the optimal value for C determined
during development.

3.4. Results

The results of our experiments, across all 12 combinations of
spectrogram colour map, pre-trained CNN, and extraction layer
used to form the different deep spectrum representations, are
shown in Table 2. Our best results are achieved with features
extracted from AlexNet’s fc7 layer and the spectrogram colour
map viridis. With C = 10−4, we achieve an UAR of 44.8% on
the development, and 67.0% on the test partition, outperforming
the challenge baseline system (cf. Table 5). The confusion matrix
of classification labels on the test set for this best performing
system is displayed in Table 4.

Analysing the results produced by our different fusion con-
figurations (see Table 3), we can see that fusing features extracted
from spectrograms of different colour maps decreases perfor-
mance for both feature and decision level fusion compared to
only using the best colour map. While fusing features extracted
from different layers reduces performance for early fusion, deci-
sion level fusion produces results similar to the respective single
layer configuration. Here, the performance decrease might be
caused by the increased feature size. Lastly, fusing the best
performing features from AlexNet and VGG19 produces simi-
lar results: Decreased performance for feature level fusion and
performance similar to the non fusion model for decision level
fusion.

Our evaluation also shows two characteristics of interest
from the extracted deep spectrum features. First, the features
extracted from AlexNet perform better than those of VGG19.
This is the opposite of results presented for the ImageNet task,
in which VGG19 drastically outperforms AlexNet, achieving
a top-1 validation error of 24.7 % and a top-5 validation error
of 7.5 % compared to AlexNet’s 40.7 % and 18.2 %, respec-

Table 4: Confusion Matrix of the best classification on the test set
instances achieved by our approach with V: velum, O: oropha-
ryngeal lateral walls, T: tongue base, E: epiglottis.

Actual
# V O T E

P
re

di
ct

io
n V 96 19 1 0

O 27 38 2 2
T 17 3 10 2
E 15 5 3 23

Recall 61.9 % 58.5 % 62.5 % 85.2 %

Table 5: Comparison of our deep spectrum based approach
with the challenge baseline (functionals), and the end-to-end
approach (CNN & LSTM) investigated in the baseline paper.

UAR [%]
Model Ref. devel test

Baseline CNN & LSTM [11] 40.3 40.3
Baseline functionals [11] 40.6 58.5
Deep Spectrum Table 2 44.8 67.0

tively [30]. Second, the choice of colour map in the spectrogram
creation step has an observable impact on the performance of
the whole system: In all but one configuration (AlexNet fc6)
viridis increases UAR while a simple grey-scale mapping leads
to improvements over the standard jet map only for AlexNet
fc6. Since both nets are pre-trained on a large corpus of natural
images, it seems to be intuitive that the choice of colour for an
artificial image like a spectrogram plot would impact the models’
ability to extract useful features.

4. Conclusions
This paper proposed a method for classifying snore sounds that
relies on the ability of large, deep pre-trained CNNs to extract
useful information from spectrograms. Using our deep spectrum
feature extraction method and linear SVM as a classifier, we were
able to substantially outperform the baseline for the snoring sub-
challenge which utilises classic knowledge-based audio features.
In comparison to the baseline features, our system relies solely
on spectral information and large, deep CNNs’ ability to infer
a higher level representation of arbitrary input images. In our
experiments, we also found that both the choice of colour for
the spectrogram plots, and the pre-trained CNN used for feature
extraction has a substantial impact on performance.

Further research will include analysing which CNNs and
spectrogram colour maps work best as feature extractors for
computational paralinguistics tasks. We will also investigate
the performance of our deep spectrum features when fused with
conventional acoustic feature representations. Also of interest
would be to experiment with adding a dense layer to our deep
CNN to perform classification on the extracted features. Finally,
we want to consider segmenting the audio files into chunks of
equal length prior to generating the spectrograms, in this way
providing input for long short-term memory networks.

5. Acknowledgements
This work was supported by the EU’s 7th Frame-
work and Horizon 2020 Programmes under grant
agreements No. 338164 (ERC StG iHEARu). and
No. 688835 (RIA DE-ENIGMA)

3515



6. References
[1] M. Armstrong, C. Wallace, and J. Marais, “The effect of surgery

upon the quality of life in snoring patients and their partners: a
between-subjects case-controlled trial,” Clinical Otolaryngology
& Allied Sciences, vol. 24, no. 6, pp. 510–522, 1999.

[2] R. Gall, L. Isaac, and M. Kryger, “Quality of life in mild obstructive
sleep apnea.” Sleep: Journal of Sleep Research & Sleep Medicine,
1993.

[3] M. S. Aldrich, Sleep medicine. Oxford University Press, 1999.

[4] I. Fietze, T. Penzel, A. Alonderis, F. Barbe, M. Bonsignore,
P. Calverly, W. De Backer, K. Diefenbach, V. Donic, M. Eijsvogel
et al., “Management of obstructive sleep apnea in Europe,” Sleep
medicine, vol. 12, no. 2, pp. 190–197, 2011.

[5] T. Young, L. Evans, L. Finn, M. Palta et al., “Estimation of the
clinically diagnosed proportion of sleep apnea syndrome in middle-
aged men and women,” Sleep, vol. 20, no. 9, pp. 705–706, 1997.

[6] P. Jennum and R. L. Riha, “Epidemiology of sleep ap-
noea/hypopnoea syndrome and sleep-disordered breathing,” Euro-
pean Respiratory Journal, vol. 33, no. 4, pp. 907–914, 2009.

[7] J. Lam, S. Sharma, and B. Lam, “Obstructive sleep apnoea: defini-
tions, epidemiology & natural history.” 2010.

[8] A. S. Shamsuzzaman, B. J. Gersh, and V. K. Somers, “Obstructive
sleep apnea: implications for cardiac and vascular disease,” Jama,
vol. 290, no. 14, pp. 1906–1914, 2003.

[9] O. Parra, A. Arboix, J. Montserrat, L. Quinto, S. Bechich, and
L. Garcia-Eroles, “Sleep-related breathing disorders: impact on
mortality of cerebrovascular disease,” European Respiratory Jour-
nal, vol. 24, no. 2, pp. 267–272, 2004.

[10] C. Croft and M. Pringle, “Sleep nasendoscopy: a technique of
assessment in snoring and obstructive sleep apnoea,” Clinical Oto-
laryngology, vol. 16, no. 5, pp. 504–509, 1991.

[11] B. Schuller, S. Steidl, A. Batliner, E. Bergelson, J. Krajewski,
C. Janott, A. Amatuni, M. Casillas, A. Seidl, M. Soderstrom,
A. Warlaumont, G. Hidalgo, S. Schnieder, C. Heiser, W. Hohen-
horst, M. Herzog, M. Schmitt, K. Qian, Y. Zhang, G. Trigeorgis,
P. Tzirakis, and S. Zafeiriou, “The INTERSPEECH 2017 Compu-
tational Paralinguistics Challenge: Addressee, Cold & Snoring,”
in Proceedings INTERSPEECH 2017, 18th Annual Conference
of the International Speech Communication Association, ISCA.
Stockholm, Sweden: ISCA, August 2017, 5 pages.

[12] P. Hill, B. Lee, J. Osborne, and E. Osman, “Palatal snoring identi-
fied by acoustic crest factor analysis,” Physiological measurement,
vol. 20, no. 2, p. 167, 1999.

[13] S. Miyazaki, Y. Itasaka, K. Ishikawa, and K. Togawa, “Acoustic
Analysis of Snoring and the Site of Airway Obstruction in Sleep
Related Respiratory Disorders,” Acta Oto-Laryngologica, vol. 118,
no. 537, pp. 47–51, 1998.

[14] K. Qian, C. Janott, V. Pandit, Z. Zhang, C. Heiser, W. Hohen-
horst, M. Herzog, W. Hemmert, and B. Schuller, “Classification of
the Excitation Location of Snore Sounds in the Upper Airway by
Acoustic Multi-Feature Analysis,” IEEE Transactions on Biomedi-
cal Engineering, 2016.

[15] S. Agrawal, P. Stone, K. McGuinness, J. Morris, and A. Camilleri,
“Sound frequency analysis and the site of snoring in natural and
induced sleep,” Clinical Otolaryngology, vol. 27, no. 3, pp. 162–
166, 2002.

[16] H. Xu, W. Huang, L. Yu, and L. Chen, “Sound spectral analysis
of snoring sound and site of obstruction in obstructive sleep apnea
syndrome,” Acta Oto-Laryngologica, vol. 130, no. 10, pp. 1175–
1179, 2010.

[17] O. Abdel-Hamid, A. r. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recogni-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 22, no. 10, pp. 1533–1545, Oct 2014.

[18] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.-r. Mohamed,
G. Dahl, and B. Ramabhadran, “Deep Convolutional Neural Net-
works for Large-scale Speech Tasks,” Neural Networks, vol. 64,
pp. 39 – 48, 2015, special Issue on “Deep Learning of Representa-
tions”.

[19] J. Schluter and S. Bock, “Improved musical onset detection with
convolutional neural networks,” in IEEE international conference
on acoustics, speech and signal processing (ICASSP). Florence,
ITA: IEEE, 2014, pp. 6979–6983.

[20] H. Eghbal-Zadeh, B. Lehner, M. Dorfer, and G. Widmer, “CP-
JKU Submissions for DCASE-2016: A Hybrid Approach Us-
ing Binaural I-Vectors and Deep Convolutional Neural Networks,”
IEEE AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE), 2016.

[21] Z. Huang, M. Dong, Q. Mao, and Y. Zhan, “Speech emotion recog-
nition using CNN,” in Proceedings of the 22nd ACM international
conference on Multimedia. Florida, US: ACM, 2014, pp. 801–
804.

[22] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,
and T. Darrell, “DeCAF: A Deep Convolutional Activation Feature
for Generic Visual Recognition,” in International Conference on
Machine Learning (ICML), vol. 32, Beijing, CHN, 2014, pp. 647–
655.

[23] J. Deng, N. Cummins, J. Han, X. Xu, Z. Ren, V. Pandit, Z. Zhang,
and B. Schuller, “The University of Passau Open Emotion Recog-
nition System for the Multimodal Emotion Challenge,” in Chinese
Conference on Pattern Recognition. Singapore, SGP: Springer,
2016, pp. 652–666.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[25] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection
using convolutional networks,” arXiv preprint arXiv:1312.6229,
2013.

[26] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson,
“CNN features off-the-shelf: an astounding baseline for recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, Ohio, US, 2014, pp. 806–813.

[27] G. Gwardys and D. Grzywczak, “Deep Image Features in Music
Information Retrieval,” International Journal of Electronics and
Telecommunications, vol. 60, no. 4, pp. 321–326, 2014.

[28] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing
In Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifi-
cation with Deep Convolutional Neural Networks,” in Advances in
Neural Information Processing Systems, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, vol. 25, pp. 1097–1105.

[30] K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition,” Computing Research
Repository (CoRR), vol. abs/1409.1556, 2014.

[31] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22nd ACM
international conference on Multimedia. Orlando, US: ACM,
2014, pp. 675–678.

[32] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international
conference on machine learning (ICML-10), Haifa, ISR, 2010, pp.
807–814.

[33] M. Freitag, S. Amiriparian, M. Gerczuk, N. Cummins, and
B. Schuller, “An ‘End-to-Evolution’ Hybrid Approach for Snore
Sound Classification,” in Proceedings of INTERSPEECH. Stock-
holm, SE: ISCA, 2017, 5 pages.

[34] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
machine learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

3516


