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1. INTRODUCTION

As the technologies for interpreting and imitating human
communication are improving, robots are becoming able to
collaborate with humans using familiar modalities such as
speech, gestures and gaze. Unfortunately, most of these in-
teractions still lack the fluidity of natural human interaction,
mostly because the robot has to wait for the user to finish
their contribution before it can start to analyze it and choose
the appropriate reaction.

Humans, in contrast, rely on subtle cues as well as their
experience with established patterns for anticipating their
partner’s intentions or detecting misunderstandings. They
constantly form hypotheses about the other person’s mental
state, adapting or discarding them whenever they receive
more information. This in turn enables them to prepare
appropriate reactions which can be performed as soon as or
even before the partner has finished. Similarly, a computer
system with this capability could speed up the interaction
flow or intercept mistakes before they actually happen. The
users’ tendency to expect human-like reactions from robots,
combined with the fact that current input technologies are
still struggling to operate in real-time, makes this even more
important [1].
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Figure 1: Upper image: Typical interaction with the
robot only interpreting finished inputs. Lower im-
age: The same scenario augmented with incremental
input processing.

1.1 Motivating Example

Figure 1 shows a comparison between the typical human-
robot interaction as observed in most dialogue systems nowa-
days and the more human-like version, illustrated with a
simplified object placement task. In the upper image, the
robot can only start to process the user’s inputs after they
have been completed, which results in a gap while it has to
analyze the entire message at once. In addition to these de-
lays, it is only able to detect the user’s mistake after it has
occurred.

In contrast, the lower image shows the same scenario with a
robot capable of incremental processing. In analogy to the
human perception described above, it starts analyzing the
user’s actions right from their beginning. There is still a
delay before the robot arrives at a plausible interpretation,
but this time the robot’s reaction overlaps with the input.



Furthermore, by monitoring the movement of the triangle,
the robot can already inform the user that it will land on the
wrong field, allowing them to adjust the object’s path seam-
lessly. Thanks to the early feedback, the user does not even
need to ask for a clarification of the ambiguous instruction
since the robot inferred their need for more information from
their gaze pattern. The overall result of adding incremen-
tal processing to this scenario is a more fluid collaboration
which avoids unnecessary pauses, communicative effort or
mistakes.

1.2 Problem Description

Unfortunately, what appears to be plausible at the beginning
of a sentence can turn out to be completely different after
a crucial bit of information was added, so reacting before
this point could cause more harm than good. Consider the
user’s gaze at the beginning of the interaction. After the
robot has asked them to move "the green piece”, the human
is searching for an object which matches this description.
Now there are several ways this interaction could play out.
They might decide to ask the robot for a clarification, an
effort which can be avoided if the robot adds the missing
information on its own like depicted in the lower timeline.
Consequently, clarifying the instruction now would allow the
robot to save time and make the user more comfortable.
Alternatively, the user might not ask such a question for
various reasons. They might be about to find the correct
piece on their own. In this case, the robot’s help would not
be necessary and if it intervened now, the robot might come
across as impatient or patronizing which could upset the
user despite the time saved. They could also decide to wait
because they have no idea what to do (notice the parallel to
the robot’s decision problem), or even try moving a random
piece, committing a mistake which would need to be undone
before the interaction can continue. If the robot does not
react in these cases, both would lose time and the user would
perceive the robot as unhelpful.

The right moment for an action depends on a large num-
ber of factors, most of which cannot be observed directly
but only assumed or inferred with a certain degree of confi-
dence, like the user’s understanding of the term "the green
piece”. A possible solution can be found in the way hu-
mans approach such decisions. Actions are usually taken if
the potential benefits outweigh the risks and there is a high
probability of success. For example, a listener might choose
to interrupt the speaker when they believe the discussion
was heading in the wrong direction and expect to improve
its outcome by drawing attention to the important topic. On
the other hand, they might be reluctant to do so while talk-
ing to somebody with higher authority, feeling that acting
impatient towards them was more dangerous than talking
about the wrong topic.

The following section gives an overview of related work on
the reaction to uncertain or incomplete user inputs. Sec-
tion 3 will then present a decision-theoretic approach for
the question whether the robot should perform a given ac-
tion at its current knowledge state. The paper ends with
discussing some implications of this approach.

2. RELATED WORK

There are various approaches for the incremental interpre-
tation of user inputs and the early resolution of ambigu-
ities, often combining information from different modali-
ties. For example, Cantrell et al. [1] narrow down the
features for detecting objects in a robot’s camera stream,
such as color and position, whenever a new word is parsed
from the user’s speech. Kruijff et al. [5] described the use
of modality-independent semantic representations for com-
paring the content obtained from different input channels,
which makes it possible to reduce the number of hypotheses
by unifying matching information. However, most of these
works focus on finding the best interpretation and reacting
to it as soon as possible, whereas few consider the circum-
stances under which the reaction should be delayed.

The first factor to consider before reacting is the degree
of confidence in the current interpretation of the available
data. Traum et al. [3, 7] have developed a multi-agent sys-
tem which allows humans to train negotiation strategies in a
virtual setting. They applied a machine-learning approach
for determining the semantic content of the user’s utterance
so far, as well as predicting the content of the complete
sentence and the expected confidence in this interpretation.
This allows the virtual characters to either give early feed-
back during the user’s turn [7] or to take over and finish
an incomplete sentence when there is a pause in the user’s
speech and this confidence is high enough [3]. However, the
authors note that this behavior would often be undesirable
and, in the absence of a more sophisticated model, trigger
it only when the pause was longer than a fixed threshold to
avoid barging in on the user’s turn.

As for the costs of interrupting the human, Horvitz and
Apacible [4] modeled how users react to different forms of
notifications while working on typical office tasks. They
trained a Bayesian network for predicting the cost of inter-
rupting the user in the current situation or the near future.
Such a network models the causal relationships between cer-
tain observations as their conditional probabilities. So-called
influence diagrams extend this model further by adding util-
ity nodes which describe the costs or benefits associated with
these observations. Since a Bayesian network can infer prob-
ability distributions for all of its nodes from values observed
for some of them, an influence diagram can calculate the
expected utility of a decision by adding up the costs and
benefits for all its possible outcomes, weighted by their re-
spective probabilities. [6]

Conati [2] describes the use of a Dynamic Decision Net-
work, which works on the same mathematical principles, for
modeling the dependencies between the user’s perceivable
emotional expressions, their affective state and its causes.
Since the latter cannot be observed directly, they need to be
inferred from different, possibly incomplete sensor inputs.
Utility functions included in this network then allow a vir-
tual assistant to choose the behavior which is most likely to
be appreciated by the user, or decide to delay an action if it
is not desirable. The problem of incomplete inputs is very
similar to that of an incremental system trying to interpret
a user’s message before it was complete, which makes this
approach useful for both cases.
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Figure 2: A draft for an influence diagram which
predicts the consequences of a clarification action.

3. SOLUTION APPROACH

Remember the scenario from figure 1 and the possible out-
comes for clarifying the instruction while the user is looking
for the referenced object. Figure 2 shows a draft for solving
this problem with an influence diagram which contains prob-
ability nodes for the user’s mental state and behavior, utility
nodes for the user’s level of comfort and the time which can
be saved, and finally a decision node with the two options
”do nothing” and ”clarify” for the robot’s behavior.

The user’s mental state consists of their assumption regard-
ing the object they should move and the degree of certainty
for this assumption. Both of these factors influence their be-
havior, which can consist of different gaze patterns, asking
different types of question about any of the available ob-
jects or physically manipulating one of these objects. The
user’s level of comfort depends on whether the robot’s help
is required, which is the case when the user misunderstood
the instruction or is uncertain about the target object. The
amount of time which can be saved by the robot’s action de-
pends on the user’s manipulation action, which either com-
pletes the task by placing the object in the correct location
or hinders it in case of an incorrect placement. It also de-
pends on the user’s level of certainty which determines the
likelihood that the user will hesitate before moving one of
the objects.

After giving the instruction, the robot monitors whether the
user reacts as expected. When the robot’s sensors observe
a change in the user’s behavior, in this case a gaze shift
towards several green objects, it updates the network with
this data. In order to reason about the consequences of its
action, the robot first needs to choose at least one action
suitable for the situation it appears to be in. In this case,
a fixed rule in its behavior manager suggests to clarify the
previous sentence if the user does not react by moving the
correct piece. Now the robot needs to determine the possible
effects of performing or avoiding this action, not only on the
most likely situation but on any other situation which could
explain the sensor readings. So it calculates the time that
can be saved or lost, as well as the impact on the user’s
mood, depending on the user’s possible mental states and
the object manipulation that might follow. These values are
stored in the utility nodes. Finally, the network is updated
in order to obtain the missing probabilities given the user’s
gaze behavior and calculate the expected utility for the two

reaction options "clarify” and ”do nothing”. These utilities
then tell the robot which option has the preferable outcome
and consequently, it will clarify its instruction if the utility
for this action is higher than that for doing nothing and
waiting for the next sensor input.

4. DISCUSSION

Models following the principle of a Bayesian network are
very flexible with regards to the available data. The robot
could base its decision on any of the behaviors related to the
user’s mental state, for example on the content of a partial
sentence in addition to or instead of the gaze pattern. Fur-
thermore, the evidence could be based on low-level features
of the behavior (as mentioned in [2]) as well as higher-level
semantic interpretations obtained from a specialized input
processing module. For instance, the model could reason
that a particular hand movement is part of various gestures
related to different intentions, leading to different interpre-
tations of the user’s mindset, or rely on a classifier tailored
to gesture analysis for determining which gesture the user is
most likely performing. The former is an example for obser-
vations made near the beginning of the input whereas the
latter may only be available after a significant portion of
the user’s input has been processed, so the model would be
prepared to deal with the input at any stage of the interpre-
tation process.

Furthermore, as more reliable data is becoming available,
the probability for observing one particular situation in-
creases. Because the expected benefits of an outcome scale
with its likelihood, this in turn increases the chance that the
robot will perform the chosen action, reflecting the intuitive
idea that it should act when it is confident enough and wait
for more data otherwise. Likewise, when the new data con-
tradicts the previous hypothesis, the probability and utility
decrease and so the robot will keep waiting.

One more advantage of this approach is its ability to model
adaptive priorities for different behaviors. For example, when
the user is focusing on the correct object, the robot might
confirm this assumption with a verbal comment, a short nod
or both. Compared to speech, an unobtrusive head gesture
might have a comparatively low benefit when the user re-
quires feedback, but also far lower costs if this help is not
wanted. Therefore, it might produce a higher expected util-
ity and be chosen earlier when the user’s attention focus is
still ambiguous whereas the comment would follow at a later
point in time. On the other hand, when a mistake is likely
to occur, the expected utility for speech would rise more
quickly since the benefit of avoiding the mistake would ex-
ceed the cost of being obtrusive. Consequently, the robot
could follow the same behavior policies throughout the in-
teraction.

A possible drawback of using the same mechanisms for all
the robot’s actions might be the overhead of querying the
network for every single input event, some of which could be
handled with simpler rules. In order to keep the architecture
consistent, it may be worthwhile to find strategies for han-
dling different levels of complexity with the same model. For
example, substructures could be deactivated depending on
the requirements of certain interaction contexts or marked
as optional in the definition of individual behaviors.
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