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Abstract
Though parents regularly remind their children not to do so,
talking while eating is a typical everyday situation automatic
speech analysis systems should be able to deal with. The Par-
alinguistic Eating Condition (EC) Challenge at INTERSPEECH
2015 sets the task to classify whether a speaker is eating or not,
and if so, which type of food the speaker is currently tasting.
The approach we follow in this paper is rather unusual: instead
of suppressing the influence of noise to enhance the intelligibil-
ity of a spoken message, we try to emphasize the noisy parts
of the spectrum to improve the recognition of food classes. To
allow for a fine-grained adaption to the characteristic spectrum
of single food types we adopt a hierarchical tree structure and
decompose the classification task into a sequence of binary de-
cisions. At each node we apply frequency-dependent weighting
to tune the spectrum to the involved target classes. With our
approach we are able to improve results in a 7-class recognition
problem (6 types of food and no food) by more than 7% on the
training set (using leave-one-eater-out cross validation) and 4%
on the test set, respectively.
Index Terms: Computational Paralinguistics, Hierarchical
Classification, Eating Condition

1. Introduction
The Eating Condition (EC) Sub-Challenge as part of the
INTERSPEECH 2015 Computational Paralinguistic Challenge
(COMPARE) [1] sets the task to classify whether a speaker is
eating or not, and if so, which type of food the speaker is
currently tasting [2]. At a first glance the task may appear
rather specific and exotic, yet it is just a typical everyday sit-
uation automatic speech analysis systems should be able to deal
with. The interesting aspect of this particular challenge is that
it brings those parts of a speech signal into focus, which usu-
ally are treated as noise. Quite some work has been carried out
to make speech recognition systems robust against background
noise, like the driving noise inside a car [3] or environmental
noise in a cafeteria [4]. Techniques to remove the effect of
noise include spectral subtraction [5, 6], feature enhancement
[7], and masking [8]. Learning to recognize and distinguish
specific types of noise, however, will allow for more sophisti-
cated ways to handle it, for instance, by model adaptation [9].
To this end, the approach we follow in this paper is rather un-
usual: instead of suppressing the influence of noise to improve
the intelligibility of a spoken message like in [10], we try to
emphasize the noisy parts of the spectrum. To allow for a fine-
grained adaption to the characteristic spectrum of single food
types we adopt a hierarchical tree structure and decompose the
classification task into a sequence of binary decisions. At each
node we apply frequency-dependent weighting to optimise the

NO AP HA NE BA CR BI %
No Food Apple Haribo Nectarine Banana Crisp Biscuit

NO 127 1 2 3 5 1 1 90.7
AP 5 69 11 29 8 8 10 49.3
HA 2 10 70 13 24 0 0 58.8
NE 1 33 13 45 31 4 6 33.8
BA 5 11 22 27 73 0 2 52.1
CR 1 7 1 4 1 106 20 75.7
BI 1 18 0 5 3 22 84 63.2

Ø 60.5

Table 1: Confusion matrix for a 7-way classification of eat-
ing conditions (6 types of food and no food). Most errors oc-
cur within two subsets ({Apple,Haribo,Nectarine,Banana} and
{Crisp,Biscuit}). According cells are highlighted in gray.

spectrum to the involved target classes. Though the approach
proposed in this paper is not limited to the recognition of eat-
ing conditions, the provided data set is well-suited to investi-
gate the potential of the approach. For one reason, because the
food types featured in the corpus resemble each other at differ-
ent degrees, which suits hierarchical classification. For another
reason, since the individual consistence of food leads to char-
acteristic frequency spectrums. For instance, Dacremont [11]
reports that crispy food generates high pitched sounds above 5
kHz, whereas crunchy food generates low pitched sounds with a
characteristic peak on frequency range 1.25 to 2 kHz. To some
extent, the approach we propose in this paper carries on an ear-
lier study in which we tried to optimize a sequence of cascading
classifiers via feature selection [12]. However, the study at hand
adopts a more generic tree structure and investigates the effect
of frequency weighting instead of feature selection. It should
be noted that apart from automatic speech recognition, the de-
tection of food sounds is relevant for other areas of application,
too, e. g. activity recognition [13, 14]. A thorough overview is
given in [2].

2. Baseline
First, a baseline for upcoming experiments needs to be estab-
lished. The data set provided by the challenge organizers con-
tains read and spontaneous speech of 30 subjects while eating
one of six types of food (Apple, Haribo, Nectarine, Banana,
Crisp, Biscuit), as well as, clean samples (No Food). The task
is to assign a tested file to one of the 7 classes. A detailed de-
scription of the data set is found in [2]. Throughout the paper
recognition rates will be reported as unweighted average recall
(UAR), which is the standard measure of the INTERSPEECH
Computational Paralinguistics Challenge series [15]. To tell
wins and losses at a glance results are given relative to a base-
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line we will introduce in a moment. For classification we ap-
ply linear kernel Support Vector Machines (SVM) with default
settings as provided by the popular libSVM library (v3.20) [16]
and extract the COMPAREE feature set (6’373 features) [1] with
OPENSMILE (v2.1) [17, 18]. As suggested by the challenge or-
ganizers leave-one-eater-out (LOSO) cross-validation is used.
We stick to this configuration throughout the experiments and
no further optimizations such as parameter fine tuning or feature
selection will be applied. Table 1 shows the confusion matrix
for a 7-way classification of eating conditions (6 types of food
and no food) applied on the training set. The UAR of 60.5%
will be used as baseline for the following experiments (a com-
parison with the official challenge baseline will be included in
the final discussion).

3. Methodology
Let us now introduce the methods we have investigated to im-
prove classification of food types.

3.1. Hierarchical Classification

The last column of the confusion matrix in Table 1 lists indi-
vidual recognition rates for the target classes. The values reveal
that food types are recognized with varying degrees of success.
The recall value of Crisp, for instance, is more than twice as
high as that of Nectarine. The matrix also shows that most er-
rors occur within two subsets {Apple, Haribo, Nectarine, Ba-
nana} and {Crisp, Biscuit}. It seems natural to assume that
tasting food of the same subset produces a similar sound, which
makes separation more challenging. To account for this and
to simplify the classification task at first, related classes can
be grouped. Afterwards specialized classifiers trained with the
samples of according subsets are consulted to refine the deci-
sion. In other words, we decompose a complex classification
problem into a sequence of simpler decisions. A suited struc-
ture to represent such a system is a hierarchical tree structure.
At each node of the tree an individual classifier is installed to
decide which branch should be followed. Classes in the re-
maining branches are sorted out. This is repeated until a leaf
is reached. If the leaf holds a single class it is assigned as the
winning class, otherwise a final classifier is consulted to derive
a decision between remaining candidates. In our experiments
we adopt a binary tree structure, i. e. at inner nodes classes are
split in two disjunct subgroups.

3.2. Frequency Weighting

Figure 1 plots the mean spectrum of the six food classes.
Though the graphs share a general course, we can also per-
ceive individual differences. The cracking noise of Crisp, for
instance, is reflected in the high amplitude for frequencies above
4 kHz, whereas Banana appears to have a low amplitude in this
region due to the soft pulp causing smacking sounds. To im-
prove audibility of a food type we can emphasize its dominant
frequencies in the spectrum and suppress frequencies in remain-
ing areas. As a matter of fact, this should lead to a more distinc-
tive feature set and make it easier for a classifier to distinguish
according sounds. In speech recognition, for instance, it is com-
mon practise to run the raw audio signal through a pre-emphasis
filter to compensate the high-frequency part of the speech signal
that was suppressed during the human sound production mech-
anism. To stress the response of a sound we can either amplify
dominant frequencies or attenuate components in the surround-
ing. We do this by applying weights to the according frequen-
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Figure 1: Mean spectrum of the six food classes computed over
all files in the training corpus.
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Figure 2: Left: Filter response of a double pole highpass (HP)
butterworth filter with a cutoff frequency of 1 kHz. Right: Fil-
ter response of a two-pole peaking equalization (EQ) filter with
central frequency and band-width set to 1 kHz and a gain of
9 dB.

cies in the spectrum. In our experiments we tested a two-pole
peaking equalizer (EQ) filter, as well as, double-pole lowpass
(LP) and highpass (HP) butterworth filters as provided by the
sound processing library SOX1 (Sound eXchange). According
filter responses are visualized in Figure 2.

3.3. Removing Voiced Parts

Though, each file in the corpus is assigned to one food class,
it is not said there is a consistent audible impact throughout
the recording. Identifying the parts where suspicious sounds
such as chewing or smacking are most present may simplify
the recognition task. At 2012 Speaker Trait Challenge we have
proposed a cluster-based approach to identify frames likely to
carry distinctive information [19]. Our experiments showed
that dropping non-distinctive frames can lead to an improve-
ment in recognition accuracy. Figure 3 shows spectrograms of
the word “endlich” in No Food and Crisp condition. Compar-
ing the two plots suggests that noise related to food is mainly
present in the unvoiced parts. Hence, removing voiced frames
may lead to a more compact representation and thereby better
recognition rates. To identify voiced frames we extract the fun-
damental frequency via Sub-Harmonic Sampling (SHS) and ap-
ply the Viterbi algorithm to smooth pitch contours and remove
octave jumps. We borrow the implementation from OPENS-
MILE (v2.1) [17, 18] and treat frames without a harmonic com-
ponent as unvoiced (see Figure 4).

4. Results and Discussion
In this section we report and discuss the results we achieved
with our proposed approach.

1http://sox.sourceforge.net/
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Figure 3: Spectrogram of the word “endlich” pronounced by the
first proband in No Food (top) and Crisp condition (bottom).
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Figure 4: Top: Original waveform. Middle: Fundamental fre-
quency. Bottom: Waveforms when keeping voiced frames (left)
or unvoiced frames (right) only.

4.1. Hierarchical Classification

Due to the high number of possible configurations a heuristic
is required to pick trees with a good prospect of success. The
confusion matrix in Table 1 features No Food as the by far best
recognized class. Splitting off No Food first and building a sep-
arate classifier for the 6 food classes seems promising. The ac-
cording tree is denoted as T-L1 and leads to a (marginal) im-
provement of 0.5%. The class with the second highest recall
value is Crisp. Table 1 also tells us it is often confused with
Biscuit. It seems natural to group the two classes and split them
off next. Tree T-L2 implements this and achieves an improve-
ment of 1.2%. Among remaining classes, most false predictions
occur between Apple and Nectarine. To assign the two classes
to a separate branch, tree T-L3 introduces a third level. It ren-
ders a further enhancement of 2.2%. Trees are visualized in
Figure 5; according recognition results are found in Table 2.

4.2. Frequency Weighting

Though, the spectrum in Figure 1 suggests that characteristic
sounds are primarily located in the high frequencies it is diffi-
cult to guess from scratch, which parts of the spectrum should
be emphasized to support a certain food type. We therefore
tested configurations systematically across the entire spectrum.
Following Figure 2 we set bandwidth and gain of the EQ fil-
ter to 1 kHz and 9 dB, respectively. We then increase the center
frequency in steps of 500 Hz and repeat the procedure for LP
and HP filter with different cutoff frequencies. The results are
summarized in Figure 6 and confirm our expectation that food
sounds are mainly represented in the high frequencies. EQ and
HP filtering especially pays off between 4.0 and 6.5 kHz in the

T-L1

{Crisp,Biscuit,Haribo,Banana,Apple,Nectarine}No Food

T-L2

{Haribo,Banana,Apple,Nectarine}{Crisp,Biscuit}

No Food

T-L3

{Apple,Nectarine}{Haribo,Banana}

{Crisp,Biscuit}

No Food

Figure 5: Different tree configurations ordered by tree level.

NO AP HA NE BA CR BI Ø
No Food Apple Haribo Nectarine Banana Crisp Biscuit

T-L1 0.0 1.4 -0.8 -0.8 2.1 1.4 0.0 0.5
T-L2 0.0 2.1 0.8 1.5 1.4 1.4 0.8 1.2
T-L3 0.0 5.0 1.7 2.1 1.4 4.5 0.8 2.2

LP{7.0} 2.1 2.9 -3.3 0.8 0.7 2.1 0.8 0.9
HP{5.5} 0.7 3.6 5.0 8.3 8.6 2.1 4.5 4.7*
EQ{0.9} 2.1 6.4 -0.9 0.8 3.6 -1.4 0.0 1.5

V -9.0 -17.9 -22.7 -29.3 -12.1 -10.0 -13.6 -16.4
UV -2.9 -2.9 -8.4 3.8 5.7 -3.6 6.0 -0.3

+UV 1.4 7.9 0.0 6.8 4.3 1.4 3.8 3.7*

T-L3EQ,HP 1.4 12.9 0 15.0 8.6 7.1 8.3 7.6*
T-L3+UV 0.7 9.3 2.5 9.0 7.1 2.1 5.3 5.2*

T-L3EQ,HP
+UV 0.7 10.7 0.9 12.0 3.6 10.0 14.3 7.5*

Table 2: Recognition rates for tested methods in % relative to
baseline in Table 1 (best configuration highlighted in gray). Re-
sults yielding a significant improvement according to a McNe-
mar’s chi-squared test (p < 0.05) [20] are marked with *.

best case yielding an improvement of 4.7%. As expected, chop-
ping off high frequencies with a LP filter worsens the results.
The best configuration for each filter type is listed in Table 2.

4.3. Removing Voiced Parts

The results in Table 2 support our assumption that food sounds
are best recognized from unvoiced regions. Extracting features
on unvoiced (UV) parts has almost no impact on recognition
rates, whereas keeping voiced (V) parts only leads to a clear
drop of 16.4%. However, it turned out rather surprising that re-
moving pitch related features in both cases caused a drop in per-
formance, even though we would not expect them to carry much
useful information if extracted from solely unvoiced frames.
Generally, we got the impression that leaving out features im-
paired the results. On the other hand, when we combined fea-
tures from both, unvoiced and original files, in a single vector
+UV (12’746 features) we observed an improvement of 3.7%.

4.4. Combined Approach

Tested methods enhance results by ~2-5%. Can we expect more
if we combine them in a single approach? We have seen that
recognition rates improve if files are pre-processed with a EQ
or a HP filter, which emphasize the high frequency parts of the
spectrum. So far we have evaluated frequency weighting by
means of all classes. However, it may work even better when
applied on smaller subsets as it allows for a fine-grained adap-
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T-L3EQ,HP

EQ{2.5}

EQ{3.5}

HP{7.0}

HP{6.5}

{Apple,Nectarine}

HP{6.0}

{Haribo,Banana}

HP{6.5}

{Crisp,Biscuit}

No Food

Figure 7: Decomposing a classification problem into a tree
structure of independent classification steps offers the possibil-
ity to use optimized feature sets at each node. Here, we use EQ
and HP filters to pre-process the input files. Edges are labeled
with the configuration that gave best performance in our tests.

tion to the characteristic spectrum of single food classes. And
this is where hierarchical classification pays off once again.
Namely, because it splits a recognition problem into a series
of independent classification steps on increasingly smaller sub-
sets. This allows it to use different EQ or HP filters at each
node and extract a customized feature set. We decided to keep
tree T-L3 as it showed best performance in our experiments and
also has the highest number of nodes. To find tailored filter
configurations for the nodes we repeated the series of tests in
Figure 6 and kept only the samples from classes in the accord-
ing branch. Figure 7 shows the according tree T-L3EQ,HP. The
edges of the tree are labeled with the configuration that worked
best. At the root node, for instance, an EQ filter with a center
frequency of 2.5 kHz is installed, whereas for the decision be-
tween Apple and Nectarine at the bottom right leaf a HP filter
with a cutoff frequency of 6.5 kHz is used. Generally, EQ fil-
ters with a center frequency around 3 kHz were selected at upper
tree levels when most of the classes are still included. Towards
the leafs with few classes left HP filters with cutoff frequencies
around 6.5 kHz performed best. With the adapted tree we get
an improvement of 7.6%. We also repeated the procedure after
removing voiced frames, but in this case filtering appeared to be
less useful. We believe this is because in the unvoiced spectrum
characteristic food sounds are already emphasized per se. We
then tried to enrich the nodes of the original and the adapted tree

CV Train Train/Test

Baseline 60.5 63.5
+UV 64.2 (+3.7) 64.7 (+1.2)
T-L3 62.7 (+2.2) 66.9 (+3.4)

T-L3EQ,HP 68.1 (+7.6) 67.6 (+4.1)

Challenge Baseline 61.3 65.9

Table 3: Comparison of UAR in % achieved via cross-validation
on training set (CV Train) and on the test set after using the
full training set to build the classifier (Train/Test). Relative im-
provements to the respective baseline are provided in brackets.
Official challenge baselines are enclosed in the last row.

with the original UV set, but without further measurable suc-
cess. According trees are denoted as T-L3+UV and T-L3EQ,HP

+UV ,
respectively.

4.5. Results on Test Set

Finally, Table 3 reports results on the test set. Since test files
are given without ground truth they provide a better hint on the
generalisability of the approach. Best results are again achieved
with a combined system yielding an improvement of 4.1%. Yet,
since the gain is not as high as for the training set, this is a
sign that the configurations determined for the training files do
not translate perfectly to the test set. A trend that also holds
when checking results against the official baseline provided by
the challenge organizers [1] (see last row in Table 3).

5. Conclusions
In this paper we presented a new method to detect whether
a speaker is eating or not, and if so, which type of food the
speaker is currently tasting. The proposed approach exploits
that typical sounds like smacking or cracking have a charac-
teristic spectrum and applies frequency-dependent weighting to
improve intelligibility of those sounds. It turned out that em-
phasizing frequencies above 4.0 kHz led to best performances.
The approach proved to be especially useful if the recognition
problem was decomposed into a hierarchical sequence of binary
decisions allowing for a fine-grained adaption to certain food
types. We also figured that meaningful information was mainly
found in the unvoiced parts of the signals. With the proposed
approach we were able to improve results in a 7-class recogni-
tion problem (6 types of food and no food) by more than 7%
on the training set (using leave-one-eater-out cross validation)
and 4% on the test set, respectively. In the study at hand we ex-
perimented with few basic filters to either amplify or attenuate
certain frequency bands. Due to the promising results it might
be worthwhile to apply a more complex equalization. However,
this requires some intelligent method to determine the optimal
filter response (for instance via correlation analysis) since it is
not feasible to test the vast number of possible configurations in
a brute force way.
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“Age and gender classification from speech using decision level
fusion and ensemble based techniques.” in INTERSPEECH,
T. Kobayashi, K. Hirose, and S. Nakamura, Eds. ISCA, 2010,
pp. 2798–2801. [Online]. Available: http://dblp.uni-trier.de/db/
conf/interspeech/interspeech2010.html#LingenfelserWVKA10

[13] O. Amft, M. Stäger, P. Lukowicz, and G. Tröster, “Analysis of
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