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ABSTRACT

After more than a decade of a virtual standstill, the adoption of
temporal data management features has recently picked up speed,
driven by customer demand and the inclusion of temporal expres-
sions into SQL:2011. Most of the big commercial DBMS now
include support for bitemporal data and operators. In this paper, we
perform a thorough analysis of these commercial temporal DBMS:
We investigate their architecture, determine their performance and
study the impact of performance tuning. This analysis utilizes
our recent (TPCTC 2013) benchmark proposal, which includes a
comprehensive temporal workload definition. The results of our
analysis show that the support for temporal data is still in its in-
fancy: All systems store their data in regular, statically partitioned
tables and rely on standard indexes as well as query rewrites for
their operations. As shown by our measurements, this causes
considerable performance variations on slight workload variations
and significant overhead even after extensive tuning.

1. INTRODUCTION
A large number of database applications make use of the time

dimension, e.g., to plan for the delivery of a product or to record
the time a state of an order changed. Especially the need to trace
and audit the changes made to a data set and the ability to plan
based on past or future assumptions are important use cases for
temporal data. These use cases rely on the bitemporal data model,
i.e., temporal data can refer to the state of the database at a certain
time (called system time) or the time a fact has been valid in
the real world (called application time). Until recently, temporal
data could be represented in most relational database systems only
by adding additional columns and using the date or timestamp
data type of SQL without associating further semantics with these
values. As a consequence, many applications had to implement
basic temporal operations like time travel in the application logic.
This not only leads to a tremendous development overhead and
often faulty semantics, but also to sub-optimal performance due
to naive modeling and execution plans. Providing native temporal
data management support inside a DBMS therefore provides a

(c) 2014, Copyright is with the authors. Published in Proc. of the 17th In-
ternational Conference on Extending Database Technology (EDBT), March
24-28, 2014 - Athens, Greece, on OpenProceedings.org. Distribution of this
paper is permitted under the terms of the Creative Commons license CC-by-
nc-nd 4.0

tremendous possibility for improved performance. As database
vendors now provide implementations of such temporal data and
operators, a natural question is how well they actually perform for
typical temporal workloads.

Since no generally accepted workload for the evaluation of tem-
poral DBMS exists, we developed a comprehensive benchmark
proposal and presented it at TPCTC 2013 [11]. This benchmark
extends the TPC-H schema with a temporal component, provides
a definition of updates with a well-defined data evolution as well
as a wide range of synthetic and application-oriented queries. It
therefore allows us to examine the functional coverage as well as
the performance of different databases regarding temporal features.

In this paper, we perform a comprehensive analysis of temporal
operations on common commercial DBMS. The contributions are:

• Analysis of architecture and implementation of temporal data
management of a range of temporal DBMS

• Implementation of the benchmark on four commercial and
open-source DBMS with different temporal support and dif-
ferent query languages

• A thorough performance evaluation of the DBMS

• A study of the possibilities and impact of tuning of this
workload on the DBMS

The remainder of the paper is structured as follows: It com-
mences with an overview of temporal support in available databases
(Section 2). In Section 3 we summarize the main ideas of the
TPC-BiH benchmark [11]. We focus on the aspects needed to
understand our analysis of the temporal databases tested in this
paper. Section 4 provides details and extensions to our previous
work, e.g., non-trivial aspects such as (temporal) consistency. The
core contribution of this paper, Section 5, is a detailed analysis of
four widely available databases on this benchmark. In particular,
our evaluation provides insights on tuning temporal databases.
Section 6 summarizes our results and discusses future work.

2. TEMPORAL DATABASE SYSTEMS
In this section we give a brief overview on temporal data man-

agement as it is the conceptual background of our work. We then
describe the temporal support of four production-quality systems
as we can derive them from the available resources. Since we
are prohibited by the usage terms from publishing explicit results
for most of the contenders, we will describe the publicly available
information including the name of the systems. Information that
stems from our analysis is presented in an anonymized form in
Section 5. We were able to get plausible result for four systems,
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which we refer to as System A to D. Other database systems also
support temporal features, but we did not investigate them either
because they do not support the temporal features of SQL:2011, or
they were not easily available for testing.

2.1 Temporal Data Management
Representing temporal data in SQL has been acknowledged for a

long time by providing basic data types such as DATE and TIMES-
TAMP. To work with this data, in most database systems they
are complemented by various built-in functions to work with this
data. However, many database applications require more advanced
support for temporal data.

These requirements lead to the development of the bitemporal
data model in TSQL2 [22]. In this model modifications of a single
row are captured by the system time (in [22] called transaction
time). The system time is immutable, and the values are implicitly
generated by the database during the commit of a transaction.
Orthogonal to that, validity intervals on the application level are
denoted as application time (called valid time in the original paper).

A rich set of research is available on temporal data management,
see e.g. [21, 17] for early work on disk-based systems and [13]
for recent work on in-memory databases. But despite the fact that
many applications rely on temporal support [21], this feature was
not included into the SQL standard until recently [14].

We observed that the standardization revitalized the interest in
temporal data management, and hence the performance analysis of
temporal databases gains importance. Consequently, we proposed
a benchmark for analyzing temporal databases [11]. One insight of
our previous work was that an extensive performance evaluation of
temporal database systems is needed. Moreover, no comprehensive
guideline for physical database design of temporal databases is
available yet. For non-temporal databases, adviser tools for phys-
ical database have been developed [4, 19]. In particular, the com-
ments on physical database design in [21] only mention temporal
partitioning as a technique for physical database design. Finally,
we want to provide some guidance for tuning existing databases
for temporal workloads.

In the remainder of this section, we discuss the temporal features
of five temporal database systems. This brief survey provides the
foundation for our experimental analysis in Section 5.

2.2 Teradata
Architecture. Teradata processes temporal queries by compiling
them into generic, non-temporal operations [3]. Hence, only the
query compiler contains specific rules for temporal semantics. For
example, temporal constraints are considered for query simplifica-
tion. Consequently, the cost-based optimizer is not able to choose
an index structure that is tailored to temporal queries.
SQL Syntax. For defining and using temporal tables, Teradata
follows the T-SQL2 specification [2], which is not compatible with
SQL:2011. As disscussed below, Teradata supports a large range
of temporal features.
Time Dimensions. Teradata supports bitemporal tables, where
at most one system time and at most one application time are
allowed per table. The system time is defined as a column
of type PERIOD(TIMESTAMP) marked with TRANSACTION
TIME. Similarly, the application time is represented by a column
of type PERIOD(DATE) or PERIOD(TIMESTAMP) marked as
VALID TIME. Primary keys can be defined for system time, ap-
plication time or both. Physical database design seems to be fully
orthogonal to temporal support, i.e., table partitions or indexes can
be defined in the same way as other columns.

Temporal Operators. Teradata also inherits a rich set of temporal
operators from T-SQL2 [2]. Time travel on transaction time is
formulated via CURRENT TRANSACTIONTIME, TRANSAC-
TIONTIME AS OF TIMESTAMP <date-or-timestamp> before
the query or after a table reference. Similarly, time travel on ap-
plication time is supported using VALIDTIME instead of TRANS-
ACTIONTIME. The semantics of joins and DML operations can be
specified as SEQUENCED VALIDTIME or NON-SEQUENCED
VALIDTIME as defined in [21]. We did not find examples for a
temporal aggregation operation as defined in [13].
Temporal Algorithms and Indexes. As discussed above, specific
treatment of temporal operations seems to be limited to the query
compiler of Teradata. The query compiler implements special
optimizations for join elimination based on constraints defined
on temporal tables [3]. As temporal queries are compiled into
standard database operations, no specific query processing features
for temporal queries seem to be exploited.

2.3 IBM DB2
Architecture. Recently, IBM DB2 announced support for tempo-
ral features, see [18] for an overview. In order to use system time in
a temporal table, one has to create a base table and a history table
with equal structure. Both are connected via a specific ALTER
TABLE statement. After that, the database server automatically
moves a record that has become invisible from the base table into
the history table. Access to the two parts of the temporal table is
transparent to the developer; DB2 automatically collects the desired
data from the two tables.
SQL Syntax. The SQL syntax of DB2 follows the SQL:2011 stan-
dard. There are some differences such as a hard-coded name for the
application time which provides convenience for the common case
but limits temporal tables to a single application time dimension.
Time Dimensions. DB2 supports bitemporal tables: Application
time support is enabled by declaring two DATE or TIMESTAMP
columns as PERIOD BUSINESS_TIME. This works similarly for
the system time using PERIOD SYSTEM_TIME. Furthermore,
the system checks for constraints such as primary keys or non-
overlapping times when DML statements are executed.
Temporal Operators. Like the SQL:2011 standard, DB2 mostly
addresses time travel on an individual temporal table. Certain
temporal joins can be expressed using regular joins on temporal
columns, but more complex variants (like outer temporal joins)
cannot be expressed. No support for temporal aggregation is
provided. Queries referencing a temporal table can use additional
temporal predicates to filter for periods of the application time.
Following the SQL standard, time travel on both time dimensions is
possible to filter ranges of system or application time. DML state-
ments are based on the SEQUENCED model of Snodgrass [21],
i.e., deletes or updates may introduce additional rows when the time
interval of the update does not exactly correspond to the intervals
of the affected rows.
Temporal Algorithms and Indexes. From the available resources
it seems that no dedicated temporal algorithms or indexes are
available. But of course, DB2 can exploit traditional indexes for
the current and temporal table. Also, DB2 does not automatically
create any index on the temporal table.

2.4 Oracle
Architecture. Oracle introduced basic temporal features a decade
ago with the Flashback feature in Oracle 9i. Flashback comes in
different variants: 1) Short time row level restore using UNDO
information, 2) restoring deleted tables using a recycle bin, and 3)
restoring a state of the whole database by storing previous images
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of entire data blocks. With version 11g, Oracle introduced the
Flashback Data Archive [16] which stores all modifications to the
data in an optimized and compressed format using a background
process. Before a temporal table can be used, the data archive has
to be created. An important parameter of the data archive is the
so-called Retention Period, which defines the minimum duration
Oracle preserves undo information. With Oracle 12c the support
for system time was complemented by application time.
SQL Syntax. The syntax used by Oracle for temporal features
seems proprietary but similar to the SQL:2011 standard. Time
travel uses the AS OF syntax, and range queries use the PERIOD
FOR clause.
Time Dimensions. As mentioned above, Oracle 12c supports
application time, which can be combined with Flashback to create
a bitemporal table [15]. Multiple valid time dimensions (i.e.,
application time) per table are allowed. While the system time
is managed by the database alone, it seems that the semantics
of DML statements for the application time are handled by the
application, i.e., the application is responsible for implementing the
(non-) sequential model for updates and deletes.
Temporal Operators. Oracle pioneered the use of the time travel
operator on system time and provides a rich set of parameters that
go beyond the SQL:2011 standard. The Flashback feature is used
to implement time travel on the system time, but the accessible
points in time depend on the Retention Period parameter of the
Flashback Data Archive. For application times, such constraints
do not exist. Like in DB2, there is no explicit support for temporal
joins or temporal aggregation.
Temporal Algorithms and Indexes. Starting with Oracle 11g,
Oracle has significantly overhauled its Flashback implementation,
relying on the Flashback Data Area (which are regular, partitioned
tables) for system time versioning instead of undo log analysis.
Application time is expressed by additonal columns. Since no
specialized temporal storage or indexes exist, Oracle relies on its
regular tables and index types for temporal data as well.

2.5 PostgreSQL
Architecture. The standard distribution of PostgreSQL does not
offer specific support for temporal data beyond SQL:2003 features.
However, patches for support of temporal features as defined in the
SQL:2011 standard are available. Consequently there is no sup-
port available in PostgreSQL for creating, querying and modifying
temporal tables.
Temporal Algorithms and Indexes. We were interested in analyz-
ing PostgreSQL because it implements the GiST data structure [9].
Thus, it may offer superior performance compared to B-Trees on
the columns of a period. As GiST can be used to implement spatial
indexes such as the R-Tree [7] or Quad-Tree [6] we were able to
analyze this advanced index type without having to deal with the
extension packs of the commercial alternatives.

2.6 SAP HANA
Architecture. To implement the system time dimension, the SAP
HANA database offers the history table [20]. A history table
is a regular columnar table equipped with two (hidden) columns
validfrom and validto to keep track of the system time of
a record. For a visible record the value of the validto column
is NULL. The system maintains the respective information when a
new version of a record is created, or the record is deleted. Further-
more, history tables are always partitioned into at least two parts:
In addition to user-defined partitions, the data is partitioned into
the currently visible records, and older versions of those records.
During a merge operation, records are moved from the current

partition to the “history partition” which guarantees fast access to
the currently visible records.
SQL Syntax. Currently, SAP HANA does not support the SQL:2011
standard syntax. Only the AS OF operator for time travel can be
used globally in a query.
Time Dimensions. HANA provides native support for system time
by keeping the snapshot information with the update information
and not removing rows that have become invisible. There is no
specific support for application time in SAP HANA, but standard
predicates on DATE or TIMESTAMP columns can be used to query
those columns, and constraints or triggers can be used to check
semantic conditions on these columns.
Temporal Operators. The SAP HANA database supports a time
travel operator in order to view snapshots of the history table of a
certain snapshot in the past (known as AS OF operator). Concep-
tually, this operator scans both the current and the history partition
to find all versions which were valid at the specified point in time.
As mentioned above, only one point in time is supported per query.
Temporal Algorithms and Indexes. Time travel is implemented
by recomputing the snapshot information of the transaction as it
was when it started. This information is used to restrict the query
results to the rows visible according to this snapshot.

3. TEMPORAL BENCHMARK
Performance evaluations of the temporal dimension have been

the focus of a small number of studies, but a comprehensive
benchmark has only recently been established by the authors of
this paper.

In 1995, Dunham et al. [8] outlined possible directions and
requirements for such a temporal benchmark and included an ap-
proach for building such a benchmark using different classes of
queries. A study on spatio-temporal databases by Werstein [23]
evaluated existing benchmarks and emphasized their insufficient
temporal aspects. At TPCTH 2012, Al Kateb et al [2] presented
the sketch of bitemporal benchmark based on TPC-H.

In this paper we utilize and refine our initial benchmark pro-
posal [11]. The full SQL statements for various temporal SQL
dialects can be found in [12] as well as the schema and generator
details. The benchmark definition in [11] includes a schema, the
workload description and a set of queries, but only performs a
cursory evaluation on a small set of DBMSs. In order to make this
paper reasonably self-contained, we will summarize this bench-
mark here. The database schema is based on the schema of the
well-known TPC-H benchmark with extensions to support tempo-
ral aspects. The data set is consistent with the TPC-H data for each
time in system time history. The data also features non-uniform
distributions along the application time dimension. This challenges
the databases under test for queries on the application time. In
addition, we can use the TPC-H queries without modification for
time travel queries (i.e., on system time). As the benchmark mainly
targets the current SQL:2011 standard, queries are expressed in
the standard syntax where possible. As, due to space constraints,
showing the full SQL code for all statements is not feasible, we will
provide representative examples in Section 5 of this paper.

3.1 Schema
The schema shown in Figure 1 extends the TPC-H schema with

temporal columns in order to express system and application time
intervals. This means that any query defined on the TPC-H schema
can run on our benchmark and will give meaningful results, reflect-
ing the current system time and the full range of application time
versions. The added temporal columns are chosen in such a way
that the schema contains tables with different temporal properties:
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Figure 1: Schema

Some tables are kept unversioned, such as REGION and NATION,
as this information rarely changes. SUPPLIER simulates a degen-
erated table by only giving a system time which also serves as an
application time. Most other tables are fully bitemporal, and OR-
DERS represents the case in which a table has multiple application
times: active_time, i.e., when the order was “active” (placed,
but not delivered yet) and receivable_time, i.e., when the bill
for the order should be paid (i.e., invoice sent to customer, but
not paid yet). For DBMS without native support for more than
one application time, the first time dimension is defined as native
application time, whereas the second application time is expressed
with normal time attributes. All time information is derived from
existing values present in the data; details can be found in [11].

3.2 Data and Update Workload

Update Scenario Probability

New Order 0.3
New Customer 0.5
Select existing Customer 0.5

Cancel Order 0.05
Deliver Order 0.25
Receive Payment 0.20
Update Stock 0.05
Delay Availability 0.05
Change Price by Supplier 0.05
Update Supplier 0.049
Manipulate Order Data 0.01

Table 1: Update Scenarios of the History Generator

While the standard TPC-H provides only a limited number of
updates in terms of the "refresh" queries, the data produced by the
traditional TPC-H data generator serves as a good "initial" data set.

To express the evolution of data, the refresh queries are not
considered due to limited impact on the data. Instead, nine up-
dates scenarios are used, stressing different aspects between tables,
values and times. The probability of each scenario is given in
Table 1. Since the initial data generation and the data evolution
mix are modeled independently, we can control the size of the
initial data (called h like in TPC-H) and the length of the history
(called m) separately and permit arbitrary combinations. The same
scaling settings as in TPC-H are used (e.g., h = 1.0 yields 1 GB of
data), for m a scale of 1.0 corresponds to 1 million updates. For all

dimensions, the factor has a linear impact on the data sizes.
Table 2 describes the outcome of applying a mix of these scenar-

ios on the various tables. We distinguish between operations which
change the application time and non-temporal operations which
only affect the system time. PART and PARTSUPP only receive
UPDATE statements, while the remaining bitemporal relations will
see a mix of operations. LINEITEM is strongly dominated by
INSERT operations (> 60 percent) whereas ORDERS has 50
percent inserts and 42 percent updates. CUSTOMERS in turn
sees mostly UPDATE operations (> 70 percent). The temporal
specialization follows the specification in the schema, providing
SUPPLIER as a degenerate table. The history growth ratio de-
scribes how many update operations per initial tuple happen when
h = m. As we can see, CUSTOMER and SUPPLIER get a
fairly high number of history entries per tuple, while ORDERS and
LINEITEM see proportionally fewer history operations. Finally,
existing application time periods can be overwritten with new
values for CUSTOMER, PART, PARTSUPP and ORDERS which
triggers more complex update operations [21].

3.3 Queries
The query workload of the benchmark provides a comprehen-

sive coverage of data access patterns [17], temporal operators
and specific temporal correlations, using a mix of synthetic and
application-oriented queries. There are in total 5 groups (each
denoted by a different letter), which we describe briefly; we will
highlight individual queries in the experiments in Section 5. As a
yardstick we introduce a query (ALL) which retrieves the complete
history of the ORDERS table and should set an upper limit to all
single-table operations. All queries are available in [12].
Synthetic Time Travel. The first group of queries (prefixed
with T) covers time travel, i.e., establishing the state concerning a
specific time for a table or a set of tables. The time travel operator
is expressed in SQL by the AS OF clause for most systems. Given
that time in a bitemporal database has more than one dimension,
one can specify different slicing options for each of these dimen-
sions, which can be treated as a point or as complete slice.

The first queries cover point-point access for both temporal
dimensions, e.g., tomorrow’s state in application time, as recorded
in the system yesterday. T1 uses CUSTOMER, a table with many
update operations, large history, but stable cardinality. In turn, T2
uses ORDERS, a table with a generally smaller history growth ratio
and a focus on insertions. This way, we can study the cost of time
travel on significantly different histories. The second group, T6,
performs temporal slicing on ORDERS, i.e., retrieving all data of
one temporal dimension, while keeping the other to a point. This
provides insight into whether the DBMS prefers any dimension.

The benchmark also includes a number of queries to test for more
specific aspects, such as sharing multiple time-travel operations on
the same table (T3, T4), early stops (T4), implicit vs. explicit time
specifications (T7) and simulated application time: T8 for point
data (like T2) and T9 for slices (like T6).
Time Travel for Application Queries. The second set of timeslice
queries (prefixed with H) focuses on application-oriented work-
loads, providing insights on how well synthetic time travel perfor-
mance translates into complex analytical queries, e.g., accounting
for additional data access cost and, possibly, disabled optimiza-
tions. For this purpose, we use the 22 standard TPC-H queries
(similar to [2]) and extend them to allow the specification of both a
system and an application time point. While the semantics for sys-
tem time specification are rather straightforward, application times
need to consider the application time evolution assigned in the data
generation process (Section 3.2) when comparing semantics and
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Table App.Time Insert App.Time Update Non-temp. Insert Non-temp. Update Delete History growth ratio Overwrite App.Time

NATION - - - - - - -
REGION - - - - - - -
SUPPLIER - 0.05 - - - 5 no
CUSTOMER 0.15 0.08 - 0.38 - 3.7 yes
PART - 0.05 - - - 0.25 yes
PARTSUPP - 0.05 - 0.59 - 0.72 yes
LINEITEM 1.20 0.03 - 0.54 0.20 0.32 no
ORDER 0.30 0.25 - 0.54 0.20 0.4 yes

Table 2: Average Operations per Table for History Generator m=1.0 (Million)

cost to non-temporal executions of TPC-H.
Pure-Key Queries (Audit). The third class of queries (prefixed
with K) retrieves the history of a specific tuple or a small set of
tuples along the system time, the application time(s) or both.

The first query (K1) selects the tuple from the ORDER relation
(to compare with ALL and T6) using a primary key, returns many
columns and does not place any constraints on the temporal range.
As such, it should give an understanding of the storage of temporal
data. K2 and K3 refine K1 by placing a constraint on the temporal
range to retrieve and the number of columns.

K4 and K5 complement K2 by constraining not the temporal
range (by a time interval), but the number of versions by using
Top-N (K4) or a timestamp correlation (K5). K6 chooses the tuples
not via a key of the underlying table, but using a range predicate on
a value (o_totalprice).
Range-Timeslice Queries. The fourth class of queries (denoted
with R) contains a set of application-derived workloads, accessing
both value and temporal aspects. As before, these queries contain
keep one time dimension to a point, while analysing the other.

R1 and R2 express state modeling, capturing state changes and
state durations, respectively. The SQL expressions involve two
temporal evaluations on the same relation and then a join.

R3 expresses temporal aggregation, i.e., computing aggregates
for each version or time range of the database, with two different
aggregation functions1. At SAP, this turned out to be one of the
most sought-after analyses. However, SQL:2011 does not provide
much support for this operator. Since SQL:2011 does not have
native support for temporal aggregations, a rather costly join over
the time interval boundaries followed by a grouping on these points
for the aggregate is required.

R4 computes the products with the smallest difference in stock
levels over the history. Whereas the temporal semantics are rather
easy to express, the same tables need to be accessed multiple times,
and a significant amount of post-processing is required. R5 covers
temporal joins by computing how often a customer had a balance
of less than 5000 while also placing orders with a price greater
than 10. The join, therefore, not only includes value join criteria
(on the respective keys), but also time correlation. R6 combines
a temporal aggregation and a join of two temporal tables. R7
computes changes between versions over a full set, retrieving those
suppliers who increased their prices by more than 7.5 percent in
one update. R7 thus generalizes K4/K5 by determining previous
versions for all keys.
Bitemporal Queries. The fifth class of queries (denoted with the
prefix B) covers correlations between different time dimensions.
This complements the previous classes which typically varied only
one dimension while maintaining a fixed position on the other.

Snodgrass [21] provides a classification of bitemporal queries.
Our bitemporal queries follow this approach and create comple-

1Our definition of temporal aggregation creates a new result row
for each timestamp at which data is changed. Other definitions
may rely on the minimal change of the associated view [5].

Name App Time System Time System Time value

B3.1 Point Point Current
B3.2 Point Point Past
B3.3 Correlation Point Current
B3.4 Point Correlation -
B3.5 Correlation Correlation -
B3.6 Agnostic Point Current
B3.7 Agnostic Point Past
B3.8 Agnostic Correlation -
B3.9 Point Agnostic -
B3.10 Correlation Agnostic -
B3.11 Agnostic Agnostic -

Table 3: Bitemporal Dimension Queries

mentary query variants to cover all relevant combinations. These
variants span both time dimensions and vary the usage of each time
dimension: a) current/(extended to) time point, b) sequenced/time
range, c) non-sequenced/agnostic of time. The non-temporal base-
line query B3 is a standard self-join: What (other) parts are sup-
plied by the suppliers who supplies part 55? Table 3 describes the
semantics of each query. It covers the 9 cases present in [21]. For
queries working on points in system time (B3.1, B3.6), we also
consider the fact that the data is partitioned by system time with
one partition for current values and another one for past values.

4. IMPLEMENTATION
In this section we describe the implementation of the TPC-BiH

benchmark introduced in Section 3. The implementation comprises
three steps: 1) The Bitemporal Data Generator computes the data
set using a temporary in-memory data structure and the result is
serialized in a generator archive. 2) The archive is parsed and the
database systems are populated. 3) The queries are executed and
the execution time is measured.

For experimentation we used the Benchmarking Service de-
scribed in [10]. We extended this system to consider temporal
properties in the metadata, such as the temporal columns in the
schema definition as well as particular temporal properties in the
selection of parameter to queries (e.g., the system time interval for
generator execution).

4.1 Bitemporal Data Generator
The Bitemporal Data Generator computes a temporal workload

and produces a system-independent intermediate result. Thus,
the same input can be applied for the population of all database
systems, which accounts for the different degrees of support for
temporal data among current temporal DBMS.

The execution of the data generator includes two steps: 1)
loading the output of TPC-H dbgen as version 0 and 2) running
the update scenarios to produce a history. First, dbgen is executed
with scaling factor h and the result is copied to memory. While
parsing the output of dbgen, the application time dimensions are
derived based on the existing time attributes such as shipdate or
receiptdate of a lineitem. In the second step, m*1 Mio update
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scenarios are executed and the data is updated in-memory.
The data generator keeps its state in a lightweight in-memory

database and supports the bitemporal data model including both
application and system time. For the implementation of the system
time, we only need to keep the current version for each key in
memory. To reduce the memory consumption of the generator, in-
validated tuples are written to an archive on disk as it is guaranteed
that these tuples will never become visible again. In contrast to this,
all application time versions of a key need to be kept in memory as
these tuples can be updated at any later point in time. Therefore, an
efficient access of all application time versions for a given primary
key is necessary. On the other hand, memory consumption has to
be minimized as temporal databases can become very large. Since
a Range Tree of all application time versions for each primary key
turned out to be too expensive, we mapped each primary key to
a double linked list of all application time versions which were
visible for the current system time version. This representation
requires only little additional memory and allows the retrieval of
all application time versions for a given key with a cost linear to
the maximum number of versions per key.

Initial evaluations show that this generator can generate 0.6
Million tuples/s, compared to 1.7 Million tuples of dbgen on
the same machine. The data generator can also be configured to
compute a data set consisting only of tuples that are valid at the
end of the generation interval, which is useful when comparing the
cost of temporal data management on the latest version against a
non-temporal database.

4.2 Creating Histories in Databases
The creation of a bitemporal history in a database system is a

challenge since all timestamps for system time are set automati-
cally by the database systems and cannot be set explicitly by the
workload generator (as is possible for the application times). For
this reason, bulkloading of a history is not an option since it would
result in a single timestamp of all involved tuples. Therefore,
all update scenarios are loaded from the archive and executed as
individual transactions, using prepared update statements. The
reconstruction of the transactions is implemented as a stepwise
linear scan of the archive tables sorted by system time order.

In addition, the generator provides an option to combine a series
of scenarios into batches of variable sizes, as to determine the
impact of such update patterns on update speed as well the data
storage, which in turn may affect query performance.

5. EVALUATION AND RESULTS
This section presents the results of the benchmark described in

Section 3 that assess the performance of four database systems for
temporal workloads. These systems were carefully tuned by taking
into account the recommendations of the vendors, and we evaluated
different types of indexes. We decided to show both in-memory
column stores and disk-based row stores in the same figures as
there is no single system which performs best for all use cases,
and it is meaningful to compare the effects of the different system
architectures. All figures for the experiments are available at [1].

5.1 Software and Hardware Used
In our experiments we compare the performance of four con-

tenders: Two commercial RDMBS (System A and System B)
which provide native support of bitemporal features. In addition,
we measured a commercial in-memory column store (System C)
which supports system time only. As a further baseline, we inves-
tigated a disk-based RDMBS (System D) without native temporal
support. For each system, we simulated missing native time di-

mensions by adding two traditional columns to store the validity
intervals. As our analysis result will show, this is mostly a usability
restriction, but does not affect performance (relative to the other
systems).

All experiments were carried out on a server with 384GB of
DDR3 RAM and 2 Intel Xeon E5-2620 Hexa-Core processors at
2 GHz running a Linux operating system (Kernel 3.5.0-17). With
these resources, we could ensure that all read requests for queries
are served from main memory, leveling the playing fields among
the systems. If not noted otherwise, we repeated each measure-
ment ten times and discarded the first three measurements. We
deviated from this approach under two circumstances: 1) If the
measurements showed a large amount of fluctuation, we increased
the number of repetitions. 2) For very long-running measurements
(several hours), we reduced the number of repetitions since small
fluctuations were no longer an issue.

We generally tuned the database installations to achieve best
performance for temporal data and used out-of-the-box settings for
non-temporal data. If best practices for temporal DBMS manage-
ment were available, we set up the servers accordingly. In addi-
tion, we used three index settings to tune the storage for temporal
queries: A) Time Index: Add indexes on all time dimensions for
RDMBSs, i.e., app time index on current table, app+system time
indexes for history tables. B) Key+Time Index: Provide efficient
(primary) key-based access on the history tables, as several queries
rely on this. C) Value Index: For a specific query we added a value
index, as noted there. These indexes can be implemented by dif-
ferent data structures (e.g., B-Tree or GiST). We also experimented
with various combinations of composite time indexes or key-only
indexes on the history tables. In the workloads we tested, they did
not provide significant benefits compared to single-time indexes.

5.2 Architecture Analysis
Our first evaluation consists of an analysis of how the individual

systems store the temporal data physically; we derived this infor-
mation from the documentation, the system catalogs, an analysis of
query plans and the feedback from the vendors. From a high-level
perspective, all systems follow the same design approach:

• The system time is handled using horizontal partitioning: All
data tuples which are valid according to the current system
time are kept in one table (which we call current table), all
deleted or overwritten tuples are kept in a physically separate
table (which we call history table).

• None of the system provides any specific temporal indexes.

• None of the systems puts any index on the history table, even
if it exists by default in the current table.

• All systems support B-Tree indexes.

There are also several differences among the systems:

• System B records more detailed metadata, e.g., on transac-
tion identifiers and the update query type.

• System A and System C use the same schema for current and
historic tables whereas System B follows a more complex
approach: The current table does not contain any temporal
information, as it is vertically partitioned into a separate
table. The history table extends the schema of the current
table with attributes for the system time validity.

• Updates are implemented differently: System A saves data
instantly to the history tables, System B adds updates first to
an undo log, System C follows a delta/main approach.
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Figure 2: Basic Time Travel (Scaling 1.0/10.0)

• System D stores all information in a single non-temporal
table. All other sytems use horizontal paritioning to separate
current from historic data.

• Besides B-Tree indexes, System D additional supports in-
dexes based on GiST [9].

5.3 Time Travel Operations
Our evaluation of temporal queries starts with time travel, since

this is the most commonly supported and used temporal operation.
We utilize the full range of of queries specified in Section 3.3 to
stress various aspects of time travel.

5.3.1 Point Time Travel
Our first experiment focuses on point-point time travel, since

it provides symmetric behavior among the dimensions and poten-
tially smaller result sizes than temporal slicing, providing more
room for optimization. Following the benchmark definition, we use
three temporal queries: T1 is a point-point time travel on a stable
(non-growing current data) relation, namely PARTSUPP. T2 is a
point-point time travel on a growing (current) relation (ORDERS).
We compare two orthogonal temporal settings: 1) current system
time, varying app time and 2) current app time, varying system
time. Finally we evaluate ALL in T5, which retrieves the entire
history. This query provides a likely upper bound for temporal
operations as a reference. As an example, we give the SQL:2011
(DB2 dialect for application time) representation of T1:

SELECT AVG(ps_supplycost), count(*)
FROM partsupp
FOR SYSTEM_TIME AS OF TIMESTAMP ’[TIME1]’
FOR BUSINESS_TIME AS OF ’[TIME2]’

In this experiment, all systems are run with out-of-the box set-
tings without any additional indexes. Figure 2 shows all results
grouped by query and temporal dimensions: T1 (stable table) on
current system time with varying application time is cheapest for
all systems. All systems besides D only access the “current” table
and perform a table scan with value filters on the application time,
since none of the systems creates any index that would support such
temporal filters. T1 over varying system time and fixed application
time sees cost increases since the “history” table needs to be ac-
cessed as well. Since no indexes are present in the out-of-the-box
settings for all systems, this turns into a union of the table scans of
both tables. System B sees the most prominent increase, larger than
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Figure 3: Index Impact for Basic Time Travel (Scaling 1.0/10.0)

the growth in data in the related tables. The reasons for this increase
are not fully clear, since neither the expected cost of combining
the three tables nor the EXPLAIN feature of the database account
for such an increase. One likely factor is the combination of the
vertically partitioned temporal information with the current table,
which is performed as a sort/merge join with sorting on both sides.
A system-created index on the join attribute is not being used in this
workload. T2 is generally more expensive due to the larger number
of overall tuples. Since the majority of tuples is current/active, the
difference between queries on current system and past system time
is somewhat smaller. Again, we see a significant cost increase when
utilizing historic data on System B. ALL is most expensive, since
it not only needs to scan all tables, but also process all tuples.

5.3.2 Impact of Optimizations
Since no system provides indexes on history tables, and as no

index is created to support application time queries on the current
table, we examine the benefits of adding temporal indexing. We
add an index on the time dimension and repeat the previous exper-
iment. For System D we use both B-Tree and GiST versions of
the index. As shown in Figure 3, there is limited impact in this
particular setting, which is consistent over the DBMSs. Since T2
works on a growing current table, it provides a good opportunity
for index usage. System A sees a significant benefit, while System
B and D do not draw a clear benefit from this index. In turn,
only System B benefits clearly for T1 from the system time index
when varying the system time, but is not able to overcome the high
additional cost we already observed in the previous experiment.
System C does not benefit at all from the additional B-Tree index,
which only works if the query is extremely selective. The GiST
index does not provide any significant benefit for System D, which
we also observed in the following experiments. For the remainder
of the evaluation, we will therefore use B-Tree indexes on all
RDBMS and no index for System C.

5.3.3 Sensitivity Experiments
To get a better understanding how data parameters affect the exe-

cution and gain more insight in the usefulness of indexing, we vary
the history length and run T1 with fixed temporal parameters: the
system time after the initial version and the maximum application
time. This way, the query produces the same result regardless of
the history scaling and should provide the possibility for constant
response time (either by cleverly organizing the base data or use of
an index). In contrast to most other measurements, we perform this
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Figure 4: T1 for Variable History Size (Scaling 0.1/1.0)
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Figure 5: Temporal Slicing (Scaling 1.0/10.0)

experiment on a smaller data set 0.1/0.1 to 0.1/1.0, growing in steps
of 0.1 million updates. This is due to the extremely long loading
times of a history and the need to perform a full load for all each
history. As Figure 4 shows, System A, B and D without indexes
scale linearly with the history sizes, as they rely on table scans.
With time indexes, all RDBMS (A, B and D) achieve a mostly
constant cost. The actual plans change with different selectivity, but
once the result becomes small enough relative to the original size,
an index-based plan is used. System C is able to achieve constant
response times even without an index. As System C does not profit
from an index in this experiment, we removed this measurement for
a better readability. The GiST index for System D had constantly
higher cost than the B-Tree index and is used less frequently.

5.3.4 Temporal Slicing
The next class of queries targets temporal slicing, meaning that

we fix one dimension (using the AS OF operator) and retrieve the
full range of the other dimension. We measure three settings for the
same query (T6): 1) fix application time over all complete system
time 2) use simulated application time over complete system time
3) fix system time over complete application time: This is the
typical behavior of the AS OF SYSTEM TIME clause in SQL:2011
if there is no application time specified. As before, we investigate
out-of-the-box and time Index settings. Figure 5 contains no results
for application time slicing for system B due to the bug mentioned
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Figure 6: Current TT Implicit vs. Explicit (Scaling 1.0/10.0)

in Section 5.3.1. The workaround corresponds to the simulated
application time. Due the significantly bigger result sizes indexes
are of not much use here. Interestingly, temporal slicing results in
faster response times than point time travel, in particular for System
C due to somewhat lower complexity of the query.

5.3.5 Implicit vs. Explicit Time Travel
In the previous experiments, we observed quite different cost

depending on the usage of history table. We used dedicated “cur-
rent” queries (not specifying a system time) to ensure only access
to the current table – which we call implicit current time. An
alternative is to provide an explicit system time statement which
targets the current system time – which we call explicit current
time. The second option is more flexible and general and should
be recognized by the optimizers when it considers which partitions
to use. For this experiment, we consider the systems (A, B, C)
with native temporal support only, since we do not use a partition
in System D. As the results in Figure 6 and the query plans show,
all three system access the history table when using the explicit
version as none of them recognizes this optimization.

5.4 Time Travel for Complex Analysis
Time travel measurements so far focused on the behavior of

individual time travel operators in otherwise “light” workloads.
We complement this fine-grained, rather synthetic workload with
complex analytical queries (the original TPC-H workload), but let
them move through time. As before, we stress both the applica-
tion time and the system time aspect. The measurement on the
bitemporal data table with scaling factor 1.0/10.0 is compared to a
measurement on non-temporal tables that contain the same data as
the selected version. Clearly, the bitemporal version will have to
deal with more data (and thus more cost). Given the large design
space of possible index settings for TPC-H even in the absence of
temporal data, we opted for a two-pronged approach: Our baseline
evaluation performs all workloads using only the default indexes on
all systems. In addition, we performed a more detailed study (see
Appendix 1 on [1]) on indexing benefits using the index advisor
for one of the candidates (System A). As input for the advisor, we
used TPC-H queries 1 to 22 in equal frequency, but not our update
statements, as to focus on the benefits for retrieval. We created all
indexes proposed by the advisor, which resulted in 54 indexes in
the non-temporal case, 30 for the application-time query workload
and 309 indexes for the system-time query workload. Generally
speaking, indexes for the non-temporal workload were extended

745



1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ra
tio

Te
m
po

ra
l/
N
or
m
al

TPC H Query

System A no index System B no index

System C no index System D no index

(a) TPC-H with Application Time TT

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ra
tio

Te
m
po

ra
l/
N
or
m
al

TPC H Query

System A no index System B no index

System C no index System D no index

(b) TPC-H with System Time TT

Figure 7: TPC-H for Different Time Dimensions (Scaling 1.0/10.0)

with the time fields in the temporal workloads. The reduction
of indexes for the application-time workloads can be attributed to
indexes that allow index-only query answering for non-temporal
workloads which cannot be used in the temporal case. In turn, the
increased number of indexes for the system-time workloads reflects
the history table split.

5.4.1 App Time Travel on current Sys Time
Our first measurement compares data with valid application time

intervals on the current system against a non-temporal table that
records the same update scenarios.

Figure 7(a) shows the slowdown factor between the queries on
the non-temporal tables and the time-travel queries on the temporal
tables, both without any additional indexes. Several queries show
slowdowns by several orders of magnitude. For some queries (like
Q5, Q10), all systems are affected, for other others only a single
system (e.g., Q3 and Q13 on system B, Q17 on system A) is
affected. In turn, several queries only saw minor cost increases,
such as Q11 or Q16. Overall, the geometric mean increased by
a factor of 8.8 on System A, 9.3 on system B, 2.5 on System C,
and 6.4 on System D. There are several different causes for this
slowdown: Despite having the same indexes available as in the
non-temporal version, several queries use a table scan instead of an
index scan, often combined with a change in join strategies (hash
or sort/merge vs index nested loop). This affects for example Q3 on
System B, Q4 on System B, Q5 on A, B and D. Some parts of this
behavior can be attributed to the fact that the split between current
and history tables does not cater well for insert-heavy histories,
which lead to a growing number of “active” entries. These entries
are all stored in the current tables (such as the LINEITEM or
ORDERS tables). This is not the only cause, as we see similar plan
changes even on “stable” relations (e.g., in the case of queries Q10
and Q13, access to customer changes from index lookup to a table
scan). Furthermore, some query rewrites were not performed, such
as in Q17 for System A, keeping a complex nested query. System
C sees an overall much smaller slowdown, since its main-memory
column store relies much more on scans, and is thus not as sensitive
to plan changes as the RDBMSs.

Running the queries on the indexed tables of System A showed
a smaller slowdown, the geometric mean now being 5.71. Yet,
the indexes are not evenly distributed, ranging from slowdown
reduction by a factor of 1000 (Q17) to an relative slowdown by
almost a factor of 10 (Q22), as only the non-temporal workload
benefits from an index.

5.4.2 System Time Travel
Given our experience with significant overheads when accessing

history tables (Section 5.3.5), our second experiment with complex
analytical queries performs a time travel on past system time on
the temporal tables. All accesses would go to the version directly
before the history evolution, returning the initial TPC-H data.

Figure 7(b) shows the performance overhead of querying the
bitemporal data instead of the non-temporal data. Since we use
the same queries and access a significant amount of current state,
the overall results resemble the results in the previous application
time experiment. Yet, the performance overhead is significantly
higher. Queries 20 and 21 in System A would not finish within our
timeout setting of 1.5 hours. The geometric mean (excluding these
two queries for all systems) increased by a factor of 26 for System
A, a factor of 73 for System B a factor of 7 for System C and a
factor of 12.1 on System D – much more than for the application
time experiment before. The slowdowns are much more specific
to individual queries and system as in this previous experiment.
In particular System B sees quite significant slowdown on queries
that were not much affected by application time travel. The most
extreme cases are Q4, Q17 and Q22, which see a slowdown of
factor 1000, 50 and 70 between these two experiments. While these
queries already use a table scan and two joins in their non-temporal
and application time versions, the plan for accessing system time
history involves now several additional joins, unions and even anti-
joins to completely reassemble system time history. A similar
effect can be seen for Q9 on System A. With its focus on scan-based
operations, System C is least affected, but we also much more
pronounced slowdowns than in the previous experiment. System
D has the least overhead among RDBMS, since it does not use the
current/history table split.

Using indexes for System A does not really change the story,
since the geometric means of the relative overheads is reduced to
11.9. Again the relative overheads vary significantly.

5.5 Key in Time (Audit)
Our next set of experiments focuses on evaluating the evolution

of an individual tuple or a small set of values over time, as outlined
in Section 3.3. We start with experiments studying the full history,
study various ways to restrict the history, the selection by value and
the sensitivity against different data set parameters.

5.5.1 Complete Time Range
Our initial experiment aims to understand how the individual

systems handle a workload which focuses on a small set of tuples
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Figure 8: Key in Time - Full Range (Scaling 1.0/10.0)

identified by key (aka “key in time”). It evaluates query K1,
which accesses an individual customer and traces its evolution over
various aspects of time. Like in the previous experiments, we
consider both the application and system time for current and past
points in time (as to stress the history tables) as well as a full history
over both aspects. We select the customer with most updates, which
is still just a small fraction of the small table. For illustration, we
give the SQL:2011 code of K1 querying tuples in a system time
range and a point in application time:

SELECT c_custkey, c_name, c_address, c_nationkey,
c_phone, c_acctbal, sys_time_start

FROM customer
FOR SYSTEM_TIME FROM ’[SYS_BEGIN]’ TO ’[SYS_END]’
FOR BUSINESS_TIME AS OF ’[APP_TIME]’

WHERE c_custkey = [CUST_KEY]
ORDER BY sys_time_start

As a result, there should be significant optimization potential,
which we explore by measuring both nonindex and Key + Time
index settings. Figure 8 shows the results: Both System A and
System B benefit from a system-defined index on the current table
when only querying app time evolution in current system time.
When performing the same query in past system time (on the
history table), the cost significantly increases, as this triggers a table
scan on the history table. System A clearly benefits from adding an
index, while System B uses the index, but suffers from the high cost
of history reconstruction. In particular, performing a sort/merge
join between the vertical partitions of the current table have a
significant impact given the overall low cost of the remaining query
plan. For histories including system time ranges, the overall cost is
higher, while the index benefit is somewhat smaller. System C has
to perform table scans for all accesses, thus having a fairly high
relative cost. The missing current/history split of System D makes
application time history at current system time more expensive.

5.5.2 Constrained Time Ranges
In our second experiment we investigate if the systems are able

to benefit from restrictions on the time dimensions for key-in-
time queries. Figure 9 shows the results when constraining the
time range (K2) and in addition just retrieving a single column
(K3), indicating that time range restrictions have little impact in
K2 and K3 when comparing against K1. Figure 10 performs a
complementary restriction, based not on time but on version count.
As a result, we only consider only each individual time dimension,
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Figure 9: Key in Time - Time Restriction (Scaling 1.0/10.0)
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Figure 10: Key in Time - Version Restriction (Scaling 1.0/10.0)

not their combination. K4 implements this version count using a
Top-K expression. K5 investigates an alternative implementation
retrieving only the latest previous version. Top-K optimizations
work in some cases (as shown K4), while the alternative approach
in K5 is not beneficial.

5.5.3 History of Non-Key Attributes
Beyond analyzing histories of tuples identified by their keys, we

also investigated the cost of choosing tuples by non-key values.
Figure 11 shows the cost of K6, which traces the evolution of cus-
tomers exceeding a certain balance. Without an index, all systems
need to rely on table scan. A value index on the balance attribute
significantly speeds up the queries, but clearly is influenced by the
selectivity of the filter. Due to space constraints, we only show the
results for a very selective filter. For the non-selective cases, the
index is of little use, so all systems rely on table scans.

5.5.4 Sensitivity Experiments
Similar to experiment in Section 5.3.3, we want to understand

how data set changes affect the results. In Figure 12 we vary the
history length for the query that investigates the application time
evolution at a fixed system time (at the begin of the history). System
A, C and D manage to keep are more or less constant performance.
While System B successfully uses the index for the actual data, it
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Figure 11: Value in Time (Scaling 1.0/10.0)

System A - B-Tree System B  - B-Tree System C - B-Tree System D - B-Tree

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

history size (million versions)

1

1 0

100

1000

Lo
g 

ex
ec

ut
io

n 
tim

e 
(m

s)

Figure 12: Key-Range Variable History Size (Scaling 0.1/1.0)

suffers from the cost of reconstructing the vertical partition on the
current table.

We also change the size of the update batches, i.e., how many
scenario executions are combined into a transactions as to under-
stand if the number of transactions has an impact. As we can
see in Figure 13, System B is impacted most. As they number
of transactions decreases, the performance increases. The reasons
for this behavior, however, do not become clear from the system
description and EXPLAIN output.

5.6 Range-Timeslice
For the application-oriented queries in range-timeslice, we no-

tice that the cost can become very significant (see Figure 14). To
prevent very long experiment execution times, we measured this
experiment on a smaller data set, containing data for h=0.01 and
m=0.1. Nonetheless, we see that the more complex queries (R3 and
R4) lead to serious problems: For Systems A and D, the response
times of R3a and R3b (temporal aggregation) are more than two
orders of magnitude more expensive than a full access to the history
(measured in ALL). While System B and C perform better on the
T3 queries, System C it runs into a timeout after 1000 seconds on
R4. Generally speaking, the higher raw performance of System
C does not translate into lower response times for the remaining
queries.
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Figure 13: Key-Range for Variable Batch Size (Scaling 0.1/1.0)
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Figure 14: Range Timeslice (Scaling 0.01/0.1)
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Figure 15: Bitemporal Dimensions (Scaling 1.0/10.0)
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Figure 16: Loading Time per Scenario (Scaling 0.1/1.0)

5.7 Bitemporal Coverage
We measured bitemporal coverage on the 1.0/10.0 data set. As

shown in Figure 15, without indexes, most queries turn into table
scans and non-indexed joins. System A and D draw some benefits
from the key and time attributes in the indexes, while System B
only benefits in selected cases. Generally speaking, the absence
of any temporal join operators lead to rather very slow operations
when performing correlations.

5.8 Loading and Updates
We measured both the total loading time of the history in native

temporal systems. For the workload size 1.0/10.0 the total loading
time on System A was 9.7h, on System B 12.4h and on System C
11.3h. Figure 16 shows the average loading time for the transaction
of each scenario. As the variance was very high, we computed both
the median and the 97th percentile of the execution times. The
97th percentile is very high for System B, as 5% of the values were
two orders of magnitudes higher (around 100ms), which can be
explained by the background process writing the information to the
history table. Since System D does not have native system time, its
cost is much lower since we can set the timestamps manually and
perform a bulk load.

5.9 Summary
Despite the long history of research in temporal databases, most

of today’s commercial DBMS only recently adopted temporal fea-
tures. Therefore, all tested temporal operators are not as mature
as those outside the temporal domain. Even though SQL:2011
provides a standard, so far only one system supports this standard,
which forced us to provide variants in different language dialects
for all our queries. In addition, very little documentation is avail-
able, in particular on the aspect of tuning, which makes configu-
ration very hard and time consuming. In order to achieve good
performance results, extensive manual tuning is required (e.g., by
creating indexes), and for many workloads these indexes remain
unused, since they only work on very selective workloads. In
general, temporal features seem to see relatively little usage so far.
E.g., we encountered a bug in System B which prevented us from
accessing the current data in combination with a specific syntax.
System B and C only provided missing or conflicting information
about the query plans.

6. CONCLUSION
In this paper we performed a thorough analysis of the temporal

data management features of current DBMS. Since all of these
systems utilize only standard storage and query processing tech-
niques, they are currently not able to outperform a standard DBMS

with a fairly straightforward modeling of temporal aspects. Almost
ironically, the system that puts the most effort into system time
managment often performs worst in this area. The usefulness of
tuning with conventional indexes varies a lot and depends mostly
on the overall selectivity of the queries. Temporal operators that
are not directly supported in the current language standards (such
as temporal aggregation) fare even worse. As management and
analysis of temporal data are becoming increasingly important, we
hope that the evaluation performed in this paper provides a good
starting point for future optimizations of temporal DBMS.

As currently several commercial vendors are planing to release
an in-memory column store extension for their database, we plan
to repeat this study for the new systems as part of our future work.
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