

III Stakeholder Workshop Indus Basin, 21-22 August 2019, Kathmandu, Nepal

Integrated Solutions for Water, Energy, and Land Project overview

Barbara Willaarts, PhD International Institute for Applied Systems Analysis Research Scholar and Project Manager Water Program

Develop tools and capacities that can support the management of the water-energy-land nexus at different scales and for different users

Partners:

Duration Oct 2016-Nov 2019

GEF Contract Agreement: 6993

Project components

1. Global

- a) Diagnostic assessment (including pop vulnerability/exposure): Hotspots analysis
- b) Solution oriented assessment: Global transformation pathways

2. Basin

- a) Development of quantitative and qualitative nexus tools
- b) Assessment of nexus solutions
- c) Stakeholder engagement

3. Capacity Enhancement and dissemination

- a) Trainings (models, and scenario tool)
- b) Research collaborations (joint papers)

Project timeline

Abbreviations: RM: Stakeholder regional meeting CB: Capacity Building PSC M: PSC meeting

Global hotspots assessment and explorer tool

ISWEL: Global analysis of vulnerability hotspots

Country example: South Africa

Water risks already prominent (1/3rd of population)

Higher global warming:

- exposes most of the population to energy risks (cooling & heat stress)
- Up to 2/3^{rds} population exposed to water risks

Global hotspots explorer

Basin Assessment

Basin Outputs

1. <u>Different tools intended for different users</u>

Quantitative (researchers and planners)

- 1. Regional basin planning model (policy optimization IAM)
- 2. Visualization tool with datasets and scenario results

Qualitative (researchers and decision makers)

- 3. Qualitative scenario tool
- 4. Nexus Game

Semi-quantitative (decision makers)

5. Simulation tool with quantitative constrains (prototype)

2. <u>Stakeholder informed scenarios</u>

Basin-wide modeling tool

NExus Solutions Tools (NEST)

Distributed Hydrology

Community Water Model (CWatM)

(Burek et al., 2018)

land-use

Infrastructure Planning

MESSAGEix

(Huppmann et al., 2018)

Participatory Scenario tool

IASA

Current Situation

Business as Usual Pathway

Desired Future Pathway

Indus visions and pathways

Economy pathway

Society pathway

Environment pathway

From pathways to basin scenarios

ctor(s)	Policy	Target (Economy)	Target (Society)	Target (Environment)	Model Represent.	Model Indicators
Nater	Access to water clean water	100% in 2050	100% in 2030	100% in 2030	people connected to pipes	infrastructure costs and urban water demand
	Water storage and supply	Development of large storage dams and interbasin transfers	Strategic large storage dams combined with small scale storage	Strategic storage dams; develop groundwater potential	Storage capacity	total storage capacity, min, max and actual level of reservoirs, storage investment costs
	Conservation of water- related ecosystems	Economic water uses attended first	Securing environmental flows	Securing environmental flows + conservation of sensitive wetlands	Allocation prioritization, Restrict land use changes	Volumetric flow by sector (km^3), Share of wetlands protected (%)
	Ensuring water quality	At least primary treatment of industrial and urban water	At least primary treatment of industrial and urban water	Secondary wastewater treatment and recycling;	wastewater treatement and water pollutants	Investments in clean water technologies
	Flood and drought management	Multipurpose-dam management ; Joint surface and groundwater management	Multipurpose-dam management+Tran sboundary cooperation strategy	Multi-purpose dam management and NBS	Maximum river flows	Activity of river, canals and level of reservoir

Scenario tool VIDEO

The Nexus Game

LUMS, Lahore, March 2018

Capacity Enhancement

Visiting researchers 2018

Ansir Ilyas Mengru Wang Fabio Amendola LUMS, Pakistan WUR, China UFRJ, Brazil **Nexus Game**

Zimbabwe University Harare , July 2018 LUMS Lahore , March 2018

Trainings and Lectures

- Keynote on Water-Energy-Land Nexus, Lahore, 26 March 2018
 Training on IAMs for nexus management, Vienna, 1 June 2018
- Training on Scenario Planning Approaches, Harare, 9 July 2018

Outcomes from the basin tools and scenarios

- 1. Well received by stakeholders: help breaking the silo mentality and enhancing mutual learning
- Flexible, can be adapted to explore a wide range of issues at different scales
- Combination of Model + scenario tool suitable for policy issue identification and measure development
- Regional scenarios are coherent with global storylines, allowing for inter-comparison

Thanks

willaart@iiasa.ac.at