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Abstract
Real-world multistage stochastic optimization problems are often characterized by the
fact that the decision maker may take actions only at specific points in time, even if
relevant data can be observed much more frequently. In such a case there are not only
multiple decision stages present but also several observation periods between consec-
utive decisions, where profits/costs occur contingent on the stochastic evolution of
some uncertainty factors. We refer to such multistage decision problems with encap-
sulated multiperiod random costs, as multiscale stochastic optimization problems. In
this article, we present a tailor-made modeling framework for such problems, which
allows for a computational solution. We first establish new results related to the gen-
eration of scenario lattices and then incorporate the multiscale feature by leveraging
the theory of stochastic bridge processes. All necessary ingredients to our proposed
modeling framework are elaborated explicitly for various popular examples, including
both diffusion and jump models.

Keywords Stochastic programming · Scenario generation · Bridge process ·
Stochastic bridge · Diffusion bridge · Lévy bridge · Compound Poisson bridge ·
Simulation of stochastic bridge · Multiple time scales · Multi-horizon · Multistage
stochastic optimization

1 Introduction

Optimization models over a large time frame can be classified into two types:
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• Multiperiod models The decisions are made at the very beginning whereas the
consequences of the decisions depend on the development of a process over time.
A typical example is a buy-and-hold portfolio strategy.

• Multistage models Decisions can be made at regular moments in time. Typical
examples are active portfolio strategies.

Stochastic multiperiod models are simple from their structure. In contrast, multi-
stage stochastic models are objects of intensive research, see the book of Pflug and
Pichler [32]. The purpose of this paper is to introduce models, which incorporate the
properties of both, multistage and multiperiod models. The latter deal with the devel-
opment between the decision stages. Examples for such problems involving different
time scales include:

• Supply network extension problems, where major decisions (such as whether to
defer, to stage, tomothball, or to abandon a certain infrastructure investment oppor-
tunity; cf. [28]) can only be made at strategic time points (say, once every few
years), but resulting profits/costs are subject to daily fluctuations of market prices.

• Inventory control problems with limited storage capacity and backlogged/lost
demand due to out-of-stock events, where procurement of goods is restricted by
logistical constraints/time delays.

• Structured portfolio investment problems, where rebalancing is possible only at
given time points (say, once every fewweeks due to product terms and conditions),
but contained barrier features make profits/losses depend on the full trajectory of
asset prices.

• Power plant management problems, where operating plans need to be fixed for a
certain period ahead (say, once every few days due to physical constraints avoiding
instant reaction to market conditions), but actual profits/losses depend on each tick
of the energy market.

To the best of our knowledge, the existing literature does not offer a computational
modeling framework designed specifically towards the solution of such multistage
stochastic optimization problems, where two different time scales related to one under-
lying stochastic process are present. The novel approach suggested in this article
consists of two parts, each dealing with one of the two time scales. The general idea
is to first construct a coarse lattice model for the decision scale and then use a consis-
tent simulation procedure to compute expected profits/costs on a fine time granularity
between the decisions. The proposed approach is illustrated in Fig. 1.

Looking only at the coarser decision scale, the requirements to the discrete structure
are the same as for any standard multistage stochastic optimization problem. In gen-
eral, there are three different strategies for the generation of discrete scenarios out of a
sample of observed data, as illustrated in Fig. 2. Fans are not an appropriate structure
for multistage decision problems, as they cannot reflect the evolution of information.
Scenario trees are a popular tool in the literature. However, scenario trees are prac-
tically intractable for problems involving a large number of decision stages, due to
their exponential growth over time. Therefore, one often reverts to scenario lattices in
such cases. While the literature on the construction of scenario trees is relatively rich
(see, e.g., [16,18,23,32,33]), the lattice construction literature is rather sparse. The
state-of-the art approach is based on the minimization of a distance measure between
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Fig. 1 Multiscale stochastic optimization problems: each decision stage involves multiple observation
periods, where actual costs resulting from the proceeding decision are realized. The objective function
depends on the whole trajectory, not only on the value of the process at the decision points. Left: a lattice
model for the decision stages—node values and transition probabilities are estimated. Probabilities are
indicated by the different sizes of the nodes. Right: simulation of the interpolating bridge process between
consecutive decision stages to determine realized costs
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Fig. 2 From data to discrete models for the time evolution

the targeted distribution and its discretization (“optimal quantization”), see [3,25,32].
In this article, we study a lattice generation method along the very upper path of
Fig. 2. More precisely, it is a “direct” method for the case when a time-homogeneous
Markovian diffusion model is selected in the first step. The approach is purely based
on the infinitesimal drift and diffusion coefficient functions of a diffusion model and
directly provides a scenario lattice, without requiring a simulation/quantization pro-
cedure. While the idea of such a discretization technique appeared already in an early
paper by Pflug and Swietanowski [34], it has not been analyzed (or used) yet in the
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stochastic optimization literature (cf. the review article of Löhndorf [24]).Wemake the
approach complete in this paper by proving a stability result and error estimate for the
optimal value of a generic multistage stochastic optimization problem. In particular,
we show that the approximation error regarding the optimal value in the continuous
(state space) diffusion model can be controlled when the suggested lattice generation
method is applied.

Once the decision time scale has been discretized with a scenario tree/lattice model,
a coherent approach for the finer observation time scale requires an interpolation that
respects the laws of the underlying stochastic process. This brings us to the theory of
stochastic bridges, i.e., processes pinned to a given value at the beginning and the end
of a certain time period. We suggest to use a simulation engine to generate a set of
paths of the bridge process, and then compute expected profits/costs between decisions
based on a Monte-Carlo simulation. This requires a simulatable form of the bridge
process. The stochastic processes literature seems to offer mainly abstract theory in
this respect. There are some articles on simulation methods (i.e., mainly acceptance-
rejection methods) for diffusion bridges and jump-diffusion bridges in the statistical
analysis literature since the early 2000’s, see [8,9,14,30,36]. However, these methods
are inefficient due to a possibly large rejection rate. To make our suggested modeling
approach directly applicable, we work out explicitly the bridge process dynamics for
some popular diffusion models, including geometric Brownian motion, the Vašíček
model, and the Cox–Ingersoll–Rossmodel. Based on these dynamics, efficient simula-
tion is possible by means of standard discretization schemes for stochastic differential
equations. Moreover, we present a simulation scheme for the example of geometric
Brownian motion, which operates directly on generated paths from the unconditioned
process and thus enables an even more efficient generation of bridge process trajec-
tories. If the cost function is particularly amenable (e.g., linear), a simulation might
not even be required, as expected costs can be computed analytically in some models.
We also include jump processes in our analysis, as we propose a simulation algorithm
for compound Poisson bridges in the case of Normally, Exponentially, or Gamma dis-
tributed jump sizes. In particular, we discuss the simulation of the number of jumps of
the bridge process and derive the conditional distribution of each jump-size given both
the final value of the bridge process as well as the number of jumps in the interval.

The general contribution of this article is to propose a modeling framework and
a corresponding scenario generation method, such that an efficient computational
solution of multiscale stochastic optimization problems is possible. The details of this
contribution are threefold. First, it consists of the general modeling idea, which is
based on a consistent but separate scenario generation approach for the two involved
time scales. Second, we analyze theoretically a widely unknown direct method for
the construction of scenario lattices when the underlying stochastic model is of the
diffusion type; this is purely related to the coarser decision time scale. Third, as regards
the finer observation time scale, we elaborate the details of a consistent interpolation
procedure for a number of popular modeling choices. This includes the presentation
of a novel simulation algorithm for compound Poisson bridges.

The outline of the paper is as follows. Section 2 deals with the generation of discrete
scenarios as a model for the information flow over the decision stages. In Sect. 3, we
present the details related to the suggested interpolation approach for the information
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flow through the intermediate observation periods. Section 4 illustrates our modeling
framework with a simple multiscale inventory control problem. Moreover, we discuss
the applicability and the benefits of the proposed approach. We conclude in Sect. 5.

2 Scenario lattice generation for decision stages

Computational methods for stochastic optimization problems require discrete struc-
tures. Formultistage problems, scenario trees are the standardmodels for the evolution
of uncertainty over time. Scenario trees allow for general path-dependent solutions, as
for each node there exists a unique path from the root of the tree. However, scenario
trees grow exponentially in the number of stages, a fact that easily overwhelms any
computer’s memory when it comes to practically-sized problems.1 Therefore, if the
underlying stochastic model is a Markov process, one typically discretizes it in the
form of a scenario lattice. Lattice models are special cases of graph-based models,
where a node does not necessarily have a unique predecessor. Different paths may
then connect in a certain node at some later stage. In this way, one can obtain a rich
set of paths with relatively few nodes.

The construction of scenario lattices typically works in a two-step procedure. First,
one discretizes the marginal distributions for all stages. In a second step, one decides
about allowed state transitions and determines conditional transition probabilities
between consecutive stages. The state-of-the-art method for such a lattice genera-
tion procedure is based on the stagewise minimization of the (Wasserstein) distance
between the modeled distribution—which is typically continuous—and its discretiza-
tion on the lattice. A detailed description of this approach can be found in Löhndorf
and Wozabal [25, Sect. 3.2].

We will now study an alternative lattice generation method, which is not based on
optimal quantization theory but rather relies on Markov chain approximation results.
In particular, this approach allows to construct a scenario lattice directly from the
dynamics of a Markovian diffusion process.

2.1 Markov chain approximation for diffusion processes

Birth-and-death Markov chains are discrete stochastic processes defined on the integer
grid, where each transition depends only on the current state and allows for three
possibilities: to remain in the current state, to move one unit up, or to move one
down. Many Markov chains can be approximated by a diffusion process. It works
by a transformation of the time scale and a renormalization of the state variable.
The idea is, e.g., explained in the book of Karlin and Taylor [20, Ch. 15]. Pflug and
Swietanowski [34] have looked at the problem from the converse perspective. They
elaborate, without providing error estimates, that any diffusion process possessing a

1 For the simplest form of a binary tree (which typically will be a rather poor uncertainty model), hourly
decisions for a time horizon of one day will correspond to about 17 million nodes, daily decisions for one
month will give about 1 billion of nodes, and weekly decisions for one year will result in a magnitude of
1015 nodes.
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stationary distribution can be approximated by a birth-and-death Markov chain in the
following way.

Consider a one-dimensional recurrent Markov process Xt , as defined by

{
d Xt = μ(Xt ) dt + σ(Xt ) dWt

X0 = x0,
(1)

where W denotes a standard Brownian motion and the initial value x0 is a given
constant. Throughout the paper, the coefficient functions μ(·) and σ(·) are (as usual)
assumed to be square-integrable functions satisfying the following growth conditions:

• |μ(x) − μ(y)| ≤ L · |x − y|, |σ(x) − σ(y)| ≤ L · |x − y|,
• μ2(x) ≤ L2 · (1 + x2), σ 2(x) ≤ L2 · (1 + x2),

for some L > 0. Notice that the Lipschitz-continuity implies that one may specify a
constant Lμ such that μ(x) ≤ Lμ + L · |x |.
Algorithm 2.1 (Markov chain approximation method for diffusion processes) For a
diffusion process X as given by (1), define its N -th Markov chain approximation as
the process constructed along the following scheme.

1. Choose a strictly monotonic, three times differentiable function H(x) with
H ′′(0) ≤ M < ∞, for some constant M , as well as functions g(x) and τ(x)

with |τ(x)| ≤ 1 for all x , in such a way that the drift and diffusion coefficient
functions in (1) are matched:

μ(H(x)) = H ′(x)g(H(x)) + 1

2
H ′′(x)τ 2(H(x))

σ (H(x)) = H ′(x)τ (H(x)).

2. Determine the initial state i0 such that H( i0
2N ) = x0.

3. Define the transition probabilities

pu
i,N :=

[
1

2

(
τ 2
(

H

(
i

2N

))
+ 1

2N
g

(
H

(
i

2N

)))]1
0
,

pd
i,N :=

[
1

2

(
τ 2
(

H

(
i

2N

))
− 1

2N
g

(
H

(
i

2N

)))]1
0
,

pr
i,N := 1 − pu

i,N − pd
i,N ,

where [x]10 := min{max{x, 0}, 1}, for jumping up, down, and remaining in its
state, respectively.

4. Define the piecewise constant (continuous time) process X̃ N , where X̃ N
t :=

X̃ N
�22N t� lives in the states H

(
i
2N

)
; the floor function being denoted by �·�.

While the idea of Algorithm 2.1 was originally presented in the early paper [34],
it has not been analyzed yet in the context of stochastic optimization. We now make
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the approach complete by deriving an error estimate for the optimal value of a generic
multistage stochastic optimization problem, when the underlying diffusion model is
approximated by the method of Algorithm 2.1. We start with some preliminary results
required for the proof.

Lemma 2.1 Let X̃ N
t be constructed according to Algorithm 2.1 and starting in x0 at

time t0. Then, for t1 ≥ t0, the following bound for the second moment holds:

E

[(
X̃ N

t1

)2] ≤ x20 · eK1·(t1−t0) + o
(

K2 · (t1 − t0) · eK1·(t1−t0)
)

,

where K1, K2 ∈ R depend only on the Lipschitz(-like) constants controlling the growth
of the coefficient functions in (1).

Proof The conditional expected increment of the squared process is given by

E

[(
X̃ N

n+1

)2 −
(

X̃ N
n

)2∣∣∣∣(X̃ N
n

)2 = H2
(

i

2N

)]

=
[

H2
(

i + 1

2N

)
− H2

(
i

2N

)]
· p(N )

i +
[

H2
(

i

2N

)
− H2

(
i − 1

2N

)]
· q(N )

i

=
[

2

2N
H

(
i

2N

)
H ′
(

i

2N

)
+ 1

22N
[H ′]2

(
i

2N

)
+ 1

22N
H

(
i

2N

)
H ′′
(

i

2N

)]
· pN

i

+
[
− 2

2N
H

(
i

2N

)
H ′
(

i

2N

)
+ 1

22N
[H ′]2

(
i

2N

)
+ 1

22N
H

(
i

2N

)
H ′′
(

i

2N

)]
· q N

i

+ o

(
1

22N

)

= 1

22N

[
H

(
i

2N

)(
2H ′

(
i

2N

)
g

(
H

(
i

2N

))
+ H ′′

(
i

2N

)
τ 2
(

H

(
i

2N

)))

+[H ′]2
(

i

2N

)
τ 2
(

H

(
i

2N

))]
+ o

(
1

22N

)

= 1

22N

[
2H

(
i

2N

)
μ

(
H

(
i

2N

))
+ σ 2

(
H

(
i

2N

))]
+ o

(
1

22N

)

≤ 1

22N

[
2H

(
i

2N

)
·
(

Lμ + L · H

(
i

2N

))
+ L2 ·

(
1 + H2

(
i

2N

))]

+ o

(
1

22N

)
.

Using the estimate H(x) ≤ 1 + H2(x), we then obtain

E

[(
X̃ N

n+1

)2 −
(

X̃ N
n

)2∣∣∣∣(X̃ N
n

)2 = H2
(

i

2N

)]
≤ 1

22N
K1H2

(
i

2N

)
+ o

(
K2

22N

)
,
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where K1 := 2Lμ + 2L + L2 and K2 := L2 + 2Lμ. Then, by the tower property of
the expected value, we get

E

[(
X̃ N

n+1

)2] ≤ E

[(
X̃ N

n

)2] ·
(
1 + K1

22N

)
+ o

(
K2

22N

)
.

Applying this iteration scheme, we finally obtain (using the shorthand notation Ñ :=
�22N (t1 − t0)�) the targeted estimate

E

[(
X̃ N

t1

)2] ≤ E

[(
X̃ N

t0

)2] ·
(
1 + K1

22N

)Ñ

+ o

(
K2

22N

) Ñ−1∑
i=0

(
1 + K1

22N

)i

≤ x20 · eK1·(t1−t0) + o
(

K2(t1 − t0)e
K ·(t1−t0)

)
.

	

Bounds for diffusion processes can be found in the literature. We will use the

following result.

Proposition 2.1 For any even integer p ≥ 2, the moments of the solution of (1) satisfy
the following estimate:

E
[
X p

t
] ≤ (1 + x p

0

)
ep(p+1)L2t .

Proof See the book of Platen and Heath [35, Lemma 7.8.1]. 	

We now establish that weak convergence implies convergence in Wasserstein dis-

tance, if the second moments of all involved probability measures are bounded.

Lemma 2.2 Consider a probability measure P and a sequence of probability measures
(Pn) on the compact interval [−K , K ], for some K > 0. Then, weak convergence
implies convergence in Wasserstein distance:

Pn
w−→ P �⇒ W(Pn, P) −→ 0.

Proof By Billingsley and Topsøe [7], the weak convergence Pn
w→ P implies the

following equivalence: supg∈G | ∫ gd Pn − ∫ gd P| → 0 holds if and only if both

sup
g∈G

sup
x,y

|g(x) − g(y)| < ∞ (2)

and

lim
δ→0

sup
g∈G

P

{
x : sup

|x−y|≤δ

|g(x) − g(y)| > ε

}
→ 0 ∀ε > 0 (3)
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hold. Notice that G = {g ∈ Lip(1) : g(0) = 0} on [−K , K ] fulfills (2) and (3). As Pn

and P have bounded support, it holds W(Pn, P) = supg∈Lip(1)
∫

g d Pn − ∫ g d P .
Thus, it follows W(Pn, P) −→ 0. 	

Theorem 2.1 Consider a continuous probability measure P and a sequence of prob-
ability measures (Pn). Suppose that the conditions∫

x2 d P ≤ M (4)

and ∫
x2 d Pn ≤ M ∀n (5)

hold, for some constant M < ∞. Then, weak convergence implies convergence in
Wasserstein distance:

Pn
w−→ P �⇒ W(Pn, P) −→ 0.

Proof Denote the cdf of Pn by Fn and that of P by F . Notice that, by a version of
Čebyšëv’s inequality, for K > 0 it holds that

∫ −K

−∞
Fn(x) dx =

∫ −K

−∞
Pn(−∞, x] dx ≤

∫ −K

−∞
M

x2
dx = M

K
, (6)

and similarly

−K∫
−∞

F(x) dx ≤ M

K
,

∞∫
K

(1 − Fn(x)) dx ≤ M

K
,

∞∫
K

(1 − F(x)) dx ≤ M

K
. (7)

Now choose K large enough such that M
K ≤ ε holds. Then,

∫ −K

−∞
|Fn(x) − F(x)| dx ≤

∫ −K

−∞
Fn(x) dx +

∫ −K

−∞
F(x) dx ≤ 2ε,

and∫ ∞

K
|Fn(x) − F(x)| dx ≤

∫ ∞

K
(1 − Fn(x)) dx +

∫ ∞

K
(1 − F(x)) dx ≤ 2ε.

Define the probability measure P K
n as Pn conditioned on the interval [−K , K ],

where we know Pn([−K , K ]) ≥ 1 − 2ε by (6) and (7). Define P K analogously.
By Lemma 2.2, it holds ∫

|F K
n (x) − F K (x)| dx −→ 0,
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as n → ∞. Let cn := Fn(K ) − Fn(−K ) and c := F(K ) − F(−K ). Since F is
continuous, cn → c. Using

F K
n (x) = Fn(x) − Fn(−K )

cn
and F K (x) = F(x) − F(−K )

c
,

we get

∫ K

−K
|F K

n (x) − F K (x)| dx

≤
∫ K

−K
|cn F K

n (x) − cF K (x)| dx + 2K |Fn(−K ) − F(−K )|

≤ c
∫ K

−K
|F K

n (x) − F K (x)| dx + 2K |cn − c| + 2K |Fn(−K ) − F(−K )|.

Now, for any ε > 0, we can make n such large that

2K |cn − c|≤ε, 2K |Fn(−K )−F(−K )|≤ε, c
∫ K

−K
|F K

n (x)−F K (x)| dx ≤ε.

Then, in total, we get
∫ K
−K |F K

n (x) − F K (x)| dx ≤ 3ε and finally

W(Pn, P) =
∫

|Fn(x) − F(x)| dx ≤ 7ε.

	

The subsequent result bounds the difference in the value of a diffusion process at a

certain future time, if it starts from different values at time zero.

Proposition 2.2 Define the process X z : [0, T ] × � → R as the process X defined in
(1) but starting in z ∈ {x, y}. Assume that for all t ∈ [0, T ] the condition

∫ t

0
|μ(X z

s )| + |σ(X z
s )|2 +

∣∣X x
s − X y

s
∣∣ ∣∣μ(X x

s ) − μ(X y
s )
∣∣+ ∣∣σ(X x

s ) − σ(X y
s )
∣∣2∣∣X x

s − X y
s
∣∣2 ds

< ∞ (8)

is satisfied a.e. Then, the following stability of the diffusion process with respect to its
starting value holds:

∥∥X x
t − X y

t

∥∥
L1 ≤ |x − y| ·

∥∥∥∥∥∥∥e

∫ t
0
(X x

s −X
y
s )(μ(X x

s )−μ(X
y
s ))+ p−1

2 |σ(X x
s )−σ(X

y
s )|2

|X x
s −X

y
s |2 ds

∥∥∥∥∥∥∥
Lq

(9)

for any p and q such that 1
p + 1

q = 1.
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Proof See Cox et al. [12, Cor. 2.19] 	

With the above auxiliary results in hands, we now define a generic multistage

stochastic optimization problem. The approximation quality of its optimal value, when
the uncertainty process is modeled by a diffusion but approximated on the basis of
Algorithm 2.1, is the object that we eventually want to analyze

Definition 2.1 (GenMSP)Define a genericmultistage stochastic optimization problem
(GenMSP) to be of the following form:

∥∥∥∥∥∥∥∥∥∥∥

inf
x

E
Q

[
T∑

t=0

Ct (ξt , xt )

]

s.t. xt ∈ Xt ∀t = 0, . . . , T

x � σ(ξ) .

(10a)

(10b)

The feasible setsXt are assumed to be convex. For the scenario process ξ , we assume
ξ ∈ L1(R,Q). The decision process x is required to be adapted to the filtration σ(ξ)

generated by the scenario process, as is denoted by x �σ(ξ). Moreover, assume that the
cost function Ct (·, ·) is convex in the decisions (for any fixed scenario), and Lipschitz
continuous (with constant L) w.r.t. the scenario process (for any fixed decision policy).
Denote the optimal value of (10), as a function of the underlying probability model
Q, by v∗(Q).

To interpret problem (10), it is the objective to select a nonanticipative (constraint
(10b)) decision policy x , which fulfills certain additional constraints (10a), in such a
way that cumulative expected costs are minimized. One may think, for instance, in
terms of portfolio losses Ct resulting from the stochastic evolution of the financial
market ξt as well as the selected portfolio composition xt . Short-selling restrictions
would then be an example for “additional constraints” on the decision process.

The concept of theWasserstein distance2 betweenprobabilitymeasureswill be a key
ingredient for our analysis of Algorithm 2.1 in terms of its approximation quality with
respect to the optimal solution of GenMSP. In particular, we will rely on the following
general stability result for the optimal solution of GenMSP, when the underlying
probability model varies.

Proposition 2.3 Consider a GenMSP as defined in Definition 2.1 above. Let the dis-
tance between two paths ξ

(1)
0:t and ξ

(2)
0:t up to time t ≤ T be defined by ‖ξ (1)

0:t − ξ
(2)
0:t ‖ :=∑t

s=0 ‖ξ (1)
s − ξ

(2)
s ‖1. Let Q ∈ {P̄, P̂} for two (d-dimensional) Markovian multi-

period distributions P̄ and P̂, both defined on some � ⊆ R
d×T . Assume that, for

all t = 0, . . . , T − 1, there exist constants κt+1 and εt+1 such that the Wasserstein
distancesW of the corresponding single-stage conditional transition probability mea-
sures P̄t+1 (·|ξt ) and P̂t+1 (·|ξt ) satisfy the conditions

2 The definition of the Wasserstein distance can be found in the “Appendix”.

123



M. Glanzer, G. Ch. Pflug

W
(

P̄t+1

(
·
∣∣∣ξ (1)

t

)
, P̄t+1

(
·
∣∣∣ξ (2)

t

))
≤ κt+1 ·

∥∥∥ξ (1)
0:t − ξ

(2)
0:t
∥∥∥ , (11)

W
(

P̄t+1

(
·
∣∣∣ξ (1)

t

)
, P̂t+1

(
·
∣∣∣ξ (1)

t

))
≤ εt+1, (12)

uniformly for all paths ξ
(1)
0:t , ξ

(2)
0:t . Then, the following upper bound for the difference

between the optimal values v∗(P̄) and v∗(P̂) holds:

∣∣∣v∗ (
P̄
)− v∗ (

P̂

)∣∣∣ ≤ L ·
T∑

t=0

εt

T∏
s=t+1

(1 + κs). (13)

Proof Follows immediately from [31, Thm. 6.1] and [32, Lem. 4.27]. 	

We are now ready to formulate the main result of this section.

Theorem 2.2 Consider a GenMSP according to Definition 2.1. Let the uncertainty
process ξ be modeled by a diffusion according to (1). Assume that the coefficient func-
tions satisfy the regularity condition (8). Observe ξ in all decision stages t = 0, . . . , T
of GenMSP and denote the resulting discrete-time continuous state-space model by
P. Let ξ be discretized according to the Markov chain approximation method given in
Algorithm 2.1 and denote the discrete model resulting from the N-th approximation by
P̃

N . Then, the optimal value v∗(P̃N ) of the approximate problem tends to the optimal
value v∗(P) of the original problem, as N → ∞. For fixed N, an error estimate of
the form (13) holds.

Proof Wewant to show that P and P̃N satisfy the conditions (11) and (12), with εt ↓ 0
as N increases. Then, the statement follows readily from Proposition 2.3.

The diffusion model satisfies condition (11) by Proposition 2.2. Moreover, since
for N large enough it holds

E

[
X̃ (N )

n+1 − X̃ (N )
n

∣∣∣∣H
(

i

2N

)]

=
[

H

(
i + 1

2N

)
− H

(
i

2N

)]
· p(N )

i +
[

H

(
i

2N

)
− H

(
i − 1

2N

)]
· q(N )

i

= 1

22N
H ′
(

i

2N

)
g

(
H

(
i

2N

))
+ 1

22N+1 H ′′
(

i

2N

)
τ 2
(

H

(
i

2N

))
+ o

(
1

22N

)

= 1

22N

[
μ

(
H

(
i

2N

))]
+ o

(
1

22N

)
,

as well as

E

[(
X̃ (N )

n+1 − X̃ (N )
n

)2∣∣∣∣H
(

i

2N

)]

=
[

H

(
i + 1

2N

)
− H

(
i

2N

)]2
· p(N )

i
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+
[

H

(
i

2N

)
− H

(
i − 1

2N

)]2
· q(N )

i

= 1

22N

[
σ 2
(

H

(
i

2N

))]
+ o

(
1

22N

)
,

and

E

[(
X̃ (N )

n+1 − X̃ (N )
n

)4∣∣∣∣H
(

i

2N

)]
= o

(
1

22N

)
,

it follows the convergence of the finite dimensional distributions

(
X̃ N

�22N t1�, X̃ N
�22N t2�, . . . , X̃ N

�22N T �
) D−→

(
Xt1 , Xt2 , . . . , XT

)
,

see [20, pg.169]. Since we have constructed the lattice in such a way, that each atom
of the distribution of X̃ N

t is also an atom of the distribution of X̃ M
t , for all M ≥ N , it

follows also the weak convergence of all conditional probabilities. By Theorem 2.1,
the latter implies convergence in Wasserstein distance, as the conditions (4) and (5)
hold by Proposition 2.1 and Lemma 2.1, respectively.

Thus, condition (12) is shown to be satisfied. 	

Remark The rescaling of time was necessary in the construction of Algorithm 2.1 in
order for Theorem 2.2 to hold. However, notice that the method in essence specifies a
ternary transition rule. While blindly using the directly resulting ternary lattice would
not rely on any supporting theory, it might still be interesting to test its performance,
especially for problems with multiple observation periods but relatively few decisions.

3 Interpolating bridge processes

In Sect. 2, we discussed the generation of discrete scenario trees/lattices out of continu-
ous parametric models, as it is typically required for the computational solution of any
multistage stochastic optimization problem. For multiscale problems, a discretization
of the information flow through all decision stages is not enough, as the stochastic-
ity of the costs between the decision stages is an important factor. In such cases, we
suggest to draw on the theory of stochastic bridge processes in order to simulate the
behavior of the uncertainty process (with arbitrary granularity of the time increment)
between consecutive decisions. In particular, this approach ensures the consistency of
the finer multiperiod observation scale and the coarser decision scale by simulating
trajectories for the multiperiod costs that connect two decision nodes with each other
in a tree/lattice model.

In this section, we make our proposed modeling approach directly applicable by
working out the details for several popular examples of stochastic models. In par-
ticular, we present a new simulation algorithm for compound Poisson bridges and
derive the dynamics for a few diffusion bridge examples in explicit form. From the
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latter dynamics, a simulation engine can easily be implemented on the basis of any
discretization scheme for stochastic differential equations.3

3.1 Diffusion processes

We start with a generic multi-dimensional model with drift andmultiple factors. After-
wards, we derive the bridge process dynamics explicitly for several special cases that
are frequently used in the literature. The general theory for diffusion bridges is well-
established (see [4,13,37]), but the literature is quite abstract. In particular, we are
not aware of any standard textbook that offers explicit examples apart from the basic
Brownian bridge. Our relatively simple proof of the subsequent theorem is a general-
ization and elaboration of the derivations contained in an unpublished manuscript by
Lyons [26], that we found online.

Theorem 3.1 Let X be a d-dimensional n-factor diffusion model, i.e.,

d Xt = μ(Xt ) dt + 
(Xt ) dW (t), (14)

where μ(·) : Rn → R, σ (·) : Rn → R
n×m, and W is an m-dimensional Brownian

motion. Then, for t ∈ [t1, t2], the dynamics of X conditioned on both, the starting
value x1 at time t1 and the final value x2 at time t2, are given by

d X̂t =
(
μ(X̂t ) + (

�(X̂t )

)∇x log ft2(x2|X̂t , t)
)

dt + 
(X̂t ) dW (t),

where ft2 denotes the transition density of X at time t2.

Proof For any t ∈ [t1, t2], denote the density function of the random variable X̂t by
f̂t (x |Xt1 = x1, Xt2 = x2). Due to Bayes’ Theorem and the fact that solutions of SDEs
are Markov processes, we may rewrite this function as

f̂t (x |Xt1 = x1, Xt2 = x2) = ft2(x2|Xt = x) · ft (x |Xt1 = x1)

ft2(x2|Xt1 = x1)
. (15)

Then, for any Lipschitz-continuous function h : Rd → R, it holds that

E

[
h(Xt )

∣∣∣Xt1 = x1, Xt2 = x2
]

=
∫
Rd

h(x) · f̂t (x |Xt1 = x1, Xt2 = x2) dx

= 1

ft2(x2|Xt1 = x1)
E

[∫ t

t1

{(
h(Xs)

∂

∂s
ft2(X2|Xs, s)

)

+
d∑

i=1

(
∂

∂xi

[
h(Xs) · ft2(x2|Xs, s)

]) · μi (Xs)

3 See, e.g., the book of Kloeden and Platen [22] for a detailed treatment.
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+1

2

d∑
i, j=1

(
∂2

∂xi∂x j

[
h(Xs) · ft2(x2|Xs, s)

]) · [

�(Xt )
]

i, j

}
ds

∣∣∣∣Xt1 = x1

]

= 1

ft2(x2|Xt1 = x1)
E

[∫ t

t1

{ d∑
i=1

μi (Xs)

(
ft2(x2|Xs, s)

∂

∂xi
h(Xs)

)

+1

2

d∑
i, j=1

(
ft2(x2|Xs, s) · ∂2

∂xi∂x j
h(Xs) + 2

∂

∂xi
h(Xs)

∂

∂x j
ft2(x2|Xs, s)

)

×[

�(Xt )
]

i, j

}
ds

∣∣∣∣Xt1 = x1

]
,

by the multi-dimensional Itô lemma and the Kolmogorov backward equation, which
ensures

∂

∂s
ft2(x2|Xs, s) +

d∑
i=0

μi (Xs)
∂

∂xi
ft2(x2|Xs, s) + 1

2

d∑
i, j=1

∂2

∂xi∂x j
ft2(x2|Xs, s) = 0.

Differentiation with respect to the time parameter gives

∂

∂t
E

[
h(Xt )

∣∣∣Xt1 = x1, Xt2 = x2
]

=
∫
Rd

h(x)
∂

∂t
f̂t (x |Xt1 , t1, Xt2 , t2) dx

=
∫
Rd

{ d∑
i=1

μi (x)
∂

∂xi
h(x) + 1

2

d∑
i, j=1

[


�(x)

]
i, j

∂2

∂xi∂x j
h(x)

+
d∑

i, j=1

[


�(x)

]
i, j

∂

∂xi
h(x)

∂

∂x j
log ft2(x2|x, t)

}

· f̂t (x |Xt1 , t1, Xt2 , t2) dx . (16)

The function h is Lipschitz by assumption and thus its gradient is bounded. It can be
seen from (15) that f̂t (x |Xt1 , t1, Xt2 , t2) → 0, ∂

∂xi f̂t (x |Xt1 , t1, Xt2 , t2) → 0, as any

xi → ±∞. Therefore, integrating (16) twice by parts gives

∫
Rd

h(x)
∂

∂t
f̂t (x |Xt1 , t1, Xt2 , t2) dx

=
∫
Rd

{
h(x)

(
−

d∑
i=1

∂

∂xi
μi (x) f̂t (x |Xt1 , t1, Xt2 , t2)

−
d∑

i, j=1

∂

∂xi

[


�(x)

]
i, j f̂t (x |Xt1 , t1, Xt2 , t2)

∂

∂x j
log ft2(x2|x, t)

⎞
⎠
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−1

2

d∑
i, j=1

∂

∂xi
h(x)

∂

∂x j

[


�(x)

]
i, j f̂t (x |Xt1 , t1, Xt2 , t2)

}
dx

=
∫
Rd

h(x)

(
−

d∑
i=1

∂

∂xi
f̂t (x |Xt1 , t1, Xt2 , t2)

(
μi (x)

+
d∑

j=1

[


�(x)

]
i, j

∂

∂x j
log ft2(x2|x, t)

⎞
⎠

+1

2

d∑
i, j=1

∂2

∂xi∂x j

([


�(x)

]
i, j f̂t (x |Xt1 , t1, Xt2 , t2)

)⎞⎠ dx,

from which we can deduce

∂

∂t
f̂t (x |Xt1 , t1, Xt2 , t2) = −

d∑
i=1

∂

∂xi
f̂t (x |Xt1 , t1, Xt2 , t2) · νi (x, t)

+ 1

2

d∑
i, j=1

∂2

∂xi∂x j
f̂t (x |Xt1 , t1, Xt2 , t2) · [

�(x)

]
i, j ,

(17)

with

ν : Rd × R → R
d

(x, t) �→ μ(x) + [

�(x)
]∇x log ft2(x2|x, t).

Equation (17) corresponds to the Fokker-Planck equation of the diffusion process

d Xt = ν(Xt , t) dt + 
(Xt ) dWt .

	

We subsequently focus on the one-dimensional case. Let Xt2 = x2 be fixed for all

examples below.

General state-dependent parameters For a general univariate diffusion process X
described by the SDE

d Xt = μ(Xt ) dt + σ(Xt ) dWt ,

the dynamics of the associated bridge process are given by

d X̂t =
(

μ(X̂t ) + σ 2(X̂t )
∂

∂x
log ft2(X2|X̂t , t)

)
dt + σ(X̂t ) dWt ,

where ft denotes the transition density of X at time t .
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Vašíček model/Ornstein–Uhlenbeck process The model presented in Vašíček [45] is
considered as the first stochastic model for the term structure of interest rates. It is a
one-factor model for the short rate, featuring mean reversion. In Vašíček’s model, the
instantaneous rate r is described by a Gaussian Ornstein–Uhlenbeck process, i.e., as
the solution of the SDE

drt = κ(θ − rt ) dt + σ dWt , (18)

where the parameter θ can be interpreted as the long-term mean, κ determines the
speed of mean-reversion, and W is a standard Brownian motion; the volatility being
specified by the (constant) parameter σ . For s ≤ t , the transition density of r is that
of a Normal distribution, i.e.

ft (x |rs, s) = 1√
2πv(t − s)

exp

(
−
(
x − θ + (θ − rs)e−κ(t−s)

)2
2v(t − s)

)
,

where v(�t) := σ 2
(
1−e−2κ�t

)
2κ . Hence, the derivative of the logarithmized transition

density is a closed form expression and the bridge process r̂ associated with r , pinned
to the value rt2 = x2, is described by the dynamics

dr̂t =
(

κ(θ − r̂t ) + 2κ
(
x2 − θ + e−κ(t2−t)(θ − r̂t )

)
1 − e−2κ(t2−t)

)
dt + σ dWt . (19)

Cox–Ingersoll–Ross (CIR) model/square-root diffusion The second classical interest
rate term structure model was introduced in Cox et al. [11]. It is typically referred to
as CIR model. The square root diffusion process

drt = κ(θ − rt ) dt + σ
√

rt dWt

is used as an improvement of the Vašíček model. The transition density f (·|·, ·) of the
square-root diffusion process is a cumbersome object but yet an analytic expression.
Hence, the bridge process associated with the CIR model is described by tractable
dynamics. In particular, for 0 < s < t < T , we get

η(t, x; xs, s) := ∂

∂x
log ft (x |xs, s)

=
(

1

2κ
(
eκ(t−s) − 1

)2
xσ 2
√

xxseκ(s+t) Iq [ν(x)]

)

×
{
2κ2xxs

(
eκ(2t−s) − eκt

) (
Iq−1[ν(x)] + Iq+1[ν(x)]

)
−
(
κ(eκ(t−s) − 1)

√
xxseκ(t+s) Iq [ν(x)]

×(2θκ − σ 2 + eκ(t−s)(4κx − 2θκ + σ 2)
))}

,
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where

ν(x) := 4κ
√

xxseκ(t+s)

σ 2(eκt − eκs)
, q := 2κθ

σ 2 − 1,

and Iα(·) denotes the modified Bessel function of the first kind. Then, the bridge
process dynamics for the CIR model are given by

dr̂t =
(
κ(θ − r̂t ) + r̂t σ 2 η(t2, x2; r̂t , t)

)
dt + σ

√
r̂t dWt .

Geometric Brownian motion (GBM) For a GBM X , described by

d Xt = Xt
(
μ dt + σ dWt

)
, (20)

the transition density is available as an analytic expression. Thus, the dynamics of the
associated bridge process take the explicit form

d X̂t = X̂t

(
log(x2) − log(X̂t ) − (μ − 1

2σ
2
)
(t2 − t)

t2 − t
dt + σ dWt

)
.

Brownian motion with drift In the simplest case of a Brownian motion with constant
drift and volatility, i.e.,

d Xt = μ dt + σ dWt ,

the associated bridge process is the well-known Brownian bridge. Its dynamics are
given by

d X̂t = x2 − X̂t

t2 − t
dt + σ dWt .

3.1.1 Pathwise construction of the bridge process for GBM

The subsequent result shows how to translate a set of Brownianmotion trajectories into
a set of geometric Brownian bridge trajectories. Thus, simulation of the GBM bridge
is straightforward and requires only the generation of Gaussian random variables.

Proposition 3.1 Consider a GBM X, as defined in (20). Assume that it starts in Xt1 =
x1 and it shall be pinned to the value x2 at time t2. Then, for t1 ≤ t ≤ t2, the bridge
process X̂ is given by

X̂t = x1 · exp
{
σ

(
Wt − Wt1 − t − t1

t2 − t1
(Wt2 − Wt1)

)
+ t − t1

t2 − t1
log

(
x2
x1

)}
.

(21)
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Fig. 3 Sample paths of GBM bridges (μ = 0.01, σ = 0.2). Left: 100 steps. Right: 20 steps

Proof Obviously, X̂t1 = x1 as well as X̂t2 = x2 do hold. Moreover, let us check
that the structure of the original process is indeed preserved by this bridge process.
Denote the exponent in (21) by Yt and consider x2 = eYt2 as a lognormally distributed
random variable, where Var(Yt2) = σ 2(t2 − t1). Define 
t1(t) := σ 2(t − t1). Then,
for t1 ≤ s1 ≤ s2 ≤ t2, it holds that

Cov(Ys1 , Ys2) = 
t1(s1) − 
t1(s1)


t1(t2)

t1(s2) − 
t1(s2)


t1(t2)

t1(s1)

+
t1(s1) · 
t1(s2)

(
t1(t2))
2 
t1(t2) + 
t1(s2) · 
t1(s1)

(
t1(t2))
2 
t1(t2)

= σ 2(s1 − t1) ,

which confirms that Y is again a Brownian motion and thus X̂ is a GBM. 	

Figure 3 shows a collection of sample paths simulated via (21).

3.2 Jump processes

Stochastic processes that do not fluctuate in a continuous manner but rather by sudden
jumps, are popular models for a variety of applications. The majority of typical jump
models belongs to the class of Lévy processes. Lévy processes are stochastic processes
characterized by independent and stationary increments as well as stochastically con-
tinuous sample paths.4 In addition to their prominence in the physical sciences,5 there
is a particularly vast literature on Lévy processes as a model for the random evolution
of variables present in the financial markets.6 As we are dealing with bridge processes
here, let us mention the fact that the Markov property of Lévy bridges is inherited
from the Markov property of Lévy processes [19, Proposition 2.3.1].

4 See, e.g., the books of Applebaum [1], Bertoin [6], or Sato [38] for Lévy processes theory.
5 See, e.g., the review article [47] on the subject and other articles contained in [5].
6 See, e.g., the books of Cont and Tankov [10], Schoutens [39], Schoutens and Cariboni [40].
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3.2.1 Compound Poisson bridges

The most fundamental and prominent jump process is the Poisson process, counting
the number of occurrences of some random event. For the modeling of a situation
where not only the number of those (quantifiable) events but also their size matters,
the compound Poisson process is a natural extension. It is extensively used, e.g., for
actuarial applications as insurance companies are naturally not only interested in the
number of claims happening to their customers but even more importantly in the claim
sizes.7

We present a method to simulate sample paths from a compound Poisson bridge
process, i.e. a compound Poisson process with given initial and final value (and time).
For jump-size distribution families that are closed under convolution or where convo-
lution results in another tractable parametric family, some ingredients to our simulation
scheme can be derived analytically and thus efficient simulation is possible. We carry
out this exercise for the most popular representatives of jump-size distributions, i.e.,
the Normal distribution, the Exponential distribution, and the Gamma distribution. For
distributions that do not allow for a tractable representation of the required convolution
objects, one will have to revert to statistical procedures such as acceptance-rejection
methods.

Consider a compoundPoisson process X with intensity γ and jump-size distribution
given by the density f . To avoid notational conflicts, we reserve the lower index in Xt

to describe the process X at time t . In contrast, we use an upper index to enumerate
individual jumps (as random variables). The realization of an ‘i-th’ jump Xi is denoted
by xi . Consider now the process Xt in the interval [t1, t2], wherewe are given the values
Xt1 and Xt2 . Define c := Xt2 − Xt1 . We suggest the simulation of the bridge process
to be performed in the following three steps.

I: Simulation of the number of jumps As a first step, simulate from the conditional
Poisson process N given the value of the sum

∑N
i=1 Xi = c. This yields a realiza-

tion of the number of jumps occurring over the considered time interval [t1, t2]. The
probability function of this object is given by

P

[
N = n

∣∣∣∣∑N

i=1
Xi = c

]
=

f∑N
i=0 Xi |N=n(c) · P[N = n]

f∑N
i=1 Xi (c)

= f ∗n(c) · (λ(t2−t1))n

n!∑∞
m=0 f ∗m(c) · (λ(t2−t1))m

m!
. (22)

For simulation purposes we cut the support of this conditional distribution of N to an
interval [0, N̄ ] ⊆ N0, in such a way that P[N > N̄ |∑N

i=1 Xi = c] < ε, for some
small value of ε.

7 The book of Albrecher and Asmussen [2] includes a comprehensive treatment of the compound Poisson
model in risk theory, including not only an exhaustive list of its properties but also a discussion of its wide
range of applications. In particular, the problem studied in [2, Chapter V, pg. 146] is of a related flavor to
the problem of this section: They characterize a sample path in the compound Poisson risk model given that
it leads to ruin.
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Consider the Normal distribution as a jump size distribution, i.e. Xi iid∼ N (μ, σ 2),
and let c > 0. The convolution of j iid N (μ, σ 2) distributions is an N ( jμ, jσ 2)

distribution. Thus,

P

[
N > N̄

∣∣∣∣∑N

i=1
Xi = c

]
=

∞∑
n=N̄+1

f ∗n(c) ·
(

(λ(t2−t1))n

n! e−λ(t2−t1)
)

∑∞
m=0 f ∗m(c) · P[N = m]

≤
∞∑

n=N̄+1

f ∗n(c) =
∞∑

n=N̄

1√
2πσ 2n

exp

(
− (c − nμ)2

2nσ 2

)

≤
∞∑

n=N̄+1

c1 · exp(−c2n) = c1 · e−c2(N̄+1)

1 − e−c2
,

where c1 := 1√
2πσ 2

exp(μc
σ 2 ), c2 := μ2

2σ 2 . To ensure this upper bound to be smaller
than ε, we therefore require ε � c1 and

N̄ > − log
(
ε(1 − e−c2)/c1

)
c2

− 1.

The convolution of j independent Exponential distributions with parameter λ gives
an Erlang distribution with parameters λ and j . The convolution of j Gamma(α, θ)

distributions gives a Gamma( jα, θ) distribution. The Erlang distribution is a special
case of the Gamma distribution, i.e. for integer-valued shape parameters. Hence, a
criterion for N̄ associated with Gamma distributed jumps also gives a criterion associ-
atedwith Exponentially distributed jumps. From requiring, for theGamma distribution
case,

P

[
N > N̄

∣∣∣∣∑N

i=1
Xi = c

]
≤

∞∑
n=N̄+1

f ∗n(c) = 1 − e−θc

c

N̄∑
n=1

(θc)nα

�(nα)
≤ ε,

we get the condition

N̄∑
n=1

(θc)nα

�(nα)
≥ c(1 − ε)eθc,

from which one obtains N̄ by running an elementary trial and error program.
Having determined the value N̄ , one can then easily compute an approximation of

P[N = n|∑N
i=1 Xi = c], for all n = 1, . . . , N̄ , by cutting the sum in the denom-

inator of (22) after the index N̄ . The cumulative distribution function is then easily
obtained by summation of the single probabilities and inverse transform sampling
gives a straightforward simulation scheme by applying its inverse to random draws
from the uniform distribution on [0, 1].
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II: Simulation of the jumping times Suppose that some value n for the number of
jumps in the interval [t1, t2] has been simulated by the method outlined above. Then,
the precise jumping times are uniformly distributed over this interval. More precisely,
the joint distribution of the jumping times (τ1, . . . , τn) equals the law of the order
statistics of n independent uniform random variables on [t1, t2] (cf., e.g., [10, Prop.
2.9]). Thus, the jumping times can easily be generated by another n calls of a standard
(pseudo) random number generator.

III: Simulation of the jump sizes As a last step, let us study the conditional distribution
of the summands Xi , i = 1, . . . , n, given the value of the sum

∑n
i=1 Xi = c, where

n, the number of jumps, is fixed. The corresponding densities are given by

fX1|X1+...+Xn (x |c) = f (x) f ∗(n−1)(c − x)

f ∗n(c)

fX2|X2+...+Xn (x |c − x1) = f (x) f ∗(n−2)(c − x1 − x)

f ∗(n−1)(c − x1)
...

fXn−1|Xn−1+Xn

(
x

∣∣∣∣c −
∑n−2

j=1
x j

)
= f (x) f (c −∑n−2

j=1 x j − x)

f ∗2(c −∑n−2
j=1 x j )

fXn |Xn

(
x

∣∣∣∣∑n−1

j=1
x j

)
= f (x) f ∗0(c −∑n−1

j=1 x j − x)

f (c −∑n−1
j=1 x j )

= δc−∑n−1
j=1 x j

(x),

(23)

where we use a version of Bayes rule and the decomposition

fS1,S(x, z) = fS1(x) fS2(z − x)

for the joint density of the summand S1 and the sum S = S1 + S2 of two random
variables S1 and S2. The n-fold convolution of the function f with itself is denoted
by f ∗n .

Remark Notice that for the last jump Xn the conditional jump-size distribution is a
Dirac distribution with all the mass centered in the remaining gap between the target
value and the value of the process after the penultimate jump xn−1.Hence, the proposed
simulation procedure ends up in the targeted value with probability one.

For Propositions 3.2–3.4 below, denote the jump size distribution by F . We study
the conditional distribution F̂k of the k-th jump Xk given the value of the sum of the
remaining (n − k + 1) jumps, i.e.

∑n
i=k Xi = c −∑k−1

j=1 x j =: Ck .

Proposition 3.2 (Gaussian jumps) Let F ∼ N (μ, σ 2). Then, F̂N
k is a normal distri-

bution with mean Ck
n−k+1 and variance

(
n−k

n−k+1

)
σ 2, for any 1 ≤ k ≤ n.
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Proof Using the convolution properties of the Normal distribution, F̂N
k is character-

ized by the density function

fXk |Xk ,...,Xn (x |Ck) = f (x) f ∗(n−k)(Ck − x)

f ∗(n−k+1)(Ck)

= 1√
2π
(

n−k
n−k+1

)
σ 2

× exp

(
− (x − μ)2

2σ 2 − ((Ck − x) − (n − k)μ)2

2(n − k)σ 2 + (Ck − (n − k + 1)μ)2

2(n − k + 1)σ 2

)

= 1√
2π
(

n−k
n−k+1

)
σ 2

exp

⎛
⎜⎝−

(
x − Ck

n−k+1

)2
2
(

n−k
n−k+1

)
σ 2

⎞
⎟⎠ .

	

Proposition 3.3 (Exponentially distributed jumps) Let F ∼ Exp(λ). Then, F̂Exp

k is a
Lomax distribution, for any 1 ≤ k ≤ n.8 In particular,

F̂Exp
k ∼ Lomax (k − n,−Ck) .

Proof Using the convolution properties of the Exponential distribution, F̂Exp
k is char-

acterized by the density function

fXk |Xk ,...,Xn (x |Ck) = f (x) f ∗(n−k)(Ck − x)

f ∗(n−k+1)(Ck)

= λe−λx λn−k (Ck−x)n−k−1

(n−k−1)! e−λ(Ck−x)

λn−k+1Cn−k
k

(n−k)! e−λCk

= (n − k)(Ck − x)n−k−1

Cn−k
k

= n − k

Ck

(
1 − x

Ck

)n−k−1

= fLom
(
x;−(n − k),−Ck

)
.

	

Remark The Lomax distribution (sometimes also called Pareto type II distribution)
is a special case of the generalized Pareto distribution (GP). In particular, it holds

8 The density function of the Lomax(α, β) distribution is given by

fLom(y; α, β) = α

β

(
1 + y

β

)−(α+1)
,

where α is a shape parameter and 1/β is a scale parameter.
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Lomax(α, β) ∼ GP(0, 1/α, β/α). The GP distribution is typically contained in com-
mercial software packages. Built in functions can then be used for straightforward
simulation of the Lomax distribution.

Remark Observe in passing, as a quick cross-check of the above results, that in both
the Normal and the Exponential distribution case, the derived conditional distributions
F̂n of the last jump Xn have expectation Cn and zero variance.

Proposition 3.4 (Gamma distributed jumps) Let F ∼ Gamma(α, θ). Then, F̂�
k is a

generalized Beta distribution of first kind, for any 1 ≤ k < n.9 In particular,

F̂�
k ∼ GB1(1, Ck, α, (n − k)α).

Proof Using the convolution properties of theGammadistribution, F̂�
k is characterized

by the density function

fXk |Xk ,...,Xn (x |Ck) = f (x) f ∗(n−k)(Ck − x)

f ∗(n−k+1)(Ck)

=
θα

�(α)
xα−1e−θx θ(n−k)α

�((n−k)α)
(Ck − x)(n−k)α−1e−θ(Ck−x)

θ(n−k+1)α

�((n−k+1)α)
C (n−k+1)α−1

k e−θCk

= �((n − k + 1)α)

�(α)�((n − k)α)
xα−1 (Ck − x)(n−k)α−1

C (n−k+1)α−1
k

= 1

B(α, (n − k)α)
xα−1

(
1 − x

Ck

)(n−k)α−1

Cα
k

= fGB1
(
x; 1, Ck, α, (n − k)α

)
.

	

Remark As the Gamma function �(·) is only defined for strictly positive arguments,
the case k = n is not covered in Proposition 3.4 above. However, we have generally
addressed the latter case before.

The simulation scheme for compound Poisson processes, that has been elaborated
in this section, is summarized in Algorithm 1 below. It includes the Normal, the
Exponential and the Gamma distribution for the jump size. Figure 4 visualizes sample
paths generated on the basis of this algorithm.

9 The density function of the generalized Beta distribution of first kind is given by

fGB1(y; a, b, p, q) =
|a|yap−1

(
1 − ( y

b

)a)q−1

bap B(p, q)
,

where B(·) denotes Euler’s Beta function.
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Fig. 4 5 sample paths of compound Poisson bridge processes (λ = 3). Left: normal jumps with parameters
μ = 0.5, σ = 1. Right: exponential jumps with mean γ = 0.5

Algorithm 1 A simulation scheme for compound Poisson bridge processes.
Given: Xt1 , Xt2
Define: c := Xt2 − Xt1 , Ck := c −∑k−1

j=1 x j
I: Simulate a value n for the number of jumps N
1: Determine N̄ such that

N (μ, σ 2) Exp(γ ) Gam(α, θ)

N̄ > −
log

(
ε(1−e−c2 )

c1

)
c2

− 1,
N̄∑

n=1

(γ c)n

(n−1)! > c(1 − ε)eγ c
N̄∑

n=1

(θc)nα

�(nα)
> c(1 − ε)eθc

c1 = e
μc
σ2√
2πσ2

, c2 = μ2

2σ2

2: For n = 1, . . . , N̄ compute the conditional probabilities

P[N = n|Xt2 − Xt1 = c] = f ∗n(c) · (λ(t2−t1))
n

n!∑N̄
m=1 f ∗m (c) · (λ(t2−t1))m

m!
,

using the convolution properties N (μ, σ 2) ∗ N (μ, σ 2) = N (2μ, 2σ 2),Exp(γ ) ∗ Exp(γ ) =
Erl(γ, 2),Gam(α, θ) ∗ Gam(α, θ) = Gam(2α, θ).

3: Obtain a value n by simulating from the resulting distribution, i.e., by computing its cdf and applying
the inverse to a sample from the Uniform distribution on [0, 1]

II: Simulate the jumping times
1: Simulate n random variables from the Uniform distribution on [t1, t2]
III: Simulate the jump sizes
1: For k = 1, . . . , n, simulate from the following distributions:

N (μ, σ 2) Exp(γ ) Gamma(α, θ)

N
(

Ck
n−k+1 ,

(
n−k

n−k+1

)
σ 2
)

Lomax (k − n,−Ck ) GB1(1, Ck , α, (n − k)α)

Remark While efficient simulation of trajectories of compound Poisson bridges is
indeed possible (given a tractable jump-size distribution), the distribution of the bridge
process for some time t ∈ (t1, t2) is generally an intractable object. Its cdf consists of
the following terms:
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F̂Xt (x) = P
[
Xt ≤ x

∣∣Xt2 − Xt1 = c
]

=
∞∑

n=0

n∑
m=0

P

[∑m

i=0
Xi ≤ x

∣∣∣Xt2 − Xt1 = c
]

·P[Nt = m|NT = n] · P[NT = n]

=
∞∑

n=0

n∑
m=0

(∫ x−∑m−1
i=0 yi

0
· · ·
∫ x−y1

0

∫ x

0
f1(y1) · · · fm−1(ym−1)dy1 · · · dym−1

)

·
(

n

m

)(
t

t2 − t1

)m (
1 − t

t2 − t1

)n−m

· (λ(t2 − t1))n

n! e−λ(t2−t1) ,

i.e., an infinite sum of the product of a Poisson distribution with parameter λ(t2 − t1),
a Binomial distribution with probability parameter t/(t2 − t1), and a complicated
multidimensional integral over the conditional densities (using a shorthand notation)
given in (23).

Remark (Further Lévy processes) For most Lévy processes, the density function at
a given future time is not available in (semi-)closed form. However, in some special
cases, bridge processes turn out to be of a surprisingly tractable nature. In the disser-
tation of Hoyle [19], one can find results for 1/2-stable processes, Inverse Gaussian
processes and Cauchy processes, which imply that a simulation of associated bridges
can be performed in a straightforward way: In the first two cases, by applying a deter-
ministic function to a random draw from the standard Normal distribution; in the third
case, the cumulative distribution function is given in terms of standard functions.

4 Illustration by example

In this section, we discuss the proposedmodeling approach by a prototypical example.
Moreover, we report about an implementation in the context of a real-world industrial
application. In order to focus on the essential characteristics of the class of multiscale
stochastic optimization problems,wewill keep the complexity of the purely illustrative
example as simple as possible.

4.1 A simple inventory control problem

Consider a business where some (perishable) goods can be sold for a unit price a. The
stock can be replenished each Monday morning for the price b per unit. During the
week, the products are sold but the stock cannot be replenished. The demand varies.
If the business runs out of stock, then costs c occur depending on the remaining time
until the next opportunity to fill the stock. For products left in stock at the end of the
week, we assume that only 30% can still be used for the next week, but 70% need to
be thrown away.

As a model for the demand, we use the Vašíček model [see (18) in Sect. 3.1]. In
particular, for the sake of simplicity we do not consider any seasonal patterns. Let the
parameters of the Vašíček model be given by θ = 105, κ = 0.5, σ = 10, and the
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starting value x0 = 100. Three-stage problems are the smallest instances involving all
issues that are typically connected to multistage decision making under uncertainty.
Hence, the objective in the subsequent illustrative example is to maximize expected
profits over two upcoming weeks.

4.1.1 Modeling the problem

Denote the demand at time s ∈ [0, 2] by (the continuous random variable) Xs , the
stock level at the beginning of week t ∈ {1, 2} by St , and the remaining stock level at
the end of week t by Rt . One may interpret St as the post-decision state with respect to
a decision πt−1, which is made before the first random demand of week t is observed.
On the other hand, Rt corresponds to the amount left in stock after all the demands
of week t have been observed, i.e., Rt is the pre-decision state with respect to πt .
The state transition rule is given by St = 0.3 · Rt−1 + πt−1, where we assume that
the stock is empty in the beginning, that is R0 = 0. We optimize over replenishing
policies {π0, π1}. The profit during week t ∈ {1, 2} is then given by

ft (πt−1, Xt−1:t ) =
{

a · (St − Rt ) − b · πt−1 if Rt > 0

a · St − b · πt−1 − c · (1 − τt ) if Rt = 0,

where

τt+1 := inf

{
s ∈ [0, 1] :

∫ t+s

t
Xu du > St

}

represents the first time of week t + 1 when the business runs out of stock. Remaining
stock items at the end of the planning horizon enter the model with their value, i.e.,
we add 0.3 · R2 · a to f2(π1, X1:2). The problem can then be summarized as

∥∥∥∥∥∥∥∥
sup
π

2∑
t=1

E[ ft (πt−1, Xt−1:t )]

s.t. π � σ(X) ,

where σ(X) denotes the filtration generated by the demand process X . We set the
problem parameters to a = 10, b = 7 and c = 1000. We observe the demand on an
hourly basis, 24/7.

The key observation here is that profits depend (in a highly nonlinear fashion) on
the whole demand trajectory, while a replenishment decision for the stock can only be
made once a week. The path-dependency is due to the presence of the stopping times
τt in the objective. We apply our suggested methodology and generate a collection
of paths between each pair of consecutive decision nodes. In such a way, expected
profits during the week can be computed by a simple Monte Carlo simulation. The
SDE describing the Vašíček bridge process is given in (19).
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Table 1 Lattice via Algorithm 2.1—number of nodes at stage t , N -th iteration

100

94
900.49

1030.510.5

106
980.53

1110.47

0.5

Fig. 5 A simple binary tree as a discrete model for the decision stages. The Vašíček model has been
discretized by an optimal quantization algorithm

4.1.2 Discretization of decision stages

Following the approach suggested in Sect. 2.1, we choose the functions H(x) =
σ x, g(x) = κ

σ
(θ − x) and τ(x) = 1, in case of the Vašíček model. Then, the lattice

corresponding to the N -th iteration of Algorithm 2.1, discretizing the weekly decision
stages t = 0, 1, 2, results in the discrete random variables X̃ (N )

t ·4N . The corresponding
numbers of nodes on the lattice are shown in Table 1. Notice that this lattice construc-
tion serves for the discretization of the decision stages only. Hence, the probabilities of
different paths between two stages, which end up in the same node, can be summed up
and the intermediate nodes and paths do not have to be stored. If onewanted to store the
full lattice construction, this would correspond to (t · 4N + 1)2 nodes, 1

2 (3
t ·4N +1 − 1)

conditional probabilities, and a total of 3t ·4N
paths up to time t , for the N -th iteration.

For ease of exposition, we keep the discrete model as small as possible for the
current example and focus on illustrating the suggested methodology regarding the
multiscale issue. Thus, we use a simple binary tree for the decision stages, which we
obtain by a standard optimal quantization algorithm. The tree is visualized in Fig. 5.
For industrial applications, trees/lattices with a magnitude of 105–106 nodes are often
used. The suggested lattice construction becomes increasingly attractive the more
decision stages are involved.

4.1.3 Comparison with other modeling approaches

One might consider alternative discrete structures to model multiscale stochastic opti-
mization problems. However, none of the approaches used for similar purposes in the
stochastic programming literature is really comparable to what has been suggested in
the present paper. This is due to the following reasons.
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• Large trees/lattices In principle, one can understand any multiscale problem as a
standardmultistage problem,where the constraints rule out that decisions aremade
on the finer observation scale. After all, both scales are associated with the same
underlying process. Then, one might simply use a very large tree/lattice model
for the uncertainty process, which branches in each observation time. However,
this will typically result in computational intractability. Even for the very small
illustrative example discussed in this section, where there are only two decision
points, hourly observation would already require a structure with 336 branching
times. Any tree model would clearly explode even for much smaller instances. A
ternary lattice model would involve more than 100 thousand nodes. Compared to
our approach, it would require massive resources to construct such a lattice, store
it, and compute a solution on it.

• Reduced trees If multistage problems grow too large to be modeled on regular
scenario trees, it seems popular in the applied stochastic programming literature
to use trees that only branch irregularly, i.e., certain branches remain constant up
to/after a certain time (cf. [15–17,29]). However, this means to use clairvoyant
branches where a computed policy does not reflect the uncertainty faced by the
decision maker. In fact, using such degenerate trees violates the fundamentals of
multistage stochastic optimization, which is exactly based on the idea of (direct)
stochastic lookahead policies. Our approach, on the other hand, does not turn the
decision maker clairvoyant up to/after a certain time and is hence perfectly aligned
with the fundamental paradigm that a decision policy must reflect the uncertainty
faced by the decision maker at any point in time. For our example, the reduction
of a tree with 336 branching times to a computational instance would need to be
so massive, that basically a fan with very few branchings would remain.

• Deterministic interpolation function Given a tree/lattice model for the information
flow over the decision stages, onemight simply choose a rudimentary interpolation
approach, such as a constant or linear interpolation function, to compute the multi-
period costs between decisions. However, this is inconsistent as both the decision
and the observation scale are actually associated with one and the same uncertainty
process. It would mean to completely remove the stochasticity between decisions,
whereas our approach takes into account the random fluctuations along the way
from one decision node to the other. In the context of our example, a constant inter-
polation would be completely meaningless, as it would correspond to assuming
that all the selling activity occurs in a single instant of time each week. A linear
interpolation would simply not be in line with the essence of the problem that one
does not know in advance if/when one will run out of stock during the week.

• Multi-horizon stochastic programming A solution approach for a class of prob-
lems which are of a similar flavour, yet crucially different in nature, is called
multi-horizon stochastic programming (see [21,27,41,42,46,48]). Infrastructure
planning problems, being the original motivation by Kaut et al. [21], typically
involve (rarely happening) strategic decisions as well as operational tasks (daily
business). To overcome the above mentioned memory issue resulting from fre-
quently branching scenario trees, the authors of [21] suggest to start with a tree for
the strategic scale only. In a second step, they attach another tree to each node of the
strategic-scale tree. The key assumption for the multi-horizon stochastic program-
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ming approach to be appropriate is that the strategic scale and all operational scales
are independent from each other. In contrast, the approach suggested in the present
paper is designed for problems where the two scales are clearly related to the same
uncertainty process. Therefore, our approach ensures that different scenarios in
between consecutive decisions are eventually bundled in one node (by leveraging
the theory of stochastic bridges). Moreover, for our illustrative example each of
the “operational” trees would still require 168 branching times, such that again
serious simplification would be required to make the approach computationally
tractable.

To summarize the major strengths of our model, it

• respects the stochasticity in between decisions,
• ensures the consistency of all involved scales with respect to a single uncertainty
process, and

• keeps the problem computationally tractable.

None of the other approaches mentioned above offers those three aspects, which are
all essential characteristics of a useful modeling framework for the computational
solution of multiscale stochastic optimization problems.

4.1.4 Numerical illustration

We have discussed above the qualitative strengths of our modeling approach. The
simple example that we used to exemplify our explanations shall now serve to illus-
trate numerically two important aspects. First, an appropriate modeling approach is
increasingly important the stronger is the path-dependency of the multiperiod costs.
In our example, this path-dependency is higher, the larger is the value of the parameter
c, which represents the costs that occur during the time span when the agent is out of
stock. The second aspect is that the way how the multiperiod costs are modeled, does
have a considerable impact on the resulting optimal value, even if the cost-structure
does not depend heavily on a particular path. Even if we set c = 0, we observe an
over-estimated value of almost 3% if we use an ad-hoc linear interpolation instead of
our consistent modeling approach. Notice that this impact is related to a problem with
only two decision stages.

Table 2 illustrates the above two observations with numbers. The second column
shows the optimal values obtained using ourmodeling approachwith bridge processes.
The third column shows the values obtained using a simple linear interpolation rule for
the intra-week evolution of the demand. How much this changes the optimal value in
percent is given in the last column.Our implementation is based on a simple backwards
dynamic programing algorithm. Between each pair of consecutive decision nodes, we
have used 10k simulations of the bridge process.

4.2 A real-world application

We have implemented the modeling approach suggested in this paper in the context
of an industrial project dealing with the valuation of a thermal power plant. While the
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Table 2 Numerical illustration of the impact of using our modeling approach versus an inconsistent linear
interpolation heuristic

c Opt. value (bridge process) Opt. value (linear interp.) Impact (%)

0 562 577 +2.7

10 561 576 +2.7

100 556 571 +2.7

500 534 552 +3.4

1000 507 529 +4.34

5000 419 464 +10.7

focus of that project lied on the incorporation of model ambiguity into a value function
approximation policy, the valuation problem itself was presented to us in the form of
a classical multiscale stochastic optimization problem: operating plans for the power
plant must be fixed on a weekly basis (for management purposes of all the involved
resources), but the intra-week profits resulting from the most recent decision depend
on (uncertain) market prices that are observed in 4-h blocks. It is thus required to
model a weekly decision scale with 42 observation periods within each week.

A classical tree model over all observation periods would be intractable even for
a single week. If we use a ternary lattice model, the first week already involves 1764
nodes. The second week requires 5292 additional nodes and modeling a quarter of a
year with a ternary lattice involves about 300 thousand nodes in total. On the other
hand, with our approach the lattice model is related to a much coarser time granularity,
discretizing only the information flow on the weekly decision scale. Then, a time
horizon of a quarter of a year involves only 196 nodes on a (ternary) lattice. Considering
the finer observation scale, such a lattice involves 507 different arcs, along which an
interpolation is required. An inconsistent interpolation approach would distort the
expected costs in each such intra-week segment.

The multiscale modeling approach of the present paper proved to be very useful
for this practically-sized problem. In fact, the power plant model—as it was presented
to us by our industry partner—turned out to be of such a tractable form that expected
intra-week costs could even be calculated by an analytical formula, based on the
derived bridge process dynamics for the underlying uncertainty process. If a simulation
is required, this obviously slows down the computation process. Still, the approach
allows for a scenariowise decomposition with respect to the decision time scale, i.e.,
of the tree/lattice model. Thus, computational tractability is typically not limited by
the multiscale feature of a problem, when our modeling approach is applied.

The studied valuation problem involves an extensive model of the power plant and
is based on real data provided to us by the operating energy company. Thus, we refer
the reader to our separate paper [44] for all the details.

5 Conclusion

In this article, we have proposed a computational modeling framework for multi-
stage stochastic optimization problemswith embeddedmultiperiod problems.Wehave
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named the subject of the study of this problem classmultiscale stochastic optimization.
The suggested approach is based on a separation between the (standard) multistage
decision problem, and the problem of determining path-dependent costs between two
consecutive decisions. The paper contains a contribution to both parts. One section
was dedicated to the construction of scenario lattices as a discrete structure represent-
ing a time-homogeneous Markovian diffusion model. In particular, we examined a
Markov-chain approximation approach and showed that the approximation error with
respect to the optimal value of a generic multistage stochastic optimization problem
can be controlled with the suggested methodology. In a second part, we suggested to
leverage the theory of stochastic bridges in order to tackle the embedded multiperiod
problem, which takes place on a much finer time-scale than the decision scale. We
elaborated explicitly several examples of popular diffusionmodels and proposed a new
simulation algorithm for compound Poisson bridges. A simple multiscale inventory
control problem finally served to illustrate the proposed methodology and discuss it
in the context of a concrete example. Moreover, we reported about an implementation
as part of a real-world industrial project, where our approach turned out to be very
convenient. The latter may be seen as a proof of concept.
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Appendix

TheWasserstein distance

Definition 5.1 (Wasserstein distance) Let P and P̃ be two probability measures on
R

m . Then, their Wasserstein distance is defined as

W(P, P̃) := inf
π∈X(P,P̃)

∫∫
Rm×Rm

‖v − w‖ π(dv, dw),

whereX(P, P̃) denotes the set of all probability measures onRm ×R
m withmarginals

P and P̃ .

If P and P̃ are probability measures on the real line, then theirWasserstein distance
can be represented in terms of their cdf’s F and F̃ (Vallender [43]):

W
(

P, P̃
)

=
∫ ∣∣∣F(x) − F̃(x)

∣∣∣ dx .
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