
 

GMM Estimation of Affine Term Structure Models

Journal Pre-proof

GMM Estimation of Affine Term Structure Models

Jaroslava Hlouskova, Leopold Sögner
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Abstract

Parameter estimation of affine term structure models by means of the generalized method of moments

is investigated. Exact moments of the affine latent process as well as of the yields are obtained by using

results derived for p−polynomial processes. Then the generalized method of moments, combined with

multi-start random search and Quasi-Bayesian methods, is used to get reliable parameter estimates

and to perform inference. After a simulation study, the estimation procedure is applied to empirical

interest rate data.
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1 Introduction

This article is concerned with parameter estimation and inference in affine term structure models. We

use results of Cuchiero et al. (2012) on p−polynomial processes to obtain the exact conditional moments

of a latent affine process driving the term structure. By assuming a stationary affine process, we obtain

not only the exact moments of yields with various maturities but also the first-order auto-covariance

matrices of the yields and the squared yields. Then we estimate the model parameters by means of

the Generalized Method of Moments (GMM) introduced in Hansen (1982), without the need to estimate

the affine latent process driving the yields. Multi-start random search method combined with Quasi-

Bayesian approach is used to estimate the model parameters (see, e.g. Törn and Zilinskas, 1989) while

Quasi-Bayesian approach is used to estimate the asymptotic covariance matrix of the estimator (see

Chernozhukov and Hong, 2003). A further contribution of this paper is a rigorous study on testing market

price of risk specifications discussed in quantitative finance literature. By considering a Wald-type test,

we observe that test statistics obtained from Quasi-Bayesian methods strongly outperform test statistics

which are obtained by standard procedures with respect to power and size.

Affine term structure models have their origin in the univariate models of Vasicek (1977) and Cox

et al. (1985). The performance of these models and similar univariate setups were already investigated

for example in Aı̈t-Sahalia (1996a) and Aı̈t-Sahalia (1996b). The articles show that these univariate

parametric models inadequately describe the interest rate dynamics. Based on this finding Aı̈t-Sahalia

(1996a), Aı̈t-Sahalia (1996b) as well as Stanton (1997) propose non-parametric interest rates models. As

an alternative, Dai and Singleton (2000) and Dai and Singleton (2003) favor multivariate settings to

circumvent the shortcomings of univariate models. This alternative modeling approach has the advantage

that a mathematical framework is available, where bonds and derivatives can be priced in a straightforward

way.

Let us briefly discuss some literature on the performance of different estimation approaches: Regarding

parameter estimation, Zhou (2001) study the efficient method of moments (EMM), the GMM, the quasi-

maximum likelihood estimation (QMLE) and the maximum likelihood estimation (MLE) for the Cox et al.

(1985) model. In his study the author assumes that the instantaneous interest rate, driven by a square
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root process, can be observed. The most efficient results are observed for the MLE, which is followed by

the QMLE and the EMM. (For stochastic volatility models Andersen et al. (1999) show that the EMM

estimator has almost the same efficiency as the maximum likelihood estimator.) Regarding the GMM, this

method performs well if the sample size is sufficiently large. In addition, Zhou (2003) construct a GMM

estimator by deriving moments for univariate latent processes by applying Ito’s formula. This estimator

has been compared to the ML estimator. In contrast to Zhou (2001), in this setup the GMM estimator

performs quite well in the finite sample compared to the maximum likelihood estimator.

More recent literature proposes different frequentist and Bayesian approaches to estimate the param-

eters of multivariate affine term structure models. Bayesian methods have been applied in Chib and

Ergashev (2009) while an earlier application is e.g. Frühwirth-Schnatter and Geyer (1996). Regarding

Bayesian estimation methods, Jones (2003) points out that strong priors are necessary to estimate the

parameters in the case of a low degree of mean reversion (i.e. high persistence) of the stochastic process.

MLE has been performed in a three factor Gaussian model (an A0(3) model in the terminology of Dai

and Singleton, 2000) by Hamilton and Wu (2012).

Additional articles on parameter estimation for affine models are e.g. Diebold et al. (2006), Duffee

(2011), Aı̈t-Sahalia and Kimmel (2010), Egorov et al. (2011), Joslin et al. (2011) and Creal and Wu (2015).

An overview is provided in Piazzesi (2010). A further approach is to approximate the transition density

of the affine process via approximations of the Chapman/Kolmogorov forward equation. This approach

is explored in series of papers by Aı̈t-Sahalia (see, e.g. Aı̈t-Sahalia, 2002; Aı̈t-Sahalia and Kimmel, 2010).

Almost recently Creal and Wu (2015) introduce a new procedure to estimate the model parameters

by means of maximum likelihood. In particular, the authors decompose the estimation problem into

maximizing a concentrated likelihood function and running a generalized least squares regression. The

main difference in terms of the model is that in this article all yields are observed with noise, while

Creal and Wu (2015) assume that the number of yields observed without noise is equal to the dimension

of the affine latent process driving the term structure. While the latter approach directly allows to

extract the latent process from the yields observed without noise (see, in particular Creal and Wu, 2015,

Procedure 1.(i.)), the latent process driving the term structure cannot be obtained reliably by an affine
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linear transformation if all yields are observed with noise. Even if the noise is small for all maturities, we

observe in our study that the differences between a process obtained from an affine transformation and

the (true) latent process can be substantial.

Unlike our study, papers by de Los Rios (2015), Hamilton and Wu (2012, 2014), Joslin et al. (2011) as

well as Joslin et al. (2013) deal with Gaussian affine term structure models where (some of the) factors are

assumed to be observable. Except for Joslin et al. (2013) these studies assume that certain yields are mea-

sured without errors, while we do not impose this assumption. de Los Rios (2015) proposes the asymptotic

least-square estimator that can be obtained without applying any numerical optimization techniques and

thus is relatively easy-to-compute (while our approach suffers a bit from numerical optimization as we

deal with non-Gaussian term structure models). This asymptotic least-square estimator of de Los Rios

(2015) is asymptotically equivalent to the maximum likelihood estimator of Joslin et al. (2011). On the

other hand, the minimum-chi-square estimator proposed in Hamilton and Wu (2012) that bypasses some

numerical challenges, is also asymptotically equivalent to the maximum likelihood estimator and can be

viewed as a special case of minimum distance estimator. Their assumption that certain specified yields

are priced without errors is testable as shown in Hamilton and Wu (2014). Finally, Joslin et al. (2013)

explore the maximum likelihood estimates for Gaussian macro-finance term structure models when yields

are priced imperfectly. By contrast, we assume an affine term structure model where in addition to two

Gaussian factors one square-root component shows up and all yields are subject to noise. Our parameter

estimation approach uses the generalized method of moments and does not require to estimate the latent

factors.

In this article, we use the exact moments of the yields observed, arising from a multivariate affine

term structure model. Neither an approximation of the moments (such as an approximation via the

solution of the stochastic differential equation) nor an approximation of the likelihood is required. Since

we have to minimize a GMM distance function in more than twenty parameters, the parameter estimation

is nontrivial. To account for this problem, we combine multi-start random search method with Quasi-

Bayesian methods developed in Chernozhukov and Hong (2003). We observe that, in contrast to standard

optimization routines, multi-start random search method combined with Quasi-Bayesian approach improve
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both parameter estimation and inference (see, e.g., Chernozhukov and Hong, 2003). By contrast, when

using standard routines to estimate the asymptotic covariance matrix of the unknown parameter vector,

the performance of the Wald-type test, measured in terms of power and size, is very poor. Thus, we use our

methodology to test for the extended affine market price of risk specification as proposed and analytically

investigated in Cheridito et al. (2007) (for an extension in discrete time term structure models see, e.g.,

Le et al. (2010)). In an empirical interest rates data set significant market prices of risk are observed for

the parameters driving the level of the interest rates as well as for the parameters driving the speed of

mean reversion.

This paper is organized as follows: Section 2 describes the model assumptions and obtains the moments

of the latent process as well as the yields observed. Section 3 describes the small sample properties of

the GMM estimator, while Section 4 applies the estimator to empirical data. Finally, Section 5 offers

conclusions.

2 Model

We follow Filipović (2009) and consider a filtered probability space (Ω,F , (Ft)t≥0,P) as well as a continuous

time stochastic process (X(t))t≥0, X(t) ∈ Rd, defined on the state space S = Rm+ × Rn ⊂ Rd, where

m,n ≥ 0, m + n = d. The stochastic process (X(t))t≥0 is generated by the affine stochastic differential

equation

dX(t) =
(
bP + βPX(t)

)
dt+ ρ(X(t))dWP (t) , (1)

where bP is a d−dimensional vector and βP and ρ(x) are d× d matrices. The d× d diffusion term a(x)

is defined such that a(x) = ρ(x)ρ(x)′ = a +
∑d

i=1 xi αi, where a, αi, i = 1, . . . , d, are d × d matrices,

WP (t) is a d−dimensional standard Brownian motion and P is the empirical measure.

In this article we apply the following notation: For vectors and matrices we use boldface. If not

otherwise stated, the vectors considered are column vectors. Given a rM × cM matrix M, the term

Mra:rb,ca:cb stands for “from row ra to row rb and from column ca to column cb of matrix M”. The

abbreviation Mra:rb,: stands for “for all columns from row ra to row rb of matrix M”, and Mra:rb,ca
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extracts the elements ra to rb of the column ca. In addition, βij stands for [β]ij ; 0a×b and ea×b stand for

a× b matrices of zeros and ones; 0a and ea is used to abbreviate 0a×1 and ea×1; Ia is the a× a identity

matrix, while I(·) stands for an indicator function. Given a vector x ∈ Rn, diag(x) transforms x into a

n× n diagonal matrix.

The instantaneous interest rate (short rate, r(t) ∈ R) follows from

r(t) = γ0 + γ ′xX(t) , (2)

where γ0 is a scalar and γx is a d−dimensional vector. Consider an arbitrage free market, where Q is an

equivalent martingale measure to the empirical P measure. We assume that the process (X(t))t≥0 is affine

also in the measure Q, such that

dX(t) =
(
bQ + βQX(t)

)
dt+ ρ(X(t))dWQ(t) , (3)

where WQ(t) is a d−dimensional standard Brownian motion under Q measure. By equations (1) and

(3), the stochastic process (X(t))t≥0 is affine in both measures. While the diffusion parameters (a, αi,

i = 1, . . . , d) remain the same under both measures, we have to consider parameters bP , βP , bQ and βQ,

in both measures P and Q. This specification, namely equations (1) and (3), is called the extended affine

market price of risk specification, and its mathematical foundation is provided in Cheridito et al. (2007).

These authors also show by means of the Girsanov theorem that WQ(t) = WP (t) +
∫ t

0 φ(X(s))ds, where

φ(X(t)) ∈ Rd is given by φ(X(t)) = (ρ (X(t)))−1 (bP − bQ +
(
βP − βQ

)
X(t)

)
. To connect the market

price of risk to risk premia see Cochrane (2005)[p. 339].

In the remaining part of this article we apply the following assumption.

Assumption 1. The background driving process (X(t)) is stationary and admissible (under both mea-

sures). In addition, E
(

exp(−
∫ τ̄

0 r(z)dz)
)
< +∞, for some τ̄ ∈ R+.

Sufficient conditions for a stationary process (X(t)) are provided in Glasserman and Kim (2010) and in

the context of Am(d) models that we use here they are also reported in Aı̈t-Sahalia and Kimmel (2010)

and in Online-Appendix A-6. If admissibility holds, the process (X(t)) does not leave the state space S .
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Sufficient conditions for an admissibility follow from Theorem 10.2 in Filipović (2009).

Next, we define the index sets I = {1, . . . ,m} and J = {m + 1, . . . ,m + n}, where m + n = d.

Let bI = (b1, . . . , bm)′ and βII = β1:m,1:m. The admissibility restrictions, the short-rate model (2) and

the condition E
(

exp(−
∫ τ̄

0 r(z)dz)
)
< +∞, for some τ̄ ∈ R+, imply that there exists a unique solution

(Φ(t,u),Ψ(t,u)′)′ ∈ C× Cd of the following system of Riccati differential equations

∂tΦ(t,u) = 1
2 (ΨJ(t,u))′ aJJΨJ(t,u) +

(
bQ
)′

Ψ(t,u)− γ0; Φ(0,u) = 0 ,

∂tΨi(t,u) = 1
2 (Ψ(t,u))′αiΨ(t,u) +

(
βQi

)′
Ψ(t,u)− γxi; for i ∈ I ,

∂tΨJ(t,u) =
(
βQJJ

)′
ΨJ(t,u)− γxJ ; Ψ(0,u) = u ,

(4)

where t ∈ [0, τ̄ ], u ∈ ıRd and β = (β1, . . . ,βd), with βi being a d−dimensional vector, i = 1, . . . , d (see

Filipović, 2009, Theorem 10.4). This system of ordinary differential equations is used to calculate the time

t price of a zero coupon bond, π0(t, τ), with time to maturity τ . The arbitrage free zero coupon model

prices π0(t, τ) and the model yields y0(t, τ) follow from Filipović (2009)[Corollary 10.2]. That is

π0(t, τ) = exp
(
Φ(τ,0) + Ψ(τ,0)′X(t)

)
and

y0(t, τ) = −1

τ
log
(
π0(t, τ)

)
= −1

τ

(
Φ(τ,0) + Ψ(τ,0)′X(t)

)
. (5)

The time to maturity, τ , and u are the arguments of functions Φ(t,u) and Ψ(t,u) described in (4). Note

that parameters under Q are necessary for derivations of functions Φ(τ,0) and Ψ(τ,0) by means of which

the model yields are calculated, see (5).

In the following we consider an A1(3) model of the Dai and Singleton (2000) class, where m = 1 and

d = 3. Let θQ = (θQ1 , θ
Q
2 , θ

Q
3 )′ and θP = (θP1 , θ

P
2 , θ

P
3 )′, such that bQ = −βQθQ as well as bP = −βPθP .
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Under the measure Q,

dX(t) =
(
bQ + βQX(t)

)
dt+ ρ(X(t))dWQ(t) = βQ

(
−θQ + X(t)

)
dt+ ρ(X(t))dWQ(t) , where

βQ =




βQ11 < 0 0 0

βQ21 ≥ 0 βQ22 βQ23

βQ31 ≥ 0 βQ32 βQ33




, θQ =




θQ1 > 0

0

0




, bQ = −βQθQ =




bQ1 = −βQ11θ
Q
1 > 0

bQ2 = −βQ21θ
Q
1 ≤ 0

bQ3 = −βQ31θ
Q
1 ≤ 0




,

and ρ(X(t)) =




Σ1

√
X1(t)

Σ2

√
1 + Bx12X1(t)

Σ3

√
1 + Bx13X1(t)



, (6)

where under admissibility conditions, as discussed in Dai and Singleton (2000), the following restrictions

apply: θQ1 > 0, βQ11 < 0, Bx12,Bx13 ≥ 0, and Σ1,Σ2,Σ3 > 0. Note that (6) has 13 parameters while

under Q we can identify 14 parameters. These parameters are the thirteen parameters in (6) and γ0

arising in (2). In more detail: βQ (7 parameters), θQ1 (1 parameter), Σ (3 parameters, only the elements

in the main diagonal are positive, the other parameters are zero), Bx12 ≥ 0 and Bx13 ≥ 0. The same

structure is assumed under P. That is, the elements of matrix βP are βP11 ≤ 0, βP12 = 0, βP13 = 0,

βP21 ≥ 0, βP31 ≥ 0, βP22, βP32, βP23, βP33, while the coordinates of θP are θP1 ≥ 0, θP2 = 0 and θP3 = 0. Since

θP2:3 = θQ2:3 = 02 for the A1(3) model considered, we write θQ and θP instead for θQ1 and θP1 in the following.

Based on Cheridito et al. (2007) the extended affine market price of risk specification is mathematically

well defined given that bPI = bP1 ≥ 0, bPJ = (bP2 , b
P
3 )′ ≤ 0, which is satisfied in the model we consider.

The non-zero restricted elements of these matrices are collected in β̄Q =
(
βQ11, β

Q
21, β

Q
31, β

Q
22, β

Q
32, β

Q
23, β

Q
33

)′

and β̄P =
(
βP11, β

P
21, β

P
31, β

P
22, β

P
32, β

P
23, β

P
33

)′
. By collecting these parameters (not subject to an equality

restriction), we obtain the vector of model parameters ϑA1(3)
∈ R22.

2.1 Moments of the Latent Process (X(t))

To obtain the first moments of order p of the latent process (X(t)), let xk =
(
xk1, x

k−1
1 x2, . . . , x

k
3

)′
, where

k = 0, 1, . . . , p. In addition, x̃ = (1, (x1)′, (x2)′, . . . , (xp)′)′ ∈ RN , while x̃2:N = ((x1)′, (x2)′, . . . , (xp)′)′ ∈

RN−1. The processes X̃(t) and X̃(t)2:N are defined in the same way. The number of all moments of the
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latent process X(t), denoted by N , follows from the corresponding multinomial coefficients. To obtain

conditional moments E(X̃(t)|X(s) = x), t > s, we apply results derived in Cuchiero et al. (2012) on

p−polynomial Markov processes, resulting in E(X̃(t)|X(s) = x) = exp((t− s)A) x̃, where A is an N ×N

matrix. Appendices A-2.2 and A-3 present matrix A for an affine model with d ≤ 3 components and

moments of order p = 4 .

As will be discussed in Section 3, the first and the second order moments of the yields will be used to

perform GMM-parameter estimation. To obtain these moments of the yields (as described in Section 2.2),

we derive the first and the second conditional moments of X(t). In particular, to obtain the first and the

second conditional moments of X(t) for A1(3) model (i.e., p = 2) we derive the following matrix, where

N = 10 and x̃ = (1, (x1)′, (x2)′)′ ∈ R10 (note that x̃ contains the d = 3 dimensional vector x1 and the

d(d+1)
2 = 6 dimensional vector x2),

A =




0 0 0 0 0 0 0 0 0 0

bP1 βP11 0 0 0 0 0 0 0 0

0 βP21 βP22 βP23 0 0 0 0 0 0

0 βP31 βP32 βP33 0 0 0 0 0 0

0 2bP1 + Σ2
1 0 0 2βP11 0 0 0 0 0

0 0 bP1 0 βP21 βP11 + βP22 βP23 0 0 0

0 0 0 bP1 βP31 βP32 βP11 + βP33 0 0 0

Σ2
2 Σ2

2Bx12 0 0 0 2βP21 0 2βP22 2βP23 0

0 0 0 0 0 βP31 βP21 βP32 βP22 + βP33 βP23

Σ2
3 Σ2

3Bx13 0 0 0 0 2βP31 0 2βP32 2βP33




. (7)

Since (X(t)) is assumed to be stationary and E
(
X̃(t)

)
= E

(
E
(
X̃(t)|X(s)

))
, for 0 ≤ s < t, the tower
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rule yields

E
(
X̃(t)

)
=




1

E
(
X̃(t)2:N

)


 = E

(
[exp((t− s)A)] X̃(t)

)
= [exp((t− s)A)]E

(
X̃(t)

)

=


 1 01×N−1

[exp((t− s)A)]2:N,1 [exp((t− s)A)]2:N,2:N







1

E
(
X̃(t)2:N

)


 . (8)

The N×N matrix exp((t−s)A) can be partitioned into four blocks: (i) north-western [exp((t− s)A)]11 =

1, (ii) north-eastern [exp((t− s)A)]1,2:N = 01×N−1, (iii) south-western [exp((t− s)A)]2:N,1, and (iv) south-

eastern [exp((t− s)A)]2:N,2:N . Hence, the (unconditional) moments of order 1 to p follow from

E
(
X̃(t)2:N

)
=

(
IN−1 − [exp((t− s)A)]2:N,2:N

)−1
[exp((t− s)A)]2:N,1 .

Note that exp((t − s)A) and A are of the same structure. This follows from the power series repre-

sentation of the matrix exponential exp((t − s)A) =
∑∞

v=0
1
v ((t− s)A)v. In addition, the existence of

(
IN−1 − [exp((t− s)A)]2:N,2:N

)−1
follows from the properties of the matrix exponential.

2.2 Moments of the Observed Yields

This section deals with the case of empirical data, when the number of yields observed is larger than the

dimension of (X(t))t≥0 and thus the yields observed cannot be matched exactly with the model yields

derived in (5). For an affine term structure model the model yields with time to maturity τ are

y0(t, τ) = −1

τ

(
Φ(τ,0) + Ψ(τ,0)′X(t)

)
.

The calculation of the moments also requires to solve the Riccati equations (4). For the Vasicek and the

Cox-Ingersol-Ross model closed form solutions are available, as e.g. presented in Filipović (2009)[Chap-

ter 10.3.2]. For Am(d) models, however, Φ and Ψ have to be derived by means of numerical tools in

general (see also Duffie and Kan, 1996; Dai and Singleton, 2000; Chen and Joslin, 2012). The fact that

βQ11 = βQII is a scalar in the A1(3) model described in (6), allows to apply the computationally efficient
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method proposed by Grasselli and Tebaldi (2008) to obtain an (almost) closed form solution for Φ(t,u)

and Ψ(t,u). This methodology requires the matrix βQII to be diagonal. Our Online-Appendix A-5 shows

how Φ and Ψ could be derived for an Am(d) model with diagonal βII in a numerically parsimonious way.

Now we have to account for the fact that real world data cannot be observed on a continuous time

scale, but only on a discrete grid ∆, 2∆, . . . , t∆, . . . , T∆, where T is the time series dimension and ∆ is

the step-width. As we use weekly data in empirical Section 4, we set ∆ = 1/52 and assume that Xt stands

for X(t∆). Additionally, maturities τ available are given by τ = (τ1, . . . , τM )′, where M is the number of

maturities observed. For model yields with a maturity τi ∈ {τ1, . . . , τM} observed at t = t∆ we use the

notation y0
ti, i = 1, . . . ,M . Since M yields cannot be matched exactly by d factors (usually d < M), we

add the noise term εti and arrive at the yields observed

yti = y0
ti + εti = − 1

τi

(
Φ(τi,0) + Ψ(τi,0)′Xt

)
+ εti, i = 1, . . . ,M, t = 1, . . . , T.

With M maturities τ = (τ1, . . . , τM ) we define

Φ̃ =




−Φ(τ1,0)/τ1
...

−Φ(τM ,0)/τM



∈ RM , Ψ̃ =




−Ψ(τ1,0)′/τ1

· · ·
−Ψ(τM ,0)′/τM


 ∈ RM×d and εt =




εt1
...

εtM



∈ RM ,

such that the M−dimensional vector of yields, yt = (yt1, . . . , ytM )′, is given by

yt = Φ̃ + Ψ̃Xt + εt ∈ RM . (9)

Based on (9) we observe that the moments of yti have to follow from the moments of Xt. For the noise

term εti we apply the following assumption.

Assumption 2. Let εti, t = 1, . . . , T , i = 1, . . . ,M , be independent with zero mean, variance 0 <

σ2
i < +∞ and E(ε4

ti) < +∞. In addition, |E (εpti)| < +∞ for i = 1, . . . ,M and E
(
ε2ι−1
ti

)
= 0 for

ι = 1, . . . , bp/2c, where bp/2c is the largest integer smaller or equal to p/2.

Note that by Assumption 2, the yields of all maturities are assumed to be observed with noise. In addition,
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E (εtiεtj) = 0 for i 6= j, i, j = 1, . . . ,M and E
(
ε4
ti

)
< +∞. By means of equation (9) and Assumption 2 we

derive the moments of the empirical yields E
(
yktiy

l
tj

)
= E

((
[Φ̃ + Ψ̃Xt + εt]i

)k (
[Φ̃ + Ψ̃Xt + εt]j

)l)
,

where 0 ≤ k + l ≤ p and [·]i extracts the i-th element of a vector. Hence, we derive the first four

moments of the yields observed, i.e. E
(
ykti
)
, k = 1, . . . , 4. In addition, applications in finance often take

the auto-covariance of the yields, E(ytiyt−1i), and the auto-covariance of the squared yields, E
(
y2
tiy

2
t−1i

)
,

into consideration (the auto-covariance of the squared yields is considered as an “indicator for volatility

clustering” - see, e.g. the discussion in Piazzesi (2010)[p. 649]). Therefore also the terms E(ytiyt−1i) and

E
(
y2
tiy

2
t−1i

)
are calculated. Since this part is straightforward, but tedious algebraic manipulations were

necessary to obtain all these moments, we present the results in the Online-Appendix A-4. We put the

noise parameters necessary to obtain the moments of the observed yields into the parameter vector ϑσ.

The dimension of ϑσ depends on how σ2
i , i = 1, . . . ,M, is specified and on the moments used in the

estimation. If σ2
i is different for each maturity, we have M parameters for the second order moments of

the noise. If, in addition, the fourth moments of the yields are calculated, the fourth moments of the noise

enter into the calculations as well, i.e. we get another M parameters for the moments of the noise. In

this case the dimension of ϑσ is 2M . Since the dimension of the model parameter ϑA1(3)
is already over

twenty, we continue with a more parsimonious specification of the noise, where σ2
i = σ2 and E

(
ε4
ti

)
= σ̃4

for all i = 1, . . . ,M . Hence, the dimension of ϑσ is two if fourth moments are required in the calculation

of the yields observed, otherwise it is one. This results in the model parameter vector ϑ =
(
ϑ′A1(3)

,ϑ′σ
)′

of

dimension p, which is contained in the parameter space Θ ∈ Rp. Note that due to parameter restrictions

(see Appendix A-6) Θ is proper subset of Rp. The components of ϑ are introduced by the first column of

Table 1.

3 Parameter Estimation and Finite Sample Properties

In this section we describe the estimation procedure and its inference which allows parameter estimation

based on observed yields, but without estimating the latent process Xt, t = 1, . . . , T . Section 3.1 applies

GMM, where the parameter estimates are obtained by means of a multi-start random search procedure

combined with a Quasi-Bayesian sampler, while Section 3.2 describes how to conduct inference. Here,
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in addition, we describe how Quasi-Bayesian methods can be used to obtain the standard errors of our

estimates. We shall observe that this is computationally costly.

By observing yields for maturities τi, i = 1, . . . ,M , in periods t = 1, . . . , T , we obtain M−dimensional

vectors yt = (yt1, . . . , ytM )′, t = 1, . . . , T , MT−dimensional vectors y1:T = (y′1, . . . ,y
′
T )′, as well as

q̃−dimensional vectors m̃(t) (ỹt) =
(
yt1, . . . , y

p
tM , yt1yt−1,1, . . . , y

2
tMy

2
t−1,M

)′
, where ỹt =

(
y′t,y

′
t−1

)′
, and

m̃T (y1:T ) =
(

1
T

∑T
t=1 yt1, . . . ,

1
T

∑T
t=1 y

p
tM ,

1
T−1

∑T
t=2 yt1yt−1,1, . . . ,

1
T−1

∑T
t=2 y

2
tMy

2
t−1,M

)′
. Let µ̃(ϑ)=

(
E(yt1), . . . ,E

(
yptM

)
,E (yt1yt−1,1) , . . . ,E

(
y2
tMy

2
t−1,M

))′
stands for the corresponding vector of moments

of yields as a function of the unknown parameter vector ϑ ∈ Θ ⊂ Rp. The components of the vector µ̃(ϑ)

are provided in the Online-Appendix A-4, see equations (A-19), (A-23)-(A-26), (A-29) and (A-30).

The generalized method of moments demands q moments of yields to be selected such that q̃ ≥ q ≥ p.

By means of a q × q̃ selector matrix M, where Mij = 1 if the corresponding moment is used and

Mij = 0 otherwise, we obtain µ(ϑ) = M µ̃(ϑ) ∈ Rq, m(t) (ỹt) = M m̃(t) (ỹt) ∈ Rq and mT (y1:T ) =

M m̃T (y1:T ) ∈ Rq. For the A1(3) model considered in Section A-2, the dimension of the parameter vector

ϑ is 23 (i.e., p = 23; including fourth order moments of the yields results in p = 24). The number of

maturities available is M = 10. For example, by using the moments E(yti), E
(
y2
ti

)
and E(ytiyt−1,i),

for i = 1, . . . ,M , we are already equipped with 3M moment conditions. Hence, for M ≥ 8 the order

condition q ≥ p is already met. Note that by using the moments or order p ≤ 4 and the auto-covariances,

the number of moments of yields q̃ is much larger than the number of parameters p̃, see equation (A-16)

in the Online-Appendix.

To obtain parameter estimates by means of the GMM, a high-dimensional nonlinear minimization

problem has to be solved and q moment conditions have to be selected from the set of moments available.

Here the question arises which moments help to identify the unknown model parameters ϑ if only an

M−dimensional vector of yields yt, t = 1, . . . , T , is observed. Although we cannot assign particular

moments to exactly one model parameter for the A1(3) considered, we observe the following (based on

a numerical analysis): If a short rate rt were observed, the expected short rate would be determined by

parameters γ0 and θP . We observe that these parameters have a strong impact on the first order moments

of the yields. This result can also be obtained in formal terms by using matrix A, given by (7), and
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results presented in Section 2.2. That is to say, γ0 and θP determine the level of the yields. Parameters

θQ and βQ as well as γ0, Bx12, Bx13 and the volatility parameters Σi (i = 1, 2, 3), determine Φ(t,u) and

Ψ(t,u) and therefore drive the slope and the curvature of the yield curve. Hence, these parameters are

also associated to the first order moments. On the other hand it turns out that the first order moments

of the yields are important to estimate γ0, θP , θQ and βQ. By considering matrix A (see (7)) and the

Riccati differential equations (given in (4)), which result in Φ(t,u) and Ψ(t,u), we observe that without

any further constraints all parameters (except the noise parameter σ2
ε) have an impact on the second order

moments of the model yields y0
ti. Hence, all parameters (including σ2

ε) drive the volatility of the yields

yti and thus the second order moments as well. The covariance structure of yields (also the off-diagonal

elements of the covariance matrix of yields) is affected by βP . We observe that the second order moments

of the yields are especially important to estimate Σi, i = 1, 2, 3, βP and σ2
ε . The auto-covariances are

strongly connected to βP (especially to the elements on the main diagonal). Thus, the auto-covariances

of the yields help to identify βP as well. Online-Appendix A-4 provides a lot of higher order moments.

However, it turns out that the instability of the estimation routine we consider is amplified if higher

order moments are added. Due to this instability, the Wald or the distance difference tests – to check

for redundant moment conditions – provide us with very ambiguous results. Hence, the selection of these

moments was performed by means of simulation experiments. Based on these simulation results, we work

with q = 3M = 30 moment conditions, namely, E(yti), E
(
y2
ti

)
and E

(
ytiyt−1i

)
, for i = 1, . . . ,M and

t = 2, . . . , T .

Next we define h(t) (ϑ; ỹt) = m(t)(ỹt)−µ(ϑ) ∈ Rq and hT (ϑ; y1:T ) = mT (y1:T )−µ(ϑ) ∈ Rq as well

as the GMM distance function

QT (ϑ; y1:T ) = hT (ϑ; y1:T )′CT hT (ϑ; y1:T ). (10)

The GMM estimate of ϑ minimizes the distance function QT (·) in (10), where CT is a q × q symmetric

positive semi-definite weighting matrix (see, e.g. Ruud, 2000, Chapters 21-22). For regularity conditions

and further issues on GMM estimation see, e.g. Hansen (1982); Newey and McFadden (1994); Altonji and

Segal (1996); Pötscher and Prucha (1997); Windmeijer (2005); Guggenberger and Smith (2005); Newey

14

                  



and Windmeijer (2009). In addition, the constraints imposed on the parameter space Θ and described

in Online-Appendix A-6 (following from admissibility, stationarity and estimation issues) will always be

applied when QT (·) is minimized.

Let ϑ̆ abbreviate a GMM estimator of ϑ. The asymptotic distribution of
√
T
(
ϑ̆− ϑ

)
is a normal

distribution with mean vector 0p and the asymptotic covariance matrix V, where V =
(
H′Λ−1H

)−1
,

H = E
(
Dϑh(t) (ϑ; ỹt)

)
∈ Rq×p, Dϑh(t) (ϑ; ỹt) ∈ Rq×p is a matrix of partial derivatives of h(t) (ϑ; ỹt)

and Λ ∈ Rq×q is the long run covariance matrix of h(t) (ϑ; ỹt) (see, e.g., Phillips and Hansen, 1990).

A first attempt to estimate the p × p covariance matrix V is the “standard GMM covariance matrix

estimate” (see, e.g. Ruud, 2000, Chapters 21 and 22):

V̂T =
(
Ĥ′T Λ̂−1

T ĤT

)−1
∈ Rp×p , where

ĤT =
1

T − 1

T∑

t=2

Dϑh(t)

(
ϑ̆; ỹt

)
∈ Rq×p , Λ̂T = Γ̂T,0 +

T−1∑

j=1

k

(
j

B

)(
Γ̂T,j + Γ̂′T,j

)

and

Γ̂T,j =
1

T

T∑

t=j+1

h(t)

(
ϑ̆; ỹt

)
h(t)

(
ϑ̆; ỹt

)′
∈ Rq×q, (11)

where k
(
j
B

)
is a kernel function with bandwidth B. In our application we use the Bartlett-kernel and

set B equal to the next smallest integer of 4 ·
(
T

100

)2/9 ≈ 5.7 for T = 500 (see, e.g. Newey and West,

1987, 1994). Note that matrices of dimension p× p (with p ≥ 23) have to be inverted in (11) and partial

derivatives in matrix Dϑh(t)

(
ϑ̆; ỹt

)
have to be derived numerically. Hence, estimating covariance matrix

V by means of (11) can be numerically demanding. In addition, ĤT as well as Λ̂T also depend on y1:T ,

and therefore are subject to the variation of the finite samples.

To calculate the GMM distance function QT (·), see (10), the continuous updating estimator (CUE)

of ϑ is used. With the CUE estimator we run an iterative procedure, where in each iteration step m,

m = 1, . . . , M, we commute between (i) augmenting the “parameter-estimate” to ϑ̆(m) with respect to QT (·)

given CT and (ii) updating CT =
(
Λ̂T

)−1
, when ϑ̆ (which occurs in Λ̂T ) is replaced by the previous

draw, ϑ̆(m), in (11). When only one draw is considered, as with the random search (described later), then

it is used to derive Λ̂T in (11). This corresponds to standard efficient GMM. For the gradient based and
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the Quasi-Bayesian estimator we also checked the impact on parameter estimation when using both the

CUE estimator and standard efficient GMM estimator (where CT follows from the first iteration step).

Here, no significant differences were observed.

To investigate the properties of the GMM distance function and parameter estimation routines, we

performed Monte Carlo experiments with simulated yields where M = 10 and T = 500. In particular, we

used the (yearly) maturities τ = {1/12, 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20} that were used also in the empirical

application presented in Section 4. In each Monte Carlo run, denoted by the subscript `, we generate the

yields {y1:T }` as follows: (i) Calculate Xt,` by means of the Euler scheme (see, e.g. Glasserman, 2003)

where the initial point X0,` is drawn from the stationary distribution of Xt,`. (ii) Generate εit,` from a

normal distribution with mean zero and variance σ2
ε = 0.0067, see Online-Appendix A-6 for description

of the choice of σ2
ε = 0.0067. The true parameter ϑ is provided either in the second column of Table 3 or

in the second column of Table 4. In Table 3 the data are generated such that θQ = 10 6= 1.5 = θP and

β̄Q 6= β̄P , while in Table 4 they are generated such that θQ = θP = 1.5 and β̄Q = β̄P .

Next, we investigate whether “undesired behavior” of the GMM distance function (e.g. multiple local

minima) plays a major role when performing parameter estimation. To do this, we generate draws ϑ(n),

n = 1, . . . , N, as follows: If the support for coordinate j is the real axis then

[ϑ(n)]j = [ϑc]j + cϑ[|ϑc|]jζ(n)
j , while

[ϑ(n)]j = exp
(

log[|ϑc|]j + cϑζ
(n)
j

)
sgn ([ϑc]j) , (12)

is used for the elements j living only on the non-positive or only on the non-negative part of the real axis.

ζ
(n)
j is iid standard normal and cϑ is the distortion parameter. Here, ϑc = ϑ and cϑ = 5. We observed

that the minima of the GMM distance function are relatively close to the true parameter values. However

a larger N, e.g. N = 5, 000, becomes necessary to obtain samples close to the true parameter value. In

addition, given simulated samples with T = 500 periods and M = 10 maturities, we plotted the GMM

distance function QT (ϑ; y1:T ) against the i-th coordinate of ϑ while keeping the other coordinates fixed

at the true parameter values. For some parameters we observed non-convexities of the GMM distance

function. A minimum is obtained at values close but not necessarily very close to the true parameter
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value. E.g. with θQ = 1.5, minima between approximately 1 and 2 were observed for various draws.

With respect to parameters β̄Q and β̄P we observed that the GMM distance function is relatively flat in

its coordinates. This effect is even stronger with the off-diagonal elements, where also non-convexities of

QT (·) in βQij or βPij , i 6= j, can show up. These observations explain the large range and a high dispersion

of the estimates of β̄Q and β̄P . In addition, we observe that the GMM distance function is flat in the

parameters Bx12 and Bx13 (see min, max and std for βQij , β
P
ij , Bx12 and Bx13 in Tables 1 to 4). Although, we

did not observe non-convexities for parameter ϑ23 = σ2
ε , its GMM distance function is quite flat. Since the

variance of the yields is larger than σ2
ε by the model assumptions, we used the smallest sample variance

of the observed yields as an upper bound for the parameter σ2
ε (this constraint is part of the constraints

described in Online-Appendix A-6).

3.1 Parameter Estimation

In this subsection we investigate the properties of parameter estimation routines by means of Monte Carlo

experiments. We used M = 10 yields of maturities τ and the time series dimension of T = 500. The

data are simulated as described in the above paragraphs. In each Monte Carlo run `, ` = 1, . . . , L, an

estimation procedure is applied, where the true parameter ϑ is either provided in the second column of

Table 3 or in the second column of Table 4. In all Monte Carlo experiments an unrestricted model is

estimated. That is, we obtain separate estimates for θQ and θP as well as for β̄Q and β̄P , respectively.

“Standard GMM parameter” estimation: Suppose that an initial value, denoted by ϑ(n), is generated

by means of (12) with the distortion parameter cϑ being set to 0, 0.1, 0.25, 0.5 and 1 and ϑc = ϑ. Then,

ϑ(n) is used as the starting value of the MATLAB minimization routine fminsearch based on the Nelder-

Mead algorithm (see http : //www.mathworks.de/de/help/matlab/ref/fminsearch.html). We observe

that the parameters can be estimated easily by means of this standard minimization tool when cϑ ≤ 0.25,

i.e. when the optimization is started sufficiently close to the true parameter ϑ. However, the parameter

estimation with cϑ = 0.5 or cϑ = 1 becomes a difficult problem.

Random Search (part I): To cope with this problem we apply a multi-start random search method

(see, e.g. Törn and Zilinskas, 1989). That is, parameter estimation is started with the random draws
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ϑ(n), where n = 1, . . . , N = 1, 000. Each ϑ(n) is from Θ and the draws outside Θ are skipped. The

samples ϑ(n) are generated in the same way as in (12) with distortion parameter cϑ = 1 and ϑc = ϑ.

Our parameter estimate ϑ̂ is provided by the ϑ(n) resulting in the smallest GMM distance function (10).

We also force our multi-start random search routine to generate samples such that
(
θQ
)(n)

=
(
θP
)(n)

as well as
(
θQ
)(n) 6=

(
θP
)(n)

for both experiments presented in Tables 3 and 4, respectively. The same

procedure is also applied to
(
β̄Q
)(n)

and
(
β̄P
)(n)

. A further alternative to obtain an estimate of ϑ is

to follow the suggestions of Chernozhukov and Hong (2003) and use the draws from an ergodic Markov

Chain, ϑ(m), m = 1, 2, . . . , M. In particular, adaptive MCMC was applied (see, e.g., Andrieu and Thoms,

2008; Roberts and Rosenthal, 2009) as described in Online-Appendix A-7 in more detail. We denote the

estimate obtained by the adaptive MCMC procedure by ϑ̃. Note, however, that the main advantage of

adaptive MCMC seems to be for inference, namely when estimating covariance matrices for the Wald type

test. For example, see Table A-10 in Online-Appendix A-7, where the Wald test statistics were calculated

using “standard” estimates of asymptotic covariance matrix and Table 5 where the Wald test statistics

were obtained using adaptive MCMC approach.

Our results suggest (see Tables A-2 to A-9 in the Online-Appendix) that the numerical minimization

routine based on the Nelder-Mead algorithm, where ϑ(n) with the smallest GMM distance function from

multi-start random search method is used as the starting value, does not improve the properties of the

estimation routine. The best results are obtained either with the estimator ϑ̃, where first multi-start

random search and then adaptive MCMC methods are used, or with the estimator ϑ̂, where only multi-

start random search is applied.

A further alternative to this approach is to start the Bayesian sampler at some initial value described

by equation (12) and then check whether the draws obtained by the sampler cluster around the true

parameter ϑ. Here we observe that the convergence of the chain is slow and thus we do not get close to

ϑ in reasonable time. The exception is a sampler started sufficiently close to the true parameter. Hence,

we first apply random search methods to obtain ϑ̂ and then run – if necessary – the Bayesian sampler

started at ϑ̂ (e.g. to obtain standard errors as demonstrated in the following Section 3.2). Thus, the two

step optimization approach as used in Monfort et al. (2015) (where they maximize the likelihood) is very
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similar to ours, where we minimize the GMM distance function.

To compare the performance of estimators ϑ̂ and ϑ̃, we calculate estimates of (the absolute value

of) their bias and of the root means squared error (RMSE), which are presented in columns 3 to 6 of

Tables 1 and 2. Here the bias, |E
(
ϑ̂i − ϑi

)
|, is estimated with |ϑ̂i − ϑi| =

∣∣∣1L
∑L

`=1 ϑ̂`i − ϑi
∣∣∣ and RMSE,

√
E
(
ϑ̂i − ϑi

)2
, is estimated with

√
sdt
(
ϑ̂i − ϑi

)2
+ |ϑ̂i − ϑi|2, where std denotes the sample standard

deviation. For those coordinates i where ϑ̃i is not better than ϑ̂i, the performance of ϑ̃i is not much worse

than for its competitor ϑ̂i (here, “better” means that bias and RMSE are smaller for more coordinates

of ϑ̃ than for ϑ̂). From the estimates ϑ̃`, ` = 1, . . . , L = 250, we obtain the sample mean, minimum

(min), maximum (max), standard deviation (std), skewness (skew) and excess-kurtosis (kurt). These

descriptive statistics are reported in columns 3 to 8 in Tables 3 and 4.

Random Search (part II): The above results also indicate that either a lot of draws, N, or a “good guess”

about the true parameter value are necessary when performing parameter estimation. To investigate this

claim we set ϑc = ϑ and use 5,000 draws where cϑ = 5 or cϑ = 10 and for a small number of draws (namely

10 draws) we apply cϑ = 0.01. We observe that the smallest GMM distance functions was obtained for

draws with cϑ = 0.01. However, by excluding the draws based on cϑ = 0.01 and only working with

relatively large cϑ, good parameter estimates require a high number of draws, in particular, 5,000 and

more. Hence, from this analysis we conclude that parameter estimation either demands for a “(very) good

guess” of the location of parameter ϑ or a high number of search steps. We call a scenario where the

econometrician knows the location of true ϑ with a very high probability as the strong prior information

scenario (i.e., ϑc = ϑ and cϑ ≤ 1). On the other hand, the scenario, where a set Θ0 ⊂ Rp is sufficiently

large (i.e., much larger than the set effectively covered by the procedure using pseudo-random numbers

described in part I) and ϑ ∈ Θ0, is referred to as the weak prior information scenario. Appendix A-7

provides more details on our choice of Θ0 and ϑc. The implementation of the weak prior information

scenario is as follows: Let ϑ(o) denote some element ∈ Θ0. A grid with e.g. 100 intervals per parameter on

Θ0, results in 10023 values ϑ(o) where the GMM distance function has to be evaluated. This is definitely

too costly from a computational point of view. By contrast, we observed surprisingly good results when

generating N0 = 200, 000 uniformly distributed draws ϑ(o) from Θ0, and then taking the mean of the 100
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draws with the smallest GMM distance function ϑ̂Step 0 (note that, N0 is sufficiently large such that all of

these 100 draws of ϑ(o) satisfy the constraints imposed in Appendix A-6, i.e. these draws are also contained

in Θ). Next we proceed with N = 2, 000 normally distributed samples using (12), where ϑc = θ̂Step 0 and

cϑ = 1. Finally the Quasi-Bayesian sampler is applied. Estimates based on N0 + N random search steps

are abbreviated by ϑ̂, while estimates based on N0 +N random search steps and M quasi-Bayesian steps are

denoted ϑ̃. Estimates and further descriptive statistics based on the weak prior information are presented

in the columns 7 to 10 in Tables 1 and 2 as well as in the last four columns of Tables 3 and 4. First,

we observe that the performance of the Bayesian estimate ϑ̃ is slightly better than ϑ̂. However, these

differences are small. By comparing the estimates with strong prior information to the scenario with weak

prior information, we observe that the biases and the RMSEs increase sharply. The effects are more

pronounces when θQ 6= θP and β̄Q 6= β̄P . We observe that especially the off-diagonal parameters of β̄Q

and β̄P as well as the parameters Bx12 and Bx13 are difficult to estimate. These results are hardly a surprise

given the analysis of the GMM distance function already provided in this section, where we observe that

the GMM distance function is flat in βQij or βPij , i 6= j, as well as in the parameters Bx12 and Bx13.

3.2 Inference

To test for parameter restrictions, let ϑ̆ and V̆T denote GMM-based estimates of ϑ and V and assume

that the null hypothesis consists of rp restrictions. Suppose that these restrictions are described by a twice

continuously differential function r(ϑ) : Rp → Rrp and the rp × p matrix of partial derivatives

R = Dϑr(ϑ̆) =




∂r1(ϑ̆)
∂ϑ1

· · · ∂r1(ϑ̆)
∂ϑp

· · · · · · · · ·
∂rrp (ϑ̆)

∂ϑ1
· · · ∂rrp (ϑ̆)

∂ϑp



, (13)

which has rank rp. Under the null hypothesis we have r(ϑ) = 0rp and thus the Wald-type statistic becomes

WT = Tr(ϑ̆)′
(
RV̆TR′

)−1
r(ϑ̆) , (14)
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which weakly converges to W , where W follows a χ2-distribution with rp degrees of freedom. The null

hypothesis is rejected if WT > χ2
rp,1−αS

, where αS is the significance level and χ2
rp,1−αS

is the 1 − αS

percentile of a χ2-distribution with rp degrees of freedom.

As our test statistics rely on asymptotic results, we have to investigate the finite sample properties of

our tests. Since a lot of parameters are considered and various restrictions can be constructed, we focus

now on the restrictions θQ = θP as well as β̄Q = β̄P which are often discussed in finance literature. In

particular, if the goal is to test the null hypothesis θQ = θP against the alternative θQ 6= θP , then rp = 1,

r(ϑ) = (1,−1, 0, . . . , 0)ϑ = θQ− θP and R = (1,−1, 0, . . . , 0). To test β̄Q = β̄P against β̄Q 6= β̄P , we get

R =
(
0(7×2), I7,−I7,0(7×7)

)
.

Online-Appendix A-7 (see Table A-10) demonstrates that the performance of the Wald-type test

implemented in a standard way (as well as the distance difference test) is poor (for further details see

Online-Appendix A-7). To cope with these problems, we follow the suggestions of Chernozhukov and Hong

(2003); Andrieu and Thoms (2008); Roberts and Rosenthal (2009) and use the draws from an ergodic

Markov Chain,
(
ϑ(m)

)
, to estimate the covariance matrix V (on more details see Online-Appendix A-7).

A quasi-Bayesian estimate of V, denoted by ṼT , and the parameter estimate ϑ̃ are used to obtain the

Wald-type statistic WT .

Since finance literature distinguishes between affine market prices of risk, where θQ 6= θP but β̄Q = β̄P

and extended affine market price of risk specifications, where θQ 6= θP and β̄Q 6= β̄P is allowed (as

proposed and mathematically investigated in Cheridito et al. (2007); Le et al. (2010)), we perform tests

for the null-hypothesis θQ = θP and for the null-hypothesis β̄Q = β̄P separately. Table 5 presents

simulation results (based on the Bayesian sampler) when testing the null hypothesis θQ = θP against

the alternative hypothesis θQ 6= θP as well as β̄Q = β̄P against β̄Q 6= β̄P . The data generating process

follows from the affine term structure model in equation (9), where the noise terms εti are iid normal with

mean zero and variance σ2
ε = 0.0067 (as presented in the second column of Tables 3 or 4). To investigate

the size of the Wald-type tests, we generate the data by using the (true) parameter vector presented in

the second column of Table 4. When testing the true null-hypothesis θQ = θP against the alternative

θQ 6= θP as well as β̄Q = β̄P against the alternative β̄Q 6= β̄P , we observe that the rejection rates are
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above the theoretical significance level of αS = 5% for strong prior information. In more detail, when

testing the (true) null-hypothesis θQ = θP oversizing becomes relatively high for both prior information

scenarios. When testing the (true) null-hypothesis β̄Q = β̄P , oversizing becomes relatively high for strong

prior information, while undersizing is observed for weak prior information. We claim that undersizing is

mainly caused by the difficulty to estimate the off-diagonal parameters of β̄Q and β̄P . On the other hand,

to analyze the power of the Wald-type test, we generated yields by using the (true) parameters presented

in the second column of Table 3, where θQ 6= θP as well as β̄Q 6= β̄P , and perform Wald-type tests of the

false null-hypothesis θQ = θP against θQ 6= θP as well as β̄Q = β̄P against β̄Q 6= β̄P . Here Table 5 shows

that the (false) null hypothesis is rejected in almost all simulation runs.

4 Parameter Estimation in Empirical Data

This section applies the estimator developed in the previous sections to empirical data. We use H-15

interest rate data of “Treasury constant maturity” yields on weekly frequency (measured every Friday)

from the Federal Reserve (see http://federalreserve.gov/releases/h15/data.htm). The time pe-

riod considered is August 3, 2001 to August 30, 2013. An almost full panel of maturities from one

month to twenty years is available for these periods. Thus, we have M = 10 maturities such that

τ = {1/12, 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20}, where τi is measured in years, and T = 631 observations per yield.

Note that as in our simulations the dimension is in the same ballpark, namely M = 10 and T = 500 and as

performance of the Wald-type tests on parameter restrictions using the Bayesian sampler was ‘reasonable’,

we use this Wald-type test also on our empirical data. Although the H-15 data set can only be seen as a

proxy for the risk-free term structure, we follow the related literature (see, e.g. Chib and Ergashev, 2009)

and work with this dataset.

Since we a-priori don’t know the location of the parameter in the empirical data we apply the estimation

routine designed for weak prior information. That is, we generated N0 = 200, 000 uniformly distributed

draws ϑ(o) from Θ0, followed by N = 2, 000 normally distributed samples using (12) with cθ = 1 and

ϑc = ϑ̂Step 0. Finally, adaptive MCMC is applied.

To check for the stability of our estimation routine in the empirical data, we obtained L = 5 estimates,
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each based on N0 = 200, 000 uniformly distributed draws ϑ(o), N = 2, 000 normally distributed samples and

M = 6, 000 adaptive MCMC steps (but of course using a different seed). By doing this, we observe that in

all simulation runs, ` = 1, . . . , L = 5, the intervals
[
ϑ̃`

]
ι
± SE

([
ϑ̃`

]
ι

)
overlap for ι = 1, . . . , p = 23. The

term SE
([
ϑ̃`

]
ι

)
denotes the standard error of the ι-coordinate of ϑ̃`. The standard error follows from

SE
([
ϑ̃`

]
ι

)
= 1

T 0.5 ṼT

([
ϑ̃`

]
ιι

)0.5
.

To obtain parameter estimates, the draws of the Bayesian sampler ϑ(m), m = 1001, . . . , 6000, are used

to obtain the estimate ϑ̃, which comprises θ̃Q = 5.6017, θ̃P = 0.4532, β̃Q11 = −0.1890, β̃Q21 = 0.2062,

β̃Q31 = 0.0543, β̃Q22 = −2.088, β̃Q32 = −0.4168, β̃Q23 = −0.1250, β̃Q33 = −1.6590, β̃P11 = −0.7769, β̃P21 =

0.2793, β̃P31 = 0.2412, β̃P22 = −0.6783, β̃P32 = 0.0844, β̃P23 = −0.0617, β̃P33 = −0.9461, B̃x12 = 0.4690,

B̃x13 = 0.6358, γ̃0 = 1.2030, Σ̃1 = 0.3640, Σ̃2 = 0.7797, Σ̃3 = 1.1451, σ̃2
ε = 0.0714. By means of ṼT we

obtain standard errors: SE
(
θ̃Q
)

= 0.5902, SE
(
θ̃P
)

= 0.0993, SE
(
β̃Q11

)
= 0.0462, SE

(
β̃Q21

)
= 0.1173,

SE
(
β̃Q31

)
= 0.04890, SE

(
β̃Q22

)
= 0.7100, SE

(
β̃Q32

)
= 0.2932, SE

(
β̃Q23

)
= 0.1968, SE

(
β̃Q33

)
= 0.2338,

SE
(
β̃P11

)
= 0.4452, SE

(
β̃P21

)
= 0.1374, SE

(
β̃P31

)
= 0.1535, SE

(
β̃P22

)
= 0.3565, SE

(
β̃P32

)
= 0.2822,

SE
(
β̃P23

)
= 0.3161, SE

(
β̃P33

)
= 0.5253, SE

(
B̃x12

)
= 0.3182, SE

(
B̃x13

)
= 0.2809, SE (γ̃0) = 0.0993,

SE
(

Σ̃1

)
= 0.1164, SE

(
Σ̃2

)
= 0.4723, SE

(
Σ̃3

)
= 0.2321, SE

(
σ̃2
ε

)
= 0.03562.

Following mathematical finance literature (see, e.g. Cheridito et al., 2007; Cochrane, 2005), a usual

way to investigate how the market demands for a compensation for the risk generated by WP (t) (risk

premium), is to consider the market price of risk process (φ(X(t)))t≥0. This process depends on the model

parameters ϑ. If bQ = bP and β̄Q = β̄P , then φ(X(t)) = 0d. In terms of the parametrization used in

this article, φ(X(t)) = 0d if θQ = θP and β̄Q = β̄P , while if θQ 6= θP or β̄Q 6= β̄P , then φ(X(t)) 6= 0d

(almost surely). In the following we test whether this is the case.

By considering the estimates θ̃Q and θ̃P and their estimated standard errors SE
(
θ̃Q
)

and SE
(
θ̃P
)

,

respectively, we observe that the difference in the parameter estimates is relatively large, compared to

their estimated standard deviations. We obtained the Wald statistic WT with p-value being approximately

< 0.0001. Based on this, the null hypothesis θQ = θP is rejected at the αS = 0.01 significance level for

this empirical dataset.

Next, we test the null hypothesis β̄Q = β̄P against the alternative hypothesis β̄Q 6= β̄P , where β̄·
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contains seven parameters. By estimating β̄Q − β̄P and its covariance matrix from Monte Carlo output,

we obtain the Wald statistic WT with a corresponding p-value of < 0.01. That is, here the null hypothesis

β̄Q = β̄P is rejected on usual significance levels. Summing up, by these results the market price of risk

process is significantly different from zero.

5 Conclusions

In this article we developed a new method allowing for parameter estimation based on the exact moments

of the yields for affine term structure models. By applying the results of Cuchiero et al. (2012) on

p−polynomial processes the conditional moments are derived. By assuming a stationary process, we

obtain the exact moments of the yields as well as the first order auto-covariance of the yields and the

squared yields. By means of these moments, the model parameters can be estimated by the generalized

method of moments.

Since the number of parameters is relatively large and the moments are non-linear in the model

parameters, the implementation of the generalized method of moments becomes a non-trivial problem.

We observe that standard minimization routines perform poorly. To cope with this problem, we use multi-

start random search methods combined with Quasi-Bayesian methods, as proposed in Chernozhukov and

Hong (2003), to estimate the model parameters as well as the asymptotic covariance matrix and to perform

inference.

Another main contribution of this article is a rigorous investigation of the testing problem, whether

parameters controlling for the mean of the latent affine process in the empirical and in the equivalent

martingale measure are different. We observe substantial undersizing, when implementing a Wald-type

test based on standard estimates of the covariance matrix of the unknown parameter. However, by applying

Quasi-Bayesian methods to obtain the standard errors of the corresponding components of the parameter

vector we observe then that the rejection rates of the true null hypothesis are close to theoretically correct

levels.

In a final step, our estimation methodology is applied to empirical term structure data. By applying

the testing procedure proposed in this article, the null hypothesis of equal parameters controlling for the
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mean of the latent affine process, in the empirical as well as in the equivalent martingale measure, is

rejected. Our estimates thus support the presence of a significant market price of risk.
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“Strong Prior Information” “Weak Prior Information”
Bias RMSE Bias RMSE

ϑ |ϑ̂i − ϑi| |ϑ̃i − ϑi| R̂MSEi R̃MSEi |ϑ̂i − ϑi| |ϑ̃i − ϑi| R̂MSEi R̃MSEi
θQ 10 0.1105 0.1627 0.9514 0.1845 0.0211 0.3163 1.0371 1.0970
θP 1.5 0.0080 0.0474 0.0805 0.2644 0.1496 0.2545 0.6153 0.5832

βQ11 -5 0.0020 0.0650 0.4758 0.3509 0.3238 0.1243 2.6409 1.8208

βQ21 2 0.0206 0.0160 0.2002 0.1095 0.1165 0.2741 0.9522 0.9750

βQ31 1 0.0060 0.0119 0.1008 0.1027 1.1174 0.9503 1.1889 1.0715

βQ22 -5 0.0204 0.0490 0.4374 0.1967 0.6856 1.1203 2.2239 2.1613

βQ32 2 0.0290 0.0399 0.1968 0.1107 1.8284 1.6069 1.6884 1.5597

βQ23 4 0.0391 0.0338 0.4059 0.2148 3.6090 3.3463 1.7212 1.7389

βQ33 -5 0.0378 0.0957 0.4473 0.2087 0.5098 1.0133 2.0426 2.1011
βP11 -0.8 0.0017 0.3418 0.1615 0.4725 0.5066 0.4081 0.5279 0.4168
βP21 0.02 0.0000 0.3049 0.0042 0.3699 0.2351 0.2167 0.2551 0.0836
βP31 0.01 0.0000 0.2024 0.0021 0.2494 0.2505 0.2346 0.2721 0.1156
βP22 -0.7 0.0034 0.3739 0.1414 0.5491 0.3178 0.3426 0.4883 0.4101
βP32 0.01 0.0001 0.2818 0.0020 0.5096 0.0005 0.0140 0.1838 0.2118
βP23 0 0.0001 0.1526 0.0021 0.4069 0.0130 0.0058 0.1797 0.2068
βP33 -0.7 0.0005 0.3825 0.1438 0.5546 0.3487 0.3326 0.5022 0.4240
Bx12 0.05 0.0001 0.2460 0.0103 0.3210 0.4575 0.4472 0.4744 0.2148
Bx13 0.1 0.0004 0.1702 0.0206 0.2394 0.3929 0.3540 0.4120 0.2316
γ0 2 0.0669 0.0192 0.4199 0.1929 0.6067 0.4819 0.7790 0.7035
Σ1 0.7 0.0045 0.0140 0.0343 0.0890 0.0833 0.0660 0.2377 0.2863
Σ2 1 0.0012 0.1605 0.0682 0.2362 0.1172 0.1889 0.2555 0.3078
Σ3 0.8 0.0022 0.0522 0.0505 0.1573 0.0541 0.0034 0.2477 0.3035
σ2
ε 0.0067 0.0002 0.0008 0.0004 0.0006 0.0024 0.0026 0.0011 0.0005

Table 1: Comparison of parameter estimates for the A1(3) model: (i) multi-start random search only, ϑ̂, and (ii) multi-start

random search and MCMC, ϑ̃. Data are simulated with M = 10, T = 500, θQ 6= θP and β̄Q 6= β̄P . N0 = 200, 000 initial
search steps for weak prior information. N = 1, 000 with strong prior information and N = 2, 000 with weak prior information,

cϑ = 1. M = 6, 000 Quasi-Bayesian steps; 1,000 burn in steps. R̂MSE denotes estimates of the RMSE based on (only) the

multi-start random search parameter estimates and R̃MSE denotes estimates of the RMSE based on multi-start random
search and MCMC parameter estimates. Statistics for ϑ̂ and ϑ̃ are obtained from L = 250 simulation runs.
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“Strong Prior Information” “Weak Prior Information”
Bias RMSE Bias RMSE

ϑ |ϑ̂i − ϑi| |ϑ̃i − ϑi| R̂MSEi R̃MSEi |ϑ̂i − ϑi| |ϑ̃i − ϑi| R̂MSEi R̃MSEi
θQ 1.5 0.0076 0.0494 0.2557 0.3066 0.1901 0.1541 0.6617 0.6122
θP 1.5 0.0057 0.0334 0.2256 0.3816 0.1629 0.1278 0.6449 0.6489

βQ11 -0.8 0.0908 0.0806 0.5344 0.4756 0.1321 0.1490 0.6558 0.6705

βQ21 0.02 0.0012 0.0471 0.0185 0.1172 0.2321 0.2779 0.2780 0.2133

βQ31 0.01 0.0001 0.0479 0.0038 0.1423 0.2450 0.2909 0.3222 0.2712

βQ22 -0.7 0.0212 0.0599 0.1357 0.2606 0.3343 0.3783 0.6658 0.6448

βQ32 0.01 0.0002 0.0088 0.0029 0.1074 0.0390 0.0280 0.3267 0.3590

βQ23 0 0.0003 0.0041 0.0030 0.0657 0.0414 0.0501 0.3680 0.3837

βQ33 -0.7 0.0212 0.0367 0.1354 0.1909 0.3682 0.4003 0.6221 0.6175
βP11 -0.8 0.0728 0.3100 0.5140 0.6540 0.1242 0.3261 0.5033 0.4423
βP21 0.02 0.0014 0.2125 0.0153 0.3222 0.2298 0.2195 0.2726 0.0852
βP31 0.01 0.0016 0.2089 0.0165 0.3169 0.2269 0.2211 0.2677 0.0825
βP22 -0.7 0.0069 0.2450 0.1915 0.4709 0.3110 0.4494 0.4778 0.4125
βP32 0.01 0.0002 0.1630 0.0029 0.4081 0.0270 0.0431 0.2704 0.2123
βP23 0 0.0002 0.0769 0.0026 0.3435 0.0239 0.0237 0.2699 0.2089
βP33 -0.7 0.0014 0.2164 0.1840 0.4389 0.3658 0.4924 0.5153 0.4140
Bx12 0.05 0.0063 0.1661 0.0698 0.2583 0.4249 0.3894 0.5086 0.2128
Bx13 0.1 0.0010 0.1565 0.0287 0.2682 0.3989 0.3469 0.4874 0.2173
γ0 2 0.0253 0.0033 0.2864 0.4574 0.1135 0.1418 0.7657 0.7510
Σ1 0.7 0.0101 0.0533 0.0891 0.1620 0.0313 0.0400 0.2934 0.2670
Σ2 1 0.0133 0.0279 0.1287 0.2189 0.1522 0.1392 0.3768 0.3399
Σ3 0.8 0.0129 0.0076 0.0878 0.1531 0.0993 0.0831 0.3533 0.3255
σ2
ε 0.0067 0.0001 0.0008 0.0011 0.0015 0.0002 0.0002 0.0029 0.0016

Table 2: Comparison of parameter estimates for the A1(3) model: (i) multi-start random search only, ϑ̂, and (ii) multi-start

random search and MCMC, ϑ̃. Data are simulated with M = 10, T = 500, θQ = θP and β̄Q = β̄P . N0 = 200, 000 initial
search steps for weak prior information. N = 1, 000 with strong prior information and N = 2, 000 with weak prior information,

cϑ = 1. M = 6, 000 Quasi-Bayesian steps; 1,000 burn in steps. R̂MSE denotes estimates of the RMSE based on (only) the

multi-start random search parameter estimates and R̃MSE denotes estimates of the RMSE based on multi-start random
search and MCMC parameter estimates. Statistics for ϑ̂ and ϑ̃ are obtained from L = 250 simulation runs.
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“Strong Prior Information” “Weak Prior Information”
ϑ mean min max sdt skew kurt mean min max sdt skew kurt

ϑ̃ ϑ̃

θQ 10 9.837 9.711 10.380 0.177 0.485 -0.628 9.684 7.205 12.320 1.057 -0.257 -0.415
θP 1.5 1.453 0.752 1.961 0.259 -0.986 1.109 1.754 0.282 3.452 0.574 0.122 -0.107

βQ11 -5 -4.935 -5.853 -4.488 0.344 -0.765 0.130 -5.124 -9.808 -2.617 1.810 -1.082 0.383

βQ21 2 1.984 1.700 2.207 0.109 -0.158 -0.388 1.726 0.084 4.774 0.962 1.333 1.927

βQ31 1 0.988 0.775 1.256 0.103 -0.121 -0.203 1.950 0.053 4.746 1.058 0.878 0.030

βQ22 -5 -4.951 -5.490 -4.503 0.195 0.212 0.008 -3.880 -9.876 -0.219 2.117 -1.359 1.295

βQ32 2 1.960 1.747 2.216 0.110 -0.010 -0.012 0.393 -4.737 4.923 1.544 0.226 1.654

βQ23 4 3.966 3.579 4.501 0.215 -0.078 -0.129 0.654 -4.766 9.310 1.719 0.906 5.904

βQ33 -5 -4.904 -5.522 -4.501 0.200 -0.080 0.305 -3.987 -9.875 -0.194 2.040 -1.111 0.546
βP11 -0.8 -1.142 -1.837 -0.489 0.328 -0.299 -0.563 -1.208 -1.921 -0.291 0.405 0.560 -0.569
βP21 0.02 0.325 0.022 0.932 0.209 1.073 0.793 0.237 0.039 0.441 0.082 -0.030 -0.581
βP31 0.01 0.212 0.013 0.965 0.146 2.485 9.632 0.245 0.005 1.172 0.115 4.178 32.937
βP22 -0.7 -1.074 -1.954 -0.416 0.405 -0.194 -0.972 -1.043 -1.862 -0.046 0.409 0.116 -0.540
βP32 0.01 -0.272 -1.093 1.097 0.425 0.786 0.915 0.024 -0.394 0.432 0.211 -0.027 -0.988
βP23 0 -0.153 -0.902 0.769 0.377 -0.084 -0.198 -0.006 -0.421 0.393 0.207 -0.082 -0.803
βP33 -0.7 -1.083 -2.830 -0.278 0.401 -0.911 4.061 -1.033 -2.698 -0.018 0.424 -0.252 1.211
Bx12 0.05 0.296 0.053 0.951 0.206 1.622 2.424 0.497 0.071 0.972 0.215 0.153 -0.791
Bx13 0.1 0.270 0.061 0.797 0.169 1.088 0.316 0.454 0.037 0.928 0.228 0.102 -0.951
γ0 2 1.981 1.616 2.401 0.187 -0.268 -0.462 1.518 0.507 3.815 0.692 0.867 0.234
Σ1 0.7 0.686 0.481 0.867 0.088 -0.434 0.528 0.634 0.262 1.447 0.244 0.546 0.665
Σ2 1 0.839 0.608 1.190 0.174 0.417 -1.119 0.811 0.300 1.477 0.299 0.077 -0.913
Σ3 0.8 0.748 0.557 1.109 0.149 0.728 -0.318 0.803 0.147 1.458 0.299 0.124 -0.783
σ2
ε 0.0067 0.006 0.006 0.007 0.000 0.294 0.010 0.004 0.002 0.006 0.000 -0.454 3.464

Table 3: Parameter estimates ϑ̃ for the A1(3) based on multi-start random search and M = 6, 000 Quasi-Bayesian steps. Data

are simulated with M = 10, T = 500, θQ 6= θP and β̄Q 6= β̄P . N = 1, 000 with strong prior information and N = 2, 000 with
weak prior information, cϑ = 1. N0 = 200, 000 initial search steps for weak prior information. Statistics are obtained from
L = 250 simulation runs. mean, min, max, std, skew and kurt stand for the sample mean, minimum, maximum, standard
deviation, skewness and excess-kurtosis of the point estimates ϑ̃`, ` = 1, . . . , L. The true parameter values ϑ are reported in
the second column.
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“Strong Prior Information” “Weak Prior Information”
ϑ mean min max sdt skew kurt mean min max sdt skew kurt

ϑ̃ ϑ̃

θQ 1.5 1.451 0.403 3.684 0.304 0.995 15.250 1.346 0.364 4.469 0.611 1.129 2.317
θP 1.5 1.467 0.277 3.684 0.381 1.033 7.747 1.372 0.255 3.140 0.648 0.500 -0.266

βQ11 -0.8 -0.881 -3.805 -0.205 0.476 -3.946 17.470 -0.949 -8.173 -0.098 0.670 -5.289 53.276

βQ21 0.02 0.067 0.002 0.770 0.108 4.079 19.435 0.298 0.012 1.670 0.208 2.077 8.849

βQ31 0.01 0.058 0.001 1.437 0.134 7.909 73.170 0.301 0.008 2.105 0.267 3.208 16.716

βQ22 -0.7 -0.760 -2.540 -0.241 0.258 -4.134 21.712 -1.078 -6.613 -0.155 0.643 -3.119 21.438

βQ32 0.01 0.001 -0.901 0.264 0.107 -5.480 42.218 -0.018 -2.876 1.266 0.359 -1.942 15.415

βQ23 0 -0.004 -0.378 0.266 0.066 -1.150 7.583 0.050 -0.938 3.935 0.384 4.008 41.255

βQ33 -0.7 -0.737 -2.188 -0.242 0.190 -4.021 24.057 -1.100 -6.042 -0.212 0.617 -2.458 15.419
βP11 -0.8 -1.110 -5.404 -0.181 0.609 -2.986 13.686 -1.126 -2.319 -0.362 0.393 -0.019 -0.617
βP21 0.02 0.233 0.002 1.303 0.243 1.455 2.420 0.239 0.013 0.471 0.085 0.149 0.579
βP31 0.01 0.219 0.001 1.221 0.240 1.500 2.238 0.231 0.010 0.482 0.082 0.100 0.910
βP22 -0.7 -0.945 -3.119 -0.211 0.398 -1.896 5.786 -1.149 -1.956 -0.346 0.389 0.107 -1.054
βP32 0.01 -0.153 -1.898 0.874 0.374 -1.372 4.139 -0.033 -0.445 0.466 0.212 0.342 -0.507
βP23 0 -0.077 -1.020 1.010 0.335 0.097 1.252 -0.024 -0.468 0.468 0.203 0.275 -0.535
βP33 -0.7 -0.916 -2.203 -0.173 0.383 -1.138 0.867 -1.192 -1.955 -0.208 0.394 0.230 -0.754
Bx12 0.05 0.216 0.017 1.262 0.203 1.965 5.315 0.439 0.021 0.965 0.210 0.130 -0.582
Bx13 0.1 0.256 0.011 1.141 0.219 1.765 2.758 0.447 0.031 1.021 0.211 0.167 -0.310
γ0 2 2.003 -1.285 3.787 0.457 -1.297 13.969 2.142 0.583 3.964 0.750 0.061 -0.503
Σ1 0.7 0.647 0.090 1.176 0.156 -0.730 1.513 0.660 0.253 1.471 0.267 0.948 0.378
Σ2 1 0.972 0.170 3.280 0.218 5.604 58.796 0.861 0.258 1.478 0.340 0.093 -1.227
Σ3 0.8 0.808 0.361 2.311 0.153 4.510 38.857 0.883 0.270 1.489 0.325 0.041 -0.998
σ2
ε 0.0067 0.008 0.005 0.013 0.001 1.418 2.734 0.007 0.002 0.015 0.002 1.330 4.028

Table 4: Parameter estimates ϑ̃ for the A1(3) based on multi-start random search and M = 6000 Quasi-Bayesian steps. Data

are simulated with M = 10, T = 500, θQ = θP and β̄Q = β̄P . N = 1, 000 with strong prior information and N = 2, 000 with
weak prior information, cϑ = 1. N0 = 200, 000 initial search steps for weak prior information Statistics are obtained from
L = 250 simulation runs. mean, min, max, std, skew and kurt stand for the sample mean, minimum, maximum, standard
deviation, skewness and excess-kurtosis of the point estimates ϑ̃`, ` = 1, . . . , L. The true parameter values ϑ are reported in
the second column.

H0: θQ = θP β̄Q = β̄P

DGP θQ 6= θP θQ = θP θQ 6= θP θQ = θP

βQ 6= βP βQ = βP βQ 6= βP βQ = βP

Prior Information Strong Weak Strong Weak Strong Weak Strong Weak

Rejection Rate 1.000 1.000 0.140 0.068 1.000 1.000 0.080 0.024

Table 5: Parameter tests based on the Wald-type test (14): WT obtained by means the estimate ϑ̃ and the Quasi-Bayesian

estimate ṼT . The quantities presented are rejection rates of the null hypothesis presented in the first row given significance
level αS = 5%. The data generating process (DGP) is simulated with M = 10, T = 500 and cθ = 1. The ‘true’ parameters
are provided in the second column of Table 3 for the θQ 6= θP and β̄Q 6= β̄P case, while for the θQ = θP and β̄Q = β̄P case
the ‘true’ parameters are provided in the second column of Table 4. Tests on the null hypothesis θQ = θP against the two
sided alternative hypothesis θQ 6= θP are provided in columns 2-3 (power) and 4-5 (size) and tests on the null hypothesis
β̄Q = β̄P against the two sided alternative hypothesis β̄Q 6= β̄P are provided in columns 6-7 (power) and 8-9 (size). Statistics
are obtained from L = 250 simulation runs.
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Frühwirth-Schnatter, S. and Geyer, A. (1996). Bayesian estimation of economemtric multi-factor cox-

ingersoll-ross-models of the term structure of interest rates via MCMC methods. Working paper, Vienna

University of Economics and Business.

31

                  



Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied

Probability, No. 53, Springer, New York.

Glasserman, P. and Kim, K.-K. (2010). Moment Explosions and Stationary Distributions in Affine Diffu-

sion Models. Mathematical Finance, 20(1):1–33.

Grasselli, M. and Tebaldi, C. (2008). Solvable affine term structure models. Mathematical Finance,

18(1):135–153.

Guggenberger, P. and Smith, R. J. (2005). Generalized empirical likelihood estimators and tests under

partial, weak, and strong identification. Econometric Theory, null:667–709.

Hamilton, J. D. and Wu, J. C. (2012). Identification and estimation of Gaussian affine term structure

models. Journal of Econometrics, 168(2):315 – 331.

Hamilton, J. D. and Wu, J. C. (2014). Testable implications of affine term structure models. Journal of

Econometrics, 178:231 – 242. Recent Advances in Time Series Econometrics.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica,

50(4):1029–1054.

Jones, C. S. (2003). Nonlinear mean reversion in the short-term interest rate. The Review of Financial

Studies, 16(3):793–843.

Joslin, S., Le, A., and Singleton, K. J. (2013). Why gaussian macro-finance term structure models are

(nearly) unconstrained factor-vars. Journal of Financial Economics, 109(3):604 – 622.

Joslin, S., Singleton, K. J., and Zhu, H. (2011). A new perspective on gaussian dynamic term structure

models. The Review of Financial Studies, 24:926–970.

Le, A., Singleton, K. J., and Dai, Q. (2010). Discrete-time affineq term structure models with generalized

market prices of risk. Review of Financial Studies, 23(5):2184–2227.

Monfort, A., Renne, J.-P., and Roussellet, G. (2015). A Quadratic Kalman Filter. Journal of Econometrics,

187(1):43–56.

32

                  



Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Hand-

book of econometrics, Vol. IV, volume 2 of Handbooks in Econom., pages 2111–2245. North-Holland,

Amsterdam.

Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocor-

relation consistent covariance matrix. Econometrica, 55(3):pp. 703–708.

Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The

Review of Economic Studies, 61(4):pp. 631–653.

Newey, W. K. and Windmeijer, F. (2009). Generalized method of moments with many weak moment

conditions. Econometrica, 77(3):687–719.

Phillips, P. C. B. and Hansen, B. E. (1990). Statistical inference in instrumental variables regression with

I(1) processes. Review of Economic Studies, 57(1):99–125.

Piazzesi, M. (2010). Affine Term Structure Models. In Y. Aı̈t-Sahalia and L. Hansen (Eds.), Handbook

of Financial Econometrics, North-Holland, Amsterdam.

Pötscher, B. M. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models, Asymptotic Theory.

Springer, New York.

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of Adaptive MCMC. Journal of Computational

and Graphical Statistics, 18(2):349–367.

Ruud, P. A. (2000). An Introduction to Classical Econometric Theory. Oxford University Press, New

York.

Stanton, R. (1997). A nonparametric model of term structure dynamics and the market price of interest

rate risk. Journal of Finance, 52(5):1973–2002.

Törn, A. and Zilinskas, A. (1989). Global Optimization. Lecture Notes in Computer Science 350. Springer.

Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics,

5:177–188.

33

                  



Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM

estimators. Journal of Econometrics, 126(1):25–51.

Zhou, H. (2001). Finite sampler properties of EMM, GMM, QMLE, and MLE for a square-root interest

rate diffusion model. Journal of Computational Finance, 5:89–122.
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