

Risk-based Selection of Mitigation Strategies for Cybersecurity of Electric Power Systems

Alessandro Mancuso^{1,2}, <u>Piotr Żebrowski³</u> and Aitor Couce Vieira⁴

¹Politecnico di Milano (Italy),

²Aalto University (Finland),

³International Institute for Applied Systems Analysis,

⁴Institute of Mathematical sciences (Spain)

SRA-E 2019 conference 26 June 2019, Potsdam

Outline

- Introduction
- Standard practice and its deficiencies
- Probabilistic multi-dimensional risk assessment
- Portfolio optimization
- Summary

Introduction

Motivation:

- Extensive reliance on IT systems makes electric power grids vulnerable to cyber threats
- Impacts could be massive: cyber attack on Ukraininan power grids in 2015 resulted in power outage for 225 000 customers lasting up to six hours

Objective:

Selection of the **optimal portfolios of security measures** that reduce the susceptibility of power grids to cyber attacks.

Standard practice: a cyber threat scenario (Attack tree) as basic unit of analysis

Figure 1 Graphical Notation for Annotated Attack Tree Format

Source: Lee, A., 2015. Analysis of selected electric sector high risk failure scenarios. National Electric Sector Cybersecurity Organization Resource (NESCOR) Technical Working Group 1.

26 June 2019

Standard practice: impact assessment

- 14 impact criteria (dimensions)
- Score values in set {0, 1, 3, 9}
- Composite impact score $\sum_{k=1}^{14} IS_k$

Source: Lee, A., 2015. Electric sector failure scenarios and impact analyses. National Electric Sector Cybersecurity Organization Resource (NESCOR) Technical Working Group 1.

Impact criterion	Scoring system			
Public safety concern	0: none; 1: 10-20 injuries possible;			
	3: 100 injured possible; 9: one death possible.			
Workforce safety concern	0: none; 3: any possible injury; 9: any possible death.			
Ecological concern	0: none; 1: logical ecological damage such as localized fire or spill,			
	repairable; 3: permanent local ecological damage; 9: widespread			
	temporary or permanent damage to one or more ecosystems.			
Financial impact of	0: petty cash or less; 1: up to 2% of utility			
compromise on utility	revenue; 3: up to 5 %; 9: greater than 5 %.			
Restoration costs	0: petty cash or less; 1: up to 1% of utility organization			
	O&M budget; 3: up to 10%; 9: greater than 10%.			
Negative impact on	0: no effect; 1: small generation facility off-line or degraded operation of			
generation capacity	large facility; 3: more than 10% loss of generation capacity for 8 hours or			
	less; 9: more than 10% loss of generation capacity for more than 8 hours.			
Negative impact on the	0: no effect; 1: localized price manipulation, lost transactions, loss of			
energy market	market participation; 3: price manipulation. lost transactions, loss of			
	market participation impacting a large metro area; 9: market or key			
	aspects of market non operational.			
Negative impact on the	0: no; 1: loss of transmission capability to meet peak demand or			
bulk transmission system	isolate problem areas; 3: major transmission system interruption;			
	9: complete operational failure or shut down of the transmission system.			
Negative impact on	0: no; 1: up to 4 hour delay in customer ability to contact utility and gain			
customer service	resolution, lasting one day; 3: up to 4 hour delay in customer ability to			
	contact utility and gain resolution, lasting a week; 9: complete operational			
NT I I I	failure of shut-down of the transmission system.			
Negative impact on	0: none; 1: isolated recoverable errors in customer bills; 3: widespread but			
billing runctions	correctible errors in bills; 9: widespread loss of accurate power usage data.			
Damage to goodwill	0: no effect; 1: negative publicity but this does not cause financial loss to			
toward utility	utility; 3: negative publicity causing up to 20% less interest in programs;			
In the second second	9: hegative publicity causing more than 20% less interest in programs.			
Immediate macro	u: none; 1: local businesses down for a week; 3: regional infrastructure			
economic damage	damage; 9: widespread runs on banks.			
Long term	0: none; 3: several years of local recession;			
economic damage	9: several years or hational recession.			
Loss of privacy	0: none; 1: 1000 or less individuals; 3: thousands or individuals;			
	9: millions of individuals.			

Standard practice: likelihood assessment

- 5 impact criteria
- Score values in set {0, 1, 3, 9}
- Composite likelihood score $\sum_{j=1}^{5} LS_j$

Likelihood criterion	Scoring system			
Skill required	0: Deep domain/insider knowledge and ability to build custom attack tools;			
_	 Domain knowledge and cyber attack techniques; 			
	Special insider knowledge needed;			
	Basic domain understanding and computer skills.			
Accessibility	0: Inaccessible; 1: Guarded, monitored;			
(physical)	Fence, standard locks; 9: Publicly accessible.			
Accessibility	0: High expertise to gain access;			
(logical, assume have	1: Not readily accessible;			
physical access)	Publicly accessible but not common knowledge;			
	Common knowledge or none needed.			
Attack vector	Theoretical; 1: Similar attack has been described;			
(assume have physical	ysical 3: Similar attack has occurred;			
and logical access)	Straightforward, for example script or tools available.			
Common vulnerability	Isolated occurrence; 1: More than one utility;			
among others	Half or more of power infrastructure;			
	9: Nearly all utilities.			

Source:

Lee, A., 2015. Electric sector failure scenarios and impact analyses. National Electric Sector Cybersecurity Organization Resource (NESCOR) Technical Working Group 1.

Standard practice: threats prioritization

Proposed improvements

Standard practice

Analysis of individual threat scenarios

Our framework

Integrated analysis of multiple threat scenarios

Aggregated composite impact score

Multiple impact dimensions

Likelihood score

Probabilisic model of cyber attacks

Case study: improving security of Advanced Metering Infrastructure (AMI)

Security issues:

- AMI introduces large number of devices in widely dispersed and potentially insecure customers sites
- AMI allows for two-way communication with traditionally selfcontained power systems.

Focus:

- 8 cyber threat scenarios with the highest priority for AMI systems
- 7 relevant impact dimensions considered (out of total 14 impact criteria considered in standard approach).

From individual attack graphs to integrated picture

"Reverse engineering of AMI equipment allows unauthorized mass control" "Invalid disconnect messages to meters impact customers and utility"

Graph of integrated attack scenarios

Probabilistic Risk Assessment with Bayesian Network

Turning integrated attack graph into a Bayesian Network:

- Attach a conditional probability table (CPT) to each node to represent occurance probabilities of corresponding event given the state of nodes on which it directly depends
- CPTs can be derived from: structure of attack graph (0-1 logical links), historical observations or expert judgements

For each impact dimension we define risk as:

$$Risk_{I} = expected impact I = \sum_{i \in IL} i \times P(I = i)$$

Where *IL* is the set of possible levels of impact *I*.

Options for risk reduction

Index	Security measure	Index	Security measure
1	Train personnel on possible paths for infection	12	Protect against replay
2	Maintain patches and anti-virus	13	Strong security questions
3	Test for malware before connection	14	Require multi-factor authentication
4	Implement configuration management	15	Use a token with PIN
5	Verify all firewall changes	16	Limit individuals with privilege
6	Require intrusion detection and prevention	17	Isolate network
7	Require authentication to access firewall	18	Enforce restrictive firewall rules
8	Conduct penetration testing periodically	19	Require authentication to access network
9	Train personnel on social engineering attacks	20	Remove unsecure development features
10	Strong passwords	21	Include credentials in equipment design
11	Encrypt communication paths	22	Configure for least functionality

• Each security measure is applied to a specific chance node

Options for risk reduction

Index	Security measure	Index	Security measure
1	Train personnel on possible paths for infection	12	Protect against replay
2	Maintain patches and anti-virus	13	Strong security questions
3	Test for malware before connection	14	Require multi-factor authentication
4	Implement configuration management	15	Use a token with PIN
5	Verify all firewall changes	16	Limit individuals with privilege
6	Require intrusion detection and prevention	17	Isolate network
7	Require authentication to access firewall	18	Enforce restrictive firewall rules
8	Conduct penetration testing periodically	19	Require authentication to access network
9	Train personnel on social engineering attacks	20	Remove unsecure development features
10	Strong passwords	21	Include credentials in equipment design
11	Encrypt communication paths	22	Configure for least functionality

- Each security measure is applied to a specific chance node
- It reduces the occurance probability of the event a node represents
- Bayesian Networks enable **probability update** on the cascading events of the cyber threat scenarios.

Portfolio of security measures

- A portfolio is a combiniton of security measures, represented by a binary z such that $z_a = 1$ iff security measure a belongs to the portfolio.
- A portfolio must satisfy budget and technical constraints:

Goal: to find Pareto-optimal portfolios

A portfolio is Pareto-optimal if there is no other feasible portfolio that further reduces the risks in any of impact dimension I_k without increasing the risk in any other dimension

$$\mathbf{z}^* \succ \mathbf{z} \leftrightarrow \begin{cases} R[I_k](\mathbf{z}^*) \le R[I_k](\mathbf{z}) & \text{for all } k \\ R[I_k](\mathbf{z}^*) < R[I_k](\mathbf{z}) & \text{for some } k \end{cases}$$

Computing the set of Pareto-optimal portfolios (Pareto front)

Input:

- Set of security measures
- Budget and technical constraints

Method: Implicit enumeration algorithm (Mancuso et al. 2019)

- Computationally efficient: intelligent search over 2^N portfolios, explores only subspace containing good candidates for Paretooptimal portfolios
- Scalability: time consuming for large portfolios of security measures (>40)

Risk profiles (envelope of Pareto front)

Picking a Pareto-optimal portfolio

- Set of Pareto optimal portfolios is large
- Possible guidance offered by the core index (Liesiö *et al.* 2008)

 $CI(a) = \frac{\text{No. of Pareto - optimal portfolios containing }a}{\text{No. of all Pareto - optimal portfolios}}$

• Interpretation: high *CI*(*a*) implies that *a* belongs to the core i.e., subset of measures shared by all Pareto-optimal portfolios (for given constraints).

Core index map for selection of security measures

Summary

- Quantitative extension of qualitative standard practice
- Systemic perspective:
 - Different threat scenarios analysed jointly
 - Different risk dimensions represented explicitly
 - $\circ~$ Taking advantage of synergies between mitigation actions
- Probabilistic approach:
 - Natural representation of likelihoods, framework for rigorous likelihood calculus
 - Bayesian Network:
 - Probabilistic model of cascading events leading to successful cyber attacks
 - Conditional probabilities: tractable and (relatively) easy to estimate
 - Allow to calculate contribution of portfolios of security measures to reduction of risks
- Risks understood as expected impacts
- Optimization
 - Multi-objective
 - Representation of budget and technical constraints
 - Efficient algorithm of computing the set of Pareto-optimal portfolios of mitigation actions

Thank you for your attention!

Questions?

Piotr Żebrowski IIASA, Advanced Systems Analysis program zebrowsk@iiasa.ac.at

Optimization algorithm

The selection of Pareto optimal portfolios is performed through an **implicit enumeration algorithm**.

