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The Indus River Basin covers an area of around 1 million square kilometers and connects four countries:
Afghanistan, China, India, and Pakistan. More than 300 million people depend to some extent on the basin’s
water, yet a growing population, increasing food and energy demands, climate change, and shiftingmonsoon
patterns are exerting increasing pressure. Under these pressures, a ‘‘business as usual’’ (BAU) approach is
no longer sustainable, and decision makers and wider stakeholders are calling for more integrated and inclu-
sive development pathways that are in line with achieving the UN Sustainable Development Goals. Here, we
propose an integrated nexus modeling framework co-designed with regional stakeholders from the four
riparian countries of the Indus River Basin and discuss challenges and opportunities for developing transfor-
mation pathways for the basin’s future.
Introduction
The mid-21st century will see the global population increase from

7.7 billion in 2019 to 8.5–10 billion in 2050.1,2 Scientific evidence

increasingly indicates that humanity has already reached or even

exceeded the carrying capacity of several of the Earth’s ecosys-

tems3 and that future populations will face a range of climatic haz-

ards, including notable global ‘‘hotspots’’ exposed to varying

levelsof risks.4–6Themagnitudesofsuch risksarecriticallydepen-

dent on regional adaptive capacity to prepare for and manage

changing risks.7 Growing needs for food, energy, and water will

only exacerbate existing socio-economic challenges.8–10 The

world’s poorest and most vulnerable are disproportionately

exposed to climate change11,12 andhydro-climatic variability.13–17

Improving and sustaining human welfare is not an easy task,

particularly in regions expected to see continued population

and economic growth in the future. Looking ahead to 2050,

50% more food production will be required globally (a larger in-

crease is expected in developing countries18,19), and electricity

generation is expected to double as we achieve universal access
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to energy.20 With increasing energy and food demands on top of

population growth, water demands will also rise by more than

50%, particularly in developing countries.17,21 Greater land, en-

ergy, andwater resource demands pose growing concerns given

that such resource pressures have historically acted as conflict

multipliers and have occasionally lead to social unrest. Trans-

boundary river basins have often been at the center of such con-

ficts.22 Given these alarming projections, a ‘‘business as usual’’

(BAU) development pathway is no longer seen as acceptable.

Decision makers and wider stakeholders are increasingly calling

for new, more integrated, and inclusive development pathways

that avoid dangerous interference with the local environment

and global planetary boundaries. These urgent calls are also

embodied in global policy frameworks such as the United Na-

tions’ 17 Sustainable Development Goals (SDGs).

The Indus River Basin (hereafter referred to as the Indus)

covers an area of around 1 million square kilometers and con-

nects four countries: Afghanistan, China, India, and Pakistan. It

is home to more than 300 million people, who depend upon
tober 25, 2019 ª 2019 The Authors. Published by Elsevier Inc. 185
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the basin’s resources for water, food, and energy needs. The In-

dus is particularly critical to Pakistan’s 160 million people

because its waters are critical for irrigating 80% of Pakistan’s

21.5million ha of agricultural land,23,24 andwater flowing from In-

dus tributaries also support intensifying agricultural irrigation

over North West India.25 The Indus is also known as an area

rich in biodiversity, particularly where it opens to the Arabian

Sea,26 and the river delta is a critical area for freshwater fauna

and serves as a habitat for water birds.27 With a rapidly growing

population, an increasingly unpredictable monsoon-dominated

climate yielding highly seasonal river flows dominated between

May and September (>80%), and aridity levels 30% higher

than those in the nearby Ganges river basin, the rising demands

on the Indus’ resources28–30 are an increasing concern. Manage-

ment and transboundary negotiations of these vital resources

are further exacerbated by political tensions across its four ripar-

ian nations (Afghanistan, China, India, and Pakistan). At present,

the Indus Waters Treaty, brokered by the World Bank in 1960,31

is the mechanism that effectively allocates Indus waters to India

and Pakistan. This treaty is considered to be one of the most

successful water-sharing mechanisms in that it has settled

many disputes via legal procedures within its framework. How-

ever, recent political tensions between India and Pakistan call

into question the effectiveness of future dialog.32 Intensifying

climate change and emerging resource constraints pose new

concerns to the treaty, which could require modernization of its

provisions subject to the agreement of relevant stakeholders.

The existing studies of water, food, and energy nexus issues in

the Indus fall short of providing a workable blueprint for a sus-

tainable transition in the region. Their analytical scope is often

narrower and sectorally focused on a single issue, such as

water resource management, where inter-linkages are over-

looked.33,34 These studies are often focused on analytical and

descriptive aims to identify resource constrains and implica-

tions, whereas less attention is given to the potential solutions

that could be adapted to foster a sustainable transition.35 In

addition, given the deficiency in existing monitoring and informa-

tion systems of the Indus, these studies tend to rely on global

projections such as shared-socioeconomic pathways (SSPs),

which lack important regional contexts such as political econ-

omy consideration.36 As a consequence, local water-planning

strategy is not understood given that an integrated system of

food, energy, and water resources and drivers such as climate

change, population growth, and technological development

are not properly considered.37 These planning efforts are also

made difficult by complex water, energy, and land resource de-

mands under the aforementioned political tensions among the ri-

parian countries.38

Here, we propose a new approach—a framework, co-de-

signed with stakeholders from each of the Indus states, that con-

siders water, energy, and food resource assessments, bottom-

up solution-focused scenarios, and integrated modeling—and

discuss its potential to act as a model for implementing sustain-

able transformative solutions in transboundary river basins.

Co-designing with Indus Stakeholders
The Integrated Solutions for Water, Energy, and Land (ISWEL)

project is a partnership between the International Institute for

Applied Systems Analysis, Global Environment Facility, and
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United Nations Industrial Development Organization and aims

to build an integrated framework of food, energy, and water

resource assessment incorporating bottom-up and solution-

focused scenarios co-designed with regional stakeholders

from the four riparian countries. The stakeholder consultation

period consisted of three meetings, and the number of bi-lateral

and informal meetings took place between 2016 and 2019. The

first stakeholder consultation in the Indus consisted of two na-

tional meetings in Delhi (India) and Lahore (Pakistan) in March

2018. The purpose of this initial consultation was to gain an un-

derstanding of the main sectoral and nexus challenges that the

Indus is facing from the individual countries’ perspective and

to identify priority needs. These meetings were followed by a

second round of consultation, which took place in Vienna

(Austria) in May 2018 as part of the Third Indus Basin Knowledge

Forum, in which representatives of all four riparian countries

participated. The main outcomes included joint visions and the

development of alternative pathways to meet the development

challenges. The third meeting was in the form of a validation

workshop, which took place in Kathmandu (Nepal) in August

2019 and was intended to substantiate the quantitative sce-

narios that were built on the basis of the narratives developed

in the previous rounds.

A myriad of methods are available for stakeholder engage-

ment in complex policy domains,39–43 yet expanding these prac-

tices to an integrated assessment of nexus issues raises new

challenges. Nexus framing significantly expands the stakeholder

landscape to multiple policy arenas that are otherwise analyzed

separately; past experience of the science-policy interface of

complex resource-management issues, such as the Integrated

Water Resource Management efforts, shows that in addition to

uncertainty and surprises that are hard to discern in natural sys-

tems, political, economic, cultural, and institutional barriers also

hinder a successful implementation of integrated policies.44,45

Furthermore, given that underlying concepts and assessment

tools for nexus issues are also relatively less developed, science

and policy discussions will be more unfamiliar and uncertain for

participating stakeholders who naturally think more squarely on

cross-sector issues. The stakeholder engagement methods and

analytical framework developed in the ISWEL project hence

incorporate the notion of knowledge brokering—beyond inform-

ing and consulting decision makers and wider stakeholders,

these iterative rounds of stakeholder consultation and integrated

modeling assessment are aimed at engagement, collaboration,

and capacity building of both researchers and end users of infor-

mation.46 Well-designed and implemented stakeholder engage-

ment also creates greater ownership and use of project outputs,

as well as greater understanding and capacity that allows for

their effective uptake.

Complex Crossroads of Climate, Environments, and
Policy
From the country- and basin-level consultations, stakeholders

indicated a number of cross-sectoral and transboundary chal-

lenges. One of the most frequently mentioned was water-secu-

rity concerns linked to rising food demands.47,48 Agriculture, fol-

lowed by municipal and industrial water supply across the basin,

is by far the largest water consumer. Afghanistan’s and Paki-

stan’s economies are heavily dependent on agriculture, and
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this translates into the provision of allocation priorities being

given to irrigation over other sectors.34 This prioritization causes

many disputes and results in inefficient hydropower manage-

ment in countries such as Pakistan.49 Nevertheless, as stated

by the stakeholders, there is ample room to improve agricultural

water management (through investing in new and upgraded irri-

gation infrastructure, increasing agricultural productivity,

improving crop choices, and developing technical capacities of

farmers).50,51

The impact of energy-related water demands and climatic

changes to surface-water demand is also frequently mentioned.

Afghanistan and Pakistan heavily rely on surface water (over

85% and 65%, respectively, of total abstractions), whereas in In-

dia the share is more even (52% of abstractions are derived from

surface waters, and 34% are derived from groundwater).52 All ba-

sin countries are focused on developing hydropower in the upper

Indus, and climate change is expected to alter river flows origi-

nating in the TibetanPlateau, including the upper Indus,withdwin-

dling glaciers.53,54 The entire Indus is characterized by changing

and highly seasonal river flows such that 85% of the annual water

flows are concentrated in the summer and only 15% are concen-

trated during the winter under changing climate, which most likely

affects hydropower potential.55 Pakistan is highly dependent on

surface water flows coming from India, and its representatives

were concerned by how these developments would affect the

quantity and timing of water flowing into their country; glacier-

fed river flows might start decreasing later this century given

shrinking glaciers.56 On the basis of the Indus Water Treaty, India

is exploiting the hydropower potential of the Indus tributaries, all of

which flow into Pakistan.57 In particular, five projects (Miyar Nal-

lah, Lower Kalnai, Pakal Dul, Kishenganga, and Ratle) are under

construction, over which Pakistan has raised objections given

that these could affect the flow regime of the Chenab and Jhelum

river flows, from where Pakistan receives most of its surface wa-

ter, whereas India has reiterated that its actions are not violative of

the treaty or international norms. Likewise, much of the water flow

coming intoPakistan is already allocated,which raises heightened

concerns of water security. Pakistan also plans to develop its en-

ergy sector; hydropower is one preferred option, but it will require

multipurpose strategies to avoid competition with priority uses

(such as irrigation).58 This requires optimal infrastructure to secure

the availability of resources throughout the year, and this is yet

insufficient in countries such as Pakistan, which has storage ca-

pacity of only up to 30 days (equivalent to 13% of annual flows).59

In Pakistan, 45% of the annual flows come from snow and glacial

ice melt,60,61 and although uncertain, climate-change projections

indicate an increase in the annual water flow in the near term (as a

result of glacier melting) but a sharp decrease in the medium run,

which will heavily affect water availability in the country.62–65

Furthermore, regional stakeholders also recognize the immi-

nent threat to groundwater sustainability and its link to energy-

related issues. Indian and Pakistani energy subsidies with large

uncertainty in surface-water availability, for example, have

contributed to unsustainable groundwater pumping.66–69 The

majority of water from the Indus is allocated to irrigation, and

inefficient irrigation and a lack of drainage systems cause prob-

lems with soil salinization and waterlogging, undermining the

agricultural productivity.70,71 Most irrigated water is allocated

to produce crops of low economic and nutritional value,72 and
the prioritization of water for irrigation is causing water conflicts

with other users (e.g., urban, energy, and industry).35 Access to

clean, reliable, and modern sources of energy is a persistent gap

in some of the riparian countries given that large parts of the pop-

ulations, especially in rural areas, still rely on the use of biomass

(fuelwood, animal dung, charcoal, and crop residues), which is

causing soil degradation (the removal of animal dung and crop

residues reduces soil capacity to restore and maintain its

fertility), air pollution (both indoor and wide air pollution), and

increased carbon emissions.73

The Indus Water Treaty is a bilateral treaty between India and

Pakistan and defines the rules under which both countries can

use and manage flows of the Indus.74,75 This treaty, however,

does not reflect all of the main and future challenges—such as

climate change, population growth, environmental flow needs,

transboundary aquifer management, and growing water needs

from Afghanistan and China.32,76 Some stakeholders highlighted

the need to shift the focus of the treaty from allocation of flows to

relocation toward actual demands and future consumption.

However, other stakeholders noted that the same might not be

implementable in practice and recommended against tampering

with a treaty thatwaspainstakingly drafted and has stood the test

of time. As indicated in the workshops, using a benefit-sharing

approach rather than an engineering river-dividing approach to

water management between the two countries under the Indus

Water Treaty could be considered as away to delivermutual ben-

efits.77,78 However, this is one view amongmany across different

basin stakeholders.Manyof theproblemsaroundwatermanage-

ment in the Indus are related to the political tensions between In-

dia and Pakistan, and addressing them is critical given that 80%

of the water flows in Pakistan are coming from India,79 whereas

the remaining 20% inflow from the Kabul river. Importantly, dis-

putes over water are not only on the transboundary setting but

also at the provincial level within both India and Pakistan.80 In

addition, water demands for agriculture and energy are also

growing rapidly in Afghanistan and China, which poses a new

challenge to the existing framework of the Indus Water Treaty.

Visions and Pathways to a Desirable Indus Future
Identifying pathways for the sustainable use of water, energy, and

land resources (maximizing co-benefits while reducing sectoral

trade-offs) is a complex task because different stakeholders

have different values and priorities, resulting in multiple pathways,

as indicated above. Moreover, multiple drivers at different scales

ranging from local to global (e.g., climate change, political insta-

bility, population growth,migration, and socio-economic develop-

ment) shape the development of basin pathways. Accordingly, we

adopted a multi-scale approach to our participatory scenario

design process. The ‘‘sphere of influence’’ as depicted in Figure 1

signifies that priorities and choices made by decision makers

within the basin (at regional, national, and sub-national levels)

largely determine preferred pathways to achieving water, energy,

and land SDGs in the Indus. Yet such decisions of course are not

immune to important global developments and the potential for

external shocks. Hence, the ‘‘sphere of uncertainty’’ (Figure 1)

adds significant challenges to the local planning process in the

medium to long term.

On the basis of this conceptual framing, the ISWEL participa-

tory scenario process identified and evaluated information in
One Earth 1, October 25, 2019 187



Figure 1. The Logic of Scenarios
Separating the sphere of uncertainty from the
sphere of influence. Reproduced from the ISWEL
progress report.81 Summary videos for the co-
design workshop with stakeholders are available at
https://www.iiasa.ac.at/web/home/research/iswel/
Outcomes.html.
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two spheres: (1) aspirational targets regardingwater, energy, and

land; overall development goals for a basin in 2050; and solutions

and trade-offs associated with alternative pathways to achieving

these targets; and (2) whether these basin pathways are robust

enough in light of different global and regional scenarios. In order

to facilitate the identification of key narratives on water, energy,

and food nexus issues, the team used the existing stakeholder-

developed regional scenarios for South Asia82 as a basis to

design facilitation materials. The South Asia regional scenario

defined stakeholder visions of the world in 2050, expressed nar-

ratives, and semi-quantified indicators of human capital; gover-

nance and institutions; science, technology, and innovation;

political stability and conflict; economic structure; and demo-

graphics similar to the SSP scenario framework.83–85 The infor-

mation collected from the stakeholders also helped improve the

portfolio of solution options that integrated assessment models

subsequently simulated. The ISWEL scenario process included

24 participants from all four riparian countries and representing

national and provincial decision makers, including governments,

NGOs, academia, and policy think tanks.

From Visions and Pathways to Quantitative Scenarios
Börjeson et al.86 provide a typology of scenarios based on the

three principal questions that a user might inquire about the

future: (1) ‘‘What will happen?’’ These are predictive scenarios

that are trying to elicit probable futures. They are strongly based

on current trends or other sources of reliable information about

the incoming changes. (2) ‘‘What can happen?’’ These are the

so-called explorative scenarios, which are useful in situations

of significant uncertainty—creative thinking and ‘‘out of the

box’’ approaches are then needed for imagining possible

‘‘game changers’’ or ‘‘black swans.’’ (3) ‘‘How can we get

there?’’ These are the so-called normative scenarios, intended

to support the achievement of certain visions. These visions

specify which targets should be achieved, which outcomes

should be avoided, or which impacts should be reduced.
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For basin planning, the third type of

normative approaches is often the most

relevant to stakeholders because it allows

for the exploration of preferred futures

that articulate conflicting or shared values

of diverse stakeholders and thereby help

identify courses of action that can be taken

to achieve alternative societal goals.87 The

ISWEL scenario-planning process hence

adopted the normative approach to

construct the stakeholder-led narratives,

including visions and pathways. At the

same time, the team also recognizes that

the integrated modeling practice is firmly
embedded by the IPCC framework with the underlying represen-

tative concentration pathways and SSPs and that the use of the

IPCC scenario framework ensures a certain degree of compara-

bility (and indicates which body of previous analytical results to

build from) that is essential to making a systematic and reliable

accumulation of scientific knowledge that can be translated

into policy recommendations.

The ISWEL scenario approach hence reconciled these dual

needs for consistency and contextualization, as depicted in Fig-

ures 2 and 3. The participatory scenario development and inte-

grated assessment modeling are conceived as an iterative pro-

cess in which visual aids (such as maps, cards representing

investment options, and important drivers of change) are used

to facilitate improved linking of the narrative formation process

and subsequent modeling assessment (Figure 2). Scenario-

building facilitation processes are carefully crafted so as to (1)

provide transparency to stakeholders with regard to what inputs

(e.g., challenges and solutions) can be included in the scenario

narratives and (2) provide an internal reference of which scenario

elements are important and, at the same time, can be a part of

the model pathways.

More specifically, as shown in Figure 3, we integrated the

standardized IPCC scenario narratives (SSP 2: Middle of the

Road) as the BAU regional pathway, and stakeholders also arti-

culated the ‘‘what-if’’ normative policy pathways on the basis of

the three alternative prioritizations of economy, society, and

environment domains as desired futures (Figure 3).

Indus Water-Energy-Land Nexus Scenarios
The stakeholders’ visions and pathway narratives were trans-

lated into quantitative scenarios that were then analyzed with

our nexus modeling framework.88 At the time of writing, the

development of the nexus modeling framework is still ongoing,

and local research partners are planning to implement the

modeling framework across the Indus. Figure 4 shows an illus-

trated example of an integrated assessment in which new

https://www.iiasa.ac.at/web/home/research/iswel/Outcomes.html
https://www.iiasa.ac.at/web/home/research/iswel/Outcomes.html


Figure 2. Summary of the Process Describing the Development of the Basin Scenarios
Reproduced form the ISWEL progress report.81
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investment costs were estimated under the BAU scenario (corre-

sponding to SSP 2) and an alternative sustainability scenario,

based on stakeholder inputs, that can achieve multiple SDG tar-

gets, namely food (SDG 2), water (SDG 6), and energy (SDG 7).

This illustrative example shows that planned investment under

the BAU scenario is concentrated in the water sector (and to a

lesser extent the energy grid). With limited investment in

improving agricultural water use and renewable-energy develop-

ment, the region would most likely face difficulties in achieving

multiple SDG targets and the ever-growing water demands for

irrigation.89 Under the sustainability scenario, the region will

see higher and more balanced investment to achieve multiple
SDG targets; in particular, a large part of the new investments

will be used for technology development to meet targets related

to wastewater treatment and the sharing of renewable energy.

As this example shows, the analytical linkages between water

and other sectoral models, such as agriculture and energy

models, are critical to providing effective insights to uncover

trade-offs and synergies. This is largely driven by the fact that im-

provements to agricultural productivity, for example, are closely

intertwined with the development of irrigation.90 Such an expan-

sion is also considered an adaptation option in the face of

climate change and is expected to strongly affect rain-fed agri-

culture given the limited land available under urban expansion.
Figure 3. Example of Three Desired Regional
Future Scenarios
Reproduced from ISWEL progress report.81
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However, although irrigation could help to achieve some key tar-

gets (SDGs 2 and 15), its increasing role challenges water avail-

ability (SDG 6), especially in the already water-stressed regions

of the Indus. The water necessary for sustaining the environment

(i.e., environmental-flow requirements) can be either protected

(i.e., agriculture expands below sustainability thresholds) or un-

protected (i.e., agriculture expands beyond sustainability thresh-

olds). To estimate the potential environmental consequences of

irrigation expansion, we calculate the unsustainable share of the

total irrigation water demand, equivalent to the quantity of de-

mand that exceeds the water flows necessary for the environ-

ment. Figure 5 compares the current and estimated future sur-

face-water inflows against total water withdrawals in the basin.

In the coming decades, withdrawals under current agriculture

practice (i.e., BAU) and other water use will exceed the available

surface water, compromising necessary water flows for the envi-

ronment. In addition, water pollution from chemical fertilizers and

quality issues such as high salinity will further exacerbate water

scarcity in the Indus.

Finally, land and energy interlinkages are also crucial for the In-

dus region for a number of reasons. Bioenergy expansion,

for example, is considered in the region as a key policy for

climate-change mitigation. A growing demand for biomass for

use in the energy sector will most likely reduce land that is avail-

able for competing uses, such as food production and nature
190 One Earth 1, October 25, 2019
conversation. An optimal energy mix, in

turn, also depends on the quantity and

price of available biomass together with

the emission reduction potentials from

the land-use sector. Changes in energy

price will likewise affect the agricultural

sector because energy is an important

input in agricultural production. In India,

groundwater irrigation has been largely

supported by electricity subsidies in order

to increase agricultural yields, lower food

prices, and sustain the demand for agricul-

tural labor. Energy is used directly (e.g., for

field operations, irrigation, and drying) as

well as to produce many important inputs

used in agriculture, such as synthetic fertil-

izers and other agrochemicals, machinery,

and seeds. Energy prices will increase with

stringent climate policy (e.g., a carbon tax

on fossil energy), and changes in energy

prices are likely to have impacts on agricul-
tural production costs and eventually on food (and biomass)

prices.

Another key question that benefits from integrative analysis

is how costs and technology diffusion for desalinated and

wastewater-recycled water will evolve in water-scarce regions,

therefore defining the supply of these nonconventional sources

of water. Technology implementation such as thermal and

membrane desalination, urban and manufacturing wastewater

treatment, distribution and recycling, rainwater harvesting,

smart irrigation technology, and rural water distribution yields

co-benefits of sustainable consumption and production, such

as minimizing the cost of achieving both clean water and en-

ergy goals. However, it is important to note here that social

and cultural elements play an important role toward such tech-

nology dissemination given that wastewater treatment and

sanitation are not new challenges (e.g., there are water,

sanitation, and hygiene [WASH] projects in over 100 countries

worldwide). Finally, in order to test the robustness of the cho-

sen regional solutions, the model assessment can also be

repeated under alternative external circumstances (i.e., sce-

narios of global shocks, such as price hikes and sudden eco-

nomic downturns or alternative socioeconomic developments).

Although a sustainability scenario (consistent with SSP 1) is

often desirable, strategies designed by stakeholders should

also be robust to unfavorable external conditions, and the
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implications that alternative global socioeconomic develop-

ments might have (on the basis of SSPs 2–5) on regional path-

ways should be evaluated carefully, and desired pathways co-

designed by stakeholders and researchers can be revised to

improve their feasibility and robustness through iterative inter-

actions.

Nexus Modeling, Knowledge Sharing, and Capacity
Building
Global and regional efforts to foster integrated policymaking for

resource management has made mixed progress over the past

few decades.91 The renewed interest in the notion of water,

food, and energy nexus opens up new opportunities for trans-

disciplinary collaboration. Yet, more efforts are certainly

needed to enhance the conceptual bases for nexus framing,

to clarify the most crucial sectors, to identify ways of linking

science and policy domains, and to design appropriate and

effective modeling and stakeholder-engagement processes.

Such endeavors will require a greater scope of disciplinary in-

puts: in addition to the conventional mix of biophysical, engi-

neering, and economic disciplines that are included in the inte-

grated modeling efforts, a wider involvement of fields such as

history, political science, anthropology, social psychology,

and other disciplines will be key to bridging analytical gaps.92

Global scientific discussions are ripe to integrate human

behavior and governance into integrated assessment models,93

but equally important are efforts to bring integrated assess-

ment models (or model-based thinking) successfully into the

day-to-day policy discussions and planning efforts. The ISWEL

scenario co-design and integrated assessment modeling

described here is our humble step in this direction. More than

50 participants from the four riparian countries participated in

the ISWEL project, representing 32 different organizations

within academia, regional and federal governments, think

tanks, and non-governmental organizations. Tangible outputs

of this project included three shared visions articulated for
the Indus and quantitative analysis of

resource-management options through

integrated assessment modeling. In fact,

more important than these are the intan-

gible outcomes we hope to achieve—a

greater emphasis on systems thinking in

policy discussions and a network of like-

minded researchers and practitioners

committed to bringing changes to the re-

gion beyond the political, national, disci-

plinary, and sectoral divides.

We advocate that this framework can

be extended to other transboundary river

basins experiencing similar pressures.
The ISWEL project is planning to implement the approach

described here to the Zambezi basin in Africa, which shares a

number of biophysical, socioeconomic, and governance simi-

larities with the Indus. In order to fill the knowledge gap be-

tween global and regional narratives and scenarios to capture

stakeholder needs and ambitions, a series of stakeholder work-

shop are again deemed necessary. The ISWEL strategies for

addressing water, land, and energy concerns at the basin scale

envisage cooperation and sharing of expertise and resources

among various stakeholders who would be involved in prepar-

ing an action plan locally to address the common concerns in

the basin. Therefore, there is a dire need to take the initiative

to the next level to strengthen the trust between the policy

and decision makers of the riparian countries and encourage

them to address other festering problems confronting the

region.

Although the integrated nexus modeling framework and asso-

ciated stakeholder engagements described here still require

many improvements, they have provided important insights

into complex environmental issues that seem to be previously

untouched. The ISWEL project has also provided capacity build-

ing for young Indus talents and researchers who will play an

important role in future policy development to address the needs

of a growing population in a region of increasing and complex

water, energy, and food pressures.

DATA AND CODE AVAILABILITY

The integrated nexus modeling framework and the code are available from
Vinca et al.88
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F.A., Wang, Y., Ilyas, A., Köberle, A.C., et al. (2019). The Nexus Solutions
Tool (NEST): An open platform for optimizing multi-scale energy-water-
194 One Earth 1, October 25, 2019
land system transformations. Geosci. Model Dev. Discuss. https://doi.
org/10.5194/gmd-2019-134.

89. Havlı́k, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino,M.C.,
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