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“In the fields of observation chance favours only the prepared mind.”

— Louis Pasteur

“Death is a disease. Its like any other. And there’s a cure and I will find it.”

— Tom Creo, The Fountain
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Abstract

Aging is doubtlessly one of the most complex and multi-factorial biological processes
we have encountered since the beginning of modern life sciences and the systematic
study of human and animal biology. Despite many remarkable findings, aging re-
mains an incompletely understood mechanism, causing several severe diseases, such
as cardiovascular diseases, neurodegenerative diseases or cancer. It is associated
with a progressive loss of cell functions that lead to a decline of tissue functions
and finally resulting in death. Uncountable studies were performed over the last
five decades to identify possible causes of how and why we age. Nevertheless, there
is a still ongoing debate about the true molecular source of aging, giving rise to a
variety of competing theories.

Due to its highly complex nature, we have investigated aging from various perspec-
tives, based on the gene expression of different species and tissues. We analyzed a
huge set of RNA-Seq transcriptomic data to obtain new insights into the genetic
regulation of aging and to identify conserved molecular processes that might be
responsible for aging-related disorders. We found that each tissue shows its own dis-
tinct pattern of gene expressional changes with age, because they have to respond to
different types of stress over time, leading to differing sources of molecular damage
and subsequent stress responses. In particular, we could show this for four well-
studied aging-related processes: cellular senescence, inflammation, oxidative stress
response and circadian rhythms. In addition, we could show that alternative splicing
(i.e., the generation of multiple mRNA isoforms from single genes) is in general only
slightly affected by aging and probably plays a secondary role in the overall aging
process. In contrast, we found microRNAs (very small regulatory RNA molecules)
to be important modulators of aging in all investigated species and tissues.
Concluding, the results presented in this thesis describe aging as a stochastic pro-
cess, leading to an accumulation of different kinds of molecular damage and the
respective cellular stress responses. We have identified several genetic factors that
could serve as potential diagnostic markers or even therapeutic targets, that could
help in the future to slow down the progression of age-associated disorders or pre-
venting them. Nevertheless, the subject of aging remains a challenging research field
and many open questions still wait to be answered.



Zusammenfassung

Das Altern ist zweifellos einer der komplexesten und faktorenreichsten biologischen
Prozesse, dem wir seit Beginn der modernen Lebenswissenschaften und der system-
atischen Erforschung der Human- und Tierbiologie begegnet sind. Trotz vieler be-
merkenswerter Erkenntnisse bleibt das Altern ein unvollstandig verstandener Mecha-
nismus, der mit vielen schweren Krankheiten assoziert ist, wie etwa Herz-Kreislauf-
Erkrankungen, neurodegenerative Erkrankungen oder Krebs. Es geht mit einem
fortschreitenden Verlust von Zellfunktionen einher, der zu einer Abnahme der Or-
ganfunktionen und schliefSlich zum Tod fiihrt. In den letzten fiinf Jahrzehnten wur-
den unzahlige Studien durchgefiihrt, um mdégliche Quellen zu finden, wie und warum
wir altern. Auch heutzutage wird noch intensiv iiber die eigentliche molekulare Ur-
sache des Alterns gestritten, was zu einer Vielzahl konkurrierender Theorien fiihrt.
Aufgrund seiner hohen Komplexitat haben wir in der vorliegenden Arbeit das Al-
tern aus verschiedenen Perspektiven untersucht, basierend auf der Genexpression
verschiedener Spezies und Gewebstypen. Wir haben eine Vielzahl an RNA-Seq
Transkriptomdaten analysiert, um neue Einblicke in die genetische Regulation des
Alterns zu erhalten und um konservierte molekulare Prozesse zu identifizieren, die
moglicherweise flir altersbedingte Gebrechen und Krankheiten verantwortlich sind.
Wir fanden heraus, dass jedes Gewebe mit dem Alter ein eigenes Muster von Gen-
expressionsanderungen aufweist, da es im Laufe der Zeit auf verschiedene Arten von
Stress reagieren muss, was zu unterschiedlichen Ursachen fiir molekulare Schiden
und nachfolgende Stressreaktionen fiihrt. Insbesondere konnten wir dies fiir vier
gut untersuchte, altersbedingte Prozesse zeigen: zellulare Seneszenz, Entziindungs-
reaktionen, oxidative Stressreaktion und zirkadiane Rhythmen. AuBerdem konnte
gezeigt werden, dass alternatives Spleifien (d.H., die Erzeugung mehrerer mRNA-
Isoformen aus einzelnen Genen) im Allgemeinen nur geringfiigig vom Altern betrof-
fen ist und wahrscheinlich eine untergeordnete Rolle im gesamten Alterungsprozess
spielt. Im Gegensatz dazu haben wir festgestellt, dass microRNAs (sehr kleine
regulatorische RNA-Molekiile) in allen untersuchten Spezies und Geweben wichtige
Alterungsmodulatoren sind.

Abschlielend beschreiben die in dieser Arbeit vorgestellten Ergebnisse das Altern
als einen stochastischen Prozess, der zu einer Anhaufung verschiedener Arten von
molekularen Schaden und den jeweiligen zelluldren Stressreaktionen fiithrt. Wir
haben mehrere genetische Faktoren identifiziert, die als potenzielle diagnostische
Marker oder sogar als therapeutische Ziele dienen konnten, die in Zukunft dazu
beitragen konnten, das Fortschreiten altersbedingter Erkrankungen zu verlangsamen
oder zu verhindern. Trotzdem bleibt das Thema Altern weiterhin ein herausfordern-
des Forschungsfeld und viele offene Fragen warten noch auf ihre Beantwortung.
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Chapter 1

Introduction

When we come to think about aging, everyone has an intuitive understanding of this
concept. This is because we observe it everyday in the people around us and also
what it does to ourselves. We experience it as a rather slow but natural process that
irreversibly restrains our mobility, health and sometimes also impairs our cognitive
abilities, however, always resulting in death.

Everlasting life was always a dream of mankind and with the decoding of the human
genome in 2000 and the subsequent revolution of molecular techniques to investigate
and manipulate genes and their expression, one was sure to soon find treatments for
many (genetic) diseases and finally also something like a “fountain of youth” [1, 2].
These expectations were further impelled by early findings of life-span enhancing
genetic programs in invertebrates and other lower organisms. Despite being already
known for decades that caloric restrictive diets (a.k.a. caloric restriction or dietary
restriction) have positive effects on the maximal age of a variety of animals, the
molecular mechanisms for this effect were just discovered in the early 2000s in the
worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster [3-5]. A few
years later, after there was first evidence that (short-term) caloric restriction slows
aging even in primates [6], many believed to finally be on the right track to fully
understand the aging process. However, this kind of optimism had to make way for
the realization that there is a huge difference between merely knowing the code of
life and truly understanding it and that many findings in small short-lived animals
could not be so easily transfered to longer-lived species [7] and on the contrary could
even be harmful [8]. Making it even worse, in the early years after having the first
“complete” version of the human genome the understanding dawned that there are
more regulatory levels controlling gene activity than expected, especially in humans
and likewise other higher eukaryotes [9]. For example, only a minor fraction of our
genomes code for proteins and it was long believed that everything else was just
junk DNA, i.e., sequences without any function apart from some relatively small
promoter regions where proteins could bind specific sites in order to control the ac-
tivation of certain protein-coding genes [10]. However, it was soon discovered that
this assumption was false. More and more so-called non-coding genes were identi-
fied, not acting as messengers between DNA and proteins but fulfilling enzymatic
and regulatory functions as RNA molecules [11, 12]. And still today, we are dis-
covering even more layers of genetic regulation, such as DNA modifications or are
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suspecting modulation by genomic elements that we have barely understood, such
as repeat regions or pseudogenes.

Concluding, after almost 20 years since the decoding of the human genome it sub-
jectively feels like we have less understanding of how life works than before. And
this includes aging too, because it is so deeply entangled with everything we know
about life, that every new found or characterized biological process appears to add
to its complexity, making it more challenging to understand. Nevertheless, people
still dream of a very long and healthy life and a lot of effort is taken into solving
aging, because sooner or later everyone is confronted with it.

1.1 What is aging and why do we have to age?

What is aging? That is a really tough question and finding a fitting definition for
this phenomenon isn’t easy, because we still have only little knowledge about it.
In almost all scientific articles or reviews regarding this topic [13-15], aging is de-
scribed as a complex, multi-factorial process associated with a decline of cellular
functions over time. Often it is treated as an illness and described by its associated
obvious physiological symptoms, such as impairment of the whole sensory system,
deterioration of cognitive functions (loss of memory, rising difficulty to learn new
things, .. .), frailty (especially in mobility and body coordination), increased suscep-
tibility for diseases or visible physiological changes (wrinkling of the skin, graying
and/or loss of hair, ...). In addition, there are many so-called age-related diseases,
which mainly effect the elderly and have rising incident with age, as for example most
types of cancer, neurodegenerative diseases (e.g., Parkinson’s disease, Alzheimer’s
disease), metabolic disorders (most prominent diabetes) and cardiovascular diseases.
All of these are dysfunctions associated with late life and the ”advancement of age*
is the highest risk-factor for their origin [16]. However, this is more of a recursive
definition, that does not really help in uncovering the true molecular systems causing
these typical signs of aging. And only in understanding these underlying processes
we can completely perceive why we have to age.

In general we can say, that aging is associated with a progressive loss of cell func-
tions that lead to more and more dis-regulated tissue functions and finally to a total
system failure, where all vital processes collapse, called death. And we also do know
that many different relatively smaller mechanisms play a role in this big process
that we call aging (more on that in the following Section). Alternatively, we could
say that aging is a function of time, responsible for the decline of cellular function.
One answer to the question why we age would be: because our vital system fails
to keep homeostasis. And for some reason there was never evolutionary pressure
to overcome this "flaw*“ (if it is one at all). Another interpretation could be that
there exists something like a ”biological clock“, and evolution had arranged it so to
restrict the life-span of each generation to make room for the next generation and
thus ensuring genetic variability. In Section 1.1.2 pros and cons for both interpre-
tations will be further presented and discussed.

Before we move on, an important distinction between longevity and aging has to be
made, because they can be confused as two similar phenomenons. Longevity refers
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to the maximal and average life expectancy of species populations ! and can be mea-
sured relative easily. Additionally, there exist some known genetic components, that
have a direct influence on the life-span of certain organisms, like the so-called Sirtuin
genes [8, 16]. In contrast, aging is more difficult to assess, because there are many
different factors accounting for it [17]. It appears not so easy to identify universal
genetic markers, that can be used to estimate the biological age or get a grasp on
this heterogeneous process. This topic will be discussed in more detail in Section 4.4.

In the following sections, I want to give a comprehensive overview about what we
already know about the complexity of aging (Section 1.1.1) and what is believed and
still discussed of how it is caused and why aging happens at all (Section 1.1.2). After
that I will also give a short introduction into a technique called RNA Sequencing or
in short RNA-Seq (Section 1.2), because many of the data analyzed and discussed
within this thesis are based on this approach to measure gene activity. In Section
1.3, I will explain the current restrictions in aging research and what problems arise
with these constraints and how they could possibly be overcome.

1.1.1 The complexity of aging and how it may be caused

Aging is doubtless one of the most complex biological processes we have encountered
since the beginning of modern life sciences and the systematic study of human and
animal biology. Despite many remarkable findings, aging remains an incompletely
understood mechanism, causing several severe diseases, such as cardiovascular dis-
eases, neurodegenerative diseases or cancer.

Uncountable studies were performed over the last five decades to identify possible
causes why we get more and more frail with the passage of time and many remark-
able findings were discovered. One of the most early ones was that the restriction
of calories has a surprisingly huge impact in the average life-spans of different an-
imals [3-5]. The positive effects of this dietary restriction on longevity were first
systematically described in 1934 by McCay and colleagues in rats [18]. Although
missing a molecular answer for this observation, many scientists repeated and re-
fined caloric restriction (CR) experiments with confirming results, initiating a new
aging research era in the hope to have found a fountain of youth in form of long-term
CR [19]. It was not until nearly 70 years later, that first evidence showed that CR
is connected to certain signaling pathways responsible for cellular stress regulation
and modification of metabolic processes (for a comprehensive review on this topic,
see Haigis et al. [20]).

Today their are reasonable doubts that CR could be used as a potential intervention
to increase life expectancy in human [7, 8]. With the beginning of the new century,
we saw a rapid advancement in biotechnology and subsequently in all life sciences,
changing the belief that aging can be explained by rather simple processes or single

Isee for example the WHO records for humans http://www.who.int/gho/mortality_burden_
disease/life_tables/en/
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Figure 1.1: The nine ”hallmarks* of aging.
As adapted from Lopez-Otin et al. [13], they resume these processes to be the main
causes for cellular aging.

genes alone and in fact is a multi-factorial process. Lopez-Otin et al. have recently
identified nine primary process to be responsible for aging [13] (see Figure 1.1).
These "hallmarks* are not independent mechanisms that drive the course of aging,
but are highly intertwined and having strong influences on each other. Figure 1.2 is
an attempt, based on recent research results, to describe those interactions and re-
lations in more detail, nonetheless, not suggesting to have drawn a complete picture
of the current understanding of the aging process.

One of the most reoccurring terms regarding aging and its causes is cellular stress.
This broad term can be broken down to any event that triggers a specific reac-
tion in order to maintain cell homeostasis. A cell has stress, if it is provoked to
activate any means of stress response, such as repair mechanisms due to physical
or chemical damage or metabolic pathways in the presence or absence of certain
(macro)molecules to sustain itself. Cellular stress was first recognized to be strongly
linked to aging in 1995 when it was shown that mild thermal stress could extend
the mean life-span of the nematode Caenorhabditis elegans [21]. Following research
proved many more relations between the stress biology and aging biology (see Epel
et al. [22] for a recent review). For that reason, cellular stress is one of the main
hubs in Figure 1.2 and many origins were already verified, e.g., oxidative stress
due to reactive oxygen species (ROS) [23], accumulation of malignant proteins [24],
environmental exposure [25], deregulation of (nutrient) signaling pathways [13, 20]
and both the decline in immune activity and the over-activation of inflammatory
processes [26, 27].

Another central and well-established factor in the process of aging is cellular senes-
cence, a non-replicative arrest state in the cell’s life cycle that prevents the forma-
tion of cancer due to abundant damage within the cell. Once a cell has entered
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Figure 1.2: Draft of the aging network.

Here, as an extension to the nine "hallmarks* from Lopez-Otin et al. [13], the aging
process is depicted as a directed graph, towards its ultimate pathologic consequence,
the complete loss of cellular function (red). New but minor internal (light blue) and
external (cream-colored) processes were added based on the reviewed literature cited
in the main text of this section, in order to draw relations between the main me-
chanics of aging (green). Arrows indicate causal relationships described in different
published studies, e.g., stem cell exhaustion is caused by senescence and apoptosis
and causes the decline of tissue function. This network is of course not complete and
single processes, like ”cellular stress® or ”environmental exposure®, could be further
split up into more specific categories. However, for the sake of clarity and com-
prehensibility this stripped-down version already shows how complex and entangled
biological aging is.

senescence it will stop growing and replicating, but continues to sustain itself. The
main causes of senescence are the shortening of telomeres 28] and direct damage
to the DNA [29]. Inevitably, proliferative somatic and stem cells are lost over time,
resulting in a decline of functional and regenerative capacity [30]. As a further conse-
quence, senescent cells develop a pro-inflammantory secretory phenotype, adding to
the stress of neighboring cells [29]. Paradoxically, besides the constant activation of
the immune system by inflammantion processes, immune activity decreases because
of the senescence of immune cells (also known as immunosenescence), which leads to
a higher vulnerability to infections and yet another source of cellular stress [31, 32].

Next to replicative senescence, apoptosis (programmed cell death) is likewise an
immediate cause for the loss of somatic and stem cells. It can be triggered by
different events, including hyper-inflammation (as it occurs through senescent cells
as described above), the release of the protein cytochrome ¢ from dysfunctional
or disrupted mitochondrias, infections, abundant DNA damage and misfolded pro-
teins [33, 34]. However, in the process of apoptosis, certain cellular components
are released that can activate inflammatory processes and in a context of already
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existing constant inflammation, boosting the cycle of self-harming development [35].
Besides controlling one apoptotic signaling way, mitochondrias are the main power
source of our cells by providing chemical energy through respiration. As a natural
byproduct, ROS are produced and when being too abundant they can damage DNA
as well as proteins [13]. Such dysfunction often happens in times of general cellular
stress [24]. The creation of malignant proteins is not only caused by ROS but also
inaccurate folding and irregular complex aggregation [36]. These malignant proteins
can exhibit genotoxic effects by disturbing cellular communication and sometimes
even interfere with the cells normal degradation mechanisms, making them impos-
sible to eliminate and leading to an accumulation of disruptive molecules. This can
further contribute to the reduction of proteostasis, ending in the generation of more
deleterious proteins [24].

Last but not least, exposure to the environment pose as an additional threat.
The huge variety of external factors that can directly damage DNA, proteins and
other macromolecules within a living organism, is an extensive source of cellular
stress [22, 25].

Summing everything up, there are plenty possible starting points for the decline of
individual cells and subsequently whole tissues. Moreover, due to complex interplays
and (in parts still unknown) dependencies between all these biological processes, the
balance to sustain homeostasis indefinitely appears to be almost impossible.

We see animals aging differently with a huge variance in life-spans, from the short-
lived Mayflies (~24 hours) to the long-lived giant tortoise (>200years). Even in-
dividuals within one species or population show a divers range of life-spans, for
example most humans die around 80 years of age, whereas some humans reach the
age of 100 or more (the oldest known individual was the French woman Jeanne
Calment who died at the age of 122). And inside any individual every tissue shows
its own pattern and rate of aging (see Chapter 3). Possibly every cell ages differ-
ently and at its own pace and what we can observe is the "average“ aging process,
that should not be confused with any so-called “general” aging mechanism. This
of course makes the whole story even more complex and challenging, but also more
interesting. And still a lot of questions remain unanswered with one of the most
intriguing being: What is the main driving factor of aging and can it be reversed?

1.1.2 Theories, so many theories!

Because of its incompletely understood nature, there is a decades-old still ongoing
debate about the true source of aging, giving rise to a variety of competing theo-
ries. There is no doubt in the scientific community that all facets of aging cannot
be explained by just one single molecule or genetic pathway (since they are highly
connected, as described in the previous section). However, the molecular origin, or
in plain words the "starting point“ of aging is still highly discussed. The intention
of this section is to give an overview of recent but differing arguments on how aging
happens on a molecular level, rather than participating in this discussion. Nev-
ertheless, own conclusions will be drawn and justified in the subsequent chapters,
when different aspects of aging will be discussed. A final conclusion can be found
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in the last chapter of this thesis. For now, I will provide in brief a basis of what are
currently the potential driving factors of aging.

In general, all theories about the molecular source of aging can be divided into two
classes: The programmed aging theories and the failure accumulation theories [15].
Since they are in the minority and over the past years less and less evidence could
be brought up, I will start with the first group.

Evolutionary genetic theory:

This theory is one of the oldest regarding the reason and the purpose of aging and
argues that a species benefits from a constant change in the compilation of its genetic
repertoire by letting older individuals die and younger ones take over [37]. There-
fore, there has to be a genetic program that allows such a ”turnover of generations®.
However, there was never much evidence that this is true [15]. Nevertheless, pushing
this idea was the discovery that in several species there are genes that, if inactive,
can prolong the life-span of individuals [38-42]. Consequently, their activation was
correlated with the decline of cellular functions and some evolutionary biologists
argued that the existence of those genes would not make sense in respect to natural
selection, if not for triggering death [43-45].

Telomere loss theory:

Telomeres are the terminal regions at the ends of each chromosome arm, consisting
of many relative short nucleotide repeats [46]. They protect the genetic code, be-
cause with every genome duplication during a cell’s division the chromosomes get
shortened at their terminal regions due to the end replication problem [47]. There-
fore, with every cell division the telomeric regions get shorter (from around 11kb in
human newborns to less than 4kb on average in centenarians [48, 49]), triggering
the cellular senescence replication stop if a critical length is reached. Cells within
replicative senescence are unable to further proliferate and their overall function is
strongly diminished [50]. During an organisms lifetime, most cells continuously un-
dergo proliferation and cell division and reach the state of senescence at their own
pace, which over time leads to an accumulation of senescent cells accompanied by
loss of function and integrity of the respective tissues. Some concluded from this
observation that telomeres take the role as an internal ”countdown“ for proliferat-
ing somatic cells and restrict division cycles to prevent cancer but also regulate the
maximum life-span [51-53]. There exists an enzyme called telomerase, which can
renew shortened telomeres, however, it is only active in germ cells and stem cells
and some cancer cells, but not in normal somatic cells [54].

Antagonistic pleiotropy theory:

In 1953, Williams [55] argued that evolution would favor genes that have (small)
positive effects during the early life, even though they have negative effects during
late life [14]. That is because, an early advantage in replication outweighs harm-
ful effects that occur later in an species life history even at the price of aging and
death. One of the most prominent examples is the senescence key gene p53, which
suppresses cancer early in life, but is responsible for the accumulation of senescent
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cells later in age [56]. And since most wildlife animals die earlier than their life-span
would allow due to accidents, disease, starvation or predation, there was never any
evolutionary pressure on these pleiotropic effects [57].

Epigenetic clock theory:

Epigenetic marks are defined as heritable and reversible chemical modifications of
histone proteins in order to change chromatin structures or direct changes of the
DNA (e.g., through cysteine methylation) [58]. Especially the methylation of DNA
is known to be associated with the down-regulation of genes and epigenetic studies
are relatively new in the field of aging research [25]. Many independent studies could
show that there is a strong correlation between aging and DNA methylation [59-61],
leading to new hypotheses that there is an epigenetic program that restricts lifespans
by turning down genetic processes with time passing by [62, 63].

All four theories implicitly suggest that the aging process is directly modulated by
evolution for every species and that its existence can be explained by natural selec-
tion. However, there are strong arguments against such implications. For example,
different studies on the mortality of wild animals showed, that in many species al-
most all individuals die relatively early due to predation, cold or starvation and only
few reach an age were factors like accumulation of senescence or epigenetic methyla-
tion marks become relevant (for a brief review, see [64]). This implicates that there
is less to no evolutionary pressure on any potential genetic program of aging and
therefore does not exist or is extremely robust, but not identified yet. Especially the
"epigenetic drift“ could not be proved to be more than random changes that add up
over time, eventually silencing important cellular processes just by chance [65, 66].
Most importantly, none of the theories can explain the non-existence of ”cheaters®,
i.e., individuals that benefit from an deactivated aging program, because the overall
suggested evolutionary benefit applies only for the whole group of a species and not
for an individual alone [15]. Nevertheless, there are still proven genetic pathways
that, when modified, can shorten or prolong life in different animal models signifi-
cantly, but are mostly counted as longevity instead of aging processes.

Next, I will introduce the main ideas behind the failure accumulation theories.

DNA damage theory:

This theory is a generalization of the free radical theory of aging [67], based on the
fact that cells can enter replicative senescence if their DNA is damaged beyond re-
pair. Due to several internal and external sources of stress, different impairments of
the genomic DNA accumulate, like DNA single or double strand breaks, non-canonic
mutations or chemical modifications of single bases. Besides having different and
complex DNA repair mechanisms, if a cell can not cope with the damage senescence
will be triggered to prevent the transformation into a cancer cell. Within the state
of senescence a cell fully stops growing and replicating, however, not making place
for a new completely functional cell, thus preventing it to participate in sustaining
tissue homeostasis. As a consequence, more and more cells enter senescence over
time and organ functions decrease to a point where the maintenance of the whole
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body collapses.

Mitochondrial theory:

In principal following the same reasoning as the DNA damage theory, the mitochon-
drial theory additionally identifies the cell’s mitochondria not only as the main but
also determining source of detrimental reagents for the DNA, namely the reactive
ozygene species (ROS) [23, 68, 69]. ROS are generated as a byproduct of the mito-
chondrial electron transport chain, the central energy producing process within cells,
and play a natural role in some cell signaling pathways [70]. Mitochondrias hold their
own DNA (mtDNA), encoding for integral proteins of the oxygen processing machin-
ery. Since the mtDNA is in close proximity to the side of the metabolic production
of ROS, it is extremely susceptible to DNA damage induced by ROS overproduction.
However, somatic mutations in mtDNA result in impaired mitochondrial proteins
and an increasing dysfunctional electron transport chain, consequently producing
even more harmful ROS [13]. As a consequence, with time mitochondrias become
more unstable and slowly transmute to internal genotoxic threats, culminating in
the activation of replicative senescence or cellular death. Nevertheless, there are
conflicting experimental observations in different animals, showing an unaffected or
even shortened life-span, after a reduction of oxidative stress by mitochondrias or
the complete removal of mtDNA [71-73].

Proteostasis theory:

Sometimes also referred to as waste accumulation theory, it is based on the assump-
tion that the main origin of internal cellular stress is caused by misfolded proteins
and deleterious protein aggregations [36]. The argumentation is similar to the ones
above: over time accumulation of disturbed proteins results in a self-enhancing cycle
of stress-induced interference with molecular processes, that in turn lead to an in-
creased formation of harmful proteins triggering senescence. Common examples for
such events are neurodegenerative diseases like Alzheimer’s or Parkinson’s disease
and cancer, which are known to be triggered by dysfunctional and constrained pro-
tein complexes [74]. Normally, certain proteins are responsible for the correct folding
of the majority of newly translated proteins (so-called chaperons or heat shock pro-
teins) or the adequate degradation of old and non-functional proteins (mainly the
lysosome). With age, these mechanisms get inaccurate and reduced, possibly due
to different internal and external stresses, making cells incapable of controlling the
natural protein turnover, resulting in the above described fatal consequences [24].

Inflammation theory and immune theory:

Chapter 5 is dedicated to the topic of immune system changes during aging. There,
we will deal with these two overlapping theories in more detail. The central argu-
ment of the two theories can be condensed as follows: inflammatory processes and
cells of the immune system (especially macrophages) are prone to reach an imbal-
ance in their activity, damaging surrounding tissues and triggering a self-reinforcing
process of more self-harming activity [57].
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Environment theory:

In contrast to the four aforementioned theories, supporters of the environmental the-
ory (or closely related ones), claim that cellular changes and damages causing aging
are mainly driven by exposure to external stresses and outweigh all internal sources
of cellular stress [25, 75]. These environmental factors include ultraviolet light, diet,
ingested or inhaled toxic chemicals, heavy metals, radiation, heat or cold exposure
and psychological stress. Besides from directly damaging DNA, proteins or entire
cells the main influence of these factors is reflected by the changes in epigenetic
modifications (especially DNA methylation) [76, 77]. This age-dependent epigenetic
drift causes a general down-regulation of gene transcription, resulting in intracellular
miscommunication and deregulation of important biological processes [78]. Different
cohort and twin studies could prove a direct and strong connection between the rate
of epigenetic changes and aging, giving the topic of epigenetics much attention in
the field of aging in the recent years [79-81].

Stress theory of aging:

It is currently the most accepted one, plainly saying that different causes for aging
do not have to be mutually exclusive. Its main statement is, that aging is most likely
the combination of the afore mentioned processes acting and interacting in parallel
on different functional levels [82-84]. However, the progression of aging is tightly
linked to all kinds of stress that an individual experiences through out its life time.
The ability to handle internal and external stresses by any means, is proclaimed to
determine the rate of aging [22]. This of course makes sense, in light that many
aging theories overlap in their argumentation. As discussed in Section 1.1.1, aging
is most likely caused by the complex interplay of different molecular sources where
cellular stress appears to be one of the central points.

Even today, there is still a big discord in the aging science community, regarding the
actual aim of aging research and the proper use of the respective results. Whereas
some believe that the aging process could be modified or even reversed to extend
human life expectancy drastically, others claim that this can never be achieved (or
should not be achieved due to potential negative consequence for our society) and
the main goal should be to provide a healthy and frailty-free late life [84-86].

1.2 Bioinformatics and omics-analyses in aging
research

After we have learned in the previous sections what we currently know or believe and
most importantly do not know about aging, let us turn from this theoretical (and
in parts philosophical) topic to a more technical one. In this section, I will mainly
introduce the field of transcriptomics and modern gene activity measurements, be-
cause most of the analyses described within this thesis are based on such expression
data. Nevertheless, I will mention other omics-technologies and their application
and contribution to aging research, without going too much into detail there. The
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focus remains on high throughput sequencing technologies of the second generation
and the analysis of their respective output.

1.2.1 A very brief introduction to RN A sequencing

It is a well known fact, that cells can alter the expression of their genes, in order to
adapt to environmental changes, switch between different life stages (e.g., prolifera-
tion, senescence, apoptosis) or react to stress such as infections, starvation or phys-
ical injuries [87-89]. A change in active gene expression alters the currently present
transcriptome within cells, i.e., the presence and amount of all transcribed RNA
molecules. By measuring the changes of RNA transcript quantities, it is possible
to infer changes of the activity of specific genes and subsequently draw conclusions
about the detailed function of cellular mechanisms as well as the genes involved in
these processes [90]. A common scenario is to measure the gene activity of two or
more different conditions, say healthy against diseased cells, cells during different
stages of the cell cycle, or in our case young against old cells, and then to contrast
the obtained gene expressions to ascertain which genes are up- or down-regulated
between the investigated conditions. These differentially expressed genes (DEGS)
can now help to figure out the cellular program under specific conditions or stresses.
This can be used to reconstruct the underlying molecular mechanisms, which finally
can be used, for example, for targeted therapeutic interventions or genetic improve-
ments if completely understood [91]. The invention of the so-called next-generation
sequencing (NGS) technologies by the end of the 2000s made it possible for the
first time to sequence tens of millions of DNA molecules at once in a time and cost
efficient way [92]. The term NGS encloses different sequencing technologies from
different companies (e.g., TrueSeq by Illumina or IonTorrent by Thermo Fisher Sci-
entific) that all fulfill in general the same task: rapid high throughput sequencing
of DNA, thus enabling big data analysis in life sciences [93, 94]. Since it is easily
possible to translate RNA molecules into DNA via reverse transcription [95], it was
only a short way to utilize NGS for transcriptome studies and was hence called RNA
sequencing (RNA-Seq). However, nowadays RNA-Seq can be used for a lot more
analyses besides the classical gene expression comparison. The most common ones
are identification of novel transcripts or new transcript isoforms, variation analysis
of single or short nucleotide mutations in transcribed genomic regions, fusion gene
detection or reconstruction of whole transcriptomes [96, 97].

1.2.2 Transcriptomics in a nutshell

In general, an RNA-Seq experiment consists of four major steps: isolation of RNA,
library preparation, DNA amplification and sequencing (see Figure 1.3, steps I-IV).
The extraction of RNA is mostly done by the single-step-method developed by Chom-
czynski and Sacchi [98], which could demonstrate that after extraction RNA can
easily be separated from DNA and other cell compartments within an acidic solu-
tion and one centrifugation step. The library preparation step consists of several
subordinate steps, that define how closely the isolated RNA will represent the orig-
inal extracted RNA population. Since the transcriptome consists of many different
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classes of coding and non-coding RNAs, it is necessary to further process and filter
the extracted RNA, based on the kind of biological question to be answered. In al-
most all cases ribosomal RNA (rRNA) molecules account for up to 95 % of all RNA
molecules within a cell, therefore their concentration has to be depleted in order
to increase the measurement accuracy for all other types of RNAs [99]. Messenger
RNAs (mRNAs) can be specifically targeted by their poly-adenosine tails either to
be enriched or filtered. This enables the possibility to analyze only the protein-
coding or only the non-coding part of a transcriptome. Further, RNA molecules can
be selected by their size, for example, a common protocol named small RNA-Seq
filters especially for smaller RNA molecules, such as microRNAs (miRNAs) [100].
After the isolation steps, RNAs must be fragmented and translated into complemen-
tary DNA (cDNA) or, depending on the specific NGS technology protocols used,
first translated and then fragmented. Fragmentation is important to reduce possible
secondary structures, often present in non-coding RNAs; and to fit the cDNAs to the
standard length of the chosen NGS method, because the accuracy of the subsequent
sequencing is limited to a relative small size of 50200 bases per fragment [99]. The
resulting cDNA fragments are than amplified, so the abundance of single molecules
is high enough for sequencing.

Finally, the created RNA library will be sequenced, resulting in a set of tens of mil-
lions sequenced transcript fragments called reads. All subsequent analysis steps will
be performed on these reads, including, e.g., read mapping, counting and further
specific investigations (see Figure 1.3, steps V-VII).

The normally relatively short reads obtained by an RNA-Seq experiment are frag-
ments of transcribed regions of the investigated species’ genome, however, from
which exact location they originate is not known at that moment. To solve this,
all reads (or at least all reads that have a minimum of quality, often measured in
probability scores of sequencing errors; the topic of read quality control will not be
addressed here and can be, for example consulted, here: [101]) must be aligned back
to their reference, that is in most cases a genomic sequence. This process is called
mapping and several tools have been developed in the past years, to accomplish
this task in a reasonable time [102-104]. Despite the pairwise alignment problem
being already satisfyingly solved [105], there are still several issues that have to be
efficiently dealt with, making the mapping process a non-trivial task. As mentioned
above, normally we end up with tens of millions of short reads, possibly containing
errors due to sequencing mistakes or mutations in respect to their origin, that have
to be mapped back to their reference [106]. Additionally, individual reads can be
mapped equally good to multiple locations, i.e., they have optimal alignment scores
for more than one position in the reference sequence. Or because of the exon-intron
structure of higher eukaryotes’ genes, reads have to be split in two or more parts to
be able to be mapped correctly. How these problems are solved algorithmically by
the recent mapping tools will not be discussed here, I just wanted to point out that
the mapping step itself is not easy but crucial for following data investigations [107].

Nevertheless, the abundance of read-to-reference alignments to a specific location
is in direct proportion to the measured transcriptional activity of the respective
genomic region, which often is annotated to a sequence feature. Such features (or
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Figure 1.3: A simplified overview of a typical RNA-Seq experiment and
subsequent common analysis steps.

(I) First, sample material is collected and cells are disrupted to separate the released
RNA molecules from all other cell compartments. (II) Various preparation steps can
be performed, such as rRNA depletion or size selection, to isolate specific RNA li-
braries of interest. (III) During the amplification step, all isolated RNA molecules
are cut into smaller fragments, are reverse transcribed to cDNA and are duplicated
to fit the requirements of the used NGS protocol. (IV) The resulting cDNA frag-
ments are sequenced by an NGS machine, resulting in one or several fastq read files.
(V) Sequenced reads can be mapped back to their origin by specialized pairwise
alignment tools (VI) and after counting, certain genomic features of interest (such
as genes) can be assigned an expression count representing its activity. (VII) Based
on the obtained mappings and counting tables, further analyses can be performed
to extract new biological insights from the sampled organisms under their respective
conditions.

genomic features) can refer to genes, transcripts or exons and quantifying the amount
of reads mapping to such features is called read counting. Again, this is a non-trivial
task since many choices have to be made, e.g., minimal overlap of a given read with
the feature is required or how to deal with non-uniquely mapped reads, that all can
heavily influence the assigned number of reads to a certain feature [108]. What is
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obtained at the end are lists of features and their corresponding read number, which
can be interpreted as some kind of ”activity score®, the higher the number the more
actively transcribed was the respective genomic feature. Based on these counting
lists and on the mapped reads, different analyses can be made to conclude biolog-
ical insights from the given RNA-Seq libraries, such as differential gene expression
analysis, identification of novel genes or transcript isoforms, enrichment analysis,
mutation and variation analyses and more. Most of these investigations will be ex-
plained and discussed in the following chapters, in particular in Chapter 3, 4 and
6.

1.2.3 OMICS and aging

The suffix ”-omics* (from the greek neologism -ouckn) refers in modern biology to
quantitative studies that aim to analyze the totality of certain molecules or biologi-
cal meaningful features within a sample at a defined time point [109]. As described
above in the last section, transcriptomics deals with all transcribed RNA molecules
that were current in a given sample during its sampled time point. Consequently,
the measurement and analysis of all present proteins (for example measured by mass
spectrometry technologies) within a cell or tissue is named proteomics or when inves-
tigating the entirety of all known genes of a certain species one performs a genomic
study. These kind of omics studies became more and more popular recently, because
the according high throughput technologies were just established in the last decade.
Besides the three already mentioned omics there exist several more, but only two of
them, epigenomics (the study of all epigenetic modifications) and interactomics (the
study of all physical interactions between proteins), were relevant for aging research
so far.

A number of transcriptomic, proteomic or combined studies revealed many of the
possible causes of cellular aging as discussed in Section 1.1.1, and moved the whole
field a lot further in recent years (for an excellent collection of these studies, see [110]).
This is mostly because aging is a multi-factorial phenomenon that cannot be pin-
point down to single genes, events or pathways, but needs to be viewed from a much
broader perspective. With the emergence of the above mentioned high throughput
technologies and omics studies this was possible for the first time. Still, many open
questions have to be answered to understand some of the subtleties but also prin-
cipals of aging in order to precisely interfere in this process, enabling a longer and
healthier life. For that we need more holistic investigations, performed by new and
possibly also more advanced omics studies. Therefore, biotechnological and algo-
rithmic solutions and advancements remain the key if we want to unravel the big
mystery called aging.

1.3 The obstacles of current aging research

As already stressed a lot in the last few sections, biological aging is a highly complex
process and a promising way to understand it, is the combination of different modern
high throughput data and their analysis. However, before we can accomplish the
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task of answering how and why aging happens, we have to be sure to not only ask
the right questions but also if we are capable of answering them and perceive those
answers with our current technological advancement. There are currently some
biotechnological and statistical limitations that one has to face when working in the
field of aging and which will be discussed briefly within this section. This is not
meant to keep the spirits down or to understate any study on aging (including this
thesis), but just to set the presented data and results into the correct frame.

1.3.1 What is “normal” aging?

The title of this subsection already indicates one of the major problems of aging re-
search. Many studies in this area aim to uncover specific parts of molecular processes
based on healthy cells or wild type animals to infer information about normal aging,
i.e., not influenced by genetic predispositions or other diseases. However, as we have
learned from Section 1.1.2 most evidence from research of the last decades currently
leads to the conclusion that aging resembles a stochastic process. Organisms, seen
as biological living system, accumulate different kinds of damage over time and at
some point by chance one of the basic molecular processes, such as DNA integrity
or mitochondrial homeostasis, reaches a state of dis-functionality where it starts
destabilizing the whole system. As a consequence, other processes are negatively
influenced, adding to the already existing damage, subsequently making them also
dysfunctional and leading to a kind of self-enhancing damaging process that leads
to the total collapse of the biological system. This can also be seen when we recap
Figure 1.2 where the complexity of aging processes and their interplays are depicted.
Having an imbalance in just one of the shown processes can have substantial influ-
ence on the balance of the whole interacting network of different molecular processes
with fatal consequences. All this implies, that aging can happen differently from
individual to individual, first on the molecular level and later also phenotypically.
This can easily be seen on the example of the elderly in our society, were some of
them are healthy and fit being in their late 80’s, but others already begin to suffer
from age-associated afflictions, such as cancer, neurodegenerative diseases or simply
physical frailties, starting at the age of 60. There is no indication so far that some
kind of common “roadmap” of aging exists, making it more or less impossible to
have something being the “normal” aging process. So what actually is investigated
in all the different studies on aging are distinct manifestations of aging. And this
should be kept in mind, that presumably there is not the aging process, making
study results difficult to compare. Most likely, there exists not one general solution
to the complications that come with aging, instead it has to be dealt with at various
frontiers.

1.3.2 The many problems with data on aging

Until now it is still not trivial to find a comprehensively fitting definition for the
phenomenon of biological aging (as discussed in Section 1.1) and one reason for
that is, that apparently no generic course of aging on the molecular level exists.
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Therefore, investigations on aging are often limited to single aspects of this process.
This includes specific age-associated mechanisms, particular tissues or species. The
problem herein lies in the diversity of aging peculiarities, that seem to be depending
(at least in parts) on the aforementioned factors. Brain tissue ages differently com-
pared with liver or skin tissue, since they are exposed to different sources of stress
during the lifetime and show highly different regeneration capacities. However, this
also depends strongly on the examined species. In most known mammals, the brain
shows just little regenerative potential and basically stops growing after maturation,
whereas for example some fish, such as Danio rerio (zebrafish), still have the ability
to regenerate even severe brain injuries during old age [111]. This of course has sig-
nificant influence on the aging process. Another relatively well-known example are
naked mole-rats that can live up to 32 years, thus making them extremely long-lived
compared with other closely related rodents of the same size [112]. This is most-
likely due to their low respiratory/metabolic rates, reducing the harmful impact of
certain age-associated processes [113]. Accordingly, it is not easy to infer findings
from one species to another or from one tissue to another.

But even if we stay within one specific species and tissue, we still have to deal with
the versatility of aging processes. Since the progress of aging is of the stochastic
persuasion, it is almost impossible to know if individuals, that are used as samples
for one certain age group in a classic healthy age group comparison experiment, are
good replicates or not (i.e., if aging has effected or damaged the same molecular
functions to a comparable extend). If this is not the case, the individual aging pro-
cesses of every sample appears only as background noise in the respective data and
is most likely overshadowed by other processes (for an illustrated example, see Fig-
ure 1.4). This problem will be shown and discussed in the subsequent main chapters
of this thesis.

Another problem arises when different vital organs are investigated in terms of aging.
There are some tissues that are easily accessible and harmless to sample, such as
blood or skin. And we can already learn much about aging processes by investigating
changes in them at various time points, but only to a certain extend. As it will be
shown and discussed later (in particular in Chapter 3), all the different organs show
their own pattern of transcriptional shifts over time. Thus, to examine how the
distinct and functionally specialized tissues contribute to the overall aging process
within one organism, they have to be analyzed individually. To do so, it is inevitable
to sacrifice the animal of interest for some organs (e.g., heart, brain, liver, spinal
cord, ...). However, this so-called cross-sectional study design brings additional
problems. For example, because different individuals are sampled to obtain data on
the age-depended regulation or function of one specific organ, it is nearly impossible
to track the actual course of molecular changes over time. The reason being again
that the accumulation of molecular damage and subsequent dis-functions remain
random and can hardly be interpolated between different individuals, because a lot
of important information is lost since all animals within the respective study can
only be examined once. This leads to an increased stochasticity of the obtained
data, making it more difficult to infer viable results (see Figure 1.5).

One more point to consider, especially for longevity studies, is that we do not know
how old any individual animal sacrificed at a certain age, would have become. There
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Figure 1.4: Possible problems with cross-sectional aging data (Part I).

In this simplified example a young and an old mouse group are compared at a certain
time point, regarding the activation of three different aging processes and their can-
cer activity: malignant proteins (MP), inflammation (IN), DNA damage (DD). The
higher the measured score, the higher the activity of the respective process. Since
aging is a random process, a huge variance is present in the obtained data. This is
especially true for the older animals, because just by chance some accumulate more
DNA damage through their life time, whereas others have to deal with malignant
proteins or hyper-inflammation instead. Therefore, getting a consistent picture of
overtime changes within these aging processes is difficult, making it hard to identify
this processes to be changed statistically significant. An important factor is also
the extremely small sample size, which typically for current expression comparisons,
seldomly exceeds more than five samples per group. On the other side, more promi-
nent changes, such as the activity of cancer cells between young an old animals are
easily detectable. However, cancer is just a consequence of aging, not a cause of it,
overshadowing the already hard to observe underlying process changes.

is some evidence that the life-span of an organism could be modulated by the activity
of some genes (namely Sirtuin genes). Yet, individuals that express this specific
longevity pattern could be sacrificed at an early age and being mixed into one
comparative age group with those who did not have these life extending genetic
programs in action. If they are now compared to animals that actually have reached
the very old ages of their species, the underlying cause can hardly be identified.

Speaking of life-spans, another problem remains: We study aging on animals to
achieve an understanding that hopefully provides us the possibilities to healthily
extend human life as much as possible. Directly working on human subjects would
be for one reason too long-running and for another of course ethically immoral.
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Figure 1.5: Possible problems with cross-sectional aging data (Part II).
At the moment, when examining age-dependent changes of vital organs in animals
like the brain, liver or heart, it is unavoidable to sacrifice the individuals. As dis-
played in this simplified cross-sectional experiment example, the expression of an
arbitrary gene X is measured at three different time points, to estimate its activity
changes with age. Three different individuals (or groups of individuals) have to be
used to obtain an age expression profile of gene X (the black bottom right function),
that appears to indicate some positive relationship of the activation of gene X with
aging. However, because none of the animals could be measured at more than one
time point, due to being too young or already dead, the true longitudinal expression
profiles of gene X were never observed individually (the top right blue, green and red
functions) and would have shown that there is no clear correlation of the expression
of gene X with aging.

Therefore, working on animals like rodents or fish, that normally life between two
and five years is more practical, with the disadvantage that some findings in one
species may not be applicable to other species, even to closely related ones (like
the example of the naked mole-rat, mentioned earlier). To minimize these risks, we
would have to study aging in our closest relatives: primates such as chimpanzee,
gorilla or orangutan. They all have wild life expectancies between 30— 40 years and
can even reach older ages of 50 or more years in captivity [114, 115]. This fact alone
makes them rather unsuitable study objects, let alone the complications that come
with strict animal rights and ethics.

To conclude this section, at the momentary scientific frontier of aging research, we
are faced with a plethora of limitations when it comes to obtaining and evaluat-
ing meaningful data. Some problems could be solved in the future with advanced
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biotechnological tools (e.g., less harmful invasive procedures to sample vital organs),
whereas others will probably never be solved (unpredictable course of external in-
fluences on molecular processes). Nevertheless, despite being a challenging task it
is not impossible to gain new and valuable insights from currently available data.
And some of them are being presented in the following chapters.

1.4 Contribution and scope of this thesis

Since this thesis is based on many different age-related projects, the topic of aging
will be approached from different directions. At first in Chapter 3, we address the
topic of tissue-specific changes in the expression of protein coding genes and why it
is not easy to identify so-called general biomarkers of aging even within one species.
In Chapter 4 we will learn about the regulatory functions of microRNAs, how they
can be identified and annotated, which role they have on aging, especially in the
short-living killifish Nothobranchius furzeri and how we can statistically model the
expression of microRNA genes. Within the last three chapters we will concentrate on
very specific biological processes and how they influence or are being influenced by
aging. First, the relatively well studied phenomenons of age-related senescences and
inflammation will be compared among four different species. After that, we will have
a look if the gene splicing machinery contributes significantly to the cellular stresses
of aging cells or just plays a minor role. And concluding, the course of activity
of genes responsible for the maintenance of an individual’s circadian rhythm are
analyzed and possible implications are discussed.

As it is common in scientific work, the scientific ”we * is used through out this thesis
instead of the personal pronoun ”I1% because most of the work presented would
not have been possible without the cooperation of my colleagues and collaborative
partners.
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Chapter 2

Data, Material and Methods

Within this chapter, all data and respective general analyses on which this thesis
is based are described. Most of the data presented and analyzed originates from
the JenAge project, therefore it is explained separately in more detail in the next
section (Section 2.1). This mainly includes the experimental part of organ and
tissue collection and their experimental processing. This was done by different
people and is acknowledged in the respective given citations or stated explicitly.
All data analysis, interpretation and visualization parts were performed by myself,
if not stated otherwise. In Section 2.2 some general data (pre)processing steps are
described, that were applied to all investigated RNA-Seq data sets. Specific analysis
are described in detail in the respective chapters.

2.1 The JenAge Data

The Jena Center for Systems Biology of Aging (JenAge) is a multidisciplinary re-
search center located in Jena, Germany. It was established in 2009 with a suc-
cessful grant application at the German Federal Ministry of Education and Re-
search and consisted of ten research groups from four different institutions (http:
//www.jenage.de/). Embedded in this project is the JenAge Information Center,
a collection of various databases holding aging related biological, demographic and
disease specific data as well as corresponding metadata. A major part of the stored
biological data are RNA-Seq data of the five species Homo sapiens, Mus musculus,
Danio rerio, Nothobranchius furzeri and Caenorhabditis elegans. For a brief intro-
duction to RNA-Seq data analysis, see Chapter 1.2.2. A number of transcriptome
samples was collected and sequenced from different tissues at different ages from the
above mentioned species of which a huge part was analyzed within this thesis. The
only exception is the Caenorhabditis elegans data set, which was not used in any
of the further presented chapters. For a detailed overview on the investigated data,
see Figure 2.1 and Figure 2.2.

Tissue and organ extractions from all animals, and RNA extraction as well as fur-
ther experimental processing were realized in frame of the JenAge consortium as
published by Irizar et al. [116]. Animal housing and experimental usage was per-
formed in accordance with the ARRIVE (Animal Research: Reporting of In Vivo
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Figure 2.1: Overview of the analyzed JenAge RNA-Seq data. Amount of
sequenced RNA-Seq libraries for each sampled age, tissue and species.

Experiments) guidelines and approved by the regional animal welfare authorities in
the State of Thuringia (Thiiringer Landesamt fiir Verbraucherschutz und Lebens-
mittelsicherheit, Bad Langensalza, Germany). Inclusion of the four species implied
highly different environments, life conditions and basal requirements. Likewise, ac-
tivity patterns and nutrition periods are greatly different between nocturnal and
diurnal species such as mouse and human mammals, and hardly comparable to fish.
Moreover, the natural habitat of short-lived Nothobranchius furzeri is characterized
by extreme climatic conditions (see 3.2), and daytime instead of seasonal climate.

Tissue sampling
Human tissues

Human tissues comprising blood and skin were derived from identical or different
male and female individuals and collected at the Department of Neurology at Jena
University Hospital. Donors were separated into the following age categories: 24—
29 years, 60—65 years, and 75—T79years (n = 14—15 for each). Blood samples were
stabilized in PAXgene Blood RNA tubes. A skin area of 3 mm? was taken from the
ventro-medial, distal part of the upper leg. Human tissue sampling was authorized
by the local ethics review committee and implied informed consent by each of the
study participants. Donors with strongly pigmented skin, skin diseases or a history
of interfering pathologies were excluded.

Murine tissues

Murine tissues included blood, skin, brain and liver from male wild type C56BL/6
mice housed in the animal facility of the Jena University Hospital under controlled
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Figure 2.2: Overview of the analyzed JenAge small RNA-Seq data. Amount
of sequenced small RNA-Seq libraries for each sampled age, tissue and species.
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conditions for temperature, humidity and light/dark cycle (14:10 hours, including a
daily break of dawn and dusk imitation period), with food and water available ad
libitum. As age categories, corresponding to human sampling time points, 9 months,
15months, 24 months and 30 months were selected (Figure 2.3). Within the same
age category, blood and skin (abdominal) samples were collected from the same
individuals, whereas liver and brain were extracted from another set of animals
(blood, skin, liver, n = 5 for each; brain, n = 8). For tissue collections, mice were
deeply anesthetized with an overdose of volatile isoflurane/cervical dislocation, the
organs were immediately extracted and frozen in liquid nitrogen until use for RNA-
Seq.

Fish tissues

Animal maintenance was performed as described in [117, 118]. All samples from
one fish strain were taken at the same daytime (Nothobranchius furzeri: 10 a.m.;
Danio rerio: noon/early afternoon) in a fasted state. For the tissue preparation, the
male fish were euthanized with Tricaine mesylate (MS-222) and cooled on crushed
ice. Tissues from both, Danio rerio (strain TUAB) and Nothobranchius furzeri
(strain MZM-04/10) included brain, liver and skin (n = 5 for each) and were iso-
lated from 12, 24, 36 and 42 months and 12, 20, 27 and 39 weeks old fish, respec-
tively. Maintenance and experimental use of Danio rerio and Nothobranchius furz-
eri were approved by the local animal welfare authorities in the State of Thuringia
(Thiiringer Landesamt fiir Verbraucherschutz und Lebensmittelsicherheit, Bad Lan-
gensalza, Germany).
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RNA extraction

RNA extraction was performed as described in the following publications: Homo sapi-
ens [116], Mus musculus [119], Danio rerio [120] and Nothobranchius furzeri [120,
121].

2.2 General RNA-Seq data processing

All RNA-Seq libraries presented within this thesis are accessible at NCBI’s Gene Ex-
pression Omnibus (Homo sapiens: GSE75337, GSE103232; Mus musculus: GSE75192,
GSET78130; Danio rerio: GSE74244 and Nothobranchius furzeri: GSE52462, GSE66712).

Genomes and annotation

The genomes and annotations of Homo sapiens, Mus musculus and Danio rerio used
in this thesis were downloaded from Ensembl (release version 92) [122]. For Notho-
branchius furzeri, the currently published assembly version of its genome and the
respective annotation was used [121, 123]. Additionally, for the analyses in Chapter 4
the following fish genomes and annotations were downloaded from Ensembl: Oryzias
latipes (HdrR), Takifugu rubripes (FUGUS) and Gasterosteus aculeatus (BROAD
S1).

Total RNA-Seq library processing and mapping

Total RNA-Seq libraries were filtered and quality trimmed with the use of PRINSEQ
(v0.20.3) [124] by clipping all reads at both sides to achieve a minimum base quality
of at least 20 and discarding all reads with a length of less than 15nt or more
than two ambiguous N bases. To monitor the read qualities, we used FastQC
(v0.11.3; http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Map-
ping the quality trimmed RNA-Seq libraries onto the respective current genomes was
performed with TopHat2 (v2.1.1) [125] using the default parameters, allowing spliced
reads and mapping of single reads to multiple best fitting locations. Read counting
was performed using featurecounts (v1.5.3) [108] and reads were normalized by
transcripts per million (TPM) [126]:

C; 1
TPM; =~ | ——= | - 10°
l (E —>

JEN
where ¢; is the raw read count of gene i, [; is the cumulative exon length of gene
i and N is the number of all genes in the given annotation. Genes with an TPM

value < 1 in every sample were considered to be not expressed and discarded in all
subsequent expression analysis.

Small RNA-Seq library processing and mapping

The RA3 adapter of the TruSeq small RNA preparation kit
(5-TGGAATTCTCGGGTGCCAAGG) was cut from the reads of all small RNA-
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Seq libraries. Additionally, PRINSEQ (v0.20.3) [124] was used to trim the reads from
both sides in order that the read bases had a minimum quality of 20 and minimum
lenght of at least 15 bases. The mapping onto the respective genomes was per-
formed with segemehl (v0.2.0) [103] using the -H 1 option, allowing single reads
to be mapped to multiple best fitting locations. The visualization of mapped reads
was done using IGV (v2.0.34) [127].

Identification of differentially expressed genes (DEGs)

The DESeq2 (v1.10.0) [128] Bioconductor package was used to identify differentially
expressed genes (DEGs) between the different ages for of each species and tissue,
respectively. The exact age group comparisons are described within the respective
chapters individually. Multiple testing adjustment of the resulting p-Values was
performed using the Benjamini and Hochberg’s FDR approach [129]. Genes with
an identified adjusted p-value < 0.05 were considered as differentially expressed. All
DEG results, together with the raw and normalized count values can be found in
detail at the supplemental data descriptions of the respective chapters.

2.3 Life span comparison

The four species investigated display highly different lifespans. To facilitate compa-
rability, we rendered a normalized lifespan scale to each of them, which was aligned
to specific biological stages, i.e., the age of mean maturity, mean survival and 10 %
survival age as well as the age of the oldest known individual (see Figure 2.3). In-
formation regarding the different life stages of the four species underlied different
sources: for Homo sapiens from the World Health Statistics 2016 of the WHO [130]
and [131, 132], for Mus musculus from [133-136], for Danio rerio from [137-140]
and for Nothobranchius furzeri from [118; 123, 141, 142].
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Figure 2.3: Inter-species normalization of age categories.

To align the species-specific chronological ages to biological age categories compa-
rable between different species, the total individual’s life time, represented by the
length of the life time axis, was subdivided by index stages. These were the biologi-
cal stages of maturation, mean survival age, 10 % survival rate and highest ultimate
age reported for an individual belonging to the respective species (see Section 2.3).
Time intervals between the resulting intersections were normalized with respect to
the mean survival age in a linear fashion. Thus, the sampling time points realized in
the study for a certain species (blue dots) matches with the biological age category

in all the other species analyzed.



Chapter 3

Tissue-specific Aging Patterns in
Mice

This chapter is based on the publications ” Tissue-specific gene expression changes
are associated with aging in mice“ and ”Inching towards decrypting the enigma of
w1l

Aging*.

Data used and analyses performed in this chapter
Age comparison setup

The age comparisons were performed according to Figure 3.1. Half of the compar-
isons can be seen as a linear age-gradient analysis (9 vs. 15 months, 15 vs 24 months
and 24 vs 30 months), providing insight into the changes over time in gene expression.
The other three comparisons (9 vs. 24 months, 9 vs. 30 months, 15 vs. 30 months) show
the more drastic transcriptional changes between adult and old-aged mice. All DEG
results can be found in detail at STable 2.

Age profiling of tissue gene expression

Each expressed gene with TPM > 1 was assigned an age profile with respect to
its expression behavior over time for each of the four tissues individually (see Fig-
ure 3.2). The profiles were determined by analyzing the read fold change between
the linear age progression comparisons (9vs. 15, 15vs. 24 and 24 vs. 30 months). For
each of the four comparisons, every gene was categorized either up/down-regulated
(increase/decrease of at least 25% in fold change) or equally expressed. For the
brain, the fold change thresholds were set to 10 %, because the total neuron ex-
pression activity was reduced compared to other tissues, because they do not divide
further after birth and so the neuronal cell population remains more or less stable,
thus expression is more consistent, and hence, a fold change of 10 % can be assumed
to have significant effects. Genes were clustered regarding their gene profiles and
clusters were analyzed for pathway and GO term enrichment. For details about the
gene expression age profiling see STable 3 and SData 1.

!The complete supplemental material is available at https://osf.io/tvrdm/
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Figure 3.1: RN A-Seq library overview and age comparisons.

(A) The number of used samples and RNA-Seq libraries per tissue at every age point.
(B) We compared the four age groups for each tissue individually (24 comparisons).
Green - short-term comparison; blue - long-term comparison.

Pathway category enrichment

Differentially expressed genes from each time comparison (Figure 3.4) were asso-
ciated with the KEGG [143| pathways they are involved in, using the functional
annotation analyses of DAVID (version 6.8) [144] for each tissue, using Mus muscu-
lus as a reference and with KEGG pathways being the only option checked-in. All
pathways were grouped on the basis of their physiological role and functionality into
different categories. Categories that contained at least 5 % of the DEGs of the respec-
tive comparison were: metabolism, inflammation/immune response, synapse-related
pathways, muscle-related pathways, extra cellular matrix/adhesion/cytoskeleton,
signaling pathways and cancer. All remaining categories were grouped into oth-
ers (Figure 3.5). The enrichment was performed based on up- and down-regulated
genes separately, as well as the whole set of DEGs (see SData 3A/B). Additionally,
genes that followed a specific expression pattern with aging were separately used for
pathway enrichment analysis (see STable 4 and SData 4). Pathways with an FDR
adjusted p-value lower than 0.05 were considered significantly regulated and were
again further classified into functional groups for each tissue individually.
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Figure 3.2: Gene expression profiles of interest.

All genes that followed the course of one of the depicted expression changes during
aging were grouped into separate clusters and analyzed subsequently for an enrich-
ment of functional commonalities.

Validation of expression for common DEGs using qPCR

This experimental part was performed by Madlen Giinther.?

We validated the expression level of DEGs determined by RNA-Seq by perform-
ing qPCR for transcripts using the same methodology described earlier by Sieber
et al. [145]. We used the same amount of RNA in qPCR as was used for RNA-Seq
to reverse-transcribe the ¢cDNA using a RevertAid First Strand ¢cDNA Synthesis
Kit from Fermentas (Thermo Fisher Scientific, Waltham, MA, USA). Primers were
designed and were diluted to 500 nM for mice. Brilliant IIT SYBR Green QPCR
Mastermix from Agilent Technologies was used to perform the reaction using Qi-
agen’s Rotor-Gene 6000 cycler with the following cycle conditions: 3 minutes of
polymerase activation followed by 40 amplification cycles of 95 °C for 10 seconds
and 60 °C for 15 seconds. For housekeeping genes, in order to increase the accuracy
of our results, we used Hprtl for every tissue along with Gapdh, Hmbs, Gusb and
Actb for brain, blood, skin and liver tissue, respectively. Further, the Ct values were
used to calculate the transcript ratios with respect to 9 months age using the Pfaffl
equation [146]. A list of the used primers for qPCR can be found in SData 1.

RNA interference treatments

This experimental part was performed by Maria Ermolaeva.’

HT115 bacteria containing specific RNAi constructs were grown on lysogeny broth
agar plates supplemented with ampicillin and tetracycline. Plates were kept at

?Hans-Berger Department of Neurology, University Hospital Jena, Friedrich Schiller University
Jena, 07747 Jena, Germany
3FLI Leibniz Institute for Age Research, Beutenbergstrasse 11, 07745 Jena, Germany
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4°C. Overnight cultures were grown in lysogeny broth media containing ampicillin.
RNAI expression was induced by adding 1 mM isopropylthiogalactoside (IPTG) and
incubating the cultures at 37°C for 20 min before seeding bacteria on NGM agar
supplemented with ampicillin and 3mM IPTG.

Life span analysis

This experimental part was performed by Maria Ermolacva.*

The experiments were carried out at 20 °C under standard conditions. Synchronized
L4 larvae were placed on 60 mm dishes containing NGM agar and RNA1i bacteria at a
density of 70 worms per plate. Worms were transferred to new plates on a daily basis
until adulthood at day 6 (ADG6) and later transferred to new plates every 3—4 days.
The number of dead animals was scored daily. The whole experiment was repeated
three times. The analysis of the lifespan data, including statistical analysis, was
performed using GraphPad Prism software. For more details, see SData 6.

4FLI Leibniz Institute for Age Research, Beutenbergstrasse 11, 07745 Jena, Germany
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3.1 Aging treats tissues not equally

We already learned from Chapter 1 that aging is a highly complex process charac-
terized by progressive physiological changes. And this process happens throughout
all organs and tissues during an individuals life time. However, it has become in-
creasingly clear that aging has a divergent effect on different tissues at both the gene
expression and the physiological levels, due to the influence of a variety of intrin-
sic and extrinsic agents [147, 148]. For example, the role of the liver during aging
is intensively discussed and it is suggested that replicative senescence, exposure to
toxins such as drugs and free radicals, and diet play important roles in the process
of liver aging [149, 150]. In 2015, Lans et al. described in Caenorhabditis elegans
how damage responses are altered uniquely for different tissues because of distinct
DNA repair systems [151]. Additionally, several studies have linked the aging pro-
cess with an increase in inflammation (more on that topic in Chapter 6) and suggest
that changes in lymphoid organs also play an important role [152]. However, despite
decades of research, it remains incompletely understood how exactly tissues change
with age.

One important approach to understanding the mechanisms of aging is to examine
changes at the gene expression levels at different ages. An increase in inflammatory
and stress response genes along with the accumulation of ubiquitinated proteins
with age has been reported by many independent studies based on microarray or
RNA-Seq experiments. In particular, antigen processing and presentation, NF-xB
signaling, and lipid metabolism, as well as complement and coagulation cascades,
were shown to be relevant inflammation pathways during aging [147, 153, 154]. In
addition to certain processes, some specific genes have also been associated with ag-
ing, such as members of the cathepsin family, apolipoproteins, complement system
and members of the STAT protein and Tumor Necrosis Factor receptor superfam-
ily [155-157].

Most of these studies focus on only one tissue (frequently the brain) and include
a limited number of time points, often including a time point before maturation.
Studies comparing gene expression changes during aging in multiple tissues across
different age points are scarce. One exception is the extensive microarray-based
study by Jonker et al. [147] with five different organs and six age points. This study
reports distinct aging signatures in different organs.

Within this chapter, we present a comprehensive study of age-related transcriptional
changes in mice in four tissues: brain, blood, liver and skin. We generated a unique
set of 92 RNA-Seq transcriptome libraries from mice at four different ages: a young
but already mature age of 9months, an intermediate age of 15months, an old of
24 months, and the very old age of 30 months. Survival studies have shown that
72 % of the investigated C57BL/6 mice live to an age of 24 months, while only 4 %
are long-lived and survive to an age of 30 months [158]. It is important to note that
mentioned age groups are in relation to C57BL/6 male mice and may differ for other
strains and sex.

Our study revealed tissue-specific and tissue-independent genes and processes that
are differentially affected in aging. We identified seven genes that are differentially
expressed in all four tissues during aging, along with various subunits of the mi-

31



CHAPTER 3 TISSUE-SPECIFIC AGING PATTERNS IN MICE

tochondrial electron transport chain that are regulated in a similar fashion among
the analyzed tissues. While the number of differentially expressed genes and their
molecular biological processes were comparable between the skin, brain and blood,
the liver shows a much higher level of age-linked gene expression differences, making
it an interesting candidate for future research.

3.1.1 PCA shows characteristic regulation at the transcrip-
tome level for every tissue during aging

To get a general overview of the 92 RNA-Seq samples from the four tissues investi-
gated, we performed a principle component analysis (PCA) based on the 750 genes
that were most variant with age, see Figure 3.3 and SFigure 1. As expected, the
sample replicates of the individual tissues (blood, brain, liver and skin) clustered
together. Organs are clearly distinguishable, indicating that organ-specific genes are
present among the 750 most variant genes.

Being most separated in the first principle component, the liver showed the largest
differences from other organs. In the liver and skin, we observed the highest disper-
sion of samples in the PCA plot, indicating broader gene expression variability at
different time points. The blood and especially the brain replicates clustered more
closely together. This is in agreement with the fact that the brain is a tissue that
undergoes only minor changes once it is fully developed, despite some new insights
which show plasticity in some specific areas [159]. However, a clear distinction of
the different ages within the single tissues was hardly possible with this approach
(SFigure 1), because age-dependent expression changes were subtle, and no larger
set of obvious common aging-linked factors was present in these four organs. Only
for the liver could one observe measurable separations of the replicates of the young
time point at 9 months and the old time point at 24 months from all other samples.

3.1.2 Predicting important modulators of aging for each tis-
sue

In total, we identified 1329, 579, 5185 and 1237 genes that were differentially ex-
pressed in the blood, brain, liver and skin, respectively, among the pairwise age
comparisons. Specific numbers of differentially expressed genes (DEGs) identified
are given in Figure 3.4 and STable 2.

Aging patterns of gene expression in different organs

Within the brain, consecutive age-wise comparisons showed only minor changes in
gene expression, indicating that on the gene expression level, normal aging is a slowly
progressive process with subtle changes between close time points. A larger number
of genes ( 400) with significant changes were observed between wider time spans,
especially those including the very old mice (9 vs.30 months and 15vs. 30 months).
This shows the progressive nature of the aging process, which appears to accelerate
at later time points. We found a very similar pattern of gene expression changes
in blood (with a generally higher number of affected genes) and skin. Skin showed
more differentially expressed genes at an earlier time point (9 vs. 24 months), which
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Figure 3.3: Principal component clustering of RNA-Seq libraries.

The three-dimensional PCA plot of 92 RNA-Seq libraries based on the 750 most
variant genes, i.e. showing the highest variance in expression between time points
in all samples. While all libraries clustered very well together according to their
tissues, no clear distinction regarding the different age groups could be made. PCA
plots of each tissue and different sets of genes are available at SFigure 1, showing in
general always the same clustering.

can be interpreted as a slightly accelerated aging process compared to brain and

blood.

The brain shows more signs of inflammaging

In particular, the most significant DEGs in the brain were genes of the complement
and immune systems, such as Cja, C4b, Tlr2, Cst7 and Ifit5. This includes brain-
specific ones such as Gfap, which is known to act during development but is also a
marker for activated astrocytes with aging [160]. All these genes have been previ-
ously reported to be up-regulated in the brain with age. While proactive immune
functions can imply protection from infections, persistent low-grade inflammation
can also be deleterious [161]|. Thus, inflammaging might be one of the primary causes
of aging in this organ. Additionally, we also observed moderate up-regulation of cell
cycle regulators e.g., Cebpa, which is a common observation in aging neurons [162].
For details, see STable 2.
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Figure 3.4: Differentially expressed genes in mouse tissues during aging.
Number of identified differentially expressed genes (DEGs) within each of the four
investigated tissues and between the four different ages. Aging occurs as an accumu-
lation of errors over time, manifesting as a high number of DEGs when comparing
9vs. 30 months and 15 vs. 30 months in the brain, blood and skin. The liver does not
follow this pattern and shows a high rate of DEGs at every time point comparison.
Note the different scales of the y-axes of the plots. More details about all time
comparisons and identified DEGs can be found in STable 2.

The blood mainly shows markers of senescence due to replicative aging

We observed age-linked down-regulation of the hematopoietic cell growth and sur-
vival negative regulator Rhoh, which is known to be a strong inhibitor of NF-
kB and other general T and B cell migration and differentiation factors such as
Chst3 [163]. In addition, regulators of various cancer pathways appeared to be dif-
ferentially expressed: Id3 and Dusp2, which hint at a potential cancer suppressing
mechanism for very old mice, and Dpep2, which is known to play an anti-leukemia
role [164, 165]. Thus, dysregulation of cell division and differentiation is highly
prominent with aging. In addition, similar to the brain, the immune system was
activated with aging in blood cells, and although it was mostly restricted to the
up-regulation of immunoglobulins from B cells, we could observe up-regulation of
other immune-related genes, such as Sirpbl-a/b/c, Retnlg, Mpo and Prg2 expressed
by macrophages, monocytes and eosinophils, respectively. In comparison with the
very late age (30 months), we also found more general inflammation factors, such as

Clecje, Ifitm2, and C4b.
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Skin appears to age distinctively due to environmental exposure

A surprisingly large variety of different transcription factors appeared among the
topmost differentially expressed genes (DEGs) in the 9vs.24 months comparison.
We observed down-regulation of many genes associated with the extracellular ma-
trix, such as different members of the collagen protein family, or Finc, which encodes
one of three filamins. A reduction of the extracellular matrix is already implicated
with aging, due to external factors such as UV radiation and has been examined in
a variety of studies [166-168]. Consequently, no clear trend for affected molecular
pathways was observed. Only in comparisons to the 30-month-old mice were some
common patterns identified. Between 24 months and 30 months of age, we found
important skin functions, such as tight junction, focal adhesion and olfactory trans-
duction to be most significantly affected. This underlines the fact that a decline in
tissue-specific functionality can be seen with increasing age. When compared to the
brain and blood, only a few immune- and inflammation-associated genes are found
to be differentially regulated in the skin, indicating that the typical inlammaging
signs seem to be less prominent in this tissue.

The liver shows several divergent processes related to aging

In the liver, we identified the highest number of DEGs (5185) related to aging,
making it the most dynamic of the investigated tissues. Young adult tissues (9 and
15 months) mainly displayed changes in genes involved in drug metabolism and reac-
tive oxygen species (ROS) management; in particular, these are mainly cytochrome
genes. In addition, immune-related genes were highly significantly affected. No-
tably, inflammatory processes were regulated but showed no clear general activation
or deactivation at this age, with half of them being down- (e.g., C8b and Iir1) and
half being up-regulated (e.g., Tlr12 and H2eb1); see STable 2. With progressing age
(9 and 15 months compared to 24 months) more genes related to inflammation were
up-regulated, pointing to an increased inflammation process. Additionally, cell cycle
and cell adhesion genes such as cyclin D1 and cadherin 1 were very significantly up-
regulated in the 15 to 24 months comparison. Mis-regulation of those genes is known
to contribute to cancer progression, which is an important cause of death with in-
creasing age [169]. This is consistent with our pathway analysis (see Section 4.1.3),
as cancer-promoting pathways increased between 9 and 24 months of age, while genes
associated with cancer suppression did not undergo a significant change. When com-
paring the very old mice with younger mice (9 and 15months vs. 30 months) we
observed an up-regulation of the immune system in the topmost regulated genes,
mainly represented by the activation of immunoglobulin genes and interferons. The
two most strongly up-regulated genes here were S100a8 and S100a9, which form a
heterodimer, belonging to the S100 calcium-binding protein family and are known
to play a major role in inflammation and tumorigenesis [170, 171]. When comparing
the two oldest time points (24 vs. 30 months), hardly any immune related genes were
found among the most significantly altered genes, which is in agreement with the
inflammation processes being highly active in old age (24 months) and seeming to
not decrease or increase further with ongoing aging (30 months). Instead, the most
significant up-regulated DEGs induce cell death (e.g., Dedd?2) or directly relate to
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cancer (e.g., Brap) [172]. Interestingly, the autophagy-inducing gene Atg2a was up-
regulated, although autophagy activity has been described as decreasing across all
tissues during aging [173].

The number of DEGs greatly varied between the investigated tissues, being lowest
in the brain (579) followed by the skin (1237), blood (1329) and liver (5185). This
might be caused not only by aging, but also by the special roles of these organs.
The brain is the most protected of all tissues and practically stops growing after
maturation, and it also shows only low regenerative capacities in mice. Skin, being
the most exposed tissue of an individual, undergoes constant abrasion due to light,
friction and other environmental factors. Over time, these external stresses can
cause the distinctive aging phenotype of skin. Interestingly, we found changes in the
activation of focal adhesion, tight junction and olfactory genes in the old age time
point comparison (24 vs. 30 months). This could be explained by loss of function
due to permanent exposure to environmental stress. For blood, genes linked to
cell division seemed to be the main signature of physiological changes of processes
during aging. Blood constantly undergoes proliferation, unlike most tissues, which
normally undergo division only when they suffer damage. The liver is metabolically
the most active and involves detoxification processes. Thus, the liver is constantly
exposed to exogenous factors, undergoing constant regeneration and showing high
regenerative potential. However, this extraordinary plasticity likely makes the liver
more susceptible to inflammation and cancer development, as indicated by our data
on age-linked gene expression changes.

3.1.3 Clustering of KEGG pathways into categories reveals
the most prominent processes affected in aging

Analysis of DEGs reveals tissue specific processes with aging

To analyze our data in a broader context, we enriched KEGG pathways using DAVID
for each tissue and for specific age comparisons separately (see Figure 3).

Brain

In brain tissue, when comparing 9 and 15months to 30 months of age, we found
413 and 422 genes to be differentially expressed, respectively. Among these DEGs
only 125 and 127, respectively, were found to be annotated and were associated
with a known pathway within the KEGG database. For the age comparison of
9vs. 30 months, half of the affected pathways contributed to inflammation and im-
mune response. Differentially expressed genes (90%) were higher expressed at
30 months of age. Almost 14% to signaling pathways, approximately 12.5% to
metabolism, 7% to cancer and approximately 5.5% to muscle function. Interest-
ingly, in the 15 vs. 30 months age comparison, we observed an almost 13 % decline in
inflammation, while a similar increase was seen in metabolism and signaling path-
ways. This shows that with progressive aging, there appears to be an increase in
chronic inflammation, and hence, a lower number of DEGs and pathways could be
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Figure 3.5: Tissue-specific change of enriched pathways during aging.

Enriched pathway categories based on significantly differentially expressed genes
(DEGs) (Figure 3.4) for each tissue and age comparison separately. The number
of DEGs for each subplot and the total number of DEGs for this comparison are
displayed at the top of each subplot. Any pathway contributing less than 5% of
the genes is categorized as others (grey). The brain and blood show similar patters
during aging, while the skin and liver each showed specific aging patterns. Most of
the DEGs from the liver were involved in metabolism. Note that not all age com-
parisons are included here, because they had too few DEGs for a sufficient pathway
enrichment analysis. More details can be found in SFigure 3 and SData 3A/B.

annotated to the same category at later time points, while an increase in metabolism-
and signaling-related pathways can be due to either dysregulation or an effort to
adjust to the increased inflammation. Additionally, the contribution of cancer and
muscle function related pathways dropped below 5%, putting them in the others
category. This change indicates that pathways related to cancer are more tightly
regulated at 9 months than at 15 months, and therefore, we cannot detect a signif-
icant difference when comparing later time points. This can be explained by the
accumulation of damage with age [174, 175]. In the remaining DEGs (others cat-
egory), a relatively high number of DEGs (15) were related to the cell adhesion
molecules pathway with a relative low p-value (2e — 6) for both age comparisons.
These factors can be a prognostic for blood-brain barrier integrity.

Prolla [176] has already discussed similar results with respect to brain aging com-
paring his findings with calorie restricted mice. He reported several up-regulated
genes related to stress and immune response, along with an accumulation of ubiqui-
tinated proteins in control mice. However, this effect appears to be slightly reduced
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in calorie restricted mice.

Blood

In blood tissue, we identified 815 and 1106 DEGs within the age comparisons of
9vs. 30 and 15 vs. 30 months respectively, of which 201 and 269 were annotated us-
ing DAVID. DEGs contributing to inflammation and immune response still made
up the largest group in the significantly altered pathways at both time point com-
parisons. A closer analysis on the transcript expression revealed, that genes related
to inflammation were again higher expressed while genes related to the H2 complex
(MHCII) were lower expressed at 30 months. Changes in metabolism-related path-
ways were on the same order, with only a slight increase to 13% and 18 % at the
two time points. The major difference between brain tissue and blood was appar-
ent with in cancer pathways, which were part of the others category and made up
less than 5% in the 9vs. 30 months comparison and approximately 6.56 % for the
15vs. 30 months comparison. At the later age comparison, most of the DEGs com-
prising cancer pathways were found to be higher expressed at the age of 30 months.
This suggests that in blood, the changes related to cancer are more prominent at
15months and might increase at a later age.

Skin

The skin appears to age in a relatively distinctive manner, possibly due to direct
exposure to external environmental factors, which is limited for most of the other
tissues. For the 9vs. 24 months comparison, 482 DEGs were identified. Of these,
332 were known by DAVID and 302 genes belonged to the olfactory transduction
pathway with a very low enrichment p-value of 7e — 223. Skin has many different
receptors, helping an individual to perceive its immediate environment[177]. All
302 DEGs contributing to olfactory transduction were lower expressed at 24 months
of age, probably showing a loss in this specific ability when contrasted to young adult
mice (9 months). When comparing the two younger ages (9 months and 15 months)
to the long-lived (30 months) mice, we identified approximately the same number
of DEGs (579 and 539). Of these, 155 and 142 DEGs were associated with known
KEGG pathways. Among both age comparisons, changes related to metabolism and
cancer were approximately equal, but there was an increase of 6 % in inflammation-
and immune response-related up-regulated genes, from 19.7% to 25.7 %, with ad-
vanced age. This complements the reduction of signaling pathway-related genes from
14.8 % t0 9.7 %. The most notable changes here are genes related to muscle function
and the extra cellular matrix, adhesion and the cytoskeleton. For these categories
we observed an increase to 7%, showing a dysregulation of the primary functions
of the skin, e.g., barrier function or wound healing. It is also complemented with
a decreased expression of collagen related genes. Additionally, within the signaling
pathway category, we found the PI3K-Akt and the FoxO signaling pathways to be
the most significantly changed. Both pathways are strongly involved in the processes
of aging and contribute to longevity [13].
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Liver

Further, in liver, we have identified 3219, 2778 and 1296 DEGs for the above men-
tioned age comparisons, for which 942, 814 and 389 were categorized as associated
with known pathways, respectively. We observed the same trend in each consecutive
age comparison, i.e., a decrease in inflammation and immune processes, while the
regulation of metabolic pathways was increasing with age. Major gene expression
changes were observed in the comparison of 9 months with 15 months and 15 months
with 24 months old mice. In 9 to 15 months, most genes were higher expressed in
the older mice, irrespective of their functional category. Furthermore, changes in
pathways associated with cancer or signaling were relatively constant. As the age
progresses, more and more DEGs fall into mixed functional categories, showing a
slow dysregulation with aging. In absolute terms, changes in the metabolic processes
were by far the largest in the liver, highlighting the importance of this tissue in the
regulation of these functions during aging.

Comparison of tissues

Most of the DEGs from the brain and blood were involved in inflammation and im-
mune response, as we already suspected from their topmost regulated genes. Gen-
erally, both tissues show a similar pattern of regulated pathways during aging. In
contrast, skin showed a very heterogeneous pattern of regulated pathways across
different age time points (see Figure 3.5). It displayed no obvious pattern such as
the ones seen in the brain and blood, which confirms our observations on the most
significantly regulated DEGs. Again, liver had a unique and specific pathway pat-
tern among the four tissues. In all time comparisons, metabolic pathways in the
liver were most strongly regulated and even increased with time. A more detailed
subdivision and additional details about these metabolism pathways can be found in
SData 3B. However, across all regulated pathways and time comparisons we found
cancer-related pathways, which is intuitive as the interplay of cell growth promoting
and tumor suppressing genes is ever-present during aging [52].

3.1.4 Temporal expression profiles of tissues reveal a similar
regulation of electron transport chain in brain, blood,
skin and liver

Next, we clustered all genes according to their temporal expression behavior, for
the four tissues separately and analyzed specific clusters, namely, all genes that
showed a constant expression at earlier time points but an up- or down-regulation
of at least 25% (blood, liver, skin) or 10 % (brain) at later ages. This mainly in-
cluded three types of expression profiles: (1) genes that had a relatively constant
expression until the age of 24 months and increased or decreased at 30 months, (2)
genes that showed constant expression until 15months of age, with their expres-
sion levels rising or dropping at 24 months and at 30 months, and (3) genes with
an increased or decreased expression at 15 months and that stayed constant until
the age of 30 months, at which time they returned to their initial level of expression
(see Figure 3.2). Functional annotation of these genes revealed an enrichment of
genes acting in age-related KEGG pathways, such as Alzheimer’s disease, Parkin-
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son’s disease, Huntington’s disease, non-alcoholic fatty liver disease and oxidative
phosphorylation, in all tissues. A closer look yielded three interesting observations.
First, all age-related pathways mentioned above share a number of genes coding
for electron transport chain subunits in mitochondria. Second, genes related to
these pathways showed a higher expression at 30 months than at 24 months in every
tissue but blood, where the age of 24 months marked the highest gene expression.
Third, most of these genes were related to mitochondrial dysfunction (for details
about these genes and their expression levels, see SData 4 and STable 4). These
genes include, ATP-synthetases, NADH Ubiquinone Oxidoreductases (NDUFs) and
Cytochrome C oxidases (COXs), which are all part of the respiratory chain. There-
fore, they are functionally related to each other, which may explain their similar
expression pattern. We conclude that several complexes of the respiratory chain
were similarly regulated in all four tissues during aging. A number of studies have
already shown that (defective) mitochondria, as a source of ROS, contribute to neu-
rodegenerative disease and to aging in general and that the suppression of complexes
[, TIT and IV of the electron transport chain at a young age can increase overall life-
span[178, 179]. For example, Kowang and Sohal examined the mitochondria isolated
from brain, heart, skeletal muscle, liver, and kidney of mice and found that individ-
ual complexes of the electron transport chain were decreased in old animals, with
potential adversely effect on oxidative phosphorylation [180]. With increasing age,
defective mitochondria in post-mitotic cells also increase in size, making it more
difficult for them to undergo mitophagy. This could explain the reduced expres-
sion of the respiratory complexes in blood compared to the other tissues, because
it has a much higher cell turnover rate. In contrast, there are studies showing that
down-regulation of ETC-complexes, due to arsenic poisoning, could inhibit aerobic
respiration, which can be deleterious, especially for neural tissues. Additionally, de-
fects in SDHD (complex II) can induce tumors [181]. The maintenance of optimal
expression levels of the electron transport chain genes is crucial for each tissue, in
order to generate sufficient ATP from aerobic transpiration without the excessive
production of ROS. Since this is a cross-sectional study, we cannot comment on the
exact expression levels in the long-lived mice, leaving the question open whether
mice reaching 30 months of age have a more balanced and efficient regulation of the
electron transport chain during their younger years.

3.1.5 Tissue independent markers for aging
Processes regulated with aging among all tissues

The striking finding of our pathway enrichment analysis shows every tissue follows
its own pattern of aging, driven by tissue-specific processes. However, we also identi-
fied processes regulated across all investigated tissues, even if different genes regulate
them. In the 9 to 30 months comparison we found the hematopoietic cell lineage
pathway to be significantly enriched in all four tissues; however, this is due to an
enrichment of inflammation-related genes, such as interleukin receptors (e.g., Il7r
and [l4ra) and histocompatibility complexes (e.g., H2-bel). Additionally, several
pathways related to immune response and metabolism showed enrichment in three
(blood, brain and liver) of the four tissues (see Table 3.1). Both findings support the
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concept of inflammaging, as hematopoietic aging is also associated with a change
in the microenvironment due to infection and inflammation [182]. Table 3.1 shows
all significantly enriched pathways, that were shared by the blood, brain and liver
tissues. We determined the phagosomal pathway to be one of the most affected
pathways throughout aging, which again is evidence that autophagy might be one
of the main driving factors of aging. Interestingly, the cell adhesion molecules path-
way seemed also to be highly affected in all three tissues during aging. Cell adhesion
molecules play a crucial role in a variety of biological processes related to homeosta-
sis, including immune response, synapse formation and oxidative stress [183, 184].
Very likely, all other shared enriched pathways appeared due to their relation to in-
flammatory processes or the immune system in general and many of the differentially
expressed genes in the investigated tissues are immune or proinflammatory genes. It
is conceivable that many of these are a consequence of aging rather than a cause of it.
Nevertheless, the role of inflammation and immunity as stressors for age-related dis-
eases and processes is actively being discussed [185, 186]. According to the suggested
inflammaging phenomenon (or inflammation hypothesis of aging), the production
of proinflammatory factors becomes less useful with age due to the accumulation of
frail immune gene variants and an overall loss in specificity and efficiency of the im-
mune system. The result is a constant inflammatory stimulus (or stress), promoting
age-related processes/diseases, such as Alzheimer’s disease, osteoporosis or diabetes.
This reasoning follows the same principal ideas of the antagonistic pleiotropy hy-
pothesis that was proposed in 1957 to explain the contrary effects of senescence and
has already been the subject of aging-related discussions [29, 55]. Our data supports
these ideas since many of the identified alterations in gene expression are related
to the immune response, infectious diseases and/or inflammation. It remains to be
elucidated what specific influence these genes might have on the aging of different
tissues.

3.1.6 Commonly expressed DEGs in all tissues

Most of the significantly differentially expressed genes were unique to a certain
tissue. However, we aimed to focus on potential marker genes for aging in mouse.
The overlap of all DEGs is depicted in Figure 3.6. We found 125 genes to be common
in at least three examined tissues and seven genes that showed a significant change
in all four tissues. The liver showed the highest number of differentially expressed
genes (almost 5200 genes), most of which (approximately 80 %) were unique to the
liver during aging. Analyses of the skin exposed approximately 65 % unique genes,
followed by the blood (47 %) and brain (46 %).

The seven DEGs common to all four tissues were Vmp1, Rap2a, Igkv4-62, GmS8979,
S100a6, Len2, and S100a9, of which the last two were constantly increasing their
expression with age (see Figure 3.7. Three of these seven proteins are involved in
different parts of the immune system: LCN2 functions in innate immunity [187],
whereas IGKV4-62 (immunoglobulin kappa variable 4-62) is part of the adaptive
system encoding a kappa light chain for antibodies [188]. The protein S100A9 (also
known as MRP14) controls the accumulation of neutrophils and macrophages by
binding another of the S100 gene family members (S100A8) and shows a generally
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KEGG ID Pathway name #KEGG Blood Brain Liver inters.
genes #DEGs p-Value #DEGs p-Value #DEGs p-Value genes
mmu04145 Phagosome 174 24 3.1e7 23 3.8e710 50 2.3¢77  1LRe,
CYBA,
H2-EB1
mmu04514  Cell adhesion molecules 162 15 1.5e72 16 1.4e™5 34 9.6e73  1cosL,
H2-EB1
mmu04610 Complement & coagulation cascades 76 11 2.1e73 7 1.3e72 23 3.2e7*  ciqa,
C1QB
mmu04612 Antigen processing and presentation 82 16 3.1e7¢ 20 1.0e713 37 14e™ 1t cpm,
H2-EB1
mmu04940 Type I diabetes mellitus 62 9 6.4¢~" 13 3.7¢78 22 3.5e7%  maEm1
mmu(05140 Leishmaniasis 64 15 6.9¢~7 6 2.3¢72 22 6.0e7°  TLRz,
e
mmu05142 Chagas disease 103 12 6.5¢ 3 9 4.6e3 25 4.7e73  ciqa,
LAY,
CCL5
mmu05150 Staphylococcus aureus infection 48 16 1.4e7? 8 1.9¢~4 20 6.4¢7%  ciqa,
C1QB,
H2-EB1
mmu05152 Tuberculosis 176 31 2.0e~ 10 14 5.2e% 34 3.1e72  Tire,
2151
mmu05164 Influenza A 171 22 2.6e7° 12 4.1e73 43 6.4e7°  ccus,
H2-EB1
mmu05166 HTLV-I infection 278 21 2.6¢2 17 1.9¢73 57 1.2e7%  m2mm
mmu05168 Herpes simplex infection 207 22 4.1e 4 27 9.8¢ 12 54 1.9e7%  rire,
CCLS5,
CD74
mmu05320 Autoimmune thyroid disease 70 9 1.3¢72 13 1.5e7 20 1.9¢7%  neem
mmu05323 Rheumatoid arthritis 80 15 1.1e7? 8 4.1e73 24 2.6e7%  Tirz,
Ho-BBL
mmu05330 Allograft rejection 56 8 1.2¢72 13 1.1e78 21 2.2¢7°  maEm1
mmu05332 Graft-versus-host disease 52 8 8.4e73 13 4.4~ 21 6.2¢7%  maEm
mmu05416 Viral myocarditis 79 10 8.3e7" 14 7.6e78 29 6.4¢77  m2Em:

Table 3.1: KEGG pathways that were significantly regulated and common in at least three of the investigated tissues. The first two
columns give the KEGG identification number and the common name of the respective pathway. For every pathway, the total number
of genes and the number of differentially expressed genes within this pathway are given for the blood, brain, and liver, individually.
P-values are calculated based on a hypergeometrical approach used by DAVID 6.8. The first two pathways are potential marker
pathways for aging. No overlap was found with any enriched pathway in skin tissue. Inters. genes — Common DEGs in all three

tissues.

N
<t



TISSUE-SPECIFIC AGING PATTERNS IN MICE CHAPTER 3

Blood Liver
(1329) (5185)

Brain Skin
(579) (1273)

>

Figure 3.6: Venn diagram of all significantly differentially expressed genes
in the four analyzed tissues.

Whereas most DEGs were unique to a single tissue, a total of 125 genes were nev-
ertheless common in at least three tissues, and seven were common in all four of
them. The total number of DEGs in the individual tissues is written in brackets.
Details and gene names can be observed in SFigure 2A and STable 3.

proinflammatory role [189].

The relation of these immune- and inflammation-specific genes to aging might
be inversely causal: the change in their transcription might be caused by aging,
not necessarily causing aging. Older mice are more vulnerable to infections and
diseases, and with increasing age, a progressive activation of the immune system is
to be expected. Additionally, LCN2 (Lipocalin-2) has been implicated to play a role
in aging disorders in several other studies. For instance, its overexpression in the
brain was linked with an increased insulin resistance in advanced age, resulting in
obesity [190]. It has also been considered as a marker for multiple sclerosis [191] and
was described to be associated with oxidative stress, inflammation and demyelina-
tion of neurons, which in turn lead to cognitive impairment [192].

The second member of the S100 gene family that we found to be differentially ex-
pressed in every investigated tissue is SI00A6, a gene with an uncertain function. It
is suggested that SI00A6 is involved in cell cycle progression [193| and is a regulator
of the S100B-dependent signaling pathway, responsible for a variety of functions in
glia cells [194]. Interestingly, in a similar study based on human RNA-Seq data
we also identified a member of the S100 gene family (S100P) to have an altered
expression in all investigated tissues. VMP1 is known to be a key regulator in the
initial steps of the autophagosome formation and is only one of these seven genes
that can directly be related to aging [195]. One of its many known and suggested
functions (for a comprehensive overview, see review [196]) is to control the half-life
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of proteins and cellular organelles. In our data, we observed a small but constant de-
crease in the expression of VmpI in all investigated tissues over age, except blood,
where its expression is slightly increasing. Reduced autophagosomal activity can
lead to an accumulation of misfolded or damaged proteins, resulting in apoptosis
and neurodegenerative diseases [197]. The role of autophagy in aging has already
been discussed intensively in recent years [198], but here, we observed concrete ev-
idence that VMP1 might be a potential common genetic driving factor for aging
induced by a reduced autophagy potential. Lastly, almost nothing is known about
the two remaining proteins encoded by the genes Rap2a and Gm8979. Both are
known to have the capability to bind and hydrolyze GTP. RAP2A is a member
of the Ras protein superfamily and therefore might function in the regulation of
cell proliferation, whereas GM&8979 is only a predicted protein that has yet to be
confirmed by molecular and/or genetic analysis [199].

Age-specific expression pattern validation by qPCR

We performed expression validation by qPCR of the seven abovementioned DEGs
for the brain samples first, but unfortunately most of them showed only very low
expression (see SFigure 5). However, the expression profile of Len2 seemed to be
promising, showing a relatively strong expression with lesser deviation among sam-
ples. Thus, we proceeded with the Len2 expression validation among the other
tissues. Though we observed the same pattern of expression as in the RNA-Seq
profiles, the expression strength was reduced (see Figure 3.8).

3.1.7 Effect of Lcn2 orthologue knockdown in Caenorhab-
ditis elegans using RNAIi

Since Len2 showed a consistent expression in all samples and significant up-regulation
during aging, we further analyzed its effect on the lifespan in the invertebrate model
Caenorhabditis elegans using RNAi. Len2 is orthologous to a family of Caenorhab-
ditis elegans lipocalin-related proteins, which consists of seven paralogs (Lpri,—7).
Only one of the paralogs, Lpr6, is expressed in neurons (amphid sensory neurons),
suggesting that its function is probably closest to that of mammalian Len2 [200].
We next decided to investigate the impact of Lpr-6 on longevity, using an RNAi-
mediated gene inactivation approach. As shown in Figure 3.9, Lpr-6 deficient an-
imals show a trend of extended longevity early in life, resulting in a median life-
span extension of one day (from 18days to 19days), while maximal longevity is
unchanged. This suggests that down-regulation of Lpr-6 (or Lnc2) alone is not
sufficient to have a significant influence on the overall life-span, which is plausible
considering the complexity of aging. However, its reduced expression still has a
positive and reproducible effect on the survival rate of Caenorhabditis elegans, even
if it is minor.

44



3.1. AGING TREATS TISSUES NOT EQUALLY 45

gm8979 ighv4-62 s100a6
0 - X : 451 .
‘ . 2.0{% = . : g - g
= .
k2 4.04 -
3 ﬂ . . = = :
3.44 I;l 1.54 I‘:'I 3.5
3.14 > . .
% 1.04 3.01 .
281 ‘ Q
Ij. é * 2.54 é = E
2.5 0.51 . D ﬁ EI
2.21 é @ ’ ’ ’ 2.01 E %
0.0 — a—
9 months 15 months 24 months 30 months 9 months 15 months 24 months 30 months 9 months 15 months 24 months 30 months
len2 rap2a $100a9
4.59

4.0 3.61 % * % T > Q = I‘%I %]

iﬁiiﬁ% 4 g1 :

3.2 é
2.51 3.0 A
2.01 0 =.é Qé 3.0 . . ]
‘%‘ Z ) ?E 2.0 QQ —
L.51 ? 2.81 é o5 ) é = 9 .
1.0 vol Lo,
9 months 15 months 24 months 30 months 9 months 15 months 24 months 30 months 9 months 15 months 24 months 30 months
vmpl

3.8
3.7
3.6 - . brain
is é : —blood

. = 8] H liver
3.4 skin
“BT T :
3.219 ?

9 months 15 months 24 months 30 months

Figure 3.7: Temporal expression profiles.

Temporal expression profiles of the seven genes (Gm8979, Igkv4-62, Len2, RapZ2a,
S100a6, S100a9 and Vmp1) that were differentially expressed in all four tissues dur-
ing aging. The y-axes provide the expression strength as log;y normalized counts of
expressed reads of each gene. Small plus signs indicate outliers. With the excep-
tions of Len2, S100a9 and Gm8979, none of the genes showed a consistent expression
pattern that was shared between the tissues. More details regarding the expression
profiles of all seven genes can be found in SFigure 2B and SFigure 2C.
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Figure 3.8: qPCR expression validation of Len2.

Expression validation of Len2 by qPCR in comparison to its RNA-Seq profile.
While we observed the same pattern of expression of Len?2 in both experiments,
the strength of expression was reduced in the qPCR validations compared to our

RNA-Seq data.

3.2 Why it is not easy to find biomarkers of aging

In this extensive study of 92 male murine RNA-Seq libraries from four organs and
several age time points, we showed that organ-specific gene expression changes pre-
vailed over tissue-independent aging-linked gene expression changes (Figure 3.3).
This phenomenon indicates that different tissues age differently because of intrinsic
and extrinsic factors specific to these tissues. The liver displayed a much higher
number of DEGs, suggesting one of two possibilities: This might indicate better
adaption to changes over time to coordinate its functions within the aging body, or
contrary, it could also be a sign of loss of plasticity with aging. In addition, the liver
has to deal with systemic toxins, that become more abundant with aging, causing,
among other things cell death and inflammation. Early on, the liver showed signs
of inflammation that might later account for dysfunction of hematopoiesis in the
liver [201]. On the other hand, anti-ROS-related pathways could work to sustain
the normal functioning of the body. With a further increase in age, the liver showed
tremendous changes in metabolic pathways, which can be considered a two-way
response to aging, i.e., following and resisting certain aging processes. In addi-
tion, anti-ROS pathways are important defense mechanisms against the rise of the
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Figure 3.9: Caenorhabditis elegans survival rates with and without Lpr-6
knockout.

Survival rates of wild type Caenorhabditis elegans (e.v. - empty vector) and Lpr-6
knockouts. When compared, there seemed to be no significant increase in the total
life-span of individuals, but there was a slight protection against early lethality. The
survival experiment was repeated three times (n=3).

cancer-related pathways seen when comparing young and old mice [202, 203]. While
investigating genes with a distinct pattern of expression during aging, i.e., genes
showing more drastic changes at the later time points, we found many genes of the
Cytochrome C oxidases (COXs) and NADH Ubiquinone Oxidoreductase (NDUFs)
families to be regulated similarly in all four tissues. Members of the NDUF family
are part of complex I of the mitochondrial electron transport chain and have been
studied prominently with respect to cancer, ROS and lifespan [204]. Being the last
enzyme of the mitochondrial respiratory chain, COX plays a key role in senescence,
and therefore, its respective subunit genes are eminently studied with respect to ag-
ing and cancer and are often used to evaluate the level of oxidative stress [205, 206].
The stability of the COX assembly requires efficient ATP-synthetase activity, and
we showed the expression of ATP-synthetase genes that followed the same temporal
profile as the COX genes (e.g., Cox7a2, Cox4il and Coz8a), indicating that an in-
crease in the COX expression level could be a consequence of or an effort to balance
disrupted ATP-synthetase [207]. Looking at the general picture of all age affected
pathways for the investigated tissues (Figure3.5), we suspect chronic inflammation
to be the major or at least the most prominent correlative of aging, in regard to
gene expression changes. Nevertheless, the liver appears to oppose the resulting
negative changes through metabolic adaptations. The hematopoietic cell lineage
pathway was the only pathway shared by all four tissues when comparing adult
mice of 9 or 15months to a highly aged individual of 30 months, because it contains
a number of inflammatory genes, which are not specific to blood. This supports
the hypothesis of the so-called immunosenescence. It also underlines the fact that
several inflammation-related pathways were common in at least three tissues, which
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further supports the theory that immunosenescence results in inflammaging [208].
We were able to identify specific DEGs to be common in all or at least three tis-
sues. These genes could be of special interest for further aging research to determine
whether they constitute a part of the aging process or results from it. The seven
genes common in all investigated tissues are particularly important since they are
involved in the immune system, cell cycle, autophagy and calcium signaling. These
are processes that are intermittently being discussed as the main cause of aging [13].
Several studies have also shown a change in the cell type population with aging,
which may also affect the expression pattern of the whole tissue [209]. Therefore, it
would be interesting to study the transcriptome on the single cell level to evaluate
the contribution of such cell population changes with aging. Additionally, in this
study male mice were chosen to avoid any interference of hormonal cycles of fe-
male mice on expression pattern of genes. However, including female mice could be
helpful in understanding the process of aging in species per se and also to study sex
linked signatures of aging. In a similarly exhaustive study, based on microarray data
and histological examination, Jonker et. al. compared five different tissues (liver,
kidney, spleen, lung and brain) from mice at five age-points (13, 26, 52, 78, 104
and 130 weeks) [147]. They found several hallmark age-related pathologies across
tissues and observed some tissue specific effects, such as an accumulation of lipofus-
cin in brain and liver, thickening of glomerular membrane in kidney and increased
peribronchiolar lymphoid proliferation in lung. They also found Lilrbs (Leuko-
cyte Immunoglobulin Like Receptor B4) to be up-regulated in all organs. However,
immune-related genes were down-regulated in spleen but up-regulated in kidney and
lung which can be justified as they observed reduction in lymphocytolysis in spleen.
We conclude that aging is a very heterogeneous process, and any single gene alone
can hardly be regarded as a marker of aging for a whole organism. Every tissue
has its own specialized function and we showed and justified several tissue specific
processes to be regulated during aging. They may overlap in some cases of particu-
lar genes or common processes, but except for chronic inflammation and imbalances
of the mitochondrial electron transport chain, it is difficult to identify any process
or gene to be responsible for cumulative aging. Together with the observation that
most of the identified DEGs can only be found performing long-term comparisons
this suggests that aging is a more subtle process, manifesting gradually in animals.
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Chapter 4
The Role of MicroRNAs in Aging

As mentioned in Chapter 1, with the beginning of the 21st century one revolution
chased aftr the next in molecular biology, with one of them being the realization
that most parts of eukaryotic genomes were not junk DNA, but encoded for var-
ious different controlling mechanisms [9]. One of those regulatory elements were
found to be multiple new classes of non-coding RNAs, which besides the commonly
known mRNAs, tRNAs and rRNAs seemed to have crucial and determining func-
tions in (almost) all aspects of life [10]. Omne of those new regulatory non-coding
RNA classes were microRNAs (miRNAs). Being discovered already in 1993 as small
antisense binding RNA sequences within the nematode Caenorhabditis elegans [210],
it still took almost 10 more years until they were recognized as an evolutionary con-
served class of non-coding RNAs in nearly all domains of life, even including some
viruses [211-216]. Since they are key regulators of many different biological path-
ways, they are also of special interest for the aging process.

In this chapter we want to explore their share on the regulation of age-related pro-
cesses. At first, we will see how miRNAs can be annotated bioinformatically in
newly sequenced and assembled genomes on the example of the short-living fish
Nothobranchius furzeri (Section 4.2). Next, we investigate their role in the phe-
nomenon of diapause in annual fishes, such as Nothobranchius furzeri, and how this
is linked to certain aging processes (Section 4.3). Then we introduce a new statis-
tical model, which aims to improve the detection of significant expression changes
of miRNAs between two different conditions, like a young and an old time point,
or a healthy and a diseased state (Section 4.4). Finally, we will examining con-
served aging-related regulatory functions of miRNAs in evolutionarily more distinct
species, based on results from our new statistical model (Section 4.5). But before
we come to all of that, we will first briefly introduce the biogenesis and molecular
function of miRNAs (Section 4.1).
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4.1 Small in size, huge in regulation: How miR-
NAs control biological processes
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Figure 4.1: A short overview of the canonical miRINA biogenesis pathway.
Starting with a primary miRNA (pri-miRNA) molecule after transcription, pri-
miRNAs get cleaved and further processed into one or more precursor (or premature)
miRNAs (pre-miRNAs) by the proteins Pasha and Drosha. After transportation
from the nucleus into the cytoplasm by Exportin-5, Dicer cuts pre-miRNA tran-
scripts into double stranded mature miRNA duplexes with an approximate size of
22 nucleotides. Both mature miRNAs are separated from each other and either the
more stable one or both are loaded into separate protein complexes, forming the
so-called RNA-induced silencing complex (RISC). This ribonucleoprotein complex
can now bind target mRNAs, almost always leading to their degradation and trans-
lational repression.

Whereas about 40% of all miRNAs are encoded within introns or exons of
other genes and are transcribed alongside their host genes, the majority of miRNA
genes consists of an independent promoter and is transcribed by the RNA poly-
merase 11 [217-219]. In the latter case a so-called primary miRNA molecule is tran-
scribed, which contains a special 5’ end cap (i.e., a modified nucleotide) as well as a
polyadenylated tail at the 3’ end, similar to mRNA transcripts (see Figure 4.1) [218].
These primary miRNAs can be several hundred nucleotides long and contain up to
six miRNA precursors, each with a length of about 70—80nucleotides [218]. The
two proteins Drosha and Pasha recognize the double stranded structure of primary
miRNAs and process them by cutting them into the precursor-miRNAs, that have
a typical hair needle structure with a small unpaired overhang at the 3’ end [220].
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Such precursor-miRNAs can also be generated skipping the Drosha/Pasha process-
ing mechanisms, if they are directly spliced from their host gene [221]. Either
way, precursor-miRNAs are transported from the nucleus into the cell’s cytoplasm
via the protein Exportin-5, where they are further processed by the Dicer pro-
tein [222, 223]. Dicer cuts precursor-miRNAs into about 22nucleotide long, still
double stranded miRNA duplexes by removing the loop of the hair needle structure
as well as the overhanging 3’ end part of the duplex[224]. In plants this canoni-
cal pathway is slightly altered. Instead of two different processing steps, the plant
homolog of Dicer (Dicer-like 1) performs both cutting steps, maturing the primary
miRNA transcripts directly into miRNA duplexes within the cell’s nucleus, before
it gets exported by the Exportin-5 homolog named Hasty [225]. Besides this canon-
ical miRNA biogenesis pathways, there exist multiple alternative dicer-independent
pathways, generating functional miRNA molecules [226]. As a final step, the miRNA
duplex gets unwind and either the more stable or both resulting mature miRNAs
get loaded into the so-called RISC complex (RNA-induced silencing complex) [227].
Besides one mature miRNA transcript, the RISC complex is contained of various
proteins with many of them belonging to the Argonaute protein family [228]. This
ribonucleoprotein complex now acts as a post-transcriptional gene control level by
binding mRNAs (usually in their untranslated regions) due to sequence comple-
mentarity, downregulating their translational rate either by direct degradation or
blocking them from entering ribosomes [228]. These defined binding sequences of
miRNAs are also called seed regions and usually compromise only seven to eight
bases. Since RISC incorporated miRNAs do not have to perfectly base pair with
their target mRNAs, one mature miRNA can have multiple mRNA targets, mak-
ing target prediction analysis rather complicated [229, 230]. But it has also been
observed that in some rare cases miRNAs can upregulate the expression of some
protein-coding genes by interacting with their promoter regions [231]. In general,
miRNA act in a wide variety of biological processes and pathways as repressing
regulatory elements via RNA silencing [232].
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4.2 Identification and annotation of known and
new miRNAs in the killifish Nothobranchius
furzert

This chapter’s section is based on the publication “A miRNA catalogue and ncRNA
annotation of the short-living fish Nothobranchius furzeri” L.

Data used and analyses performed in this section
Analyzed RNA-Seq data

In total, 169 small RNA-Seq libraries from seven different killifish species were an-
alyzed in the study of this section. 157 of them belong to the JenAge dataset (as
presented in Chapter 2) including all libraries of Nothobranchius furzeri strains GRZ
and MZM-0410 at several ages from the three tissues brain, liver and skin.

The remaining additional RNA-Seq libraries obtained from Aphyosemion striatum,
Nothobranchius kadleci, Nothobranchius rachovii, Nothobranchius pienaari, Notho-
branchius kunthae and Nothobranchius korthausae were used to identify expression
patterns at predicted miRNA locations in Nothobranchius furzeri and miRBase pre-
mature miRNA sequences. For details see, Tab. 4.1, STable 1 and STable 2.

Table 4.1: SmallRNA-Seq samples from Nothobranchius strains generated
in this study. * — unknown; # — number of replicates; + — two weeks post-
fertilization plus diapause

Species Tissue Age No. #
(weeks) library
Nothobranchius furzeri MZM whole diapause IIT | 7 7
embryos
Nothobranchius furzeri MZM brain, 5, 12, 20, 75 4-5
liver, skin | 27, 32, 39
Nothobranchius furzeri GRZ brain, 5,7, 10, 75 5
liver, skin 12,14
Aphyosemion striatum brain * 2 2
Nothobranchius kadleci brain * 2 2
Nothobranchius rachovii brain * 2 2
Nothobranchius pienaari brain * 2 2
Nothobranchius kunthae brain * 2 2
Nothobranchius korthausae brain * 2 2

!The complete supplemental material is available at https://osf.io/25mxb/
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ncRNA and miRNA annotation

Already characterized and conserved non-coding RNAs were annotated with GoRAP
2.0, which is based on the RFAM database, currently holding 2,450 ncRNA fam-
ilies (v12.0) [233]. For an initial prediction of candidate miRNAs, a combina-
tion of five tools was used, each of them following a different annotation strategy:
miRDeep* (v32) [234], Infernal (v1.1) [235], BLAST (v2.2.30) [236], GoRAP (v2.0, un-
published) and CID-miRNA (version from April 2015) [237]. A detailed description
of the individual searches can be found below.

All results were merged and putative miRNAs overlapping with genes of the recently
published Nothobranchius furzeri annotation were removed. The expression profiles
of the remaining non-redundant candidate miRNA genes were analyzed automati-
cally using Blockbuster (v1) [238] and in-house scripts in order to mark candidates
that did not exhibit a typical miRNA expression profile (according to [239, 240]).
All candidates were additionally manually examined and filtered by carefully check-
ing the features of the potential hairpin secondary structure as well as the precise
mapping of reads supporting the predicted precursor miRNA, leading to the final
set of miRNA predictions.

miRDeep*

Mappings of 39 MZM brain, 15 GRZ brain, 25 GRZ liver, 28 MZM liver, 3 MZM
skin and 7 MZM embryo small RNA-Seq libraries were used on four different fish
genomes (Nothobranchius furzeri, Danio rerio, Oryzias latipes, Takifugu rubripes) as
input for miRDeep* (for a detailed list of used libraries, see STable 1). Predictions
from all 117 mappings were pooled together in order to obtain a comprehensive
representation of the miRDeep* results. To each predicted miRNA hairpin sequence,
we assigned the average of the miRDeep* score computed across the multiple samples
were the sequence was found.

The merged non-redundant list of identified miRNA sequences was re-mapped with
BLAT [241] on the Nothobranchius furzeri genome, and only gap-free alignments
were accepted. These loci underwent further filtering steps: (i) a hairpin sequence
was considered reliable if it showed a BLAT hit (one mismatch allowed) in miRBase
(release 20) [242] or a miRDeep* score > 7 and (ii) overlapping hairpin loci (i.e.,
within 100nt) were discarded, and the sequence with the highest score was kept.
Predictions where no hits in miRBase could be obtained were further analyzed based
on their secondary structure. Therefore, corresponding sequences were extended by
50nt on either side and were compared with Rfam using Infernal. All predicted
loci that had a significant hit to a known miRNA secondary structure or no hit at
all were kept, while loci hitting other ncRNAs were discarded.

Infernal

For the Infernal search on the Nothobranchius furzeri genome, 155 hand-curated
pre-miRNA covariance models were used as input [243, 244] and only significant hits
with a p-value of p < 0.005 were kept.
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BLAST

To identify candidates from the most conserved miRNA families, blastn was used
with all mature and pre-mature miRNA sequences available on miRBase (release
20) [242]. Only non-redundant hits were kept if they spanned the complete sequences
of their corresponding input miRNAs to at least 90 % with no gaps allowed. To
further reduce false positive hits, a stringent cutoff of p < 10~7 was chosen.

CID-miRNA

Being based on a stochastic context-free grammar model to identify possible pre-
miRNAs, CID-miRNA follows a similar approach as Infernals covariance models.
The Nothobranchius furzeri genome was given as input with the following thresh-
olds: putative miRNAs have a length between 60 bp and 120 bp, and the grammar
and structural cutoff were set to the recommended values of —0.609999 and 23,
respectively.

miRNA family association

To determine if any of the predicted miRNAs belong to an already known miRNA
family, all available hairpin and mature miRNA sequences were downloaded from
miRBase. First, predicted pre-mature miRNA sequences were clustered with the
known hairpin sequences if they shared at least 90 % identity. Second, for each
cluster an alignment was build (using Mafft (v7.307) [245]) containing the predicted
pre-mature and known miRNA hairpins as well as the known respective mature
sequences. A predicted miRNA was only then associated with a given miRNA
family if the known mature sequences matched with an identity of 95% or higher.
All predicted miRNAs not fulfilling these criteria or belonging to a cluster which
does not contain a single known miRNA hairpin sequence were given new miRNA
family names.

miRNA target prediction

To determine putative Nothobranchius furzert mRNA targets of the miRNA candi-
dates the TargetScan tool was used [246]. As input the putative miRNA seed regions
and the known 3’-UTR sites of all annotated mRNAs of Nothobranchius furzeri as
well as the ones from Danio rerio, Mus musculus and Homo sapiens were used. The
input files and the resulting output can be found in the online supplement.
Enrichment scores of miRNA targets within different published sets of differentially
expressed Nothobranchius furzeri genes were calculated using the hypergeometric
test:

RIn!(N—R)!(N—n)! min(n,R) )
N > AR (=) (N—R—nti)i’

i=r

p — value =

where N is the total amount of known protein coding genes in Nothobranchius furz-
eri, R the amount of differentially expressed genes of one of the given sets, n the
number of protein coding genes with predicted miRNA target sites and r the size
of differentially expressed genes with predicted miRNA target sites. Enrichment of
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Figure 4.2: The teleost Nothobranchius furzeri or turquoise killifish.
Photography of a male mature Nothobranchius furzeri (taken from http://www.
jenage.de/assets/images/general/nothobranchius. jpg).

individual miRNAs, being enriched in any of the gene sets, were calculated similarly,
with N being the total amount of protein coding genes with predicted miRNA target
sites and n the amount of genes, showing a target site of the respective miRNA. The
resulting p-values were adjusted using Benjamini and Hochbergs FDR, approach and
were considered significant if p was less than 0.05 [129].

4.2.1 Nothobranchius furzer: a new model organism for ag-
ing research

The annual teleost Nothobranchius furzeri is a recent experimental animal model
in biomedical research. In the wild, this fish inhabits ephemeral pools in semi-
arid bushveld of Southern Mozambique. It has adapted to the seasonal drying of
its natural environment by producing desiccation-resistant eggs, which can remain
dormant in the dry mud for one and maybe more years by entering into diapause.
More about the topic of diapause can be found in the following section 3.3.

Due to the very short duration of the rainy season in its habitat, the natural lifespan
of these animals is limited to a few months. They represent the vertebrate species
with the shortest captive lifespan of only 4—12 months and also with the fastest
maturation. In addition, they express a series of conserved putative aging markers
and are amenable to genetic manipulations, making them an attractive model system
for aging research (for a review, see [247, 248])

A striking characteristic of Nothobranchius furzeri is the existence of laboratory
strains differing in lifespan and expression of aging phenotypes [117, 249]: an ex-
tremely short-lived strain (GRZ: median lifespan 3—4 months) and several longer-
lived strains (e.g., MZM-04/10; median lifespan 7—9 months). The molecular basis
for this striking difference in aging is unknown. A previous miRNA-Seq study of
brain aging that predated genome sequencing and used homology to miRBase to an-
notate Nothobranchius furzeri miRNAs revealed that the two strains have different
global patterns of miRNA expression [120].

In this section, a comprehensive microRNA (miRNA) catalogue for Nothobranchius furz-
eri is presented. As already described in the previous section, miRNAs are abundant
non-coding RNAs of short length that are produced in a complex biosynthetic pro-
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cess starting from longer transcripts and are established as key players in the post-
transcriptional regulation of gene expression. MiRNA genes can be hosted within an
intron of a protein-coding gene (and their transcriptional regulation follows that of
the hosting gene) or can arise from primary transcripts that are regulated indepen-
dently of any protein-coding RNA. Several miRNAs are grouped in genomic clusters
containing mostly two to six individual miRNAs with an intra-miRNA distance of
less than 10 kb, which can be co-transcribed. However, unusually large clusters were
also found in some species, like the miR-430 cluster in zebrafish, consisting of 57
miRNAs [250-252]. The advantage of this accumulation is unclear. It could be
possible that multiple loci are required to increase the copy-number and therefore
the expression level of specific miRNAs in particular conditions, like miR-430 in the
maternal-zygotic transition in zebrafish (Danio rerio) [253].

Furthermore, miRNA genes are grouped into families based on sequence homology
and can be defined as a collection of miRNAs that are derived from a common
ancestor [233]. On the contrary, miRNA clusters may contain miRNAs belonging to
different miRNA families, but are located in relative close proximity to each other.
Both the evolutionary conservation of some miRNA families and the innovations
leading to appearance of novel miRNAs are well-described. An expansion of the
miRNA inventory due to genome duplications in early vertebrates and in ancestral
teleosts has already been described [254].

MiRNAs bind target mRNAs, due to sequence complementarity in the seed region
(nucleotides 2—7), mostly in the 3’ untranslated region, thereby silencing expression
of the gene product via translational repression and/or transcript degradation. Up
to now, several thousands of miRNAs have been predicted and identified in animals,
plants and viruses, and one single species can express more than one thousand
miRNAs [242]. They frequently represent the central nodes of regulatory networks
and may act as “rheostat” to provide stability and fine-tuning to gene expression
networks [255, 256].

Before a sequence of the Nothobranchius furzeri genome assembly became avail-
able [123], it could be shown by use of the Danio rerio reference from miRBase that
aging in the Nothobranchius furzeri brain displays evolutionary conserved miRNA
regulation, converging in a regulatory network centered on the antagonistic actions
of the oncogenic MYC and tumor-suppressor TP53 [120] and the expression of miR-
15a as well as the miR-17/92 cluster, being mainly localized in neurogenetic regions
of the adult brain [257]. Two draft genome sequences for Nothobranchius furzeri
were recently produced [123, 258].

In this section, a comprehensive annotation of the Nothobranchius furzert miRNome
based on a combination of Illumina-based small RNA-Seq data, different in silico
prediction methods on the genome assembly and a final manual curation is now
described. Using the newly created miRNA reference, a large dataset of 162 small
RNA-Seq libraries was analyzed and tissue-specific miRNA expression of conserved
and non-conserved miRNAs in Nothobranchius furzeri is reported here. Further
the Nothobranchius furzeri reference was used to analyze the miRNA expression
in other Nothobranchius species and one closely-related non-annual killifish species,
which were previously used to analyze positive selection [123] to identify when in
the evolutionary history of Nothobranchius furzeri non-conserved miRNAs arose.
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4.2.2 Prediction, annotation and characterization of miR-
NAs and other ncRNAs in Nothobranchius furzeri

Table 4.2: Number of annotated ncRNAs.

Besides housekeeping RNAs, RNA elements controlling metabolism and protein edit-
ing were identified. “mRNA regulation RNA element, “mRNA localization RNA
element, “editing signal, “conserved IncRNA element.

ncRNA class \ No. \ ncRNA class \ No.
18S rRNA 3| 7SK 1
5.8S rRNA 11 | Vault 12
28S rRNA 6 | TPP 1
5S rRNA 28 | IRE® 3
tRNA 570 | CAESAR® 1
Ul 6 | DPB* 1
U2 8 | Vimentin3® 1
U4 8 | Antizyme FSE¢ 2
Ub 8 | ULA PIE€ 1
U6 6 | KRES® 26
U1l1 1 | GABA3® 6
U12 1Y RNA 4
Udatac 1| TERC 1
Ubatac 1 | mascRNA-menRNA? | 42
RNase P 1 | SPYR-IT1¢ 1
RNase MRP 1 | MEG8&¢ 1
SRP 3

Annotation of ncRNAs

We could identify more than 750 non-coding RNA (ncRNA) genes in the Notho-
branchius furzeri genome based on small RNA-Seq reads, including editing signals,
RNA elements located in the UTRs of mRNAs either controlling localization or
regulation and conserved IncRNA element (see Tab. 4.2, SData 1 and STable 5).
In line with other eukaryotes, we identified multiple gene copies of rRNAs, tRNAs,
several major spliceosomal RNAs, signal recognition particle (SRP) RNAs and one
copy of a minor spliceosomal RNA set. Further housekeeping RNA genes, such as
RNase P, RNase MRP, and the 7SK RNA, are found, as expected, once in the entire
genome.

We annotated the widely distributed TPP riboswitch, capable of binding thiamine
pyrophosphate and thereby regulating genes that are in charge of the thiamine bal-
ance [259, 260]. We could also identify more RNA elements located in the UTRs
of mRNAs, being directly involved in the regulation of gene expression (3 copies
of IRE — controlling iron responsive proteins [261], CAESAR — controlling tissue
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growth factor CTGF [262], DPB — controlling DNA polymerase ) [263]), local-
ization of mRNAs (Vimentin3) [264]), DNA replication (four copies of the Y RNA
gene, and Telomerase RNA TERC) or of unknown function (12 vault RNAs). Ad-
ditionally, ncRNAs responsible for editing certain mRNAs have also been found
(two copies of Antizyme FSE [265]|, one UlA polyadenylation inhibition element
(PIE) [266], 26 Potassium channel RNA editing signals (KRES) [267], and six
copies of GABAS [268]). Two promising candidate long non-coding RNAs (IncR-
NAs), SPYR-IT1 and MEGS, were also included in the annotation, even though we
were not able to identify all of their exons. Two vague candidates for XIST and
MALAT can be viewed in the supplemental material. The MALAT-derived masc
and men RNA gene was clearly detected in 42 copies throughout the genome of
Nothobranchius furzeri.

Additionally, we detected several copies for the RNA elements unal2 and secis as
well as the IncRNA gene mimt. However, because of their smooth transition from
true copy to pseudogene, we included them in the current annotation as possibly
non-functional.

Mapping and miRNA prediction results

For the identification of putative miRNA genes, we used five methods, each following
a different prediction approach (BLAST, CID-miRNA, Infernal, GoRAP, miRDeep*)
and Blockbuster as verification (see Fig. 4.4 for an example).

Infernal goRap

miRDeep* (407/8,079) (209/6,228)

(490/2,347)

BLAST
(71/778)

Figure 4.3: Venn diagram of predicted miRNA genes from four tools
miRDeep*, Infernal, goRap and BLAST. Ounly 2 of the 33 candidates predicted
by CID-miRNA overlapped with any of the other miRNA candidates. Nevertheless,
all 33 candidates were selected as miRNAs after manual inspectations. The total
number of miRNA predictions after and before applying any filtering step are shown
in brackets for each tool.

The five tools identified 71, 33, 407, 209, 490 miRNA candidates, respectively
(Fig. 4.3 shows the variety and the overlap of the different tools). All predictions
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were merged, and redundant loci were removed (for details, see the first section
of this chapter). Of the remaining 788 candidate miRNAs, 617 (78.3%) showed
expressions and were verified by Blockbuster and then manually verified for the
correct mapping of the reads on the predicted precursor, with rectangular peaks
corresponding to the mature 5p and/or 3p part, separated by a short gap devoid of
mapped reads, while cases with more extended mappings were excluded. By this,
34 (4.3%) candidates were removed, all predicted by miRDeep*. Candidates show-
ing no expression in any of the sequenced small RNA-Seq libraries were still kept
as putative miRNAs because they were predicted based on conserved and already
characterized miRNA genes. In total, we predict a final amount of 754 miRNAs in
Nothobranchius furzeri by the union of these methods (see SData 2).

Most of the small RNA-Seq reads (up to 88.81%) mapped onto the identified 754
miRNAs. Interestingly, the number of miRNA related reads varies broadly between
the tissue samples (see Tab. 4.3). Possibly, this difference correlates with different
regenerative capacities of these tissues. Mature brain cells are hardly proliferat-
ing, whereas liver cells are constantly renewed [41]. This regeneration might be
additionally under the control of certain yet unknown tissue specific miRNAs.
About half of the miRNA annotations are overlapping genes coding for proteins and
are therefore intragenic. A minor fraction of reads (see Tab. 4.3) maps to other
ncRNAs and proteins. Whereas 333 of the predicted miRNAs can be assigned to
one of the known miR Base families, based on sequence identity, 421 miRNAs did not

match any known family and can therefore be considered as novel or non-conserved
miRNAs (for details see Table 4.4).

The age-dependent expression of the following miRNAs was previously demonstrated
by qPCR: tni-miR-15a, tni-miR-101a, tni-miR-101b, dre-miR-145, has-miR-29c-1
(100 % identical to dre-miR-29a), hsa-let-7a-5p, hsa-miR-124a-1, hsa-miR-1-2, ola-
miR-21, ola-miR-183-5p and, from cluster dre-miR-17a/18a/19a, and dre-miR-20a
(the used primers were Qiagen miScript primer). Expression changes detected by
sequencing were validated on an independent set of specimens. All 13 miRNAs
showed concordant changes in their expression, of which six reached statistical sig-
nificance [120]. The expression of the following miRNAs in the brain was confirmed
by in situ hybridisation using LNA probes (Exiqon): miR-9, miR-124 [269] and
miR-15a, miR-20a [257].

4.2.3 Target prediction of the identified miRNA candidates

To get a first insight of the potential regulatory functions of our putative miRNA
genes, we performed a target prediction based on the miRNA seed regions and the
aligned homologous 3’- UTR mRNA regions of Nothobranchius furzeri and Danio re-
rio. Additionally, we repeated this target prediction analysis, including homologous
3’-UTR mRNA regions of Mus musculus and Homo sapiens to have a more con-
servative target list for each miRNA candidate, because in silico miRNA target
predictions tend to have a high number of false positive results [270]. Using only
the two fish 3’- UTR alignments, we predicted for 438 of our miRNA candidates po-
tential mRNA targets with a median of 47 putative targets per miRNA. With our
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nfu genome

sgro9 138 bp

55,926,020 bp 55,926,040 bp 55,926,060 bp 55,926,080 bp 55,926,100 bp 55,926,120 bp 55,926,140 bp
I L L L L L L L L L L L

.
coverage [0-40]

nfu_mzm
12 month
brain

coverage [0-10]

nfu_mzm
12 month
liver

Sequence = | AGTGAGGGATTGTGGGTGTTGGACATGTGGGACAGAGACAGTTAAGACTTGCAGTGATGTTTAGGGCAATGATCACATGAACATCACTTTAAGTCTGTGCTGCCTTTGATCTCCTCCTCATCAAGGGTTTCACATGTG
final i mir-499

5'-mature 3'-mature
BLAST

CID-miRNA

Infernal

goRAP

mirDeep*

Blockbuster

Figure 4.4: Annotation, expression profiles and prediction comparison for
miR-499. We annotated the pre-miR-499 on sgr(09, position 55,926,017-55,926,134
and the two mature miRNAs at 55,926,048-55,926,069 and 55,926,085-55,926,106.
The six methods used for miRNA detection are displayed, CID-miRNA was not able
to detect this miRNA. Tools working independent of the small RNA-Seq data (BLAST
(cyan), Infernal (blue green) and goRAP (orange) vary in their annotation length.
The latter two programs are based on covariance models, identifying mostly the
complete pre-miRNA. The remaining two programs miRDeep* and Blockbuster are
based on small RNA-Seq data (*) and therefore accurately annotate the mature miR-
NAs. MiR-499 is expressed weakly within Nothobranchius furzeri MZM 12 month
liver library and therefore could not be detected by miRDeep* and Blockbuster. In
the Nothobranchius furzeri MZM 12 month brain library, miR-499 was expressed
high enough to be detected by both programs.

more conservative approach, still 419 miRNA candidates showed targeting potential
with a median of 25 putative targets per miRNA.

To further examine these potential targets, we calculated enrichment scores of
miRNA binding sites in already known sets of down-regulated genes in the brain of
Nothobranchius furzeri during aging [271] and in different tissues between young and
very old Nothobranchius furzeri individuals [123]. In the first study, both clusters,
containing genes with decreasing activity during aging, show a significant enrich-
ment of miRNA targets (clusterl: p = 8.6772%; cluster5: p = 1.7875). For all three
investigated tissues in the second study, we also found a significant enrichment of
miRNA target sites within the down-regulated genes (brain: p = 6.1973%; liver:
p="7.72717; skin: p =1.4977).

Additionally, we identified single miRNA candidates, whose targets were enriched
in any of the above mentioned gene sets (for details, see online supplement section
miRNA target prediction). We found e.g., miR-10, miR-29 and miR-92 showing
potential to be significantly involved in the down-regulation of genes in the aging
brain of Nothobranchius furzeri, like cell cycle regulators (ccne2 [272], nek6 [273],
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Table 4.3: Total number of genes known in Nothobranchius furzeri and
number of ncRNAs covered by small RNA-Seq reads and percental dis-
tribution of reads for brain, skin and liver of Nothobranchius furzeri. See
STable 1 for more details and Tab. 4.1 for details about the read libraries. Aster-
isks indicates annotation of protein-coding genes from NCBI. ncRNA — all ncRNAs
except miRNA, tRNA and rRNA; none — reads mapping to non-annotated genomic
areas.

Total ‘ Brain ‘ Skin ‘ Liver
miRNA 754 | 470 88.81% | 438 75.01% | 368 58.10%
tRNA 5701293  035% | 361 1.33% | 361 4.27%
rRNA 48 | 37 1.73% 43 361% | 43 6.97%

ncRNA 250 | 136 0.09% | 217 0.15% | 204 0.41%
protein®* 22,627 0 6.60% 0 4.59% 0 6.35%
none 2.42% 15.31% 23.90 %

Sum 24,125 | 936 100 % | 1059 100 % | 976 100 %

cdk13 [274]) or cancer related genes (mycn [275], vav2 [276]), both processes involved
in aging. A more detailed analysis of the potential regulatory role of miRNAs in
aging follows in Section 4.3 and 4.5.

4.2.4 Effects of tissue and age on global miRNA expression

We used principal component analysis (PCA) to visualize the effects of tissue type
and age on the global miRNA expression (see Fig. 4.5). A strong component of
tissue-specific expression was detected and samples corresponding to different tis-
sues clustered tightly and widely apart in the plane defined by the first two prin-
cipal component axes (collectively accounting for 77 % of variance). Remarkably,
the third principal component axis (3% of variance explained) identifies an age-
dependent component of miRNA expression that is common to all three tissues with
the youngest samples (5 weeks), clearly separated from the rest. A detailed analysis
of age- and tissue-dependent miRNA expression, including embryonic development,
will be part of a separate publication.

4.2.5 miRNA expression comparison to closely related kil-
lifish

To compare and validate the miRNA composition in Nothobranchius furzeri, we
created for each of the six related killifish species two small RNA-Seq libraries (see
Tab. 4). These libraries were mapped simultaneously on all available miRBase (re-
lease 21) sequences and our annotated miRNAs of Nothobranchius furzeri to observe
Nothobranchius furzeri miRNA candidates expressed in other killifish and conserved
miRNAs possibly missing in Nothobranchius furzer: but not in the closely related
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Figure 4.5: Principal component analysis of the investigated small RINA-
Seq samples. A three-dimensional PCA plot of the Nothobranchius furzeri MZM
small RNA-Seq libraries of all three tissues (brain-red, liver —green, blue—skin)
and all investigated ages (from light to dark: 5, 12, 20, 27, 39 weeks). Whereas
the samples cluster well according to their tissue belongings, a distinct separation
regarding the ages can only be observed for the youngest samples in each tissue. A
PCA plot of the GRZ strain, can be found in STable 2.

species.

In total, 546 (93.7 %) of the 583 expressed and 17 (9.9 %) of the 171 non-expressed
miRNA candidates in Nothobranchius furzeri showed expression in at least one of
the related killifish (Fig. 4.7 shows a miRNA not expressed in Nothobranchius furzeri
but in several of the other killifish). Of these expressed miRNAs, 299 belong to the
421 non-conserved Nothobranchius furzeri miRNA genes.

To investigate whether miRNA sequences reflect known phylogenetic relationships,
we concatenated the sequences of all expressed miRNAs and constructed a phy-
logenetic tree. This tree perfectly reflected the evolution of the Nothobranchius
lineage [277]. Tt is also interesting that the number of Nothobranchius furzeri miR-
NAs expressed in other killifish species (indicated above the branch in Figure 4.6)
is inversely correlated to the evolutionary distance, i.e., this number is higher for
killifish the closer they are related to Nothobranchius furzersi.

Aphyosemion striatum, Nothobranchius korthausae, Nothobranchius pienaari, Notho-
branchius rachovii, Nothobranchius kunthae and Nothobranchius kadleci showed ex-
pression for 352, 428, 488, 473, 496 and 534 miRNAs, respectively.
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Most of these expressed miRNAs (>89 %) are among the 333 conserved miRNAs
of Nothobranchius furzeri (see Supplement Tab. 3). The composition of expressed
miRNAs from the six killifish varies only marginally. The Nothobranchius species
(except Nothobranchius furzeri) had in total 395 expressed miRNAs in common (of
which 148 are non-conserved), and Aphyosemion striatum expressed 324 of them (of
which 116 are non-conserved). These 324 miRNAs represent a core of miRNAs from
Nothobranchiidae, whose origin predates the emergence of annualism in this clade.

4.2.6 Identified miRNA clusters and gene duplications

%Aphyosemion striatum

%Nothobranchius korthausae

488
100% 9
99%

Nothobranchius pienaari

% Nothobranchius rachovii

86%

% Nothobranchius kunthae

96%

%34 Nothobranchius kadleci

79%

583 Nothobranchius furzeri

Figure 4.6: Phylogentic tree based on miRNA expression. Killifish phylogeny
based on the expressed miRNAs calculated via hierarchical clustering using the R
package pvclust [278]. Bootstrap values are given as percentages at the corre-
sponding branches. The amount of identified expressed miRNAs is given next to
the species names. The numbers in green indicate the number of these expressed
miRNAs, which were annotated but not expressed in any of the sequenced Notho-
branchius furzeri samples.

MiRNAs are known to often occur in clusters [254]. We define a miRNA cluster
to consist of at least two miRNAs, with a maximum distance of 10 kb. Exam-
ining the localization and distances of the miRNA genes in the five fish species
with assembled genomes, we identified 83, 96, 58, 68 and 59 different clusters in
Nothobranchius furzeri, Danio rerio, Oryzias latipes, Gasterosteus aculeatus and
Takifugu rubripes, respectively (see Tab. 4.4, Fig. 4.8-A).
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Table 4.4: Amount of annotated miRNAs, identified miRNA clusters and
the number of miRNAs in clusters, as well as known conserved and non-
conserved miRNA families in Nothobranchius furzeri (Nfu), Danio rerio
(Dre), Oryzias latipes (Ola), Gasterosteus aculeatus (Gac) and Tak-
ifugu rubripes (Fru). In brackets, the amount of miRNAs associated with the
identified miRNA families are given. For detailed lists of miRNA family assignments,
see STable 4.

Species | #miRNAs | #miRNA | #miRNAs | #mirBase | #unknown
clusters | in clusters | families families
nfu 754 83 213 94 (333) | 383 (421)
dre 765 96 305 99 (307) | 302 (458)
ola 366 58 151 104 (269) 55 (97)
gac 504 68 299 102 (413) 63 (91)
fru 337 59 143 99 (278) 51 (59)

In all investigated fish species but Takifugu rubripes, the largest cluster is the mir-
430 cluster (containing 7 to 55 miRNAs; see Fig. 4.8-C). This cluster is extremely
divergent and evolving relatively quickly in each lineage.

Not only the number of miR-430 copies within each cluster varies greatly but also
the number and organization of the members of this miRNA family. Whereas miR-
430a and miR-~430c can be found in all five fish species, miR-430b and miR-430d
seem to occur only in Danio rerio and Oryzias latipes, respectively. Additionally, no
structural similarities or shared repetition patterns can be observed for this miRNA
cluster, which is an additional indication of the low purifying selection on this spe-
cific gene cluster. However, a clear duplication pattern can be observed for the
miR-430 cluster in Danio rerio (the order miR-430c/b/a is repeated with only a
few exceptions) and Nothobranchius furzeri (the order miR-430c/a/a/c/a/a/a is
repeated). For Oryzias latipes and Gasterosteus aculeatus, the order of miR-430
variants appears to be more random, and Takifugu rubripes has too few copies to
show any repeated pattern.

Fig. 4.8-B depicting the miR-17-92 cluster shows an example of the other extreme: in
all five investigated fish species, two perfectly conserved clusters can be found. These
represent a duplication of an ancestral cluster present in all vertebrates, and the
order of the different members is perfectly conserved. It is known that the miR-17-92
cluster is transcribed polycystronically and acts in oncogenic and tumor suppressor
pathways [279, 280]. Furthermore, up to two smaller and lesser conserved clusters,
containing at least two miRNAs of the miR-17 or miR-92 family, were identified
per fish species, similar to what is known for mammals. Having correctly identified
this highly conserved cluster in Nothobranchius furzeri is again good evidence for
the high quality of its newly assembled genome and completeness of our miRNA
catalogue.

Another example for an evolutionarily conserved miRNA cluster is the miR-29 clus-
ter depicted in Fig. 4.8-D. Mir-29 family members are up-regulated during aging in
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Figure 4.7: Expression profiles of the predicted miR-215. Gray bars indi-
cate the amount of aligned reads and therefore coverage at the specific positions.
Whereas no expression can be observed for this miRNA in Nothobranchius furzeri,
clear activation can be seen in Nothobranchius korthausae, Nothobranchius pienaari
and Nothobranchius rachovii. Aphyosemion striatum, Nothobranchius kadleci and
Nothobranchius kunthae show a weak expression for at least the 5’-mature variant

of this miRNA.

a variety of different tissues including muscle, skin, brain and aorta [120, 281-283]
and appear to be key regulators of age-dependent gene expression [284]. This cluster
consists of miR-29a (which is identical to the mammalian miR-29¢) and its variant
miR-29b and is duplicated at least once. In some fish species, an additional variant
miR-29¢ is known, which is identical to the miR-29a in mammals, with one nu-
cleotide being different outside the seed region [285]. As from RFAM (version 12.1)
and miRBase (release 21), miR-29 genes are mainly identified in vertebrates as well
as one Hemichordata and one Arthropoda, so we can only speculate that the original
cluster duplication event arose in the early metazoa lineage. In Oryzias latipes and
Takifugu rubripes, both miR-29 clusters are still present, whereas Danio rerio ap-
pears to has lost one copy of the miR-29a gene. For Gasterosteus aculeatus, we were
only able to identify one miR-29 cluster. However, because its genome assembly is
incomplete, we assume that the second cluster may not be lost but is missing in the
current version of its miRNA annotation. Interestingly, in Nothobranchius furzeri,
we identified an additional miR-29a/b pair and a fourth single copy of miR-29b. As-
suming a complete genome assembly, different scenarios could explain this finding:
(1) both original miR-29 clusters were individually duplicated once more, and the
fourth miR-29a gene was later lost, (2) one of the two clusters was duplicated as a
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whole, whereas in the other only miR-29b was copied or (3) both original clusters
were duplicated during the same event, and again one of the miR-29a genes was
later lost.

About the same amount of different miRBase miRNA families could be identified for
all five fish species, despite their big differences in the number of identified miRNA
genes. All miRNA genes not matching any known mirRBase family were clustered
based on their sequence identity in order to estimate the amount of miRNA ’families’
not covered by the miRBase database (see Tab. 4.4 and Supplement Tab. 4).

4.2.7 Completeness of the Nothobranchius furzeri miRNA
annotation

This study involved a multitude of small RNA-Seq libraries from several tissues,
ages, strains and embryos of Nothobranchius furzeri and closely related species. The
aim was the characterization of the Nothobranchius furzeri miRNome and a detailed
annotation in the recently published genome [123]. The inclusion of other killifish
species allowed us to analyze the occurrence of novel miRNAs in the group of annual
fish. A total of 421 putatively novel miRNAs that have no known homologous genes
in other non-killifish species may sound a lot. However, given the fact that between
the roughly known 1800 human and 2200 mouse miRNAs only some hundred miRNA
families are shared (besides these two mammalian species being relatively closely
related), these findings show that there appears to be a comparably large set of
species-specific miRNA genes next to an established and evolutionary conserved set
of miRNAs. This and the fact that the regulatory function realized of a single
miRNA family that does not exist in one species can be compensated by another
miRNA, targeting the same mRNAs as the missing one, shows the flexibility of
this regulatory mechanism. Since simple single nucleotide mutations can completely
change the targets and therefore the functions of an miRNA (for details about
biological function of miRNAs refer to the Section 4.1) they are more easily prone
to selective pressure but also much more adaptive than protein based regulation like
transcription factors.

Due to the fact that we identified roughly the same number of miRNAs in Notho-
branchius furzeri as known in Danio rerio and both fish species share almost equal
amounts of miRBase families and unknown miRNA families, we assume that our
miRNA catalogue is comparable to the one of the model organism Danio rerio.
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Figure 4.8: miRNA cluster comparison between fish. (A) Amount of clusters
and their respective sizes with a maximum distance of 10,000 bp between two miRNAs.
(nfu - Nothobranchius furzeri, dre - Danio rerio, ola - Oryzias latipes, gac - Gasterosteus
aculeatus, tru - Takifugu rubripes) (B) Structure comparison of the miR-17/92 cluster.
Two highly conserved clusters could be identified for each species, as well as some smaller
less conserved clusters, containing at least two miRNAs of the miR-17/92 cluster. (C)
Structure comparison of the miR-430 cluster. No structural similarity between the different
species can be observed. However, Danio rerio, Gasterosteus aculeatus and Nothobranchius
furzeri show some distinct but individual repeating pattern. Even though the gene variants
miR-430b and miR-430d seem to be unique to Danio rerio and Oryzias latipes, they can be
clearly distinguished, based on sequence alignments. (D) After the ancestral duplication
event, the mir-29 cluster is distinguished in the mir-29a/b-1 (filled red and blue dots) and
the mir-29a/b-2 cluster (red and blue circles). Whereas for Danio rerio the mir-29a-2
gene appears to be lost, we assume that for Gasterosteus aculeatus the whole second mir-
29 cluster (dashed circles) is only missing, because of the low quality genome sequencing
and assembly. In Nothobranchius furzeri we observe an additional copy for each of the
two clusters, except that the mir-29a/b-1 pair was only partially duplicated or the second
mir-29a-1 gene was lost again.
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4.3 Diapause regulation in Nothobranchius furz-
ert and its implication to delayed aging

This chapter’s section is based on the publication “Analysis of microRNA expression
reveals convergent evolution of the molecular control of diapause in annual fishes” 2.

Data used in this section

In total 19 small RNA-Seq libraries from 9 different annual and non-annual killifish
were used for the analysis of diapause specific miRNAs. Library generation was per-
formed by Mario Baumgart and Alessandro Cellerino 3, following the same procedure
as described in Chapter 2.1. RNA-Seq data analysis was performed as described in
Chapter 2.2. The killifish used were Nothobranchius furzeri, Aphyosemion striatum,
Callopanchaz occidentialis, Epiplatys dageti, Aplocheylus lineatus, Nematolebias pa-
pilliferous, Austrofundulus leoholgnei and Rivulus cylindraceus. For more details
regarding these species and RNA-Seq libraries, see Figure 4.9 and SData 1. A list of
aging-related differentially expressed protein-coding RNAs of Nothobanchius furz-
eri was obtained from the study of Reichwald et al. [123], to correlate them with
the identified differentially expressed miRNA genes (see SData 7). For the overlap
comparison with aging-related miRNAs, the whole Nothobranchius furzeri MZM
RNA-Seq data of the JenAge collection was used, including the three tissues brain,
liver and skin (see Chapter 2).

4.3.1 Diapause: oversleeping aging

Life-history is a major force in the evolutionary shaping of embryonic development.
Extreme examples are seasonal species where embryos undergo diapause, a suspen-
sion of development or dormancy state, as it is the case for the larvae of many
insect species from temperate climate. Seasonal life cycle has evolved also in a clade
of teleost fishes (suborder Aplocheiloidei) known as annual killifishes. Annual fish
inhabit ephemeral bodies of water and are adapted to the alternation of wet- and
dry-season in Africa and South America. All adult fish die when their habitat dries
out and conservation of the species is ensured by desiccation-resistant eggs that
enter in diapause and remain encased in the dry mud until the next rainy season.
Annual life history is present in both, South American and African killifishes, and
is the result of a series of independent events.

Early studies suggested the existence of four events of loss and re-gain of an ancestral
annual trait [286, 287] while more recent studies suggest that it repeatedly evolved,
at least three times in Africa and three times in South America [288]. In either
of the two scenarios, an annual clade has always a sister non-annual clade that is
phylogenetically closer than any another annual clade.

The early development of annual fish is conserved in the different lineages [288—290]
and is characterized by three points of developmental arrest. The major point of de-

2The complete supplemental material is available at http://www.rna.uni-jena.de/
supplements/diapause/
3FLI Leibniz Institute for Age Research, Beutenbergstrasse 11, 07745 Jena, Germany
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velopmental arrest occurs after formation of the embryonic axis and organogenesis,
at mid-somitogenesis, and is called diapause II (DII). DII is a facultative stage: it can
be skipped when embryos are incubated at high temperature [288, 291}, but lower
temperature, darkness or dehydration (all conditions occurring in natural habitats)
induce DIT [292, 293]. The duration of DII is highly variable and the embryos can
remain in this stage for several months [294] or even years (unpublished observation;
personal communication with Alessandro Cellerino). The physiological and molec-
ular mechanisms of diapause were studied in detail in the South-American species,
Austrofundulus limnaeus. Diapause is characterized by drastic depression of protein
synthesis, oxygen consumption and of mitochondrial respiration associated with G1
arrest of the cell-cycle [295, 296]. These basic mechanisms seem to be conserved also
in the African annual genus Nothobranchius [288, 297].

Studies in the roundworm Caenorhabditis elegans have drawn a connection between
diapause and aging. This nematode can enter a stage of dormancy called ”dauer“
when the environmental conditions are unfavorable. Some genetic mutations that
influence dauer formation also modulate longevity. In particular, the daf-2 mutation
that affects an ortholog of the IGF/insulin receptor, increases lifespan over two-
fold. Strikingly, the influence of the IGF /insulin pathway on longevity is conserved
also in vertebrates and humans [298, 299]. In addition, the gene expression profile
in the dauer larvae stage show high similarities to the expression profile of long-
lived adult mutants [300] and in annual fish, the expression of protein-coding RNAs
during diapause and aging overlaps with respect to genes controlling cell cycle and
mRNA translation [123]. Also small non-coding RNAs are embedded in the genetic
network that links diapause and longevity, as exemplified by miR-71. This miRNA
is a longevity gene and an aging biomarker in Caenorhabditis elegans and is also
essential for diapause [301, 302]. These results prompted us to investigate a possible
overlap in miRNA regulation between aging and diapause in a vertebrate clade,
here on the example of the short-lived fish Nothobranchius furzeri. As previously
mentioned in the last section, this small annual fish has a captive life-span of a
few months and is the vertebrate with the shortest life-span that can be cultured in
captivity. For these reasons, Nothobranchius furzeri has emerged as model organism
of choice for biological investigations into aging [118, 271, 303].

Next generation sequencing (NGS) techniques can be used to identify and at the
same time quantify miRNAs in non-model species taking advantage of the small
size and extremely high conservation of miRNA sequences [304, 305]. Using this
technique, we described an evolutionarily conserved miRNA signature of aging in the
brain of Nothobranchius furzeri [120]. More recently, based on the available genome
sequence and a large database of small RNA sequencing, we published a catalog of
both conserved and non-conserved microRNAs in Nothobranchius furzeri [121]. A
possible function of the non-conserved miRNAs in this species may be to control
diapause. Within this section, we characterize this miRNA expression signature
of DII of both conserved and non-conserved miRNAs and compare this signature
with miRNA regulation observed during aging. To characterize an evolutionarily-
conserved expression signature of DII, we compared miRNA expression in embryos at
mid-somitogenesis in pairs of annual- and non-annual species from three independent
evolutionary lineages of Aplocheloidei. This approach is complementary to a recently
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published study where small RNA expression was analyzed in embryos of the South-
American annual killifish Austrofundulus limnaeus at different stages of development
and in embryos that skipped diapause and proceeded to direct development [306].

4.3.2 Phylogenetic sampling of the analyzed killifish

No. samples

Nothobranchius furzeri 8 (5)

Aphyosemion striatum 4

Callopanchax occidentialis 1 (1)

Epiplatys dageti 1

Aplocheylus lineatus 1

Nematolebias papilliferous 1 (1)

{Austrofundulus leoholgnei 1(1)

Rivulus cylindraceus 1

Figure 4.9: Overview of the sequenced killifish embryos and the respective
amount of samples. Fish marked in red are non-annual species, whereas all
others are annual. For the annual species the numbers of samples sequenced during
diapause are given in brackets. Aplocheylus lineatus originates from India. For
detailed information, see STable 1.

Annual killifish are divided into three clades distributed in Africa (one West- and
one East- of the Dahomey gap) and in South America (Fig. 4.9). In each of these
regions, the clade contains both annual- and non-annual genera. The position of
the non-annual genus Aplocheilus is debated. Early analysis considered it basal to
all annual species [286], but it was later suggested to be nested between African-
and South American species [288]. Therefore, Aplocheloidei offer a unique opportu-
nity to study parallel evolution of life-history adaptations (see also [290]). We col-
lected eggs in diapause II from annual species or in the corresponding developmental
stage (mid-somitogenesis) from non-annual species of all three clades in addition to
Aplocheilus lineatus and analyzed miRNA expression by small RNA-Seq. From
South America, we analyzed miRNA expression in the annual species Austrofun-
dulus leohoignei and Nematolebias papiliferous and the related non-annual species
Rivulus cylindraceus. From Africa, West of Dahomey gap, we analyzed the annual
species Callopanchaz occidentalis and the non-annual species Epiplatys dageti mon-
roviae. From Africa, East of Dahomey gap, we analyzed the annual species Notho-
branchius furzeri (5 replicates), and the non-annual species Aphyosemion striatum
(4 replicates). Finally, we incubated eggs from Nothobranchius furzeri (3 replicates)
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at higher temperature, a condition known to promote direct developement, i.e. di-
apause skipping [288, 307].

4.3.3 Differences in miRNA expression between annual and
non-annual fish

Overall expression activity of conserved and killifish-specific miRNAs

First, we investigated the total number of miRNAs whose expression could be de-
tected in all analyzed Kkillifish species. As depicted in Fig. 4.10, the largest num-
ber of expressed conserved and Kkillifish-specific miRNAs could be found in Notho-
branchius furzeri and the closely related species Aphyosemion striatum where mul-
tiple replicates were available. A certain bias towards Nothobranchius furzeri and
the more closely related species was expected, because the killifish miRNA anno-
tation was based on the Nothobranchius furzeri reference genome [121]. Neverthe-
less, we observed the third highest activity in miRNA genes in the more distantly
related Austrofundulus leohoignei and the lowest number of active miRNAs in Cal-
lopanchaz occidentalis. Still, most of these genes showed only low (10-50reads)
or moderate expression (51—-1000reads). Taken all samples together, we detected
expression activity for roughly 45 % of the miRNAs genes, predicted and described
in Section 4.2. Interestingly, some of these miRNA genes being identified in the
Nothobranchius furzeri genome but did not show active transcription in any of the
Nothobranchius furzeri samples, were found to be expressed in other species, in
particular in those not undergoing diapause.

Expression of miRNAs can separate fish based on their diapause status

Based on the global expression patterns of all miRNAs we have clustered the ana-
lyzed samples using principal component analysis (see Figure 4.11). We observed
a clear separation not only between the individual species, but also between an-
nual and non-annual embryos. Replicates of Aphyosemion striatum and Notho-
branchius furzeri form defined clusters, whereas the three diapause skipped Notho-
branchius furzeri embryos are only weakly clustered. Nevertheless, these results
demonstrate that samples are divided by their physiological status and not by their
phylogenetic relationships, indicating the existence of a convergent transcriptional
program associated with diapause across species.

Conserved expression of developmental-related miRNAs

Next we examined the most highly expressed miRNAs of all investigated samples.
Interestingly, four conserved miRNA families (miR-10a/b/c, miR-92a, miR-181a
and miR-430a/b/c) and two killifish-specific miRNA families (currently named miR-
19337 and miR-19344) were always the most highly expressed in all the samples,
indicating their special role during the early development of the investigated fishes
(see, Fig. 4.12 and STable 1). This is consistent with the report of Romney and
Pobrasky [306], who also report these four conserved miRNA families to be the
highest-expressed in embryos of Austrofundulus limnaeus at mid-somitogenesis. Of
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Nothobranchius furzeri 568 34

Aphyosemion striatum 463 18 59

Epiplatys dageti 340 13 19

Callopanchax occidentialis 258 8 4

Aplocheylus lineatus 261 11 5

Nematolebias papilliferous 287 9 10

Austrofundulus leoholgnei 362 9 17

Rivulus cylindraceus 284 10 16

No. conserved active miRNAs
No. non-conserved active miRNAs
No. active miRNAs that were not active in Nfu

Figure 4.10: Actively transcribed conserved and killifish-specific miRNAs.
Phylogenetic tree of the investigated killifish species and the number of their actively
transcribed miRNA genes (red — miRNAs belonging a known miRNA family; green
— miRNAs specific to killifish; blue — miRNAs not being transcribed in any of the
Nothobranchius furzeri samples).

special interest is the high expression of the two killifish-specific miRNAs miR-19337
and miR-19344, because this could indicate that they potentially control some as-
pects of killifish embryonic development.

A strong expression of members of the miR-10 family is not unexpected since they
are a known regulators of a number of hoz genes, which are important transcription
factors during embryonic development [308]. Indeed, expression of miR-~10 strongly
increases during somitogenesis in Austrofundulus limnaeus [306]. Additionally, it is
also known that expression of miR-~10 has a positive effect on the ribosomal protein
synthesis machinery [309].

Members of the teleost-specific miR-430 family are also key mediators of embryo-
genesis, regulating multiple early development processes, such as mesendodermal
fate specification, brain morphogenesis, silencing of maternal transcripts and devel-
opment of primordial germ cells [310-313]. Usually miR-430 genes are produced
by much larger genomic clusters whose organization differs between teleost species
and in the previous section we have described the organization of such clusters (see
Figure 4.8). Recent work in Austrofundulus limnaeus has shown that expression of
miR-430 is downregulated during somitogenesis and is lower in embryos that escape
diapause and proceed to direct development, underlining its relevance for the em-
bryogenesis of teleosts [306].

Also miR-181 is necessary for embryonic development, and the deletion of all its
paralogs induces embryonic lethality [314, 315]. In addition, it was shown to target
another hoxr gene, namely hoz-a1l in mammals, and the homeobox transcription
factor Prox1, therefore being an embryonic development regulator too and hinting
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Figure 4.11: Principal component analysis of the investigated small RNA
samples. PCA of the 18 RNA-Seq libraries based on the 10 most variant genes,
e.g. showing the highest variance in expression. The libraries generated from an-
nual and non-annual species are relatively well separated and samples from Notho-
branchius furzeri and Aphyosemion striatum cluster together, respectively. A more
detailed PCA plot is available, see SFigure 1.

at a potential similar function in fish embryos [316, 317].

Being part of the miR-17/92 cluster, the miR-92 is an important well-studied regu-
lator of the cell cycle [318] and inferring from its strong expression in our samples,
it could be especially important during developmental processes.

For both killifish-specific miRNAs, only predicted target mRNAs in Nothobranchius
furzeri are known [121]. However, TSC2 and FAMS83D are both putative targets of
miR-~19344. TSC2 is of particular interest as it is part of the TSC complex, which is
a major upstream regulator of the activity of the mTORC1 complex, representing a
central regulatory hub that integrates nutrient sensing and growth-factor signaling
to regulate cell growth, protein synthesis and cell proliferation [319]. mTORCI is
also a known major regulator of aging and longevity in multiple organisms [320].
FAMS83D, the other potential target of miR-19344, is involved in cell proliferation
and motility [321].

Relevant potential targets of miR-19337 are CECR2, being part of a protein complex
that regulates neurulation, STARD13B a known inhibitor of cell growth [322] and
SRF (Serum response factor), which modulates the expression of many immediate
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Figure 4.12: Relative amounts on the total expressed reads within all the
sequenced killifish samples of the six most highly expressed miRNA fami-
lies. All of these miRNAs are known or predicted to be implicated in the regulation
of development processes in embryonic cells. For details on the miRNA expression
levels, see STable 1

early genes and therefore is an important key player in embryonic development [323].
From all these examples, we can already observe a strong impact of the developmen-
tal stage of the sampled fishes onto the expression of their respective miRNomes (a
neologism based on the term transcriptome), transcribing almost exclusively miR-
NAs which are regulating developmental or associated processes. Especially the
dominating abundance of miR-10 and miR-430 genes in almost all samples, indi-
cates the specialized roles of both miRNAs as well as their evolutionarily conserved
regulatory importance for teleost embryogenesis.

Differentially expressed miRN As related to diapause regulation in killifish

To identify differentially expressed mature miRNAs (DEMs) that could be linked to
diapause regulation of annual species, we set up three different comparisons of the
examined small RNA-Seq samples: (I) the “big annual comparison” contrasting all
annual samples from fish that underwent diapause against the non-annual fish de-
rived samples, (II) the “diapause comparison” contrasting the Nothobranchius furz-
eri samples that underwent diapause against those that skipped it and (III) the
“small annual comparison” comparing the Nothobranchius furzer: diapause samples
against the samples of its sister taxon the non-annual Aphyosemion striatum. As
introduced in Section 4.1, a single pre-miRNA molecule is processed into a small
miRNA duplex, which divides into two mature miRNAs after being unwind, named
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5 prime (5p) and 3 prime (3p) mature sites, depending on their encoded site within
the original pre-miRNA sequence. Both of these mature miRNAs, originating from
the same gene that encoded the miRNA precursor, can be incorporated into a RISC
complex and subsequently fulfill their silencing function. However, both mature
miRNAs from one and the same precursor can target different mRNAs, thus regu-
lating differing biological processes. Because of this, we have examined the mature
miRNAs of single miRNA genes separately in the subsequent analyses.

The big annual comparison revealed 242 DEMs (122 upregulated and 120 downreg-
ulated in the annual fishes compared with the non-annual ones) belonging to 156
distinct miRNA genes (see SData 1). Some of the most significantly changing miR-
NAs in the annual comparison were members of the miR-430 family, belonging to
the above mentioned highest expressed miRNA genes and being major regulators of
developmental processes. Interestingly, we found that the particular miR-430a/c-3p
mature miRNAs are is downregulated in all the annual species whereas its mature
sibling miR-430a/c-5p is upregulated in the same species. This is striking since the
5p forms are expressed at much lower levels as the corresponding 3p and this is
a prominent example of a miRNA isoform switch that we describe more in detail
in the next subsection. All the mature miRNAs of miR-430a and miR-430c act in
developmental processes, but targeting different mRNAs. Both 5p mature miRNAs
are mainly involved in the development of the enteric nervous system but also the
brain, having strong impact on the negative regulation of cell differentiation [271].
The 3p mature miRNAs act by regulating different cell signaling pathways, such as
the thrombin and Rho protein pathways, but mainly by modulating the negative
regulation of cell transcription from RNA polymerase II. In addition to miR-430, we
identified other DEMs with important development-related functions, such as miR-
19 being part of the miR-17/92 cluster and associated with endothelial cell differenti-
ation in embryonic stem cells [324], miR-200 regulating the epithelial /mesenchymal
transition during embryonic development [325] or miR-221 being involved in cell pro-
liferation and angiogenesis [326, 327]. All of these miRNAs seem to be important
for a well organized regulation of different developmental processes and may in part
be responsible for the carefully orchestrated diapause regulation and embryogenesis
in killifish.

The diapause comparison between the Nothobranchius furzeri samples in diapause
and those that have skipped it, due to high temperature incubation, revealed 17
DEMs (10 up- and 7 downregulated in the diaupausing samples) belonging to 14 dis-
tinct miRNA genes (see SData 2). Observing only few differentially regulated mature
miRNAs between the diapause and non-diapause embryos of Nothobranchius furz-
eri might indicate a more simple miRNA control layer of diapause at least within
this species. Prominent is the upregulation of miR-9-3p and miR-29a-5p during
diapause. These miRNAs are both implicated in either regulation of neuronal dif-
ferentiation and brain development or being involved in cell proliferation processes,
making them promising key regulators for diapause [120, 328]. Most interestingly,
the killifish-specific miR-19344 shows a 10-fold upregulation within the diapause
samples and as discussed already above one of its potential targets is TSC2, regu-
lating the mTORC1 complex, which is a major modulator of cell growth, protein
synthesis and cell proliferation [319]. This could designate miR-19344 as the first
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killifish-specific miRNA involved in developmental processes and as a marker for
diapause. Not much is known about the other DEMs or their absolute change in
expression is relatively low: One study suggests that miR-7641 is involved during
endothelial differentiation in embryonic stem cells [329] (this miRNA was differen-
tially expressed in the annual comparison too), a recent study links miR-563 to the
development of the spine in vitro [330] and expression of miR-210 appears to pro-
mote angiogenesis by inhibiting efna3, a suppressor of blood vessel formation [331].
Finally, within the small diapause comparison we observed a total of 292 DEMs (171
upregulated and 121 downregulated in the annual Nothobranchius furzeri samples
compared with the non-annual Aphyosemion striatum) belonging to 203 distinct
miRNA genes (see SData 3). Similar to the big annual comparison, we identified a
great number of DEMs with both comparisons having almost all DEMs in common,
including the same directional changes in expression (see SData 4). This includes
the miR-~430, miR-~7641-3p, miR-10 and miR-~17 mature miRNAs. Still, we identified
unique DEMs belonging to 25 and 68 miRNA families in the big and small annual
comparison, respectively. Those miRNAs unique to the Nothobranchius furzeri and
Aphyosemion striatum comparison might be in part responsible for the difference
in embryogenesis in their clade but not necessarily in the other annual /non-annual
killifish clades, because annual life appears to have evolved independently several
times [286-288].

In general, the regulatory involvement of miRNAs during the embryogenesis of kil-
lifish is extensive, whereas in contrast only few miRNAs seem to be involved in the
maintenance of diapause in Nothobranchius furzeri, making these miRNAs critical
regulators of this dormancy state.

mature miRNA switches: changes in the abundance of specific mature
sites with significant consequences

Within our differential expression analysis, we observed some interesting expression
patterns of differential miRNA expression. In particular, we found some miRNA
genes that showed a “switch” in the expression of their main mature miRNA, i.e.
not necessarily a change in the total transcribed amount of the pre-miRNA tran-
scripts but in the subsequent processing machinery responsible for the maturing of
miRNAs, changing that the relative abundance of the 5p and 3p mature products.
In addition to the above described examples of the miR-430 family, we identified
two more of such cases in the big (miR-200a and miR-181a) and four in the small
annual comparison (miR-128, miR-130c¢, miR-217 and miR-223), for an example see
Figure 4.13 and SFigure 3. We already briefly mentioned the regulatory targets of
miR-200a and its potential role during diapause in the previous subsections. Also
the miRNAs of the other switch cases show potential regulatory roles in different
maturation processes: developmental regulation of T cells and the vascular system
by miR-181a [317, 332], miR-217 shows strong expression in late stages of the fetal
rat development and an expression disruption showed damaged lung tissue [333]
and miR-223 is a well studied modulator in hematopoiesis and osteoclast differen-
tiation [334, 335]. The functions of miR-~128 are more linked to the formation and
progression of various cancers, suggesting a general role in either cell development
or proliferation, and it is known to inhibit telomerase activity [336-338]. Not much
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is known about miR-130c, however, its paralog miR-130a appears to be present in
hematopoietic progenitor cells but not in mature blood cells [339]. Besides their
implications in certain developmental processes, all of these examples demonstrate
that miRNA regulation is not just executed by the mere total expression of miRNA
genes, but itself is controlled by the selective incorporation of the distinct mature
sites into the RISC complex. This is an important observation, suggesting that
miRNA expression data has to be modeled mathematically more specific to ensure
correct interpretation (more on that topic in Section 3.5 of this chapter).
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Figure 4.13: Expression profiles of the miR-200a gene from the small annual
comparison. No significant change in expression can be observed when all reads of
the pre-miR-200a annotation are compared among both conditions (p-Value=0.43),
whereas a clear difference can be observed for the 5p and 3p mature miRNAs sep-
arately (p-Value of 2.0e7? and 2.7¢7*). In contrast to the non-annual species were
both mature sites are equally expressed, the 3p mature miRNA is increased in ex-
pression whereas the 5p mature miRNA appears to be switched off. The green bases
indicate the mature sequences. For more examples, see SFigure 3.

Strong correlation between the identified differentially expressed miR-
NAs and expression levels of developmental-related mRNAs

Next, we examined to which extend the results from the differential expression
analysis of the miRNAs can be observed on the transcriptomic level. To do so,
already identified aging-related differentially expressed genes [123] were compared
with the targets of the identified DEMs. We found that 143 DEMs have 88 unique
mRNA targets that also show a significant expression change within the small annual
comparison (see SData 7). If we look at targets of some of the DEMs discussed above,
we see a clear overlap to the identified differentially expressed mRNAs. Almost
all of them are associated with cell developmental or proliferation processes and
show opposite expression patterns compared with their targeting miRNAs. This
indicates a strong correlation between the expression of the identified DEMs and
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the regulation of their target mRNAs. Just as one example, cyclin D1 is one of the
targets of the DEM miR-430a/c-3p, promoting G1 progression of the cell cycle [340]
and was found differentially expressed.

Additionally, we tested if there was a specific enrichment of mRNA targets from
a single DEM and could identify 23 miRNAs were this was the case. Some of the
most significant ones were miR-23a-3p, miR-731-5p, miR-17a/b-3p, miR-430a-5p
and miR~19b-5p, all of them discussed already above (see SData 7).

The expression of miRNAs involved in embryogenesis and di-
apause regulation is also modulated in an aging-related man-
ner

We were also interested if there is a connection between the miRNA exercised reg-
ulation of early development and diapause processes and possible implications to
aging. On the protein-coding RNA level an overlap between the expression of tran-
scripts expressed during diapause and aging coding for cell cycle and translational
control, was already observed [123]. These findings prompt that miRNA expression
during diapause might also be linked to aging in Nothobranchius furzeri.

Indeed, we found not only miR-29a-5p to be similarly upregulated during diapause
and aging but also its sibling mature miRNA miR-~29a-3p within the aged brain,
liver and skin samples of Nothobranchius furzeri. The miR-29a gene was already
known to be upregulated in highly aged individuals and is also considered a tumor
suppressor [120]. Another upregulated miRNA in both conditions was miR-210,
which acts in the hypoxia pathway [341]. When active, this miRNA positively regu-
lates the adaptation to a hypoxic environment, helping cells to survive with only low
available oxygen [341]. Diapausing killifish embryos show drastic repression of aer-
obic metabolism [294, 295] and are extremely resistant to hypoxia [292], therefore,
under normal oxidative conditions, hypoxia-sensitive genes may be downregulated.
Hypoxia is also a known condition in aged tissues, indicating that miR-210 is gen-
erally used to respond to this oxidative stress [342]. The expression of miR-222a
was observed to be equally and strongly downregulated during diapause and ag-
ing. When active, miR-222a promotes the expression of proteins responsible for
muscle cell development by silencing the expression of the translational repressor
cpeb3 [343]. However, neither miR-9 nor the killifish-specific miR-19344 could be
correlated with aging and seem to be specific for diapause and early developmental
regulation. When including the DEMs of the small annual comparison, we observed
a quite large overlap of 57 and 40 DEMs being up- and down-regulated in the same
way during embyrogenesis and aging, as well as 99 DEMs being modulated in the
opposite directions (see SData 6). Closer inspection revealed interesting behavior of
some of the already discussed miRNAs. Both 3p mature transcripts of miR-430a/c
are downregulated during diapause, but upregulated during aging in the brain. In
the aged brain and liver of Nothobranchius furzer:, miR-10b-5p is downregulated,
whereas it is upregulated in embryonic development. The same is true for miR-
92b-3p in liver and skin. Also interesting, miR-181b-3p is down-regulated in both
diapause and aging, but miR-181b-5p appears to be up-regulated during diapause
but stays down-regulated in the aged liver and skin samples and not significantly
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changed in brain during aging.

These exemplarily described behaviors of specific miRNAs already indicate that
there is an overlap between aging processes and the regulatory network controlling
diapause and embryogenesis in Nothobranchius furzeri.

However, to elucidate the precise mechanisms or regulatory responses that act in
both conditions, more functional analyses need to be performed. Nevertheless, here
we provide one of the first miRNA studies of vertebrate diapause. We could ob-
serve that regulation of miRNA expression in different clades of annual fishes shows
convergent evolution and the samples of different taxa do not cluster according to
their phylogenetic relationships, but according to their physiological status (being in
diapause or not). This represents a further example of how annual fish belonging to
different clades independently converged on similar adaptations to support embry-
onic development in their ephemeral habitat [288, 290]. Additionally, we describe
different miRNAs to be key modulators not only during fish embryogenesis but also
diapause regulation, such as members of the miR-10 and miR-430 family, miR-92,
and miR-29a, but also killifish-specific ones, such as miR-19344 and miR-19337.
Some of these miRNAs are of special interest, because their implications in specific
developmental processes are already further studied in other species. For example,
miRNA-430 was shown to act primarily by inhibiting protein synthesis [344]. How-
ever, after onset of zygotic transition and in adult cells mRNA degradation appears
to be the predominant mechanism [345]. Diapause is characterized by a prominent
depression of protein synthesis that is reduced to 10% of the pre-diapause lev-
els [346]. Tt is therefore highly likely that both proteins and mRNAs are stabilized
during diapause. In this context, miRNAs should act primarily, if not exclusively, by
inhibiting protein synthesis. Upon exit of diapause, release of miRNAs would allow
immediate onset of translation. This concept is further supported by the observation
that diapausing embryos of Nothobranchius furzeri show paradoxical up-regulation
of genes related to translational elongation [123], suggesting that these embryos are
primed for a catch-up process upon exit from diapause.

Studies in the worm Caenorhabditis elegans revealed miRNAs that are regulated
both during diapause and aging. In particular, miR-71 does not influence diapause
entry, but is necessary for survival during diapause in Caenorhabditis elegans [347].
Deletion of miR-71 results in shortened life-span and miR-71 abundance increases
with age before dropping late in life [348]. The timing of the miR-71 expression drop
can be used to predict the longevity of individual worms [301]. Our results show a
similar overlap between miRNAs that are regulated during diapause and aging in the
annual fish Nothobranchius furzeri. Several miRNAs significantly modulated in dia-
pausing Nothobranchius furzeri were modulated during aging as well. One of these
miRNAs, miR-101a, is particularly interesting. It was shown that miR-101 acts as a
highly-connected hub in gene regulatory networks of transcription factors and epige-
netic modulators involved in cell cycle progression [349]. Overexpression of miR-101
is also known to induce cell cycle arrest in different cell types [349]. So, high levels
of miR-~101 in diapausing embryos would contribute to the G1 block that is typical
of diapause [296]. On the other hand, we observed downregulation of members of
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the miR-17/92 cluster, also known as oncomiR-1. The organization of this cluster
is conserved in Nothobranchius furzeri and it was observed to be downregulated
during aging of the brain [120] and adult neuronal progenitors [257]. OncomiR-1 is
a major regulator of cell cycle and overexpressed in several tumors [350]. On the
other hand, it is well-established that oncomiR-1 is downregulated during aging of
human mitotically-active cells where it targets the cell cycle inhibitor p21 [351]. An
overlap in the regulation of cell cycle protein-coding genes between diapause and
aging was also demonstrated by RNA-seq analysis in Nothobranchius furzeri [123],
further supporting the concept that, like in Caenorhabditis elegans, aging and di-
apause are controlled by overlapping genetic pathways. The results of our study
serve as a good basis for further research to infer the impact and precise control of
miRNA regulation of these overlapping pathways.
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4.4 MeRDE: A new statistical model to infer dif-
ferential expression of small RNAs from read
counts

This chapter is based on the publication “Using Gamma Distributions to Model

Small RNA-Seq expression data”.*

4.4.1 The stochasticity of RNA-Seq expression data

In Section 1.2.2, we have already briefly discussed the topic of transcriptomic RNA-
seq data. Because this section dives deeper into the theories and practices that
stand behind statistical modeling of such transcription data, we will recapitulate
the basics from the corresponding introductory section in greater detail.

An RNA-Seq experiment is used to quantify the RNA transcripts that are present
at a certain time point within a cell, providing a quantitative snapshot of the ac-
tive gene expression [96, 97]. It is performed in several main steps, resulting in a
library of RNA molecule sequences, referred to as reads (see Figure 4.14). These
read libraries represent the measured repertoire of RNA molecules and every read
can (in theory) be assigned to a genomic feature (e.g., gene, exon, intron, ... ) based
on its mapping to a specific location of the target genome. The summarized num-
ber of reads, belonging to a certain genomic feature (from now “gene” will be used
synonymously for the term genomic feature) is called read count and was found to
be in a direct linear relationship to the abundance of the respective gene’s tran-
scripts [352]. Thus, RNA-Seq experiments can be condensed into count tables, by
read library mapping and subsequent assignment and counting of the mapped reads
based on a target reference genome and annotation. Each count table then contains
the name or ID of each examined gene with the assigned count value. In many
cases, these counts are compared gene-wise between different conditions, such as
healthy and diseased or young and old cells. Such techniques are known as differ-
ential gene expression analyses. To assess if a difference in the counts of a given
gene between two conditions is significant, i.e., the gene shows a greater or smaller
expression than expected due to biological variation, statistical testing is needed.
Therefore, replicates for both investigated conditions are required to estimate the
natural variation (or noise) of gene expression. With large amounts of replicates,
significant read count differences could be determined by statistical non-parametric
rank based tests, such as the Mann-Whitney U test [353] or the Kruskal-Wallis
test [354]. However, the generation of RNA-Seq libraries is still relatively expensive
and time-consuming, making it necessary to get along with only a very small number
of replicates per condition (as few as three replicates are not uncommon). In the
lack of non-parametric approaches, the decision for a certain stochastic distribution
is critical for modeling the underlaying biological variation of count data and con-
sequently for the correct identification of expressional differences.

The two most common distributions which are assumed to model RNA-Seq read data
best, are the Poisson distribution and the negative binomial distribution, following

4The complete supplemental material is available at https://osf.io/wfjrs/
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Figure 4.14: Simplified overview of generating read count data from small
RINA-Seq expression data. (I) Sample material is collected from two or more
different biological conditions in several replicates each. (II) Besides other sequence
library preparation steps (e.g., rRNA degradation), RNA molecules are filtered by
size to remove all transcripts with a length of about 200 nt or more. (III) Ampli-
fication of molecules by polymerase chain reaction to ensure sufficient transcript
abundance for the sequencing step. (IV) Sequencing of the transcripts by the pre-
ferred NGS machine to obtain the read sequences. (V) Mapping of the reads to the
target genome and counting the reads mapped to certain genomic features, such as
miRNA genes.
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the arguments that read counts follow multinomial distributions and that they rep-
resent discrete data making the use of discrete distributions useful [355-357]. Since
Poisson distributions have only a single parameter describing their means and vari-
ances, they cannot handle overdispersion (i.e., greater variance than mean) in data
very well, which occurs often in biological count data [356, 358]. As a consequence,
more elaborate negative binomial models were used, which are capable of modeling
mean and variance with two independent parameters, making them less restrictive
and more accurate than Poisson-based models [356, 358, 359]. Current state-of-
the-art differential expression tools mainly utilize negative binomial distributions to
model the noise of count data and calculate significant differences in gene expres-
sion [360].

However, within this section we show that for the special case of small RNA-Seq
data (sequencing of the expressed miRNA instead of mRNA transcripts) the model
of a negative binomial distribution can be replaced by a gamma distribution. We
present a new statistical model to accurately infer expression differences within
miRNA sequencing data and compare it to other state-of-the-art approaches. We
can demonstrate the benefit of tailoring specialized statistical models instead of
using more general models for specific classes of genes, such as miRNAs.

Small RNA-Seq data are more likely to follow gamma than negative bi-
nomial distribution

In 2016, Qin, Tuschl and Singer [357] suggested that miRNA sequencing data can
be better modeled by gamma than Poisson or negative binomial distributions. They
argue that most of the stochastic noise in the count data originates from the am-
plification step of the RNA molecules during the library preparation, rather than
random natural variation (step three in Figure 4.14). The amplification step is per-
formed by polymerase chain reaction (PCR) [95] to ensure sufficient DNA molecule
abundance for the sequencing step. During each cycle of the PCR every molecule has
a certain chance to be copied, which means that after multiple cycles the abundance
of each molecule can develop into various different directions, depending on how
often it was selected for duplication during the whole PCR [361]. This amplification
step resembles a exponential distribution and since single genes are represented by
multiple molecules, their total count after PCR is a mixture of exponentially dis-
tributed molecule counts, which can be modeled by a gamma distribution [357, 362].
However, the same argumentation cannot be used for normal RNA-Seq data, con-
taining reads from mRNA transcripts or other longer molecules. Whereas in a small
RNA-Seq library each sequence read usually represents exactly one transcript, sev-
eral reads can originate from a single RNA transcript in a mRNA RNA-Seq library
due to read size limitations (see Chapter 1.2.1). This results into a bias of selecting
reads from longer transcripts more frequently during each PCR cycle, because they
occur more often than reads from shorter transcripts with a similar abundance. This
results in a multinomial distribution of read counts for every gene [356]

Qin et al. could show that their assumption holds true for small RNA-Seq data,
based on a small set of technical replicates of miRNA sequencing data [357]. A
technical RNA-Seq library replicate is obtained when the same sample is sequenced
several times, thus, in contrast to biological replicates, that originate from different
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samples of the same condition, cannot reflect natural variation [363]. A certain bias
towards random variations of the technical procedure has to be expected in their
data.
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Figure 4.15: Result of the Kolmogorov-Smirnov test on the miRNA sam-
ples of the JenAge RNA-seq dataset. For every miRNA in all its respective
conditions (species, tissue and age sample) the calculated goodness-of-fit p-Value to
either follow a gamma distribution (green) or negative binomial distribution (red)
was plotted against its log;p mean read count. As it can be observed, most miRNAs
tend to follow a gamma distribution (for details see SData 1).

To validate the observation of Qin et al. we used the Kolmogorov-Smirnov test
(KS-test) on the whole JenAge small RNA-Seq dataset, consisting of count data
from over 4,100 miRNA genes of around 50 different conditions with four to eight
biological replicates each (see Figure 2.2). The KS-test is a non-parametric test to
compare a given sample (here count values belonging to biological replicates of single
miRNA genes from single conditions) to a reference probability distribution [364]. It
expresses the goodness-of-fit of the given sample to the reference distribution, i.e.,
the likelihood that the sample originates from a population following the reference
probability, in form of a p-Value. We calculated for every miRNA and for each of
its conditions the goodness-of-fit p-Value under the assumption of either a negative
binomial or a gamma distribution (see Figure 4.15). We observed that in almost all
cases the examined miRNAs are more likely to follow a gamma distribution than
a negative binomial one, independent of their expression strength. This provided
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more empirical evidence that the variance in miRNA count data is dominated by
the exponential stochasticity of the PCR amplification step during RNA-Seq library
preparation. Thus, making gamma distributions useful for modeling miRNA count
expression data.

Gene expression strength distributions differ between small and total
RNA-Seq data

In addition to examining the read count distributions, we studied the overall dis-
tributions of gene expression strengths of both the JenAge miRNA and mRNA
sequencing datasets (see Figure 2.1 and Figure 2.2). To do so, we counted the num-
ber of genes to which a certain number of reads were assigned in steps of ten for all
RNA-Seq libraries (see Figure 4.16). Interestingly, we observed the same negative
exponential distribution of relative abundances of gene expression strengths in all
small RNA-Seq libraries. At least 70 % of miRNA genes had a read count of less than
10, independent of the respective sample, indicating that the majority of miRNA
genes is inactive during any given sampling point. The relative abundances and its
variance further decreased with an increase in expression strength, often resulting in
just a few miRNA genes whose assigned reads dominated the respective library (an
observation that we have already reported in Section 4.3.3). This predictive charac-
teristic of small RNA-Seq data sets was used later to improve the statistical gamma
distribution based model of miRNA counts. For the investigated mRNA RNA-Seq
libraries we observed a different behavior. The relative abundances showed a greater
variance within each gene expression strength category compared with the miRNA
sequencing data, resembling a bimodal instead of an unimodal distribution.
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Figure 4.16: Relative abundances of gene expression strengths of miRNA
and mRNA sequencing datasets. Whereas the abundance of miRNA gene ex-
pression strengths follows a negative exponential distribution, mRNA genes show a
greater variance within certain expression strength categories (see SData 2).
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4.4.2 Using gamma distributions to model small RNA-Seq
expression data

In the following subsection, we describe a new statistical model based on gamma

distributions to infer significant differences in the expression of miRNA genes be-

tween different conditions. The terms gene read count and gene expression strength
are used synonymously.

Model description

First, we assume that for every sample y the amount of reads assigned to a any
gene z can be modeled by a gamma distributed random variable G,:

Gmy ~ F(Pmya Bmy)a

with a shape parameter P,, > 0 and a scale paramter B,, > 0, resulting in non-
negative read count values. Thus, the respective probability density function f,,
is:

Bl
Ty Pyy—1 —Byyz
. Y . Ty >0
fl’y(z) — F(Pmy) Z € ) A 7
0, 2z <0

where I'( P, ) is the gamma function, evaluated at P,,,. Figure 4.17 displays examples
of probability density plots of gamma distributions.
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Figure 4.17: Density of gamma distributions. Shown are probability density
function (PDF) plots of gamma dsitributions for different values of shape P and
scale B.
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The mean p,, and variance o, of the random variable G, are defined as:

oy = Py - By
Oy = Puy - B2,

Based on this, we further assume that the estimated expression strength E,, of
gene x in sample y is the product of our modeled gene count and a library-specific
size factor Sy:

Eyy = Guy - Sy

When fitting our model to data, we expect this data to be a x x y count matrix,
where x = 1...n is the number of genes, y = 1...m the number of samples and
Jzy the count value of gene x in sample y. Library size factors are necessary to
normalize RNA-Seq libraries in respect to their sequencing depths, or in other words,
to equalize the total amount of reads between sequencing libraries that are compared.
The calculation of the size factor estimators §, is based on all libraries y = 1...m
that are part of a comparison and is performed similarly as suggested by [356]:

~ . 9z
5, = median Y

z (H:i1 gm’)l/m

Subsequently, we can estimate the average expression strength e, .(4) of any gene z
of some condition A with ¢(A) being all sampled read libraries of condition A and
lc(A)| =r <m:

_ D _yee(4) Cay N D _yec(a) Yoy * Sy
€x.c(A) = , = r .

Since we do not know the shape and rate paramters P,, and B,, of our gene expres-
sion strengths E,,, we have to estimate them based on the given data. Fortunately,
there exist good maximum-likelihood estimators for both parameters (within 1.5 %

of the correct value) P,, and B,,, that can be calculated efficiently [365]:

. 3—t++/(t—3)%+ 24t
P, ~ + VI )+

xy 12t
with
t — ln (ZyEC(A) gxy) o <Zy€C(A) ln(gxy)>
r r

and

~ 1

By = 2 . Gay-

"y yEc(A)
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Building gene expression clusters

With the above introduced random variables E and G as well as both parameter
estimators P and B it is possible to model the gene expression strength of any
given miRNA gene from small RNA-Seq data. However, the performances of the
shape and scale estimators strongly depend on the available amount of data, i.e., the
number of independently measured count values for every gene in each condltlon
The higher the amount of biological replicates, the better perform P and B. As
previously mentioned in Section 4.4.1, the number of biological replicates per inves-
tigated condition for RNA-Seq experiments is typically limited, seldom exceeding
five or more sequenced samples. To overcome this obstacle, we assume that genes
sharing a similar mean expression strength also share a similar dispersion. With this
assumption it is possible to cluster genes based on their mean expression strengths
and use the available count data of all genes within each cluster respectively to
estimate their common shape and scale parameters P and B (see Figure 4.18).
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Figure 4.18: Expression strength cluster approach to pool small RNA-Seq
data. Any gene z spans an expression range interval R, based on its count mean
and standard deviation. All other genes w whose count means are within the interval
R, are assigned to the expression cluster C(z) of gene x. Every expression cluster
contains at least its spanning gene.

For every gene = we calculate its expression strength mean p, as the empirical mean
read count of all replicates of gene x. And we define the expression range of every
gene x as the interval R,:

R, = [t — aOy, piy + a0y,

with o, being the empirical standard deviation of the gene expression of gene x and
« an additional scaling factor. At the moment, a can be assumed to be a strictly
positive value and its precise function will be discussed later. Again, for every
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gene xr we can now determine its expression strength cluster C(z), which includes
all genes w whose expression mean i, lies within R,. This approach is performed
for each condition and their respective replicates separately, allowing to estimate P,
and B, on the aggregated counts in C(z).

Outlier detection and expression cluster correction

Outliers (i.e., singular extreme values often deriving from experimental errors)
within count data represent sources of potentially great bias and have to be elimi-
nated. But they are hard to identify if only few replicates are available, thus, the
aggregation of count values for each gene based on the introduced expression clusters
can also help in that matter. However, because expression clusters are calculated
using mean and standard deviation of gene counts, they can be strongly affected
by outliers themselves. In the presence of one or more outlier values in a given
gene z its associated expression range R, is greater than it should be, leading to
an inclusion of genes w into the expression cluster C'(z) that do not fit to the true
mean 1,. Accordingly, the subsequent estimation of the shape and scale parameters
P, and B, can be strongly biased towards the outlier values. We can still use the
information provided by the expression clusters to detect the presence of outliers
within the examined dataset. For that, we developed two criteria that mark gene
clusters which are potentially affected by outliers:

1. Single count values of gene x are outside the expression interval spanned by
its expression cluster C'(x).

2. The number of genes w assigned to expression cluster C'(x) is higher than
would be expected considering its mean value pic ().

Similarly to the gene expression range I?,, the interval R¢(,) spanned by an expres-
sion cluster is defined by its mean and standard deviation, but without utilizing an
additional scaling parameter a.

If only single outliers are present within an expression cluster C'(z) its dispersion
is not altered strongly, making it possible to detect them easily (criteria 1). But
if multiple outliers are present within C'(x), they might have overly increased the
cluster expression interval R¢(,) by inclusion of too many not fitting genes and are
not evident in respect to criteria 1. However, because we know that the abundance
of gene expression strengths in small RNA-Seq datasets strictly follow a negative
exponential distribution (see Section 4.4.1), we can identify expression clusters that
include more genes than would be expected from their mean (criteria 2). Outliers
are then removed by the double median absolute deviation (MAD) approach, which
is is an extension of the normal MAD approach for skewed distributions [366]. After
outliers are removed the gene expression clusters can be corrected and are recalcu-
lated for every gene. If a single gene x has too few count values left in any of the
investigated conditions, no meaningful assertion can be made about its mean pu,
and it should be removed entirely from the differential expression analysis. How-
ever, which exact threshold should be used for an exclusion is highly debatable and
should always be chosen depending on the general experimental setup. We would
recommend to have at least four valid count values per condition for any gene x.
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Hypothesis testing

After the outlier detection and the gene expression cluster correction we suppose that
we have good estimators P, and B, for every gene x for two biological conditions I
and II. That means we can now model every gene z as a gamma distributed random
variable, depending on its condition: T'(P,,, B,,) and T'(P,,,, B,,,). To evaluate if
any gene zx is differentially expressed, i.e., the alternative hypothesis p,, # p,, is
more likely than the null hypothesis i, = p,,,, we can calculate the probability
that the value yi,, was drawn from the distribution spanned by T'(P,,,, B,,,) (and
vice versa). In others words, we calculate the likelihood of drawing the mean count
value of gene x from one condition given the approximated count distribution for
the same gene under the second condition. To obtain the respective p-Value we

perform three simple steps (see Figure 4.19):

1. Standardization of the gamma distribution spanned by F(pxl, B, ,) by normal-
) S B
izing the scale parameter B,, with o,, to obtain I'(P,,, —).
xr

2. Shift of the standardized gamma distribution by 3 to obtain T'( xl,ﬂ, —),

Oz
because negative values are not well defined for gamma distributions (see Sec-
tion 4.4.2, Model description).

3. Calculation of the p-Value by:

Z:EIIJFB N BZ‘]
p-Value = 1 — U(Py,, B8, —)d2,

_ZmII""B 0-‘7:1

with the z-Values being

|M$II — Mz |

y oy
o Oy ( V Ny )™t

being the number of count values of gene x under condition II.

and N,,,
There is one exception to this procedure of hypothesis testing. If any given gene z has
too few count values in its corresponding expression cluster C'(x) to calculate good
estimators P, and B, for its shape and scale parameter, a different approach is used
to calculate the respective p-Value. Due to the negative exponential distribution of
the expressions strengths in small RNA-Seq data sets, only few miRNA genes with
exceptional strong expression are affected by that. As suggest by Qin et al. [357],
a cubic root transformation is applied to the count values of the concerning gene
x, but instead of a normal t-Test to calculate the p-Value we use Welsch’s t-Test,
because we cannot assume an equal variance in the count values of both biological
conditions or equal sample sizes [367]. Again, defining how many count values are
sufficient to estimate IADI and Bx is debatable, but we recommend to have at least
20 valid count values for any gene x.
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Figure 4.19: Hypothesis testing using gamma distributions. To estimate the
probability of a significant difference between the measured mean count values of
any gene x between two biological conditions, we calculate the p-Value that the null
hypothesis is true in three steps: standardization followed by a positive shift of the

gamma, distribution to obtain F(pml, o f”

), and subsequent calculation of the size
rr
of the area under the approximate gamma distribution determined by the respective

z-Values.

4.4.3 Comparison to existing negative binomial models

To show that the new gamma distribution based model can compete with existing
negative binomial models, we compared it against two state-of-the-art differential
expression tools DESeq2 [128] and edgeR [355]. To that end, we generated a several
comprehensive artificial datasets of small RNA-Seq count data to have a direct
comparison of the tools’ true positive and false positive rates. We also compared
their general performances on the JenAge small RNA sequencing data.

Implementation of the gamma model

We implemented the statistical model described in Section 4.4.2 in a command line
tool written in Python named MeRDE, which is an acronym for microRNA differential
exrpression analysis. MeRDE has two main functions and can therefore be started in
two different modes: correct counting of miRNA-derived reads from small RNA-Seq
libraries (count mode) and estimation of differentially expressed miRNAs between
two biological conditions (analyze mode). As we have learned in Section 4.1, a
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common miRNA gene encodes for two different mature miRNA molecules with po-
tentially differing mRNA targets, regulating varying biological functions. Thus,
both mature sites of a miRNA gene have to be treated separately to not only ensure
correct counting of the associated reads but also to estimate differential expression
correctly (see Figure 4.20). We have already shown that this is relevant for real
small RNA-Seq data (see Section 4.3.3, mature miRNA switches).

CONDITION I

of

5’ MiRNA gene A 3 5 miRNA gene B

CONDITION IT

5’ MiRNA gene A 3 5’ miRNA gene B 3

Figure 4.20: Examples of potential miRNA read counting mistakes. In
this simplified example we have two miRNA genes A and B (blue lines) and corre-
sponding mapped reads (red lines) and want to compare their expression between
two different conditions I and II. In both cases we would not detect a significant
difference in the total abundance of reads mapped to gene A or gene B between
both conditions. However, when considering the mapped reads for the 5p and 3p
sites individually, a mature miRNA switch can be detected for gene A as well as a
significantly altered expression of the 3p mature miRNA of gene B.

Using the count mode, MeRDE generates a simple count table in csv format for a
given gff annotation file and any given number of small RNA-Seq datasets in the
standard sam or bam file format. MeRDE can automatically split the annotation of
any miRNA gene if no mature sites are specified, to ensure the correct counting
of reads for the individual mature miRNAs. Additional user adjustable parameters
control the size with which a read must overlap an annotated miRNA to be counted,
if only uniquely mapped reads should be considered and if the sequencing protocol
was strand-specific, making it necessary to also consider the orientation of every
mapped read. The full list of available parameters with a detailed description can
be obtained using the command MeRDE.py count --help.

To start the analyze mode of MeRDE, one or several counting files in csv format are
required, which contain all miRNA genes and respective count values that should
be tested for differential expression. If the count values are not normalized, MeRDE
can do so, by calculating the appropriated size factors as described in Section 4.4.2.
The user can decide to ignore lowly expressed genes by setting a minimum amount
of reads that have to be mapped to any gene in both examined biological conditions.
By default, mature miRNAs with less than ten read counts in both conditions (after
normalization) are considered not expressed and excluded from the subsequent anal-
ysis. Additionally, the user can define if identified outlier values should be kept or
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removed from the dataset and what the minimal amount of replicates per gene and
condition should be to perform the differential expression analysis. The full list of
available parameters with detailed description can be obtained using the command
MeRDE.py analyze --help.

Artificial datasets

To directly compare the performances of MeRDE, DESeq2 and edgeR we created sev-
eral artificial datasets, mimicking the characteristics of count files derived from real
small RNA-Seq libraries. Each of these artificial datasets included 1,000 simulated
miRNA genes with randomly associated count values and fulfilled the following cri-
teria:

e For each gene x a set of 'replicated’ count values was drawn from a gamma
distribution I',, for two simulated differing conditions.

e Each of these sets consisted of three up to nine count values, with all simulated
genes having the same amount of 'replicates’ within one dataset.

e The mean pu, of the gamma distribution I', of each gene z was drawn from
a negative exponential function, describing the commonly observed distribu-
tion of expression strengths in small RNA-Seq datasets (see Section 4.4.1 and
Figure 4.16).

e The scale parameter (i.e., the dispersion) of the gamma distribution I', of each
gene x was set to be either 5, 10 or 20.

e For each gene x every single count value drawn had a chance of 2% to be an
outlier and was either multiplied or divided by a uniformly distributed random
float number between 5.0 and 10.0.

e Every gene x had a chance of 5% to be differentially expressed, meaning that
all simulated count values of one condition were multiplied by a uniformly
distributed random float number in the range of 1.5 and 3.0.

For each combination of replicate number and gamma scale parameter 1,000 datasets
were generated, totaling in 21,000 simulated small RNA-Seq counting files. All three
tools were used to identify the differentially expressed genes and we measured their
respective mean true positive and false positive rates (see Figure 4.21 left side). We
observed a general improvement in the true positive rates of all three tools with an
increasing number of replicates per condition, which is expected since all employed
statistical models can better estimate their model parameters with more given data.
Also not unexpected was a common drop in the respective true positive rates with
an increased gamma scale. The higher the gamma scale, the more dispersed were
the count values of each gene within a single condition, making it hard to distinguish
significant fold changes in the mean gene expression from 'natural’ expression vari-
ation. With a minimum of four or more replicates per condition MeRDE was able to
equal or outperform both other tools in terms of identifying differentially expressed
genes.
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However, to make a fair comparison between the three tools we generated a second
collection of 21,000 simulated small RNA-Seq counting files, this time drawing count
values from a negative binomial distribution with the respective dispersion parame-
ter varying between 0.5, 0.3 and 0.1 (see Figure 4.21 right side). Still, MeRDE could
equal and sometimes even outperform the true positive rates of DESeq2 and edgeR
five or more replicates per condition. Based on our comprehensive artificial datasets
we could show that our gamma distribution based statistical model can compete
with state-of-the-art tools on miRNA sequencing data sets.

Real datasets

It is difficult to accurately benchmark the performances of differential gene expres-
sion tools, because an agreed-upon test standard dataset based on real RNA-Seq
data is still missing. Nevertheless, we wanted to estimate the performance of MeRDE
to detect differentially expressed genes in real datasets in comparison to DESeq?2
and edgeR. Therefore, we employed all three tools to detect differentially expressed
miRNA genes (DEMs) within the JenAge small RNA-Seq dataset by performing
pairwise comparisons between all ages within each species and its respective tissue
samples (see Figure 2.2). In total, 276 comparisons were performed which resulted
in 9,980 individually identified differentially expression events (see SData 3). When
overlapping the obtained results from the three tools, we observed that only about
889 DEMs were commonly identified by all of them, which is less than 9% of the
total number of estimated DEMS (see Figure 4.22). Interestingly, there were no
DEMs exclusively determined by edgeR, meaning that it did not contribute to the
total number of 9,980 DEMs. In general, edgeR was more conservative compared
to the other two tools, having estimate only 2,794 DEMs. This is an observation
that was already made before and is confirmed with our findings [368]. In contrast,
MeRDE and DESeq2 both identified 7,126 and 5,958 DEMs respectively, of which 3,303
DEMs were shared.

When exemplary investigating some of the miRNAs that differed in their differen-
tial expression status between DESeq2 and MeRDE more closely, we observed that in
many of these cases the negative binomial model of DESeq2 clearly over- or underes-
timated the expression variance of those genes and our model was more in line with
the empirical evidence (see Figure 4.23). However, this was not true for all cases.
We also found some examples were the gamma model of MeRDE seemed to over- or
underestimate expression variances (see SData 4).

In Section 4.5 we will explore the results of the differential expression analyses of
MeRDE on a subset of the JenAge miRNA sequencing data in more detail.

Further improvements of the gamma model and MeRDE

The statistical model underlying MeRDE as well as certain implementation details
are still work in progress and will be improved in the near future. For the model we
plan to optimize the calculation for the gene’s expression clusters. At the moment,
the introduced parameter « that acts as a scaling factor for the expression range R
is a implemented as a manually adjustable constant, which is the same for all genes
in one analysis. However, the idea behind this scaling factor is to automatically
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Figure 4.21: Performance comparison of MeRDE, DESeq2 and edgeR on
simulated miRNA sequencing data. On the left side the comparison results
of the gamma distribution based artificial datasets and on the right side the com-
parison results of the negative binomial distribution based artificial datasets are
displayed. The mean rate of correctly identified differentially expressed genes are
plotted against the amount of replicated count values per simulated biological con-
dition. With a minimum of four to six replicates per condition MeRDE was able to
equal or outperform both other tools. All three tools showed mean false positive
rates of less than 0.003 during any test condition.
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DESeq?2 MeRDE

edgeR

Figure 4.22: Result comparison of the differential gene expression analyses
performed on the JenAge small RNA-Seq datasets. In sum, MeRDE, DESeq2
and edgeR identified 9980 DEMs in the small RNA expression libraries of the JenAge
dataset. With only 889 common DEMs, the overlap of all three compared tools
was relatively low, which was mostly due to the conservative estimations of edgeR.
Whereas about 31.1 % of all DEMs were commonly identified by MeRDE and DESeq?2,
both tools still had a relative large share of exclusively determined DEMs.

adjust it based on the observed relative variance of every gene, individually. This
individual scaling will help to tailor the genes’ expression range more specifically
to the observed relationship between their mean read count and standard devia-
tion, which is crucial to calculate the correct expression clusters by including only
genes that display more similar expression characteristics. Consequently, with the
improvement of the gene expression cluster calculation we enhance the estimations
of the respective genes’ gamma distributions and therefore overall accuracy of dif-
ferential expression identification.

Nevertheless, we could show on the basis of artificial and real small RNA-Seq
datasets that the current gamma distribution model of MeRDE is capable of iden-
tifying differentially expressed miRNAs with high precision (i.e., displaying a high
true positive rate while maintaining a low false positive rate). Furthermore, we
could prove that gamma distributed noise in small RNA-Seq data due to the exper-
imental PCR amplification prevails over other potential sources of natural variance
(see Figure 4.15). Moreover, we could contribute to further understanding of small
RNA sequencing stochasticity by showing that the expression strength abundance
distribution of miRNAs strictly follows a negative exponential distribution (see Fig-
ure 4.16).

Besides improvements in our statistical model, we also work on a refined and more
easy-to-use version of MeRDE itself, by setting up a web service where users just
have to upload their read or counting data together with a simple description of the
experimental design. Alongside the current text-based result file, MeRDE is able to
generate several diagnostic plots (such as, scatter, volcano, t-SNE, relative variance,
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Figure 4.23: Examples of miRNAs with differing differential expression
status between MeRDE and DESeq2. Boxplots by different time points from
four miRNAs that have a MeRDE-based p-Value of less than 0.05 and a DESeq2-based
p-Value of more than 0.05 or vice versa. For more examples, see SData 4.

expression boxplots and p-Value distribution plots) that help in understanding and
interpreting the investigated small RNA-Seq data. However, most of these visu-
alization functions are not finally implemented yet and we work on providing an
elaborate html-based output that summarizes the results and diagnostics of each
analysis.
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4.5 The role of miRNAs during aging: A compar-
ison between different species

This chapter is based on the publication manuscript “MicroRNAs in Aging: poten-

tially conserved key regulators of aging”.’

Data used and analyses performed in this section
Age comparison setup

The age comparisons were performed according to Figure 4.24. For each of the four
species Homo sapiens, Mus musculus, Danio rerio and Nothobranchius furzeri we
investigated four time points (young mature, mature, aged, old-age) in up to four
tissues (blood, brain, liver, skin). All differentially expressed miRNA (DEM) results
can be found at SData 1.

A ages
young d
species tissues mature mature = age No. samples
H. sapiens blogd! 24-29 4550 | 60-65 - 60
skin
R [—— 09 15 24 - 60
skin
. brain
D. rerio - 12 24 36 40
skin
N. furzeri - brgln 12 20 27 56
liver skin
time point comparisons
early aging longevity
~/
YOI mature | aged -
mature
\\ "
late aging

Figure 4.24: Overview of species, tissues, time points and comparisons of
the utilized small RNA-Seq libraries. (A) Samples of Homo sapiens, Mus
musculus, Danio rerio and Nothobranchius furzeri were taken from up to three
different tissues (blood, brain, liver, skin) at four different time points. The sampled
time points can be assigned to different ages: young mature, mature, aged and old-
age. (B) To explore the changes of miRNA expression, we studied three expression
comparisons: early aging (young mature and mature vs. aged), late aging (young
mature and mature vs. old-age), and longevity (aged vs. old-age). All comparisons
were performed individually for each of the studied species and their tissues.

5The complete supplemental material is available at https://osf.io/u86cn/
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Differential expression analysis

Mapping of RNA-Seq libraries was performed as described in Section 2.2. Read
counting and estimation of differentially expressed miRNAs was carried out by
MeRDE with the following parameter setup: -1 10 -s 20 -m 4 -sigma 2 -n True
-e remove. Parameter descriptions can be found at SData 2.

miRINA size variation and sequence modification analyses

We measured the normalized length of each mapped mature miRNA transcript as
the difference in its length with respect to the annotated reference sequence for each
sampled age, tissue and species, individually. Size variations between the ages of
each tissue and species were compared with the Kruskal-Wallis H-test.

Similarly, single base exchanges of the mapped transcripts sequences compared with
the reference genome sequence were counted for each sampled age, tissue and species,
individually. We distinguished the sequence modification events based on the exact
type of base exchange (e.g., adenosine to cytosine, thymine to guanine, etc.) and
compared the relative frequencies of these events between the sampled ages of each
tissue and species, using the Kruskal-Wallis H-test.
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4.5.1 miRNAs as potential genetic aging factors

We already know that miRNAs are crucial for the regulation of almost all cell func-
tions (see Section 4.1), including aging-related processes, such as senescence (per-
manent cell cycle arrest), apoptosis (induced cell death), inflammatory response or
various other stress responses [369, 370]. Thus, an implicit connection between aging
and miRNA-mediated regulation has to exist. However, to which extend miRNA
regulatory networks or even single miRNAs influence the progression of aging pro-
cesses is still subject of recent research. In 2005, lin-4 was discovered to be the
first miRNA to explicitly modulate life-span of the nematode Caenorhabditis ele-
gans [371]. Later on, more miRNAs were observed to be up- or downregulated
with aging in different invertebrates, but also in certain murin tissues or human cell
lines [369]. Moreover, the change of miRNA expression could be correlated with the
formation or progression of different cancers and other age-associated diseases, such
as, neurodegenerative diseases, cardiovascular diseases, diabetes or the phenomenon
of inflammaging (see Chapter 5) [370, 372, 373]. Still, due to the already complex
nature of aging we are just beginning to understand the precise role of miRNA-
mediated control in the interplay between cellular homeostasis and stress response
functions. Since many miRNAs are expressed in a tissue-specific manner or are
even species-specific, not much information is available if general and evolutionar-
ily conserved miRNA regulators of aging exist. In mammals, a prominent example
of such conserved aging-associated miRNAs are members of the mir-17/92 cluster,
which were first discovered to be oncogenic miRNAs [374]. It was later suggested
that these miRNAs regulate not only the formation of cancer but also modulate or-
ganismal life-span, especially miR-19 and miR-92 [374]. The identification of more
such conserved miRNA-mediated regulation of aging processes would not only help
to understand aging in general, but could help to establish new diagnostic markers
of age-associated diseases and potential therapeutic targets [373].

In this section, we examined the small RNA-Seq data from the JenAge dataset
to identify evolutionarily conserved miRNAs, that change their expression in an
age-related manner. Furthermore, we investigated if and what kind of sequence
modifications of mature miRNAs occur during aging. The results presented within
this section are part of a bigger study, which involves several biological experiments
in the two fish species Danio rerio and Nothobranchius furzeri to determine and
validate the predicted expression and age-dependent change of certain miRNAs.
However, because some of these experiments are still in progress, we will present
only our bioinformatical predictions, that serve as the basis of the ongoing and
future experiments.

4.5.2 Overall expression and modification of miRNAs ap-
pears to be less affected by aging

The abundance of active miRNAs is tissue- but not age-dependent

As a starting point for our analyses, we examined the abundance of actively ex-
pressed miRNA genes during each time point within the different tissues of all four
investigated species (see Figure 4.25). Displaying almost only half as much active
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miRNAs, the blood samples of Homo sapiens and Mus musculus showed a great
difference compared with their respective other tissues. In contrast, we observed
only little differences in the number of active miRNAs in Danio rerio and Notho-
branchius furzeri irrespective of the tissue type. Also, there was no significant age-
dependent change in the abundance of active miRNAs within the individual tissues
of any of the investigated species, indicating that at the first glance aging appears
to have no pronounced effect on a general decrease or increase in the number of ac-
tivated miRNA regulatory networks. This observation does not imply that there is
no aging-related effect in the expressional activity of certain miRNAs, but suggests
that the regulatory level of miRNAs is constantly maintained during life time.
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Figure 4.25: Abundance of actively expressed miRINA genes. Whereas the
number of active miRNAs appears to be unaffected by the sampled age, the tissue
type has an observable influence, which is more pronounced in both investigated
mammals than the two fishes (YM —young mature, M —mature, A —aged, OA —old-

age).

Expression patterns of miRNAs can distinguish tissues and species, but
not age

To evaluate if we can discriminate the sampled ages based on the expression pat-
terns of evolutionarily conserved miRNAs, we performed a t-distributed stochastic
neighbor embedding (t-SNE) on the read count data of 85 miRNAs that are common
to all four investigated species (see Figure 4.26 and SData 3). Whereas all samples
formed distinct clusters based on their tissue type and species, we could not observe
a clear separation of the different time points within these clusters. In general, the
expression of the evolutionarily conserved miRNAs showed to be less variant in the
brain samples of Mus musculus, Danio rerio and Nothobranchius furzeri compared
with all other examined tissues. When applying the t-SNE approach on each species
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individually, considering all respective miRNA genes that are expressed during at
least one sampled age, we still observe tissue-specific clusters that cannot be further
separated into distinct age-specific subclusters (see SData 4). This observation sug-
gests that there seem to be no specific miRNAs in charge of a conserved regulation
of age-related processes.
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Figure 4.26: RN A-Seq sample clustering based on the expression patterns
of conserved miRNAs. All small RNA-Seq libraries were clustered by the t-SNE
approach based on the expression patterns of 8 miRNA genes, that are evolution-
arily conserved in all four investigated species. All sampled tissues form distinctive
species-specific and non-overlapping clusters. A further separation of the individual
samples in these clusters based on the age could not be observed.
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Modifications of miRNNA transcripts during their maturation appears no
to be age-related

It is estimated that in human at least 16 % of all miRNA transcripts are affected
by sequence modification processes during their maturation process within the nu-
cleus [375]. Those modifications include RNA editing, mostly carried out by adeno-
sine deaminase enzymes, catalyzing adenosin to inosin transitions [376]. RNA edit-
ing of miRNA transcripts can prevent further maturation to functional miRNA
molecules or alter target specificity by changing their seed region, i.e., the mRNA
recognition and binding site [377]. But also shortening of mature miRNA molecules
is a common modification used to alter miRNA stability and consequently regulate
their activity [377].

We investigated if we can identify an age-related change in the size or modification
of mature miRNAs in any of the sampled tissues of the four examined species. How-
ever, whereas we could observe that the mean length of mature miRNA transcripts
was one base shorter than their reference annotation in all samples, no significant
shortening with age was identified (see Figure 4.27). The variation in miRNA length
was highest in human compared with the other three species, but also no significant
differences in size variance was found within or between each species with respect
to the sampled ages.

When examining RNA editing events, we found that the majority of base exchanges
occur at the first position or last two positions of the miRNA transcripts in respect
to their 5 site, independent of species and tissue (see SData 5). Interestingly, taking
all investigated samples into account, all four bases were exchanged with about the
same frequency, whereas changes to adenine and thymine were observed to happen
twice as often as to cytosine or guanine (see SData 6). Base exchanges at the border
sites of miRNAs do most likely not change their mRNA target specificity, because
their seed regions are located more towards the middle of the mature transcripts.
Still, adenosine and thymine form less hydrogen bonds, making the miRNA-mRNA
pairing more unstable and as a consequence the RNA silencing effect less effective.
These findings indicate that RNA editing of miRNAs more often regulate their inhi-
bition strength than alter their target. However, we could not identify a significant
change in the frequency of specific RNA editing events in dependence of the age of
the sampled tissues. It appears miRNA modification processes are unaffected by

aging.

4.5.3 Differential expression analysis reveals potential miRNA
key regulators of aging

In Section 4.4 we introduced MeRDE, a new tool to estimate differential expression of
miRNAs more accurately, based on a newly developed gamma distribution model.
We have calculated differentially expressed miRNAs (DEMs) of the JenAge small
RNA sequencing data not only to evaluate its performance, but also to identify
miRNA regulators of aging-related processes. We performed three different aging
comparisons (early aging, late aging and longevity comparison) between the sampled
ages of each tissue and respective species, individually.

In total, only few miRNA genes were found to be differentially expressed with age,
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Figure 4.27: Length variations of mature miRINA transcripts during aging.
Whereas the mean length of mature miRNA transcripts was observed to be one base
shorter than their reference annotation in all samples, no significant shortening with
age could be identified (YM—young mature, M —mature, A—aged, OA—old-age).
For details, see SData 5.

with Homo sapiens and Nothobranchius furzeri showing the lowest number of DEMs
(see Figure 4.28). Still, we observed in almost all cases an increase of DEMs with
age. Interestingly, Danio rerio displayed the highest amount of DEMs, while having
the lowest number of known miRNA genes.

Not unexpectedly, we found only few overlapping DEMs between the tissues of the
four investigated species (see SData 7). However, when overlapping all identified
DEMs we found 33 to be shared by two, 13 to be shared by three and one to be
shared by all four species (see Figure 4.29). The latter commonly shared miRNA
is miR-192, an important regulator of the well-studied tumor suppressor p53 [378|.
As a transcription factor, p53 modulates the expression of a wide variety of genes,
controlling biological functions such as senescence or apoptosis [379]. Usually, p53
activation is triggered by severe DNA damage, either resulting in the accumulation
of the cell cycle arrest inducing protein p21 or in the apoptosis pathway activating
proteins Noxa and Puma [379]. In several studies it was shown that miR-192 acti-
vation has strong tumor suppressing effects in different cell types, by enhancing p53
and consequently p21 expression resulting in the formation of senescent rather than
cancerous cells [379-382]. We have already discussed in Chapter 1 (and will extend
this discussion further in Chapter 5) that the accumulation of senescent cells is one
of the main driving factors of aging. This puts miR-192 already in the position of
a potential key regulator of certain aging processes. Moreover, in the presence of
oxidative stress, another major source of aging promoting processes, miR-192 was
found to be highly expressed, inducing cell death and confirming its important role in
further cellular stress responses [383|. But there is even more evidence that suggests
miR-192 to be involved in various age-related processes. Some miRNAs were found
to be bound by high-density lipoproteins and secreted in the bloodstream, were
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Figure 4.28: Number of aging-related differentially expressed miRNAs by
tissue type and species. Only few aging-relate DEMs were observed in the JenAge
small RNA sequencing dataset, especially in the human and killifish samples. Still,
with rising age, the number of DEMs was found to increase, with only few excep-
tions (early —early aging comparison; late —late aging comparison; longe. —longevity
comparison).

they circulate through the body and can function as regulators in distant recipient
cells [384]. One of these circulating miRNAs is miR-192 and it was observed to be
found in increased abundance during aging-related diseases, such as diabetes [385],
degenerative loss of skeletal muscle cells [386] or cancer [384]|. Taken together with
our observation that miR-192 is differentially expressed in many of the sampled tis-
sues (always upregulated with aging, except within the human skin and murin brain
samples) of the four investigated and evolutionarily distinct species, this miRNA
may act as a conserved key regulator of vertebrate aging. In addition, it might serve
as an easy accessible diagnostic marker or even therapeutic target, because it is a
blood circulating miRNA. As discussed in Chapter 1, caloric restriction was found
to have prolonging effects on the life-span of various animals and was for some time
believed to hold the key in understanding aging. Interestingly, it was observed in
mice and rhesus monkeys, that caloric restriction can to some degree reverse the
action of miR-192, drawing yet another connection between caloric restriction and
aging processes on the molecular level [386, 387].

But besides miR-192, many other of the 46 miRNAs that are differentially expressed
during aging in at least two different species are directly implicated with aging or
age-related processes (see Table 4.5). They act in a variety of different biological
functions, thus resembling the heterogenic nature of aging. Besides having identified
miR-~192 as a potential key regulator of a multitude of aging-associated processes,
there appears to be only few evidence of conserved miRNA regulatory networks that
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control aging or at least some aspects of it.

M. musculus D. rerio

H. sapiens N. furzeri

Figure 4.29: Overlapping differentially expressed miRNAs between the
four investigated species. We found only few overlapping DEMs between the
tissues of the four investigated species (see SData 7), but when overlapping all
identified DEMs we found 33 to be shared by two, 13 to be shared by three and
miR-~192 to be shared by all four species.
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Table 4.5: Evolutionary conserved differentially expressed miRNAs with
potential regulatory functions in age-related processes. miRNA names writ-
ten in bold were already reported to act in an aging-related fashion or in age-
associated diseases. Unmarked miRNAs were not directly related to aging yet, but
they display potential regulatory function in aging-related processes.

miRNA name | involved biological function or age-associated disease source
let-7c/f stem cell aging, cell cycle control, apoptosis [369]
miR-29b neurogenerative diseases, senescence, neuronal aging [369]
miR-31 cell cycle control, cell differentiation [388]
miR-34a sirtuin-induced senescence and apoptosis [369]
miR-92a senescence, inflammatory stress response [388]
miR-101a oxidative response, neuronal aging [369]
miR-122 IGF-signaling [389]
miR-125b inflammation, neuronal aging [388]
miR-128 apoptosis, neurogenerative diseases [388]
miR-132 sirtuin-induced inflammation, neurogenerative diseases [389]
miR-133a cardiovascular aging, diabetes [389]
miR-142a senescence, inflammation [388]
miR-146a senescence, inflammation [369]
miR-181a senescence, inflammation [369]
miR-182 apoptosis, IGF-signaling [369]
miR-200a/b stem cell aging [369]
miR-206 neurogenerative diseases, neuronal aging [389]
miR-216a vascular aging, senescence [369]
miR-375 IGF-signaling [389]
miR-543 sirtuin-controlled stem cell aging (390, 391]
miR-22 senescence, cardiovascular diseases (392, 393]
miR-96 apoptosis, cell cycle control [394]
miR-129 apoptosis, cell cycle control (395, 396]
miR-184 stem cell maintenance [397]
miR-190a diabetes [398]
miR-203a/b stem cell maintenance [399]
miR-499 apoptosis, cardiac diseases [400]
miR-731 senescence, apoptosis, inflammation [401]
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Chapter 5

Senescence and Inflammaging —
Causes or Consequences of Aging?

This chapter is based on the publication “Conserved Aging-related Signatures of

Senescence and Inflammation in different Tissues and Species”.!

Data used and analyses performed in this chapter
Age comparison setup

The age comparisons were performed according to Figure 5.1. For each of the four
species Homo sapiens, Mus musculus, Danio rerio and Nothobranchius furzeri we
investigated three time points (mature, aged, old-age) in up to four tissues (blood,
brain, liver, skin). All differentially expressed gene (DEG) results can be found at
SData 1.

Collection of genes of interest and t-SNE clustering

An initial list of 769 genes relevant in the context of senescence and inflammaging
was compiled from a detailed literature search (see SData 2). From those 769 genes,
we removed all genes that were either missing an ortholog in any of the four species
or were not differentially expressed (FDR adjusted p-value < 0.05) at least once in
any species and tissue, ending with the final list of 464 genes (see SData 3).

The measured expression of these 464 genes was used to cluster the analyzed RNA-
Seq samples using the t-SNE algorithm [402] (see Figure 5.2).

Gene expression coefficient of variation analysis

To estimate the general gene expression variation among the different time points of
each species and tissue, we calculated the coefficient of variation for every expressed
gene (i.e., a TPM value greater than 1) as the ratio of its standard deviation to
its mean. The significance of the variation differences among time points was de-
termined using the two-sided t-test. We repeated this analysis using only the 464
genes of interest (for details, see SData 4).

!The complete supplemental material is available at https://osf.io/kzq5y/
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ages and comparisons
late aging

early aging longevity

species tissues mature aged old-age No. samples

H sopiens [ 2429  60-65 | 75-80 years 46
skin

M. musculus b,IOOd br§1n 09 24 30 months 69
liver skin

D. rerio . bra}in 12 36 42 months 45
liver skin

N. furzeri - br§1n 12 27 39 weeks 56
liver skin

Figure 5.1: Overview of the analyzed high-throughput transcriptomic data.
For each of the four investigated species, up to four different tissues were sampled
at three different ages: one mature (M) time point, one aged (A) time point and
one old-aged (OA) time point. Three different comparisons were made to reveal
significant differences in expression of genes during early aging (M vs. A), late aging

(M vs. OA) and longevity (O vs. OA).

Gene function annotation and expression pattern analysis

The exact biological functions of our preselected gene set of interest were obtained
from the functional annotation database David (version 6.8) [403] (see SData 5).
To identify common signatures of senescence- or inflammation-related processes, we
filtered for genes that were differentially expressed at least once within one of the age
comparisons and showed the same direction of up- or downregulation by a minimum
threshold of 10 % in every other age comparison. This rather low effect-size threshold
can be justified, because it was previously shown that expression changes related to
aging tend to be more subtle [404|. This process was conducted for every species
and tissue individually. Based on this gene subset, we further searched for common
expression patterns of single genes among the different tissues and species. When
searching for tissue-specific signatures, we applied the same filtering strategy but
raised the minimum threshold of expression changes to 25 %.
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5.1 How two protective systems slowly fail with
age

Because aging is incompletely understood, a decades-old and still ongoing debate
exists on the true source of aging, giving rise to a variety of competing theories (see
Chapter 1.1.2). Senescence and inflammatory processes are two of the most common
themes within these discussions of the molecular driving forces of aging. Cellular
senescence is a state in which permanent replication is halted, and thus cells are
unable to further proliferate, and their overall function is strongly diminished [50].
Senescence is meant to be a protective mechanism, stopping further proliferation if
cells are on the verge to turn into malignant tumor cell due to severe DNA dam-
age, for example because of telomere shortening. During an organism’s lifetime,
most cells continuously undergo proliferation and cell division and reach the state of
senescence at their own pace, when their telomeres have reach a certain shortening
threshold. Over time, this process leads to an accumulation of senescent cells ac-
companied by loss of function and integrity of the respective tissues, which reflects
the close connection of senescence with aging [405]. Recently, cellular senescence
was described as the "nexus of aging” by Bhatia-Dey et al., suggesting it as the
main driver of the aging process [406].

Another systemic process, that is observed in most tissues with age is the increased
release of proinflammatory messenger substances. As a consequence, low-grade
chronic inflammatory processes slowly but irresistibly begin to damage organs and
are viewed as the cause of other age-related chronic diseases, such as Alzheimer’s
disease, osteoporosis or diabetes[407, 408]. This state of chronic age-dependent in-
flammation is also suspected as one of the main causes of biological aging and was
described as ”inflammaging” [409]. Miquel et al. proposed an integrative oxidation-
inflammation theory of aging, arguing that chronic oxidative stress originating from
mitochondria leads to senescence in cells of the regulatory systems, such as the im-
mune system [410]. Unarguably, senescence and inflammation processes are strongly
connected and contribute to an organism’s aging phenotype as well as its rate of
aging. Therefore, understanding how those systemic processes are regulated during
aging in different species and tissues could supply many answers related to biological
aging itself.

In this chapter, we present a descriptive transcriptomic study on the age-dependent
genetic changes of senescence and inflammation in the four evolutionarily distinct
species of Homo sapiens, Mus musculus, Danio rerio and the short-lived fish Notho-
branchius furzeri and up to four different tissues (brain, blood, liver, and skin).
Our aim was to identify potential markers of aging across species and tissues by
comparing a young mature time point against an aged and old-aged time point.
We report 26 different genes that showed consistent upregulation or downregulation
towards old age in multiple tissues and discuss their roles in aging. Furthermore,
we identified several genes that were similarly regulated during aging among the
investigated species in a tissue-specific manner. Additionally, we observed a stricter
control of gene expression of aging-related processes in the rather old-aged individ-
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uals compared with the normally aged individuals. We conclude that certain of the
identified genes that show a conserved age-dependent expression pattern are poten-
tially interesting targets for therapeutic developments designed to achieve healthier

aging.

5.1.1 Gene expression discriminates among tissues more
strongly than ages

To evaluate the homogeneity of the investigated transcriptomic data, we performed
t-SNE clustering of the RNA-Seq libraries based on the measured expression strengths
of our 464 preselected senescence- and inflammation-associated genes (see Figure 5.2).
We observed a homogeneous clustering of the samples with respect to species and
tissue, with almost no segregation of the three different ages within these clusters.
This observation was already made and reported in similar studies based on different
sets of genes and indicates that aging is a relative subtle process, at least on the
transcriptional level [119, 121]. Nevertheless, separations between the youngest and
oldest time point can be observed within the skin clusters of all four species but
to a much weaker extent in the human samples. This observation might suggest a
pronounced and conserved difference in the activity of senescence and inflammation
processes during skin aging of evolutionarily distinct species. This observations and
the fact that the skin is also relatively easily accessible makes it especially interest-
ing for interspecies comparisons of age-related senescence and inflammation.
Another observation is that although the different tissue samples form species-
specific clusters, they are still well separated from each other, i.e., forming tissue-
specific clusters, with the exception to the Homo sapiens and Mus musculus blood
samples. This observation hints that the similarities of the inflammaging process
among the same tissues of different species prevails over any systematic effect within
one individual.

5.1.2 Expression variance is more controlled in long-lived
individuals

It is proposed that individuals that have reached a comparatively high age have
somehow counteracted the effects of inflammaging by unknown anti-inflammation
processes [407, 408]. As one approach to validate this hypothesis, we analyzed how
the mean variance in gene expression changes during aging. Interestingly, we found
a significantly lower relative standard deviation of the old-age time points compared
with the aged time points in almost all species and tissues and even lower than the
mature time points in selected cases (see Figure 5.3 and SData 4). This observation
indicates that the selected genes associated with inflammation and senescence have
a more stable expression, suggesting that both age-driving processes are in fact
more controlled in the long-lived individuals. Exceptions are the skin samples of
all species other than humans, which show the opposite pattern of a significantly
increased variance in gene expression in the old-age time point. Since the skin is
the most diverse of the tissues studied in this work (mice have fur and humans have
hair, whereas fish have scales) and is the most exposed tissue, a potentially higher
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Figure 5.2: A t-distributed stochastic neighbor embedding (t-SNE) of the
analyzed RNA-Seq libraries. All RNA-Seq samples were clustered based on
the expression patterns of the selected senescence and inflammation related genes,
utilizing the t-SNE approach. All tissues form distinctive species-specific and non-
overlapping clusters with exception to very few single outliers. Additionally, larger
species-independent tissue clusters can be observed. However, the three different
time points did not generally separate in independent clusters of their own. A weak
segregation can only be observed among the mature and old-aged skin samples of
all four species.

diversity exists among the factors that affect aging in skin. As a result, skin cells
are subjected to more and different stresses, and the rate of senescence is increased
compared with other tissues, which also affects the rate of inflammation within the
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skin tissues due to the pro-inflammatory secretory phenotype that senescent cells
can develop [29]. In contrast, human skin showed a decreased variance in gene
expression, indicating less pronounced or at least tighter controlled inflammatory
and senescence processes. A possible explanation could be that humans take special
healthcare precautions during their lifetime, especially in regard to protecting the
skin, thus constantly reducing the amount of stress to this tissue.

The only other observed exception is the brain of Nothobranchius furzeri, which
displayed a strongly increased gene expression variance at the old-age time point
compared with both younger time points. This pattern is similar to that in fish skin
and is already reflected in the sample clustering as mentioned above (see Figure 5.2).
This observation could indicate a weaker protection of the Nothobranchius furzeri
brain against inflammaging, but it remains to be further studied.

To verify that the more controlled gene expression observed in long-lived individuals
is not biased due to our preselected genes, we repeated the same analysis with all
expressed genes in every species and tissue. We confirmed our observation with
all tissues showing the same relative variance changes as before, in principal. The
overall variance within each age group was decreased, which was expected because
many more genes were included in the analysis that show no change in expression
during aging.

5.1.3 Oxidative stress response tends to be the prevailing
process towards old age

To examine whether certain biological functions predominantly drive the inflammag-
ing processes in a tissue- or species-dependent manner, we analyzed the identified
differentially expressed genes (DEGs) with respect to their molecular function. We
found that most of the DEGs within the brain and liver samples belong to im-
mune and inflammatory response processes, whereas changes in the expression of
senescence-related genes are predominately related to skin aging (see Figure 5.4 and
SData 6). Only few DEGs could be identified in blood age comparisons for humans
and mice, making it difficult to interpret these results in a meaningful way:.

It is a known and common observation of aged skin that it is more susceptible to
infections, physical damage and reduced epidermal barrier integrity as well as other
age-related deficiencies [411]. Epidermal stem cells maintain the tissue’s homeostasis
and loss of those stem cells due to premature senescence is the main cause of aging
within the skin [412]. Our data confirm this observation, showing mainly senescence-
related DEGs within the skin of all four species already in the early and the late
aging comparisons. However, whether the source of epidermal stem cell senescence is
primarily intrinsic or extrinsic factors is controversially discussed [413, 414]. Apop-
tosis appears to play a more important role during aging of the liver than in any of
the other investigated tissues. This is a confirmed observation, because liver home-
ostasis is mainly regulated through apoptotic processes and many liver dysfunctions
and diseases are related to apoptosis [415, 416].

Most interestingly, we observed that DEGs associated with the oxidative stress re-
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Figure 5.3: Change of relative standard deviations of gene expression in all
four species with age. For each investigated species and tissue, the measured vari-
ance in transcript expression of the preselected senescence- and inflammation-related
genes is displayed for every time point (M — mature, O — old, OA — old-aged). The
upper and lower bounds of the box plots represent the respective 2.5 % percentiles.
All displayed differences in the mean variance of gene expression among the aged and
old-aged time points and almost all other age comparisons are significant (p-Value
< 0.05) within each tissue and species, individually. A general decrease of variance
in gene expression can be observed in the old-age time points, except for the skin
samples of Mus musculus, Danio rerio and Nothobranchius furzeri. This indicates
a tighter control of inflammaging processes in long-lived individuals, reducing neg-
ative effects and helped them to reach the high age. For detailed information, see
SData 4.

sponse and oxidative processes occur predominantly within the late age and longevity
comparisons (i.e., comparisons with the long-lived individuals) of the brain, liver and
skin samples. This observation suggests that those individuals that grew older than
their species average survival age have either a generally more active or better regu-
lated response mechanism against reactive oxygen species (ROS). Free radicals such
as ROS and their great impact on the aging process are much discussed [410, 417].
During respiration of oxygen, free radicals are produced as a harmful byproduct
that can oxidize macromolecules such as DNA or proteins and damage them in this
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Figure 5.4: Differentially expressed genes during tissue aging and associ-
ated biological processes. The upper part shows the number of identified differ-
entially expressed genes (DEGs) within all three age comparisons (early aging, late
aging, longevity) in every investigated species and tissue. The lower part shows for
every comparison the dominant biological processes as determined by the majority
of the annotated functions of the respective DEGs. Note that in some comparisons
only few DEGs could be identified and hence may only poorly reflect the underlying
age-related processes. For detailed information, see SData 6.

process. The main point of aging theories involving oxidative stress is that with
age, the rate of harmful ROS accelerates because ROS first target the mitochondria
(because they are mainly generated in that location), leading to an accumulation of
damage in these cell organelles. The more degenerated the mitochondria become,
the higher the rate of released ROS becomes, injuring genomes and membranes of
neighboring cells and, as a final after-effect, resulting in their senescence or apop-
tosis and therefore aging [417|. Different antioxidant mechanisms exist within the
cells to prevent the release of free radicals and protect the cells from such delete-
rious consequences [418]. It was observed that long-lived species appear to have
higher protection against ROS than short-lived species [419, 420]. Our data suggest
that the same is true for long-lived individuals within one species, confirming the
importance of oxidative stress response for longevity.
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5.1.4 Conserved aging expression signatures across tissues
and species

To identify a more precise signature of the abovementioned observations (Figure 5.4),
we analyzed the expression patterns of our preselected gene set in greater detail. We
were particularly interested in genes that show a constant increase or decrease to-
wards old age that could also be consistently observed between the investigated
tissues and species.

We found 16 genes that were consistently higher expressed and 10 that were consis-
tently lower expressed during aging in at least three of the four species and tissues,
totaling 26 genes that show a conserved expression pattern with aging (see 5.5).
Certain of these genes have already been reported in the context of aging, and
we observed them to be the most conserved genes from our preselected set among
species and tissues. Hence, we discuss several of these genes based on their biological
function in additional detail. More senescence- and inflammation-related genes were
found to have conserved expression patterns but to a lesser extent and can be found
in SData 7.

Immune/inflammatory response

The gene marco encodes for a scavenger receptor (Marco — macrophage receptor with
collagenous structure), which is typically found on macrophages but also other im-
mune cells [421, 422], and acts in the innate immune system by binding and clearing
pathogens and initiating an inflammatory response [423, 424]. We observed marco
to be constantly upregulated (mostly by an increase of two-fold or more) towards
old-age in all four species and within the blood, liver and skin. Although Marco does
not cause inflammation directly, it is important for the activation of other receptors,
such as members of the toll-like family [424]. These receptors subsequently activate
NF-kB, inducing an inflammatory response. Interestingly, Marco is associated with
Alzheimer’s disease, because it is also present on microglia and a decreased response
of these cells has been observed after binding amyolid beta peptides [425].

The coagulation factor IT receptor (PAR1) is encoded by the gene f2r, which sim-
ilar to marco shows persistent upregulation with age in blood, liver or skin within
all four species. The major function of PARI is mediation between coagulation
and inflammation activity, and therefore it has a key role in inflammatory response
activation [426, 427]. In addition, PAR1 activity is implicated in aging-associated
cardiovascular diseases [428].

Four more genes (cd0, sh2d1b1, ptafr, adam8) coding for membranous receptors
have a common upregulated signature through several aging tissues and species.
These genes have all been shown to promote pro-inflammatory signaling, either
directly by binding platelet-activating factors (ptafr [429]), activating antigen pre-
senting cells (¢d40 [430]), and acting as a regulator of antigen receptor signal trans-
duction (sh2d1b1 [431]) or more indirectly by releasing and degrading other cell
surface receptors of leukocytes (adam8 [432]).

Observation of a generally higher expression of ceruloplasmin encoded by the gene
cp in all species and tissues with age (except Nothobranchius furzeri brain) is not
unexpected due to its role as an acute-phase protein. These reactants are increas-
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Figure 5.5: Heatmap representation of potentially conserved senescence- and
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list of gene orthologues can be found in SData 8).

between two compared ages, where a positive value indicates an upregulation (blue), and

a negative value downregulation (red) of the respective gene with aging. All significant

changes in gene expression are indicated in bold. For detailed information, see SData 7.
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ingly released in the blood plasma during an inflammatory response and support
the innate immune response [433]. Thus, increased cp expression is most likely a
result of the chronic inflammatory nature of aged tissues.

Lef1 is one of the few immune-related genes that showed a decreased expression
with age in the blood and skin of human and mice respectively and the brains of
both examined fish. The main function of the LEF1 (lymphoid enhancer-binding
factor 1) protein is to enhance expression of the T-cell receptor alpha chain [434].
However, a variety of different interaction partners are known, linking LEF1 as an
important regulator within the WNT and TGF pathways and implicating a role in
apoptosis and cell proliferation of leukocytes [435, 436].

Oxidative stress response

As previously mentioned, ROS and oxidative stress are widely believed to be the
driving force behind the cellular aging process [410]. The source of oxidative stress
is likely an imbalanced activity of the respiratory chain and antioxidant processes.
We observed a constant age-depended upregulation of the genes cyba, cybb, cyp26b1
and nrros in various combinations of the investigated tissues and species. The first
two genes encode for the light and heavy chains of the Cytochrome b-245 protein,
a superoxide-producing subunit of the NADPH oxidase [437]. By producing and
releasing ROS, phagocytes use Cytochrome b-245, mainly as an antimicrobial strat-
egy during an infection. However, the role of Cytochrome b-245 during aging is still
debated [438, 439], and it is associated with several degenerative diseases due to
uncontrolled production of ROS [440, 441]. Cyp26b1 encodes another cytochrome
protein, Cytochrome P450, which is involved in many metabolic reactions, espe-
cially the oxidation of NADPH [442]. Higher expression of cyp26b1 during aged
time points is suggested to aid in degradation of toxic substances that have accu-
mulated with age [443].

The genes nrros and gpz§ both code for proteins that belong to antioxidant mech-
anisms controlling the production of ROS. NRROS directly interacts with Cy-
tochrome b-245 and mediates its degradation, limiting the rate of ROS production of
the associated NADPH oxidase complex [444]. Similarly, the enzyme GPX8 protects
cells from ROS-induced damage by its peroxidase activity by reducing free hydro-
gen peroxide to water [445]. However, whereas gene expression of nrros rises with
age, most likely to regulate the increased Cytochrome b-245 activity, the translation
of gpz8 is downregulated in many tissues and species. We observed the opposite
regulation during aging only in the human skin and mouse liver samples. Neverthe-
less, gpx8 serves as an interesting potential therapeutic target and it was previously
shown in the Caenorhabditis elegans model that the deletion of several GPx fam-

ily members is the cause of an accelerated aging process that results in shorter
life-span [446].

Senescence and apoptosis

Most of the 26 identified genes with conserved expression patterns in aging, are
strongly related to the cell cycle control or apoptotic processes. Both replicative
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senescence and apoptosis are immediate causes for the loss of somatic and stem
cells with age and can be similarly triggered by chronic inflammation and oxidative
stress [33, 34].

We found four of these genes to encode direct inducers of senescence: cenf (Cyclin-
F) [447), scrib [448]. cdkn2b (p15'VE4) [449] and rassf/ encoding an inhibitor
of Cyclin D1 [450]. We found all of these genes to be expressed in a senescence-
promoting fashion towards aging (rassf/ and cdkn2b upregulated; scrib and cenf
downregulated) in the examined tissues and species. Additionally, selected genes
interacting with cell cycle regulators also showed persistent expression towards old
age, namely, dab2 [451], lgals1 [452], and bratl [453].

The proteins CDCAS8 and Survivin encoded by cdca8 and bires, respectively, are
both associated with apoptosis. By inhibiting caspase activity, Survivin is a repres-
sor of apoptosis, whereas CDCAS directly interacts and stabilizes Survivin [454, 455].
However, both proteins show converse directions of regulation during aging between
the same tissues and within individual species, resembling rather weakly conserved
expression signatures.

5.1.5 Potential common tissue-specific marker genes of ag-
ing

We also focused on senescence- and inflammation-related genes that change their
expression during aging consistently and similarly in a tissue-specific manner. These
genes should present conserved age-related changes and might be the driving factors
of tissue-specific aspects of the inflammaging process, probably closely linked to the
specialized function of the respective tissue. In a first comparison of the identified
DEGs of the different species, we observed only a few common genes that occur as
differentially expressed in all species of a single tissue (see Figure 5.6 and SData 9).
However, the blood and liver samples revealed no DEGs to be common in all of the
respective species, and two were identified within the brain (cybb, c¢d68) and another
two within the skin (Gpz7, Tnfrsf25). Cd68 is a member of the cell surface receptors
of macrophages and other monocytes and is a well-known marker for macrophage
activation. The Cytochrome b-245 subunit encoding gene cybb and its potentially
harmful role during aging were already introduced in the previous section. Tnfrsf25
(a member of the TNF recptor superfamily) stimulates the proliferation of T cells
or can initiate apoptotic signaling, leading either to survival or cell death, and is
therefore an important regulator of T cell development [456]. Gpz7 encodes for
another glutathione peroxidase and has the same antioxidant function as its above
described homolog gpx8.

However, none of the four genes exhibits features that serve as a tissue-specific
marker because they do not display a consistent up- or downregulation during aging
within each investigated species or share the same expression pattern with other tis-
sues. Therefore, we applied a similar but more stringent filtering process to reveal
genes displaying the characteristics of potential tissue-specific markers. With this
approach, we identified several genes that showed a constant age-related transcrip-
tional increase exclusively in the liver or skin samples of the investigated species.
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Liver

Four constantly upregulated genes were identified in the liver samples of Mus mus-
culus, Danio rerio and Nothobranchius furzeri: jag2, anazl, ralb, and sfrb. The
protein encoded by jag2 (Jagged-2) is a known activating ligand of Notch2, which
is mainly involved in many different developmental processes regulating cell fate
decisions [457]. Most interestingly, jag2 overexpression is not only shown to play
a critical role in the formation of plasma cell myeloma and progression of other
tumors [458, 459] but also induces the secretion of interleukin-6 [460]. Interleukin-
6 is a potent stimulator of immune and inflammatory responses and acts in the
development and progression of many age-associated diseases, such as Alzheimer’s
disease [461], atherosclerosis [462], diabetes [463] and various cancers, making it
an attractive therapeutic target [464, 465]. Because the liver shows strong signs of
inflammation during aging (Figure 5.4), overexpression of jag2 might be one con-
served driving factor of inflammatory processes within hepatic cells and could be of
interest as an additional therapeutic target. In contrast, Annexin A1, the protein
encoded by anazl, has distinct anti-inflammatory and protective properties, by in-
hibiting NF-£B signal transduction and counterregulating pro-inflammatory signals
in a variety of immune cells [466, 467]. The age-related upregulation of Annexin A1l
in the liver could be a component of a tissue-specific mechanism attempting to cope
with the chronic state of inflammation. SFRP2 (encoded by sfrp2) has an oncogenic
character and is associated with cancer formation by acting as an inhibitor of the
canonical WNT/Scatenin pathway [468, 469]. The last of the four conserved liver-
specific upregulated genes, ralb, encodes for one of two Ral protein paralogs (Ral-B)
and acts as a major modulator of a multitude of cellular processes [470]. Although
many functions are shared between the paralogs Ral-A and Ral-B, the latter is more
specifically involved in the activation of apoptosis [471], which we observed to occur
more predominantly during liver aging (Figure 5.4). Additionally, Ral-B has clinical
significance because it promotes tumor progression of several cancers and activation
of the innate immune response [470, 472] and hence might contribute to inflamma-
tory stress in the liver.

Skin

If including all four species, we did not observe any gene displaying the character-
istics of a potential conserved marker gene for skin aging. Considering the diverse
nature of skin among the studied species we decided to examine the skin in two
separate groups of, fishes and mammals.

Between human and mouse, only pecam! was identified to be consistently upregu-
lated towards old age. The gene encodes the protein Pecam-1, also known as CD31,
which is a common immunohistochemistry marker used to evaluate tumor growth,
and has a major role in the removal of old neutrophils, which could explain its
higher expression with age. However, this gene is already known as a biomarker of
inflammatory processes [473].

The two fishes Danio rerio and Nothobranchius furzeri share 6 genes that showed
a persistent increased expression with aging exclusively in their skin and their en-

121



CHAPTER 5 SENESCENCE AND INFLAMMAGING

coded proteins are all involved in mitotic progression of the cell cycle: ckap?2 [474],
cdca8 |455], aurke [475], cep55 [476], mis12 [477] and spc25 [478]. This observation
might indicate that fish skin cells are not as affected by senescence as the skin of
humans and mice, which is in line with the observation that the skin of zebrafish
shows a high regenerative capacity even at higher age [479].

blood brain liver

3 Homo sapiens T3 Mus musculus T3 Danio rerio T3 Nothobranchius furzeri

Figure 5.6: Common inflammation- and senescence-related genes that are
significantly changed with age. Venn diagrams showing the overlap of the iden-
tified differentially expressed genes among the four investigated tissues. Only few
genes are commonly differentially expressed among all species of any of the four
tissue comparisons. For detailed information, see SData 9.

5.2 Age-related stress response is similar in ver-
tebrate species

Within this chapter, we have investigated the inflammation- and senescence-related
gene expression during aging in multiple tissues from four evolutionarily distinct
species. By analyzing the gene expression profiles, we were able to identify common
signatures of aging, i.e., genes that illustrate steady increased or decreased expres-
sion with age. We identified 26 genes that shared an age-dependent expression
pattern in at least three of the four investigated species and at least three different
tissues. These genes represent interesting targets for further study, because they
hint at general molecular mechanisms of aging that occur similarly not only within
various organs of one organism but also between different species. It is important
to note that we focused our study on a specific set of senescence- and inflammation-
related genes and other processes might exist that share similar expression changes
during aging across distinct species.

Several of the identified genes are not only directly involved in the initiation of an
inflammatory response but also play a major role in sustaining the state of inflam-
mation. Modulation of the expression level of certain these genes, such as marco
and f2r, or addressing the respective proteins could be one potential approach to
controlling chronic inflammation and thus might result in reduced inflammaging-
related cellular stress with aging. In total, six different genes coding for macrophage
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cell surface receptors (marco, f2r, cd40, sh2d1b1, ptafr, adam8) have been found to
show conserved upregulated expression across different tissues and species. Accu-
mulation and higher activity of macrophages has already been linked to aging and
removal of macrophages has shown beneficial effects for age-related disorders, such
as neuro-degeneration, or atherosclerosis [480-482].

Another strongly aging-associated intrinsic stress factor is the production of cyto-
toxic ROS as a byproduct of the respiratory chain. Although phagocytes use Cy-
tochrome b-245 (a heterodimer encoded by the genes cyba and cybb) to produce ROS
to kill microbes, excessive generation of ROS causes premature replicative senescence
of cells due to DNA damage [13]. We observed a conserved age-dependent upregu-
lation of selected genes involved in ROS production (cyba, cybb, cyp26b1) together
with a similarly upregulated but apparently inefficient (nrros) or even downregu-
lated oxidative stress response (gpz8). Most of the identified genes with conserved
expression patterns were related to senescence and apoptosis and showed an increase
in both processes with age in general. As noted by many different theories on aging,
each of the mentioned cellular processes is suspected to be the main driving force
behind biological aging. However, it has become increasingly apparent that these
processes should not be treated as separate and seemingly competing sources of ag-
ing, because they are strongly interconnected [13]. During a state of inflammatory
stress, excessive production of ROS is enhanced due to dysfunction of the respi-
ratory chain in mitochondria, leading to an accumulation of senescent cells, which
can develop a pro-inflammatory secretory phenotype [29]. In addition, inflamma-
tion is a known trigger of apoptotic processes and during the process of apoptosis,
certain cellular components are released that can further activate inflammatory pro-
cesses, adding to the overall cellular stress [35]. As a consequence, an environment
of chronic inflammatory, oxidative, senescent and apoptotic stress is established,
with these processes mutually triggering each other and boosting the cycle of self-
harming development [35] over time. Additionally, constant stimulation of cellular
stress response mechanisms promotes genetic deregulation, which is reflected in the
observed gene expression changes.

Based on the annotated functions of the identified DEGs, we observed that the in-
dividual tissues express different aging-related processes more strongly than others.
Although the impact on age-related expression changes of immune and inflamma-
tory response processes was stronger in the blood, brain and liver samples of all
investigated species, the skin samples displayed greater modulation of cell cycle and
senescence-associated genes. This observation is most likely due to the specialized
functions of these different organs. Only few tissue-specific and conserved regulated
genes could be observed in the liver and skin and none in the blood and brain sam-
ples. Nevertheless, the identified genes potentially represent molecular sources for
why certain aging-related processes appear more tissue-specific than others.

Additionally, we report that gene transcription in long-lived individuals is generally
more controlled compared with average-lived individuals, showing significantly lower
variance in gene expression in all tissues and species, except the skin. Maintaining
a more stable transcriptional activity, not only for senescence and inflammatory
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response processes, appears to have a significant life-prolonging effect [27]. It is
also considered that oxidative stress response processes were observed to be more
regulated in the old-age comparisons, and a possible reason could be better manage-
ment of oxidative processes and more efficient antioxidant mechanisms. However,
this conclusion remains speculative until further experimental studies can prove this
observation.

Overall, in this chapter, we describe previously unknown conserved transcriptional
changes across different species and tissues as well as tissue-specific changes with
age, supplying a complementary overview of how changes in gene expression relate to
processes of aging. In addition, our findings could serve as a basis for new strategies
in the development of therapies against aging-related diseases.
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Chapter 6

Changes of Alternative Splicing
with Age

This chapter is based on the publication “The landscape of the alternatively spliced

transcriptome remains stable during aging across different species and tissues”.!

Data used and analyses performed in this chapter
Age comparison setup

The age comparisons were performed according to Figure 6.1. For each of the four
species Homo sapiens, Mus musculus, Danio rerio and Nothobranchius furzeri, we
investigated four time points (young mature, mature, aged, old-age) in up to four
tissues (blood, brain, liver, skin). All differentially spliced gene (DSG) results can
be found in SData 1.

Detection of alternatively spliced genes and differentially expressed spliceo-
somal genes

We analyzed differential alternative splicing (AS) using rMATS (v3.0.8) [483]. This
tool has been applied successfully in other publications and showed a high precision
in AS identification [484]. Only results with a false discovery rate below 0.05 and an
absolute inclusion level difference of AS events per sample (IncLevelDifference)
above 0.1 were considered [485]. In addition, we manually controlled the results
exemplary to ensure that AS takes place as predicted and whether it is already
annotated as alternative transcript according to the respective species annotation.
Furthermore, we identified the position of each AS event relative to the gene range
based on the prediction of rMATS.

We selected spliceosomal genes from Uniprot [486] and Ensembl Biomart [122],
because the macromolecular spliceosome not only consists of proteins but also of
small non-coding RNAs [487]. Based on these gene lists, we analyzed differentially
expressed genes with spliceosomal activity for each species and the respective tis-
sues. Differentially expressed genes were identified using the DESeq2 (v1.10.0) [128]

!The complete supplemental material is available at https://osf.io/rz6kc/.
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Figure 6.1: Overview of species, tissues, time points and comparisons of the
utilized RNA-Seq libraries. (A) Samples of Homo sapiens, Mus musculus, Danio
rerio and Nothobranchius furzeri were taken from up to four different tissues (blood,
brain, liver, skin) at four different time points. The sampled time points can be
assigned to different ages: young mature, mature, aged and old-age. (B) To explore
the changes of alternative splicing, we studied three expression comparisons: early
aging (young mature and mature vs. aged), late aging (young mature and mature
vs. old-age), and longevity (aged vs. old-age). All comparisons were performed
individually for each of the studied species and their tissues.

Bioconductor package, comparing the four time points of each species and tissue,
individually. False discovery rate adjustment of the resulting genes p-values was
performed according to Benjamini et al. [129].

Quantification of isoform expression

To determine the expression of all annotated isoforms independent of differential
expression, we applied the tool Stringtie (v1.3.3b) [488] for abundance estimation
separately for each sample. We calculated only the abundance of each annotated
isoform without predicting new isoforms. Normalizing the abundance of isoforms
was executed using transcripts per million (TPM) [126], we considered only those
as expressed that had a TPM>1 in at least one sample. This information was used
to compute the number of expressed isoforms per gene. For each gene with multiple
expressed isoforms, we identified its predominant isoform and changes in the isoform
frequencies over time.
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Gene set enrichment analysis

Annotated gene functions of the differntially spliced genes of the early aging, late
aging and longevity comparisons for each species and tissue, were obtained from the
David functional annotation database [403].

Protein domain identification

For each gene that showed a switch in its predominant isoform during aging, we
investigated the encoded protein domains using Interproscan (v5.29-68.0) [489)].
For those genes with multiple predominantly expressed isoforms, we identified the
corresponding protein domains and compared them among each other, counting the
loss or gain of encoded protein domains of a certain gene over time.

6.1 Accumulation of alternative splicing events:
A failing regulatory system during aging?

As we have extensively discussed in Chapter 1, aging is unarguably one of the most
complex processes of human and animal biology and can be defined as a time-
dependent, constant weakening of tissue homeostasis, resulting in various frailties
and age-associated diseases. A key part in maintaining correct cellular function and
thus healthiness of the organism is proper gene expression and regulation, where
alternative splicing (AS) of RNA transcripts plays an important role.

AS is an important co- and post-transcriptional process in eukaryotes that enables
altered forms (also referred to as isoforms) of mRNA molecules of a gene, leading
to multiple mature transcripts of a single gene with possible different or modified
encoded functionality [490]. Thus, AS mainly contributes to the increase of an or-
ganism’s transcriptomal diversity, allowing to synthesize multiple different proteins
from a single protein-coding gene [491]. Initially, AS was considered to be a relatively
rare event of genetic regulation, however, the majority of eukaryotic multi-exonic
genes undergo AS [492] and AS functions in several important biological processes,
partially in a tissue-specific manner [487]. The splicing process is conducted by the
macromolecular spliceosome consisting of two spliceosomal complexes, the major
and the minor spliceosome, which themselves are assembled from different subunits
involving a multitude of proteins and maintaining RNA molecules [492, 493]. Sev-
eral modes of AS are known, among them exon skipping (ES), intron retention (IR),
alternative 5’ splice sites (A5S), alternative 3’ splice sites (A3S), and mutually ex-
clusive exons (MXE) [490]. While all of these modes may serve the same goal, i.e.
the alteration of mRNAs by different specific mechanisms, their frequencies seem to
vary in a species- and even tissue-specific way [487, 494].

Since AS provides a common level of genetic regulation in almost all biological pro-
cesses, several age-related diseases are linked to either specific harmful misspliced
gene variants or to a general misregulated or dysfunctional splicosomal activity. A
well studied example is the Hutchison Gilford progeria syndrome, were a silent point
mutation in the /mna gene adds a 5’ splicing signal, leading to a shortened transcript
and subsequently a shorter version of its encoded protein Lamina A [495]. Because
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Lamina A is an important structural protein of the cell’s nucleus and its shorter
version is non-functional, the nuclei of affected cells are misshaped, resulting in im-
paired chromatin organization and limited cell division [496]. There are many more
examples of the implications of AS and age-related diseases, such as Alzheimer’s
disease [497], Parkinson’s disease [498] and different types of cancer [499].

A few recent studies on various species and tissues investigated the change in spliceo-
somal activity during aging by measuring the transcription of the respective spliceo-
somal genes, observing an age-dependent decline in their expression [500-503]. As a
common assumption, it is argued that the age-dependent decrease in the spliceoso-
mal activity leads to an inaccurate splicing process resulting in an accumulation of
non-functional mRNAs. This additional ‘noise’ in the transcriptome might reflect
another source of stress, which aging cells are exposed to, adding to the intrinsic
obstacles to maintain homeostasis. Furthermore, Rodriguez et al. could directly
report an increase in the number of alternatively spliced genes with age in different
tissues of mice [504]. Nevertheless, most other studies on AS and its implications
to aging are either focused on the age-dependent differential expression of splicing
factors or differentially expressed isoforms of specific genes within one species and
tissue [500-503, 505]. Only a small number of studies exist, that directly try to
assess the general impact of aging on the heterogeneity of a cell’s transcriptome.
In an RNA-Seq based study, Wood et al. reported changes in the usage of certain
isoforms within the aging rat brain [154]. Further research is required to understand
the age-related change of the isoform landscape and evaluate the true influence be-
tween AS and aging.

In this chapter, we investigate and compare the global impact of the various modes
of AS on the expressed transcripts in different species and tissues during aging.
We analyze a multitude of cross-sectional RNA-Seq data from four different species
(Homo sapiens, Mus musculus, Danio rerio, Nothobranchius furzeri) from up to
four different tissues (blood, brain, liver, skin) at four distinct ages. Whereas we
identified a great number of differentially spliced genes, with many of them being
involved in post-transcriptional mRNA processing pathways, we did not observe a
widespread increase of spliced genes with age. Also, the average number of isoforms
per gene remained constant within the investigated species and tissues. Addition-
ally, we investigated the switch of isoforms during aging, which showed only little
effect on the encoded proteins in respect to their functional domains. Finally, we
could confirm a decline in the expression of major and minor spliceosomal genes
and selected associated splicing factors in all investigated tissues and species, but
to different extends.

We conclude that despite the acknowledged influence of single (mis)spliced isoforms
on age-associated processes, AS remains in general stable and likely plays a minor
role during normal physiological aging.
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6.2 The landscape of the alternatively spliced tran-
scriptome is only minorely affected by aging

6.2.1 Only marginally differences in the general number of
expressed isoforms per gene with age

As a starting point, to investigate the general impact of aging on the heterogeneity of
the transcriptome, we measured the average number of expressed isoforms per gene
for each age group in all examined species and tissues (see Figure 6.2). Whereas
clear differences between the tissues within each species have been observed, nei-
ther any significant age-dependent change in the average number of isoforms per
gene was found, nor does the proportion of genes with multiple expressed isoforms
change significantly over time (see SData 2). On average, the actively transcribed
genes of both mammalians tend to express two different isoforms in parallel, while
both fishes tend to have only one active isoform per gene. However, this finding
could be slightly biased since the isoform annotation of protein coding genes is
more comprehensive for Homo sapiens and Mus musculus than for Danio rerio and
Nothobranchius furzeri, with on average about seven, five, three, and four annotated
isoforms per protein coding gene, respectively. Nevertheless, there are several genes
that have more than two actively transcribed isoforms during any investigated time
point (see SData 3). The brain and skin samples of the Nothobranchius furzeri
old-age time point displayed highly increased variances in the amount of expressed
isoforms compared to the other time points, possibly hinting at a more deregulated
splicing activity. However, this observation could not be confirmed in general. Thus,
as a next step, we identified genes that either constantly increase or decrease the
number of expressed isoforms with aging. Only few genes matching these criteria
have been observed. Nothobranchius furzeri displayed the most of such genes with
14 genes showing a constant increase and 28 genes showing a constant decrease of
parallel expressed isoforms (see SData 4). Interestingly, we found many of the genes
to be membrane or membrane associated proteins in all investigated species and tis-
sues, showing this particular pattern of age-related rise/decline of isoform numbers.
This is most likely due to the regulatory role of AS, which especially determines
folding, topology, solubility and, thus, functions of membrane proteins, displaying
its decisive task for the respective mRNAs [506]. In general, the specific annotated
biological processes of the identified genes were found to be more diverse and could
not be further clustered into significantly enriched molecular functions. Neverthe-
less, these genes still represent interesting targets for further studies, such as form1
and gass, which we will discuss exemplarily.

The forkhead box protein M1 that is encoded by the foxm1 gene, represents a
transcription factor of the FOX family and regulates important biological processes
like cell proliferation, cell development but also play a part in longevity [507, 508].
Foxm1 has a key role in cell cycle progression as well as chromosomal segregation
and genomic stability and therefore is tightly linked to the age-associated processes
of cellular senescence and cancer formation [509, 510]. Three different isoforms are
known to be transcribed from foxm1, where one acts as a transcriptional repressor
(isoform A) and two as activators (isoform B and C), associating the latter two to the

129



CHAPTER 6 CHANGES OF ALTERNATIVE SPLICING WITH AGE

proto-oncogenic character of foxrm1 [510]. We observed a constant age-dependent
decrease in the number of expressed isoforms of form1 in the mice skin samples,
with all three isoforms being actively transcribed in the first two mature time points
then being reduced to two in aged mice and finally just one in the old-age time
point. When neglecting the TPM low expression threshold, the same trend could
be observed for the human skin samples. All other tissues showed a constant but
relatively low expression of just one isoform within all age groups, with exception to
the skin samples of Danio rerio, expressing the opposite pattern during aging, with
just one actively transcribed isoform at the young mature time point and rising to
have all three isoforms expressed at the latest old-age time point. This observation
might suggest an age-related control of splicing of foxrm1. For Nothobranchius furz-
eri, however, only one known isoform is currently annotated, so no predication could
be made.

The other interesting gene, gass, does not encode a protein but a long non-coding
RNA (IncRNA), which was shown to be involved in apoptotic and tumor forma-
tion processes [511]. Several different isoforms are known and predicted for gass,
of which some host various small nucleolar RNA (snoRNA) sequences [512, 513].
But expression of gasd is also strongly linked to growth control and senescence of
human T-cells, indicating a potential role in the age-associated phenomenon of im-
munosenescence [514]. We observed a similar age-dependent decline in the number
of transcribed isoforms of gas) in the liver and skin samples of Mus musculus and
Danio rerio, showing the lowest number of parallel actively expressed isoforms at
the old-age time point. On the opposite, the brain samples of both species and both
investigated human tissues show a more diverse pattern in the amount of expressed
distinct isoforms, but always with the highest number during old-age. The exact
function and role of the different isoforms of this IncRNA during aging remains to be
explored, but it serves as an interesting potential target of further research. Again,
no homologous gene is currently annotated or known for Nothobranchius furzeri.

6.2.2 Changes in the expression of the main isoforms do not
disrupt the encoded functional protein domains

Due to the fact that the number of different expressed isoforms and genes do not
change significantly with age, we investigated if the mainly expressed isoforms of
all genes are switched in an observable age-related fashion (see Fig. 6.3). For this
analysis, only single isoforms with a higher expression than other expressed isoforms
were taken into account [515].

We observed an aging-dependent switch in the dominantly transcribed isoform for
11-34 % of all expressed genes in all investigated species and tissues. Interestingly,
with about 26 %, the most of all expressed genes switched their main isoform at the
aged time point after being unchanged during both mature time points, regardless
of tissue and species. The same species- and tissue-independent relative amounts
can be observed for genes that switch their main isoform directly after the young
mature time point or at the latest old-age time point, with around 1618 % of the
relevant genes for each of these cases individually. Then we examined these genes
with altered predominant isoforms during aging more closely, by determining the
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Figure 6.2: Average number of expressed isoforms per gene. The average
number of expressed isoforms per gene in Homo sapiens, Mus musculus, Danio rerio
and Nothobranchius furzeri for every studied tissue and time point (YM —young
mature, M —mature, A —aged, OA —old-age). No significant difference in the number
of expressed isoforms per gene can be observed between different ages within each
investigated species and tissue. In addition, the variance between the samples of
each time point and tissue remains stable, except for the old-age brain and skin
sample of Nothobranchius furzeri, showing a manifold increased variance. The lower
amount of expressed isoforms in the two fish compared with both mammals might be
biased due to the less complete isoform annotation. For more details, see SData 2.

amount of encoded functional protein domains in the different dominant isoforms.
Functional protein domains (in short functional domains or protein domains) are
specific units of amino acid sequences, which are structurally and functionally con-
served and determine the precise function of proteins [516]. Surprisingly, in around
80 % of all genes showing an age-dependent isoform switch, the encoded number
of protein domains remained unaltered, with the remaining genes showing equally
fractions of isoforms with increased or decreased encoded functional domains after
being switched (see Figure 6.3). This again holds true for all examined species and
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Homo sapiens Mus musculus Danio rerio  Nothobranchius furzeri
blood skin  blood brain liver skin  brain liver skin  brain liver skin

poongl 027 024 028 027 028 023 029 024 028 026 026 0.20
pherdl 017 015 017 017 016 019 018 015 016 019 016 034
gl 0.16 015 018 017 016 018 015 021 017 016 018 011

%ﬁgﬁl 017 0.17 0.14 016 017 0.16 0.17 020 0.17 0.14 015 011

relative amount of genes changing their dominant isoform

increase 0.12 0.12 0.11 010 012 0.11 0.10 010 0.09 0.07 0.06 0.06
decrease 0.13 0.12 0.11 010 011 0.12 0.10 0.09 0.10 0.06 0.06 0.06

equal 0.75 0.76 0.78 0.80 0.77 0.77 0.80 0.81 0.81 0.87 0.88 0.88

relative amount of isoforms with changed number of encoded protein domains

Figure 6.3: Frequency of isoform switches during aging and impact on the
amount of encoded functional domains In the upper part of the figure, the
relative amounts of genes for each species and tissue that switch their main isoform
in one of four age-dependent manners are displayed: the dominant isoform switch
occurs after the mature time point (YM+M equal), it remains the same until the
aged time point and switches during the old-age (YM —A equal), it remains stable
from the aged to the old-age time point (A-+OA equal), or it switches directly after
the the young mature time point (M —OA equal). Generally, age-dependent isoform
switching occurs only for a minority genes and takes place more frequently in later
time points. The lower part of the figure shows the relative amounts of isoforms,
which encode less, more or still the same number of functional protein domains
after being switched with age. Only genes with a changing dominant isoform are
considered.

tissues. A change in the amount or composition of encoded protein domains within
an mRNA has great influence on the topology, localization and function of the trans-
lated protein. However, because only a small fraction of switched mRNA isoforms
is concerned by such a change in an age-dependent manner, most AS events seem
to affect either sites within the mRNAs that encode unstructured protein regions or
untranslated regions (UTRs). In fact, it was recently reported that changes in trail-
ing 5" and 3" UTRs as well as intrinsic unstructured regions of mRNAs due to AS
are over-represented compared with changes altering encoded protein domains [516).
Still, changes within the 5" or 3’ UTRs can have significant effect on the translation
of the respective mRNA, because the primary sequence and secondary structure of
UTRs regulate the transcript’s stability, turnover and efliciency of translation [517].
Yet, since most of the age-dependent isoform switches are subject to non-obvious
functional changes, they might influence the effective translational availability rather
than their abundance, the real impact of aging on the process of AS is hard to as-
sess. Based on our observations, aging has some influence on the heterogeneity of
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the transcriptome within the different tissues and species, affecting the primarily
transcribed gene isoforms, but it appears that, for the majority of genes, this influ-
ence is more subtle.

Nevertheless, for individual genes, the change in the switched isoform can be more
drastic with respect to their encoded function and the proportion of different ex-
pressed isoforms of a single gene could have significant impact on several aging-
related processes [518]. For example, we found that the mainly expressed isoform of
the bcl2l1 gene switches at the aged time point of the mouse liver samples from en-
coding is short protein version (Bcl-xS) instead of its long version (Bcl-xL). Whereas
Bel-xL is an apoptosis inhibitor, the short version Bcl-xS is an apoptosis activator,
displaying the AS controlled age-dependent transition from repressing to activating
apoptotic processes in hepatic cells. Apoptosis is an important mechanism in aging
liver tissue to maintain homeostasis and several dysfunctions, and diseases of the
liver are related to programmed cell death processes [415, 416].

Also, amongst others, srsf1 and srsf6 change their predominantly expressed isoform
over time in different murine tissues, and srsf3 in human skin. These genes encode
for SR proteins that are known to regulate certain age-related genes [519]. For ex-
ample, SRSF1 and SRSF3 have direct impact on the expression of the important
tumor protein p53 that regulates the cell cycle, senescence and apoptosis [518, 519].
In addition, the gene gpr18 in human blood has been identified to change its isoform
ratio [500], which is confirmed by our data. Although the isoforms of these genes
are not differentially alternatively expressed, the switched expression of their mainly
transcribed isoforms can influence the regulation of aging and senescence.

6.2.3 Less than 5% of transcribed genes are differentially
alternatively spliced during aging

To further assess the influence of aging on the splicing process, we investigated the
expression change of differentially alternatively spliced genes (DSGs) between three
different comparisons: early aging, late aging and longevity (see Figure 6.1). For
every species and tissue, we observed quite varying amounts of DSGs and in con-
trast to previous findings [504], we could not confirm a general increase of DSGs
with age (see Figure 6.4A). In their study, Rodriguez et al. compared the number
of DSGs of murine tissues, but between different ages (4 months to 18 months and
4months to 28 months) compared with our time points (9/15months to 24 months
and 9/15 months to 30 months), which could explain this discrepancy. In addition,
they investigated different tissues (skeletal muscle, thymus, adipose tissue and bone,
besides skin tissue) and analyzed microarray data instead of RNA-Seq, adding to
the factors that make a direct comparison more difficult. The only similar observa-
tion they made was an increase of DSGs in their late aging comparison (4 months
to 28 months) compared with their early aging comparison (4 months to 18 months).
In general, within our data we observed only few DSGs in the mammalian sam-
ples (less than 2% of the transcribed genes) compared with the fish samples (less
than 5% of the transcribed genes) and highest number of DSGs within the skin
tissues, with exception to Danio rerio, having more age-dependent spliced genes
in brain (311 DSGs) than skin (241 DSGs). This might indicate that the tissue-
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A blood brain liver skin
early late early late early late early late
aging aging longe. aging aging longe. aging aging longe. aging aging longe.

H. sapiens 12 15 15 17 17 9

M. musculus 11 22 5 0 0 0 19 15 1 7 41

]
No. differntially
spliced genes

D. rerio 130 56 125 46 39 18 122 58 61
N. furzeri 7 100 73 8 20 6 30 319 207
g Nothobranchius furzeri
B

brain

PO®
SO®

liver
skin
early aging late aging longevity
comparison comparions comparison
skipped 5 alternative 3’ alternative mutually retained
exon splice site splice site exclusive exon intron

Figure 6.4: Number of identified differentially spliced genes. In the upper
part of the figure, the amount of differentially spliced genes for the early aging, late
aging and longevity (longe.) comparisons for every investigated species and tissue are
given. Far less differentially spliced genes could be observed for Homo sapiens and
Mus musculus compared with the fishes Danio rerio and Nothobranchius furzeri.
Also, no general trend of increased gene splicing can be recognized in any of the
species or tissues. On the arbitrary example of Nothobranchius furzeri, the lower
part of the figures depicts the fractions of the exact AS modes (skipped exon, 57/3’
alternative splice site, mutually exclusive exon, retained intron) that contribute to
the identified differentially spliced genes. Despite skipped exon being the most
abundant AS mode in almost every age comparison, each tissues displays its own
signature of splicing events during aging. More detailed information, including the
AS modes of the other species can be found in SData 5.
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specific regulation of AS processes prevails over any possible common aging effect.
When analyzing differential expression of splicing within our age comparisons, we
also investigated the occurring AS modes (exon skipping (ES), intron retention (IR),
alternative 5’ splice sites (A5S), alternative 3’ splice sites (A3S), and mutually ex-
clusive exons (MXE)) that contributed to the identified DSGs (see Figure 6.4B).
We identified ES as the most prevalent pattern in all species, which is in agreement
with previous findings [490]. There are only a few exceptions where one of the other
AS modes prevails (see SData 5): In the human blood samples, IR is the main form
of the alternatively spliced genes during early aging. Interestingly, A5S and A3S
make up more than half of the AS modes in the longevity comparison in human. In
the mouse blood samples, a decline from 86 % ES splice events in the early aging
comparison to only 20 % in the longevity comparison can be observed, compensated
by a rise of MXE splice events to 60 %. The same shift from mainly ES to MXE
splice events can be observed in the murine skin samples. In contrast to any of the
other AS modes, MXE is a relative complex and controlled splicing process and less
likely to happen accidentally due to a deregulated splicing machinery [520], suggest-
ing a stable working spliceosome even with high age. In Danio rerio, ES remains the
main AS mode within all age comparisons and investigated tissues with a share of
54 % —T79 % of all occurring splice events. The fraction of AS modes does not change
considerably in the brain and skin of Nothobranchius furzeri, with the notable ex-
ception of A5S and A3S, which seem to occur more often during early aging than
late aging in the brain samples. Notably, the amount of IR increases during aging,
especially in the liver samples of Nothobranchius furzeri, although this AS mode is
known to be rare in vertebrates [490]. In general, the occurrence of the different
AS modes appears to be tissue-specific with no observable distinct drift of specific
splicing events during aging, let alone a common tendency between the individual
tissues of one of the investigated species. In addition, between the four species,
there are only few commonalities, besides ES being the predominant splicing event
and the liver samples showing an unexpectedly high rate of DSGs derived from IR
splice events. However, given an age-dependent decline in the correct functionality
of the splicesome, one could expect a systematic decrease of more controlled splicing
events, such as MXE.

Furthermore, we observed that AS tends to either take place in the middle or to-
wards the 3’ end of the expressed transcripts, regardless of the splice event, in all
investigated tissues and species. In Nothobranchius furzeri, even the majority of
AS events take place close to the 3’ ends of the spliced transcripts (within the last
quarter of the transcripts sequences), whereas for the other three species most AS
events occurred in the middle of the spliced RNAs (within the second and third
quarter of the respective sequences). This is not completely unexpected, because
AS mostly changes protein characteristics only slightly [487, 490]. Changes in the
primary sequences of transcripts near the 5’ end due to AS, resulting in a frameshift,
have a higher chance to alter the encoded protein function more significantly, which
is commonly believed to be avoided. Again, if there is a general failure of the splicing
machinery with increasing age, we would anticipate to see AS events to occur more
uniformly distributed in transcribed sequences.
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Age-related alternatively spliced genes are tissue- and species-specific

When comparing the observed DSGs between the tissues for each species individu-
ally, we found almost no overlap between the tissues (see Figure 6.5 and SData 6),
confirming earlier findings of age-related tissue-specific AS regulation [490, 504].
Nevertheless, a few common genes could be identified being altered by AS during
aging. For example, during early aging in both the liver and skin of Mus mus-
culus the ubiquitously expressed gene hnrnpa2bl undergoes AS. It encodes for a
member of the heterogeneous nuclear ribonucleoprotein family. Besides being in-
volved in many different cellular functionalities, such as stabilization of telomeres,
cell proliferation and splicing of other pre-mRNAs, it is associated with several dis-
eases [125, 521]. Hnrnpa2bl has several known isoforms with most of them coding
for the same protein, but one non-functional transcript (ENSMUST00000204090)
is expressed highly in both tissues. Whether alterations in this genes isoform ex-
pression have any influence on further age-related AS remains an interesting open
question. Furthermore, it appears to have at least some connection to aging because
it was associated with longevity in a previous study [501].

But also many commonly shared DSGs in both fish species have functions in the
splicing process or mRNA processing, like u2af2b, occurring to be alternatively
spliced in all Danio rerio investigated tissues during early aging, encoding for an
important subunit of the spliceosome [522].

Homo sapiens Mus musculus Danio rerio Nothobranchius furzeri

SHRE

[ Ivlood [ Jbrain [ Jliver [ ]skin

Figure 6.5: Overlap of DSGs between the different tissues within each
investigated species. The comparison of the age-related DSGs demonstrates the
tissue-specificity of the AS processes, showing only little overlap within each species.
Note that the different age comparisons of each tissue are collapsed. For further
results, see SData 6.

Even fewer overlap of DSGs can be found between the four different species (see
SData 6). The only shared alternatively spliced gene in the aging human and mouse
blood samples was rpl13a, encoding for a ribosomal protein, which was reported to
play a special role in specific translational control of inflammation associated genes,
next to its normal function as part of the ribosome [523]. This is of particular inter-
est as inflammation processes tend to be deregulated with rising age in vertebrates
and being implicated in many age-associated disorders 208, 409].

Most of the few shared DSGs in the skin samples of Danio rerio and Notho-
branchius furzeri were observed to be cell structural genes. However, one more
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interesting gene, tp63, was found to express different isoforms in both fish species
during aging. It encodes for a protein named Tumor protein 63 (or transformation-
related protein 63), which is a homolog of the intensively studied tumor suppressor
gene pbH3 [524]. There are two distinct major isoforms, TAp63 and dNp63, with the
first regulating apoptotic processes [525] and latter being involved in skin develop-
ment and stem cell regulation [526]. Interestingly, we see a switch to the TAp63
isoform towards the old-aged individuals. Since it was recently shown that TAp63
prevents premature skin aging by supporting the maintenance of adult stem cells,
age-related AS of this gene might have a conserved role in longevity [527].

6.2.4 Alternatively spliced genes heavily function in mRNA
processing and transcription regulation during aging

To infer the potential role of the identified aging-dependent DSGs, we systemati-
cally examined their annotated functions for the individual tissues and species (see
SData 7). Most interestingly, we found that genes directly responsible for splicing,
post-transcriptional mRNA processing, transcriptional and translational regulation
are differentially spliced in almost all aging comparisons (see Figure 6.6). Most of
these DSGs include members of the DEAD box protein family, ribosomal proteins,
eukaryotic initiation/elongation factors or splicing factors of the SR family. Similar
observations were already made in different mouse tissues and human blood sam-
ples [500, 504, 519, 528]. In addition to our observations, it shows that age-related
AS of various splicing and transcription components is, to some extend, a conserved
aging feature. Since we did not observe a drastic change in the heterogeneity of
expressed isoforms with age, we assume that the alterations of these splicing and
transcription components do not lead to a generally disturbed spliceosomal or mRNA
processing activity. Transcription and splicing are two closely connected processes,
wherein several of the splicing factors directly interact with the transcription ma-
chinery [529]. Potentially, AS induced age-related changes in some components of
the spliceosome might reflect adaptation mechanism to an altered transcription pro-
cess. However, to understand the consequences of these changes, further research is
required on the exact effects for the encoded proteins of the respective DSGs.

In the human blood and skin samples, we additionally observed many age-related
DSGs to be involved in the process of nonsense-mediated mRNA decay. Nonsense-
mediated mRNA decay (NMD), which is the degradation of mRNA transcripts due
to premature termination signals [530], was itself observed to be regulated by AS
through aging in the human blood and skin. Whereas the main function of NMD is
to discard aberrant mRNAs that encode potentially deleterious proteins, it is also
used as a transcriptional regulatory level, controlling stability and availability of
mRNAs by AS [531]. Possible implications of an altered NMD mechanism through
age-related AS remain again an interesting target of further studies.

Besides these common and partially conserved findings, we observed also many DSGs
to function in tissue-specific aging-associated processes. AS of genes involved in in-
flammatory response were identified mainly in the human and mouse blood and skin
samples, most likely being associated with the age-related increase of inflammatory
processes in these tissues [208, 409, 532], because AS is extensively used to increase
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the isoform diversity of genes of the immune system [533].

Not unexpected, the liver samples of mouse and both fishes display DSGs of vari-
ous metabolic processes, hinting at possible alterations in digestion or detoxification
with age. In the brain samples of Danio rerio and Nothobranchius furzeri, many
DSGs are associated with neuronal receptor regulation and brain development pro-
cesses. It is a known feature of teleosts, such as both investigated fishes, to maintain
neurogenesis even in older ages [271, 534].

early aging late aging longevity
comparison comparions comparison
] . .
S mRNA processing & nonsense-mediated decay
& blood — : -
i inflammatory response transcription regulation splicing
9
@» Ki oxidative stress response
m’ SN inflammatory response mRNA processing & nonsense-mediated decay
[ inflammatory response processes
8 blood . . : :
'3 oxidative stress response  translation regulation
g ) metabolic processes
S liver -
E splicing
. ) splicing
= skin : : :
inflammatory response tissue regeneration inflammatory response
) mRNA processing & splicing
brain : :
1) brain development & neuronal receptor regulation
™~
% ) mRNA processing & splicing
& liver :
metabolic processes
Q ) mRNA processing & splicing
skin == :
transcription regulation
brai translation regulation
5 rain brain development
2 . cell growth metabolic processes
S liver : :
U translation regulation
Z‘ ) mRNA processing & splicing
skin

tissue regeneration

Figure 6.6: The prevailing biological functions associated with the alterna-
tively spliced genes in the examined age comparisons. Interestingly, various
DSGs involved in splicing, post-transcriptional mRNA processing as well as tran-
scriptional and translation regulation were observed in almost all aging comparisons,
regardless of the investigated tissue and species. Amongst others, tissue-specific
genes functioning in aging-associated processes were found to be subject to AS,
such as tissue regeneration, inflammation or oxidative stress response.
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6.2.5 Age-related changes in spliceosomal activity correlates
with the number of differentially spliced genes

The spliceosome is a ribonucleoprotein complex, consisting of a high number of
components to ensure the correct process of splicing with a high accuracy including
several control mechanisms and different modes [487, 492]. As a further step to un-
derstand how AS could be affected by aging, we analyzed the expression of the main
protein-coding and non-coding RNA genes of both the major and minor spliceosome
as well as transcriptional changes of associated splicing factors (see Figure 6.7 and
SData 8). The deregulation of the spliceosome or at least some of its components
can have severe consequences for the organism and was focus of recent aging-related
microarray-based studies [501, 502, 519].

For human and mouse, we observed a stable expression of the main spliceosomal
genes during aging with only a few significant changes. In human blood, only the
U2 small nuclear RNA is significantly downregulated towards the old-age time point
but other RNAs, such as Ul and U4, show the same tendency. In skin, the gene
snrnp70, encoding for an important subunit of the small nuclear ribonucleoprotein
U1, is down-regulated in the late age comparison. Interestingly, the same gene shows
an about two-fold upregulation in the mouse liver within the early aging comparison,
whereas the small nuclear RNA U6 becomes downregulated in the long-lived indi-
viduals. All of the mentioned genes are crucial for the correct assembly and function
of the major spliceosome, but their change during aging appears to be little in both
mammals. Still, several additional splicing factors show a strong upregulation with
age in the human skin samples, such as moval, which is also highly upregulated
during early aging in the mouse blood samples. The equally named encoded protein
of noval was first thought to be a brain-specific splicing factor [535], but was later
discovered to play a key role in the splicing of pancreatic beta cells, too [536]. Here,
we observe that it also appears to be active in two more tissues, human skin and
murine blood, in an aging-related manner.

However, both investigated fishes present a different picture. Whereas Notho-
branchius furzeri shows as few significant changes as both mammals, important
genes of the major and minor spliceosome are rather up- instead of downregulated
during aging. In its skin, we observed an upregulation of the gene snrnp27, which
is part of the major spliceosomal U4/U6 subunit, and the two genes snrnp25 and
snrnp48, which are part of the minor spliceosomal-specific U11/U12 subunit. Ad-
ditionally, the two spliceosomal associated genes, coding for the ribonucleoproteins
SNU13 and SNRPD1 are also more than two-fold increased in their expression. All
of these genes show a significant higher activity towards the old-age time point and
may indicate a need for an enduring splicing activity. Also, in the brain of Notho-
branchius furzeri, a significant activation of spliceosomal related genes, like snrnp40
(ribonucleoprotein Ub) or snrnp48 (ribonucleoprotein U11/U12) was observed with
age. However, the transcriptional changes were not as strong compared with the
skin.

In contrast to the other examined species, Danio rerio displays extensive changes in
the expression of its spliceosomal genes and associated splicing factors during aging.
It displays a distinctive down-regulation of most of the ribonucleoprotein coding
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genes with age. This can especially be seen in the liver and skin samples during
the early and late aging comparison. Most interestingly, the longevity comparison
between the aged and the old-age animals revealed either no change in expression or
a slight upregulation of some ribonucleoproteins, indicating no or only minor further
modulations of the spliceosome after a certain age is reached. The brain shows in
principal the same pattern as the other tissues, but similar to Nothobranchius furzeri
to a much weaker extend. If this strong downregulation can be correlated to the
comparatively high amount of significantly spliced genes in Danio rerio, remains an
interesting open question.

In general, we do not identify a significant increase or decrease of expression of the
catalytic units of the minor spliceosome (U4atac, Ubatac, Ul1l, U12) during aging.

6.3 Alternative splicing as an adaptation to main-
tain homeostasis in old age

Within this chapter, we have analyzed the impact of aging on AS in four evolutionar-
ily distinct species and up to four different tissues. For each species, we investigated
two mature (one young and one middle-aged), an aged and an old-age time point.
When comparing these ages with each other, we observed a varying amount of signif-
icantly differntially spliced genes (DSGs) for the four species and tissues. Whereas
the fishes Danio rerio and Nothobranchius furzeri showed in total several hundred
DSGs, much less were identified in Homo sapiens and Mus musculus. However, a
general increase of AS with age could not be observed, which is in contrast to earlier
reports [504]. Most likely, these differing results arise from the different experimen-
tal setups. The study of Rodriguez et al. [504] was based on microarray data of
only murine tissues (skeletal muscle, thymus, adipose tissue, bone and skin) and
completely different time points (4 instead of 9months and 18 instead of 24 months
for the mature and aged time points respectively) compared with our data. They
observed an increase of AS in the bone, muscle and skin tissues with age, which
we could confirm at least for the latter tissue, but to a much lower extend. Taking
other tissues and species into consideration, their observation of an age-related ac-
cumulation of DSGs cannot be generalized.

Interestingly, even though we identified age-related DSGs to be almost exclusively
tissue- and species-specific, many of them function in various post-translation mRNA
processing steps, transcriptional and translational control and splicing processes
themselves, independent of the investigated species and tissues. This observation
indicates AS and other RNA processing mechanisms to be indeed modified with nor-
mal physiological aging, and that this feature appears to be conserved to some ex-
tend. Other studies observed similar results in human and mice [500, 504, 519, 528].
As a consequence, the specificity of the spliceosome and thus transcription of specific
gene isoforms seem to change during aging. Besides mRNA regulatory processes,
age-related DSGs are mainly involved in tissue-specific aging-associated processes,
such as inflammation in the mammalian blood and skin samples [208, 409, 532],
metabolic process in liver and tissue regeneration processes in the fishes brain and
skin samples [271, 534]. However, because more aging-related genes are expressed
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CHAPTER 6 CHANGES OF ALTERNATIVE SPLICING WITH AGE

with increasing age, it is not totally unexpected to observe these genes to be pro-
cessed by AS.

Other recent microarray-based studies focused on the expression changes of spliceo-
somal genes and splicing factors, reporting a decline in the expression of several
components of the splicing machinery [501, 502, 519], possibly resulting in an in-
creased heterogeneity of isoforms and transcriptional noise [537]. When examining
the expression activity of major and minor spliceosomal genes and several splicing
factors, we observed only a weak downregulation of these genes during aging in any
of the investigated human and mouse samples and even a slight upregulation in
Nothobranchius furzeri. In contrast, Danio rerio displays massive transcriptional
modulation of spliceosomal genes and associated splicing factors during aging.

One of the most important findings of our study is that these age-related changes
in the splicing process, either by self-regulation through significant changes in the
expressed isoforms of various spliceosome components or the up-/downregulation of
spliceosomal genes are not reflected in the general landscape of present RNA tran-
scripts. Neither does the number of expressed isoforms per gene change significantly
over time, nor are the proteins encoded by genes that switch their predominant iso-
form during aging affected. Nevertheless, different isoforms expressed by the same
gene can still encode exactly the same protein and changes in their untranslated
regions can have major impact on their stability and translation efficiency [516].
Further studies based on single cell RNA-sequencing could give deeper insights in
the diversity of the transcriptome during aging and its implication in biological pro-
cesses [538].

In conclusion, while the overall landscape of the aging transcriptome appears to be
unaffected by aging-related changes in AS or the spliceosomal activity, single alter-
natively spliced genes can have crucial influences on certain aging processes but AS
shows not to be deregulated in general with increasing age.
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Chapter 7

The circadian rhythm might
change universally with aging

This chapter is based on the publication “Interspecies and interorgan comparisons
reveal aging-associated changes in clock gene expression” 1.

Data used and analyses performed in this chapter
Age comparison setup

According to the time scales displayed in Figure 7.1, we selected three different
time points for each species — one mature point (M), one aged point (A) and one
old-aged point (OA) — and compared them pairwise. For the individual species
these were: 2429, 6065, and 7579 years (Homo sapiens); 9, 24 and 30 months
(Mus musculus); 12, 36 and 42months (Danio rerio); 12, 27 and 39 weeks (Notho-
branchius furzeri). Details of all differential gene expression results, together with
the raw and normalized count values are given in detail in SData 1.

7.1 How aging affects the rhythmicity of genes

We know that aging affects host physiology in different dimensions and disturbances
can occur at the cellular and organ levels. However, how they are translated into
whole-body aging is still relatively unknown. One important characteristic of higher
eukaryotes (and even some fungi and cyanobacteria) is, that they are strongly influ-
enced by daytime, in respect to almost all their functions (in animals, this is best
reflected by their sleep-wake cycle). The underlaying mechanisms, which control the
expression of almost all genes and therefore controlling most biological processes are
called circadian rhythms (CRs) [539]. They enforce a 24 hour periodicity and are
self-sustained, but mostly adjust themselves to local environment zeitgeber, which
are external factors such as light or temperature [540]. Just in 2017, the Nobel Prize
in Physiology or Medicine was awarded for the discovery of the molecular basis of
CRs on the level of single cells in the fruit fly Drosophila melanogaster [336].

!The complete supplemental material is available at http://www.rna.uni-jena.de/
supplements/circadian_rhythm_aging/
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CHAPTER 7 AGE-RELATED CHANGES IN THE CIRCADIAN RYTHM

mean mean 10%
maturity survival survival ~ oldest
age age age indiviual
H. sapiens -
[ | T] I I
0 12 70 92 122 years
M. musculus
[ 1| | I
02 24 28 48 months
D. rerio O
M I |
03 36 48.5 66 months
N. furzeri
[ I I I
03 29| 40 55 weeks

Figure 7.1: Interspecies normalization of age categories. This picture is sim-
ilar to Figure 2.3 but only showing the selected time points for the ages used in the
study of this chapter (blue dots). The total individual’s life time, represented by
the length of the life time axis, was subdivided by index stages. These stages were
the biological stages corresponding to maturation, the mean survival age, the 10 %
survival rate and the greatest ultimate age reported for an individual belonging to
the respective species. The time intervals between the resulting intersections were
normalized with respect to the mean survival age in a linear fashion.

In mammals, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is a
superordinate pacemaker that imposes CRs on gene expression in each tissue and
cell type and, thus, conveys rhythmicity to all essential processes of physiology and
behavior. In parallel with whole-body circadian rhythmicity imprinted by the SCN,
circadian oscillations are autonomously regulated at the organ and cellular levels,
with a functional clock residing in peripheral tissues and cell types. In compari-
son with mammals, including humans, CRs in lower vertebrates, such as fish, are
less hierarchically organized and do not depend on the SCN [541]. Accordingly,
the entrainment of CRs via both environmental and endogenous cues is stronger
in fish, where organs such as the skin and liver directly respond to factors such as
light exposure and hormonal and nutritive conditions. The functionality of the CRs
declines with aging, generally manifesting in lower penetrance, characterized by re-
duced amplitudes and increased scatter in circadian acrophases, disturbances of cell
and tissue synchronization and phase shifts in oscillations during daytime [542, 543|.
Likewise, fragmentation and shifts in the periodicity of CRs are prominent in elder
mice and humans [543, 544|, where they influence rest-activity and sleep-wake period
patterns. In addition to causing sleep disorders, disturbances in CRs are associated
with pronounced stress responses, impaired DNA repair and cancer and are con-
sidered to be an independent risk factor for age-related disorders such as type II
diabetes mellitus, Alzheimer’s dementia, coronary heart disease and tumors [545—
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548]. Furthermore, misalignment of CR has been linked to the loss of proteostasis
that is characteristic of many age-related proteinopathies, which manifest in the
nervous system in particular [549]. Accordingly, genes governing CR signatures are
involved in a plethora of biological processes, at both the single-cell and network
levels, influencing cell growth, metabolic homeostasis, DNA repair, autophagy, epi-
genetic modifications, ER stress and immune functions, among others, all of which
play a central role in the initiation and progression of cellular senescence and tissue
aging [13]. According to these pleiotropic influences, meta-analyses have recently
revealed that at least 40 % of the total protein-encoding genome in mammals is sub-
ject to circadian oscillations; among these genes, those associated with age-related
disorders are most strongly connected to CR drivers [545]. However, it has not
been well studied whether age-dependent variations in CR orchestration are based
on different expression levels of core regulatory genes and downstream targets or,
rather, are due to a qualitative shift in the set of genes involved. Additionally, it is
unresolved how far these changes in CR gene regulation patterns overlap in differ-
ent tissues and species. An interconnected question is whether a conserved genetic
fingerprint of age-related CR modification that is common to different species and
various tissues might be perceivable. Moreover, in addition to strong control by the
core set of clock genes and transcription factors and their pulsed expression in the
brain hypothalamus [550], self-sustained functionality of the CR is well established
for the skin and liver [551]. Thus, the verification of such a concept demands the
use of species that oppose hierarchical CR regulation to conserved decentralization
of the CR through evolution, such as fish. To address these issues, we performed
comprehensive transcriptional analyses in different species and subselected them for
CR regulatory patterns. Differentially expressed genes (DEGs) were identified as
a function of elevated to extremely old ages in comparison to a young maturation
grade. The results were compared among Homo sapiens, Mus musculus, Danio rerio
and Nothobranchius furzeri, the last of which is a short-lived organism with high
dependence on good adaption to ecological niches. The examined tissues included
the brain, blood, skin and liver from one or both sexes underlying a cross-sectional
study design. Through this comprehensive approach, we performed a longterm in-
terspecies and intertissue comparison of CR regulatory genes for the first time, and
we report putative intersections of CR-associated gene alterations with aging-related
chronodisruption, pathobiologies and the aging process itself. At the organ level, our
results particularly highlight the importance of the skin in CR government in both,
mammals and fish and support the notion that decentralized CR regulation might
not be unique to fish but may instead be underestimated in higher vertebrates.

7.1.1 Clock-related gene selection

When we initially analyzed the JenAge data in an unbiased, hypothesis-independent
mode we identified clock-related genes to be among the most prominent differen-
tially expressed genes (DEGs). Because this observation made us curious, we fil-
tered DEGs bases on a predefined list of clock-related candidate genes (as derived
from [545, 552]), supplemented with a manual collection of established clock-related
target genes. Thereby, we found significant regulations ranging from a log, fold
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change of -1.84 up to 5.59 across species, tissues and ages (see Figure 7.3).

7.1.2 Intraspecies homogeneity of tissue samplings

Interage and interspecies comparisons of preselected transcriptome datasets resulted
in the identification of 25 DEGs from the total age-matched DEGs that were asso-
ciated with CR control and showed significant age-dependent regulation in at least
one out of the four species in at least one age category and at least one tissue. The
intraspecies homogeneity of the RNA-Seq measurements for each tissue and time
point analyzed were plotted according to t-SNE, as shown in Figure 7.2. In general,
each tissue of the four investigated species formed distinct individual clusters, as
illustrated for human skin and blood samples (green symbols) and murine tissue
specimens (blue symbols). The only exceptions were the scattered pattern observed
for liver samples from both fish species, revealing value interference, and the Notho-
branchius furzeri brain and skin samples, which overlapped with each other in two
separate subclusters (gray symbols). However, because organ and tissue isolation
from both fish strains was performed at defined times during the day, this value dis-
persion appeared to be independent of the sampling strategy. Due to restrictions in
sample spectrum acquisition from human individuals, brain and liver were compared
only between mice and fish. As a consequence of the limited blood volume in both
fish species, nucleated blood cells were analyzed solely in mammals. Skin, as the
organ with the highest sensitivity to environmental and exogenous cues influencing
the circadian system, was evaluated in all four species. Based on the observed level
of intragroup consistency and the intergroup separation of the datasets with respect
to the parameters ’species’ and ’tissue/organ type’, we embarked upon analyses of
an age-related signature of the transcriptome output. Since the different age cat-
egories applied were not strong enough in their function of segregating RNA-Seq
values into independent clusters by t-SNE, the expression profiles were analyzed at
the single-transcript level in this case.

7.1.3 Interspecies comparison of age-related CR effects

CR has been intensely studied in mice, but less so in other species. Moreover, a direct
interspecies comparison of evolutionarily distant species has not yet been performed.
Here, we used four phylogenetically separate species and compared their CR-related
transcriptomes as a function of aging. As illustrated by the heat maps in Figure 7.3,
the 25 DEGs that we identified comprised the highly conserved core clock regulators
perl —per3, cry2, arntl (bmall), clock, nrid2 (rev-erb-f) and bhlhe41 (dec2) and
interacting genes such as ulk1, ntrk2, ptgsl and ace. The arntl (bmall) and clock
genes form the positive branch of the circadian feedback loop, acting as transcrip-
tion factors that control the expression of a plethora of CR-related genes, including
per and cry family members. Perl -3 and Cry form heterodimers to suppress the
Clock/Arntl (Bmall) complex and, thus, represent the complementary negative arm
of the CR loop. Both, per2 and bhlhe41 (dec2) were found to be regulated in an
age-dependent manner in all four species. Moreover, the transcript levels of perl,
cry2, arntl (bmall) and clock changed in three of the species (mice and the two
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Figure 7.2: CR-associated gene based t-SNE of the investigate samples.
A t-distributed stochastic neighbor embedding [402] (t-SNE) performed for the pa-
rameters ’species’; 'tissue’ and ’age category’ of the RNA-Seq datasets. All RNA-
Seq samples displaying the expression of selected CR-associated genes were clustered
utilizing the t-SNE approach. In general, all tissues of the four investigated species
formed distinctive clusters. As exceptions, the liver samples from both fish species
overlapped each other, as well as brain and skin samples of Nothobranchius furzeri.
However, the different age categories did not segregate in independent clusters. For
more details, see SData 2.
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Figure 7.3: Heatmap representation of CR-related DEGs for the different
species, tissues and age categories. Genes are represented as mouse orthologues
(a complete list of gene orthologues can be found in SData 4). Numbers indicate logs
fold changes between two compared ages, where a positive value indicates an upregulation
(blue), and a negative value downregulation (red) of the respective gene with aging. All
significant changes in gene expression are indicated in bold.
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ray-finned fish). Most of these transcriptional alterations were already detectable in
the aging category, A, and persisted up to the highly aged class, OA. The expression
of per2 increased in all of the examined species and organs with aging, whereas the
up/downregulation patterns of the other CR-related clock genes were less homoge-
neous. Although the biological importance of per2 upregulation is unclear, it may
be involved in immune responses and tumor suppression, in addition to its role in
CR government [549, 551, 553]. Similarly, per! exerts crucial effects on the cell cycle
machinery in addition to functioning in CR control. Whereas per! overexpression
propagates DNA damage response (DDR)-induced apoptosis, its downregulation
can enhance tumor growth [554]. It also directly interacts with the DDR check-
point regulators Atm and Chk2. Since patients with a cancer diagnosis display
reduced expression of perl, it has been suggested as a target for tumor treatment.
Moreover, the transcript levels of the blood pressure-controlling Ace enzyme, an
established downstream target of clock regulators, were found to be strongly altered
in all four species. Blood pressure deregulation is a frequent symptom in the el-
derly and a well-established risk factor for many age-related diseases. Considering
gene orthologies, these data suggest that the genetic basis of clock gene regulation
during aging shares many commonalities across the examined species. This con-
clusion is in accordance with another recent work comparing CR gene expression
between mice and fish [549]. Further evidence of the involvement of CR-associated
alterations in the aging process is derived from a mammalian system [553, 555]. In
2015, Chen and colleagues conducted a study that identified DEGs in the prefrontal
cortex of elderly, mainly male Caucasians (<60 years) relative to young persons
(<40years). The time of death of each person was normalized to a zeitgeber time,
where the time point of sample acquisition allowed conclusions about changes in
circadian rhythmicity. The authors identified age-related alterations of rhythmicity
in more than 1,000 genes, including core clock components such as per! and per2.
Thus, loss of circadian rhythmicity was identified not only for certain genes, but
for a subset of genes that exhibited rhythmic expression exclusively in aged indi-
viduals. This set of genes might act as a novel clock compensation mechanism for
the disruption of chronobiology during aging [556]. Notably, studies in an elderly
Taiwanese population revealed the presence of single nucleotide polymorphisms in
several core clock components, including clock, which were associated with cognitive
aging independent of environmental factors [557]. In mice, numerous studies have
analyzed the effects of disruption of different core clock components belonging to
both the positive and the negative branches of the circadian feedback loop (e.g.,
clock and bmall (arntl) as well as per2). Interestingly, independent of endogenous
regulatory function (i.e., suppressive or stimulatory), the disruption of core clock
components led to lifespan reduction, though to different extents [553]. Likewise,
in addition to a shortened lifespan, Bmall-deficient mice exhibit strong and even
premature aging phenotypes, such as age-dependent body and organ weight loss,
sarcopenia, cataracts and atrophy of subcutaneous fat [558]. Remarkably, bmall
(arntl) is the only gene whose disruption is followed by total loss of behavioral
rhythmicity [553, 559]. Although mice that are deficient in Clock exhibit a reduced
lifespan and develop an aging phenotype, the extent is less pronounced [555]. A
more recent study revealed timely restrictions on the effects of Bmall deficiency on
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aging phenotypes [560]. Yang and colleagues showed that conditional Bmall knock-
out during adulthood ameliorated some age-related phenotypes observed in studies
on a conventional murine Bmall knockout model, as described above. Moreover,
the expression of oscillatory genes was reduced in the conditional knockout model
(at least when analyzed in the liver), but overall gene expression remained largely
unaltered. Hence, the authors suggested that some of the aging phenotypes that
were previously related to disruption of CRs might instead arise from the loss of
clock-independent Bmall (Arntl) functions [560]. Thus, it appears that the role of
distinct clock-regulating factors in actual circadian rhythmicity is not decisive for
their effects on aging. Accordingly, we present findings suggesting that clock-related
gene regulation occurs during aging, irrespective of the circadian rhythmicity of the
genes. We further revealed a lack of a strict activating or suppressing regulation
pattern, which has also been observed by others [553]. Taken together, the available
findings indicate that the effect of clock regulators on the CRs alone is not sufficient
to explain their impact on aging but, rather, suggest more complex interplay of
their multidimensional molecular functions and contributions to multiple pathways,
better reflecting a complex process such as aging.

7.1.4 How organ-specific CR regulation changes with age

In contrast to the use of a mixture of clock-related mRNAs from different tissues and
organs, as performed for zebrafish larvae [549], we realized an interorgan comparison.
Moreover, in contrast to the study by Yan et al. (2008), who surveyed 14 tissues ex-
clusively among mammalian species (i.e., human, monkey and mouse) from a tissue
gene expression atlas [561], we extended the examination of interorgan relationships
to four evolutionarily separated species and specified regulation in the context of
aging. The organ-specific pattern of CR-associated gene regulation differed between
the species, as depicted in the heat map containing the 25 DEGs introduced above
(Figure 7.3). Likewise, in human samples, the strongest age-associated impact on
CR genes occurred in the skin, whereas blood was devoid of any variation. In mice,
the most prominent alterations were present in the liver and, to some extent, the
skin, whereas only slight changes were found in blood and none were found in the
brain. This pattern was again different from that detected in fish, where the greatest
regulation occurred in the skin and brain. The changes in the liver were also less pro-
nounced in fish than in mice. Between the two fish species, Danio rerio displayed a
higher number of changes, whereas Nothobranchius furzeri evidenced stronger gene
regulation with aging. Our observations are in line with the hypothesis that a com-
mon set of CR genes, including the core regulators perl /per2/per3, cry2, bmall
(arntl), clock and bhlhe41 (dec2), is intrinsically active in several tissues. In a re-
cent comprehensive study compiling micro-array data from several previous studies,
the authors extracted 41 common CR genes from 9,995 genes that oscillated in at
least 8 out of 14 tissues in mice [561]. In conclusion, although the transcriptome
pattern differed across the species, we identified several CR-related genes that were
differentially expressed in at least one tissue within the same species. Although
there is apparently a common set of clock genes in many tissues and cell types, as
described for the above-mentioned genes herein and complemented by cryl, npas2,
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bhlhe40 (decl), nridl (rev-erb-cv), ror-o and rore in other studies [545, 561], these
genes often differ substantially in their circadian oscillation phases between different
tissues [545, 561, 562]. Thus, according to our analysis, it might be more likely that
common CR gene expression patterns can be detected within the same tissue across
species than that similar age-dependent regulation can be assumed within different
organs of a single species.

Brain

The impact of brain-specific CR regulation on the aging process is still not well stud-
ied [556, 557]. Recent data from Yan and colleagues illustrated that non-SCN brain
tissue compares to other non-SCN tissues in terms of CR phase oscillation [561]. An-
other interesting finding is that deletion of central clock regulators such as Bmall
(Arntl) and Clock, in combination with Npas2, in the brain causes severe age-related
astrogliosis, whereas deletion of Bmall (Arntl) alone results in structural and molec-
ular changes [548]. Here, we assessed brain-specific regulation in mice and fish.
Since either the entire brain or a complete hemisphere was assayed in fish and mice,
respectively, our data do not reflect age-dependent changes specifically in the hy-
pothalamus. While no regulation was found across the selected age categories in
mice, core clock genes were strongly regulated in a heterogeneous pattern in both
fish species, with logs fold changes ranging from -1.54 to 2.44 when comparing A to
OA categories (see Figure 7.3). Likewise, pdgfrb and ulk! were dominantly changed
in Danio rerio, but less so in Nothobranchius furzeri, among which ulk! displays
a well-known function in autophagy and longevity pathway regulation [563, 564].
Thus, the CR regulatory input from brain neuronal populations (possibly in addi-
tion to the pineal complex and eye photoreceptors) might be much stronger in fish
than in mammals or may at least be subjected to stronger age-related perturbances
in fish. Consistent with these findings, high resilience of the mammalian hypothala-
mus to age-related alterations in clock-related transcripts was illustrated in a recent
study performed in rhesus macaques. When diurnal expression of SCN regulatory
genes was examined in young versus aged rhesus monkeys, no significant changes
were observed based on microarray or qRT-PCR techniques. The authors concluded
that altered behavior in aged rhesus macaques might originate from CR misalign-
ment in other regulatory, but subordinate, body systems [565]. Moreover, the data
indicated that, in spite of decentralized CR regulation, core clock genes in fish are
conserved similarly to those in mammals. In support of this observation, several
fish orthologues of murine core clock-interacting transcription factors were recently
identified as targets of the core clock member arntl (bmall) [549] that operates as
a key regulator of CR-related gene transcription in mice [566], and was found in the
present study to be regulated in mice and both fish.

Blood

Although blood is often utilized for CR studies underlying a longitudinal study de-
sign, our cross-sectional approach points to weak representation of age-related CR
effects in this compartment compared to other tissues. Likewise, no age-associated
alterations were evident in human blood. In mice, only a few genes were differentially
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expressed displaying logs fold changes between -0.79 and 2.84, with the strongest ef-
fect being found for bhlhe41 (dec2). The Bhlhe4l (Dec2) transcription factor is part
of the negative feedback branch of the core clock loop that suppresses clock/arntl
(bmall). Bhlhe4l is involved in short sleep manifestation and impaired sleep home-
ostasis [567] and further participates in pathways relevant to tumor growth and
progression [568], which are known to be affected by the aging process [569].

Liver

In the liver, most frequent age-related differences in the expression of CR genes
were discovered in mice, whereas alterations in fish were most prominent with log,
fold changes displaying values between -1.57 and 5.59. Similar to the results in
blood, bhlhe41 (dec2) showed the strongest regulation in the liver, followed by pers3.
Deregulation of per3 has been related to tumor progression and a worse cancer
prognosis, e.g., in breast cancer [570]. The pattern of DEG manifestation was similar
in aging categories A and OA.

Skin

Skin exhibited significant CR-related gene alterations across all four species show-
ing logy fold changes between -1.84 and 4.7. The greatest expression changes were
observed in short-lived Nothobranchius furzeri, where significant changes were man-
ifest in 17 of the 25 target CR-related genes. A similar pattern was seen in Danio
rerio featuring significant changes in 16 genes. In human samples, the changes were
less prominent but were similarly frequent in number. In mice, the upregulated
genes consisted almost exclusively of core clock regulators of the negative branch.
Compared to human and fish, the number of DEGs in the mouse skin was lowest and
shared commonalities with human only for two genes, i.e. per2 and ace. In contrast,
a larger intersection set of genes was found between human and both fish species
(Figure 7.4). Interestingly, the expression of cry2, the binding partner of the Per
group, was increased in all of the species. This pattern reached significance in three
species and showed a tendency in human specimens. Cry2 has been described as
playing a role in psychiatric disorders, cancer and type II diabetes mellitus [545-548].
Thus, as mentioned above in the context of the brain, the skin might represent one
of the CR oscillators subordinate to the SCN that are responsible for the age-related
decay in the ability to entrain, synchronize or reset circadian phases. Notably, there
was a higher similarity in genes being differentially expressed between human and
fish than human and mice (Figure 7.4), though sharing 70 % compared with 85 %
with the human genome, respectively.

7.1.5 Regulation changes of CR-associated DEGs

As recently suggested based on mouse transcriptome data, body temperature may
represent the key driver that synchronizes the oscillation of HSPs throughout the
body [561]. Here, we observed that hsp90aal and hspa4l were differentially, but
heterogeneously expressed during aging across the four species. Hsp90aal is a di-
rect target of Hsfl, a key transcription factor in heat response mediation that is
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N. furzeri D. rerio
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Figure 7.4: Venn diagram showing the overlap of CR-related DEGs in the
skin from the four species investigated. Across all species, the most prominent
regulation of CR-related genes was found in the skin. There was a greater similarity
in genes being differentially expressed between humans and fish than humans and
mice.

involved in the indirect transmission of heat stimulation to per? and per2. Similar
to other chaperons, Hsp90aal has been suggested to impact the aging process by
taking part in attenuated primordial stress response. Such a weakened heat shock
response is assumed to contribute to loss of proteostasis through reduced clearance
of damaged proteins and deregulation of apoptosis. In contrast, sustained mild
heat shock responses are part of the hormetic concept propagating anti-aging and
pro-longevity effects [571]. Apart, Hspadl is required for normal spermatogenesis in
young mice [572] and found highly expressed in leukemia cells.

7.2 Single circadian rhythm factors are evolution-
ary conserved in the chronobiology of aging

Multiple efforts have been aimed at mapping physiological and pathological pro-
cesses to the core clock in single [546, 573| or multiple organs [545] of a single
species, or in selected organs underlying a pathophysiological stressor [552]. How-
ever, the role of highly conserved clock regulation in physiological aging over time
and across multiple species has not yet been addressed. Here, we used whole-genome
RNA-Seq to profile the transcriptomes from four different species in a cross-sectional
study, in individuals ranging from young mature to old age categories. Within these
species, we compared transcriptome elements associated with CR in different or-
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gans, including blood, brain, liver and skin. In summary, our analyses illustrate
that alterations in CR-related gene expression during aging are a conserved charac-
teristic that is retraceable across evolutionarily different species, including humans.
Within the aging period, such alterations were found to be an early characteristic,
at least in Mus musculus and Danio rerio, that persisted into old age classes. Our
data also point to the importance of the skin in CR regulation, where we detected
the most striking regulations across all four species (Figure 7.4), seemingly due to
the light exposure of the skin. These observations suggest that even in organisms
with strongly hierarchical CR orchestration by hypothalamic structures, as observed
in mice and humans, peripheral subordinate organs such as the skin contribute to
alterations in clock gene expression during aging. Additionally, the transcriptional
profile governing the decentralized clock system in fish via peripheral tissues and
cell types appears to be much closer to mammalian clock gene regulation than ex-
pected. Whether CR deregulation is causal or a consequence of aging remains to
be explored. This work complements recent studies and provides a comprehensive
novel dataset that links CR factors with physiological aging across evolutionarily
highly distinct species. It will help to dissect characteristics of chronobiology in
healthy aging from those associated with diseases and latent precursor states and
contribute to the identification of interventions that improve the well-being of the
elderly and prolong a healthy lifespan.

154



Chapter 8

Conclusion

Preventing aging is the always demanding struggle to keep the balance of a highly
complex thermodynamical process that we call life. Almost every cell has to face
different kinds of stress over time and in order to survive must try to adapt to these
new conditions. Such stresses can arise from external or internal factors and different
sophisticated molecular strategies have evolved during the history of life to handle
cellular stress. Nevertheless, these response mechanisms are not perfect, sometimes
affecting each other and cannot always restore the biological integrity of a cell com-
pletely. With time more and more ‘errors’ (e.g., in form of DNA damage, malignant
proteins or imbalanced metabolic pathways) accumulate, that further disturb the
cell’s homeostasis, leading to an impaired response to other stresses. In the end,
when too much errors have accumulated the cell either dies or enters a senescent
state, loosing the ability to proliferate and replicate. During senescence the cell is
still able to sustain itself but has lost almost all its other functions, i.e., if further
damaging stress occurs it still will die eventually. At this point, the aging process
of an individual cell would end. However, in a multicellular organism with special-
ized tissues aging manifests in more complex ways. Different cell types have to deal
with different kind of stresses and can influence each other strongly in various ways.
Thus, due to the complexity of life, aging is a very heterogeneous process and has
to be tackled from different angles to understand and maybe prevent it.

Within this thesis we have investigated the topic of aging from many different per-
spectives to obtain new insights in the underlying genetic programs and to examine
if some of these programs are evolutionary conserved. To do so, we have analyzed
a huge collection of transcriptome sequencing data from four evolutionarily distinct
species (Homo sapiens, Mus musculus, Danio rerio and Nothobranchius furzeri).
From those four species different tissues were sampled (blood, brain, liver and skin)
at four different but comparable time points (see Figure 2.3): one young but already
mature time point, one middle-aged mature time point, one old time point and fi-
nally one long-lived time point. The whole transcriptome dataset was generated in
the frame of the JenAge project by next generation RNA sequencing experiments
during the time of 2009 and 2013.

Within Chapter 1 of this thesis we have introduced the topic of aging comprehen-
sively, discussing what is currently known and hypothesized about how and why we
age. We also briefly introduced the idea behind next generation RNA sequencing
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and how the resulting data are processed and analyzed, because most of the results
presented in this thesis are based on RNA sequencing analysis.

As a starting point, we have examined in Chapter 3 how different tissues from one
species are affected by aging. We compared the expressional changes of protein-
coding genes in four different mouse organs during aging and found that each of
the investigated tissue ages differently due to tissue-specific intrinsic and extrin-
sic factors. However, besides displaying individual aging patterns in gene expres-
sion and stress response, all four investigated tissues showed also some common
age-dependent features. For example, we found many genes acting in the mito-
chondrial electron transport chain to be modulate in their expression significantly
with age, which can have direct consequences to cell survival and organismal lifes-
pan [204]. Additionally, we could identify seven genes to be commonly differentially
expressed in the four investigated murine organs: ¢gm&8979, igkv-62, s100a6, lcn2,
rap2a, s100a9 and vmpl. These genes are involved in the immune system, cell cy-
cle control, autophagy and calcium signaling, which are all known aging-associated
processes. Moreover, we could show in the nematode Caenorhabditis elegans that a
knockdown of its lcn2 homolog leads to a protection against early lethality. How-
ever, in the end we concluded from our results that any single gene can hardly be
regarded as a marker of aging for a whole organism, because aging manifests differ-
ently in every tissue.

In Chapter 4, we explored the topic of microRNAs (miRNAs) and their potential role
in aging, especially in the short-lived killifish Nothobranchius furzeri. We described
how these short RNA transcripts are involved in the regulation of almost all cellular
functions (Section 4.1) and they are identified and annotated on the example of
the newly assembled genome of Nothobranchius furzeri (Section 4.2). Besides other
classes of non-coding RNAs (ncRNAs), we could annotate over 750 miRNA genes
of which about 420 seem to be killifish-specific. We have further described evolu-
tionarily conserved miRNA clusters, such as the miR-430 or the miR-~17/92 cluster,
and compared them with ones from other fishes. From our findings and expression
validation analyses we could assume that our Nothobranchius furzeri miRNA cata-
log is comparable to the one of the model organism Danio rerio.

Then, we have investigated the role of miRNAs in the diapause regulation of Notho-
branchius furzeri and its the connection to aging processes (Section 4.3). Diapause
is a kind of dormancy state, which some killifish embryos can undergo if the environ-
mental conditions are not fit for survival. The embryos can remain in diapause for
several months or even years, showing no sign of aging until the environmental condi-
tions improve again and they leave their developmental arrest to hatch and develop
normally. By comparing the expression of miRNA genes between different annual
and non-annual killifish species, we were able to identify several conserved miRNAs
(e.g., members of the miR-430 family, miR-29a, miR-200) and two killifish-specific
miRNAs (miR-19337 and miR-~19344) that are probably in the control of regulating
diapause in these fish embryos. In addition, we could also show that some of the
diapause-associated miRNAs are also modulated in an aging-dependent manner in
Nothobranchius furzeri, and that they function in processes related to aging. Thus,
we could show that the miRNA regulatory networks involved in diapause and aging
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overlap to some extend.

In Section 4.4, we studied the stochasticity of small RNA-Seq data in greater detail,
proposing and introducing a new statistical model based on gamma distributions
to estimate differential expression of miRNAs more accurately. We could show that
expression data of miRNAs are more likely to follow a gamma distribution instead
of the typically assumed negative binomial distribution. We have implemented our
new statistical model in a tool named MeRDE and showed in different comparisons
that it can compete with the current-state-of-the-art tools DESeq2 and edgeR. Fur-
thermore, in Section 4.5 we applied MeRDE on the JenAge small RNA-Seq dataset
and could identify several potentially conserved miRNA regulators of aging-related
processes in Homo sapiens, Mus musculus, Danio rerio and Nothobranchius furzeri.
Among those, the miRNA miR-192 was identified as a possible key regulator of
aging in all four species, being heavily involved in the regulatory control of cellular
senescence, apoptosis, inflammation and other stress responses as well as the forma-
tion and progress of several aging-associated diseases, such as cancer, diabetes and
neurodegenerative disease. Since miR-192 is not only expressed in all investigated
tissues, but also occurs as a circulating miRNA in the bloodstream of different ani-
mals, it could serve as an easy accessible diagnostic marker for aging and even as a
potential therapeutic target.

Two of the most suspected drivers of aging are cellular senescence and chronic tissue
inflammation (the latter phenomenon also known as inflammaging). We examined
the progression of both processes during aging in the sampled organs of the four
investigated species and identified tissue-specific expression patterns of associated
genes (see Chapter 5). For example, the liver and brain appear to be more affected
by chronic inflammation and apoptosis, whereas the skin shows strong activation
of senescence pathways with age. In addition, we could show that the response
to oxidative stress modulates both senescence and inflammation progression. We
could identify conserved expression signatures across tissues and species as well as
potential tissue-specific markers of aging and concluded from our observation that
age-related stress response is executed similarly in vertebrates. Most interestingly,
we found the variance in gene expression to be more controlled in long-lived individ-
uals compared with average-lived ones, i.e., suggesting that individuals that reached
an exceptionally old age benefited from a more stably executed stress response.

In Chapter 6, we have investigated to which extend the process of alternative splic-
ing (which is the generation of differing mRNA isoforms from single genes) is in-
fluenced by aging. Despite previous and contrary observations, we found that the
general landscape of the alternatively spliced transcriptomes changes only slightly
with age in all examined species and sampled tissues. For example, about 80 % of
all genes that showed an age-dependent switch of their mainly expressed isoform,
the encoded proteins remained unaltered in respect to its functional domains. Nev-
ertheless, we could observed single (mis)spliced isoforms that are reported to be
involved in aging-associated processes. But the general process of alternative splic-
ing remained commonly stable during normal physiological aging.
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In the last chapter of this thesis, we dealt with age-related changes of circadian
rhythm factors and possible resulting consequences. Almost all biological functions
in animals are strongly influenced by daytime (e.g., reflected by the sleep-wake cy-
cle) and the underlying mechanism, which control the expression of most genes, are
called circadian rhythms. The functionality of circadian rhythms declines with age,
leading to a fragmentation and shifts of their periodicity. As a results, cellular stress
responses are impaired and strong disturbances of circadian rhythms are considered
to be risk factors of age-associated disorders such as cancer, Alzheimer’s dementia
and heart diseases.

We observed that age-related changes in circadian rhythm regulation are organ-
specific and only few circadian rhythm factors are evolutionarily conserved in the
chronobiology of aging. Interestingly, we found that the skin contributes strongly
to alterations in clock gene expression during aging in all four investigated species.
Additionally, the transcriptional profile governing the decentralized clock system in
fish via peripheral tissues and cell types appears to be much closer to mammalian
clock gene regulation than expected.

Everything taken together, we have observed that aging manifests in a wide variety of
forms, not only in the distinct species but also in the different organs within a single
organism. Every tissue has to face different stresses over time due to its specialized
function or localization and, thus, has to respond to them in their own specific way.
Some of these responses appear to be conserved to some extend, indicating that they
play a more dominant role in the formation of aging. Nevertheless, despite all the
known aging-related processes and known genetic aging factors, the “starting point”
of aging and its progression are still hard to predict. This is most likely because
aging resembles a stochastic processes of error accumulation over time, which is also
suggest by many of our results. But in spite of its complexity, research on aging has
improved our understanding of how different internal and external factors influence
cellular processes with time. And doubtlessly it will further help to prevent age-
associated diseases and frailties and will enable an extended healthy life-span of
humans. With the results presented in this thesis, we have made our contribution
to achieve this goal.
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