
fninf-11-00044 June 27, 2017 Time: 12:16 # 1

METHODS
published: 29 June 2017

doi: 10.3389/fninf.2017.00044

Edited by:
Andrew P. Davison,

Centre National de la Recherche
Scientifique (CNRS), France

Reviewed by:
Michael Denker,

Forschungszentrum Jülich, Germany
Malinda Lalitha Suvimal Tantirigama,

University of Otago, New Zealand

*Correspondence:
Friedrich W. Johenning

friedrich.johenning@charite.de

†These authors have contributed
equally to this work.

Received: 07 April 2017
Accepted: 13 June 2017
Published: 29 June 2017

Citation:
Rueckl M, Lenzi SC,

Moreno-Velasquez L, Parthier D,
Schmitz D, Ruediger S and

Johenning FW (2017) SamuROI,
a Python-Based Software Tool

for Visualization and Analysis
of Dynamic Time Series Imaging

at Multiple Spatial Scales.
Front. Neuroinform. 11:44.

doi: 10.3389/fninf.2017.00044

SamuROI, a Python-Based Software
Tool for Visualization and Analysis of
Dynamic Time Series Imaging at
Multiple Spatial Scales
Martin Rueckl1†, Stephen C. Lenzi1,2†, Laura Moreno-Velasquez2,3, Daniel Parthier2,
Dietmar Schmitz2,4,5,6,7, Sten Ruediger1 and Friedrich W. Johenning2,3,4*

1 Institute of Physics, Humboldt Universität Berlin, Berlin, Germany, 2 Neuroscience Research Center, Charité
Universitätsmedizin Berlin, Berlin, Germany, 3 Berlin Institute of Health (BIH), Berlin, Germany, 4 Einstein Center for
Neuroscience, Berlin, Germany, 5 Bernstein Center for Computational Neuroscience, Berlin, Germany, 6 Cluster of Excellence
‘Neurocure’, Berlin, Germany, 7 DZNE-German Center for Neurodegenerative Disease, Berlin, Germany

The measurement of activity in vivo and in vitro has shifted from electrical to optical
methods. While the indicators for imaging activity have improved significantly over the
last decade, tools for analysing optical data have not kept pace. Most available analysis
tools are limited in their flexibility and applicability to datasets obtained at different
spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined
ROIs), an open source Python-based analysis environment for imaging data. SamuROI
simplifies exploratory analysis and visualization of image series of fluorescence changes
in complex structures over time and is readily applicable at different spatial scales. In
this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three
spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies,
dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with
single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence
in large brain areas, without cellular resolution). The software described here provides
a graphical user interface for intuitive data exploration and region of interest (ROI)
management that can be used interactively within Jupyter Notebook: a publicly available
interactive Python platform that allows simple integration of our software with existing
tools for automated ROI generation and post-processing, as well as custom analysis
pipelines. SamuROI software, source code and installation instructions are publicly
available on GitHub and documentation is available online. SamuROI reduces the energy
barrier for manual exploration and semi-automated analysis of spatially complex Ca2+

imaging datasets, particularly when these have been acquired at different spatial scales.

Keywords: calcium imaging, analysis software, Python programming, Open Source Software, microscopy,
fluorescence

INTRODUCTION

Monitoring fluorescence changes of indicator molecules over time is one of the primary tools
by which neuroscientists try to understand the function of neurons and neuronal networks.
Small molecule indicators including Ca2+ and direct voltage sensors can be used to read out the
spatiotemporal code of neuronal activity in a non-invasive way (Scanziani and Häusser, 2009)

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2017 | Volume 11 | Article 44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/237489838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00044
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2017.00044
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00044&domain=pdf&date_stamp=2017-06-29
http://journal.frontiersin.org/article/10.3389/fninf.2017.00044/abstract
http://loop.frontiersin.org/people/444859/overview
http://loop.frontiersin.org/people/438768/overview
http://loop.frontiersin.org/people/438750/overview
http://loop.frontiersin.org/people/444970/overview
http://loop.frontiersin.org/people/452445/overview
http://loop.frontiersin.org/people/112260/overview
http://loop.frontiersin.org/people/426949/overview
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 2

Rueckl et al. SamuROI

and are now routinely used in the study of brain activity at
different spatial scales (Grienberger and Konnerth, 2012). As
technological improvements allow imaging datasets to increase
in their complexity (larger fields of view, longer permissible
recording times, better temporal resolution, parallel use of
different indicators at different wavelength), there is a growing
need for tools that enable efficient data exploration. Furthermore,
these tools must be applicable to datasets acquired at different
spatial scales, because scientific questions increasingly require
an understanding of processes at many scales sequentially or, if
technically feasible, simultaneously.

Here, we would like to distinguish three spatial scales based
on the existing terminology and the physical boundaries in
conventional fluorescence microscopy with respect to resolution
and field of view size: the subcellular or micro-scale, which
includes subcellular structures like dendrites and spines (Jia
et al., 2010; Kleindienst et al., 2011; Takahashi et al., 2012);
the meso-scale, which comprises populations of individual cell
bodies (Garaschuk et al., 2000; Stettler and Axel, 2009; Sofroniew
et al., 2016); and the macro-scale, which is imaging of activity
over several brain regions without cellular resolution (Conhaim
et al., 2010; Busche et al., 2015). Datasets from each of these
scales pose a different analytical challenge when extracting
meaningful information about neuronal activity patterns from
spatially defined regions of interest (ROIs).

In the last decade, we have seen major technical advances of
genetically encoded Ca2+ indicators (GECIs) and the refinement
of the multi cell bolus loading technique for in vivo Ca2+ imaging
(Stosiek et al., 2003). These technical developments have led to a
surge of Ca2+ imaging data at the meso-scale. Manual analysis
of these datasets is labor intensive and can be prone to bias. This
has driven the development of a wide variety of excellent tools
that permit automated event detection and structure recognition
for defining ROIs at the meso-scale (Junek et al., 2009; Mukamel
et al., 2009; Tomek et al., 2013; Kaifosh, 2014; Hjorth et al., 2015;
Pnevmatikakis et al., 2016).

While being tailor-made for meso-scale population Ca2+

imaging, these tools do not cover the requirements of other
spatial scales. Batch processing and automation have enabled
time-effective data analysis for large populations of cells, but
similar advances have not been made in terms of data exploration
and visualization of spatiotemporal structure. Both quality
control (Harris et al., 2016) and manual identification of patterns
in imaging data require intuitive and effective visualization. As
far as we are aware, few analytical tools exist that provide users
with an analysis environment that can be applied at different
spatial scales. We hope that a user’s proficiency in handling data
with SamuROI in a Python-based environment at one scale will
greatly facilitate data analysis at other scales. This way, users
should be able to reduce time and resources necessary to acquaint
themselves with different analysis packages.

Furthermore, technological advances in microscopy have
enabled longer observation periods in larger fields of view
(Sofroniew et al., 2016), which together permit acquisition of
spatiotemporally complex datasets. For example, it will soon be
possible to routinely image thousands of cells at once (Harris
et al., 2016). In this context, it becomes possible to address

questions about spontaneous patterns of activity across multiple
brain regions at different scales. The informational structure
in spontaneous datasets is less predictable or manageable, and
exploratory analysis is an essential step in making sense of
the data. Data browsing tools are limited in this domain, and
there is a need for tools that allow scientists to efficiently
identify spatiotemporal structure within their data. We developed
SamuROI to fill this niche: to provide a tool that enables analysis
at multiple scales, and convenient data visualization for datasets
with complex spatiotemporal structure.

SamuROI was designed for use on a standard desktop PC or
laptop and focuses on intuitive data exploration and effective
semi-automated ROI management. The built-in graphical user
interface (GUI) displays data in the space, time and amplitude
domains in a way that allows the user to easily connect
fluorescence changes with their morphological location of origin
and vice versa. This makes data inspection and manual curating
of automated ROI generation easier and facilitates the rapid
identification of data patterns during exploratory analysis.
SamuROI has been designed to work alongside other software,
and to link analytical tools developed for the micro-, meso-,
and macro-scales. ROIs generated from other tools can be
imported, and also modified manually. Datasets can be saved
as hdf5 files in which both structural and dynamic information
can be organized together. Hdf5 is also a suitable format for
automated post-processing of the analyzed data using Python or
other scripting languages. We take advantage of the interactive
workflow provided by Jupyter Notebook, which allows seamless
integration of the SamuROI GUI with custom pre- and post-
processing analysis pipelines. This way, SamuROI bridges the gap
between batch processing and data inspection while providing
a versatile analysis environment for application in a range of
imaging applications at different scales. SamuROI source code is
publicly available on GitHub1 and licensed under the MIT license.
Detailed installation instructions and usage documentation are
also available online2. In this paper, we describe the software
architecture and the general data processing workflow. We also
provide examples of its application at the micro-, meso-, and
macro-scale using Ca2+ imaging data obtained in acute slices.

MATERIALS AND METHODS

Experimental Procedures
Experimental data used to demonstrate and evaluate the
functionality of SamuROI was generated in accordance with
the national and international guidelines. All procedures were
approved by the local health authority and the local ethics
committee (Landesamt für Gesundheit und Soziales, Berlin;
animal license number T100/03).

Dendritic and spine calcium signals were obtained in layer 2
cells of the medial entorhinal cortex (MEC) in acute brain slices.
Slices were prepared from juvenile Wistar rats (postnatal day 16
to 25) following the procedures as described in Beed et al. (2010).

1https://github.com/samuroi/SamuROI
2https://samuroi.readthedocs.io

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2017 | Volume 11 | Article 44

https://github.com/samuroi/SamuROI
https://samuroi.readthedocs.io
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 3

Rueckl et al. SamuROI

To provide optimal imaging conditions for small subcellular
structures, we filled single cells with synthetic dyes. For dye filling,
we either performed whole-cell patch clamp recordings or single
cell electroporation for measurements where we did not want
to interfere with the intracellular composition of the cell. The
intracellular solution for filling patch clamp pipettes (3–6 M�)
contained: 130 K-gluconate, 20 KCl, 10 HEPES, 4 MgATP, 0.3
NaGTP, and 10 phosphocreatine (in mM; pH: 7.3) and 30 µM
Alexa 594 and 100 µM Oregon-Green BAPTA-6F (OGB6F).
Electroporation pipettes were filled with 1 mM Oregon-Green
BAPTA-1 (OGB1) and 150 µM Alexa 594 dissolved in ddH2O.
The single 10 V electroporation pulse lasted 10 ms (Lang et al.,
2006; Nevian and Helmchen, 2007).

For population Ca2+ imaging of neonatal spontaneous
synchronous network events, we used the genetically encoded
Ca2+ indicator (GECI) GCaMP6f. NEX-Cre mice (Goebbels
et al., 2006) were crossed with Ai95 animals3 (Madisen et al.,
2015) for constitutive GCaMP6f expression in excitatory cells
only. Neonatal slices were cut horizontally for piriform cortex
and sagittally for the parahippocampal formation at p0-10. We
used the same ringer at all stages of preparation and recording.
This solution consists of 125 mM NaCl, 25 NaHCO3, 10 mM
glucose, 4 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2 and 1 mM
MgCl2, bubbled with carbogen (5% CO2 and 95% O2).

For all experiments, Ca2+ imaging was performed using a
Yokogawa CSU-22 spinning disk microscope at 5000 rpm. The
spinning disk confocal permitted the generation of a large field of
view time series at a high acquisition rate. A 488 nm LASER was
focused onto the field of view using a 4×, 40×, or 60× objective.
Emission light was filtered using a 515 ± 15 nm band-pass filter.
Fluorescence was detected using an Andor Ixon DU-897D back-
illuminated CCD, with a pixel size of 16 µm. Andor iQ software
was used for data acquisition. In order to prevent photo bleaching
while producing the clearest images possible, we minimized the
illumination power.

Software Architecture
Requirements for Running SamuROI
In order to provide maximum backward compatibility, SamuROI
is completely developed and tested using Python version 2.7. It
should be possible to use SamuROI with Python versions 3.x but
we have not tested this specifically. The efficient and effective use
of SamuROI depends on four freely available python libraries:

– Numpy and scipy are libraries for dealing with numerical
data in Python. They provide numerical routines for array
manipulation and are capable of handling large datasets.

– PyQt, the bindings for the C++ widget library Qt is used
for putting together windows, widgets, and other GUI
elements.

– Matplotlib, a plotting library which allows plots to be
embedded in PyQt widgets.

All four modules are widely used, under active development
and have been rigorously tested and validated by the open source
community. Throughout the development of SamuROI, we tried

3https://www.jax.org/strain/024105

to build on top of the most recent versions of those projects.
The source code of SamuROI is publicly available on GitHub4

(see README.md for installation instructions). SamuROI is
licensed under the MIT license. The documentation of SamuROI
is automatically built via Sphinx and available online5. Unit
tests and a continuous integration pipeline of new releases are
currently not available. Contributions in the form of bug reports,
pull requests and proposed improvements are highly appreciated.

Basic Software Design of SamuROI
When designing SamuROI, a key objective was to provide easy
extensions for custom functionality such as data pre- and post-
processing, visualization and data curation. For this, toggling
between the GUI and python code is central. We therefore
encourage running SamuROI from a Jupyter Notebook, which
provides easy access to all aspects of data management.

We did not want the user to have to keep modifications via
the GUI and the Jupyter Notebook in sync. For coordinating the
different levels of interaction with the data via widgets in the GUI
and the Jupyter Notebook, we implemented a strict separation
of data and its presentation. Technically speaking, we used the
“document-view” also known as “model view (controller)” design
pattern (Gamma et al., 2015). In document view, data (Document
in Figure 1A, i.e., the SamuROIData class), and its presentation
to the user (Views in Figure 1A, i.e., the GUI and its widgets) do
not depend on one another. For communication between these
parts we use a signal slot pattern (as in Qt, sometimes also called
“Observer pattern”) (Gamma et al., 2015) (Figure 1A). As data is
mutated, the data object calls all slots of the respective signal, i.e.,
it informs all ‘listeners’ that some aspect of the data has changed.

The right hand side of Figure 1A represents a set of different
views. All views ‘listen’ to signals of the data that are of relevance
for their visualized content upon application start up, which
means they are slots of the signal. If the data changes, signals
will be emitted to all slots and, consequently, all listening views
will be notified and will modify their presentation to the user
accordingly.

The SamuROIData class on the left hand side of Figure 1A
holds all relevant data and provides functionality for mutating
and extracting subsets of data (Figure 1A, left). The most
important data members of this class are:

– the 3D numpy array containing the video data
– the 2D numpy array containing the overlay mask
– multiple python containers holding user defined ROI

objects

The extensive use of python properties within the
SamuROIData class allows mutations of the data to be
intercepted and the respective signals to be triggered. For
the full API of the SamuROIData class and the mask sets, the
reader is referred to the online documentation, especially the
examples section. The signals provided by the SamuROIData
class are trivially implemented as lists of python functions where
the arguments of the signal invocation get perfectly forwarded to

4https://github.com/samuroi/SamuROI
5https://samuroi.readthedocs.io

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2017 | Volume 11 | Article 44

https://www.jax.org/strain/024105
https://github.com/samuroi/SamuROI
https://samuroi.readthedocs.io
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 4

Rueckl et al. SamuROI

FIGURE 1 | Software Architecture. (A) Diagram depicting the components of SamuROI in the document view pattern. SamuROI is split up into a data or document
class (SamuRoiData) and multiple widgets which display the data (views). Communication between those classes takes place via callbacks (termed mutation, signals
updates and data extraction in the diagram). This allows the user to update both, document and view by an interactive shell (here Ipython, bottom) without having to
worry about keeping document and view in sync. (B) Flowchart to illustrate the process of signaling between widgets, data and interactive shell. User interactions
are symbolized with the stickman.

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 5

Rueckl et al. SamuROI

all functions contained in the list:

class Signal(list):

def__call__(self,∗args,∗∗kwargs):

for func in self:

func(∗args,∗∗kwargs)

# usage example

def do_something(message):

print message

sig= Signal()

sig.append(do_something)

sig(“hello world”)

The above class is not to be mistaken with the Qt signals that
are used to connect to events originating from user input. The
rationale behind using two different signal types is simple: the
SamuROIData class was designed such that it is independent
of any user frontend, and hence must not have a dependency
on Qt.

This document view based design pattern permits the desired
synchronized cooperation between the GUI and the Jupyter
Notebook: as can be seen in Figure 1A, the Jupyter Notebook
permits tuning of the GUI as well as data mutation and extraction
via the SamuROIData class at the document level. Further, if user
interaction with the GUI updates the SamuROIData class the
same signal cascade as described above will be triggered.

To give an example of signal slot communication, we would
like to describe in detail what happens during ROI mask addition.
When a user adds a ROI mask to the data using the GUI widget,
the widget’s Qt signal is triggered, which adds the ROI mask to
the SamuROIData class, triggers its internal signal and notifies
all interested listeners (for example the widget which displays the
list of masks as a tree structure; upper part of Figure 1B). The
widget, which adds the ROI mask, therefore, does not need to
know about other components which also require notification:
the logic is confined in the signals from the SamuRoiData object.

Because of this signaling structure, updates originating from
the interactive shell will invoke the same mechanism and update
relevant GUI elements (lower part of Figure 1B). On the other
hand, one can also use the interactive shell to add custom GUI
elements to an existing window, or connect post-processing
and export functions to the data (see example in the online
documentation). Another advantage of the separation between
data and view is the future possibility to reuse the GUI code,
e.g., in a cloud computing scenario. Then the data object behind
the client GUI would simply defer all calculations and memory
limitations to a server and present only 2D slices and the
calculated traces of the data to the GUI.

Performance Considerations
For a smooth user experience and fast calculation of traces from
the defined ROIs SamuROI always holds the full 3D video array
in memory. With the use of double precision floating points and
an assumed video size of 512 × 512 pixels and 1000 frames
this results in about 2 GB of required RAM. Hence, long-term
recordings with high frame rates are likely to exceed an average
workstations system memory. Since features as memory mapped
files are not supported in SamuROI, such datasets need to be split
to fit into memory.

Calculating the time series of ROIs makes extensive use of
numpy routines and has negligible CPU cost: due to numpy’s
underlying C implementation a decent machine needs only a
couple of milliseconds per ROI. Further, calculated traces get
cached by SamuROI and hence need not be calculated twice. The
only relevant computation times arise from the pre-processing of
data (stabilization, filtering and/or renormalization) which can
grow up to a couple of minutes per dataset. However, because
pre-processing is usually run from an interactive python shell,
it can easily be done in batch mode or distributed to dedicated
machines. Then, the saved pre-processed data can be loaded into
the GUI with minimal delay.

FUNCTIONALITY AND RESULTS

We will now illustrate the functionality of SamuROI by
describing the general workflow of data processing. After
explaining data import and pre-processing, we describe the
different widgets of the GUI and explain data export. We then
provide three application cases at the micro-, meso- and macro-
scale. We provide the most detailed description of micro-scale
imaging, as we are not aware of any standardized freeware
software solutions facilitating the analysis of fluorescence changes
in complex dendritic structures.

General Workflow
The first step of any image analysis software is the conversion
of the acquired raw data into a format compatible with the
analysis software. Depending on the data acquisition system used,
dynamic image series are saved in a variety of data formats. We
therefore needed to define a format that works with SamuROI.
As an interface with SamuROI, we chose multiple image tif files.
When it becomes necessary to convert data from other time series
formats into multiple image tif files, we recommend the use of Fiji
(Schindelin et al., 2012).

The first step after loading the multiple image tif file into
SamuROI is the conversion into a 3D numpy array. This is a
convenient format that allows a whole range of computations to
be applied to the data. Usually, a couple of pre-processing steps
are applied to the raw fluorescence images. Pre-processing can be
performed in Python on this numpy array. SamuROI comes with
a set of standard pre-processing functions. These include image
stabilization [via opencv (Bradski, 2000), stabilization consists
of rigid and warpaffine transformations to align each image to
a given reference frame of the video provided], background
subtraction, bandstop filtering and transformation of the raw

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 6

Rueckl et al. SamuROI

fluorescence data into a 1F/F dataset (see Supplementary
Methods for details on the underlying algorithms). Usage of these
functions requires the use of an interactive shell like Jupyter. With
a basic working knowledge of Python, users can also implement
their own custom pre-processing routines for the 3D numpy
array.

Next, a SamuRoiData object is created from the pre-processed
data. The SamuRoiData object can be visualized with its
associated GUI. This data object can be accessed and manipulated
from within this GUI or directly using python commands in
the interactive shell or with stand-alone python scripts. The
current version of the GUI can be used for ROI mask generation,
smoothing, detrending, and thresholding.

We would now like to provide an overview of the current
SamuROI GUI with all functional widgets. Our example data
displays a dendritic segment with adjacent spines in a layer
2 cell of the MEC. The cell was in whole-cell patch clamp
mode, the fluorescent Ca2+ signal corresponds to a doublet of
backpropagating action potentials evoked by current injection.

The GUI is built using the PyQt library and consists of four
interactive widgets and a toolbar (Figures 2A–E). The central
ImageView panel (Figure 2D) displays a morphological grayscale
image of the structure underlying the dynamic image series.
A thresholding overlay mask defines the relevant pixels of the
morphology image, which are above a user-defined threshold
(see Supplementary Methods for details on the underlying
algorithm). On top of the composite morphological grayscale
and thresholding overlay mask image, a heatmap encodes the
frame-specific fluorescence detected in each pixel. The threshold
for the thresholding overlay mask can be set manually in the
mask tab in the toolbar (Figure 2A) and a slider permits the
user to explore the frame-specific fluorescence detected in each
pixel frame by frame. After loading the dynamic image series
into the GUI, the user can define specific ROI masks for further
analysis of location-specific changes of fluorescence over time.
The SamuROI toolbar supports creation of four types of ROI
masks: branches, polygons, circles and pixel groups. Further,
predefined segmentations [e.g., ROI masks exported from ilastik
(Sommer et al., 2011) or swc files denoting dendritic structures
from Neutube (Feng et al., 2015)] can be loaded via the interactive
shell. The TreeView widget lists individually created or imported
ROI masks (Figure 2C). While TreeView automatically generates
names for individual ROI masks, the user can change names
interactively. Selecting an item from the list in TreeView will
display the corresponding trace of averaged intensity per frame
in the TraceView widget (Figure 2E). Individual or all branch
masks can be further subdivided into pixel-sized sub-segments
using the ‘split’ tabs in the toolbar (Figure 2A). Individual sub-
segments can be selected as children of individual branchmasks in
the TreeView widget. The RasterView widget displays individual
segments. The relative fluorescence of each segment is color
coded and plotted against frame number (Figure 2B).

Within the GUI, SamuROI offers different post-processors
like detrending and smoothing tabs or a pull-down menu item
for event detection. Examples for how the interactive Jupyter
shell can be used for additional post-processing of SamuRoiData
objects are provided in the online documentation.

After defining and curating the ROIs and performing the
necessary post-processing steps, the user needs to save the data.
It is possible to document the analysis by saving the Jupyter
Notebooks underlying individual experiments. In addition, we
provide the option to export most of the relevant data stored
in the SamuRoiData to hdf5 files. A pull-down menu in the
GUI can be used directly to save the set of variables that is to
be exported. At the moment this includes the threshold used
to construct the thresholding overlay mask, ROI location and
identity with the corresponding calcium imaging traces and the
original 3D numpy dataset. User-specific post-processing results
like those related to event detection can be incorporated into the
hdf5 file, but this must be done outside of the GUI in Python.
The hdf5 file is modeled on the structure of the SamuRoiData
object, structured according to the masklist displayed in the
TreeView widget. The analysis environment can be reconstructed
from stored hdf5 files, which can be loaded into SamuROI as
SamuRoiData objects. The hdf5 file structure allows the user
to selectively import parts of a previous analysis environment,
which makes it possible to easily reapply stored sets of ROI masks
to a new dataset.

One key motivation for using the hdf5 file structure is that in
large datasets, it often becomes necessary to identify individual
events in different segments using automated procedures. Here,
we define an event as form of electrical neuronal activity (an
action potential or a synaptic response or a combination of both)
that results in a temporary brightness change of the fluorescence
indicator that can be clearly differentiated from baseline noise.
Usually, events occur in different spatially confined segments
of the data (e.g., different cell bodies at the meso-scale).
Analyzed data, exported as hdf5 files, can be used for automated
batch analysis in Python or other analysis environments. Batch
processing of large datasets should best be performed on hdf5 files
of individual experiments exported from SamuROI. However, for
definition of the settings used for event detection and quality
control, the SamuROI GUI is built to facilitate visualization of
event detection. As a starting point, SamuROI offers standard,
built-in event detection functionality based on template matching
of a bi-exponential function. Briefly, this approach is based
on defining a template of a typical event signal. This template
then slides along the fluorescence trace and is scaled to fit
the data at each point. This way, a point-by-point detection
criterion is generated based on the optimal scaling factor and
the quality of the fit. The user has to define the threshold
above which the detection criterion defines an event (Clements
and Bekkers, 1997). While originally developed for analysing
electrophysiological data, this approach can also be applied in
imaging applications (Tantirigama et al., 2017). Time constants,
which define the fit parameters of representative ‘bait’ traces,
must be obtained from other software solutions; we recommend
the use of Stimfit (Schmidt-Hieber, 2014). Importing traces from
hdf5 into Stimfit is relatively straightforward, which can then
be used for curve fitting. Detected events are highlighted in the
Treeview, Rasterview and TraceView widgets. Once the event
detection settings (in our case time constants and detection
criterion) have been optimized in the GUI, they can be performed
in the Jupyter Notebook on larger datasets.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 7

Rueckl et al. SamuROI

FIGURE 2 | Screenshot of the GUI. (A) Toolbar: (A1) Allows the user to set a numeric cut-off value for the thresholding overlay mask. The thresholding overlay mask
defines irrelevant background fluorescence and spares relevant pixels in the morphology image. (A2) Permits pixel-wise shifting of selected ROI masks in the
direction of the arrows. (A3) Defines the width of branch sub-segments arranged perpendicular to the all BranchMasks (split all) or only the selected BranchMask
(split selection). (A4) Permits grouping adjacent segments or splitting the selected segments in half. In tab (A5), the different mask drawing tools for PixelMasks (P,
turquoise), BranchMasks (B, blue) and freehand PolygonMasks (F, magenta) can be selected. Selected masks can be deleted using the trashcan icon in this tab. Tab
(A6) hosts the Detrend and Smoothen postprocessors. The degree of smoothing (moving average filter) can be defined using the number tab. (B) The RasterView
widget visualizes the temporal and spatial distribution of the fluorescent Ca2+ signal over the segments of a selected BranchMask. Points on the y-axis corresponds
to the segment number, the x-axis defines the frame number. The amplitude of the averaged fluorescent signal of a given segment is color-coded. The vertical black
line between frames 40 and 50 corresponds to the slider button and the currently selected frame in (D) and the line in the TraceView (E). The panel on the left gives
access to standard matplotlib functions like for example zooming, panning or exporting of subplots as image files. Similar panels can be found in the FrameView (D)
and TraceView (E) widgets. (C) The TreeView widget gives access to the ROI mask list. Different types of masks are grouped and selected masks are highlighted in
gray. Names of the different ROI masks are indexed by default, but can be changed directly in the TreeView widget. (D) The image in the FrameView widget is a
composite of the grayscale image of the morphology object with the thresholding overlay mask and the color-coded pixel brightness of the currently selected frame.
The x- and y-scale corresponds to single pixels. ROI masks are projected on this image in light gray, selected ROI masks are highlighted in colors corresponding to
traces demonstrated in (E). The corresponding color code in (C) and (A5) is just for illustration. The scale bar on the right illustrates the color code for frame-specific
pixel brightness. (E) In the TraceView widget, the relative change in brightness (in our example, the 1F/F value) of the selected ROI mask(s) is plotted against the
frame number.

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 8

Rueckl et al. SamuROI

Application Cases
Subcellular Imaging
One intended use for SamuROI is the generation and
visualization of temporal and spatial profiles of neuronal activity
related Ca2+ signals from complex dendritic structures and
spines (Figure 3). Specifically, this includes analysis of the spatial
distribution of spontaneous synaptic events reflected by Ca2+

‘hotspots’ on dendrites or spines. See Jia et al. (2010), Kleindienst
et al. (2011) or Takahashi et al. (2012) for example research
questions requiring this analysis approach. Another example is
the identification and demarcation of spontaneous release from
intracellular stores in dendrites. Related research questions can
be found in Larkum et al. (2003), Miyazaki and Ross (2013) and
Lee et al. (2016).

In our example, we would like to illustrate how SamuROI
can be used to visually identify and localize a spontaneously
occurring Ca2+ transient or ‘hotspot’ in a single spine on a long
dendritic segment. Here, a layer 2 cell in the MEC has been
electroporated with the Ca2+ indicator OGB1. A morphological
image was generated as a maximum projection along time
of the motion- corrected 3D dataset. Then, the motion-
corrected 3D data set is transformed into 1F/F data. SamuROI
then transfers both, the morphology image and the 1F/F
3D numpy array, into a SamuRoiData object. In the online
supplements, we provide a Jupyter Notebook that includes
a step-by-step description of data import, the pre-processing
steps and the generation of the SamuRoiData object and the
corresponding GUI.

Manual drawing of ROIs delineating subcellular structures
like dendrites and spines requires the investigator to manually
trace the boundary between the structure and the background,
which is a time-consuming and tedious task. In SamuROI,
we implemented a functionality that speeds this process
up significantly. Based on the morphology image, SamuROI
generates a ‘thresholding overlay mask.’ The software implements
a thresholding algorithm (see Supplementary Methods) that
defines above background pixels incorporated into the further
analysis. Compare the raw morphological image Figure 3A1
(top left) and the thresholded image Figure 3A2 (top right).
SamuROI ignores the masked out black pixels in ROIs, which
only contain background fluorescence. ROI masks, irrespective of
whether they are generated as tubes using the SamuROI branch
tool or incorporated from somewhere else, can therefore be
larger than the structure of interest. This speeds up manual ROI
generation significantly and also facilitates the import of ROI
masks from for example swc files, as ROI masks can include
regions where no pixels are analyzed. Small inter-experimental
changes in ROI shape are automatically incorporated, so that
the same ROI can be used for consecutive sweeps of the same
structure. Using of the same ROI mask for consecutive sweeps
is further facilitated by an alignment tab (Figure 2A2) that
permits shifting of selected ROIs. Together with the example
Jupyter Notebook in the online supplements we also offer an
example swc file from the freeware software Neutube together
with an instruction how to generate swcs in Neutube that
can be used by SamuROI and incorporated directly as branch
ROIs.

FIGURE 3 | Micro-scale imaging example for using SamuROI on a dendritic
structure. (A) (A1) The morphological image of a dendritic segment from an
electroporated layer 2 cell in the MEC. (A2) The corresponding FrameView
image from SamuROI, a composite of the thresholding overlay mask defining
relevant pixels of the grayscale morphological image and color-coded frame
specific brightness values of the relevant pixels. The yellow outline was
generated using the BranchMask tool. The scale bar corresponds to 2 µm.
(A3) Depicts how the BranchMask from (A2) is divided into SegmentMasks by
SamuROI. (B) RasterView of segments from the dendritic branch
corresponding to (A). Time on the x-axis is defined by the scale bar in (C).
1F/F is color-coded as in (A4). The magenta arrow corresponds to the point
on the y-axis representing the magenta-colored segment both in (A4) and in
(C). The black arrow corresponds to the time point indicated by arrows in (C)
and (D) and defines the frame depicted in (A4). (C) The inset on the left
magnifies the distal part of the dendrite shown in (A). The trace corresponds
to the SegmentMask outlined in the inset and (A4). (D) Based on the
distribution of pixel brightness at the time point defined by the black arrow in
(B), ROI masks are defined manually as freehand PolygonMasks. The local
Ca2+ transient in the spine (green) can be differentiated from the dendritic
segment (red).

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 9

Rueckl et al. SamuROI

The key objective of our application example is the detection
of spontaneously occurring local hotspots of activity on a large
dendritic structure. For this task, it is necessary to subdivide
dendritic branches into segments and visualize fluorescence
changes in each individual segment. Again, manual ROI drawing
tools that are typically implemented in analysis software would
now require the user to manually draw a large number of
evenly spaced ROIs. For this task, it is necessary to subdivide
dendritic branches into segments and visualize fluorescence
changes in each individual segment. In SamuROI, the split tool
(Figure 2A3) automatically divides tubular branchmasks into
identically spaced sub-segments oriented perpendicular to the
longitudinal axis of the dendritic branch (Figures 3A3,4). The
spacing of these segments is a user-defined number of pixels.
This adaptability is important, as signal to noise improves when
the number of pixels in a segment corresponds to the number
of pixels active in a hotspot. In each segment, the thresholding
overlay mask defines pixels that will be averaged. Further, a pixel’s
surface fraction, which resides within the ROI mask, determines
its weight. Pixels in the interior of the ROI will have a weight of 1,
boundary pixels will have a weight of less than 1.

After SamuROI has calculated the average for all segments, it
is necessary for the experimenter to identify and localize hotspots
of activity. The usual output of ROI-Data are fluorescence
traces. Visually screening large numbers of fluorescence traces
derived from individual dendritic segments is tedious and
prohibits immediate recognition of temporal and spatial patterns.
Therefore, the RasterView widget (Figure 3B) provides a
linescan-based color-coded display of the intensity time-course
of each segment in a branch.

This approach enables the investigator to rapidly visualize the
spatial and temporal activity pattern and identify a hotspot of
activity in our example. In addition, once the putative hotspot
has been identified in the RasterView widget, we want to know
the exact position in on our morphological image in the frame
view widget and visualize the underlying fluorescence trace to
evaluate qualitative parameters of the signal which get lost in a
heatmap. SamuROI offers a solution to this problem that imaging
signals need to be displayed in different formats synchronously
for evaluation. Our software permits intuitive browsing of the
data by synchronizing different widgets in the GUI: in our
example, clicking a temporally and spatially defined hotspot in
the RasterView widget (arrows in Figure 3B) highlights the
corresponding ROI mask in the FrameView widget (Figure 3A4)
and the segment in TreeView. It also triggers the display of the
corresponding sweep in TraceView (Figure 3C). We are now able
to locate the signal at the distal tip of the dendritic segment and
estimate the time course and the signal to noise ratio looking at
the trace.

By definition, our segment masks are stereotyped and may not
capture the perimeter of a hotspot or spine correctly. SamuROI
enables the visualization of the exact spatial extent of the hotspot
we detected in our example. By selecting the time points of
interest in the RasterView widget at the event peak, the 1F/F
color-coded pixels are overlaid on the morphological image in
FrameView (see inset in Figure 3C) and the corresponding frame
is marked in the TraceView widget (Figure 3C, black arrow).

It is now necessary to define the hotspot in greater detail.
For this purpose, we generated tools for ROI definition using
freehand drawn polygons or individually selected pixel groups.
In our example, the RasterView permits immediate identification
of a hotspot and its localization in the FrameView widget.
The intensity color-code in the FrameView widget demonstrates
that the active pixels correspond to a dendritic spine (see the
inset in Figure 3C). By drawing a freehand polygon around
primarily active pixels in the FrameView widget, we manually
generate a ROI mask that only incorporates the isolated hotspot
(Figure 3D).

Using this example that illustrates the core functionality of
SamuROI, we would now like to explain the options for further
data processing offered by our hdf5 file based data format. From
identification of a hotspot, one could save the adapted set of
ROI masks (branch masks, segments and the newly generated
polygon) and apply it to a different image series from the
same structure. This way, it would be possible to identify and
analyze all hotspots in a set of image series from the same
structure. Additionally, one could use the detected signal as a
’bait’ to generate a template for a typical signal and use this
for automated event detection in this dataset. Once all image
series are analyzed, the hdf5 files will not only contain all traces
underlying labeled structures but also the spatial information
related to these structures, which will be helpful when analysing
spatial aspects of activity. One could for example analyze if
hotspots tend to be spatially clustered or if they are distributed
randomly.

Meso-scale Imaging
One of the goals of population imaging is to identify and describe
structure in the activity of populations of cells. Specifically, single-
cell Ca2+ signals representing action potential firing can be
spatially and temporally related to each other during spontaneous
network activity as for example in Namiki et al. (2013), or
following extracellular synaptic stimulation as in Johenning and
Holthoff (2007). In vivo, these cellular activity patterns are often
related to behavior, one of many examples can be seen in Heys
et al. (2014).

It is common in this kind of data exploration to have no
hypothesis regarding where activity will be located or how
it will be temporally structured within a population of cells.
For this type of analysis the SamuROI GUI can be used for
data visualization with generic ROI masks from a variety of
software for interactive display of different groups of cells. In
addition, the SamuROI GUI offers convenient functionality for
manual curation of ROIs and for the testing of event detection
parameters.

We would now like to give a specific example to highlight
unique functionalities of SamuROI. In our example, we imaged
immature spontaneous synchronized network events in a
neonatal slice preparation of the olfactory cortex. In these
network events, there is high synchrony between a subset of cells,
which are hard to identify as single cells by established variance-
based measurements relying on sparse firing (Hjorth et al., 2015;
see discussion for details). Here, we present a workflow for
measuring activity in densely packed cell populations that fire

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 10

Rueckl et al. SamuROI

synchronously. We also show how our workflow can be used to
provide a read out of the number of cells that are silent for the
total duration of the recording.

For Ca2+ indication, constitutive GCaMP6f expression in
post-mitotic excitatory neurons is achieved in the AI95/NexCre
mouse line. The first step is to generate sets of ring-shaped
ROI masks for GCaMP expressing cells that are based on pixel
classification segmentation using ilastik (Sommer et al., 2011) and
watershed segmentation using the scikit-image module in Python
(van der Walt et al., 2014). In GCaMP-based datasets, the main
underlying morphological feature is the ring shape of GCaMP6f
expression, with a fluorescent cytosolic rim and a dark central
nucleus (Figure 4A), and we present a segmentation approach
specified for this morphological pattern. The generated ROIs are
illustrated in Figure 4B.

In the online supplements, we provide an example Jupyter
Notebook for using these functions to generate single cell
segmentation ROI masks and opening them in SamuROI. In
the documentation we also outline how to generate ROI masks
using ilastik. After automated ROI generation in ilastik, we
implemented a manual correction step for adding and deleting
single cells. The user input required is essentially a mouse click on
the dark nuclear center of a ring shaped cell. The final outcome
of our segmentation is a 2 dimensional array in which each cell is
denoted by a different number (i.e., every pixel belonging to cell
1 is denoted by a 1 in the image). This array is then imported into
the SamuROI GUI. SamuROI works with these segmentations
and treats them just as though they were a set of individual ROIs.

Basic GUI functionality of meso-scale population ROI masks
is similar to that described above for micro-scale data. The GUI
displays the mean fluorescence of all pixels in each mask and
displays this through RasterView and TraceView as can be seen
in Figures 4C,D. RasterView reveals structured activity in cell
populations and allows event selection that leads to highlighting
of the cell of origin in both FrameView and TreeView, as
well as plotting in TraceView. Additionally, single or multiple
cells can be selected in FrameView for simultaneous viewing
and comparison of activity in TraceView, which is shown in
Figure 4C. This way, it is possible to intuitively visualize aspects
like synchrony, number of cells participating and the order of
neuronal activation during events. One can pick cells displaying
different activity patterns in the RasterView (e.g., the blue cell
showing a large number of small bursts and the green cell
showing a small number of large bursts), directly visualize their
location in FrameView and compare the underlying traces in
TraceView. In addition, it is possible to add more ROIs using
the GUI. An example how this could be used in an experiment
to bridge subcellular micro- and meso-scale imaging would be
simultaneous imaging of a meso-scale population and single
dendritic branches of individual dye-filled cells. This example
would require the addition of branch segments to the cell ROI
masks, which can be easily accomplished in SamuROI.

The SamuROI GUI further permits standard post-processing
and event detection functionality of population imaging data sets.
Data export as hdf5 files currently needs user intervention from
the Jupyter Notebook, as the standard pull down menu does
not offer the export of cell-specific ROI masks. In our online

Supplementary Material, we provide a short function that enables
SamuROI to add cell-specific ROI masks to the hdf5 files.

Representative traces visualized in the GUI can be picked and
exported to other software, such as Stimfit to generate curve
templates that permit automated event detection. The GUI can
then be used to test sensitivity and specificity of event detection
parameters in individual experiments before batch processing the
hdf5 files in Python directly. This can be done using the same
functions that have been used in the GUI. Batch analyzed data
will provide spatial and temporal information of detected events
in the hdf5 files, which will enable the user to extract spatial and
temporal correlations of network activity simultaneously.

Macro-scale Imaging
Low magnification imaging of brain-activity induced changes
in Ca2+ indicator fluorescence (or, in principle any other
indicator of neuronal activity employing changes in brightness
as a readout) enables researchers to analyze the spatiotemporal
spread of activity patterns over different brain regions with low
spatial and high temporal resolution. Specific uses of macro-scale
imaging include the spatial and temporal spread of spontaneous
activity in brain slices (Easton et al., 2014) or interregional
synchrony in vivo (Busche et al., 2015).

The generic functions of SamuROI can be used to facilitate
interpretation of macro-scale datasets. In our example, we would
like to demonstrate how the spatiotemporal structure of a
spontaneous synchronized network event is intuitively visualized
and related to different brain structures using SamuROI.
GCaMP6f is expressed using the AI95/NexCre mouse line.
Figure 5A displays a sagittal slice of the parahippocampal
formation, where neonatal spontaneous synchronized network
events were imaged. A question we want to answer using
SamuROI in this example is how the horizontal (lateral) spread of
the signal in superficial layers of the parahippocampal formation
is organized in time and space. The branch ROI tool we initially
developed for micro-scale imaging is especially well suited for
this task, demonstrating how SamuROI can be applied for
image analysis flexibly at different spatial scales. As branch ROIs
can have any user-defined width and direction, it is possible
to generate a ROI incorporating the adjacent brain regions
subiculum, presubiculum, parasubiculum and entorhinal cortex
(Figure 5A2). The incorporation of deep and superficial layers
can be adjusted by modifying the width of the branch ROI mask.
Using the segmentation tool, we then divide these cortical regions
into sub-regions at arbitrary spatial resolution (Figure 5A2).
A RasterView of the sub-regions then displays the temporal and
spatial dynamics of neuronal activity reflected by changes in
fluorescence (Figure 5B) and the user can then localize individual
signaling patterns like the leading edge of a wave (Figure 5B,
red arrow) or an oscillating structure (Figure 5B, green and
purple arrow). After clicking on the corresponding part of the
RasterView widget, the corresponding segment is localized in
the FrameView widget (Figure 5A2). The TraceView widget
displays the corresponding traces (Figure 5C). Based on the
different spatiotemporal patterns extracted from the RasterView,
it is possible to draw freehand polygon-ROIs based on different
patterns. This is facilitated by the time-locked intensity color code

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 11

Rueckl et al. SamuROI

FIGURE 4 | Meso-scale imaging example for using SamuROI neuronal populations in the piriform cortex of a brain slice. (A) 40× magnification
GCaMP6f-fluorescence summed image of a horizontal slice from the AI95/NexCre mouse in layer 2 of the piriform cortex. (B) The summed image loaded into
SamuROI in FrameView with an overlay of color-coded cellular ROIs obtained with our mask generating function. (C) The RasterView displays all ROIs that are
plotted. It depicts the temporal and spatial profile of neuronal activity induced changes in GCaMP6f fluorescence during a spontaneous synchronous network event.
The colored arrows correspond to the highlighted cells in (B). (D) Fluorescence traces corresponding to segments color-coded in (B) and (C). Arrows in (C) depict
the starting points of the corresponding traces.

in the FrameView widget. In our example, this highlights the
initiation of the signal in the parasubiculum.

DISCUSSION

When studying neuronal activity with imaging, the appropriate
analytical unit depends on the scientific question and size
scale. Depending on spatial resolution, these analytical units
could be, for example, dendritic branches, spines, single cell
bodies or cortical layers and they ideally represent a unit of
neuronal or network computation. Researchers aim to extract
fluorescence changes specific to these analytical units, based
on which they visualize, detect and localize neuronal activity
patterns. Technological progress challenges researchers with the
opportunity to generate increasingly complex datasets in which
the ideal spatial scale is often hard to define or predict in advance.

SamuROI is built to meet the rising demand for analysis
freeware. It provides an intuitive and convenient workflow for
data exploration and ROI creation at arbitrary spatial scales.
SamuROI is a Python-based, open source analysis environment
for image series of intensity changes of fluorescent indicators

over time. The software permits both data browsing and deep
analysis using Python by seamlessly integrating command-line
interactions with a user-friendly GUI, achieved by using Jupyter
Notebooks.

As such, the software has several core strengths:

• Simplified identification of complex spatiotemporal
patterns by human observation that would otherwise get
lost in highly complex datasets.
• Time effective ROI management and manual curating

of automatically generated ROIs from other software
solutions.
• Instantaneous switching between temporal and spatial

aspects of the data via interactive point and click widgets.
• Facilitation of quality control in terms of the fluorescent

signal, ROI segmentation and event detection that is
presented to the user.

The tool is straightforward to install. The online
documentation includes code templates to illustrate usage
and enable ‘out of the box’ use with Jupyter Notebook. While
Jupyter is the recommended platform for running the GUI it

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 12

Rueckl et al. SamuROI

FIGURE 5 | Macro-scale imaging example for using SamuROI on different cortical regions of a brain slice. (A) (A1) A low magnification GCaMP6f-fluorescence image
of a sagittal slice from a AI95/NexCre mouse. Different parts of the hippocampal formation are visible. (A2) Shows a morphological image with an overlay of
color-coded frame specific brightness value. In black, we see a BranchMask over several hippocampal regions (subiculum, presubiculum, parasubiculum, medial
entorhinal cortex, and lateral entorhinal cortex) divided into equally spaced segments. The scale bar corresponds to 200 µm. (B) The RasterView corresponds to the
segmented BranchMask (A2). It depicts the temporal and spatial profile of neuronal activity induced changes in GCaMP6f fluorescence during a spontaneous
synchronous network event. The green arrow points to a segment in the subiculum, the orange arrow to the presubiculum, the red arrow to the parasubiculum and
the magenta arrow to the lateral entorhinal cortex [also see segments highlighted in corresponding colors in (A2)]. The black arrow defines the point on the x-axis
that corresponds to the frame shown in (A2) and the time points depicted by black arrows in the traces in (C). (C) Fluorescence traces corresponding to segments
color-coded in (A2) and (B).

is also possible to use SamuROI as a stand-alone application.
The modularity of the pipeline permits each processing stage
to be carried out independently, including pre-processing, data
visualization, ROI definition, data export and event detection.
Data are exported as hdf5 files, which contain all necessary
information for further batch processing of the data. The package
is carefully documented and open source to permit further
collaborative development.

SamuROI is complementary to other existing imaging analysis
software like Fiji (Schindelin et al., 2012) and SIMA (Kaifosh,
2014). These tools offer different data processing, visualization
and exploration options than SamuROI. A unique feature of
SamuROI is the document-view pattern based framework that
permits online modification of objects in the SamuROI GUI in
Python using an interactive shell like Jupyter and vice versa.

An example of integration of Fiji and SamuROI is the excellent
file conversion functionality of Fiji, which enables the conversion
of a larger number of file formats into Multi-tif files that can
be read out by SamuROI. While Fiji offers both a neurite
tracer and a ROI manager for fluorescent time series, to our
knowledge there is no default way of combining the two. We

found the visualization and manual curating options of ROIs
generated with the Fiji ROI manager limited as there are no
point and click widgets. These tools offer different visualization
and exploration options to SamuROI, and can be easily used in
parallel. While SIMA focuses on meso-scale population Ca2+

imaging in vivo, SamuROI aims to provide an integrated analysis
environment for imaging data at what we define as the micro-
scale, meso-scale and macro-scale. In addition, SIMA offers the
ROI Buddy, an excellent segmentation tool for manual curating
of ROIs. However, we missed an intuitive display that permits
visualization and browsing of fluorescence traces. However,
SamuROI by no means aims to replace any of those tools, and
we encourage using these tools in parallel. For example, one
might prefer to use the frame alignment procedures and ROI
Buddy segmentation in SIMA as a pre-processing step followed
by further analysis and visualization/exploration of the data in
SamuROI. This would be an easy way to incorporate activity-
based pixel correlations (Junek et al., 2009; Mukamel et al.,
2009; Tomek et al., 2013; Kaifosh, 2014; Hjorth et al., 2015;
Pnevmatikakis et al., 2016) to the analytical pipeline and these
can be further edited in SamuROI.

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2017 | Volume 11 | Article 44

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 13

Rueckl et al. SamuROI

One of the most critical and, when performed manually, time-
consuming steps of dynamic image series analysis is the definition
of ROI masks. For micro-scale Ca2+ imaging, we are not aware
of an integrated software solution that permits both semi-
automatic ROI mask generation and data browsing/analysis.
On the other hand, for semiautomatic tracing of morphological
data, many freeware software tools are already available for
morphological segmentation of images. Software solutions like
Neutube (Feng et al., 2015), Neuronstudio (Wearne et al., 2005;
Rodriguez et al., 2008) or the simple neurite tracer plugin for
Fiji (Longair et al., 2011) permit semi-automatic tracing of
dendritic and axonal structures. SamuROI is built to interact
with these, as any ROI pattern can easily be converted into
an array of pixels that can be added to the attribute masks.
In our online supplement, we provide examples that illustrate
how ROI sets compatible with SamuROI can be generated from
freeware programs validated for structure recognition. SamuROI
can read SWC files (e.g., exported using Neutube (Feng et al.,
2015)) and flatten these 3D dendritic tree structures into 2D
branch masks. This greatly facilitates the generation of branch
specific ROIs, and provides a good example how the excellent
branch tracing functionality of Neutube can be combined with
SamuROI.

In contrast to micro-scale imaging, there are many tools
facilitating the detection of cell bodies in population Ca2+

imaging on the meso-scale. A number of recently developed
approaches define pixels belonging to active cells based on
variance in brightness using activity-based pixel correlations
(Junek et al., 2009; Mukamel et al., 2009; Tomek et al., 2013;
Kaifosh, 2014; Hjorth et al., 2015; Pnevmatikakis et al., 2016).
These variance-based approaches work well for identifying
sparsely active cells, but cannot detect silent cells nor can
they always distinguish between closely packed synchronously
active cells that do not fulfill the prerequisite of statistical
independence. A recently published approach directly addresses
this issue for postnatal early synchronous network activity
(Hjorth et al., 2015). Regardless of the method used to detect cells,
SamuROI can provide a useful environment for visualization
and quality management of the resulting ROIs. We also provide
example functions that implement polygon ROI mask creation
for inactive and synchronous cells using the machine-learning
based structure recognition software ilastik (Sommer et al., 2011),
together with python functions based on scikit-learn and the
standard python library.

Outlook
SamuROI works well with existing tools and streamlines the
analysis of dynamic image series such as those acquired using
Ca2+ indicators. SamuROI has many built in features covering

a complete pipeline of data processing and analysis. While
many software packages for dynamic image series analysis exist,
many necessary features missing from these packages have been
combined into SamuROI. Since SamuROI permits the easy
import of ROI masks generated (semi-) automatically with other
software tools, we do not prioritize the implementation of new
segmentation algorithms in future versions of the software. Our
software has been designed in such a way that event detection
algorithms different from the template based algorithms based
on (Clements and Bekkers, 1997) can be easily implemented.
SamuROI will be used as a versatile tool for data exploration and
analysis, for identifying meaningful structure in complex datasets
and for convenient ROI management. SamuROI together with
sophisticated structure recognition software minimizes the need
for human supervision in selecting pixel-defined structures of
interest. This should allow scientists to focus their attention on
data scanning for recognition of meaningful patterns in the data
and quality control.

AUTHOR CONTRIBUTIONS

MR and SL wrote code. FJ, LM-V, DP, and SL contributed
example data. FJ, MR, and SL were involved in conceptualizing
the software. FJ, LM-V, DP, SL, MR, SR, and DS designed and
tested the software. FJ, SL, MR, SR, and DS prepared figures and
wrote the manuscript.

FUNDING

This work was supported by the German Research Foundation
(DFG), grant number JO1079/1-1, JO 1079/3-1, and SFB 665 to
FJ, RU 1660, RU 1660/5-1 and IRTG 1740 to SR, Exc 257, SFB665
and SFB 958 to DS.

ACKNOWLEDGMENTS

We would like to thank Anna Vanessa Stempel and Robert
Sachdev for critically reading the manuscript. In addition, we
would like to thank Anke Schönherr, Susanne Rieckmann and
Lisa Zuechner for excellent technical assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2017.00044/full#supplementary-material

REFERENCES
Beed, P., Bendels, M. H. K., Wiegand, H. F., Leibold, C., Johenning, F. W.,

and Schmitz, D. (2010). Analysis of excitatory microcircuitry in the medial
entorhinal cortex reveals cell-type-specific differences. Neuron 68, 1059–1066.
doi: 10.1016/j.neuron.2010.12.009

Bradski, G. (2000). The openCV library. Dr. Dobbs J. 25, 120–126.

Busche, M. A., Kekuš, M., Adelsberger, H., Noda, T., Förstl, H., Nelken, I., et al.
(2015). Rescue of long-range circuit dysfunction in Alzheimer’s disease models.
Nat. Neurosci. 18, 1623–1630. doi: 10.1038/nn.4137

Clements, J. D., and Bekkers, J. M. (1997). Detectionof spontaneous. Biophys. J. 73,
220–229. doi: 10.1016/S0006-3495(97)78062-7

Conhaim, J., Cedarbaum, E. R., Barahimi, M., Moore, J. G., Becker, M. I., Gleiss, H.,
et al. (2010). Bimodal septal and cortical triggering and complex propagation

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2017 | Volume 11 | Article 44

http://journal.frontiersin.org/article/10.3389/fninf.2017.00044/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fninf.2017.00044/full#supplementary-material
https://doi.org/10.1016/j.neuron.2010.12.009
https://doi.org/10.1038/nn.4137
https://doi.org/10.1016/S0006-3495(97)78062-7
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


fninf-11-00044 June 27, 2017 Time: 12:16 # 14

Rueckl et al. SamuROI

patterns of spontaneous waves of activity in the developing mouse cerebral
cortex. Dev. Neurobiol. 70, 679–692. doi: 10.1002/dneu.20797

Easton, C. R., Weir, K., Scott, A., Moen, S. P., Barger, Z., Folch, A., et al. (2014).
Genetic elimination of GABAergic neurotransmission reveals two distinct
pacemakers for spontaneous waves of activity in the developing mouse cortex.
J. Neurosci. 34, 3854–3863. doi: 10.1523/JNEUROSCI.3811-13.2014

Feng, L., Zhao, T., and Kim, J. (2015). neuTube 1.0: a new design for
efficient neuron reconstruction software based on the SWC format. eNeuro
2:ENEURO.49–ENEURO.14. doi: 10.1523/ENEURO.0049-14.2014

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (2015). Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA: Addison-Wesley
Longman Publishing Co., Inc.

Garaschuk, O., Linn, J., Eilers, J., and Konnerth, A. (2000). Large-scale oscillatory
calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459. doi: 10.1038/
74823

Goebbels, S., Bormuth, I., Bode, U., Hermanson, O., Schwab, M. H., and
Nave, K.-A. (2006). Genetic targeting of principal neurons in neocortex and
hippocampus of NEX-Cre mice. Genesis 44, 611–621. doi: 10.1002/dvg.20256

Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73,
862–885. doi: 10.1016/j.neuron.2012.02.011

Harris, K. D., Quiroga, R. Q., Freeman, J., and Smith, S. L. (2016). Improving
data quality in neuronal population recordings. Nat. Neurosci. 19, 1165–1174.
doi: 10.1038/nn.4365

Heys, J. G., Rangarajan, K. V., and Dombeck, D. A. (2014). The functional micro-
organization of grid cells revealed by cellular-resolution imaging. Neuron 84,
1079–1090. doi: 10.1016/j.neuron.2014.10.048

Hjorth, J. J. J., Dawitz, J., Kroon, T., Pires, J., Dassen, V. J., Berkhout, J. A., et al.
(2015). Detection of silent cells, synchronization and modulatory activity in
developing cellular networks. Dev. Neurobiol. 76, 357–374. doi: 10.1002/dneu.
22319

Jia, H., Rochefort, N. L., Chen, X., and Konnerth, A. (2010). Dendritic organization
of sensory input to cortical neurons in vivo. Nature 464, 1307–1312.
doi: 10.1038/nature08947

Johenning, F. W., and Holthoff, K. (2007). Nuclear calcium signals during L-LTP
induction do not predict the degree of synaptic potentiation. Cell Calcium 41,
271–283. doi: 10.1016/j.ceca.2006.07.005

Junek, S., Chen, T.-W., Alevra, M., and Schild, D. (2009). Activity correlation
imaging: visualizing function and structure of neuronal populations. Biophys.
J. 96, 3801–3809. doi: 10.1016/j.bpj.2008.12.3962

Kaifosh, P. (2014). SIMA: python software for analysis of dynamicfluorescence
imaging data. Front. Neuroinform. 8:80. doi: 10.3389/fninf.2014.00080/abstract

Kleindienst, T., Winnubst, J., Roth-Alpermann, C., Bonhoeffer, T., and
Lohmann, C. (2011). Activity-dependent clustering of functional synaptic
inputs on developing hippocampal dendrites. Neuron 72, 1012–1024.
doi: 10.1016/j.neuron.2011.10.015

Lang, S. B., Bonhoeffer, T., and Lohmann, C. (2006). Simultaneous imaging of
morphological plasticity and calcium dynamics in dendrites. Nat. Protoc. 1,
1859–1864. doi: 10.1038/nprot.2006.267

Larkum, M. E., Watanabe, S., Nakamura, T., Lasser-Ross, N., and Ross, W. N.
(2003). Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical
pyramidal neurons. J. Physiol. 549, 471–488. doi: 10.1113/jphysiol.2002.037614

Lee, K. F. H., Soares, C., Thivierge, J.-P., and Beique, J.-C. (2016). Correlated
synaptic inputs drive dendritic calcium amplification and cooperative plasticity
during clustered synapse development. Neuron 89, 784–799. doi: 10.1016/j.
neuron.2016.01.012

Longair, M. H., Baker, D. A., and Armstrong, J. D. (2011). Simple neurite tracer:
open source software for reconstruction, visualization and analysis of neuronal
processes. Bioinformatics 27, 2453–2454. doi: 10.1093/bioinformatics/btr390

Madisen, L., Garner, A. R., Shimaoka, D., Chuong, A. S., Klapoetke, N. C., Li, L.,
et al. (2015). Transgenic mice for intersectional targeting of neural sensors
and effectors with high specificity and performance. Neuron 85, 942–958.
doi: 10.1016/j.neuron.2015.02.022

Miyazaki, K., and Ross, W. N. (2013). Ca2+ sparks and puffs are generated and
interact in rat hippocampal CA1 pyramidal neuron dendrites. J. Neurosci. 33,
17777–17788. doi: 10.1523/JNEUROSCI.2735-13.2013

Mukamel, E. A., Nimmerjahn, A., and Schnitzer, M. J. (2009). Neurotechnique.
Neuron 63, 747–760. doi: 10.1016/j.neuron.2009.08.009

Namiki, S., Norimoto, H., Kobayashi, C., Nakatani, K., Matsuki, N., and Ikegaya, Y.
(2013). Layer III neurons control synchronized waves in the immature
cerebral cortex. J. Neurosci. 33, 987–1001. doi: 10.1523/JNEUROSCI.2522-
12.2013

Nevian, T., and Helmchen, F. (2007). Calcium indicator loading of neurons using
single-cell electroporation. Pflugers. Arch. 454, 675–688. doi: 10.1007/s00424-
007-0234-2

Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D.,
et al. (2016). Simultaneous denoising, deconvolution, and demixing of
calcium imaging data. Neuron 89, 285–299. doi: 10.1016/j.neuron.2015.
11.037

Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., and Wearne,
S. L. (2008). Automated three-dimensional detection and shape classification
of dendritic spines from fluorescence microscopy images. PLoS ONE 3:e1997.
doi: 10.1371/journal.pone.0001997.s001

Scanziani, M., and Häusser, M. (2009). Electrophysiology in the age of light. Nature
461, 930–939. doi: 10.1038/nature08540

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676–682. doi: 10.1038/nmeth.2019

Schmidt-Hieber, C. (2014). Stimfit: quantifying electrophysiological data with
Python. Front. Neuroinform. 8:16. doi: 10.3389/fninf.2014.00016

Sofroniew, N. J., Flickinger, D., King, J., and Svoboda, K. (2016). A large field of
view two-photon mesoscope with subcellular resolution for in vivo imaging.
eLife 5:e14472. doi: 10.7554/eLife.14472.001

Sommer, C., Straehle, C., and Koethe, U. (2011). “Ilastik: interactive learning and
segmentation toolkit,” in Proceeding of the Biomedical Imaging: From Nano,
Chicago, IL. doi: 10.1109/isbi.2011.5872394

Stettler, D. D., and Axel, R. (2009). Representations of odor in the piriform cortex.
Neuron 63, 854–864. doi: 10.1016/j.neuron.2009.09.005

Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-
photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. U.S.A. 100,
7319–7324. doi: 10.1073/pnas.1232232100

Takahashi, N., Kitamura, K., Matsuo, N., Mayford, M., Kano, M., Matsuki, N.,
et al. (2012). Locally synchronized synaptic inputs. Science 335, 353–356.
doi: 10.1126/science.1210362

Tantirigama, M. L. S., Huang, H. H. Y., and Bekkers, J. M. (2017). Spontaneous
activity in the piriform cortex extends the dynamic range of cortical odor
coding. Proc. Natl. Acad. Sci. U.S.A. 114, 2407–2412. doi: 10.1073/pnas.
1620939114

Tomek, J., Novak, O., and Syka, J. (2013). Two-Photon Processor and SeNeCA:
a freely available software package to process data from two-photon calcium
imaging at speeds down to several milliseconds per frame. J. Neurophysiol. 110,
243–256. doi: 10.1152/jn.00087.2013

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,
Yager, N., et al. (2014). scikit-image: image processing in Python. PeerJ 2:e453.
doi: 10.7717/peerj.453/fig-5

Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C.,
and Hof, P. R. (2005). New techniques for imaging, digitization and analysis
of three-dimensional neural morphology on multiple scales. Neuroscience 136,
661–680. doi: 10.1016/j.neuroscience.2005.05.053

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Rueckl, Lenzi, Moreno-Velasquez, Parthier, Schmitz, Ruediger and
Johenning. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2017 | Volume 11 | Article 44

https://doi.org/10.1002/dneu.20797
https://doi.org/10.1523/JNEUROSCI.3811-13.2014
https://doi.org/10.1523/ENEURO.0049-14.2014
https://doi.org/10.1038/74823
https://doi.org/10.1038/74823
https://doi.org/10.1002/dvg.20256
https://doi.org/10.1016/j.neuron.2012.02.011
https://doi.org/10.1038/nn.4365
https://doi.org/10.1016/j.neuron.2014.10.048
https://doi.org/10.1002/dneu.22319
https://doi.org/10.1002/dneu.22319
https://doi.org/10.1038/nature08947
https://doi.org/10.1016/j.ceca.2006.07.005
https://doi.org/10.1016/j.bpj.2008.12.3962
https://doi.org/10.3389/fninf.2014.00080/abstract
https://doi.org/10.1016/j.neuron.2011.10.015
https://doi.org/10.1038/nprot.2006.267
https://doi.org/10.1113/jphysiol.2002.037614
https://doi.org/10.1016/j.neuron.2016.01.012
https://doi.org/10.1016/j.neuron.2016.01.012
https://doi.org/10.1093/bioinformatics/btr390
https://doi.org/10.1016/j.neuron.2015.02.022
https://doi.org/10.1523/JNEUROSCI.2735-13.2013
https://doi.org/10.1016/j.neuron.2009.08.009
https://doi.org/10.1523/JNEUROSCI.2522-12.2013
https://doi.org/10.1523/JNEUROSCI.2522-12.2013
https://doi.org/10.1007/s00424-007-0234-2
https://doi.org/10.1007/s00424-007-0234-2
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1371/journal.pone.0001997.s001
https://doi.org/10.1038/nature08540
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.3389/fninf.2014.00016
https://doi.org/10.7554/eLife.14472.001
https://doi.org/10.1109/isbi.2011.5872394
https://doi.org/10.1016/j.neuron.2009.09.005
https://doi.org/10.1073/pnas.1232232100
https://doi.org/10.1126/science.1210362
https://doi.org/10.1073/pnas.1620939114
https://doi.org/10.1073/pnas.1620939114
https://doi.org/10.1152/jn.00087.2013
https://doi.org/10.7717/peerj.453/fig-5
https://doi.org/10.1016/j.neuroscience.2005.05.053
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive

	SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales
	Introduction
	Materials And Methods
	Experimental Procedures
	Software Architecture
	Requirements for Running SamuROI
	Basic Software Design of SamuROI
	Performance Considerations


	Functionality And Results
	General Workflow
	Application Cases
	Subcellular Imaging
	Meso-scale Imaging
	Macro-scale Imaging


	Discussion
	Outlook

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


