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Abstract	

Where	 and	 how	 does	 the	 brain	 represent	 complex	 rule	 sets?	 This	 thesis	 presents	 a	 series	 of	 three	
empirical	studies	that	directly	address	this	question.	An	additional	methodological	study	investigates	the	
employed	analysis	method	and	the	experimental	design.	The	empirical	studies	address	the	initial	question	
by	using	multivariate	pattern	analysis	(MVPA)	of	functional	magnetic	resonance	imaging	(fMRI)	data	from	
healthy	human	participants.	The	methodological	study	has	been	inspired	by	the	empirical	work.	Its	impact	
and	application	range,	however,	extend	well	beyond	the	empirical	studies	of	this	thesis.	
The	empirical	studies	(Study	1–3)	investigate	how	the	brain	represents	different	features	of	complex	rule	
sets:	 Where	 are	 cues	 and	 rules	 represented,	 and	 are	 these	 represented	 independently?	 Where	 are	
compound	rules	(i.e.	rules	consisting	of	multiple	rules)	represented,	and	are	these	composed	from	their	
single	rule	representations?	Where	are	rules	from	different	hierarchical	levels	represented,	and	is	there	a	
hierarchy-dependent	 functional	 gradient	within	 ventro-lateral	 prefrontal	 cortex	 (VLPFC)?	Where	 is	 the	
order	of	 rule-execution	 represented,	 and	 is	 it	 represented	as	 a	 separate	higher-level	 rule?	All	 empirical	
studies	 employ	 information-based	 functional	 mapping	 (using	 a	 “searchlight”	 approach)	 to	 localise	
representations	of	rule	set	features	brain-wide	and	spatially	unbiased.	Rule	sets	consist	of	one	or	multiple	
stimulus-response	mapping	rules	coupling	visual	stimuli	with	specific	responses,	which	were	 instructed	
by	visual	cues	during	the	experiments.	
Across	all	empirical	studies,	the	different	rule	set	features	were	represented	in	local,	spatially	distributed	
activity	patterns.	Visual	cues	were	mainly	represented	in	visual	occipital	areas,	 independent	of	the	rules	
they	were	 instructing.	The	rules,	by	contrast,	were	represented	 in	VLPFC	throughout	all	studies.	Two	of	
the	 studies	 showed	 additional	 representations	 in	 parietal	 cortex,	 while	 the	 third	 study	 found	 rule	
representations	 in	 temporal	 cortex	 and	 dorsal	 striatum.	 Finally,	 rule	 order	 was	 represented	 in	 dorsal	
striatum	and	dorsal	premotor	cortex.	Within	VLPFC,	anatomical	locations	of	rule	representations	did	not	
differ	significantly	for	different	rule	types	(single	or	compound,	low	or	high	level	hierarchical	rules).	
One	 core	 finding	 of	 this	 thesis	 is	 that	 compound	 rules	were	 represented	 compositionally	 in	 VLPFC,	 i.e.	
their	representing	activity	patterns	were	similar	to	those	of	their	constituting	single	rules,	and	vice	versa.	
Although	 single	 and	 compound	 rules	were	 also	 represented	 in	 parietal	 cortex,	 representations	 did	 not	
seem	to	be	compositional	here,	suggesting	compositional	coding	as	a	specific	property	of	the	neural	code	
of	prefrontal	cortex	(PFC).	A	second	core	finding	is	that,	 in	contrast	to	our	initial	hypothesis,	we	did	not	
find	 any	 evidence	 for	 a	 functional	 gradient	 in	 VLPFC.	 This	 directly	 contradicts	 popular	 theories	 that	
postulate	 such	 hierarchical-topographical	 organisation	 of	 PFC.	 The	 findings	 of	 this	 thesis	 moreover	
challenge	further	assumptions	on	the	neuro-cognitive	architecture	of	rule	representations	like	(1)	flexible	
allocation	of	resources	in	PFC,	(2)	representation	and	execution	of	complex	rules	sets	within	one	fronto-
parietal	multiple-demand	network,	 or	 (3)	 one	 single	 region	 containing	 all	 important	 information	 about	
rule	sets.	 Instead,	our	results	 support	 the	 idea	 that	 representations	of	different	components	of	 complex	
rule	sets	are	distributed	across	different	brain	regions.		
The	 methodological	 study	 (Study	 4)	 introduces	 “The	 Same	 Analysis	 Approach	 (SAA)”.	 SAA	 allows	 to	
detect,	 avoid,	 and	eliminate	 confounds	and	other	 errors	 in	 experimental	design	and	analysis,	 especially	
mistakes	 caused	 through	malicious	experiment-specific	design-analysis	 interactions.	 SAA	 is	 relevant	 for	
MVPA,	but	can	also	be	applied	in	other	fields,	both	within	and	outside	of	neuroscience.	
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Zusammenfassung	

Wo	 und	 wie	 werden	 komplexe	 Regelsätze	 im	 Gehirn	 repräsentiert?	 Drei	 empirische	 Studien	 in	 dieser	
Doktorarbeit	untersuchen	diese	Frage	experimentell.	Eine	weitere	methodische	Studie	liefert	Beiträge	zur	
Weiterentwicklung	 der	 genutzten	 Analysemethode	 sowie	 des	 Experimentaldesigns.	 Die	 empirischen	
Studien	nutzen	multivariate	Musteranalyse	(MVPA)	funktioneller	Magnetresonanzdaten	(fMRT)	gesunder	
Probanden.	 Die	 Fragestellungen	 der	 methodischen	 Studie	 wurden	 durch	 die	 empirischen	 Arbeiten	
inspiriert.	Wirkung	und	Anwendungsbreite	der	entwickelten	Methode	gehen	jedoch	über	die	Anwendung	
in	den	empirischen	Studien	dieser	Arbeit	hinaus.	
Die	empirischen	Studien	 (Studien	1–3)	untersuchen,	wie	das	Gehirn	verschiedene	Merkmale	komplexer	
Regelsätze	 repräsentiert:	 Wo	 werden	 Hinweisreize	 und	 Regeln	 repräsentiert,	 und	 sind	 deren	
Repräsentationen	 voneinander	 unabhängig?	 Wo	 werden	 Regeln	 repräsentiert,	 die	 aus	 mehreren	
Einzelregeln	bestehen,	und	sind	Repräsentationen	der	zusammengesetzten	Regeln	eine	Kombination	der	
Repräsentationen	der	Einzelregeln?	Wo	sind	Regeln	verschiedener	Hierarchieebenen	repräsentiert,	und	
gibt	es	einen	hierarchieabhängigen	Gradienten	im	ventrolateralen	präfrontalen	Kortex	(VLPFC)?	Wo	wird	
die	 Reihenfolge	 der	 Regelausführung	 repräsentiert	 und	 wird	 sie	 als	 separate	 Regel	 höherer	 Ebene	
repräsentiert?	 Alle	 empirischen	 Studien	 verwenden	 informationsbasiertes	 funktionales	 Mapping	 (mit	
Hilfe	 des	 „Searchlight“-Ansatzes),	 um	 Repräsentationen	 verschiedener	 Elemente	 komplexer	 Regelsätze	
hirnweit	und	 räumlich	unverzerrt	 zu	 lokalisieren.	Die	untersuchten	Regelsätze	bestehen	aus	einer	oder	
mehreren	Stimulus-Response-Zuordnungsregeln,	die	visuelle	Reize	mit	spezifischen	Reaktionen	koppeln,	
welche	während	der	Experimente	durch	visuelle	Hinweisreize	instruiert	wurden.	
Für	alle	in	den	empirischen	Studien	untersuchten	Regelsatzelemente	konnten	Repräsentationen	in	Form	
lokaler,	räumlich	verteilter	Aktivitätsmustern	nachgewiesen	werden.	Die	visuellen	Hinweisreize	wurden	
hauptsächlich	 in	 visuellen	 Bereichen	 des	 Okzipitallappens	 repräsentiert.	 Ihre	 Repräsentationen	 waren	
dabei	unabhängig	von	denen	der	 instruierten	Regeln.	Regelrepräsentation	zeigte	sich	wiederum	in	allen	
empirischen	Studien	im	VLPFC.	Zwei	der	Studien	fanden	zusätzliche	Regelrepräsentationen	im	parietalen	
Kortex,	 eine	dritte	 fand	diese	hingegen	 im	 temporalen	Kortex	und	dorsalen	Striatum.	Repräsentationen	
der	 Ausführungsreihenfolge	 wurde	 im	 dorsalen	 Striatum	 und	 dorsalen	 prämotorischen	 Kortex	
nachgewiesen.	 Im	 VLFPC	 unterschieden	 sich	 die	 anatomischen	 Positionen	 von	 Regelrepräsentationen	
hierbei	 nicht	 signifikant	 für	 verschiedene	 Regeltypen	 (Einzelregeln	 oder	 zusammengesetzte,	 Regeln	
hierarchisch	niedriger	oder	höherer	Stufen).	
Ein	 Kernergebnis	 dieser	 Arbeit	 ist,	 dass	 sich	 im	 VLPFC	 Repräsentationen	 zusammengesetzter	 Regeln	
kompositionell	 (d.	 h.	 als	 Kombination)	 aus	 den	 Repräsentationen	 ihrer	 Einzelregeln	 zusammensetzen.	
Obwohl	 sich	 auch	 im	 parietalen	 Kortex	 Repräsentationen	 einzelner	 und	 zusammengesetzter	 Regeln	
fanden,	schienen	sich	diese	nicht	kompositionell	zusammenzusetzen,	was	kompositionelle	Codierung	als	
eine	 spezifische	Eigenschaft	 des	 neuronalen	Codes	 des	 präfrontalen	Kortex	 (PFC)	 nahelegt.	 Ein	 zweiter	
zentraler	Befund	dieser	Arbeit	ist,	dass	entgegen	unserer	ursprünglichen	Hypothese	unsere	Studien	keine	
Hinweise	auf	einen	 funktionellen	Gradienten	 in	VLPFC	 lieferten.	Dies	 steht	 in	direktem	Widerspruch	zu	
aktuellen	 einflussreichen	 Theorien,	 die	 eine	 hierarchisch-topographische	Organisation	 des	 präfrontalen	
Kortex	 (PFC)	 postulieren.	 Die	 Ergebnisse	 dieser	 Arbeit	 stellen	 darüber	 hinaus	 weitere	 Annahmen	 zur	
neurokognitiven	 Architektur	 von	 Regelrepräsentationen	 in	 Frage,	 speziell	 (1)	 die	 Idee	 der	 flexiblen	
Zuweisung	 von	 Ressourcen	 innerhalb	 des	 PFC,	 (2)	 dass	 ein	 einzelnes	 fronto-parietales	 „Multiple-
Demand“-Netzwerk	 alle	 Eigenschaften	 komplexer	 Regelsätze	 repräsentieren	 und	 ihre	 Verarbeitungen	
durchführen	würde,	sowie	(3)	die	Existenz	einer	einzelnen	Region,	die	alle	wichtigen	Informationen	über	
Regelsätze	enthielte.	Stattdessen	stützen	unsere	Ergebnisse	die	Theorie,	dass	verschiedene	Komponenten	
von	komplexen	Regelsätzen	in	verschiedene	Gehirnregionen	repräsentiert	werden.	
Komplementierend	zu	den	empirischen	Studien	ist	eine	methodische	Studie	(Studie	4)	Teil	dieser	Arbeit.	
Diese	 präsentiert	 „The	 Same	 Analysis	 Approach	 (SAA)“,	 ein	 Ansatz	 zur	 Erkennung	 und	 Behebung	
experimentspezifischer	 Fehler,	 besonders	 solcher,	welche	 aus	Design–Analyse–Interaktionen	 entstehen.	
SAA	 ist	 für	 MVPA	 relevant,	 aber	 auch	 in	 weiteren	 Bereichen	 innerhalb	 sowie	 außerhalb	 der	
Neurowissenschaften	anwendbar.	
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1 Introduction	

Modern	life	would	be	impossible	without	the	omnipresent	application	of	rules.	Road	traffic,	work,	usage	of	
tools	from	knives	to	mobile	phones,	serious	communication,	or	small	talk:	The	concurrent	application	of	a	
multitude	 of	 rules	 is	 one	 of	 the	main	 pillars	 of	 human	 cognition	 and	decision	making	 (Bunge	&	Wallis,	
2008;	Miller	&	Cohen,	2001;	Miller	et	al.,	1960;	Monsell,	2003).	
	
Rules	play	a	key	role	in	cognitive	control,	our	ability	to	guide	thoughts	and	behaviour	to	reach	goals	in	a	
flexible	 manner	 (Allport	 et	 al.,	 1994;	 Meiran,	 2000;	 Miller	 et	 al.,	 1960;	 Monsell	 &	 Driver,	 2000).	 How	
important	this	ability	is	for	daily	life	becomes	especially	apparent	when	it	is	disturbed,	such	as	in	patients	
with	lesion	of	the	frontal	cortex	who	have	problems	to	organise	their	daily	life	(e.g.	Milner,	1963;	Shallice	
&	Burgess,	1991).	The	ability	to	use	cognitive	rules	has	been	repeatedly	linked	to	general	intelligence	(e.g.	
Burgess	 et	 al.,	 2011;	 Duncan,	 1993;	 Duncan	 et	 al.,	 2000;	 Duncan,	 2005),	 but	 is	 still	 subject	 of	 ongoing	
discussions	(e.g.	Alvarez	&	Emory,	2006;	Nyhus	&	Barceló,	2009;	cf.	Fuster,	2015).	
	
It	 has	been	 clear	 since	 long	 that	humans	and	other	 animals	 represent	 rules,	 i.e.	 keep	 in	memory	which	
rules	to	perform	(Allport	et	al.,	1994;	Lashley,	1951;	Meiran,	2000;	Norman,	1981;	Wylie	&	Allport,	2000).	
The	 assumption	 was	 that	 rules	 would	 be	 represented	 in	 the	 brain	 (Bianchi,	 1922;	 Luria,	 1966,	 1973;	
Milner,	 1963;	 Pavlov,	 1927).	 This	 assumption	 also	 played	 an	 essential	 part	 in	 neural	 and	 behavioural	
models	on	cognitive	 rule	use	 (Fuster,	1989;	Miller	et	 al.,	 1960;	Norman	&	Shallice,	1980,	1986;	Stuss	&	
Benson,	 1986;	 see	 Section	 1.1).	 However,	 directly	 demonstrating	 rule	 representations	 in	 the	 brain	 has	
remained	difficult	for	long.	
	
It	 took	 until	 the	 turn	 of	 the	millennium	 for	 the	 first	 direct	 demonstration	 of	 neural	 representations	 of	
rules	 in	monkeys	 to	arrive	 (Hoshi	et	al.,	1998,	2000;	Wallis	et	al.,	2001;	White	&	Wise,	1999),	and	until	
only	 short	 before	 work	 on	 this	 thesis	 started	 for	 demonstrations	 in	 humans	 (Bode	 &	 Haynes,	 2009;	
Haynes	et	al.,	2007;	Sakai	&	Passingham,	2003,	2006;	Section	1.1).	Still,	many	questions	surrounding	rule	
representations	 remained	 unexplored,	 especially	 questions	 on	 representations	 of	 sets	 of	multiple	 rules	
(Section	1.2).	
	
In	 this	 thesis,	 I	present	 four	studies:	Three	empirical	studies	 (Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	
Görgen*	et	al.,	2012b;	Pischedda*,	Görgen*	et	al.,	2017;	Sections	3.1–3.3;	Figure	1.1)	that	investigate	where	
and	how	the	brain	represents	components	of	complex	rule	sets1	and	one	methodological	study	(Görgen	et	
al.,	 2018;	 Section	 3.4;	 Figure	 1.2)	 that	 advances	 empirical	 and	 statistical	 methodology.	 The	 empirical	
studies	 investigate	 how	 the	 brain	 represents	 cognitive	 rules	 in	 situations	 that	 require	 the	 concurrent	
application	of	multiple	 rules	 at	 once.	The	methodological	 study	applies	 –	but	 is	not	 limited	–	 to	 “multi-
variate	pattern	analysis”	 (MVPA;	Edelman	et	al.,	1998;	Haxby	et	al.,	2001;	Haynes	&	Rees,	2005a,	2006;	
Kamitani	 &	 Tong,	 2005;	 Kriegeskorte	 et	 al.,	 2006;	 see	 Section	 1.2),	 the	 key	 methodology	 used	 in	 the	
empirical	studies.		
	
This	thesis	 is	structured	as	follows:	The	remainder	of	this	chapter	 lays	out	the	scientific	background	for	
the	studies	of	the	thesis,	current	at	the	time	when	work	on	this	thesis	started	(Section	1.1;	newer	work	is	
discussed	later,	especially	in	Chapter	4).	I	then	derive	the	research	questions	that	motivate	the	presented	
studies	(Section	1.2).	Chapter	2	introduces	MVPA	and	further	key	design	decisions	for	the	empirical	work.	
Chapter	 3	 summarises	 the	 studies	 that	 are	 the	 core	 of	 this	 thesis.	 Chapter	 4	 closes	 the	 thesis	 with	 an	
overarching	discussion.	The	published	articles	of	the	original	studies	are	contained	in	Appendix	C.	
																																																																				
*	Equal	contribution	
1	Throughout	this	thesis,	the	term	“rule	set”	denotes	all	rule-relevant	components	of	a	task	set;	see	Section	1.1.	
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1.1 Scientific	background	

Much	research	on	rule	use	takes	place	in	the	context	of	“task	set”	(Monsell,	1996,	2003;	Sakai,	2008;	von	
Kries,	1895;	sometimes	called	“anticipatory	set”,	e.g.	Fuster,	1984,	or	“preparatory	set”,	e.g.	Fuster,	1989,	
p.	116).	The	term	“task	set”	refers	to	the	neurocognitive	configuration	that	is	necessary	to	perform	a	task	
(Monsell,	 2003;	 Sakai,	 2008;	 von	Kries,	 1895),	 a	 central	 part	 of	which	 is	 to	 represent	 all	 required	 task-
related	 information.	 One	 important	 component	 to	 represent	 is	 the	 rules	 that	 should	 be	 applied,	 which	
determine	which	responses	should	be	performed	to	which	stimuli	under	which	conditions	(for	other	task	
components,	see	e.g.	Gopher	et	al.,	2000).	
	
Rule	 representations	 are	 core	 parts	 of	 theories	 on	 cognitive	 control	 (Bunge	&	Wallis,	 2008;	Monsell	 &	
Driver,	 2000)	 and	 computational	 models	 thereof	 (e.g.	 Botvinick,	 2007;	 Cooper	 &	 Shallice,	 2006,	 2000;	
Gilbert	&	Shallice,	2002;	Lebiere	&	Anderson,	1993;	Rumelhart	&	Norman,	1982).	The	representations	can	
be	 either	 explicit,	 e.g.	 as	 schema	 (Norman,	 1981;	 Norman	 &	 Shallice,	 1980,	 1986),	 chunks	 (Anderson,	
1976,	 1983,	 1993),	 or	 managerial	 knowledge	 units	 (Grafman,	 1995);	 or	 implicit,	 e.g.	 as	 vector	 space	
representations	 distributed	 across	 multiple	 units,	 e.g.	 neurons	 (Duncan,	 2001;	 Miller	 &	 Cohen,	 2001;	
Rumelhart	&	Norman,	1982).	
	
It	 is	clear	from	behavioural	observations	that	humans	(Allport	et	al.,	1994;	Lashley,	1951;	Meiran,	2000;	
Norman,	 1981;	 Wylie	 &	 Allport,	 2000),	 monkeys	 (Stoet	 &	 Snyder,	 2003),	 and	 other	 animals	 such	 as	
pigeons	 (Honig	&	Dodd,	 1983)	 or	 bees	 (Giurfa	 et	 al.,	 2001)	 represent	 rules.	 These	 representations	 are	
maintained	even	when	no	direct	cues	in	the	environment	indicate	which	rules	should	be	performed	(e.g.	
Allport	 et	 al.,	 1994;	 Jersild,	 1927;	 Meiran,	 2000;	 Monsell,	 1996;	 Rogers	 &	 Monsell,	 1995)	 and	 active	
processes	are	at	work	that	prepare	a	 forthcoming	task	(Allport	et	al.,	1994;	Gopher	et	al.,	2000;	Meiran,	
2000;	Monsell,	1996;	Rogers	&	Monsell,	1995).	Behavioural	work	e.g.	on	attention	slips	in	everyday	tasks	
(Norman,	1981;	Shallice	&	Burgess,	1991)	furthermore	demonstrates	that	behaviour	often	does	not	rely	
on	 single	 rules,	 but	 instead	 on	 hierarchically	 organised	 sets	 of	 rules,	 goals,	 and	 intentions	 (Monsell	 &	
Driver,	2000;	Badre,	2008;	Koechlin	et	al.,	2003;	Fuster,	1989;	Botvinick,	2008;	Fuster,	2001;	Miller	et	al.,	
1960;	Norman	&	Shallice,	1980,	1986;	Christoff	et	al.,	2009;	Koechlin	&	Summerfield,	2007;	O’Reilly,	2010;	
Petrides,	2005).	
	
Since	 long,	 scientists	 ascribe	 rule	 application	 and	 representation	 to	 the	 brain,	 especially	 to	 prefrontal	
cortex	 (PFC;	e.g.	Bianchi,	1922;	Ferrier,	1876,	pp.	287–8;	Luria,	1966,	1973;	Milner,	1963;	Pavlov,	1927;	
von	 Kries,	 1895).	 An	 exception	 are	 basic	 reflexes	 that	 reside	 in	 the	 spinal	 cord	 (Sherrington,	 1906).	
Theories	routinely	used	this	conjecture	to	set	up	models	of	rule	use	and	cognitive	control	(Duncan,	2001;	
Fuster,	1989;	Grafman,	1995;	Miller	&	Cohen,	2001;	Miller	et	al.,	1960;	Norman	&	Shallice,	1980,	1986;	
Stuss	 &	 Benson,	 1986).	 However,	 direct	 measurements	 of	 neural	 representations	 of	 rules	 were	 not	
possible	for	a	long	time,	despite	intensive	research	from	e.g.	behavioural	observations	in	human	patients	
(Burgess	 et	 al.,	 2000;	 Diamond,	 1990;	 Luria,	 1966,	 1973;	 Milner,	 1963;	 Petrides,	 1985b,	 1990,	 1997;	
Petrides	&	Milner,	1982;	Rowe	et	al.,	2007;	Shallice	&	Burgess,	1991),	ablation	in	monkeys	(Buckley	et	al.,	
2009;	Bussey	et	al.,	2002;	Canavan	et	al.,	1989;	Diamond	&	Goldman-Rakic,	1989;	Dias	et	al.,	1997;	Fuster	
&	 Alexander,	 1970;	 Gaffan	 et	 al.,	 2002,	 2002;	 Gaffan	 &	 Harrison,	 1988,	 1989;	 Parker	 &	 Gaffan,	 1998;	
Passingham,	 1993;	 Petrides,	 1982,	 1985a,	 1991b,	 1991a,	 1996,	 2000;	 Wise	 et	 al.,	 1996),	 during	
development	 (e.g.	 Goldman	 et	 al.,	 1970;	 Goldman	 &	 Galkin,	 1978),	 electrophysiological	 recordings	 in	
monkeys	(Fuster,	1973;	Goldman-Rakic,	1987;	Kubota	&	Niki,	1971;	Niki	&	Watanabe,	1979;	Passingham,	
1993;	 Quintana	 et	 al.,	 1988;	 Rao	 et	 al.,	 1997;	 Thorpe	 et	 al.,	 1983;	 Yajeya	 et	 al.,	 1988),	 or	 non-invasive	
methods	 in	healthy	human	 subjects	using	electroencephalography	 (EEG;	Brass	 et	 al.,	 2005;	Düzel	 et	 al.,	
1999;	Rushworth	et	al.,	2002,	2005),	position	emission	tomography	(PET;	Frith	et	al.,	1991;	Owen	et	al.,	
1996;	Toni	&	Passingham,	1999),	or	functional	magnetic	resonance	imaging	(fMRI;	e.g.	Banich	et	al.,	2000;	
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Baron	 et	 al.,	 2010;	 Baron	 &	 Osherson,	 2011;	 Bengtsson	 et	 al.,	 2009;	 Brass	 et	 al.,	 2002,	 2005;	 Brass	 &	
Cramon,	2004;	Bunge	et	al.,	2002,	2003;	Cavina-Pratesi	et	al.,	2006;	Cole	et	al.,	2010;	Crone	et	al.,	2006,	p.	
006;	 D’Esposito	 et	 al.,	 1999a;	MacDonald	 et	 al.,	 2000;	 Postle	 et	 al.,	 1999;	 Reverberi	 et	 al.,	 2007,	 2010;	
Rowe	et	al.,	2000;	Ruge	&	Wolfensteller,	2010;	Schumacher	et	al.,	2003,	2007)	.	
	
It	 took	 until	 the	 turn	 of	 the	millennium	 to	 directly	 demonstrate	 rule-representing	 neurons	 in	monkeys	
(Asaad	et	al.,	2000;	Gail	&	Andersen,	2006;	Genovesio	et	al.,	2005;	Hoshi	et	al.,	1998,	2000;	Muhammad	et	
al.,	 2006;	 Stoet	 &	 Snyder,	 2004;	 Wallis	 et	 al.,	 2001;	 Wallis	 &	 Miller,	 2003b;	 White	 &	 Wise,	 1999).	 In	
humans,	localisation	of	rule	representation	even	took	until	shortly	before	work	on	this	thesis	started.	At	
the	 time	 work	 on	 this	 thesis	 started2,	 these	 representations	 were	 suggested	 to	 be	 either	 PFC-wide	
functional	 connectivity	 states	 (Rowe	 et	 al.,	 2007;	 Sakai	 &	 Passingham,	 2003,	 2006)	 or	 local	 activation	
patterns	(Bode	&	Haynes,	2009;	Haynes	et	al.,	2007).	Another	early	study	(Li	et	al.,	2007)	also	used	local	
activation	 patterns	 to	 study	 rule	 use,	 but	 went	 a	 different	 way.	 Instead	 of	 demonstrating	 rule-
representations	directly,	the	study	investigated	whether	applying	different	rules	would	change	how	much	
and	 which	 task-related	 information	 could	 be	 extracted	 from	 the	 brain,	 and	 found	 that	 the	 ability	 to	
retrieve	task-related	information	indeed	changes	when	participants	apply	different	rules.	
	
The	 key	 innovation	 in	 these	 studies	 was	 the	 application	 of	 novel	 data	 analysis	 methods	 that	 enabled	
demonstration	of	rule	representations	in	humans	(Edelman	et	al.,	1998;	Haxby	et	al.,	2001;	Cox	&	Savoy,	
2003;	Haynes	&	Rees,	2005a,	2005b,	2006;	Kamitani	&	Tong,	2005;	Polyn	et	al.,	2005;	Kriegeskorte	et	al.,	
2006;	Norman	et	 al.,	 2006;	 Sakai	&	Passingham,	2003).	This	 allowed	 to	overcome	a	major	 limitation	of	
traditional	analysis	methods	such	as	the	general	linear	model	(GLM3;	Friston	et	al.,	1991,	1995;	Penny	et	
al.,	2011;	Worsley	&	Friston,	1995)	that	could	only	associate	increases	or	decreases	of	large-scale	activity4	
across	participants	to	experimental	conditions.	
	
Specifically,	one	research	group	(Rowe	et	al.,	2007;	Sakai	&	Passingham,	2003,	2006)	demonstrated	rule-
selective	 changes	 of	 correlations	 between	 the	 activity	 of	 frontopolar	 cortex	 (FPC,	 BA5	 10,	 the	 most	
anterior	region	within	PFC),	dorsolateral	PFC	(DLPFC,	BA	46),	and	premotor	cortex	(PM,	BA	6),	depending	
on	which	of	three	tasks	participants	were	instructed	to	perform	(either	phonological,	semantic,	or	visual	
judgments	 of	 visually	 presented	 words).	 Interestingly,	 differences	 in	 correlation	 were	 already	 present	
during	task	preparation,	i.e.	when	participants	knew	which	rule	to	perform	but	before	they	applied	them.	
Importantly,	conventional	fMRI	analysis	did	not	show	any	difference	in	brain	activity	during	this	period,	
as	no	region	showed	an	activation	increase	or	decrease	between	the	three	rules.	They	further	found	that	
the	strength	of	these	correlations	predicted	the	strength	of	DLPFC	and	PM	activity	as	well	as	reaction	time	
during	 performance.	 From	 these,	 the	 authors	 concluded	 that	 the	 large-scale	 “functional	 connectivity”	
brain	 states	 would	 represent	 individual	 rules,	 not	 only	 in	 a	 simple	 passive,	 maintaining	 manner	 that	
would	just	store	rule-related	information	(e.g.	the	presented	cue),	but	in	a	manner	that	actively	prepares	
rule	execution.	
	
																																																																				
2	As	stated	above,	this	introduction	contains	work	until	2010/2011.	Newer	work	is	discussed	later,	especially	in	Chapter	4.	
3	Note	that	what	neuroscientists	call	“general	linear	model	(GLM)”	is	known	as	“linear	model	(LM)”	in	statistics;	“GLM”	in	statistics	
refers	to	the	“generalised	linear	model”	(Nelder	&	Wedderburn,	1972),	a	generalisation	of	the	linear	model	to	non-Gaussian	data	(see	
e.g.	Fahrmeir	et	al.,	2009).	
4	More	precisely,	 increased	activation	refers	in	fMRI	studies	typically	to	an	increase	of	the	Blood-Oxygen-Level-Dependent	(BOLD)	
signal.	While	 the	exact	nature	of	 the	 relation	between	neural	activity	and	 the	BOLD	signal	 is	 still	under	debate	 (see	e.g.	Boynton,	
2011;	Heeger	et	al.,	2000),	a	wealth	of	evidence	suggests	good	agreement	between	both	signals,	 typically	related	via	the	so-called	
“hemodynamic	response	function”	(HRF;	e.g.	Bießmann	et	al.,	2010;	Logothetis,	2008;	Logothetis	et	al.,	2001;	Mukamel	et	al.,	2005;	
Privman	 et	 al.,	 2007).	 For	 the	 purpose	 of	 the	 studies	 presented	 in	 this	 thesis,	 the	 results	 do	 not	 depend	 on	 the	 exact	 relation	
underlying	both	 signals,	 because	 the	 results	 of	 the	 studies	 only	demonstrate	presence	of	 information	 about	 certain	 experimental	
variables	in	the	fMRI	signal	in	parts	of	the	brain	and	relations	between	the	fMRI	response	patterns.	They	do	not	make	claims	about	
the	exact	physiological	or	neuronal	processes	underlying	it	(for	a	discussion	of	the	topic,	see	e.g.	Beckett	et	al.,	2012;	Freeman	et	al.,	
2011;	Kamitani	&	Sawahata,	2010;	Kriegeskorte	et	al.,	2010;	Op	de	Beeck,	2010a,	2010b).		
5	Brodmann	area	(BA):	cytoarchitectural	defined	location	from	the	anatomical	brain	atlas	originally	defined	by	Korbinian	Brodmann,	
see	(e.g.	Brodmann,	1909;	Petrides	&	Pandya,	1984,	1999,	2002)	
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A	limitation	of	this	functional	connectivity	approach	was	that	it	only	allowed	to	detect	representation	of	
qualitatively	different	types	of	rules.	For	example,	the	rules	employed	in	these	studies	used	stimuli	from	
different	 sensory	 domains	 (phonological,	 semantic,	 visual	 judgments)	 that	 are	 processed	 by	 largely	
different	brain	areas.	It	thus	seemed	unlikely	that	the	same	approach	would	allow	for	more	fine-grained	
differentiation	between	tasks	from	the	same	type	of	rule	that	would	rely	on	the	same	set	of	brain	regions,	
such	as	between	different	stimulus-response	mappings	for	abstract	and	concrete	words.	
	
Employing	a	different	approach,	another	group	(Bode	&	Haynes,	2009;	Haynes	et	al.,	2007)	demonstrated	
that	 distinguishing	 rules	 of	 the	 same	 type	 is	 indeed	 possible.	 The	 authors	 employed	 cross-validated	
decoding,	 a	 “multi-variate”	 (or	 “multi-voxel”)	 “pattern	 analysis”	 method	 (MVPA;	 Edelman	 et	 al.,	 1998;	
Haxby	et	al.,	2001;	Cox	&	Savoy,	2003;	Haynes	&	Rees,	2005a,	2005b,	2006;	Kamitani	&	Tong,	2005;	Polyn	
et	 al.,	 2005;	 Kriegeskorte	 et	 al.,	 2006;	 Norman	 et	 al.,	 2006)	 that	 had	 been	 previously	 employed	 to	
distinguish	e.g.	visual	stimuli	from	brain	activity	(Haynes	&	Rees,	2005a;	Kamitani	&	Tong,	2005).	In	their	
work,	 the	authors	demonstrated	that	 local	patterns	of	 fMRI	activity	provide	 information	about	which	of	
two	 covert	 intentions,	 add	 or	 subtract,	 participants	 had	 in	mind	 (Haynes	 et	 al.,	 2007),	 or	which	 of	 two	
individual	stimulus-response	associations,	mapping	 two	visual	patterns	 to	 left	and	right	button	presses,	
participants	were	instructed	to	perform	(Bode	&	Haynes,	2009).	
	
One	specific	limitation	of	the	work	by	Haynes,	Bode	and	colleagues	(Bode	&	Haynes,	2009;	Haynes	et	al.,	
2007)	was	that	it	did	not	dissociate	rule	representations	from	representations	or	brain	activity	related	to	
their	 instructions	 (for	 work	 in	monkey,	 see	 e.g.	 Stoet	 &	 Snyder,	 2004;	White	 &	Wise,	 1999),	 i.e.	 brain	
activity	 due	 to	 cue	 images	 shown	 as	 explicit	 instruction	 (Bode	 &	 Haynes,	 2009)	 or	 brain	 activity	
underlying	 the	 free	 choice	which	 rule	 to	 use	 (Haynes	 et	 al.,	 2007).	 Thus,	 further	work	was	 required	 to	
dissociate	both.	
	
A	 general	 limitation	 of	 this	 and	 all	 other	 previous	 work	 on	 rule	 representation,	 in	 both	 monkeys	 and	
humans,	was	that	only	representations	of	simple	tasks	were	investigated	that	required	the	application	of	
one	single	rule	 in	each	 trial.	However,	often	exactly	 this	ability	–	 to	employ	multiple	rules	and	combine	
them	in	different	ways	–	enables	cognitive	flexibility	(e.g.	Badre,	2008;	Bunge	&	Wallis,	2008;	Cole	et	al.,	
2010;	Miller	et	al.,	1960).		
	
Examples	for	interesting	questions	that	require	more	complex	tasks	to	investigate	include	how	the	brain	
combines	representations	of	multiple	rules	that	should	be	applied	concurrently	(e.g.	“if	there	is	a	tomato,	
press	left;	if	there	is	a	banana,	press	right”),	how	multiple	rules	are	executed	in	a	specific	order	(e.g.	“first,	
check	if	there	is	a	tomato,	and	if	so,	press	left;	next,	check	if	you	see	a	banana,	and	if	so,	press	right”),	or	
how	hierarchically	structured	rule	sets	(e.g.	Badre,	2008;	Koechlin	et	al.,	2003),	in	which	higher-level	rules	
influence	the	application	of	lower-level	rules,	are	composed	and	applied	(see	Figure	1.1).	

1.2 Research	aims	

This	thesis	addresses	the	questions	of	how	compositional,	ordered,	and	hierarchically	structured	rule	sets	
are	represented	in	the	human	brain,	and	how	rule	representations	(or	other	task-set	components)	can	be	
dissociated	from	related	information,	e.g.	the	cue	used	to	instruct	which	rule	to	use.	
	
Regarding	 the	 first	 question	 on	 compositionality	 of	 rule	 representations:	 Behaviourally,	 it	 is	 clear	 that	
humans	 routinely	 compose	 new	 rules	 from	 individual	 elements,	 or	 create	 sets	 of	 rules	 from	 multiple	
individual	rules,	often	in	combinations	they	have	never	performed	before	(e.g.	Cole	et	al.,	2010;	Monsell,	
1996;	Ruge	&	Wolfensteller,	2010).	A	parsimonious	hypothesis	to	account	for	how	the	brain	enables	this	
flexibility	would	be	that	it	employs	a	compositional	code.	For	example,	the	representation	of	a	given	rule	
would	 be	 composed	 by	 combining	 representations	 of	 its	 composing	 parts	 (e.g.	 combining	 “if	 you	 see	 a	
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tomato”	with	 “then	press	 the	 left	button”)	or	 representations	of	 rule	sets	by	combining	representations	
constituting	rules	(e.g.	use	rule	A	and	rule	B)	and	potential	further	representations	of	how	to	employ	them	
(e.g.	 use	 rule	 A	 before	 rule	 B)	 (e.g.	 Cole	 et	 al.,	 2010).	 Indeed,	 compositionality	 assumptions	 for	 brain	
activity	 are	 abundant	 in	 cognitive	 neuroscience	 (see	 e.g.	 Baron	 et	 al.,	 2010;	 Baron	 &	 Osherson,	 2011;	
Friston	et	al.,	1995;	Kay	et	al.,	2008;	Mitchell	et	al.,	2008;	Naselaris	et	al.,	2011;	Penny	et	al.,	2011).	Most	
models	on	rule	use	conform	to	this	compositionality	hypothesis,	typically	taking	individual	elements	(e.g.	
model	neurons)	to	represent	individual	rules,	rule	components,	etc.	These	would	be	combined	by	simple	
co-activation	(e.g.	Cooper	&	Shallice,	2006;	Norman	&	Shallice,	1980,	1986;	Rumelhart	&	Norman,	1982,	
1982;	but	see	e.g.	Botvinick,	2007;	Botvinick	&	Plaut,	2004;	Rigotti	et	al.,	2010).	
	
However,	 shortly	 before	 the	 work	 on	 this	 thesis	 started,	 a	 series	 of	 three	 studies	 on	 neural	
representations	 of	 rule-relevant	 two-object	 sequences	 in	 monkeys	 challenged	 this	 compositionality	
hypothesis	(Siegel	et	al.,	2009;	Warden	&	Miller,	2007,	2010).	In	the	studies,	monkeys	had	to	remember	
identity	 and	 presentation	 order	 of	 two	 consecutively	 shown	 objects	 to	 perform	 one	 of	 two	 tasks.	 In	
contrast	to	the	prediction	from	the	compositionality	hypothesis	that	the	activity	of	neurons	to	a	sequence	
of	 two	objects	should	be	 the	sum	of	 the	activity	of	 its	 individual	components	(objects,	order,	 tasks),	 the	
observed	 activity	was	 in	most	 cases	 a	 complex	 combination	 of	 those.	 For	 example,	 some	neurons	 fired	
selectively	 to	 the	occurrence	of	a	 first	object,	but	stopped	as	soon	as	a	second	object	was	shown.	Other	
neurons	only	represented	a	second	object	 if	a	specific	 first	object	was	shown,	or	showed	other	complex	
mixtures	between	presented	objects,	presentation	order,	and	task	(see	also	Sigala	et	al.,	2008).	
	
If	 rule	representations	 in	 the	human	brain	behaved	similarly,	 this	would	require	refinement	of	 theories	
and	models	on	mechanisms	underlying	human	rule	use	(such	as	e.g.	Botvinick	&	Plaut,	2004;	Eliasmith	et	
al.,	2012;	Fusi	et	al.,	2016;	Rigotti	et	al.,	2010,	2013).	Testing	this,	i.e.	if	rule	representations	in	the	human	
brain	are	compositional	or	complex	mixtures,	poses	the	first	research	aim	of	this	thesis.	
	
Regarding	the	second	question	on	representation	of	rule	order,	the	three	studies	mentioned	above	(Siegel	
et	 al.,	 2009;	 Warden	 &	 Miller,	 2007,	 2010)	 also	 suggest	 a	 hypothesis.	 Especially,	 the	 finding	 that	 the	
different	factors	object	identity,	object	order,	and	current	task	jointly	influence	neural	activity	in	the	same	
neural	substrate	makes	 two	predictions:	First,	 rules	and	rule	order	should	be	 jointly	represented	 in	 the	
same	 areas,	 at	 least	 in	 lateral	 PFC	 (monkey	 area	 46),	 the	 area	 investigated	 by	 these	 studies.	 Second,	 a	
method	that	allows	to	distinguish	rule	identity	should	also	allow	to	distinguish	rule	order,	and	vice	versa,	
again	 at	 least	 in	 this	 area.	 As	 far	 as	 I	 know,	 no	 previous	work	 on	 processing	 or	 representing	 order	 of	
cognitive	rules	exists,	but	only	work	as	 the	above	 that	studied	neural	processes	underlying	memorising	
sequences	 of	 other	 content,	 such	 as	 presentation	 order	 of	 objects,	 locations,	 or	 movements,	 mainly	 in	
monkeys	(see	e.g.	Averbeck	et	al.,	2003,	2006;	Barone	&	Joseph,	1989;	Dragoi	&	Buzsáki,	2006;	Mushiake	
et	 al.,	 2006;	Ninokura	 et	 al.,	 2003;	 Petrides	&	Milner,	 1982;	 Siegel	 et	 al.,	 2009;	Warden	&	Miller,	 2007,	
2010;	Yin,	2009).	Thus,	testing	whether	rule	order	can	be	detected	in	the	human	brain,	locating	where	it	is	
represented,	 and	 testing	 if	 rule	 order	 and	 rule	 identity	 are	 represented	 together,	 poses	 the	 second	
research	aim	of	this	thesis.	
	
Regarding	 the	 third	 question	 concerning	hierarchically	 organised	 rule	 sets	 (Badre,	 2008;	 Fuster,	 1989;	
Koechlin	 et	 al.,	 2003;	 Lashley,	 1951;	 Luria,	 1966;	Miller	 et	 al.,	 1960),	 behavioural	 observations	 clearly	
demonstrate	 that	 many	 real-world	 tasks	 require	 the	 application	 of	 hierarchically	 structured	 rule	 sets	
(Botvinick	 &	 Bylsma,	 2005;	 Lashley,	 1951;	 Norman,	 1981).	 Examples	 include	 mental	 slips	 such	 as	
forgetting	to	add	tea	during	tea	preparation,	and	only	recognising	the	error	when	pouring	water	instead	of	
tea	 into	 a	 cup	 (Reason,	 1979),	 or	 omitting	words	 or	 letters	 during	 typing	 a	 text	 (Lashley,	 1951).	 Both	
would	 not	 be	 possible	 if	 the	 processes	 would	 be	 strictly	 linear,	 i.e.	 if	 finishing	 one	 action	 would	 be	
required	 to	 start	 the	next	 (for	more	examples,	 see	e.g.	Cooper	&	Shallice,	2000;	Norman,	1981;	Reason,	
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1991;	 Shaffer,	 1978).	 Computational	 models	 of	 hierarchical	 behaviour	 are	 typically	 also	 constructed	
hierarchically	(Botvinick,	2007;	Cooper	&	Shallice,	2006,	2000;	Frank	&	Badre,	2011;	Miller	et	al.,	1960;	
O’Reilly	et	al.,	2002),	although	Botvinick	&	Plaut	(2004)	demonstrated	that	this	is	not	necessary.	
	
A	 number	 of	 neurocognitive	 theories	 map	 this	 hierarchical	 organisation	 of	 behaviour	 to	 the	 brain	 by	
postulating	 one	 (Badre	 &	 D’Esposito,	 2009;	 Bunge	 &	 Zelazo,	 2006;	 Christoff	 et	 al.,	 2009;	 Christoff	 &	
Gabrieli,	2000;	Frank	&	Badre,	2011;	Fuster,	1989,	2001;	Kim	et	al.,	2011;	Koechlin	et	al.,	2003;	Koechlin	&	
Summerfield,	2007;	Wise	et	al.,	1996;	Wood	&	Grafman,	2003)	or	multiple	(O’Reilly,	2010;	Petrides,	2005)	
axes	along	which	different	hierarchical	levels	should	reside	(most	within	PFC,	but	see	Koechlin	&	Jubault,	
2006	for	a	proposal	of	hierarchical	organisation	in	posterior	frontal	cortex).	
	
However,	 apart	 from	 the	 general	 tenet	 that	 increasingly	 complex	 or	 abstract	 rules	 relate	 to	 different	
regions	along	some	axis,	these	theories	disagree	wildly.	While	some	theories	propose	that	discrete	areas	
along	 the	 axes	 perform	 different	 cognitive	 functions	 (e.g.	 Petrides,	 2005),	 others	 postulate	 cognitive	
“gradients”	along	which	rules	are	organised	by	 increasing	complexity,	 typically	 locating	 lower	 to	higher	
rules	 from	 posterior	 to	 anterior	 locations	 (Bunge	 &	 Zelazo,	 2006;	 Christoff	 et	 al.,	 2009;	 Christoff	 &	
Gabrieli,	2000;	Frank	&	Badre,	2011;	Fuster,	1989,	2001;	Kim	et	al.,	2011;	Koechlin	et	al.,	2003;	Koechlin	&	
Summerfield,	2007;	O’Reilly,	2010;	O’Reilly	et	al.,	2002;	Wise	et	al.,	1996;	Wood	&	Grafman,	2003).	Among	
gradient	 theories,	 some	 postulate	 that	 different	 areas	 process	 information	 according	 to	 increasingly	
complex	rules	(e.g.	Christoff	et	al.,	2009;	Christoff	&	Gabrieli,	2000;	Kim	et	al.,	2011;	Petrides,	2005),	while	
others	 hold	 that	 they	 also	 represent	 increasingly	 complex	 rules	 (e.g.	 Badre,	 2008;	 Badre	 &	 D’Esposito,	
2007;	Koechlin	&	Summerfield,	2007).	Major	differences	also	exist	in	the	proposed	topographical	layouts	
for	gradients,	including	differences	in	which	brain	regions	play	a	role	(see	e.g.	Badre,	2008).	
	
Gradient	 theories	 further	 disagree	 on	 the	 principle	 that	 defines	what	makes	 some	 rules	 (or	 processes)	
more	 complex	 than	 others.	 Proposals	 include	 “cross-temporal	 contingencies”,	 i.e.	 joint	 processing	 of	
events	of	increasing	temporal	distance	(Fuster,	1989,	2001);	increasing	temporal	or	contextual	distance	of	
representation	 of	 such	 events	 (e.g.	 Frank	 &	 Badre,	 2011;	 Koechlin	 &	 Summerfield,	 2007);	 “relational	
complexity”,	according	to	which	higher-level	functions	operate	on	output	of	the	next	lower-level	(Christoff	
et	al.,	2009;	Christoff	&	Gabrieli,	2000);	increasingly	abstract	task	switching	processes	(Kim	et	al.,	2011);	
or	 increasing	 distance	 of	 information	 to	 the	 final	 decision	 during	 reasoning	 (e.g.	 Badre	 &	 D’Esposito,	
2007).	Still	others	postulate	different	criteria	along	different	axes	(Kouneiher	et	al.,	2009;	O’Reilly,	2010).		
	
Even	the	general	question	whether	gradients	within	PFC	exist	at	all	is	still	heavily	debated.	Especially	John	
Duncan	 (Duncan,	 2001,	 2006,	 2010)	 dismisses	 the	 idea	 of	 functional	 specialisation	 and	 hierarchical	
gradients	within	PFC	altogether.	Instead,	he	postulates	that	the	PFC	would	constitute	a	“multiple-demand”	
network	where	all	 regions	would	work	 together	during	all	kinds	of	 tasks	 that	require	cognitive	control,	
and	 in	 which	 neural	 resources	 would	 be	 distributed	 as	 needed	 (similar	 to	 memory	 in	 a	 conventional	
computer;	for	similar	ideas,	see	e.g.	Dehaene	&	Naccache,	2001).	
	
Compared	to	the	amount	of	attention	that	the	gradient	theories	received,	empirical	data	to	test	these	are	
scarce:	only	few	studies	directly	tested	predictions	of	gradient	hypotheses	(Badre	et	al.,	2009,	2010;	Badre	
&	D’Esposito,	 2007;	 Badre	&	 Frank,	 2011;	 Christoff	 et	 al.,	 2009;	 Koechlin	 et	 al.,	 2003;	 Kouneiher	 et	 al.,	
2009)	and	all	 tested	only	predictions	from	theories	that	were	invented	by	one	or	more	of	their	authors.	
Indeed,	the	first	independent	study	that	explicitly	tested	two	competing	theories,	published	shortly	after	
work	 on	 this	 thesis	 had	 started,	 failed	 to	 provide	 evidenced	 for	 both	 tested	 theories	 (Reynolds	 et	 al.,	
2012);	instead	the	authors	created	a	new	theory	to	explain	their	data.	
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A	specific	shortcoming	of	all	previous	studies	that	empirically	investigated	gradient	theories	was	that	no	
study	had	measured	neural	representations	of	 rules	 from	different	 levels	of	hierarchical	 rule	sets	 (i.e.	 to	
measure	which	 specific	 rules	 are	 currently	 active	 as	 opposed	 to	 general	 activation	differences	 for	 rules	
from	 different	 levels;	 see	 Chapters	 2	 and	 3),	 leaving	 “representational	 gradient”	 theories	 essentially	
untested.	Thus,	testing	whether	cognitive	gradients	–	especially	“representational	gradients”	–	exist,	poses	
the	third	research	aim	of	this	thesis.	
	
The	three	empirical	studies	that	I	present	in	this	thesis	follow	these	research	aims.	They	examine	how	and	
where	 the	 brain	 represents	 rules	 and	 other	 components	 for	 rule	 sets	 that	 employ	 the	 organisation	
principles	introduced	above	(Figure	1.1):	
	

• Creating	compound	rules	from	simple	rules	(Study	1;	Section	3.1)	
• Specifying	a	temporal	order	for	rule	execution	(Study	2;	Section	3.2)	
• Organizing	rules	in	cognitive	hierarchies	(Study	3;	Section	3.3)	

	
For	 this,	 all	 studies	decompose	 representations	of	 rule	 sets	using	MVPA	 (Section	1.1	 and	Chapter	2)	 to	
localise	their	components	and	understand	how	their	components	work	together.		
	
Study	1	(Reverberi,	Görgen	et	al.,	2012a;	Section	3.1)	investigates	rule	sets	composed	of	either	single	rules	
(e.g.	“if	you	see	a	tomato,	press	the	left	button”,	Figure	1.1,	panel	a)	or	double	rules	that	are	combinations	
of	two	single	rules	(“if	you	see	a	tomato,	press	the	left	button;	if	you	see	a	banana,	press	the	right	button”,	
Figure	1.1,	panel	b),	and	asks	whether	the	neural	representations	of	double	rules	are	a	combination	of	the	
representations	of	their	constituting	single	rules,	i.e.	if	their	neural	code	is	compositional.	The	study	also	
dissociates	representations	of	 rules	 from	related	 information,	 such	as	 their	 instructing	cues.	 It	 confirms	
rule	 representations	 in	parietal	 cortex	and	ventrolateral	PFC.	Evidence	 for	compositional	 coding	 is	only	
found	in	the	latter.	
	
Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	Section	3.2)	investigates	rule	sets	that	contain	double	rules	as	
in	Study	1,	but	introduces	a	specific	order	for	the	application	(e.g.	“first	apply	the	banana	rule,	then	apply	
the	tomato	rule”,	Figure	1.1,	panel	c).	The	study	localises	representations	of	rule	order	and	especially	asks	
if	rules	and	their	order	are	co-localised,	specifically	in	lateral	PFC.	The	results	show	rule	representation	in	
dorsolateral	PFC,	slightly	below	yet	overlapping	with	the	results	 from	Study	1.	Representations	are	also	
found	in	posterior	cortices,	but	in	temporal	 instead	of	parietal	cortex	(Section	4.6.1).	Representations	of	
order	are	localised	in	striatum	and	premotor	cortex,	but	–	in	conflict	with	the	hypothesis	derived	above	–	
not	in	lateral	PFC.	
	
Study	3	(Pischedda*,	Görgen*	et	al.,	2017;	Section	3.3)	investigates	hierarchical	rule	sets	composed	of	two	
double	 rules	 from	 different	 levels	 of	 a	 cognitive	 hierarchy	 (e.g.,	 lower-level	 rule:	 as	 in	 Study	 1;	 higher	
level-rule:	“if	you	see	a	star	in	the	background,	apply	the	lower-level	rule	only	to	pictures	in	blue	frames;	
otherwise	apply	it	to	all	pictures”;	Figure	1.1,	panel	d).	The	study	investigates	where	rules	from	different	
hierarchical	 levels	 are	 represented,	 and	 tests	 whether	 representation	 locations	 depend	 on	 their	
hierarchical	 level,	 and	 if	 so,	whether	 their	 locations	 lie	 along	one	of	 the	proposed	gradients	within	PFC	
(see	 above).	 Results	 again	 confirm	 representations	 of	 rules	 in	 lateral	 PFC	 and	 parietal	 cortex,	 again	 in	
VLPFC	 as	 in	 Study	1.	 In	 conflict	with	 gradient	 theories,	 the	 results	 show	no	 evidence	 for	 differences	 in	
representation	location	of	rules	from	different	levels.	

																																																																				
*	Equal	contribution	
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Figure	 1.1	 –	 Empirical	 research	 questions.	 Overview	 of	 the	 central	 research	 questions	 of	 the	
empirical	 Studies	 1–3	 (Sections	 3.1–3.3)	 of	 this	 thesis:	 a.)	Where	 and	 how	 are	 representations	 of	
simple	 conditional	 rules	 located,	 and	 can	 they	be	dissociated	 from	other	 rule-related	 information	
(Study	 1);	 b.)	 Are	 representations	 of	 compound	 rules,	 i.e.	 rules	 composed	 of	 two	 simple	 rules,	
combinations	of	the	representations	of	their	composing	simple	rules,	and	if	so,	is	this	the	case	for	all	
locations	 that	 represent	 rules	 (Study	1);	 c.)	Where	and	how	does	 the	brain	 represent	 the	order	 in	
which	multiple	 rules	 should	 be	 executed	 (Study	 2);	 d.)	Where	 and	 how	 does	 the	 brain	 represent	
rules	 from	 different	 hierarchical	 levels,	 and	 are	 they	 represented	 at	 different	 locations	 (Study	 3).	
Brain	image	panel	a.	by	Bert	Verhelst,	GNU	1.2,	commons.wikimedia.org/wiki/File:Hersenen.png.	

	
Figure	1.2	–	Methodological	contribution	and	typical	MVPA	pipeline.	Scope	of	the	methodological	
contribution	of	this	thesis	projected	onto	the	experimental	pipeline	employed	in	the	empirical	work.	
Study	 4,	 “The	 Same	 Analysis	 Approach”	 (SAA;	 Section	 3.4)	 is	 a	 practical	 approach	 for	 confound	
detection,	 correction,	 and	 avoidance,	 encompassing	 the	 full	 experimental	 pipeline	 (consisting	 of	
experimental	 design,	 data	 collection,	 preprocessing,	 MVPA,	 statistical	 assessment,	 and	
interpretation	of	results).		
The	 pipeline	 itself	 depicts	 the	 general	 experimental	 procedure	 from	 the	 empirical	 studies	 (see	
Chapter	2):	fMRI	data	from	a	delay	period	(during	which	the	participant	is	ready	to	apply	a	rule	that	
was	 instructed	 by	 a	 visual	 cue)	 serve	 to	 train	 a	 classifier	 to	 distinguish	 different	 rules.	 Successful	
classification	on	independent	fMRI	data	demonstrates	rule	information	in	the	data.	The	“cue	trick”	
(same	rules	instructed	by	different	cues	for	training	and	test,	see	Figure	2.1)	allows	to	conclude	that	
information	is	rule-	(and	not	cue-)	specific.	
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The	methodological	study	(Study	4;	Görgen	et	al.,	2018;	Section	3.4)	complements	the	empirical	work	by	
investigating	 statistical	 and	 empirical	 methodology	 surrounding	 the	 key	 analysis	 method	 of	 the	
experimental	studies,	MVPA	(see	Figure	1.2).	It	has	been	motivated	by	a	number	of	unexpected	difficulties	
we	had	to	overcome	during	data	analysis	of	the	empirical	projects,	and	especially	by	the	insight	that	many	
of	 these	 were	 the	 result	 of	 two	 interrelated	 problems:	 1.	 that	 conventional	 design	 principles	 (Fisher,	
1935)	not	necessarily	safeguard	experiments	against	pitfalls	when	novel	or	complex	analysis	methods	are	
employed;	and	2.	that	conventional	control	analyses	(such	as	t-/F-tests,	ANOVAs;	see	e.g.	Coolican,	2009)	
can	fail	to	detect	such	pitfalls	(see	Görgen	et	al.,	2018).	
	
In	search	for	a	remedy,	we	developed	“The	Same	Analysis	Approach	(SAA)”	(Study	4;	Görgen	et	al.,	2018;	
Section	 3.4),	 a	 general	 framework	 to	 systematically	 detect,	 avoid,	 and	 eliminate	 confounds	 and	 other	
analysis	 errors	 in	 experimental	 designs	 and	 analysis	 pipelines.	 For	 that,	 we	 tackled	 a	 very	 general	
problem:	How	can	unknown	analysis	problems,	such	as	unintended	confounds	or	programming	errors,	be	
detected?	The	core	insight	–	also	reflected	by	the	name	–	was	that	the	same	analysis	that	is	used	for	data	
analysis	needs	also	to	be	employed	to	detect	and	avoid	potential	confounds.	
	
The	 paper	 lays	 out	 the	 principles	 of	 SAA	 and	 demonstrates	 its	 application	 on	 two	 novel,	 unintuitive	
problems,	 a	 “design-analysis	 mismatch”	 between	 counterbalancing	 and	 cross-validation	 and	 linear	
decoding	 of	 a	 non-linear	 effect.	 Although	originally	 SAA	was	developed	 for	 application	 scenarios	 in	 the	
area	of	MVPA,	 its	 scope	and	application	range	go	well	beyond	 the	applications	 in	 the	empirical	work	of	
this	 thesis,	 and	 extend	 to	 applications	 both	 within	 and	 outside	 neuroscience.	 In	 general,	 SAA	 joins	 a	
growing	 body	 of	 literature	 that	 aims	 towards	 improving	MVPA	by	 providing	 a	 better	 understanding	 of	
both	 its	merits	and	pitfalls	 (Allefeld,	Görgen	et	al.,	2016;	Etzel	et	al.,	2013;	Etzel	&	Braver,	2013;	Haufe,	
Meinecke,	 Görgen	 et	 al.,	 2014;	 Haynes,	 2015;	 Hebart	 &	 Baker,	 2018;	 Mumford	 et	 al.,	 2012,	 2015;	
Noirhomme	et	al.,	2014;	Schreiber	&	Krekelberg,	2013;	Todd	et	al.,	2013;	Woolgar	et	al.,	2014).6	
	
In	 this	 first	 chapter,	 I	 have	motivated	 the	 research	 conducted	 in	 this	 thesis	 by	 laying	 out	 its	 scientific	
background	current	at	the	time	when	the	work	on	this	thesis	had	started	(as	stated	above,	newer	work	is	
presented	later	in	the	thesis,	especially	in	Chapter	4).	In	the	next	chapter	(Chapter	2),	I	 introduce	MVPA	
(the	key	analysis	method	for	the	empirical	Studies	1–3	and	major	subject	of	the	methodological	Study	4)	
and	important	design	decisions	that	we	took	to	decompose	complex	task	sets.	

																																																																				
6	The	reader	might	have	noticed	that	the	introduction	of	the	empirical	work	took	much	more	space	in	this	introduction	than	that	of	
the	methodological	work.	This	is	not	because	the	methodological	work	is	less	important,	but	because	it	only	takes	very	few	words	to	
say	why	methodological	work	 is	 important:	 Research	 on	 sound	methodology	 is	 important,	 because	without	 sound	methodology,	
there	 is	 no	 sound	 empirical	 work.	 Because	 the	 scientific	 background	 necessary	 to	 make	 the	 empirical	 research	 questions	
comprehendible	to	the	readers	is	much	more	complex,	this	required	much	more	space.	
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2 Methods	

Cross-validated	 decoding	 (Haynes	 &	 Rees,	 2005a;	 Kamitani	 &	 Tong,	 2005),	 one	 type	 of	MVPA	 (“multi-
variate”	 or	 “multi-voxel	 pattern	 analysis”;	 Edelman	 et	 al.,	 1998;	Haxby	 et	 al.,	 2001;	 Cox	&	 Savoy,	 2003;	
Polyn	 et	 al.,	 2005;	 Kamitani	 &	 Tong,	 2005;	 Haynes	 &	 Rees,	 2005a,	 2005b,	 2006;	 Haynes	 et	 al.,	 2007;	
Kriegeskorte	et	al.,	2006;	Norman	et	al.,	2006),	is	the	key	innovation	that	allows	the	empirical	work	in	this	
thesis	 to	 investigate	 neural	 representations	 of	 rules	 and	 other	 task-set	 components	 (Studies	 1–3;	
Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	2012b;	Pischedda*,	Görgen*	et	al.,	2017;	Section	
3.1–3.3).	 MVPA	 methods	 are	 also	 a	 major	 application	 target	 for	 the	 methodological	 work	 in	 Study	 4	
(Görgen	et	al.,	2018;	Section	3.4).	
	
In	this	chapter,	I	 first	describe	the	development	of	MVPA	and	introduce	important	methodological	tools,	
such	 as	 cross-validation	 to	 get	 unbiased	 generalisation	 estimates	 (Efron	 &	 Tibshirani,	 1995)	 or	 the	
“searchlight”	approach	(also	“information-based	mapping”,	Kriegeskorte	et	al.,	2006;	Haynes	et	al.,	2007)	
that	 allows	 space-resolved	 analyses	 (Section	 2.1).	 Next,	 I	 explain	 the	 main	 analysis	 pipeline	 that	 we	
employ	in	our	empirical	work	(Section	2.2),	and	“cross-set	validation”,	a	specific	methodological	choice	we	
made	that	enabled	us	to	separate	rule-	and	cue-related	information	(Section	2.3).	

2.1 A	short	history	of	MVPA	

In	 general,	 the	 term	MVPA	 subsumes	 a	 conglomerate	 of	 different	 analysis	methods	 that	 only	 share	 the	
major	 idea	to	analyse	patterns	of	brain	activity.	This	 is	 in	contrast	to	traditional	analysis	methods,	most	
notably	 the	 general	 linear	model	 (e.g.	 Friston	 et	 al.,	 1991,	 1995;	 Penny	 et	 al.,	 2011;	Worsley	&	Friston,	
1995),	that	analyses	general	activation	or	deactivation	of	individual	voxels	or	regions.	Apart	from	multi-
variate	decoding	(Cox	&	Savoy,	2003;	Haxby	et	al.,	2001;	Haynes	&	Rees,	2005b,	2005a;	Kamitani	&	Tong,	
2005),	 other	 important	MVPA	methods	 include	 shape-space	 visualisation	 via	multi-dimensional	 scaling	
(Edelman	et	al.,	1998),	multi-variate	encoding	and	inverse	encoding	models	(Huth	et	al.,	2012;	Kay	et	al.,	
2008;	 Kok	 et	 al.,	 2013;	Mitchell	 et	 al.,	 2008;	 Naselaris	 et	 al.,	 2011;	 Sprague	 et	 al.,	 2014;	 Thirion	 et	 al.,	
2006),	partial	 least	squares	(McIntosh	et	al.,	1996),	or	representational	similarity	analysis	(Kriegeskorte	
et	al.,	2008).7	
	
A	seminal	paper	by	Shimon	Edelman	and	colleagues	 (Edelman	et	al.,	1998)	was	presumably	 the	 first	 to	
employ	this	idea	to	investigate	patterns	of	neural	responses	(see	also	e.g.	Friston	et	al.,	1996	for	another	
early	multivariate	methodological	approach).	A	major	motivation	was	the	recent	discovery	of	neural	maps	
in	 inferior	 temporal	 cortex	 of	 monkeys,	 in	 which	 neurons	 that	 selectively	 fired	 for	 similar	 stimulus	
properties	were	 organized	 in	 vertical	 “columns”	 (Fujita	 et	 al.,	 1992;	 Tanaka,	 1992,	 1996;	 Tanaka	 et	 al.,	
1991).	 In	 their	 work,	 Edelman	 and	 colleagues	 wondered	 whether	 the	 clustered	 activity	 within	 these	
columns	 would	 be	 sufficiently	 large	 to	 be	 measured	 with	 fMRI	 in	 humans.	 More	 specifically,	 they	
hypothesised	 that	 similar	 objects	 would	 produce	 similar	 fMRI	 activity	 patterns,	 following	 own	 (e.g.	
Edelman,	 1995)	 and	 others’	 (e.g.	 Hinton,	 1984)	 ideas	 on	 distributed	 representations	 and	 similarity	
relations.	To	test	their	hypothesis,	they	recorded	fMRI	data	while	images	of	different	objects	were	shown	
to	human	participants.	The	critical	difference	to	previous	work	was	that	–	during	data	analysis	–	they	did	
not	 follow	 the	 standard	 procedure	 to	 analyse	 each	 voxel	 independently,	 but	 instead	 compared	 the	
similarity	 of	 the	activity	 pattern	 of	many	 voxels	between	 the	 different	 images	 directly	 (technically,	 they	
																																																																				
*	Equal	contribution	
7	The	MVPA	work	discussed	here	comes	from	work	in	humans,	which	indeed	used	the	term	MVPA	exclusively	for	a	long	time.	Some	
studies	 in	monkey	 independently	developed	and	performed	multivariate	analysis	 techniques	as	well	 (Averbeck	et	al.,	2003,	2006;	
Siegel	et	al.,	2009;	Sigala	et	al.,	2008).	Because	both	fields	nearly	never	mentioned	work	from	the	other	field	(for	an	exception,	see	
Haynes	et	al.,	2007),	development	remained	largely	separated.	
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calculated	 the	 pairwise	 correlation	 between	 the	 activation	 of	 selected	 voxels	 that	 was	 elicited	 by	 the	
presented	 images).	 They	 then	 used	 multi-dimensional	 scaling	 (Torgerson,	 1952)	 to	 visually	 arrange	
pictures	 of	 the	 shown	 objects	 in	 two	 dimensional	 plots,	 such	 that	 the	 distances	 between	 the	 plotted	
objects	approximated	 the	Euclidean	distances	between	 their	neural	 “voxel-space	representations”.	They	
found	that	objects	that	participants	judged	to	be	more	similar	(measured	by	employing	multi-dimensional	
scaling	 to	behavioural	data,	 see	Shepard,	1980)	were	also	placed	closer	 in	voxel-space,	while	dissimilar	
objects	 tended	 to	 be	 further	 apart.	 Thus,	 instead	 of	 analysing	 the	data	univariately	 for	 each	 voxel,	 they	
used	the	data	of	multiple	voxels	at	the	same	time	to	perform	a	multivariate	analysis.	
	
Despite	their	result,	nearly	all	 fMRI	studies	continued	to	use	conventional	mass-univariate	analysis.	The	
next	major	step	in	the	development	of	multivariate	analysis	 in	neuroimaging	came	from	work	by	Haxby	
and	colleagues	(2001).	Instead	of	creating	similarity	maps,	these	authors	wondered	whether	patterns	of	
brain	activity	would	be	sufficient	to	distinguish	different	categories	of	objects,	i.e.	to	decode	which	object	
category	a	person	sees	even	for	objects	for	which	no	specific	brain	region	had	been	identified.	Indeed,	the	
authors	 showed	 that	 images	 of	 objects	 from	 different	 categories	 (faces,	 houses,	 cats,	 bottles,	 scissors,	
shoes,	chairs,	and	scrambled	images)	can	be	distinguished	from	their	elicited	brain	activity.	
	
Few	 further	 studies	 employing	multivariate	 analysis	 to	 fMRI	 data	 followed,	 and	 the	 terms	 “MVPA”	 (for	
either	“multi-voxel	pattern	analysis”,	Norman	et	al.,	2006;	or	“multi-variate	pattern	analysis”,	Polyn	et	al.,	
2005)	and	 “decoding”	 (Kamitani	&	Tong,	2005)	emerged.	A	next	major	methodological	 step	 to	 improve	
decoding	 performance	was	 to	 go	 beyond	 simple	 correlations	 to	 calculate	 the	 similarity	 between	 voxel-
activity	patterns.	Instead,	Cox	and	Savoy	(2003)	introduced	two	popular	methods	from	machine	learning	
to	neuroscience	that	are	routinely	still	used	today:	Linear	Discriminant	Analysis	(LDA;	Fisher,	1936)	and	
Support	Vector	Machines	(SVMs;	Cortes	&	Vapnik,	1995;	see	e.g.	Müller	et	al.,	2001).8	
	
While	 initial	multivariate	 fMRI	 studies	 nearly	 exclusively	 investigated	 object	 representations,	 Kamitani	
and	 Tong	 (2005)	 started	 to	 apply	MVPA	 to	 investigate	 cognitive	 states	 that	were	 not	 directly	 stimulus	
related,	 but	 instead	 related	 to	 attended	 properties	 of	 the	 same	 physical	 stimuli.	 They	 did	 so	 by	 asking	
observers	to	attend	to	specific	 features	of	stimuli	(consisting	of	 two	overlapping	oriented	gratings),	and	
showed	that	these	attended	features	could	be	decoded	from	the	measured	brain	activity.	Haynes	and	Rees	
(2005a)	demonstrated	that	“invisible”	stimuli	(also	oriented	gratings,	that	were	not	consciously	perceived	
using	a	backward	masking	paradigm)	elicit	brain	activity	that	allowed	to	successfully	decode	the	identity	
of	 these	 stimuli.	 A	 short	 time	 later,	 Haynes	 and	 Rees	 (2005b)	 demonstrated	 that	 another	 purely	
perceptual	 phenomenon,	 the	 spontaneously	 fluctuating	 perception	 of	 bi-stable	 stimuli,	 could	 also	 be	
predicted	from	local	patterns	of	brain	activity	(for	a	contemporary	review	of	this	and	other	early	MVPA	
work,	see	Norman	et	al.,	2006).	
	
A	major	problem	of	all	MVPA	studies	until	then	was	how	to	choose	which	brain	locations	should	be	used	
during	 decoding.	 For	 this,	 early	 MVPA	 studies	 typically	 selected	 voxels	 that	 demonstrated	 univariate	
effects	in	a	related	contrast,	e.g.	by	taking	the	voxels	that	showed	maximal	differences	among	responses	to	
stimulus	categories	(Haxby	et	al.,	2001)	or	between	scrambled	and	proper	images	(Edelman	et	al.,	1998;	
see	 also	 Cox	 &	 Savoy,	 2003;	 Haynes	 &	 Rees,	 2005a;	 Polyn	 et	 al.,	 2005).	 This	 bears	 a	 high	 risk	 of	
unintentional	 “double	 dipping”	 or	 circular	 analyses	 (Vul	 et	 al.,	 2009;	 Kriegeskorte	 et	 al.,	 2009;	 Button,	
2019),	 if	 the	 contrasts	 to	 define	 the	 areas	 overlap	with	 the	 classification	 analysis.	 An	 alternative	 voxel	
selection	criterion	was	to	employ	separate	data	from	functional	localiser	runs	for	voxel	selection	(e.g.	Cox	
&	Savoy,	2003;	Haynes	et	al.,	2007;	Kamitani	&	Tong,	2005).	 In	some	cases,	voxel	 selection	was	 further	
restricted	to	voxels	from	predefined	regions	of	interest	(ROIs),	such	as	“visual	areas”	for	visual	tasks	(e.g.	
Haynes	 &	 Rees,	 2005a,	 2005b;	 Kamitani	 &	 Tong,	 2005).	 This	 beard	 the	 danger	 to	 bias	 the	 outcome	 of	

																																																																				
8	http://www.svms.org/history.html	lists	historical	contributions	(back	to	Fisher,	1936)	that	led	to	the	development	of	SVMs.	
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studies,	 because	 they	 could	 only	 show	 that	 information	 was	 present	 in	 the	 preselected	 region	 but	 not	
elsewhere,	 thereby	 creating	 systematic	 location-specific	 biases.	 Finally,	 classification	 in	 a	 region	 of	
interest	only	informs	about	information	contained	within	the	region	as	a	whole,	but	does	not	inform	about	
potential	location-specific	differences	within	this	region.	This	did	not	only	fail	to	harness	one	of	the	largest	
advantages	of	 fMRI	above	 invasive	 techniques,	namely	 its	potential	 to	measure	 from	all	 locations	of	 the	
brain	 at	 once,	 but	 also	 led	 to	 the	 pitfall	 of	 interpreting	 classifier	 weights	 to	 localise	 the	 origin	 of	
information	(see	Haufe,	Meinecke,	Görgen	et	al.,	2014).	
	
A	 clever	 solution	 to	 overcome	 this	 limitation	 was	 the	 introduction	 of	 the	 “searchlight”	 approach	 that	
allows	 whole-brain	 “information-based	 mapping”	 (Kriegeskorte	 et	 al.,	 2006)	 in	 a	 spatially	 unbiased	
fashion	 (Haynes	 et	 al.,	 2007).	 The	 main	 idea	 is	 to	 perform	 MVPA	 in	 not	 only	 one	 or	 few	 preselected	
regions,	 but	 systematically	 for	 all	 locations	 within	 the	 brain.	 Specifically,	 the	 authors	 suggested	 to	
calculate	MVPA	in	small	spheres	(“searchlights”)	around	each	voxel.	The	result	of	all	searchlight	analyses	
are	then	collected	in	a	new	image,	the	“information	map”,	that	contains	for	each	voxel	an	estimate	of	how	
much	information	about	the	condition	of	interest	exists	in	its	local	surrounding.	
	
To	draw	 inference	about	a	group	of	multiple	 subjects,	Kriegeskorte	and	colleagues	 (2006)	 suggested	 to	
combine	 information	 maps	 from	 multiple	 subjects	 by	 first	 performing	 searchlight	 analyses	 for	 each	
subject	 individually,	 next	 to	 bring	 these	 into	 a	 common	 stereotactic	 space,	 and	 to	 then	 employ	
conventional	group	level	analysis	methodology	(e.g.	Friston	et	al.,	1991;	Penny	et	al.,	2011).	Haynes	and	
colleagues	 (Haynes	 et	 al.,	 2007),	 who	 were	 the	 first	 to	 employ	 group	 level	 analysis	 for	 searchlight	
decoding,	reached	the	same	goal	by	performing	classification	already	on	spatially	normalised	images.9	
	
An	initial	motivation	behind	the	searchlight	approach	and	decoding	in	general	was	that	the	brain	would	
represent	many	different	kinds	of	 information	in	different	local	maps,	such	as	the	object	map	in	inferior	
temporal	cortex	that	motivated	the	study	of	Edelman	et	al.	(1998)	discussed	above,	and	that	fMRI	would	
allow	to	readout	these	maps.	Although	this	hypothesis	is	under	heavy	discussion	ever	since	(Beckett	et	al.,	
2012;	Freeman	et	al.,	2011;	Kamitani	&	Sawahata,	2010;	Kriegeskorte	et	al.,	2010;	Op	de	Beeck,	2010a,	
2010b;	see	e.g.	Haynes,	2015),	employing	the	searchlight	approach	has	turned	out	to	be	a	very	effective	
method	to	map	information	in	the	brain.	The	advantage	of	this	approach	is	that	it	allows	to	detect	where	
in	 the	 brain	 information	 is	 present	without	 any	 a-priori	 anatomical	 hypothesis.	 In	 analogy	 to	 the	 term	
mass-univariate	analysis	that	I	used	above	to	distinguish	it	from	a	single	multivariate	analysis	(e.g.	a	single	
ROI	 analysis),	 the	 multivariate	 searchlight	 approach	 could	 thus	 be	 called	 a	mass-multivariate	 analysis.	
Indeed,	 recent	 methodological	 work	 (e.g.	 Weichwald	 et	 al.,	 2015)	 see	 content	 and	 interpretability	 of	
information	maps	similar	to	result	maps	of	mass-univariate	analysis,	for	example	because	interpretation	
rules	 for	 single	 decoding	 models	 (Weichwald	 et	 al.,	 2015)	 or	 internal	 parameters	 (Haufe,	 Meinecke,	
Görgen	et	al.,	2014)	do	not	apply.	
	
An	 important	 step	during	decoding	 is	 to	quantify	 information	 content	 in	data.	 In	MVPA	practice,	 this	 is	
often	 done	 by	 estimating	generalisation	 performance,	 i.e.	 how	well	 a	 classifier	would	 perform	 on	 novel	
data,	 which	 is	 also	 common	 practice	 in	 machine	 learning	 (see	 e.g.	 Bishop,	 2006).	 Other	 methods	 to	
quantify	 information	 content	 include	 other	 multivariate	 distance	 measures	 such	 as	 the	 Mahalanobis	
distance	 (Mahalanobis,	 1936;	 see	 e.g.	Kriegeskorte	 et	 al.,	 2006)	 or	 cross-validated	MANOVA	 (Allefeld	&	
Haynes,	 2014).	 Different	methods	 exist	 again	 to	 estimate	 generalisation	 performance,	 e.g.	 employing	 a	
classifier	on	a	test	set	of	data	that	was	separated	from	the	data	used	for	training	(employed	e.g.	in	Cox	&	
Savoy,	 2003;	 Polyn	 et	 al.,	 2005);	 bootstrap	 (Efron	 &	 Tibshirani,	 1995;	 employed	 e.g.	 in	 Carlson	 et	 al.,	
2003);	or	cross-validation	(Efron,	1983;	Efron	&	Tibshirani,	1995;	employed	e.g.	in	Bode	&	Haynes,	2009;	

																																																																				
9	Today,	both	approaches	are	used.	Personal	experience	and	reports	from	colleagues	suggest	that	both	procedures	yield	very	similar	
results,	although	I	am	not	aware	of	any	systematic	study	on	this	topic.	
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Haynes	et	al.,	2007;	Haynes	&	Rees,	2005b,	2005a;	Kamitani	&	Tong,	2005).	When	the	work	on	this	thesis	
started,	 cross-validated	 decoding	 had	 become	 quasi-standard	 for	 MVPA,	 so	 we	 employed	 it	 as	 well	
(although	this	might	not	have	optimal	power,	see	e.g.	Allefeld	&	Haynes,	2014;	Rosenblatt	et	al.,	2016).	
	
In	 summary,	 cross-validated	 decoding	 using	 the	 searchlight	 approach	 provides	 what	 is	 needed	 to	
investigate	 neural	 representations	 of	 complex	 rule	 sets.	 The	 method	 allows	 to	 identify	 and	 localise	
representations	of	experimental	conditions	that	do	not	differ	in	large-scale	activations,	but	are	contained	
in	 local	activation	patterns	 instead.	 Its	potential	has	been	demonstrated	 in	numerous	experiments	 from	
different	 areas	 in	 cognitive	 neuropsychology	 (for	 reviews,	 see	 e.g.	 Haxby	 et	 al.,	 2014;	 Tong	 &	 Pratte,	
2012),	 such	as	 the	work	cited	above,	 and	has	been	 the	key	 for	 localisation	of	 representations	of	 simple	
rules	(Bode	&	Haynes,	2009;	Haynes	et	al.,	2007)	prior	to	the	work	within	this	thesis.	

2.2 Analysis	pipeline	of	empirical	work	

The	empirical	studies	in	this	thesis	(Studies	1–3;	Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	
2012b;	 Pischedda*,	 Görgen*	 et	 al.,	 2017;	 Sections	 3.1–3.3)	 employ	 cross-validated	 decoding	 for	 data	
analysis.	 Captured	 in	 single	 expressions,	 they	 employ	 stratified	 leave-one-run-out	 cross-validated	
searchlight	decoding	and	stratified	cross-set	MVPA	searchlight	decoding	analysis	on	run-wise	finite	impulse	
response	(FIR)	regression	coefficient	estimates	from	fMRI	data	(the	terms	are	explained	in	the	following).	
The	general	goal	of	the	analysis	 is	to	infer	where	and	how	rule	sets	are	represented	in	the	human	brain.	
The	 focus	of	 the	empirical	 studies	 is	 to	decode	 representations	of	 rule	 sets	during	maintenance,	 i.e.	 the	
period	during	which	participants	know	which	rules	to	apply	and	are	ready	to	apply	them,	but	before	the	
target	stimuli	appear	to	which	the	rules	should	be	applied.10	
	
Before	 decoding,	 the	 raw	 fMRI	 data11	 are	 preprocessed12	 and	 time-resolved	 regression	 coefficient	
images13	are	created	for	each	condition,	run,	and	participant.	These	images	are	then	analysed	using	cross-
validated	 searchlight	 decoding14	 to	 calculate	 information	 maps	 that	 quantify	 how	 well	 local	 activity	
patterns	distinguish	between	the	experimental	conditions	of	interest,	such	as	between	two	different	rules.	

																																																																				
*	Equal	contribution	
10	Investigating	the	delay	period	is	different	to	most	conventional	and	other	MVPA	(e.g.	Woolgar	et	al.,	2011)	fMRI	studies	(but	see	
Bunge	et	al.,	2003).	The	motivation	is	that	during	the	delay,	participants	represent	the	rule	set,	but	cannot	present	any	other	task	
relevant	 information	(such	as	target	 images,	etc.).	 In	contrast,	when	the	target	screen	appears,	rule	sets	can	be	resolved,	and	thus	
only	the	applying	rules	or	even	parts	thereof	(e.g.	the	response)	may	be	maintained.	Work	in	monkeys	(e.g.	Warden	&	Miller,	2007;	
Sigala	et	al.,	2008)	and	a	recent	study	in	humans	(Hebart	et	al.,	2018)	suggests	that	task	set	information	changes	its	representational	
form	in	different	task	phases.	
11	All	analysis	are	performed	on	 fMRI	data	 that	are	 recorded	 from	healthy	participants	 (aged	18-30,	male	and	 female)	while	 they	
retrieve,	prepare,	and	apply	different	rule	sets	to	target	images	(see	Chapter	3).	
12	Preprocessing	includes	slice-time	correction	to	remove	differences	in	acquisition	time	between	different	image	slices,	realignment	
to	correct	for	head	movement	during	scanning,	and	high-pass	filtering	to	correct	for	slow	non-physiological	drifts	in	saturation.	
13	For	this,	first	level	analysis	statistical	parametric	mapping	(SPM;	Friston	et	al.,	1995;	Worsley	&	Friston,	1995)	is	calculated	for	each	
participant	using	full-brain	general	linear	models	(GLMs).	All	models	include	separate	regressors	for	different	rules.	Study	1	(Section	
3.1)	and	Study	2	(Section	3.2)	also	contain	separate	regressors	for	the	same	rules	that	were	instructed	by	different	cues	(to	conduct	
the	“cue	trick”;	see	details	of	each	experiment	for	the	exact	conditions).	Different	to	the	standard	procedure	to	use	regressors	that	
are	convolved	with	the	hemodynamic	response	function	(HRF),	we	calculated	finite	impulse	response	(FIR)	models	(Henson,	2004)	
that	estimate	 the	BOLD	activity	of	each	voxel	 in	consecutive	2s	 time	bins	after	condition	onsets.	This	procedure	creates	 full	brain	
images	 (“beta	 images”)	with	 voxel-wise	 correlation	 coefficients	 between	 activity	 of	 each	 voxel	 and	 the	 corresponding	 regressor,	
yielding	one	image	per	condition,	run,	FIR	bin,	and	participant.	
14	Searchlight	decoding	works	as	follows:	Each	voxel	of	the	brain	serves	as	centre	voxel	for	one	decoding	analysis.	For	each	centre	
voxel	 vi,	 the	 first-level	 correlation	 coefficients	within	 a	 sphere	 (radius	 4-5	 voxels	 in	 the	 studies	within	 this	 thesis)	 around	 vi	 are	
extracted	for	the	classes	of	interest	and	serve	as	data	vectors	for	the	classification	procedure.	Cross-validation	(Cox	&	Savoy,	2003;	
Efron,	 1983;	 Efron	 &	 Tibshirani,	 1995)	 then	 serves	 to	 get	 an	 unbiased	 estimate	 of	 how	well	 a	 classifier	 that	 was	 trained	 on	 all	
recorded	 data	 would	 predict	 the	 class	 of	 newly	 recorded	 data	 not	 used	 for	 training.	 For	 this,	 the	 data	 is	 repeatedly	 split	 into	
independent	 training	 and	 validation	 sets	 according	 to	 a	 given	 cross-validation	 scheme	 (here:	 “stratified	 leave-one-run-out”	 or	
“stratified	cross-set”,	see	Section	2.3).	Separate	classifiers,	in	our	experiments	always	linear	SVM	with	fixed	regularisation	parameter	
C	=	1	(Müller	et	al.,	2001),	are	trained	on	each	training	set	to	predict	which	data	belong	to	which	class.	The	classifier	is	then	validated	
on	 the	 left-out	 validation	 set.	 The	 measure	 we	 use	 to	 quantified	 classifier	 performance	 is	 “decoding	 accuracy”	 (DA),	 i.e.	 the	
percentage	of	samples	from	the	validation	data	for	which	the	classifier	predicts	the	class	label	correctly.	The	individual	DAs	of	the	
different	folds	are	then	averaged,	yielding	the	final	cross-validation	decoding	accuracy	estimate	that	is	then	written	at	location	vi	in	a	
new	resulting	information	map.	This	procedure	is	repeated	for	each	participant	and	often	for	multiple	analyses.	
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The	 resulting	 information	 maps15	 are	 then	 spatially	 normalized	 to	 a	 standard	 brain	 space	 (Montreal	
National	 Institute;	MNI)	 and	 submitted	 to	 a	 group	 level	 statistical	 test	 (“second	 level	 analysis”	 in	 SPM).	
This	then	assesses	voxel-wise	(or	ROI-wise)	information	by	testing	where	decoding	accuracy	(DA)	across	
participants	 is	 significantly	 higher	 than	 expected	 by	 chance	 (i.e.	 50%	 for	 2	 conditions,	 100%/n	 for	 n	
conditions;	 see	Allefeld,	Görgen	et	al.,	2016	 for	 interpretation	and	alternative	second-level	approaches).	
Multiple	 comparison	 correction16	 is	 employed	 to	 prevent	 an	 increase	 of	 the	 false	 positive	 rate	 (alpha	
level)	from	performing	multiple	individual	tests.	Preprocessing,	first-level	coefficients	estimation,	and	the	
final	 group	 level	 statistics	 after	 decoding	 are	 performed	 using	 SPM	 (Wellcome	 Department	 of	 Imaging	
Neuroscience,	 Institute	 of	 Neurology,	 London,	 UK)	 and	 MATLAB	 (The	 Mathworks,	 Inc.).	 For	 decoding,	
Study	1	used	custom	code,	and	Studies	2	and	3	employed	“TDT	–	The	Decoding	Toolbox”	(Hebart*,	Görgen*	
et	al.,	2015).	

2.3 Cross-validation	and	cross-set	decoding	

A	specific	feature	in	our	studies	is	the	use	of	a	special	cross-validation	scheme	called	“cross-set”	decoding	
(or	 “cross-classification”,	 e.g.	Kaplan	et	 al.,	 2015;	Hebart	&	Baker,	 2018).	 Cross-validation	 (Efron,	 1983;	
Efron	 &	 Tibshirani,	 1995)	 is	 a	 method	 to	 get	 an	 unbiased	 generalisation	 estimate	 for	 a	 model,	 i.e.	 an	
estimate	how	well	a	model	(e.g.	a	classifier)	that	is	trained	on	some	given	data	would	perform	on	new	data	
from	 the	 same	 sample.	Typically,	 cross-validation	proceeds	by	 iteratively	 splitting	 all	 data	 into	 training	
and	test	set	according	to	a	certain	cross-validation	scheme,	e.g.	by	taking	all	data	from	each	experimental	
run17	as	test	data	once	(“leave-one-run-out	cross-validation”;	Figure	2.2,	panel	a).	A	model	(in	decoding:	a	
classifier)	is	trained	on	the	training	set	data	of	each	split,	and	its	performance	is	then	validated	on	the	test	
set	data.	Averaging	all	test	performances	yields	the	final	cross-validated	generalisation	estimate.	Although	
not	 initially	 designed	 for	 that	 purpose,	when	 used	 for	 classification,	 the	 estimate	 can	 be	 used	 to	 test	 if	
class-specific	 information	 exists	 in	 the	 data	 sample,	 by	 testing	 if	 the	 classification	 performance	 is	
significant	above	chance	level	(e.g.	Haxby	et	al.,	2001;	Haynes	&	Rees,	2005a;	Kriegeskorte	et	al.,	2006).18	
	
“Cross-set	decoding”,	 in	contrast,	performs	 training	and	 testing	across	different	sets	of	data	 (Figure	2.2,	
panel	 b).	 These	 are	 typically	 similar	 in	 some	 aspects	 but	 differ	 in	 others.	 For	 example,	we	 used	 cross-
classification	to	distinguish	the	same	rules	that	were	instructed	by	different	cues	("cue	trick"	or	"double-
coding	 scheme";	 Figure	 2.1;	 for	 application	 of	 the	 double	 coding	 scheme	 in	 monkey	 neuropsychology	
using	 ANOVA,	 see	 e.g.	 Wallis	 et	 al.,	 2001;	 Stoet	 &	 Snyder,	 2004;	 for	 psychophysics	 in	 human,	 see	 e.g.	
																																																																				
15	The	exact	number	of	information	maps	differs	between	analyses	(see	original	articles	of	Studies	1–3),	depending	on	the	number	of	
conditions	 that	 allow	 the	 same	 contrast	 and	whether	decoding	was	performed	 for	 each	 time	point	 (e.g.	 visual	 control	 analysis	 in	
Study	1)	or	across	the	selected	time	window	(e.g.	rule	decoding	in	Study	1).	
16	We	employ	two	different	types	of	multiple	comparison	corrections	that	allow	different	spatial	inferences.	The	first	type	applies	to	
statistical	 tests	 that	perform	spatially	unbiased	 inference	on	 searchlight	 accuracy	maps	and	 is	 achieved	by	employing	 topological	
inference	(Penny	et	al.,	2011;	Taylor	&	Worsley,	2007;	Friston,	2009)	through	family-wise	error	correction	on	cluster	level	(FWEc)	to	
correct	for	the	large	number	of	inferences	(one	per	voxel)	for	a	specified	experiment-wise	false	positive	level	(all	our	studies	use	the	
standard	level	α	=	0.05).	A	recent	publication	(Eklund	et	al.,	2016)	demonstrates	that	(in	contrast	to	the	overly	simplified	general	
conclusion	of	that	study,	see	e.g.	Brown	&	Behrmann,	2017)	this	control	is	valid	when	single-voxel	thresholds	of	p	<	0.001	or	below	
are	employed	(e.g.	Flandin	&	Friston,	2017;	Kessler	et	al.,	2017;	Nichols,	2016),	which	 is	 the	case	 in	our	studies.	The	second	type	
applies	to	analyses	that	perform	more	spatially	specific	inferences	using	DA	averages	in	ROIs	by	employing	Bonferroni	correction	to	
correct	for	testing	multiple	ROIs	by	setting	α	=	0.05/n	(for	n	ROIs).	 In	our	studies,	ROIs	are	either	anatomical	ROIs	from	standard	
anatomical	atlases,	functional	ROIs	from	independent	analyses,	or	functional-anatomical	ROIs	retrieved	using	leave-one-participant	
out	 cross-validation	 to	 ensure	 non-circularity	 of	 statistical	 inference	 (Kriegeskorte	 et	 al.,	 2009;	 Vul	 et	 al.,	 2009).	 In	 general,	 ROI	
analyses	 are	 considered	more	 sensitive	 than	 full-brain	 searchlight	 analyses	 due	 to	 less	 correction	 for	 multiple	 comparison	 (the	
number	 of	 tested	 ROIs	 is	 typically	 much	 smaller	 than	 the	 number	 of	 voxels	 that	 need	 to	 be	 corrected	 in	 full-brain	 searchlight	
analyses).	This	however	comes	to	the	cost	that	ROIs	only	allow	inference	at	the	locations	where	they	are,	and	can	thus	create	a	bias	
for	the	investigated	spatial	locations.	Reasons	for	employing	ROI	analyses	especially	include	cases	in	which	prior	evidence	exists	that	
certain	regions	are	specifically	 involved	in	the	process	under	investigation.	Combining	both,	searchlight	analysis	and	ROI	analysis,	
allows	for	both,	spatially	unbiased	inference	as	well	as	employing	priori	knowledge	for	more	sensitive,	spatially	specific	inference.	
*	Equal	contribution	
17	fMRI	experiments	are	often	divided	in	multiple	runs,	during	which	participants	perform	the	experimental	task	on	multiple	trials	
(the	empirical	Studies	1–3	have	6	runs	of	ca.	10	mins	each).	Between	runs,	fMRI	recording	is	switched	off	to	have	short	breaks.	
18	Alternatives	exist	to	all	analysis	components,	cross-validation,	classification,	and	second	level	inference	(see	e.g.	Allefeld	&	Haynes,	
2014;	Allefeld,	Görgen	et	 al.,	 2016;	Hebart	&	Baker,	2018;	Rosenblatt	 et	 al.,	 2016),	but	as	 these	are	 the	most	 common	choice,	we	
employ	them	as	well.	
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Kleinsorge,	 2012).	 In	 this	 case,	 significant	 generalisation	 performance	 allows	 to	 conclude	 that	 the	
information	about	 the	similar	aspect	 is	present	 in	 the	data	 (e.g.	 rule-related	 influences)	and	generalises	
across	sets,	and	to	exclude	that	the	different	aspect	(e.g.	cue-related	influences)	confounded	the	inference.	
For	 example,	 if	 the	 goal	 is	 to	 separate	 rule-related	 (similar	 aspect)	 and	 cue-related	 (different	 aspect)	
representations	 (Figure	 2.2,	 panels	 b,	 c),	 successful	 rule	 classification	 trained	 and	 tests	 on	 data	 that	
contained	 different	 cue	 images	 allows	 to	 infer	 that	 the	 data	 contain	 rule-specific	 information	 that	 is	
independent	 of	 information	 about	 the	 cues.	 Early	 work	 that	 employed	 cross-classification	 by	 others	
includes	testing	for	generalisation	between	visual	stimulation	and	perception	(Kamitani	&	Tong,	2005)	or	
imagination	 (Stokes	 et	 al.,	 2009),	 testing	 for	 temporal	 reappearance	 (Polyn	 et	 al.,	 2005),	 or	 common	
coding	 schemes	 between	 anticipating	 and	 receiving	 a	 reward	 (Kahnt	 et	 al.,	 2010;	 for	more	 application	
examples,	see	Kaplan	et	al.,	2015).	
	
Because	in	our	experiments	two	visually	unrelated	cues	were	used	to	instruct	each	rule	sets	(for	example,	
Cue1	 and	 Cue2	 to	 instruct	 Rule1,	 Cue2	 and	 Cue3	 to	 instruct	 Rule2,	 see	 Figure	 2.2),	 the	 data	 of	 two	
different	rule	sets	Rule1	and	Rule2	can	be	separated	into	four	different	splits	(Figure	2.2,	panel	b;	these	
are:	Split	1:	train	Rule1	using	Cue1	vs.	Rule2	using	cue	Cue3,	test	Rule1	using	Cue2	vs.	Rule2	using	Cue4,	
split	2:	vice	versa;	 split	3:	 train	Rule1	using	Cue1	vs.	Rule2	using	Cue4,	 test	Rule1	using	Cue2	vs.	Rule2	
using	Cue3,	split	4:	vice	versa).	
	
For	 the	 empirical	 Studies	 1	 and	 2	 (Sections	 3.1,	 3.2),	 we	 employed	 set-wise	 cross-validation	 in	 which	
classifiers	were	trained	and	validated	on	all	data	from	all	runs	(Figure	2.2,	panel	b).	Based	on	insights	we	
gained	 while	 working	 on	 “The	 Same	 Analysis	 Approach”	 (Section	 3.4)	 we	 now	 highly	 recommend	 to	
combine	 set-wise	 with	 run-wise	 cross-validation	 in	 future	 studies	 (Figure	 2.2,	 panel	 c).	 Although	 the	
combination	is	computationally	slightly	more	expensive	because	it	needs	additional	cross-validation	steps	
(number	 of	 sets	 x	 runs	 compared	 to	 only	 number	 of	 sets),	 it	 can	 prevent	 unexpected	 effects	 that	 are	
caused	by	temporal	proximity	between	measurements	and	seems	to	create	more	stable	estimates.	
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Figure	2.1	–	Compound	rules	and	the	cue	trick.	Two	elementary	features	of	the	empirical	studies	in	
this	 thesis	 (Studies	 1–3)	 are	 1.	decoding	 between	 symmetrical	 compound	 rules	 that	 contain	 the	
same	building	elements	and	only	differ	in	the	individual	rules	that	connect	these	(e.g.	the	compound	
rule	 1	 and	 2	 in	 the	 figure	 contain	 the	 same	 parts	 [house,	 face,	 left,	 right]	 but	 connect	 these	 in	
different	 ways),	 and	 2.	 using	 the	 “cue	 trick”	 (that	 requires	 two	 different	 symbols	 to	 instruct	 the	
same	 rule	 in	different	 trials)	 to	disambiguate	neural	 representations	of	 a	 specific	 cue	 image	 from	
representations	of	the	instructed	cue.	This	allows	cross-set	decoding	(Section	2.3;	Figure	2.2)	during	
which	a	classifier	is	trained	to	distinguish	rules	from	data	instructed	with	one	set	of	cues,	after	which	
its	 performance	 is	 assessed	 on	 data	 from	 the	 other	 set	 of	 cues.	 Successful	 classification	
demonstrates	presence	of	rule-specific	neural	patterns.	

	

	
Figure	 2.2	 –	 Different	 validation	 schemes.	 a.	 Standard	 run-wise	 (“leave-one-run-out”)	 cross-
validation	 and	b.	 set-wise	 (“cross-set”)	 validation	have	been	employed	 in	 the	empirical	 studies	of	
this	work.	c.	Run-and-set	wise	validation	is	recommended	for	future	work	(see	explanation	in	text).	
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3 Studies	

In	this	chapter,	I	provide	an	overview	about	the	four	studies	that	are	at	the	core	of	this	thesis	(Appendix	
C).	The	empirical	studies	(Studies	1–3;	Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	2012b;	
Pischedda*,	 Görgen*	 et	 al.,	 2017;	 Sections	 3.1–3.3)	 investigate	 properties	 of	 neural	 coding	 that	 underlie	
how	 the	 brain	 represents	 rules	 and	 rule	 sets.	 Specifically,	 they	 investigate	 which	 compositionality	
principles	the	brain	applies	in	these	representations,	i.e.	if	the	brain	composes	representation	of	complex	
rule	sets	of	representations	of	their	constituting	parts.	For	that,	all	studies	employed	multivariate	pattern	
analysis	 (MVPA)	 of	 functional	 magnetic	 resonance	 imaging	 (fMRI)	 data	 (Figure	 1.2)	 using	 searchlight	
decoding	 (Kriegeskorte	 et	 al.,	 2006;	 Haynes	 et	 al.,	 2007)	 to	 allow	 spatially	 unbiased	 full-brain	 space-
resolved	analysis	of	local	activation	patterns	(see	Chapter	2).	The	theoretical	study	(Study	4;	Görgen	et	al.,	
2018;	 Section	 3.4)	 introduces	 “The	 Same	 Analysis	 Approach”,	 a	 pragmatic	 approach	 to	 systematically	
detect,	 avoid,	 and	 eliminate	 confounds	 and	 other	 analysis	 errors	 in	 studies	 employing	 MVPA	 or	 other	
complex	 analysis	 methods.	 The	 theoretical	 study	 drew	 inspiration	 from	 the	 empirical	 studies	 in	 this	
thesis,	which	in	turn	benefited	from	the	developed	methods	and	insights.	
	
All	empirical	studies	in	this	thesis	employ	a	task-cueing	paradigm	(e.g.	Sudevan	&	Taylor,	1987;	Meiran,	
1996;	for	reviews	and	other	paradigms	see	e.g.	Monsell,	2003;	Sakai,	2008)	depicted	in	Figure	3.1.	Before	
the	 experiments,	 participants	 learn	 to	 associate	 visual	 cues	 (arbitrary	 symbols)	 to	 different	 rules.	 To	
dissociate	effects	of	cues	and	rules	during	data	analysis,	two	different	cues	were	learned	for	each	rule	(see	
“cue	trick”,	Section	3.1	and	Figure	2.1).	Participants	then	trained	to	perform	the	experimental	task.	During	
the	 experiment,	 participants	 repeatedly	 performed	 the	 following	 procedure:	 Each	 experimental	 trial	
started	with	an	instruction	screen	that	showed	one	or	two	cues.	Participants	had	to	recall	the	associated	
rule(s)	from	these	cues	that	formed	the	rule	set	 for	this	trial.	This	rule	set	then	had	to	be	maintained	in	
memory	during	a	delay	phase	of	several	seconds.	Finally,	a	target	screen	appeared,	showing	one	or	more	
images	to	which	the	participants	had	to	apply	the	rules	as	fast	and	accurate	as	possible.	
	

	
Figure	3.1	–	Basic	 experimental	paradigm.	 Before	 the	experiment,	 participants	 learn	 to	 associate	
visual	 cues	 to	 rules	 and	 train	 to	 conduct	 the	 experiment.	 During	 the	 experiment,	 participants	
repeatedly	 perform	 the	 same	 task	 in	 successive	 trials:	 First,	 one	 or	more	 previously	 learned	 cues	
appear	and	participants	have	to	recall	 the	associated	rule(s)	 (here:	“If	you	see	an	apple,	press	the	
left	button;	 if	 you	see	a	banana,	press	 the	 right	button”).	This	 rule	 set	needs	 to	be	maintained	 in	
memory	during	a	delay	period	of	several	seconds	(the	period	for	which	we	analysed	data,	see	main	
text).	Finally,	a	target	image	occurs	(here:	apple)	to	which	the	participants	need	to	apply	the	rule	set	
and	 perform	 the	 resulting	 action	 (here:	 left	 button	 press).	 Source	 left	 image:	 “Lehrer	 Lämpel”	 by	
Wilhelm	Busch,	GNU-FDL.	

																																																																				
*	Equal	contribution	
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The	difference	between	the	three	empirical	studies	lies	in	the	rule	sets	that	the	participants	had	to	apply.	
The	critical	analysis	in	all	experiments	is	to	test	whether	and	where	the	brain	contains	information	about	
the	 identity	of	rule	set	components	(e.g.	which	specific	rule	a	participant	had	 in	mind)	during	 the	delay	
period19,	 i.e.	during	the	time	in	which	participants	knew	which	rule	set	to	apply,	but	not	to	which	target	
stimuli,	because	the	target	screen	had	not	appeared	yet.	
	
The	most	prominent	difference	between	conventional	mass-univariate	(see	Chapter	2)	and	MVPA	studies	
on	rules	is	the	choice	of	the	experimental	conditions.	Conventional	studies	typically	use	different	types	of	
tasks	 to	 detect	 differences	 in	 activation.	 For	 example,	 studies	 on	 rules	 use	 tasks	 that	 are	more	 or	 less	
difficult	 (e.g.	 Bunge	 et	 al.,	 2003),	 that	 involve	more	 or	 less	 rules	 (e.g.	 Brass	&	 Cramon,	 2004),	 that	 use	
bivalent	 or	 univalent	 responses	 (e.g.	 Crone	 et	 al.,	 2006),	 etc.	 (see	 e.g.	 Bunge,	 2004).	 In	 contrast,	 most	
MVPA	studies	on	 rules,	 including	 those	 I	present	 in	 this	 thesis,	use	 the	 same	 type	of	 task,	 and	compare	
different	 rules	 or	 other	 features	 of	 rule	 sets	 within	 that	 task	 (e.g.	 Haynes	 et	 al.,	 2007;	Momennejad	 &	
Haynes,	2012,	2013;	Soon	et	al.,	2008;	Wisniewski	et	al.,	2014).	An	example	is	the	contrast	between	two	
single	rules	such	as	“If	you	see	a	tomato,	press	the	 left	button”	and	“If	you	see	a	banana,	press	the	right	
button”	 (Study	 1;	 Reverberi,	 Görgen	 et	 al.,	 2012a;	 3.1).	 This	 will	 probably	 not	 result	 in	 differences	 in	
overall	activation	in	a	region,	but	specific	patterns	of	individual	voxel	activations	might	still	differentiate	
the	identity	of	the	rules.20	Thus,	our	studies	do	not	use	experimental	conditions	of	different	types	to	detect	
differences	in	activation;	instead,	they	differ	in	specific	content	to	detect	content-specific	information	(see	
e.g.	Haynes,	2015;	Hebart	&	Baker,	2018).	

																																																																				
19	A	difference	to	most	conventional	(but	see	Bunge	et	al.,	2003)	and	MVPA	(e.g.	Woolgar	et	al.,	2011)	studies;	see	Footnote	10.	
20	We	 employed	 a	 number	 of	 additional	 experimental	 measures	 to	make	 sure	 that	 participants	 indeed	 represented	 the	 rule	 set	
during	 the	 delay,	 that	 the	 representation	 did	 stay	 constant	 during	 the	 course	 of	 the	 fMRI	 session,	 and	 that	 data	 from	 different	
participants	 was	 compatible.	 Extensive	 training:	 To	 learn	 cue	 meaning	 by	 heart	 and	 to	 overlearn	 rule	 application	 for	 stable	
representations,	participants	underwent	extensive	 training	before	participating	 in	 the	experiment	during	which	 they	 first	 learned	
the	rules,	and	then	trained	to	apply	them	until	their	responses	were	both	fast	and	precise.	The	training	typically	took	part	on	two	of	
the	three	days	prior	to	data	collection.	Data	was	only	recorded	if	participants	successfully	performed	the	training.	This	was	done	for	
two	main	reasons:	First,	to	ensure	that	participants	learned	the	rules,	and	second	that	they	indeed	prepared	to	apply	the	rule	sets	in	
the	delay	period	(i.e.	that	the	rule	set	was	implemented	for	application,	and	not	just	e.g.	mentally	rehearsed).	The	delay	period	in	the	
training	was	also	very	short	which	directly	required	that	participants	had	the	rules	present	in	mind	before	application.	This	should	
avoid	 that	participants	change	 their	mental	 strategies	during	 the	 time	of	 fMRI	data	 recording	 (e.g.	Cole	et	al.,	2010;	Gigerenzer	&	
Gaissmaier,	2011;	Gläscher	et	al.,	2010).	Catch	trials:	To	avoid	simplified	strategies,	we	furthermore	employed	catch	trials	to	avoid	
that	participants	changed	their	strategy	during	fMRI	recording	in	Studies	2	and	3	(Sections	3.2,	3.3).	Catch	trials	are	critical	for	the	
experiment	because	they	force	and	allow	verifying	that	participants	indeed	perform	the	task	as	they	should,	even	though	the	neural	
data	is	typically	not	suitable	for	analysis.	For	example,	we	randomly	delivered	short	catch	trials	in	which	the	delay	period	was	only	
maximally	1s	long,	instead	of	3-5s	in	experimental	trials.	This	allowed	to	check	that	participants	had	the	rules	ready	for	application	
(i.e.	 represented	them)	during	 the	whole	delay	period.	We	also	 included	unbalanced	catch	 trials	 that	contained	rule	combinations	
that	did	not	contain	balanced	rules,	 i.e.	both	conditions	and	both	responses	(e.g.	“instrument"A	and	instrument"B”).	This	was	to	
make	sure	that	the	participants	really	maintained	both	rules,	and	not	represented	rule	sets	in	a	reduced	form	by	remembering	one	of	
the	rules	(e.g.	“instrument"A”)	and	then	retrieving	the	other	rule	during	target	execution.	For	details,	see	the	method	sections	of	the	
empirical	Studies	1–3.	Extensive	behavioural	control	analysis:	To	verify	that	our	experimental	design	decision	had	the	intended	
effects,	we	conducted	extensive	behavioural	control	analysis	on	reaction	times	and	errors	rates,	both	during	pilot	experiments	and	
on	 the	 behavioural	 data	 collected	 during	 scanning.	We	 initially	 followed	 the	 standard	MVPA	 practice	 to	 employ	 statistical	 tests	
typically	 used	 in	 psychology	 (e.g.	 the	 t-test;	 Student,	 1908).	 However,	 because	we	 had	 doubts	 that	 these	would	 detect	 potential	
problems	 caused	 by	 the	 loss	 of	 signs	 at	 the	 decoding	 level,	 we	 performed	 additional	 analyses	 that	 employed	 the	 same	 analysis	
methods	 as	 the	 main	 analysis	 from	 Study	 2	 (Section	 3.2)	 onward.	 Specifically,	 we	 correlated	 across	 participants	 1)	 decoding	
accuracies	 from	 the	 result	 cluster	ROIs	 and	2)	absolute	differences	 in	 reaction	 times	 and	 errors	 rates.	We	 found	no	 evidence	 for	
correlations	between	decoding	performance	and	 the	 tested	behavioural	measures.	The	obtained	results	speak	against	criticism	of	
our	studies	that	had	been	voiced	later	(Todd	et	al.,	2013),	which	hypothesised	that	differences	in	reaction	times	–	and	not	differences	
in	rule	representation	–	would	explain	our	results.	A	generalisation	of	this	together	with	further	insights	from	this	and	other	data	
analyses	projects	have	led	to	the	methodological	Study	4	(“The	Same	Analysis	Approach”;	Section	3.4)	of	this	thesis.	Standardized	
training	procedures	and	homogenous	group	of	participants:	Two	further	measures	were	taken	with	the	goal	to	make	strategies	
and	 other	 mental	 processes	 of	 the	 participants,	 as	 well	 as	 their	 fMRI	 BOLD	 signals,	 as	 similar	 as	 possible.	 First,	 we	 recruited	
participants	of	similar	age,	background,	and	education	(mostly	university	students,	age	18–30	years).	While	this	makes	the	sample	
not	representative	to	the	general	population,	it	ensures	that	the	study	is	comparable	to	most	other	studies	(e.g.	Henrich	et	al.,	2010).	
One	reason	to	have	participants	of	roughly	the	same	age	is	that	age	has	been	reported	to	alter	the	hemodynamic	response	function,	
with	younger	participants	showing	stronger	BOLD	signals	(e.g.	D’Esposito	et	al.,	2003;	Garrett	et	al.,	2017;	Hesselmann	et	al.,	2001;	
Ross	et	al.,	1997).	A	homogenous	sample	thus	reduces	the	variance	of	the	fMRI	data	between	participants,	and	thus	might	increase	
statistical	 power	 (e.g.	 D’Esposito	 et	 al.,	 1999b,	 2003).	 As	 second	 measure,	 we	 used	 highly	 automated	 computer-based	 training	
procedures	to	avoid	experimenter	effects	(Rosenthal,	1963,	1966,	2009)	as	good	as	possible.	The	training	was	done	in	different	steps	
that	were	typically	performed	until	participants	reached	certain	criteria,	and	instructions	were	typically	presented	on	the	screen.	Of	
course,	participants	could	always	ask	the	experimenter	if	they	had	any	question.	
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3.1 Study	1:	Compositionality	of	rule	representations	in	human	prefrontal	cortex	

Study	1	of	this	thesis	(Reverberi,	Görgen	et	al.,	2012a)	was	designed	to	investigate	the	first	research	aim	
introduced	in	Chapter	1,	to	test	whether	neural	representations	of	a	“compound	rule”	(a	rule	that	consists	
of	two	individual	rules,	e.g.	“if	you	see	a	house,	press	left;	if	you	see	a	face,	press	right”,	short:	“house"left;	
face"right”)	 is	 composed	of	 the	neural	patterns	of	 the	 individual	 rules	 (“house"left”	and	 “face"right”;	
e.g.	Cole	et	al.,	2010;	Ruge	&	Wolfensteller,	2010)	or	not	(Warden	&	Miller,	2007,	2010;	Sigala	et	al.,	2008).	
A	 second	 aim	 of	 the	 study	was	 to	 dissociate	 neural	 representations	 of	 the	 instructing	 cues	 (the	 visual	
symbols	 that	 instruct	 participants	which	 rules	 to	 use)	 and	 the	 instructed	 rules	 (e.g.	Wallis	 et	 al.,	 2001;	
Wallis	&	Miller,	2003b	for	work	in	monkeys).21	
	
To	dissociate	 rules	and	cues,	we	 first	 identified	rule-independent	 representations	of	 cue	 images.	For	 this,	
we	split	the	data	for	each	rule	by	the	cue	that	was	used	to	instruct	the	rule	(each	rule	was	instructed	by	
two	rules;	half	of	the	trials	were	instruct	by	the	one	cue,	the	other	half	by	the	other	cue;	see	Figure	2.1).	
We	 then	 employed	 standard	 cross-validated	 searchlight	 decoding	 (Section	 2.2)	 to	 test	where	 the	 brain	
contained	information	about	which	of	the	two	cues	was	used	to	instruct	the	rule.		
	
Next,	 we	 identified	 cue-independent	 representations	 of	 rules	 by	 employing	 the	 “cue	 trick”:	 Cross-
classification	 (Section	 2.3)	 was	 used	 to	 distinguish	 between	 pairs	 of	 rules	 (e.g.	 “house"left”	 vs.	
“face"right”)	by	training	a	classifier	on	data	from	trials	that	used	one	set	of	visual	cues	to	instruct	the	two	
rules,	and	testing	 its	prediction	performance	on	data	that	used	another	set	of	visual	cues	to	 instruct	the	
same	 rules	 (Figure	2.1).	Because	 the	only	 commonality	between	 the	 trials	used	 for	 training	and	 testing	
were	the	 instructed	rules,	but	not	the	cue	 images	that	were	used	as	 instruction,	successful	classification	
can	only	be	achieved	when	neural	representations	are	rule-	but	not	cue-specific.		
	
To	exclude	that	successful	classification	can	be	achieved	using	the	triggering	condition	(“house”	vs.	“face”)	
or	the	consequence	(“left”	vs.	right”)	alone,	we	performed	the	main	cross-classification	analysis	on	the	two	
symmetrical	 (or	 “orthogonal”,	 Sakai,	 2008)	 compound	 rules,	 i.e.	 rules	 composed	of	 two	 individual	 rules	
that	together	contain	both	triggering	conditions	(“left”	and	“right”)	and	both	consequences	(“house”	and	
“face”)	 and	 only	 differ	 in	 the	 mapping	 between	 both	 (i.e.	 rule	 1:	 “house"left;	 face"right”	 vs.	 rule	 2:	
“house"right;	 face"left”).	 Because	both	 compound	 rules	 contained	 the	 same	 triggering	 conditions	 and	
consequence,	the	only	difference	between	both	are	the	rules	that	map	antecedents	to	consequences,	and	
thus,	successful	classification	should	only	be	possible	if	the	neural	activity	depends	on	this	mapping	rule.22	
	
Finally,	 we	 tested	 the	 compositional	 hypothesis	 by	 employing	 cross-classification	 to	 decode	 compound	
rules	 from	simple	 rules	 (and	vice	versa).	 For	 that,	 data	 from	e.g.	 two	 individual	 rules	 that	were	part	of	
different	double	rules	were	used	to	train	a	classifier	(e.g.	individual	rule	1:	“house"left”	vs.	individual	rule	
2:	“house"right”).	The	classifier	then	classified	data	from	the	two	compound	rules	(e.g.	compound	rule	1:	

																																																																				
21	Depending	on	a	variety	of	 factors,	psychological	and	neural	processes	can	differ	substantially	even	 for	very	similar	 (sometimes	
even	equal)	rules	(e.g.	Gigerenzer	&	Gaissmaier,	2011;	Gläscher	et	al.,	2010).	The	basic	type	of	rule	that	we	use	in	all	experiments	of	
this	 thesis	are	stimulus-response	mapping	rules	 (S-R	rules)	of	 the	 form	“if	you	see	an	 item	of	category	X,	 then	press	Y”,	where	Y	 is	
either	“press	the	left/right	button”	(Study	1	and	3;	Sections	3.1,	3.3)	or	“the	side	where	the	letter	A/B	occurs”	(Study	2;	Section	3.2).	
We	typically	combine	two	of	these	basic	rules	into	one	“compound	rule”	to	ensure	that	observed	results	are	indeed	caused	by	the	full	
mapping	 between	 stimuli	 and	 responses,	 and	 not	 stimuli	 or	 responses	 separately	 (see	 Section	 3.1).	 In	 Study	 3,	 we	 additionally	
employed	higher-level	modifier	rules	that	had	the	same	logical	form	as	the	lower-level	S-R	rules,	which	specified	to	which	images	the	
lower-level	rules	had	to	be	applied	(see	Section	3.3).	
22	An	additional	caveat	we	had	to	exclude	was	that	participants	would	use	mental	shortcuts	to	present	double	rules,	such	as	to	only	
remember	the	first	part	(“house"right,	else	other	side”	vs.	“house"left,	else	other	side”).	In	this	case,	representations	of	“right”	and	
“left”	 would	 have	 been	 sufficient	 to	 distinguish	 the	 double	 rules.	 The	 following	measures	 were	 taken	 to	 prevent	 this:	 First,	 the	
allowed	response	time	was	considerably	short	so	that	participants	had	no	time	to	think	about	rules,	but	had	to	prepare	responses	in	
advance.	Second,	images	of	a	third	category	were	shown,	which	required	no	response.	Further	evidence	that	participants	presented	
the	full	double	rules	and	did	not	use	mental	shortcuts	comes	from	the	results	of	the	next	set	of	analyses,	in	which	we	demonstrated	
that	compound	rules	can	be	decoded	using	the	constituting	individual	rules	and	vice	versa.	This	would	not	have	been	possible	had	
participants	used	mental	shortcuts.	
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“house"left;	 face"right”	 vs.	 compound	 rule	 2:	 “house"right;	 face"left”).	 Were	 the	 neural	
representations	 of	 the	 compound	 rules	 composed	 of	 the	 representations	 of	 the	 composing	 individual	
single	rules,	(as	e.g.	hypothesised	by	Cole	et	al.,	2010;	Ruge	&	Wolfensteller,	2010),	 the	classifier	should	
classify	“compound	rule	1”	as	“single	rule	1”	(because	both	contain	“house"left”)	and	“compound	rule	2”	
as	 “single	 rule	 2”	 (because	 both	 contain	 “house"right”).	 If	 instead	 a	 non-compositional,	 independent	
neural	 code	would	be	used	 to	 create	 the	 compound	 rule	 representations	 (as	 in	Warden	&	Miller,	 2007,	
2010;	Sigala	et	al.,	2008),	classification	performance	should	be	at	chance	level.	
	
We	 found	 a)	 rule-independent	 representations	 of	 the	 instructing	 cue	 in	 visual	 and	 parietal	 cortex	 (left	
inferior	 and	 right	 middle	 occipital	 gyrus,	 BA	 18	 and	 BA	 19;	 left	 superior	 parietal	 lobe,	 BA	 7),	 b)	 cue-
independent	 representations	of	 rules	 in	parietal	 cortex	 (left	BA	7/40)	 and	 right	 ventro-lateral	prefrontal	
cortex	(VLPFC;	BA	46,	47),	and	c)	evidence	for	compositional	coding	of	compound	rules	only	in	right	VLPFC	
(BA	46,	47),	but	not	in	parietal	cortex	(Reverberi,	Görgen	et	al.,	2012a,	their	Figure	3;	this	thesis,	Figure	
3.2,	panel	2).		
	
The	 results	 thus	 confirmed	 previous	 hypotheses	 that	 both	 parietal	 cortex	 and	 VLPFC	would	 represent	
specific	rules	(e.g.	Bode	&	Haynes,	2009),	but	go	beyond	that	by	demonstrating	that	these	representations	
indeed	 depend	 on	 the	 rule	 to	 be	 used,	 not	 the	 visual	 cue	 that	 was	 used	 as	 instruction.	 The	 fact	 that	
compositional	 coding	of	 rule	 representations	was	only	 found	 in	VLPFC	but	not	parietal	 cortex,	whereas	
conversely	 representations	 of	 visual	 cues	 were	 only	 found	 in	 parietal	 cortex	 but	 not	 VLPFC,	 led	 us	 to	
speculate	 that	parietal	 cortex	and	VLPFC	might	 fulfil	different	roles	 in	 rule	processing:	Parietal	 cortex	–	
located	between	visual	cortex	and	PFC	–	might	“convert”	the	visual	cue	information	into	its	associated	rule	
information,	which	would	then	be	transmitted	to	VLPFC	to	execute	the	rules.		
	
Two	studies	(Cole	et	al.,	2011;	Woolgar	et	al.,	2011)	have	independently	and	simultaneously	investigated	
questions	similar	to	those	investigated	here	(Reverberi,	Görgen	et	al.,	2012a).	Like	us,	Cole	and	colleagues	
(2011)	used	searchlight	decoding	to	 investigate	compositionality	of	rule	representations.	However,	 they	
focused	 on	 a	 different	 level	 than	we	 did.	 Rather	 than	 investigating	 compositionality	 of	 representations	
that	results	from	combining	multiple	individual	rules	as	we	did,	they	investigated	compositionality	of	the	
representations	 that	 results	 from	 using	 different	 components	 of	 single	 individual	 rules.	 For	 that,	 they	
decoded	components	of	rules	that	were	made	up	of	three	components	(component	1:	relevant	dimension,	
e.g.	 “is	 it	 sweet?”;	 component	 2:	 decision	 rule,	 e.g.	 “are	 the	 images	 the	 same”;	 component	 3:	 response	
button,	 e.g.	 “left	 index	 finger”).	 They	 then	 showed	 that	 these	 components	 can	 be	 decoded	 individually,	
even	 for	 combinations	 that	 participants	 never	 saw	 before.	 Like	 us,	 they	 found	 compositionality	 of	 the	
decision	rule	component	only	 in	PFC,	with	a	 focus	on	right	VLPFC.	A	 follow-up	study	(Cole	et	al.,	2016)	
suggested	 that	 these	 rule	 representations	 are	 indeed	 relevant	 for	 behaviour	 by	 demonstrating	 that	 the	
strength	 of	 the	 patterns	 that	 represent	 rules	 (measured	 as	 decoding	 accuracy	 of	 single	 trials)	
discriminates	successful	from	erroneous	application.	One	critical	distinction	between	their	and	our	study	
is	 the	 investigated	 task	phase.	 23	While	 they	decode	 representations	during	 rule	application,	we	decode	
representations	during	rule	maintenance	before	application.	
	
Woolgar	 and	 colleagues	 (2011)	 also	 investigated	 compositionality	of	different	 task-critical	 components,	
localising	 representations	 of	 stimuli,	 rules,	 and	 responses.	 Especially,	 they	 also	 dissociated	
representations	 of	 rules	 and	 cues.	 For	 that,	 they	 even	 employed	 the	 same	 approach	 that	we	 also	 used:	
searchlight	 decoding	 and	 the	 “cue	 trick”.	 Using	 a	 double-coding	 scheme	 and	 cross-classification	 (see	
Section	3.1)	they	 identify	representations	of	rules	that	were	cue-independent,	and	using	cross-validated	
decoding	between	cues	of	the	same	rules	allowed	to	identify	rule-independent	cue	representations.	Their	
																																																																				
23	This	difference	might	be	critical,	as	work	in	monkeys	on	the	relation	of	representations	of	objects	between	different	task	phases	
(Sigala	et	al.,	2008;	Warden	&	Miller,	2007,	2010)	found	that	these	representations	change	their	format	during	different	task	phases.	
Recent	work	in	humans	(Hebart	et	al.,	2018)	supports	this	view,	calling	for	further	investigation	of	this	issue	(see	also	Section	4.4).	
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results	 largely	agree	with	ours:	They	also	 found	 rule	 representations	 in	VLPFC	and	parietal	 cortex,	 and	
representations	of	 their	 cues	 in	visual	 cortex.	Major	differences	between	 their	 study	and	ours	 lie	 in	 the	
analysed	task	phase	(they	analysed	during	the	application	phase,	as	Cole	et	al.,	2011,	above;	we	analysed	
the	maintenance	phase	before	that;	see	Footnote	23),	the	employed	rules	(they	used	spatial	mappings;	we	
used	categorisation),	and	that	they	did	not	investigate	compositionality	of	multiple	rules.	

3.2 Study	2:	Distributed	representations	of	rule	identity	and	rule	order	in	human	frontal	
cortex	and	striatum	

In	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b),	we	investigated	the	second	research	aim	of	this	thesis	(see	
Section	 1.2),	 i.e.	 if	 the	 “compositionality	 principle”	 hypothesised	 in	 Study	 1	 (Reverberi,	 Görgen	 et	 al.,	
2012a;	3.1)	would	also	hold	 for	more	complex	 rule	 sets.	For	 that,	we	extended	 the	compound	rule	 sets	
from	 Study	 1	 by	 the	 component	 “rule	 order”.	 The	 general	 experimental	 paradigm	 and	 analysis	
methodology	were	the	same	as	in	Study	1.	Participants	were	again	instructed	to	perform	two	individual	
rules	A	and	B,	but	in	addition	were	also	instructed	to	perform	either	A	before	B,	or	B	before	A.	
	
Thus,	the	specific	research	questions	in	Study	2	of	this	thesis	were:	

1. Where	and	how	does	the	brain	represent	execution	order	of	rules?	
2. Is	the	neural	code	of	rule	sets	that	contain	execution	order	compositional?	

	
To	answer	 these	questions,	we	 tested	where	rule	 identity	 and	rule	order	 could	be	decoded	 in	 the	brain.	
Because	the	rules	were	very	similar	to	the	ones	used	in	Study	1,	we	also	tested	whether	the	results	from	
Study	1	would	be	replicated.	
	
Specifically,	 we	 tested	 predictions	 of	 two	 recent	 tenets	 of	 theories	 on	 the	 neurocognitive	 architecture	
underlying	 rule	 processing:	 First,	 we	 tested	 the	 hypothesis	 that	 the	 fronto-parietal	 network,	 and	
specifically	 VLPFC,	would	 contain	 all	 necessary	 information	 for	 a	 specific	 task	 (Duncan,	 2001;	Miller	&	
Cohen,	2001).	If	this	was	the	case,	this	network	should	also	contain	information	on	rule	order.	Second,	we	
tested	 a	 group	 of	 “gradient	 theories”	 of	 PFC	 organisation	 (Badre,	 2008;	 Badre	 &	 D’Esposito,	 2009;	
Koechlin	et	al.,	2003),	according	to	which	rules	at	different	levels	of	a	cognitive	hierarchy	reside	along	a	
rostro-caudal	 gradient	 within	 PFC,	 such	 that	 progressively	 higher-level	 rules	 would	 be	 represented	
increasingly	more	anterior	and	influence	lower-level	rules	more	posterior.	Because	an	order	for	rules	is	a	
particular	case	of	a	higher-level	rule	(“First	perform	rule	A,	 then	rule	B”)	with	regard	to	the	 lower-level	
rules	 that	 are	 ordered	 (rules	 A	 and	 B),	we	 hypothesised	 to	 find	 representations	 of	 rule	 order	 residing	
higher	up	along	such	a	gradient.	A	couple	of	similar	theories	exist	that	mainly	differ	in	the	exact	location	of	
the	gradient	and	the	cognitive	features	that	define	the	hierarchical	level	of	rules.	
	
The	 results	 however	 spoke	 against	most	 of	 our	 expectations:	 While	 information	 on	 rule	 identity	 was	
encoded	 in	 right	 VLPFC	 (BA	 47),	 replicating	 results	 from	 Study	 1,	 no	 information	 on	 rule	 order	 was	
evident	in	VLPFC.	Instead,	putamen	and	dorsal	premotor	cortex	contained	representations	of	rule	order,	
both	regions	typically	involved	in	sequence	learning	and	arbitrary	rule	learning	(e.g.	Averbeck	et	al.,	2006;	
Badre	et	al.,	2010;	Mushiake	et	al.,	2006;	Yin,	2009,	2010).	In	part,	our	findings	are	still	compatible	with	
the	proposed	compositionality	principle,	because	representations	of	rule	order	and	rule	identity	could	be	
decomposed.	 The	 findings	 however	 contradict	 our	 expectations	 as	 well	 as	 theories	 on	 PFC	 function	
mentioned	above	(Duncan,	2001;	Miller	&	Cohen,	2001)	that	predict	that	rule	order	should	also	have	been	
available	in	VLPFC.	Instead,	our	findings	suggests	that	VLPFC	might	not	be	a	general	region	that	contains	
all	necessary	task	set	information,	but	might	be	conceived	to	be	part	of	a	larger	system	of	specialised	brain	
areas	that	cooperate	to	conduct	more	complex	tasks	(Frank	&	Badre,	2011).	
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Neural	representations	of	complex	rule	sets	and	related	methodological	contribution	

	 24	

	
In	 addition	 to	 the	main	 results,	 the	 study	produced	 two	 interesting	 side	 findings:	 First,	 the	unexpected	
finding	that	information	on	rule	identity	was	not	evident	in	parietal	cortex,	as	others	and	we	had	observed	
before	 (e.g.	 Bode	&	Haynes,	 2009;	Reverberi,	 Görgen	 et	 al.,	 2012a;	Woolgar	 et	 al.,	 2011)	 and	 later	 (e.g.	
Pischedda*,	 Görgen*	 et	 al.,	 2017),	 but	 in	 temporal	 cortex	 (left	 temporal	 pole,	 BA	 21;	 right	 posterior	
temporal	 lobe,	 BA	 20,	 21,	 37).	 A	 potential	 explanation	 for	 this	 difference	 might	 be	 a	 seemingly	 small	
change	compared	to	e.g.	Study	1:	 Instead	of	using	direct	button	presses	as	response	(“press	 left”,	 “press	
right”),	 participants	 had	 to	 remember	 the	 letters	 “A”	 and	 “B”	 as	 response	 for	 the	 rules.	 The	 letters	
appeared	after	a	delay	(from	which	we	analysed	the	neural	data)	together	with	the	target	stimuli	to	which	
the	participants	had	to	apply	the	rule.	Either	“A”	appeared	on	the	left	of	the	target	and	“B”	on	the	right,	or	
vice	 versa.	 Participants	 then	 had	 to	 press	 the	 button	 on	 the	 side	 where	 the	 letter	 appeared	 that	 they	
remembered	(e.g.	if	the	answer	to	a	rule	was	“A”,	and	“A”	was	on	the	left	side	of	the	target	image,	they	had	
to	press	the	left	button).	Using	“A”	and	“B”	made	sure	that	participants	could	not	anticipate	which	button	
to	press	before	the	target	screen	appeared,	making	motor	preparation	impossible24.	This	change	arouse	as	
consequence	 of	 a	 precursor	 study	where	we	 investigated	 the	 same	question	 and	 observed	preparatory	
motor	signals	that	confounded	the	interpretation	of	rule	order	decoding	results	(Görgen,	2010).	As	we	did	
not	expect	any	major	difference	in	representations,	we	were	surprised	to	find	such	large-scale	differences,	
with	different	brain	areas	mutually	exclusively	 representing	seemingly	similar	content	 (but	 see	Sakai	&	
Passingham,	2003).	
	
The	second	interesting	side	finding	was	that	we	already	tested	an	hypothesis	for	a	potential	confound	that	
an	influential	paper	one	year	later	voiced	as	strong	critique	of	our	and	others	work:	the	idea	that	results	
would	not	 arise	 from	 differences	 between	 rule	 representations,	 but	 from	 differences	 in	 reaction	 times,	
potentially	 reflecting	 difference	 in	 difficulty	 (Todd	 et	 al.,	 2013).	 In	 contrast	 to	 Todd	 and	 colleagues	
however,	 our	 analysis	did	not	provide	 any	 evidence	 for	 this	hypothesis	 (see	 also	Woolgar	 et	 al.,	 2014),	
suggesting	that	our	results	were	not	suspect	to	the	hypothesised	difficulty	confound.	Both	side	findings,	
the	 discrepancy	 between	 “A”/”B”	 and	 “left”/“right”	 response	 rules	 as	well	 as	 the	 reaction	 time	 control	
analysis	to	test	for	differences	in	difficulty	later	led	to	the	development	of	“The	Same	Analysis	Approach”	
(Study	4;	Görgen	et	al.,	2018;	3.4).	

3.3 Study	3:	Neural	representations	of	hierarchical	rule	sets:	The	human	control	system	
represents	rules	irrespective	of	the	hierarchical	level	they	belong	to	

The	previous	 study	 (Study	2;	Reverberi*,	 Görgen*	 et	 al.,	 2012b;	 3.2)	 confirmed	our	 research	hypothesis	
that	the	brain	would	represent	rule	order	as	an	individual	rule	set	feature	and	that	the	neural	code	of	rule	
sets	containing	rule	order	would	be	compositional.	However,	we	were	surprised	about	the	localisation	of	
the	representations.	We	had	started	the	experiment	with	the	hypothesis	 that	 the	brain	would	represent	
rule	order	as	a	higher-level	feature	in	a	cognitive	rule	hierarchy,	and	–	following	recent	“gradient	theories”	
of	 prefrontal	 cortex	 organisation	 (Badre,	 2008;	 Badre	&	D’Esposito,	 2009;	 Koechlin	 et	 al.,	 2003)	 –	 had	
expected	 that	 rule	order	would	have	been	represented	anterior	 to	 rules	 themselves	 (Badre	et	al.,	2009,	
2010;	Badre	&	D’Esposito,	2007;	Badre	&	Frank,	2011;	Koechlin	et	al.,	2003;	see	Section	1.1).	Because	we	
found	no	representation	about	rule	order	anterior	to	the	representations	of	rules	in	PFC	(indeed,	we	did	
not	find	any	evidence	for	the	presence	of	rule	order	in	PFC	at	all),	we	were	not	able	to	test	this	hypothesis.	
A	potential	explanation	for	why	we	did	not	find	rule	order	representations	in	PFC	might	be	that	rule	order	

																																																																				
*	Equal	contribution	
24	This	measure	was	necessary	because	even	though	we	balanced	the	number	of	occurrences	in	which	participants	had	to	apply	the	
first	and	the	second	rule,	participants	still	prepared	to	apply	the	first	rule	(as	can	be	seen	from	faster	reaction	time	and	less	errors	
for	the	first	rule,	see	Görgen,	2010).	This	activity	most	likely	caused	strong	decoding	accuracies	in	motor	cortices,	and	also	prevented	
clear	 interpretation	 of	 significant	 information	 on	 rule	 order	 in	 other	 areas	 (because	 these	 might	 have	 been	 caused	 by	 motor	
preparation,	as	well).	 In	contrast,	when	using	symbols	as	responses,	participants	could	not	prepare	any	motor	response,	and	thus	
had	no	real	benefit	of	preparing	to	apply	one	rule	over	the	other.	
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is	 simply	 represented	 differently	 than	 rules	 of	 different	 levels	 because	 it	 is	 a	 temporal	 feature,	 which	
might	explain	the	disagreement	between	the	initial	hypothesis	and	our	neuroscientific	findings.		
	
We	thus	designed	a	further	study	(Pischedda*,	Görgen*	et	al.,	2017)	to	again	test	the	gradient	hypothesis	
(research	aim	three	of	this	thesis,	see	Section	1.2),	this	time	employing	a	rule	hierarchy	in	which	higher-
level	rules	influenced	the	application	conditions	of	lower-level	rules.	The	design	conforms	to	a	number	of	
abstraction	 definitions	 (Badre,	 2008,	 2013;	 Badre	&	 D’Esposito,	 2007,	 2009;	 Botvinick,	 2008;	 Petrides,	
2005),	as	we	discuss	in	the	paper.	The	lower-level	rules	were	compound	rules	similar	to	those	from	both	
previous	studies.	As	in	Study	1	(Reverberi,	Görgen	et	al.,	2012a;	3.1),	the	rules	assign	left	and	right	button	
presses	to	specific	target	categories,	for	example	“If	you	see	a	banana,	press	the	left	button”.	Application	of	
the	higher-level	rules	specified	to	which	images	the	lower-level	rules	had	to	be	applied.	For	example,	“If	
you	 see	 a	 square,	 apply	 the	 lower-level	 rules	 only	 to	 images	 in	 blue	 frames”.	 To	 minimize	 potential	
confounding	 alternative	 explanations,	we	 implemented	 a	 number	 of	measures	 to	 keep	 rules	 from	 both	
levels	 as	 similar	 as	 possible:	 The	 logical	 structure	 of	 rules	 from	 both	 levels	 was	 equivalent,	 the	 trial	
structure	 of	 all	 analysed	 trials	 was	 the	 same,	 and	 the	 instructing	 cues	 for	 both	 levels	 was	 randomly	
assigned	to	each	participant	from	the	same	pool	of	symbols.	A	distinguishing	feature	of	our	study	was	that	
we	measured	representations	of	higher-	and	lower-level	rules	while	participants	yet	only	knew	rules	from	
that	respective	level,	and	were	still	waiting	for	the	instruction	for	the	other-level	rule.	This	was	to	prevent	
any	 influences	 of	 the	 other-level	 rule	 to	 better	 allow	 localisation	 of	 representations	 of	 rules	 from	 the	
different	levels	(cf.	Nee	&	Brown,	2012).	Still,	we	made	sure	that	participants	already	implement	the	rules	
of	the	level	that	had	been	instructed,	and	were	thus	able	to	identify	pure	representations	of	rules	of	each	
level	 in	 the	 absence	 of	 information	 of	 rules	 of	 the	 other	 level.	 As	 in	 Study	 2	 (Reverberi*,	 Görgen*	 et	 al.,	
2012b;	3.2),	we	hypothesised	 that	higher-level	 rules	would	be	represented	more	anteriorly	 in	PFC	 than	
lower-level	rules.		
	
The	results	only	partially	confirmed	our	hypotheses:	Both	lower-	and	higher-level	rules	could	be	decoded	
from	local	patterns	of	brain	activity,	 in	prefrontal	(e.g.	VLPFC,	BA	46,	47)	and	parietal	(e.g.	superior	and	
inferior	parietal	 lobe,	BA	7	 and	BA	40)	 areas	 (Figure	3.2,	 panel	 4).	Apart	 from	 that,	 the	 results	 did	not	
match	our	 initial	hypotheses.	Especially,	 the	 results	did	not	provide	any	evidence	 that	different	 regions	
would	 encode	 higher-	 and	 lower-level	 rules,	 except	 in	 motor	 and	 premotor	 cortex	 (precentral	 gyrus,	
BA	6),	 where	 only	 lower-level	 rules	 were	 represented	 (this	 likely	 reflects	 that	 only	 lower-level	 rules	
contained	motor	information	and	is	not	speaking	to	gradient	theories).	This	result	directly	contradicts	the	
gradient	hypothesis	(Badre,	2008;	Badre	&	D’Esposito,	2009;	Koechlin	et	al.,	2003)	and	instead	suggests	
that	a	common	brain	network	represents	rules	 from	both	 levels.	As	 in	Study	2,	we	performed	extensive	
analyses	 to	 test	 whether	 the	 findings	 could	 have	 been	 caused	 by	 reaction	 time	 differences	 between	
conditions	 (Todd	 et	 al.,	 2013).	 We	 again	 found	 no	 evidence	 for	 this	 hypothesis.	 Indeed,	 Bayesian	
correlation	 analyses	 between	 reaction	 times	 and	 fMRI	 decoding	 performance	 even	 provided	moderate	
evidence	against	that	hypothesis.	
	
Concurrent	and	independent	from	us,	Nee	and	Brown	(2012)	performed	a	similar	study	that	also	tested	
the	gradient	hypothesis	by	decoding	rules	from	two	different	cognitive	levels.	In	contrast	to	us,	however,	
they	found	large-scale	differences	between	representations	of	their	 lower-	and	higher-level	rules.	As	we	
discuss	in	our	paper	(Pischedda*,	Görgen*	et	al.,	2017),	we	see	a	number	of	alternative	explanations	that	
potentially	explain	 the	discrepancies	between	their	and	our	results,	especially	 the	 fact	 that	 they	did	not	
manipulate	 lower	and	higher	 rules	 independently.	The	similar	designs	of	both	studies	 that	 caused	 their	
different	 outcomes	might	 also	 be	 fruitful	 to	 exploit	 in	 future	 studies.	 Specifically,	 the	design	 of	 the	 two	
studies	 could	 serve	 as	 starting	 points	 to	 test	 which	 design	 features	 (if	 any)	 are	 critical	 to	 elicit	 rule	
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representations	 that	 are	 organised	 along	 a	 functional	 gradient,	 by	 systematically	 testing	 (i.e.	
experimentally	manipulating)	the	differences	between	both.	
	
In	summary,	the	empirical	Studies	1–3	of	this	thesis	(Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	
et	 al.	 2012b;	 Pischedda*,	 Görgen*	 et	 al.,	 2017)	 demonstrate	 that	 individual	 rule	 representations	 can	 be	
reliably	decoded	from	local	patterns	of	brain	activity	in	prefrontal	cortex	as	well	as	from	further	regions.	
The	 exact	 locations	 might	 depend	 on	 the	 specific	 types	 of	 rules	 that	 are	 represented	 (see	 Study	 2;	
Reverberi*,	Görgen*	et	al.,	2012b;	Section	3.2).	While	we	demonstrated	different	types	of	compositionality	
of	complex	rule	sets,	we	did	not	find	evidence	for	the	popular	hypothesis	that	rules	from	different	levels	
would	 be	 represented	 along	 a	 functional	 gradient	 in	 PFC	 (Badre,	 2008;	 Badre	 &	 D’Esposito,	 2009;	
Koechlin	et	al.,	2003).	Different	 reasons	 for	 this	discrepancy	between	our	experimental	 results	and	 this	
hypothesis	 are	 conceivable,	 including	 differences	 in	 the	 operationalisation	 of	 the	 rule	 hierarchy	 or	
differences	 between	 the	 task	 periods	 that	 were	 investigated	 in	 different	 studies.	 Direct	 comparisons	
between	these	alternatives	offer	fruitful	research	questions	for	further	empirical	investigation.	
	
	

	
Figure	3.2	–	Neural	representations	of	different	organisation	principles	of	complex	rule	sets.	The	
figure	 provides	 an	 overview	 about	 the	 central	 results	 of	 experimental	 studies	 of	 this	 thesis.		
1.	Regions	containing	representations	of	stimulus	response	(S-R)	mapping	compound	rules	from	all	
studies	(red:	Study	1,	Section	3.1;	green:	Study	2,	Section	3.2;	blue:	Study	3,	Section	3.3).	Left	inlay	
depicts	the	tasks:	Study	1	used	rules	that	associated	houses	and	faces	to	left/right	button	presses;	
Study	2	rules	associated	objects	to	letters	that	appeared	to	the	left	or	right	of	the	targets;	Study	3	
rules	associated	objects	 to	button	presses	 (lower	 level)	and	shapes	 to	background	colours	 (higher	
level,	panel	4).	See	study	descriptions	for	details.	2.	Compositionality	coding	of	S-R	compound	rules	
was	 only	 found	 in	 right	 VLPFC	 (Study	 1,	 Section	 3.1).	 3.	 Regions	 containing	 representations	 of	
execution	order	(Study	2,	Section	3.2;	below	brain	slices:	MNI	z-coordinate).	4.	Regions	containing	
higher	modifier	 compound	 rules	 (associating	 shapes	 and	 colours)	 and	 lower	 S-R	 compound	 rules	
(Study	3,	Section	3.3).	
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3.4 Study	4:	The	Same	Analysis	Approach	(SAA)	–	Practical	protection	against	the	pitfalls	
of	novel	neuroimaging	analysis	methods	

Study	 4,	 the	 methodological	 study	 within	 this	 thesis	 (Görgen	 et	 al.,	 2018),	 presents	 “SAA	 –	 The	 Same	
Analysis	Approach”,	 a	pragmatic	 approach	 to	 systematically	detect,	 avoid,	 and	eliminate	 confounds	 and	
other	analysis	errors	 in	studies	employing	MVPA	or	other	complex	analysis	methods.	 It	developed	from	
observations	 I	made	 during	 empirical	 and	 theoretical	work,	 including	 the	 empirical	 Studies	 1–3	 of	 this	
thesis	(Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	2012b;	Pischedda*,	Görgen*	et	al.,	2017;	
3.1–3.3),	e.g.	the	side	findings	described	in	Section	3.2.	
	
Why	do	we	need	such	an	approach?	A	common	advice	to	researchers	who	employ	MVPA	is	to	be	cautious.	
Unfortunately,	 there	 is	 only	 little	 advice	 on	 what	 exactly	 to	 be	 cautious	 for.	 In	 classical	 statistics,	
application	 practices	 for	 standard	 analysis	 methods	 (such	 as	 t-tests,	 F-tests,	 or	 ANOVAs)	 have	 been	
investigated	 very	well	 (see	 e.g.	 Bortz,	 2005;	 Bortz	 &	 Döring,	 2002;	 Coolican,	 2009;	 Cox	 &	 Reid,	 2000).	
Standard	 textbooks	on	 classical	 statistics	do	not	only	describe	 the	merits	of	 each	method,	but	also	best	
practice	 guidelines	 for	 their	 application,	 including	 systematic	 procedures	 to	 avoid	 numerous	 pitfalls,	
confounds,	 and	 caveats	 that	 have	 been	 discovered	 over	 the	 years.	 In	MVPA,	 this	 process	 just	 seems	 to	
start.		
	
A	 number	 of	 recent	 papers	 describe	 particular	 pitfalls	 of	 MVPA	 analysis,	 often	 together	 with	 specific	
solutions.	These	include	surprising	changes	in	distribution	when	using	cross-validation	(Jamalabadi	et	al.,	
2016;	Noirhomme	et	al.,	2014),	wrong	 intuitions	about	 interpretation	of	 the	group	 level	 t-test	 (Allefeld,	
Görgen	et	 al.,	 2016),	unexpected	effects	of	 task	difficulty	 (Todd	et	 al.,	 2013),	 or	 the	problem	of	 circular	
inferences	 (Vul	 et	 al.,	 2009;	 Kriegeskorte	 et	 al.,	 2009;	 Button,	 2019;	 for	 more,	 see	 e.g.	 Haynes,	 2015;	
Hebart	&	Baker,	 2018).	However,	 no	 general	 approach	 exists	 to	 detect	 problems	 (already	 described	 or	
novel)	of	a	concrete	experiment,	i.e.	a	concrete	experimental	setup	with	fixed	design	and	analysis	method.	
	
The	 aim	 of	 SAA	 is	 to	 provide	 such	 an	 approach.	 Starting	with	 the	 intention	 to	 understand	 the	 reasons	
behind	some	peculiarities	that	we	repeatedly	observed	during	our	analyses,	we	took	a	step	back,	looked	at	
standard	 MVPA	 analysis	 as	 a	 whole,	 and	 compared	 it	 with	 standard	 procedures	 of	 classical	 statistical	
methods	(such	as	t-/F-test,	ANOVAs,	e.g.	Coolican,	2009;	Cox	&	Reid,	2000).	A	first	particularly	interesting	
observation	 was	 that	 no	 specific	 design	 principle	 exists	 for	 experiments	 that	 are	 employing	 MVPA.	
Currently,	nearly	all	MVPA	studies	use	design	principles	that	psychologists	and	biologists	(see	e.g.	Bortz,	
2005;	 Bortz	 &	 Döring,	 2002;	 Coolican,	 2009;	 Cox	 &	 Reid,	 2000)	 employed	 for	 decades,	 such	 as	
randomisation	 and	 balancing,	 dating	 back	 at	 least	 to	 Fisher’s	 fundamental	 work	 “The	 Design	 of	
Experiments”	 (Fisher,	 1935).	However,	 these	 design	principles	 are	 specifically	 tailored	 for	 experiments	
that	are	analysed	with	specific	statistical	analysis	methods	(e.g.	t-/F-test,	ANOVAs).	
	
In	 search	 for	 a	 remedy,	 we	 looked	 at	 how	 Fisher	 developed	 design	 principles	 for	 different	 analysis	
methods	in	the	first	place.	The	fundamental	idea	behind	his	work	was	that	the	experimental	design	should	
ensure	to	

• Measure	the	effect	of	interest	as	well	as	possible,	and	
• Avoid	 confounding	 influences	 from	 other	 variables	 by	 creating	 designs	 such	 that	 even	 if	 a	

covariate	 indeed	 would	 contain	 information	 other	 than	 the	 one	 that	 should	 be	 experimentally	
investigated,	this	would	not	have	an	effect	on	the	final	analysis.	

From	 that,	 Fisher	 created	 his	 famous	 design	 principles,	 empowering	 researchers	with	 tools	 that	 guard	
studies	against	experimental	confounds.	
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Because	MVPA	methods	–	and	other	novel	analysis	techniques	or	complex	analysis	pipelines	–	differ	from	
these	established	analyses,	Fisher’s	guards	might	not	work	 for	 them	as	 intended.	Therefore,	other	ways	
might	be	needed	to	fulfil	Fisher’s	goals.	For	this,	we	propose	turning	Fisher’s	procedure	around:	Instead	to	
primarily	create	designs	with	specific	design	principles	that	should	exclude	confounds	(and	then	hope	this	
will	work),	we	 suggest	 to	primarily	 verify	 that	 a	 given	 design	 (created	 by	whatever	method)	 fulfils	 the	
design	goals	for	a	given	analysis	method	(e.g.	MVPA	decoding).	A	core	insight	that	led	to	this	idea	was	our	
experience	 that	 finding	 solutions	 to	 avoid	or	 eliminate	 confounds	 is	 often	not	 too	difficult,	 but	 that	 it	 is	
often	hard	to	identify	that	a	problem	exists	and	what	its	causes	are.	
	
To	verify	if	a	design	fulfils	the	design	goals,	we	suggest	to	calculate	if	only	the	experimental	variable(s)	of	
interest	–	and	no	other	known	variable(s)	–	will	influence	the	results.	A	convenient	way	to	achieve	this	is	
to	conduct	the	same	analysis	that	is	used	to	analyse	the	main	data	(e.g.	decoding	on	neural	data)	also	on	
design	variables	and	other	control	data	(e.g.	 to	substitute	any	measured	neural	data	by	values	of	design	
factors,	such	as	the	number	of	a	trial	[the	first	trial	value	is	“1”,	the	second	“2”,	etc.]	or	its	reaction	time),	as	
well	as	on	synthetic	null	data	(to	verify	distribution	assumptions).	A	property	that	makes	SAA	especially	
suited	to	control	experimental	studies	is	that	it	can	be	used	throughout	the	whole	process	to	detect,	avoid,	
and	eliminate	confounds	and	other	errors:	 from	the	design,	 to	behavioural	pre-experiments,	 to	 the	 final	
data	analysis.	SAA	can	thus	fulfil	the	same	function	as	unit	testing	in	computer	science	(e.g.	Myers	et	al.,	
2011),	to	automatically	and	continuously	monitor	problems	that	occur	after	changes	of	the	experimental	
design	 or	 analysis.	 SAA	 further	 shares	 its	 logic	with	 controlling	 procedures	 from	other	 scientific	 fields,	
such	 as	 providing	 positive	 and	 negative	 controls	 as	 in	 chemistry	 or	 molecular	 biology,	 where	 often	
positive	and	negative	probes	are	tested	alongside	the	test	data	(e.g.	Fedoroff	&	Richardson,	2001;	Johnson	
&	Besselsen,	2002)	or	in	medicine	during	skin	prick	tests	for	allergy	diagnosis	(Rusznak	&	Davies,	1998).	
	
In	the	paper	(Görgen	et	al.,	2018),	we	first	introduce	SAA	on	a	motivating	example,	and	then	demonstrate	
its	power	to	detect	a	wide	range	of	confounds	and	errors	in	a	number	of	scenarios	where	classical	design	
principles	systematically	fail	to	control	MVPA	decoding	analyses.	These	include	failures	that	lead	to	false	
positive	results	(significant	outcomes	in	the	absence	of	a	true	effect)	as	well	as	false	negatives	(systematic	
suppression	of	real	effects).	
	
In	general,	we	believe	that	SAA	has	the	potential	to	facilitate	MVPA	studies	and	to	reduce	errors,	because	
it	provides	a	systematic	approach	to	verify	the	experimental	paradigm.	Although	we	initially	developed	it	
for	 MVPA	 studies,	 SAA	 is	 not	 restricted	 to	 MVPA,	 but	 can	 be	 applied	 in	 other	 fields	 as	 well,	 within	
neuroimaging	 (for	 other	 analysis	methods),	 but	 also	 in	 other	 fields	 that	 employ	 complex	 data	 analysis	
methods,	such	as	genetics	or	machine	learning.	It	will	be	interesting	to	see	how	the	community	receives	
SAA,	which	 suggestions	will	 be	made	 to	 conduct	 “same”	 analyses,	 and	which	other	potential	 confounds	
and	pitfalls	will	be	detected	through	the	application	of	SAA.	
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4 General	Discussion	

In	 this	 thesis,	 I	 present	 three	 empirical	 studies	 that	 investigate	 where	 and	 how	 the	 human	 brain	
represents	 complex	 rule	 sets	 that	 are	 composed	 from	 different	 construction	 principles,	 as	 well	 as	 one	
methodological	 study	 on	 empirical	 design	 and	 experimental	 control	 principles	 of	 the	 employed	
methodology.	
	
The	three	empirical	studies	(Studies	1–3;	Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	2012b;	
Pischedda*,	Görgen*	et	al.,	2017;	Sections	3.1–3.3)	 investigated	this	question	by	decomposing	the	neural	
representation	 of	 complex	 rule	 sets	 using	multivariate	 pattern	 analysis	 (MVPA)	 on	 functional	magnetic	
resonance	 imaging	 (fMRI)	data.	The	studies	provide	 insights	 into	 the	neural	 representations	underlying	
three	different	construction	principles:	Composing	compound	rules	of	multiple	individual	rules	(Study	1;	
Reverberi,	 Görgen	 et	 al.,	 2012a;	 Section	3.1);	 executing	 rules	 in	 a	 particular	 order	 (Study	2;	Reverberi*,	
Görgen*	et	al.,	2012b;	Section	3.2);	and	constructing	task	sets	that	contain	rules	from	different	hierarchical	
levels	(Study	3;	Pischedda*,	Görgen*	et	al.,	2017;	Section	3.3).	Figure	3.2	provides	a	summary	of	the	main	
empirical	findings.		
	
The	methodological	study	(Study	4;	Görgen	et	al.,	2018;	Section	3.4)	provides	insights	into	methodological	
pitfalls	 as	 well	 as	 information	 on	 how	 to	 detect,	 avoid,	 and	 eliminate	 these,	 in	 particular	 –	 but	 not	
exclusively	–	for	MVPA.	
	
The	 empirical	 studies	 in	 this	 thesis	 are	 part	 of	 a	 larger	 endeavour	 to	 decompose	 the	 neurocognitive	
architecture	of	human	decision	making	 (Bode	&	Haynes,	2009;	Haynes	et	 al.,	 2007;	Hebart	 et	 al.,	 2018;	
Heinzle	 et	 al.,	 2012;	Kahnt	 et	 al.,	 2010,	2011;	Momennejad	&	Haynes,	 2012,	2013;	Nee	&	Brown,	2012,	
2013;	 Soon	 et	 al.,	 2008;	 Tusche	 et	 al.,	 2010,	 2013;	Wisniewski	 et	 al.,	 2014).	 The	methodological	 study	
connects	to	further	projects	to	improve	experimental	methodology	for	neuroimaging	(Allefeld,	Görgen	et	
al.,	2016;	Allefeld	&	Haynes,	2014;	Haufe,	Meinecke,	Görgen	et	al.,	2014;	Hebart*,	Görgen*	et	al.,	2015;	Soch	
et	al.,	2016).	
	
Three	 studies	 (Cole	 et	 al.,	 2011;	 Nee	 &	 Brown,	 2012;	 Woolgar	 et	 al.,	 2011)	 have	 independently	 and	
simultaneously	investigated	questions	similar	to	those	that	we	investigated	in	Studies	1	and	3	(Reverberi,	
Görgen	 et	 al.,	 2012a;	 Pischedda*,	 Görgen*	 et	 al.,	 2017;	 Sections	 3.1,	 3.3).	 Differences	 and	 similarities	
between	these	are	discussed	in	the	sections	on	the	respective	study	(Sections	3.1	and	3.3).	
	
This	 final	chapter	discusses	aspects	overarching	the	different	studies.	Discussions	specific	 to	each	study	
are	 contained	 in	 the	 respective	 papers.	 General	 aspects	 of	 the	 experimental	 studies	 1–3	 (Reverberi,	
Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	2012b;	Pischedda*,	Görgen*	et	al.,	2017;	Sections	3.1,	3.2,	
3.3)	are	discussed	first	(Sections	4.1–4.4).	Overarching	aspects	of	the	methodological	study	4	(Görgen	et	
al.,	2018;	Section	3.4)	are	discussed	in	Section	4.5.	The	thesis	concludes	with	a	discussion	of	open	issues	
and	suggestion	for	future	work	(Section	4.6).	

4.1 General	insights	and	implications	from	the	empirical	studies	

Our	studies	provide	initial	evidence	for	a	hypothesis	that	we	put	forward	in	Study	1	(Reverberi,	Görgen	et	
al.,	 2012a;	 3.1),	 which	 we	 termed	 the	 compositional	 principle.	 We	 demonstrated	 that	 ventrolateral	
prefrontal	cortex	(VLPFC)	encodes	rules	compositionally	by	showing	that	the	neural	patterns	of	compound	
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rules	 (rules	 that	 consist	 of	 two	 individual	 single	 rules,	 see	 Section	 3.1)	 could	 be	 decoded	 using	 neural	
patterns	of	their	individual	composing	rules.	This	demonstrates	that	compound	rules	and	their	individual	
composing	rules	at	least	partially	elicit	similar	activity	patterns.	Study	1	also	demonstrates	that	rules	are	
encoded	at	least	partially	independently	of	the	cues	that	were	employed	to	instruct	the	rules.	In	Study	2	
(Reverberi*,	 Görgen*	 et	 al.,	 2012b;	 3.2),	 we	 replicated	 this	 finding	 and	 extended	 the	 scope	 of	 the	
compositionality	principle	(Reverberi,	Görgen	et	al.,	2012a;	3.1)	by	demonstrating	that	rule	order	was	also	
represented	independently	of	the	identity	of	the	instructing	cues.	These	insights	are	further	discussed	in	
Section	4.2.	
	
The	most	consistent	finding	across	all	studies	was	that	information	about	all	investigated	rule	set	features	
was	 contained	 in	 local	 activity	 patterns	within	 different	 large-scale	 networks	 across	 the	 brain.25	 These	
included	the	identity	of	rules,	their	order,	and	the	identity	of	instructing	cues.	Classical	stimulus-response	
mapping	 rules	 (S-R	 rules),	which	we	 investigated	 in	 all	 empirical	 studies,	were	 always	 encoded	within	
right	 VLPFC,	matching	 all	major	 theories	 in	 the	 field	 (e.g.	 Bunge	&	Wallis,	 2008;	Duncan,	 2001;	 Fuster,	
1989;	Miller	&	Cohen,	2001;	Sakai,	2008).	A	discrepancy	between	additional	representations	in	posterior	
cortices,	between	parietal	 cortex	 (found	 in	Studies	1	and	3;	Reverberi,	Görgen	et	al.,	2012a;	Pischedda*,	
Görgen*	et	al.,	2017;	3.1,	3.3)	and	temporal	cortex	and	striatum	(found	in	Study	2;	Reverberi,	Görgen	et	al.,	
2012b*;	 3.2),	 gives	 rise	 to	 a	 hypothesis	 on	 the	 exact	 role	 of	 these	 cortical	 areas.	 This	 hypothesis	 and	
further	 implications	 of	 the	 results	 for	 the	 current	 debate	 on	 how	 rule	 sets	 are	 encoded	 –	whether	 in	 a	
general	task	set	region	or	topographically	specific	–	are	discussed	in	Section	4.3.	
	
The	most	unexpected	and	controversial	 finding	 from	our	empirical	studies	was	the	absence	of	evidence	
for	a	 topographical	organisation	of	 rule	 representations	 from	different	hierarchical	 levels	within	VLPFC	
along	an	anterior-to-posterior	gradient,	which	directly	contradicts	predictions	from	a	number	of	popular	
recent	 theories	 on	 the	 functional	 organisation	 of	 prefrontal	 cortex	 (Badre,	 2008;	 Badre	 &	 D’Esposito,	
2009;	Koechlin	et	al.,	2003;	see	also	Nee	&	D’Esposito,	2016;	Schumacher	et	al.,	2018).	Instead,	we	found	
in	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	3.2)	that	rules	defining	an	execution	order	of	other	rules	(and	
are	thus	higher	in	a	cognitive	hierarchy)	were	encoded	in	dorsal	striatum,	putamen,	and	right	premotor	
cortex,	and	 in	Study	3	 (Pischedda*,	Görgen*	et	al.,	2017;	3.3)	 that	 full-fledged	rules	 from	different	 levels	
were	encoded	in	the	same	areas	 irrespective	of	 their	hierarchical	 level.	 Implications	of	 these	results	are	
discussed	in	Section	4.3.	

4.2 Compositional	versus	non-compositional	coding	

An	 important	question	 to	which	our	 results	 speak	 is	whether	 rule	 sets	 are	 represented	compositionally	
(e.g.	Cole	et	al.,	2010;	Ruge	&	Wolfensteller,	2010),	i.e.	whether	representations	of	full	rule	sets	are	built	
from	 the	 representation	 of	 its	 individual	 constituent	 components.	 Compositional	 coding	 of	 rule	 set	
features	would	explain	how	the	brain	represents	the	almost	infinite	number	of	complex	rule	sets	humans	
can	apply.	
	
Previous	studies	found	evidence	for	both	compositional	(e.g.	Muhammad	et	al.,	2006;	Wallis	et	al.,	2001;	
Wallis	 &	Miller,	 2003a,	 2003b;	 Stoet	 &	 Snyder,	 2004)	 and	 non-compositional	 (Warden	 &	Miller,	 2007,	
2010)	 coding	 in	 monkeys.	 For	 example,	 a	 number	 of	 single-cell	 recording	 studies	 reported	 different	
neurons	in	monkey	brains	that	represented	different	aspects	of	a	task	independently	(e.g.	Muhammad	et	
al.,	2006;	Wallis	et	al.,	2001;	Wallis	&	Miller,	2003a,	2003b;	for	a	summary,	see	Wallis,	2008).	They	found	
that	a	large	portion	of	neurons	were	sensitive	to	the	identity	of	one	single	rule	set	feature,	which	in	these	
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information	 was	 not	 distributed	 across	 the	 network	 in	 the	 sense	 that	 activity	 of	 the	 full	 network	 or	 distant	 parts	 thereof	 was	
necessary	to	recover	it.	
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studies	consisted	of	cues	(the	task	instructing	symbols),	rules,	targets,	and	the	response	that	the	monkeys	
should	 perform.	 Thus,	 these	 neurons	 encoded	 the	 current	 rule	 set	 compositionally.	 Although	 the	
percentage	 of	 neurons	 encoding	 each	 respective	 feature	 depended	 on	 the	 exact	 recording	 location,	
information	 on	 these	 specific	 aspects	 was	 found	 throughout	 a	 widespread	 fronto-parietal-temporal	
network	(e.g.	Muhammad	et	al.,	2006;	e.g.	Stoet	&	Snyder,	2004;	Wallis	et	al.,	2001;	Wallis	&	Miller,	2003a,	
2003b).	 On	 the	 other	 hand,	 other	 studies	 (Warden	&	Miller,	 2007,	 2010)	 also	 found	 evidence	 for	 non-
compositional	(or	at	least	non-additive)	coding	of	rule	sets.	In	addition	to	neurons	that	only	encoded	the	
identity	of	one	single	rule	set	feature,	those	studies	also	identified	neurons	that	encoded	combinations	of	
different	aspects,	thus	implying	non-compositional	coding.	This	work	also	showed	that	representations	of	
task	sets	in	PFC	change	drastically	whether	a	monkey	kept	one	or	two	task-relevant	stimuli	in	mind,	and	
that	representations	additionally	depend	on	the	type	of	task	the	monkeys	had	to	perform.	
	
The	empirical	Studies	1–3	(Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.	2012b;	Pischedda*,	
Görgen*	 et	 al.,	 2017;	 3.1,	 3.2,	 3.3)	 of	 this	 thesis	 directly	 identified	 three	 types	 of	 compositional	 coding:	
1.	compositional	coding	of	compound	rules	and	their	constituent	single	rules;	2.	compositional	coding	of	
cues	and	the	rule	set	features	that	were	instructed	by	them	(rules	and	rule	order);	and	3.	compositional	
coding	of	rules	and	their	order.	The	 following	subsections	summarise	how	our	 findings	support	each	of	
these	points.	

4.2.1 Compositional	coding	of	compound	rules	
Study	 1	 (Reverberi,	 Görgen	 et	 al.,	 2012a;	 3.1)	 provides	 direct	 evidence	 for	 compositional	 coding	 of	
compound	 rules	 from	 their	 constituent	 single	 rules.	 To	 the	 best	 of	 our	 knowledge,	 the	 neural	
underpinnings	 of	 this	 principle	 have	 not	 been	 investigated	 before.	 Some	 previous	 fMRI	 studies	 have	
investigated	general	activation	differences	between	compound	and	single	rules	(see	Bunge,	2004;	Bunge	
&	 Zelazo,	 2006),	 which	 however	 can	 only	 speak	 to	 general	 involvement,	 but	 not	 to	 the	 represented	
content	(see	Chapter	2).	Other	studies	have	investigated	compositional	coding	in	monkeys	(e.g.	Siegel	et	
al.,	2009;	Warden	&	Miller,	2007,	2010),	however,	not	for	rules,	but	for	task-relevant	stimuli	in	short-term	
memory.	 In	 Study	 1	 (Reverberi,	 Görgen	 et	 al.,	 2012a;	 3.1),	 we	 showed	 that	 right	 VLPFC	 represented	
compound	 rules	 compositionally.	 Specifically,	we	 showed	 that	 the	 identity	 of	 compound	 rules	 could	 be	
predicted	by	classifiers	trained	from	data	of	the	composing	single	rules	(and	vice	versa).	Interestingly,	no	
evidence	for	compositional	coding	was	present	in	parietal	areas,	although	there	–	like	in	PFC	–	single	and	
complex	rules	could	be	decoded	independently.	This	suggests	that	VLPFC,	but	not	parietal	cortex,	employs	
compositional	coding	for	compound	rules.	

4.2.2 Compositional	coding	of	cues	and	rules/rule	order	
Our	studies	also	provide	direct	evidence	for	compositionality	of	 instructed	rule	set	 features.	This	comes	
from	both,	Study	1	(Reverberi,	Görgen	et	al.,	2012a;	3.1),	where	compositionality	between	cues	and	the	
instructed	rules	was	present	(see	also	Woolgar	et	al.,	2011),	and	Study	2	(Reverberi,	Görgen	et	al.,	2012b*;	
3.2)	where	we	replicated	this	finding	and	additionally	demonstrated	compositionality	between	cues	and	
rule	order.	As	stated	above,	this	agrees	with	findings	from	monkey	neurophysiology,	where	a	number	of	
studies	(e.g.	Muhammad	et	al.,	2006;	Sigala	et	al.,	2008;	Wallis	et	al.,	2001;	Wallis	&	Miller,	2003a;	Stoet	&	
Snyder,	2004)	found	separate	encoding	of	cues	and	rules	 in	a	wide	fronto-parietal	region.	In	contrast	to	
these	studies	however,	we	found	a	clear	separation	between	regions	containing	information	on	cues	and	
on	rules.	While	the	neurophysiological	studies	in	monkeys	found	both	rule	and	cue	information	in	frontal	
(e.g.	Muhammad	et	al.,	2006;	Sigala	et	al.,	2008;	Wallis	et	al.,	2001;	Wallis	&	Miller,	2003a)	and	parietal	
(Stoet	&	Snyder,	2004)	areas,	with	a	considerable	 fraction	of	neurons	representing	both	cues	and	rules,	
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we	 identified	 cue	 information	 only	 in	 parietal	 areas.26	 One	 potential	 explanation	 for	 this	 discrepancy	
might	 be	 that	 these	 studies	 used	 cues	 from	 different	modalities,	 e.g.	 sounds	 to	 instruct	 different	 rules	
instead	of	visual	symbols.	Because	these	tasks	require	multimodal	integration,	this	might	have	produced	a	
stronger	difference	in	neural	firing	compared	to	the	task	in	our	experiment,	where	both	cues	and	targets	
were	presented	visually.	

4.2.3 Compositional	coding	of	rules	and	their	order	
In	 Study	 2	 (Reverberi*,	 Görgen*	 et	 al.,	 2012b;	 3.2),	 we	 found	 compositional	 coding	 for	 task	 sets	 that	
contain	two	rules	and	a	specific	execution	order.	Specifically,	we	found	a	spatial	segregation	between	rule	
identity	and	rule	order.	While	representations	of	rule	order	were	present	in	right	premotor	cortex	and	the	
dorsal	striatum,	we	did	not	find	any	evidence	for	rule	order	in	PFC,	including	VLPFC.	If	rule	order	indeed	
were	 not	 represented	 in	 VLPFC,	 this	 would	 contradict	 a	 recent	 hypothesis	 that	 suggests	 VLPFC	 as	 a	
general	controller	for	task	set	preparation	that	controls	how	posterior	brain	regions	perform	the	task	and	
how	they	work	together	(e.g.	Bengtsson	et	al.,	2009;	Sakai	&	Passingham,	2003,	2006).	However,	although	
our	study	provides	evidence	that	VLPFC	does	not	contain	information	on	rule	order,	it	does	of	course	not	
rule	out	the	possibility	completely.	
	
One	reason	is	that	negative	findings	are	generally	difficult	to	interpret,	because	an	experimental	analysis	
can	always	miss	an	effect	that	actually	exists.	In	our	case,	we	believe	this	is	unlikely.	First,	we	additionally	
employed	 region	 of	 interest	 (ROI)	 analyses	 to	 test	 for	 presence	 of	 information	 in	 VLPFC	 with	 higher	
sensitivity.	These	did	also	not	show	any	evidence	for	presence	of	information	in	VLPFC.	Second,	a	region	
(VLPFC	 versus	 striatum)	 by	 information	 (rule	 identity	 versus	 order)	 interaction	 effect	 exists	 (Study	 2;	
Reverberi*,	Görgen*	et	al.,	2012b;	3.2).	While	a	significant	 interaction	does	not	directly	provide	evidence	
for	the	null	hypothesis	if	one	of	the	tested	groups	did	not	show	a	significant	effect	for	one	factor	(here	rule	
order	in	VLPFC),	it	does	demonstrate	an	inhomogeneity	between	identity	and	order	information	between	
both	brain	areas.	This	means	that	if	information	about	rule	order	were	present	in	VLPFC,	it	would	have	a	
significantly	 smaller	 effect	 on	 activation	 patterns	 than	 in	 striatum,	 compared	 to	 the	 effect	 that	 rule	
identity	information	has	in	both	regions.	
	
A	second	reason	for	how	VLPFC	could	represent	rule	order	even	though	we	did	not	find	it	is	the	intriguing	
possibility	 that	 rule	 order	 is	 represented	 in	 a	 different	 representational	 format	 that	 our	 experimental	
setup	was	not	able	to	detect.	To	our	knowledge,	rule	order	as	an	organising	feature	of	 task	sets	has	not	
been	investigated	before,	but	order	representations	have	been	investigated	in	other	contexts,	such	as	for	
neuronal	 encoding	 of	 the	 order	 of	 task	 relevant	 objects	 (Siegel	 et	 al.,	 2009)	 or	 for	 representations	 of	
sequences	such	as	spatial	locations	or	movement	sequences	(Warden	&	Miller,	2007,	2010).	The	study	of	
Siegel	et	al.	(2009)	suggests	that	rule	order	might	indeed	be	opaque	to	our	analysis	method.	In	that	study,	
representations	 of	 task	 sets	 were	 investigated	 while	 monkeys	 maintained	 two	 objects	 (not	 rules)	 and	
their	 order	 in	working	memory.	While	 Siegel	 and	 colleagues	 could	 decode	 identity	 and	 order	 from	 the	
firing	of	neurons	in	PFC,	they	also	found	that	the	different	objects	were	represented	stronger	at	different	
phases	 of	 the	 oscillatory	 components	 of	 the	 local	 field	 potential.	 In	 particular,	 the	 first	 object	 was	
represented	stronger	at	the	beginning	of	each	cycle	and	the	second	object	was	represented	stronger	at	the	
end.	 If	we	 assume	 that	 human	PFC	 represents	 rules	 in	 a	 similar	way,	 then	 the	 rules	 in	 our	 experiment	
might	also	have	been	represented	in	fast	alternations	(and	thus	information	about	rule	order	would	have	
indeed	been	present	in	PFC).	The	temporal	precision	of	the	BOLD	signal	(see	Section	2.2)	is	on	the	order	of	
seconds,	 and	 thus	 fMRI	 data	will	most	 certainly	 not	 allow	 to	 identify	 quickly	 alternating	 signals.	 If	 this	
were	 correct,	 it	would	 explain	why	we	 only	 found	 information	 on	 rule	 identity	 in	 PFC,	 but	 not	 on	 rule	
																																																																				
26	In	our	studies,	information	about	cues	was	also	present	in	visual	areas	in	occipital	cortex.	Although	we	cannot	compare	our	results	
to	the	monkey	studies	directly,	because	these	studies	did	not	record	in	visual	areas	and	used	different	modalities	to	provide	cues,	
overwhelming	evidence	exists	that	occipital	cortex	 is	sensitive	to	visual	 input,	and	thus	 information	on	visual	cues	should	exist	 in	
monkey	occipital	cortex.	
*	Equal	contribution	



	 	 Kai	Görgen	
	

	 35	

order:	 The	 identity	 of	 the	 two	 rules	 would	 then	 have	 been	 clearly	 distinguishable	 from	 their	 spatially	
distributed	activity	patterns,	while	their	temporal	order	(encoded	by	fast	temporal	alternations	between	
these	spatial	patterns)	would	not.	Note	that	such	temporal	coding	does	not	speak	against	compositional	
coding.	 On	 the	 contrary,	 it	 actually	 represents	 an	 interesting	 additional	 compositionality	 principle	
(although	one	that	BOLD	fMRI	MVPA	cannot	detect)	that	could	be	used	to	encode	information	in	addition	
to	that	encoded	in	spatial	patterns.	An	interesting	question	that	these	considerations	lead	to	 is	how	this	
temporal	order	is	established	in	the	first	place,	and	whether	this	is	related	to	the	representations	of	rule	
order	that	we	found	encoded	as	spatial	patterns	in	striatum	(see	Womelsdorf	&	Valiante,	2014	for	related	
considerations).	
	
Taken	 together,	 we	 find	 that	 the	 brain	 uses	 a	 number	 of	 different	 types	 of	 compositional	 coding	 to	
represent	 complex	 rule	 sets	 (Sections	4.2.1,	4.2.2).	This	 is	 consistent	with	 further	work	 from	our	group	
(e.g.	Momennejad	&	Haynes,	 2012,	 2013;	Wisniewski	 et	 al.,	 2014)	 and	 others	 (Cole	 et	 al.,	 2011;	Nee	&	
Brown,	2012;	Woolgar	et	al.,	2011)	that	have	investigated	similar	issues	(see	Sections	3.1,	3.3).	

4.3 Distributed	coding	versus	a	single	task	set	region	

Our	results	also	speak	to	how	the	brain	distributes	representations	of	complex	rule	sets	(Badre	&	Frank,	
2011;	Botvinick,	2008;	Crittenden	&	Duncan,	2014;	Duncan,	2001;	Fedorenko	et	al.,	2013;	Frank	&	Badre,	
2011;	Heinzle	et	al.,	2012;	Koechlin	&	Summerfield,	2007;	Sakai	&	Passingham,	2003,	2006).	One	popular	
theory	postulates	 that	 all	 task-relevant	 information	 is	 represented	and	processed	by	one	 single	general	
network,	 the	 fronto-parietal	 “Multiple	 Demand”	 (MD)	 network	 (Duncan,	 2001,	 2013;	 Crittenden	 &	
Duncan,	 2014;	 Fedorenko	 et	 al.,	 2013),	 which	 can	 flexibly	 allocate	 resources,	 similar	 to	 memory	 of	
standard	 computers.	 An	 alternative	 theory	 states	 that	 different	 aspects	 of	 complex	 rule	 sets	 are	
represented	in	different	specialised	regions	that	dynamically	collaborate	during	task	execution	(Badre	&	
Frank,	2011;	Botvinick,	2008;	Frank	&	Badre,	2011;	Heinzle	et	al.,	2012;	Koechlin	&	Summerfield,	2007;	
Sakai	&	Passingham,	2003).	In	the	latter	theory,	lateral	PFC	(especially	VLPFC)	sticks	out	as	a	specialised	
task	set	region,	a	“final	common	pathway”	(Bengtsson	et	al.,	2009),	where	all	task	set	relevant	information	
come	together	and	which	orchestrates	the	other	specialised	areas	during	task	performance.	The	results	of	
our	 empirical	 studies	 speak	 more	 towards	 this	 second	 theory	 of	 collaboration	 between	 regions.	 They	
however	 also	 restrict	 that	 theory,	 specifically	 the	 function	 of	 VLPFC	 as	 a	 general	 task	 set	 region	 (see	
Section	4.3.2).	

4.3.1 Restrictions	to	dynamic	allocation	and	fronto-parietal	multiple	demand	network	
A	 number	 of	 our	 findings	 speak	 against	 the	 idea	 of	 dynamic	 allocation	 of	 the	 “multiple	 demand”	 (MD)	
theory	(Duncan,	2001,	2013;	Crittenden	&	Duncan,	2014;	Fedorenko	et	al.,	2013).	First,	we	found	in	our	
empirical	 studies	 that	 all	 investigated	 rule	 set	 features	 (cue	 identity;	 single,	 compound,	 high-	 and	 low-
level	 rule	 identity;	 and	 rule	 order)	 were	 represented	 in	 local	 activation	 patterns.	 This	 finding	 speaks	
against	 dynamic	 allocation	 in	 its	 most	 general	 form:	 Would	 the	 brain	 allocate	 resources	 completely	
flexibly,	the	same	task	set	features	should	produce	different	patterns	of	brain	activity	in	each	trial.	The	fact	
that	 local	 patterns	 of	 brain	 activity	 carry	 information	 about	 the	 identity	 of	 specific	 rule	 set	 features	
requires	however	that	the	representations	share	at	least	some	location	specific	activity,	which	makes	our	
findings	incompatible	with	the	idea	of	flexible	allocation.	
	
Further	 evidence	 against	 dynamic	 allocation	 comes	 from	 the	 observation	 that	 in	 our	 studies	 feature	
representations	were	never	available	throughout	the	entire	suggested	fronto-parietal	network,	but	were	
location	specific,	both	 in	 frontal	 (Studies	1–3;	Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	Görgen*	et	al.,	
2012b;	Pischedda*,	Görgen*	et	al.,	2017;	3.1,	3.3)	and	posterior	regions	(Studies	1,	3;	Reverberi,	Görgen	et	
al.,	 2012a;	 Pischedda*,	 Görgen*	 et	 al.,	 2017;	 3.1,	 3.3).	Within	 frontal	 cortex,	 S-R	 rules	 were	 specifically	
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located	 in	 VLPFC.	 This	 finding	 was	 consistent	 across	 all	 three	 studies	 (Figure	 3.2,	 panel	 1),	 and	
independent	of	the	type	of	rule	(single	or	compound	rule,	lower	or	higher	hierarchical	levels).	The	other	
investigated	 feature,	 rule	 order,	 was	 also	 encoded	 location-specific	 in	 frontal	 cortex,	 specifically	 in	
premotor	 cortex.	 In	posterior	 regions,	 Studies	1	 and	3	 (Pischedda*,	Görgen*	 et	 al.,	 2017;	3.1,	 3.3)	 found	
representations	 of	 S-R	 rules	 in	 parietal	 cortex,	 which	 is	 in	 line	 with	 the	 general	 topography	 of	 the	
suggested	 fronto-parietal	 network.	 In	 Study	 2	 (Reverberi*,	 Görgen*	 et	 al.,	 2012b;	 3.2),	 however,	
representations	 of	 S-R	 rules	 were	 found	 in	 temporal,	 but	 not	 in	 parietal	 cortex.	 If	 indeed	 no	 such	
information	was	present	in	parietal	cortex	(i.e.	 if	our	study	did	not	miss	information	that	was	there;	see	
Section	 4.2.2	 for	 reasons	 that	 speak	 against	 a	 false	 negative),	 this	 would	 directly	 challenge	 the	 “broad	
domain	 generality”	 assumption	 of	 the	 fronto-parietal	 network	 (as	 suggested	 in	 e.g.	 Fedorenko	 et	 al.,	
2013).	In	summary,	our	results	speak	against	the	general	hypothesis	of	dynamic	allocation	and	a	general	
front-parietal	network	as	postulated	by	the	MD	theory.	
	
Is	 there	 an	 explanation	 how	 the	 discrepancy	 might	 arise	 that	 parietal	 (and	 not	 temporal)	 cortex	 is	
routinely	 found	 in	many	 studies	 including	 Study	 1	 and	 3	 (Reverberi,	 Görgen	 et	 al.,	 2012a;	 Pischedda*,	
Görgen*	 et	 al.,	 2017;	 3.1,	 3.3)	 of	 thesis	 (forming	 the	 basis	 for	 the	 “broad	 domain	 generality”	 claim	 of	
Fedorenko	et	al.,	2013),	but	that	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	3.2)	found	rule	representations	
in	temporal	(and	not	parietal)	cortex?	As	we	suggest	in	the	discussion	of	Study	2	(Reverberi*,	Görgen*	et	
al.,	2012b;	3.2),	the	critical	difference	between	our	Study	2	and	most	other	studies	might	be	the	required	
response	 type:	Most	 studies	 employ	direct	motor	 actions	 that	 include	 a	 spatial	 component	 as	 response	
(such	as	“If	X,	press	the	left/right	button”,	“look	to	the	top/bottom”,	etc.).	Study	2	(Reverberi*,	Görgen*	et	
al.,	2012b;	3.2),	 in	contrast,	employs	an	object	search	tasks	as	response	(“If	X,	press	the	side	where	A/B	
appears”)	that	can	only	be	resolved	to	a	spatial	motor	action	when	the	target	image	occurs	(which	is	later	
than	the	period	from	which	we	analyse	fMRI	data	in	our	empirical	studies).	Based	on	this,	we	hypothesise	
that	 parietal	 cortex	might	 represent	 rules	 only	 if	 they	 employ	 spatial	 action	 responses	 (“If	 X,	 press	 the	
left/right	 button”).	 Temporal	 cortex,	 in	 contrast,	 might	 represent	 rules	 if	 they	 use	 object	 search	 task	
responses	(“If	X,	press	the	side	were	A/B	appears”).	Similar	to	Section	4.2.2,	empirical	support	against	a	
potential	false	negative	result	(the	possibility	that	we	missed	rule	identity	information	in	parietal	cortex)	
comes	from	the	fact	that	ample	information	was	present	in	parietal	cortex	in	other	studies.	This	includes	
the	other	two	empirical	studies	in	this	thesis	(Studies	1	and	3;	Reverberi,	Görgen	et	al.,	2012a;	Pischedda*,	
Görgen*	et	al.,	2017;	3.1,	3.3)	and	a	precursor	study	that	investigated	the	same	topic	with	the	same	design	
but	motor	action	instead	of	search	task	responses	(Görgen,	2010).	
	
The	 hypothesis	 of	 segregated	 functional	 specialisation	 of	 parietal	 and	 temporal	 cortex	 fits	 well	 to	 the	
“dual-stream”	hypothesis	 from	vision	 (Goodale	&	Milner,	 1992;	Milner	&	Goodale,	 2008;	Mishkin	 et	 al.,	
1983;	 Mishkin	 &	 Ungerleider,	 1982).	 According	 to	 this	 hypothesis,	 visual	 information	 is	 split	 in	 visual	
cortex	 into	 two	 streams	with	 different	 functions	 that	 take	 different	 routes	 to	 frontal	 cortex.	 A	 parietal	
stream	goes	“upward”	from	visual	cortex	via	parietal	cortex,	and	a	temporal	stream	goes	“downward”	via	
temporal	 cortex.	 The	 original	 hypothesis	 asserted	 that	 parietal	 cortex	 would	 process	 spatial	 “where”	
information	while	 temporal	 cortex	would	process	symbolic	 “what”	 information	 (Mishkin	&	Ungerleider,	
1982;	Mishkin	et	al.,	1983).	An	updated	version	of	 the	theory	asserts	 that	 the	parietal	stream	processes	
“how”	 things	 can	 be	manipulated,	 instead	 of	 merely	 determining	 “where”	 they	 are	 (Goodale	 &	Milner,	
1992;	Milner	&	Goodale,	2008;	but	see	Schenk	et	al.,	2011).	Our	findings	are	in	line	with	this	idea,	but	also	
recast	the	hypothesis	in	a	slightly	more	general	interpretation:	It	might	be	that	the	two	streams	not	only	
process	“where/how”	and	“what”	 information	of	visual	objects,	but	that	they	process	rules	with	specific	
“where/how”	or	“what”	responses.	That	is,	the	parietal	stream	might	not	only	extract	“where”	an	object	is	
located	 and/or	 “how”	 it	 can	 be	manipulated,	 and	 the	 ventral	 stream	might	 not	 only	 extract	 “what”	 an	
object	is,	but	rules	how	to	use	this	information	are	directly	associated	together	with	this	information.	
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Together	with	the	observation	that	rule	representations	were	contained	in	VLPFC	in	Study	2	(Reverberi*,	
Görgen*	 et	 al.,	 2012b;	 3.2)	 as	 in	most	 other	 studies	 (including	 Study	 1	 and	 3;	 Reverberi,	 Görgen	 et	 al.,	
2012a;	 Pischedda*,	 Görgen*	 et	 al.,	 2017;	 3.1,	 3.3),	 this	 might	 mean	 that	 posterior	 regions	 might	 be	
recruited	 because	 they	 implement	 a	 specific	 task,	while	 VLPFC	 is	 a	 general	 rule	 processing	 region	 that	
recruits	these	areas	(see	Li	et	al.,	2007	for	a	similar	conclusion).	This	does	not	mean	that	specific	rules	will	
not	 be	 implemented	 in	 the	 posterior	 areas	 –	 on	 the	 contrary,	 our	 studies	 suggest	 that	 they	 do	 indeed	
contain	the	rules,	i.e.	the	specific	link	between	triggering	conditions	and	responses.	However,	the	specific	
rules	will	 only	be	 implemented	 in	posterior	areas	 if	 they	are	actually	 involved	 in	executing	 these	 rules.	
Thus,	these	findings	suggest	that	also	single	S-R	rules	are	composed	of	(at	least)	two	individual	parts	that	
are	distributed	to	different	brain	areas,	general	rule	information	in	VLPFC,	and	its	specific	implementation	
in	posterior	brain	areas,	the	location	of	which	depends	on	the	specific	type	of	response.	This	hypothesis	
that	parietal	cortex	represents	rules	that	employ	“how”	responses	would	explain	why	the	fronto-parietal	
network	is	so	commonly	found	in	task	set	research.	Although	previous	studies	investigated	many	different	
tasks	and	rules	 (see	e.g.	Fedorenko	et	al.,	2013),	 they	all	used	similar	rule	types	 that	used	motor	actions	
(i.e.	 “how”)	 responses,	which	 –	 according	 to	 our	 hypothesis	 –	would	 create	 representations	 in	 parietal	
cortex.27	Because	this	is	a	post-hoc	hypothesis,	further	work	is	required	to	test	this	possibility	(see	Section	
4.6.1).	

4.3.2 Evidence	for	distributed	coding	with	restrictions	to	VLPFC	as	general	controller	
Most	of	our	findings	speak	for	the	alternative	theory	of	distributed	coding,	i.e.	that	a	distributed	network	
of	specialised	regions	underlies	rule	set	representation	(Badre	&	Frank,	2011;	Botvinick,	2008;	Frank	&	
Badre,	2011;	Heinzle	et	al.,	2012;	Koechlin	&	Summerfield,	2007;	Sakai	&	Passingham,	2003):		
	

1. Rule	 set	 information	 was	 never	 available	 across	 the	 whole	 fronto-parietal	 network,	 but	
specifically	located	to	certain	areas.	

2. Information	on	cues,	rules,	and	rule	order	were	localised	in	different	regions.	
3. Information	on	cues	was	present	mainly	in	visual	cortices.		
4. Rule	 representations	 existed	 in	VLPFC	and	 in	posterior	 cortices,	where	 representation	 location	

depended	 on	 rule	 response	 type	 (either	 parietal	 cortex	 for	 “how”	 response	 rules,	 or	 temporal	
cortex	for	“what”	response	rules;	see	Section	4.3.1).		

5. Information	on	rule	order	was	present	in	striatum	and	motor	cortex.	
	
Still,	 findings	from	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	3.2)	speak	against	one	integral	part	of	 the	
theory:	The	idea	that	VLPFC	would	be	a	general	controller	for	task	sets	(e.g.	Bengtsson	et	al.,	2009;	Sakai	&	
Passingham,	2003,	2006).	Specifically,	we	 found	 that	 rule	order	was	most	 likely	not	 represented	within	
VLPFC,	but	that	it	instead	was	represented	in	striatum	and	premotor	cortex.	If	that	were	true	and	not	an	
artefact	 of	 our	 analysis	 method	 (see	 Section	 4.2.2),	 important	 task-set	 relevant	 information	 would	 be	
missing	in	VLPFC.	This	would	mean	that	VLPFC	would	not	be	a	completely	general	task	set	controller,	but	
would	restrict	its	role	to	that	of	a	more	specific	region	that	would	represent	and	process	cognitive	rules.	If	
that	 were	 the	 case,	 it	 would	 pose	 the	 question	 which	 other	 region	 might	 contain	 all	 information	 and	
coordinate	the	 interaction	of	 the	specialised	other	regions,	or	–	 if	no	such	region	exists	–	how	the	brain	
would	configure	this	dynamic	interplay	otherwise.	
	
In	summary,	 the	results	discussed	 in	Sections	4.3.1	and	4.3.2	suggest	 that	 the	commonly	 found	“fronto-
parietal”	network	is	not	a	“Multiple	Demand	Network”	(Duncan,	2006,	2010;	Fedorenko	et	al.,	2013)	that	
contains	 and	 processes	 all	 kind	 of	 task-related	 information	 (like	 random	 access	 memory	 in	 standard	

																																																																				
*	Equal	contribution	
27	For	example,	to	support	their	claim,	Fedorenko	and	colleagues	(2013)	present	seven	new	fMRI	experiments	that	investigate	a	wide	
variety	of	different	intelligence	tasks;	however,	all	employ	action	responses	(button	presses	in	six	tasks,	verbal	feedback	in	one	task).	
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computers).	Instead,	our	results	suggests	that	the	fronto-parietal	network	is	typically	observed	because	it	
represents	 one	 specific	 rule	 type	 commonly	 used	 in	 most	 experiments	 –	 S-R	 rules	 that	 contain	 “how”	
responses	 (here:	 specific	 motor	 actions).	 In	 addition,	 contrasting	 S-R	mappings	 containing	 “how”	 with	
“what”	responses	(here:	a	letter	search	task)	suggest	a	specific	distinction	between	the	function	of	parietal	
and	 temporal	 cortex.	 Finally,	 localisation	 of	 rule	 order,	 another	 feature	 of	 complex	 rule	 sets,	 speaks	
against	VLPFC	as	a	general	region	for	task	sets	(see	e.g.	Bengtsson	et	al.,	2009;	Sakai	&	Passingham,	2003,	
2006),	but	suggests	VLPFC	to	be	a	more	specialised	region	that	represents	and	processes	rules.	

4.4 A	functional	gradient	within	PFC?	

A	 final	 discussion	 to	which	 our	 results	 speak	 concerns	 the	 neurocognitive	 architecture	 underlying	 rule	
sets	 within	 PFC.	 A	 number	 of	 theories	 suggest	 that	 PFC	 represents	 features	 of	 complex	 task	 sets	
topographically	 (Badre,	 2008;	 Badre	 &	 D’Esposito,	 2009;	 Badre	 &	 Nee,	 2018;	 Bahlmann	 et	 al.,	 2015;	
Koechlin	et	al.,	2003;	Koechlin	&	Summerfield,	2007).	Specifically,	these	theories	propose	a	rostro-caudal	
gradient	 within	 PFC,	 along	 which	 rules	 at	 different	 levels	 within	 a	 cognitive	 hierarchy	 would	 reside.	
Individual	theoretical	accounts	differ	by	the	exact	progression	of	the	proposed	axes	and	by	which	features	
define	 the	 cognitive	 gradient,	 but	 all	 theories	 locate	 lower	 rules	 more	 posterior	 within	 PFC,	 and	
progressively	higher	rules	more	anterior	(see	Badre,	2008).	
	
We	experimentally	tested	this	core	prediction	of	gradient	theories	in	two	of	our	studies	(Studies	2	and	3;	
Reverberi*,	 Görgen*	 et	 al.,	 2012b;	 Pischedda*,	 Görgen*	 et	 al.,	 2017;	 3.2,	 3.3).	 Both	 investigated	
representations	of	rule	sets	comprising	two	levels	within	a	cognitive	hierarchy.	In	both	studies,	the	lower	
level	consisted	of	 two	complementary	S-R	rules.	The	higher	control	 level	was	a	specific	execution	order	
for	the	lower	rules	in	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	3.2).	In	Study	3	(Pischedda*,	Görgen*	et	al.,	
2017;	3.3),	explicit	higher-level	rules	instructed	to	which	stimuli	the	lower	rules	had	to	be	applied.		
	
As	discussed	above	(Sections	3.2,	4.3.2),	in	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	3.2)	representations	
of	 rule	 order	 (in	 striatum	and	premotor	 cortex)	were	 spatially	 segregated	 from	representations	of	 rule	
identity	(in	VLPFC).	The	fact	that	rule	order	was	represented	outside	PFC	speak	against	gradient	theories.	
The	 results	 from	 Study	 3	 (Pischedda*,	 Görgen*	 et	 al.,	 2017;	 3.3)	 also	 speak	 against	 gradient	 theories,	
because	representations	of	rules	from	both	hierarchical	levels	showed	distinct	topographies	that	did	not	
differ	 significantly	 between	 levels,	 showing	 no	 sign	 for	 an	 anterior-to-posterior	 gradient.	 This	 was	
particularly	 surprising	 because	 another	 recent	 fMRI	 MVPA	 study	 reports	 evidence	 in	 favour	 of	 a	
functional	gradient	(Nee	&	Brown,	2012).28	As	discussed	in	Study	3	(Pischedda*,	Görgen*	et	al.,	2017;	3.3),	
one	 potential	 explanation	 for	 this	 discrepancy	 might	 be	 that	 gradients	 only	 arise	 if	 both	 rules	 are	
represented	at	the	same	time	(during	the	analysed	period	in	Study	3	participants	held	only	rules	from	one	
level	[lower	or	higher]	in	memory;	rules	from	the	other	level	were	instructed	later).	If	that	were	the	case,	
this	 would	 be	 indeed	 surprising,	 because	 it	 would	 require	 that	 rule	 representations	 change	 locations	
between	different	task	phases,	and	not	just	representational	format	(as	in	Warden	&	Miller,	2007;	Sigala	et	
al.,	2008;	Hebart	et	al.,	2018).	Further	work	is	necessary	to	test	this	possibility	(see	Section	4.6.2).	

4.5 Discussion	of	methodological	study	

The	methodological	 Study	 4	 (Görgen	 et	 al.,	 2018;	 3.4)	 of	 this	 thesis	 is	 part	 of	 the	 recent	 endeavour	 to	
“mature”	MVPA	(similar	to	the	maturation	of	classical	statistics	in	the	beginning	of	last	century,	e.g.	by	the	
work	of	Fisher,	1935).	The	study	has	been	motivated	by	observations	I	made	among	others	during	data	
analyses	of	 the	empirical	studies	of	 this	 thesis	(Studies	1–3;	Reverberi,	Görgen	et	al.,	2012a;	Reverberi*,	
Görgen*	et	al.,	2012b;	Pischedda*,	Görgen*	et	al.,	2017;	3.1,	3.3)	as	well	as	observations	of	similar	problems	
																																																																				
*	Equal	contribution	
28	 As	 discussed	 in	 Section	 3.3,	 it	 might	 be	 interesting	 to	 harvest	 the	 differences	 between	 both	 studies	 to	 test	 by	 systematic	
experimental	manipulation	which	of	their	design	features	(if	any)	are	critical	to	elicit	gradients.	
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reported	by	others	(Allefeld,	Görgen	et	al.,	2016;	Etzel	et	al.,	2013;	Etzel	&	Braver,	2013;	Haufe,	Meinecke,	
Görgen	et	al.,	2014;	Mumford	et	al.,	2012,	2015;	Noirhomme	et	al.,	2014;	Schreiber	&	Krekelberg,	2013;	
Todd	et	al.,	2013;	Woolgar	et	al.,	2014;	Hebart	&	Baker,	2018;	for	review,	see	e.g.	Haynes,	2015).	As	MVPA	
is	a	rather	young	and	rapidly	developing	methodological	discipline	in	neuroimaging,	our	studies	aimed	to	
analyse	experimental	designs	of	MVPA	to	detect,	avoid,	and	eliminate	confounds	and	other	pitfalls.		
	
The	“Same	Analysis	Approach	(SAA)”	(Study	4,	Görgen	et	al.,	2018;	3.4)	deals	with	a	question	that	lies	at	
the	foundation	of	any	experimental	study:	How	to	set	up	the	experimental	design	to	ensure	that	only	the	
experimental	variable(s)	of	interest	will	influence	the	final	statistical	assessment?	The	key	insight	that	has	
motivated	this	study	is	that	different	analysis	methods	require	different	experimental	designs.	The	insight	
which	 is	not	novel	at	all	but	apparently	has	been	ignored	in	the	MVPA	community	so	 far;	Fisher	(1935)	
has	used	 it	 to	develop	his	 today	classical	design	principles.	An	 important	 implication	 is	 that	 the	current	
wide-spread	practice	to	design	experiments	using	design	principles	(such	as	counterbalancing)	that	have	
been	 developed	 for	 conventional	 analysis	 methods	 (such	 as	 t-tests	 or	 ANOVAs)	 do	 not	 necessarily	
safeguard	 against	 the	 influence	 of	 potential	 confounds	 if	 novel	 analysis	 methods	 (such	 as	 MVPA)	 are	
employed.	 As	 a	 practical,	 systematic	 way	 to	 test	 whether	 a	 given	 design	 controls	 a	 desired	 analysis	
method,	 we	 suggest	 to	 apply	 this	 same	 analysis	 to	 a	 variety	 of	 control	 datasets	 constructed	 from	 the	
design,	 and	 examine	 the	 result	 pattern	 that	 these	 analyses	 yield.	 In	 short:	 If	 only	 the	 experimental	
variable(s),	 but	 no	 confounder	 variable(s),	 systematically	 influence	 the	 final	 statistical	 result,	 this	
provides	empirical	evidence	for	the	validity	of	the	design.	An	important	additional	point	we	make	is	that	
the	 same	 principle	 –	 to	 test	 which	 result	 the	 same	 analysis	method	would	 yield	 if	 a	 different	 variable	
would	influence	the	analysed	data	–	is	also	necessary	when	performing	control	analyses	on	control	data	
(such	as	reaction	times).	Indeed,	a	common	practice	in	cognitive	neuroimaging	is	to	employ	different	tests	
for	control	analyses	and	main	analyses,	such	as	univariate	t-tests,	F-tests,	or	ANOVAs	on	control	data	(e.g.	
reaction	times,	age,	or	IQ),	and	MVPA	on	the	main	experimental	data	(e.g.	fMRI	or	EEG).	The	reason	behind	
this	 seems	 to	 be	 that	 control	 data	 is	 univariate	 and	 has	 always	 been	 analysed	 using	 t-test,	 F-tests,	 or	
ANOVAs.	However,	because	different	types	of	tests	are	not	sensitive	to	the	same	properties	of	data	(as	we	
demonstrate	 in	 the	paper	 using	 examples),	 inferences	 between	 tests	 are	 invalid.	 Instead,	we	 show	 that	
structurally	equivalent	tests	(“same”	analyses)	are	necessary	for	valid	control	analyses,	too.	
	
Some	ideas	underlying	SAA	have	been	already	incorporated	in	the	analyses	of	the	empirical	Studies	2	and	
3	 (Reverberi*,	 Görgen*	 et	 al.,	 2012b;	 Pischedda*,	 Görgen*	 et	 al.,	 2017;	 3.2,	 3.3).	 In	 Study	 2	 (Reverberi*,	
Görgen*	 et	 al.,	 2012b;	 3.2),	we	 correlated	 absolute	 differences	 in	 error	 rate	 and	 reaction	 time	 between	
experimental	 conditions	 (different	 rules	 that	 had	 to	 be	 applied)	 with	 fMRI	 decoding	 accuracies	 across	
participants	 to	 test	 the	 hypothesis	 that	 a	 potential	 confound,	 namely	 differences	 in	 difficulty	 of	 rules	
within	 each	participant,	 could	 explain	our	 fMRI	decoding	 results.	A	 year	 later,	 the	 same	hypothesis	has	
been	put	forward	by	Todd	and	colleagues	as	a	methodological	criticism	of	our	and	others	work	(Todd	et	
al.,	2013).	In	contrast	to	Todd	et	al.,	but	in	agreement	with	others	(Woolgar	et	al.,	2014),	we	did	not	find	
any	evidence	for	this	hypothesis.	Repeating	the	analysis	in	Study	3	(Pischedda*,	Görgen*	et	al.,	2017;	3.3),	
i.e.	using	the	same	analysis	used	for	imaging	data	(i.e.	decoding)	for	reaction	times	yielded	the	same	result,	
again	speaking	against	Todd	et	al.’s	hypothesis	that	reaction	times	would	confound	results.		
	
Using	its	potential,	the	“Same	Analysis	Approach”	(Study	4;	Görgen	et	al.,	2018;	3.4)	could,	I	believe,	have	a	
high	impact	on	quality,	reproducibility,	interpretability,	and	effectiveness	for	conducting	future	studies.	
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4.6 Open	issues	and	future	directions	

4.6.1 Parietal	“how”	versus	temporal	“what”	response	
One	unresolved	issue	is	that	in	Study	2	(Reverberi*,	Görgen*	et	al.,	2012b;	3.2)	we	unexpectedly	found	S-R	
rule	representations	only	in	temporal	cortex,	but	no	sign	for	representations	in	the	commonly	observed	
parietal	 cortex,	which	we	 found	 –	 as	most	 other	 studies	 –	 in	 Studies	 1	 and	3	 (Reverberi,	 Görgen	 et	 al.,	
2012a;	Pischedda*,	Görgen*	et	al.,	2017;	3.1,	3.3).	
	
As	 stated	 above	 (Section	 4.3.2),	 we	 hypothesised	 that	 this	 discrepancy	might	 be	 caused	 by	 differences	
between	rules	that	 involve	action	“where/how”	responses	(“If	X,	press	the	 left	button”)	versus	symbolic	
“what”	responses,	in	our	experiments	instructions	to	locate	objects	(“If	X,	find	the	letter	A,	and	then	press	
the	 button	 on	 the	 side	 where	 that	 letter	 occurred”).	 This	 hypothesis	 agrees	 with	 the	 dual-stream	
hypothesis	 (Mishkin	 et	 al.,	 1983;	 Goodale	 &	 Milner,	 1992)	 from	 vision	 neuroscience	 that	 postulate	 a	
parietal	 “where/how”	 versus	 a	 temporal	 “what”	 pathway,	 but	 extends	 its	 scope	 to	 content-specific	
representations	 of	 rule	 consequences.	 It	 thus	 corroborates	 the	 idea	 that	 rule	 information	 is	 stored	 in	
regions	that	also	process	this	information	(as	hypothesised	in	Study	2;	Reverberi*,	Görgen*	et	al.,	2012b;	
3.2)	and	at	the	same	time	restricts	the	role	of	parietal	cortex	from	a	general	task	sets	processing	region	to	
the	more	 specific	 task	 to	process	 “where/how”	 response	 rules.	Further	work	would	be	 required	 to	 test	
this	hypothesis.	

4.6.2 Gradient	in	PFC?	
A	 second	 open	 question	 concerns	 our	 findings	 in	 Studies	 2	 and	 3	 (Reverberi*,	 Görgen*	 et	 al.,	 2012b;	
Pischedda*,	Görgen*	et	al.,	2017;	3.2,	3.3),	which	contradict	 the	 idea	of	a	 functional	gradient	within	PFC,	
especially	because	a	similar	study	(Nee	&	Brown,	2012)	reports	evidence	for	these	theories.29	A	promising	
way	to	resolve	the	issue	would	be	a	systematic	stepwise	transition	between	experiments	that	do	and	that	
do	not	find	topographical	differences.	Study	3	(Pischedda*,	Görgen*	et	al.,	2017;	3.3)	and	the	study	by	Nee	
&	 Brown	 (Nee	 &	 Brown,	 2012)	 seem	 ideal	 candidates	 as	 a	 starting	 point,	 because	 both	 used	 similar	
paradigms	 and	 analysis	 methods.	 MEG-fMRI	 fusion	 (e.g.	 Cichy	 et	 al.,	 2014)	 based	 on	 representational	
similarity	analysis	(Kriegeskorte	et	al.,	2008)	as	recently	employed	to	trace	task-set	components	in	space	
and	 time	 (Hebart	 et	 al.,	 2018)	 could	be	 a	promising	way	 to	 investigate	how	 task-set	 representations	of	
hierarchical	rule	sets	build	up	during	application.	

4.6.3 Making	SAA	run	
With	SAA	(Study	4;	Görgen	et	al.,	2018;	3.4),	we	made	some	suggestions	that	might	help	researchers	doing	
better	experiments,	thereby	saving	time,	money,	and	avoiding	frustration.	Yet,	an	important	step	to	make	
researchers	 actually	 use	 SAA	 would	 be	 to	 provide	 a	 concrete	 implementation	 to	 make	 it	 easy	 for	
researchers	to	apply	SAA	to	their	experiments.	An	implementation	in	beta	state	is	available	for	“TDT	–	The	
Decoding	Toolbox”	(Görgen	et	al.,	2012;	Hebart*,	Görgen*	et	al.,	2015)	and	has	been	successfully	tested	by	
a	handful	of	users;	 some	documentation	on	how	 to	 create	SAA	 implementations	 for	developers	exist	 as	
well	(both	available	upon	request).	Further	work	would	be	required	to	bring	software	and	documentation	
to	release	state	and	to	make	it	publicly	available	for	download.	I	am	convinced	that	this	effort	would	be	
worth	 the	while:	Not	 only	 because	 it	would	boost	 the	 adoption	of	 SAA;	 but	 also	 because	 of	 the	 good	 it	
would	bring	to	the	world	of	science.	

																																																																				
29	Note	however	that	substantially	different	gradient	theories	exist,	all	of	which	mainly	rest	on	indirect	evidence.	Despite	the	wealth	
of	secondary	literature,	only	very	few	studies	directly	tested	the	hypothesis	in	humans	(Koechlin	et	al.,	2003;	Kouneiher	et	al.,	2009;	
Badre	&	D’Esposito,	2007;	Nee	&	Brown,	2012;	Reynolds	et	al.,	2012;	Bahlmann	et	al.,	2015).	None	of	them	has	been	replicated	by	
independent	groups,	and	the	only	published	replication	attempt	(Reynolds	et	al.,	2012)	that	tested	the	two	most	common	theories	
failed	 to	 replicate	both.	Given	 all	 this,	 a	 critical	 review	of	 the	 literature	 (all	major	 reviews	 come	 from	 the	 same	 two	groups)	 and	
maybe	reanalyses	of	the	data	would	be	highly	desirable.	
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