
Optimal Trading with Multiplicative Transient
Price Impact for Non-Stochastic or Stochastic

Liquidity

D I S S E R TAT I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach Mathematik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
Dipl.-Math. Peter Frentrup

Präsidentin der Humboldt-Universität zu Berlin:
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Elmar Kulke

Gutachter:

1. Prof. Dr. Dirk Becherer

2. Prof. Dr. Giorgio Ferrari

3. Prof. Dr. Jan Kallsen

Eingereicht am: 14. 5. 2019

Tag der Verteidigung: 10. 9. 2019





Abstract

In this thesis, we study a class of multiplicative price impact models for trading
a single risky asset. When a large investor trades in a risky asset, her actions have
adverse effect on the price at which trading happens in the market, depressing the
price when she sells and increasing it when she buys. We model price impact to be
multiplicative so that prices are guaranteed to stay non-negative, a feature that
additive impact models, which are often used in the optimal liquidation literature,
lack. Our risk-neutral large investor seeks to maximize expected gains from trading.

We first introduce a basic variant of our model, wherein the transient impact is
a deterministic functional of the trading strategy. We draw the connection to limit
order books and give the optimal strategy to liquidate or acquire an asset position
in an a priori infinite time horizon. Building on these results for an unconstrained
time horizon, we subsequently introduce a clearing condition at a fixed horizon.
We solve the corresponding optimization problem in a two step manner. Calculus
of variations allows to identify the free boundary surface that separates buy and
sell regions and moreover show its local optimality, which is a crucial ingredient
for the verification giving (global) optimality. This result allows us to conduct a
qualitative comparison to the according additive impact variant.

In the second part of the thesis, we introduce uncertainty about the actual price
impact by adding stochasticity to the auxiliary impact process. This feature causes
optimal strategies to dynamically adapt to random changes in liquidity. Again
focusing on the infinite time horizon case, we identify the optimal liquidation
strategy as the reflection local time which keeps the market impact process below
some non-constant free boundary level. We describe this free boundary curve
explicitly in terms of an integral equation. Similar to the previous chapter the
proof technique involves a combination of classical calculus of variations and direct
methods, showing first a local optimality result and then augmenting it to a global
one.

In order to again impose a constraint on the time horizon, allowing for inter-
mediate buy actions without further transaction costs, we need to enlarge the set
of admissible controls to include semimartingales. We address the issue with an
in-depth analysis of the stability of the proceeds functional with respect to the
trading strategy in a broad class of market models including multiplicative and
additive price impact, with deterministic or stochastic liquidity. Skorokhod’s M1

topology is key to extend the class of admissible controls from finite variation to
general càdlàg strategies.

Subsequently, we return to the problem of optimal liquidation and introduce
proportional transaction costs into our stochastic liquidity model. We solve the
related one-dimensional free boundary problem of optimal trading without con-
straints on time or asset position and highlight possible solution methods for the
corresponding liquidation problem where trading stops as soon as all assets are
sold.

With the last chapter we depart from optimal control problems. Inspired by the
reflection local time nature of the optimal liquidation strategy for non-deterministic
impact, we develop an approximation scheme for diffusions with reflection at an
elastic boundary which is a function of the reflection local time. This leads to a
probabilistic functional limit result and naturally gives an explicit expression for
the Laplace transform of the inverse local time.
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Zusammenfassung

Diese Arbeit untersucht eine Reihe multiplikativer Preiseinflussmodelle für das
Handeln in einer riskanten Anlage. Handelt ein Großinvestor mit riskanten Finanzan-
lagen, so beeinflusst er den entsprechenden Preis in einer für ihn ungünstigen Weise;
Preise fallen, wenn er verkauft, und steigen, sobald er kauft. Wir modellieren diesen
Preiseinfluss multiplikativ, um die Möglichkeit negativer Preise auszuschließen, ein
Merkmal, dass additiven Preiseinflussmodellen, wie sie häufig in der finanzmathe-
matischen Literatur zur optimalen Portfolioliquidierung vorkommen, fehlt. Unser
risikoneutraler Investor versucht seine zu erwartenden Handelserlöse zu maximieren.

Wir beginnen mit einer einfachen Variante unseres Modells, in der der vorüberge-
hende Preiseinfluss ein deterministisches Funktional der Handelsstrategie darstellt.
Wir stellen den Zusammenhang mit Limit-Orderbüchern her und besprechen die op-
timale Strategie zur Liquidierung bzw. zum Aufbau einer Anlageposition bei a priori
unbeschränkem Anlagehorizont. Aufbauend auf diesen Resultaten für den zeitunbe-
schränkten Fall führen wir im Anschluss eine feste Zeitschranke zur Liquidierung
ein. Das daraus entstehende Optimierungsproblem lösen wir in zwei Schritten.
Mittels Variationsrechnung lässt sich die freie Grenzefläche, welche Kauf- und Ver-
kaufsregionen trennt, als lokales Optimum identifizieren. Diese lokale Optimalität
ist entscheidend für die Verifikation globaler Optimalität. Dieses Resultat erlaubt
einen qualitativen Vergleich mit der entsprechenden additiven Preiseinflussvariante.

Im zweiten Teil der Arbeit führen wir Unsicherheit bezüglich des tatsächlichen
Preiseinflusses ein, indem wir den zwischengeschalteten Markteinflussprozess um
eine stochastische Komponente erweitern. Dies bedingt, dass optimale Strategien dy-
namisch an zufällige Liquiditätsschwankungen adaptieren. Wir behandeln zunächst
wieder den zeitunbeschränkten Fall und bestimmen die optimale Liquidierungs-
strategie als die reflektierende Lokalzeit, die den Markteinflussprozess unterhalb
eines nicht-konstanten freien Grenzlevels hält. Diese Grenzkurve beschreiben wir
explizit über eine Integralgleichung. Wie im vorherigen Kapitel umfasst der Beweis
wieder eine Kombination aus Variationsrechnung, um zunächst lokale Optimalität
zu zeigen, und direkten Methoden, die diese dann zu globaler Optimalität erweitern.

Um erneut eine Beschränkung des Anlagehorizonts und zwischenzeitliches Kau-
fen ohne zusätzliche Transaktionskosten zu ermöglichen, ist es nötig, die Klasse
der zulässigen Strategien um Semimartingale zu erweitern. Dazu betreiben wir
eine detailierte Analyse zur Stabilität des Erlösfunktionals bezüglich der Handels-
strategie in einer umfangreichen Klasse von Preiseinflussmodellen, welche sowohl
additiven, als auch multiplikativen Preiseinfluss umfasst, mit deterministischer oder
stochastischer Liquidität. Skorochods M1-Toplogie erweist sich als Schlüsselelement,
um die Klasse der möglichen Strategien von endlichen Variations- auf allgemeine
rechtsstegige Strategien mit linksseitigen Limiten zu erweitern.

Zurück beim optimalen Liquidierungsproblem führen wir anschließend proportio-
nale Transaktionskosten in unser stochastisches Preiseinflussmodell ein. Wir lösen
das entsprechende eindimensionale freie Grenzproblem des optimalen Handels ohne
Zeit- oder Anlagepositionsbeschränkungen und beleuchten mögliche Lösungsansätze
für das Liquidierungsproblem, welches mit dem Verkauf der letzten Anleihe endet.

Mit dem letzten Kapitel entfernen wir uns von optimalen Kontrollproblemen.
Inspiriert durch die Struktur der optimalen Strategie bei stochastischer Liquidität
entwickeln wir ein Approximationsschema für Diffusionen mit Reflexion an einer
elastischen Grenze, die als Funktion der reflektierenden Lokalzeit darstellbar ist.
Dies führt zu einem funktionalem Grenzwertresultat und liefert auf natürliche Weise
einen explizite Ausdruck für die Laplace-Transformation der inversen Lokalzeit.
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1 Introduction

A large trader seeks to liquidate her position in a risky financial asset. Being large
means that her trading actions have adverse impact on the asset’s price, with the effect
that selling a large amount of assets in short time will depress the price and, conversely,
buying a large amount will cause increasing prices. As a consequence, the large trader
needs to split large trades into smaller chunks to be executed over time, balancing the
losses caused by such price movements against her preference to finish the trade early.
One explanation for such adverse price effect might be that other market participants
observe her actions, learn or anticipate that she would continue trading in the same
direction for the near future and try to exploit this knowledge. A different explanation
that does not require modeling competitive agents builds on the structure of the market
in form of a limit order book. A limit order book (LOB) lists the amount of assets
available for sale or buy at each particular price. These quantities correspond to (not
yet executed) limit orders. An incoming limit order is placed in the order book unless it
can be executed immediately. In contrast, an incoming market order is executed directly
by “eating” into the order book and thereby moving the price, cf. Remark 2.1.1. From
this limit order book perspective, our large investor issues only market orders, but no
limit orders. Not having to wait for later execution of placed (limit) orders means that
there is a one-to-one correspondence between her trading strategy and her asset position
at each time point, so we can identify these two notions.
Our large investor is risk-neutral, she merely aims at maximizing expected proceeds

from trading. We will solve her optimal liquidation problem (and the related problem of
optimally acquiring an asset) in infinite and finite time horizons, when she either expects
fundamental prices to have no trend, to rise, or to decline in expectation. Since seminal
work by [BL98, AC00], optimal execution problems have been a subject of extensive
research. We mention [OW13, AFS10, KP10, ASS12, FKTW12, LS13, Kat14, GH17]
and refer to [PSS11, GS13] for further references and application background.
Unlike electricity or other goods that involve storage cost, financial assets such as

options or stocks do not have negative prices. As already noted by [Sam65], forgetting
this property may lead to anomalous and counter-intuitive results. Nonetheless, in the
field of mathematical finance most literature on optimal execution with market impact
considers additive impact models, wherein the price at which trading occurs is the sum
of an unperturbed fundamental price and a function of an auxiliary market impact
level. Such modeling causes negative prices with (small) positive probability, which
means that these additive impact models are to be used for short time horizons only,
where the probability of reaching negative prices may be negligible, see e.g. [GSS12,
footnote 3]. Conceptual difficulties would thus arise for applications with longer time
horizons, as they can occur e.g. for large institutional trades [CL95, KMS17], or for
hedging problems with longer maturities. Furthermore, additive impact models are
better suited to an arithmetic Brownian motion specification for the fundamental price,
as in the Bachelier model, and may cause modeling artifacts when combined with an e.g.
a geometric Brownian motion, as in the Black-Scholes model, for the fundamental price
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1 Introduction

process, cf. Remark 3.2.7.
To remedy the possible occurrence of negative prices, alternative price impact models

were proposed early on in mathematical finance and economics literature, cf. e.g. [Jar94,
Fre98, BL98, FJ02, FGL+04, HM05, FKTW12, Kat14]. As noted in [GS13, Sect. 3.2],
computing optimal strategies in such models may be more difficult than in additive
price impact models. This is certainly a reason for the wide adoption of the latter in the
literature. One goal of this thesis is to demonstrate how to attain explicit analytical
solutions in a multiplicative impact model and thereby help to fill the gap between
(analytically tractable) additive and more plausible multiplicative modeling of price
impact. To be more precise, we consider multiplicative impact similar to [Løk12, GZ15],
i.e. additive impact on the returns. Herein, the actual price at which trading occurs is
the product of a fundamental price and a function of the market impact level which, in
turn, incorporates past and present trades. In order to investigate the role of resiliency
in the market, we take this persistent effect on price to be transient instead of permanent.
It turns out that transience is essential for the optimal liquidation results, whereas
[GZ15] have shown that purely permanent impact would lead to trivial results, cf.
Remark 2.3.4. Mathematically, our setup of transience implies that the state variable
(Yt)t≥0, that represents impact, cannot be decoupled from the control strategy (Θt)t≥0.
It is this strong dependence that makes the (non-convex) optimization problems we
study challenging. This feature is similar to (and in fact tightly connected to, as we will
see in Chapter 4) the difference between a reflected Ornstein-Uhlenbeck process and
a reflected Brownian motion. While Skorokhod’s lemma applies for the latter, giving
that it is the difference of an unreflected diffusion and the reflection process (its running
maximum), such direct approach is not available in case of a state-dependent drift as
it appears for the Ornstein-Uhlenbeck case. We examine such reflected diffusions in
Chapter 7.

In Chapter 2, we elaborate the basic ingredients of our multiplicative market impact
model and present the main results on optimal liquidation in infinite time horizon
with deterministic impact dynamics. Since we consider continuous time trading, our
optimization objective has the form of a singular stochastic control monotone follower
problem of finite fuel type (the term finite fuel dates back to [BC67], see e.g. [Kar85], or
[BE08] and the references therein for a more recent treatment). We express the optimal
trading strategy in feedback form through an explicit formula for the free boundary
separating sell- from no-sell-regions. One outcome of our analysis is that – assuming
initial impact is small, so that prices have (almost) no upward trend – intermediate
buying is sub-optimal for the large investor.

Whereas an infinite time horizon allows for easier analysis since the state space is two-
dimensional, this setup requires discounting and a sign constraint on admissible strategies.
By introducing an exogenous restriction on the time to liquidation in Chapter 3, we are
able to allow for short sales and to incorporate beliefs of the large trader about short-time
evolution of prices (upward or downward trend) at the cost of increasing the state space
to three dimensions. The optimal trading strategy in this non-concave maximization
problem (cf. Remark 2.3.1) is characterized by a non-constant free boundary surface
between sale- and no-sale regions that we construct explicitly.
Up to Chapter 3, we follow the majority of optimal execution literature with price

impact in that we take the inter-temporal impact to be a deterministic function of the
single large trader’s strategy, thereby effectively keeping all aspects of market liquidity
static. When all relevant market characteristics are deterministic functions of the
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large investor’s activity, the optimal strategy will naturally be deterministic, unless
one introduces model artifacts by e.g. mixing additive and multiplicative dynamics
(such as additive impact with geometric Brownian motion for the fundamental price;
or multiplicative impact with additive bid-ask spread). Working in an essentially
deterministic setup greatly simplifies the analysis, but also limits the richness of possible
results. On longer time-horizons, one would instead expect some liquidity aspects
to vary stochastically. In Chapter 4, we incorporate such effects by introducing own
stochasticity in the large trader’s controlled market impact process. In order to retain a
tractable problem, we simplify other aspects like the specific form of resilience and again
concentrate on the infinite horizon problem without intermediate buying. The optimal
liquidation strategy in this setup turns out to be the (non-deterministic) reflection local
time which keeps the impact process below some varying critical level that we describe
explicitly as a function of the current position (the non-constant free boundary curve).
The original model from Chapter 2 can be understood as an approximation for the our
impact model with stochastic liquidity, cf. Section 4.7.
This result motivates a more in-depth analysis of diffusions that are reflected at a

non-constant boundary which in turn depends on the reflection local time (in a sense of
“how often the boundary was hit before”) in Chapter 7, where we develop this intuitive
perception of a boundary that retreats with every hit into an approximation scheme.
See e.g. [DI93] for general reflected diffusions. As a byproduct, this analysis gives a
probabilistic proof for the explicit formula of the Laplace transform of the inverse local
time (cf. Theorem 7.2.2), for which we also have an analytic proof (see Theorem 4.3.2)
in a slightly less general setup of strictly increasing reflection boundary functions.

The initial problem in Chapter 2 is classic in the sense that a usual “guess and verify”
approach can be carried out, wherein one first identifies a candidate value function,
e.g. by assuming a smooth fit condition, and then performs a direct verification of the
variational inequalities. In contrast, direct verification seems out of reach in Chapters 3
and 4; at least I can not see any convexity structure, that would help. Instead, there we
divide the verification procedure into two manageable parts. Using sufficiency conditions
available from calculus of variations methods, we first obtain a local optimality result in
a class of strategies that can be described by smooth boundary curves (Theorems 3.3.8
and 4.4.6, respectively). This local result causes the variational inequalities to hold in a
neighborhood of the candidate boundary (cf. Lemma 3.3.10 for Chapter 3 and the second
part of the proof of Lemma 4.5.7 for Chapter 4). Finally, the proof of the variational
inequalities in the whole state space reduces to their validity in a neighborhood of the
candidate boundary.
One aspect, that we initially take as given and explain only heuristically through a

limit order book interpretation, is the concrete objective functional which represents
the cumulative proceeds of a trading strategy. Of particular importance are the trading
gains from large block orders, because these are associated with two natural prices –
immediately before and after the trade. Defining these gains in an ad-hoc manner may
lead to surprising consequences, such as the large investor being able to completely
circumvent her price impact – an undesirable outcome for a model that tries to explain
market impact effects – cf. Example 5.2.2. Chapter 5 provides a thorough analysis
of the subject for a broad class of impact models. Since we deal with mechanic price
impact and disregard strategic considerations, fast trading in small blocks, or even
continuously, should lead to similar proceeds as trading the same amount in one large
block. Skorokhod’s M1 topology is the correct choice on the space of càdlàg paths to
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1 Introduction

encode this desired property, because it has the feature that continuous functions form a
dense subset, unlike in the J1 and uniform topologies. Equipped with the M1 topology,
we find the unique continuous extension of the proceeds functional from continuous
finite variation strategies to general (predictable) càdlàg strategies. As an example, this
extension allows to again restrict the time horizon through an expectation constraint
in the stochastic resilience setup of Chapter 4 and consider non-monotone strategies,
see Section 5.3. There, a convexity argument in the spirit of [PSS11] gives that optimal
strategies are of infinite variation and such that the impact process remains at a fixed
level until a terminal block trade.

When considering non-monotone strategies, the question of how to accommodate
for bid-ask spread becomes important. For a deterministic resilience specification and
natural parameter choices, the difference between bid and ask prices is irrelevant, because
the large investor would still just implement a monotone strategy, cf. Remark 2.3.6. In
comparison, with stochastic resilience, where the large investor cannot fully control her
impact on price, the optimizer among non-monotone strategies cannot be expected to be
monotone. With zero spread, it would even be of infinite variation, see Section 5.3. In
Chapter 6, we provide an outlook of how to incorporate proportional transaction costs
into our stochastic resilience model of Chapter 4. We perform a preliminary analysis of
the optimal liquidation problem in this extended market model with infinite time horizon
in Section 6.1. The optimal strategy should be characterized by two free boundary curves
in ℝ2 separating the wait region from buy and sell regions, which we can describe quite
explicitly through a system of ordinary differential equations with boundary condition
at infinity. We solve explicitly the infinite fuel variant of optimal trading indefinitely
without liquidation constraint in Section 6.2. Informally, this (one-dimensional) infinite
fuel problem can be understood as the limiting case of the (two-dimensional) finite fuel
liquidation problem. Such connections between finite and infinite fuel problems are
known in the singular control literature, see e.g. [KOWZ00]. While the infinite fuel
variant is amenable to a smooth pasting and direct verification combination, verification
(and even existence of the candidate optimizer described by an ODE, cf. Remark 6.1.6) for
the finite fuel case remains an open problem. For comparison, the calculus of variations
ansatz in Chapter 4 to get local optimality crucially depends on monotonicity of the
strategies, cf. equation (4.16).

We proceed with a more concrete outline of each chapter.

A deterministic price impact model for optimal
liquidation (Chapter 2)

This chapter introduces the overall objective and notation for the thesis. It considers
the optimal execution problem for a large trader in an illiquid financial market, who
aims to sell (or buy, cf. Remark 2.2.11) a given amount of a risky asset while her price
impact is a deterministic functional of her trading strategy. We present explicit solutions
for the optimal control and the related free boundary. Serving more as an extended
introduction, we defer proofs to the article [BBF18b] on which this chapter is based.

Since orders of the large trader have an adverse impact on the prices at which they
are executed, she needs to balance the incurred liquidity costs against her preference
to complete a trade early. Posing the problem in continuous time leads to a singular

4



stochastic control problem of finite fuel type. We note that our control objective, see
(2.8)–(2.9), involves control cost terms like in [Tak97, DZ98, DM04], depending explicitly
on the state process (S, Y ) with a summation of integrals for each jump in the control
strategy Θ. We refer to these articles for more background on singular stochastic
control. The articles [Tak97, DM04] show general results on existence for optimal
singular controls; explicit descriptions of those can be obtained only for special problems,
see e.g. [KS86, Kob93, DZ98], but these examples differ from the one considered here
in several aspects. In particular, their setups are such that integrator Θ and auxiliary
process Y for the integrand can be decoupled in the objective functional.
The multiplicative limit order book model we investigate here is closely related to

the additive limit order book models of [PSS11, AFS10, OW13, LS13], a key difference
being that the price impact of orders is multiplicative instead of additive. In absence of
large trader activity, the risky asset price follows some unaffected non-negative price
evolution S = (St), for instance geometric Brownian motion. The trading strategy
(Θt) of the large trader has a multiplicative impact on the actual asset price which is
evolving as St = Stf(Yt), t ≥ 0, for a process Y that describes the level of market impact.
This process is defined by a mean-reverting differential equation dYt = −h(Yt) dt+ dΘt,
which is driven by the amount Θt of risky assets held, and can be interpreted as a
volume effect process like in [PSS11, AFS10], see Remark 2.1.1. Subject to suitable
properties for the functions f, h (see Assumption 2.2.2), asset sales (buys) are depressing
(increasing) the level of market impact Yt and thereby the actual price St in a transient
way, with some finite rate of resilience. For f being positive, multiplicative price impact
ensures that risky asset prices St are positive, like in the continuous-time variant [GS13,
Sect. 3.2] of the model in [BL98]. We admit for general non-linear impact functions
f , corresponding to general density shapes of a multiplicative limit order book whose
shapes are specified with respect to relative price perturbations S/S, and depth of the
order book could be infinite or finite, cf. Remark 2.1.1. The rate of resilience h(Yt)/Yt
may be non-constant and (unaffected) transient recovery of Yt could be non-exponential,
while the problem still remains Markovian in (S, Y ) through Y , like in [PSS11] but
differently to [AFS10, LS13]. Following [PSS11, GZ15], we admit for general (monotone)
bounded variation strategies in continuous time, while [AFS10, KP10] consider trading
at discrete times.

Most of the related literature, like [AFS10, PSS11], on transient additive price impact
assumes that the unaffected (discounted) price dynamics exhibit no drift, and such a
martingale property allows for different arguments in the analysis. Without drift, a
convexity argument as in [PSS11] can be applied readily also for multiplicative impact
to identify the optimal control in the finite horizon problem with a free boundary that is
constant in one coordinate, see Remark 2.2.10. [Løk12] has shown how a multiplicative
limit order book (cf. Remark 2.1.1) could be transformed into an additive one with
further intricate dependencies, to which the result by [PSS11] may be applied. For
additive impact, [LS13] investigate the problem with general drift for finite horizon, while
in this chapter we derive explicit solutions for multiplicative impact, infinite horizon and
negative drift (we will extend our setup and preform a qualitative comparison with the
[LS13] findings later in Chapter 3). The interesting articles [KP10, FKTW12, GZ15]
also solve optimal trade execution problems in a model with multiplicative instead of
additive price impact, but models and results differ in key aspects. The article [GZ15]
considers permanent price impact, non-zero bid-ask spread (proportional transaction
costs) and a particular exponential parametrization for price impact from block trades,
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1 Introduction

whereas we study transient price impact, general impact functions f , and zero spread
(in Section 2.3). Numerical solutions of the Hamilton-Jacobi-Bellman equation derived
by heuristic arguments are investigated in [FKTW12] for a different optimal execution
problem on finite horizon in a Black-Scholes model with permanent multiplicative impact.
The authors of [KP10] obtain viscosity solutions and their nonlinear transient price
impact is a functional of the present order size and the time lag from (only) the last
trade, while we consider impact which depends via Y on the times and sizes of all past
orders, as in [PSS11].

We obtain explicit solutions for two variants of the optimal liquidation problem to
maximize expected discounted liquidation proceeds over an infinite time horizon, in
a model with multiplicative price impact and drift that is introduced in Section 2.1.
In the first variant (I), whose solution is presented in Section 2.2, the large trader
may only sell but is not permitted to buy, whereas for the second variant (II) in
Section 2.3 intermediate buying is admitted, even though the trader ultimately wants to
liquidate her position. Variant I may be of interest, if a bank selling a large position
on behalf of a client is required by regulation to execute only sell orders. The second
variant might fit for an investor trading for herself and is mathematically needed to
explore, whether a multiplicative limit order book model admits profitable round trips
or transaction triggered price manipulations, as studied by [ASS12] for additive impact,
see Remark 2.3.5. Notably, the free boundaries coincide for both variants, and the time
to complete liquidation is finite, varies continuously with the discounting parameter
(i.e. the investor’s impatience) and tends to zero for increasing impatience in suitable
parametrizations.

Optimal execution with price trends – a
three-dimensional free boundary problem (Chapter 3)

Our large investor who faces the problem of maximizing expected proceeds from liq-
uidating a risky asset position has some beliefs about price trends, meaning that the
(unaffected) fundamental price process S is not necessarily a martingale, but may have
an increasing or decreasing drift component. She needs to clear her position in a given
finite time horizon (even when she expects prices to increase), while her trading activities
cause adverse transient impact on the asset price.

We consider a finite time horizon [0, T ] in this chapter, so that the state space is
three-dimensional – involving time to liquidation, current impact level, and current asset
position. Consequently, we assume slightly more regularity on the impact function f
and resilience function h than in Chapter 2, cf. Assumption 3.1.1.

Like [AFS10, PSS11], most of the related literature on transient price impact models
assumes the fundamental prices process S to be a martingale. This ansatz can be of
great help for the solution and verification by allowing a richer set of mathematical
tools to be applied, like convexity arguments, as explained in Remark 2.2.10 for our
multiplicative impact model. When we interpret the large investor’s measure ℙ, with
respect to which she maximizes her expected trading gains, as a proxy for her prospects
about market dynamics, it is reasonable to take the (unaffected) fundamental price S to
not be a martingale under ℙ, but to expose some drift or price trend. The findings of
[LS13] on optimal execution in finite time horizon with additive impact and general drift
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specifications allows us to directly compare additive and multiplicative market impact
models in Remark 3.2.7 and hint on their respective advantages and disadvantages.

Imposing a drift term on the fundamental price subverts the convexity approach à la
[PSS11] of Remark 2.2.10. We construct the optimal trading strategy (Theorem 3.2.1)
in two steps. First, classical calculus of variations methods, for which we refer to
[GF00], yield a candidate for the (non-constant) free boundary surface that separates
the three-dimensional state space of impact, asset position and remaining time into buy
and sell regions. On the one hand, classical calculus of variations deals with absolutely
continuous controls only. On the other hand, it provides us with sufficient conditions
to prove local optimality of the candidate solution in this restricted set of controls
in Theorem 3.3.8 via the second variation. Now, local optimality among absolutely
continuous strategies implies that the corresponding value function necessarily satisfies
the Hamilton-Jacobi-Bellman equation in a neighborhood of the (candidate) boundary
surface. This observation is essential for the second step of expanding the region in
which the variational inequality holds to the whole state space and thus proving global
optimality among the larger set of bounded variation controls.
When prices are generally increasing, it may be optimal to start buying (first en

bloc, then in rates) and only begin to sell later on, cf. Remark 3.2.4 and Figure 3.1a.
When there is no drift in the (unaffected) fundamental price process, optimal trading
happens at constant rate (apart from initial and terminal block trades). In contrast,
with decreasing prices, it is generally optimal to start selling and to possibly go short.

As a variant of the optimization problem, we also consider the case when the large
investor is not allowed to place buy orders, but can only wait or sell. We solve this
variant for the case of generally decreasing prices. A näıve ansatz would be to follow
the optimal strategy from the infinite horizon problem from Theorem 2.2.4 as long as
possible and then finish early with a terminal block trade. Such a strategy would be
optimal only in special cases like [Kar85] where the controlled diffusion is a controlled
Brownian motion. Here, such a strategy is suboptimal, cf. Remark 3.4.3, but suitably
combined with the optimizer from Theorem 3.2.1 where buying is allowed, it forms a
building block of the optimal sell-only strategy in finite horizon, see Theorem 3.4.1.

Optimal liquidation under stochastic liquidity (Chapter 4)

In the majority of literature on price impact models the inter-temporal impact is typically
a deterministic function of the strategy of the (single) large trader. In reality, we would
rather expect some aspects of market liquidity (where [Kyl85] has distinguished resilience,
depth and tightness) to vary stochastically over time, and a sophisticated trader to
adapt her optimal strategy accordingly. Even for the extensively studied problem of
optimal liquidation, there are relatively few recent articles on models in continuous time
where the optimal liquidation strategy is adaptive to random changes in liquidity, cf.
[Alm12, LS13, FSU19, GHS16, GH17].
We consider a model where temporary market imbalances involve own stochasticity.

Price impact is transient, i.e. it could be persistent but eventually vanishes over time.
Moreover, it is non-linear, corresponds to a general shape for the density of the limit
order book as in Chapter 2, and is multiplicative to ensure positive risky asset prices.
More precisely, our price process S = (St)t≥0 = (f(Yt)St)t≥0 observed in the market
deviates by a positive factor f(Yt) from the fundamental price St that would prevail
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in the absence of large traders. Our stochastic impact process Y is of a controlled
Ornstein-Uhlenbeck (OU) type, namely it is driven by a Brownian motion and the large
trader’s holdings in the risky asset (see eq. (4.3) below). The mean-reversion of Y models
the transience of impact. The additional noise in Y gives a stochastic limit order book
density compared to the static one in Remark 2.1.1, or it can be seen as the accumulated
effect from other non-strategic large traders, see Remark 4.1.4.

For our multiplicative model with transient impact, we take the fundamental price
S to be an exponential Brownian motion and permit for non-zero correlation with the
stochastic volume effect process Y . In this setup, we study the optimal liquidation
problem for infinite time horizon as a singular stochastic control problem of finite fuel
type and construct its explicit solution. Our main result in this chapter, Theorem 4.2.1,
gives the optimal strategy as the local time process of a diffusion reflected obliquely at a
curved free boundary in ℝ2, the state space being the impact level and the holdings in
the risky asset. The stochasticity of our optimal strategy arises from its adaptivity to the
transient component of the price dynamics and is of local time type. In contrast to the
models with additive price impact, where the martingale part of the fundamental price is
irrelevant for a risk-neutral trader, here the volatility of S is relevant, cf. Remark 4.2.3.

We solve the singular control problem by explicitly constructing the value function
as a classical solution of the HJB variational inequality. Our verification arguments
differ from a more common approach (outlined in Remark 4.5.4) since we were not
able to verify the optimality more directly for general impact functions f , due to the
technical complications arising from the implicit nature of the eigenfunctions of the
infinitesimal generator for the OU process. For particular choices of f , a more direct
verification would be available, see Section 4.5.3. In contrast, we first restrict the set of
optimization strategies to those described by diffusions reflected at monotone boundaries,
and optimize over the set of possible boundaries. To be able to apply methods from
calculus of variations, we derive an explicit formula (eq. (4.17)) for the Laplace transform
of the inverse local times of diffusions reflected at elastic boundaries, i.e. boundaries
which vary with the local time that the reflected process has spent at the boundary,
and employ a change of coordinates. By solving the calculus of variations problem, we
construct the candidate optimal free boundary and, moreover, show (one-sided) local
optimality in the sense of Theorem 4.4.6. The latter is crucial for our verification of
optimality. In Section 4.6, we present an optimal stopping problem which the directional
derivative of the singular control value function satisfies. This connections is interesting,
because it may hint on an alternative verification utilizing the rich literature on optimal
stopping (we refer to the book [PS06]). Finally, with Section 4.7, we investigate the
deterministic liquidity limit and show that for vanishing stochasticity of market liquidity,
the free boundary converges to its counterpart from Chapter 2.

Skorokhod M1/J1 stability for gains from large investors’
strategies (Chapter 5)

One important aspect in the theory of stochastic differential equations is how stably the
solution process behaves, as a functional of its integrand and integrator processes, see e.g.
[KP96] and [Pro05, Chapter V.4]. A typical question is how to extend such a functional
sensibly to a larger class of input processes. Continuity in suitable topologies is a key
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property for addressing such problems, cf. e.g. in [Mar81] for his canonical extension of
Stratonovich SDEs.
For instance in singular control problems, the non-linear objective functional may

initially be only defined for finite variation or even absolutely continuous control strategies.
Existence of an optimizer might require a continuous extension of the functional to a
more general class of controls, e.g. semimartingale controls for the problem of hedging.
Herein the question of which topology to embrace arises, and this depends on the problem
at hand, see e.g. [Kar13] for an example of utility maximization in a frictionless financial
market where the Emery topology turns out to be useful for the existence of an optimal
wealth process. For our application we need suitable topologies on the Skorokhod space
of càdlàg functions. The two most common choices here are the uniform topology and
Skorokhod J1 topology; they share the property that a jump in a limiting process can
only be approximated by jumps of comparable size at the same time or, respectively, at
nearby times. But this is overly restrictive for the optimal trading applications we have
in mind, where a large jump may be approximated sensibly by many small jumps in fast
succession or by continuous processes such as Wong-Zakai-type approximations. The M1

topology by Skorokhod [Sko56] captures such approximations of unmatched jumps. This
choice serves as the starting point to identify the relevant non-linear objective functional
for càdlàg controls as a continuous extension from (absolutely) continuous controls. See
[Whi02] for a profound survey on the M1 topology.

Applications of the M1 topology include queuing theory, functional statistics, mathe-
matical neuroscience and scaling limits for random walks. We refer the reader to [Led16],
which also contains an extensive list of literature. We tackle the old subject of stability
of SDEs with jumps, when considered with respect to the M1 topology, in the context of
trading a single risky asset in an illiquid financial market, where a large investor’s trading
causes transient impact on the asset price. Our setting for this chapter is rather general.
It can accommodate for instance for models where price impact is basically additive,
see Example 5.1.1; yet, some extra provisions are required here to ensure M1 continuity,
which can actually fail to hold in common additive models that lack a monotonicity
property and positivity of prices, cf. Remark 5.2.9. In line with the rest of this thesis,
our framework here also permits for multiplicative impact. The details of this aspect are
worked out in a previous chapter in Remark 3.2.7.

The large trader’s feedback effect on prices causes the proceeds (negative expenses)
to be a non-linear functional of her control strategy for dynamic trading in risky
assets. Having specified the evolution for an affected price process at which trading
of infinitesimal quantities would occur, one still has, even for a simple block trade,
to define the variations in the bank account by which the trades in risky assets are
financed, i.e. the so-called self-financing condition. Choosing a seemingly sensible, but
ad-hoc, definition could lead to surprising and undesirable consequences, in that the
large investor can evade her liquidity costs entirely by using continuous finite variation
strategies to approximate her target control strategy, cf. Example 5.2.2. Optimal trade
execution proceeds may be only approximately attainable in such models. Indeed, the
analysis in [BB04, ÇJP04] shows that approximations by continuous strategies of finite
variation play a particular role. This is, of course, a familiar theme in stochastic analysis,
at least since [WZ65]. A notion of approximately realizable gains is relevant for the
mathematical analysis of price impact models, cf. also Remark 5.2.3. For example, in
the models in [BB04, ÇJP04] the aforementioned strategies have zero liquidity costs,
permitting the large trader to avoid those costs entirely by simply approximating more
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general strategies. This appears not desirable from an application point of view. To
settle this issue, a stability analysis for proceeds for a class of price impact models should
address in particular the M1 topology, in which continuous finite variation strategies are
dense in the space of càdlàg strategies (in contrast to the uniform or J1 topologies), see
Remark 5.2.5.

We contribute a systematic study on stability of the proceeds functional. Starting with
an unambiguous definition (5.4) for continuous finite-variation strategies, we identify the
approximately realizable gains for a large set of controls. In particular for càdlàg finite-
variation controls, we obtain the form of objective functional that is usually employed in
stochastic control problems, see e.g. [Zhu92]. A mathematical challenge for stability of
the stochastic integral functional is that both the integrand and the integrator depend
on the control strategy. Our main Theorem 5.2.7 in this chapter shows continuity, in
probability, of this non-linear controlled functional in the uniform, J1 and M1 topologies
on the space of (predictable) semimartingale or càdlàg strategies which are bounded
in probability. Another direct implication of M1 continuity is that proceeds of general
(optimal) strategies can be approximated by those of simple strategies with only small
jumps. Whereas the former property is typical for common stochastic integrals, it is far
from obvious for our non-linear controlled SDE functional (5.15).

The topic of stability for the proceeds process, that keeps track of gains from dynami-
cally trading risky assets in illiquid markets, where the dynamics of wealth and proceeds
for a large trader are non-linear in her strategies because of her market impact, is showing
up at several places in the literature. But the mathematical topic appears to have been
touched mostly in-passing so far. The focus of few notable investigations has been on
the application context and on different topologies, see e.g. [RS13, Prop. 6.2] for uniform
convergence in probability (ucp). In [LS13, Lem. 2.5] a cost functional is extended
from simple strategies to semimartingales via convergence in ucp. [Roc11, Def. 2.1] and
[ÇJP04, Sect. A.2] use particular choices of approximating sequences to extend their
definition of self-financing trading strategies from simple processes to semimartingales
by limits in ucp. Trading gains of semimartingale strategies are defined in [BLZ16,
Prop. 1.1–1.2] as L2-limits of gains from simple trading strategies via rebalancing at
discrete times and large order split. In contrast, we contribute a study of M1-, J1- and
ucp-stability for general approximations of càdlàg strategies in a class of price impact
models with transient impact (5.3), driven by quasi-left continuous martingales (5.1).

As one particular application example that calls for a larger class of admissible
strategies (than only finite variation trading), we solve in Section 5.3 the liquidation
problem with stochastic liquidity à la Chapter 4, but where the time horizon is bounded
by an expectation constraint for stopping times. This relies on M1 convergence to define
the trading proceeds. It provides an example of a liquidation problem where the optimum
of singular controls is not attained in a class of finite variation strategies, but a suitable
extension to semimartingale strategies is needed.

Proportional bid-ask spreads in optimal trading –
a double obstacle problem (Chapter 6)

A large investor who optimizes her portfolio or tries to liquidate her position in a
risky asset can freely choose whether to buy or to sell at each time. This is different
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from e.g. a bank that liquidates some position on a client’s behalf, where trading in
the opposite direction (intermediate buying) is typically forbidden by regulations or
legislation. We adopt the view of the large investor acting on herself. When her price
impact from trading involves uncertainty, a simple price model without bid-ask spread
would suggest to follow an infinite variation strategy where to buy and sell persistently
in order to pinpoint her price impact at a desired level, as we already saw in Section 5.3.
Implementing such a strategy becomes costly though, since even for relatively liquid
assets a one-tick-spread is typical, cf. e.g. [CdL13].

One way to tackle this problem is to not complicate the impact model further but
leave it as it is – a zero spread idealization – and accordingly interpret an infinite
variation strategy as an ideal to approximate by e.g. many small jumps. In our price
impact model, such approximation would give similar trading gains, cf. Chapter 5.
However, this qualitative result falls short of giving an quantitative estimate of the
induced approximation error. In Chapter 6, we take a different route and instead adjust
our market impact model slightly to incorporate bid-ask-spread by means of a fixed
transaction cost factor.

Related to Chapter 4 we pose the optimal liquidation problem on an infinite time
horizon with finite variation strategies in Section 6.1. Due to the bid-ask spread, cost
terms for buying and selling differ. See e.g. [KW01, DAF14, FP14] for such kind of
reversible investment problems of finite fuel type. These articles differ from our setup,
in that the costs for (infinitesimal) buying and selling depend solely on time there, while
in our case also depend on the (controlled) diffusion.

We explicitly solve the unconstrained (optimal investment) problem, where a risk-
neutral large investor trades in infinite time horizon to maximize her expected proceeds,
without a priori constraint on her asset position. The state space herein is one-dimensional
and the optimal strategy turns out to be given by two reflection local times that keep
the market impact level in some finite interval, see Theorem 6.2.8.

For the more involved problem of liquidating a given asset position, based on a smooth
pasting approach, we conjecture the optimal strategy again to be the difference of two
reflection local times which keep the impact process in a now non-constant (asset position
dependent) interval until full liquidation. Verification seems difficult though, regarding
the hurdles in verifying the one-sided analog in Chapter 4, which is the infinite transaction
cost limit. An alternative approach would be to connect our non-monotone singular
control problem to a Dynkin game (double obstacle problem), as is was successfully
carried out in [DY09].

Approximating diffusion reflections at elastic boundaries
(Chapter 7)

The classical Skorokhod problem is that of reflecting a path at a boundary. It is a
standard tool to construct solutions to SDEs with reflecting boundary conditions. The
fundamental example is Brownian motion with values in [0,∞) being reflected at a
constant boundary at zero, solved by Skorokhod [Sko61]. Starting with Tanaka [Tan79],
well-known generalizations concern diffusions in multiple dimensions with normal or
oblique reflection at the boundary of some given (time-invariant) domain in the Euclidean
space of certain smoothness or other kinds of regularity, cf. e.g. [LS84, DI93]. Other
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generalizations admit for an a-priori given but time-dependent boundary, see for instance
[NO10].
Our contribution is a functional limit result for reflection at a boundary which is a

function of the reflection local-time L, for general one-dimensional diffusions X. Because
of the mutual interaction between boundary and diffusion, see Figure 7.1a, we call
the boundary elastic. Such elastic boundaries appear typically in solutions to singular
control problems of finite fuel type, where the optimal control is the reflection local
time that keeps a diffusion process within a no-action region, cf. Karatzas and Shreve
[KS86]. In order to explicitly construct the control (pathwise via Skorokhod’s Lemma),
finite fuel studies typically assume that the dynamics of the diffusion can be expressed
without reference to the control (see e.g. [Kob93, EKK91]). This is different to our setup,
where the non-linear mutual interdependence between diffusion and control (local time)
subverts direct construction by Skorokhod’s lemma, already for Ornstein-Uhlenbeck
processes [WG03, Remark 1]. We relate to a concrete application in the context of
optimal liquidation for a financial asset position in Remark 7.2.4.
A natural idea for approximation is to replace ‘infinitesimal’ reflections with small

ε-jumps ∆Lε, thereby inducing jumps of the elastic reflection boundary, see Figure 7.2.
This allows to express excursion lengths of the approximating diffusion Xε in terms of
independent hitting times for continuous diffusions, what naturally leads to an explicit
expression (7.12) for the Laplace transform of the inverse local time of X. In our
singular control context, Lε is asymptotically optimal at first order if L is optimal,
see Remark 7.2.4. Our main result is Theorem 7.2.2. In Section 7.3, we prove ucp-
convergence of (Xε, Lε) to (X,L) by showing tightness of the approximation sequence
(Xε, Lε)ε and using Kurtz–Protter’s notion of uniformly controlled variations (UCV),
introduced in [KP91].

12



Part I Deterministic
multiplicative and
transient price impact

2 A deterministic price impact model
for optimal liquidation

Throughout the whole thesis, we consider a filtered probability space (Ω,ℱ , (ℱ t)t≥0,ℙ).
The filtration (ℱ t)t≥0 is assumed to satisfy the usual conditions of right-continuity
and completeness, all semimartingales have càdlàg paths, and (in-)equalities of random
variables are meant to hold almost everywhere. We refer to [JS03] for terminology and
notations from stochastic analysis. We take ℱ0 to be trivial and let also ℱ0− denote
the trivial σ-field. Wherever we talk about given (semi-)martingales, we assume our
probability space to be large enough to contain these and the martingale property to
hold w.r.t. the filtration (ℱ t)t≥0.
This chapter introduces the general ideas of our transient market impact model and

presents the main results of optimal liquidation in infinite time horizon with deterministic
impact dynamics, Theorems 2.2.4 and 2.3.2, from the article [BBF18b], where the proofs
can be found. Unlike now classical and more recent contributions to the optimal execution
literature such as [AC00, OW13, AS10, PSS11, ASS12, LS13, GH17] that model price
impact of a large trader to be additive, we follow earlier treatments in the economics
and mathematical finance literature like [Jar94, Fre98, BL98, FJ02, FGL+04, HM05]
by imposing a multiplicative structure for price impact. In subsequent Chapters 4 to 6
and Section 5.3 we will extend our market impact model to incorporate stochasticity
and also consider the more involved optimal liquidation and execution problems in finite
time horizon in Chapter 3.

2.1 Transient and multiplicative price impact

We consider a market with a risky asset in addition to the riskless numéraire asset,
whose (discounted) price is constant at 1. Without trading activity of a large trader, the
unaffected (fundamental) price process S of the risky asset would be of the form

St = eµtMt, S0 ∈ (0,∞), (2.1)
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2 A deterministic price impact model for optimal liquidation

with µ ∈ ℝ and with M being a non-negative martingale that is square integrable on
any compact time interval, i.e. supt≤T 𝔼[M

2
t ] < ∞ for all T ∈ [0,∞), and quasi-left

continuous (cf. [JS03]), i.e. ∆Mτ :=Mτ −Mτ− = 0 for any finite predictable stopping
time τ . Let us assume that the unaffected market is free of arbitrage for small investors
in the sense that S is a local ℚ-martingale under some probability measure ℚ that is
locally equivalent to ℙ, i.e. ℚ ∼ ℙ on ℱT for any T ∈ [0,∞). This implies no free
lunch with vanishing risk [DS98] on any finite horizon T for small investors. The prime
example where our assumptions on M are satisfied is the Black-Scholes-Merton model,
where M/S0 = ℰ(σW ) is the stochastic exponential of a Brownian motion W scaled
by σ > 0. More generally, M/S0 = ℰ(L) could be the stochastic exponential of a local
martingale L, which is a Lévy process with ∆L > −1 and 𝔼[M2

1 ] <∞ and such that S
is not monotone (see [Kal00, Lemma 4.2] and [CT04, Theorem 9.9]), or one could have
M = ℰ(

∫
σt dWt) for predictable stochastic volatility process (σt)t≥0 that is bounded in

[1/c, c], for c > 1.
The large trader’s strategy (Θt)t≥0 is her position in the risky asset. Herein, Θ0− ≥ 0

denotes the initial position, Θ0− −Θt is the cumulative number of risky assets sold until
time t. The process Θ is predictable, càdlàg and non-negative, i.e. short sales are not
permitted, like for instance in [KP10, GZ15]. Disallowing short sales is sensible for the
control problem with infinite horizon and negative drift to ensure existence of optimizers
and finite time to complete liquidation; It is also supported e.g. by [Sch13, Remark 3.1].
At first we do moreover assume Θ to be decreasing, but this will be generalized later in
Section 2.3 to non-monotone strategies of bounded variation.
The large trader is faced with illiquidity costs, since trading causes adverse impact

on the prices at which orders are executed, as follows. A process Y , the market impact
process, captures the price impact from strategy Θ, and is defined as the solution to

dYt = −h(Yt) dt+ dΘt (2.2)

for some given initial condition Y0− ∈ ℝ. Let h : ℝ → ℝ be strictly increasing and
continuous with h(0) = 0. Further conditions will be imposed later in Assumption 2.2.2.
The market is resilient in that market impact Y tends back towards its neutral level 0
over time when the large trader is not active. Resilience is transient with resilience rate
h(Yt) that could be non-linear and is specified by the resilience function h. For example,
the market recovers at exponential rate β > 0 (as in [OW13]) when h(y) = βy is linear.
Clearly, Y depends on Θ and occasionally we will emphasize this by writing Y = Y Θ.

The actual (quoted) risky asset price S is affected by the strategy Θ of the large trader
in a multiplicative way through the market impact process Y , and is modeled by

St := f(Yt)St, (2.3)

for an increasing function f of the form

f(y) = exp
(∫ y

0

λ(x) dx
)
, y ∈ ℝ, (2.4)

with λ : ℝ → (0,∞) satisfying Assumption 2.2.2 below, in particular being locally
integrable. For strategies Θ that are continuous, the process (St)t≥0 can be seen as the
evolution of prices at which the trading strategy Θ is executed. That means, if the
large trader is selling risky assets according to a continuous strategy Θc, then respective
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2.1 Transient and multiplicative price impact

(self-financing) variations of her numéraire (cash) account are given by the proceeds

(negative costs) −
∫ T

0
Su dΘ

c
u over any period [0, T ]. To permit also for non-continuous

trading involving block trades, the proceeds from a market sell order of size ∆Θt ∈ ℝ at
time t, are given by the term

−St

∫ ∆Θt

0

f(Yt− + x) dx, (2.5)

which is explained from executing the block trade within a (shadow) limit order book,
see Remark 2.1.1. Mathematically, defining proceeds from block trades in this way
ensures good stability properties for proceeds defined by (2.8) as a function of strategies
Θ, cf. Chapter 5. In particular, approximating a block trade by a sequence of continuous
trades executed over a shorter and shorter time interval yields the term (2.5) in the
limit, see Corollary 5.2.10.

Remark 2.1.1 (Limit order book perspective). Multiplicative price impact and the
proceeds from block trading can be interpreted by trading in a shadow limit order book
(LOB). We now show how the multiplicative price impact function f is related to a
LOB shape that is specified in terms of relative price perturbations ρt := St/St, whereas
additive impact corresponds to a LOB shape being specified with respect to absolute
price perturbations St − St as in [PSS11]. Note that the LOB shape is static (and
Section 2.3 considers a two-sided LOB with zero bid-ask spread). Such can be viewed as
a low-frequency model for price impact according to a LOB shape which is representative
on longer horizons, but not for high frequency trading over short periods.

Let s = ρSt be some price close to the unaffected price St and let q(ρ) dρ denote the
density of (bid or ask) offers at price level s, i.e. at the relative price perturbation ρ. This
leads to a measure with cumulative distribution function Q(ρ) :=

∫ ρ

1
q(x) dx, ρ ∈ (0,∞).

The total volume of orders at prices corresponding to perturbations ρ from some range
R ⊂ (0,∞) then is

∫
R
q(x) dx. Selling −∆Θt shares at time t shifts the price from ρt−St

to ρtSt, while the volume change is Q(ρt−)−Q(ρt) = −∆Θt. The proceeds from this
sale are St

∫ ρt−
ρt

ρ dQ(ρ). In the terminology of [Kyl85], Q(rt)−Q(rt−) reflects the depth

of the LOB for price changes by a factor of rt/rt−. Changing variables, with Yt := Q(ρt)
and f := Q−1, the proceeds can be expressed as in equation (2.5). In this sense, Y
from (2.2) can be understood as the volume effect process as in [PSS11, Section 2]. By
the drift towards zero in (2.2), this effect is persistent over time but not permanent.
Its transient nature relates to the liquidity property that [Kyl85] calls resilience. See
Figure 2.1 for illustration.

Example 2.1.2. Let the (one- or two-sided) shadow limit order book density be
q(x) := c/xr on x ∈ (0,∞) for constants c, r > 0. Parameters c and r determine
the market depth (LOB volume): If r < 1, a trader can sell only finitely many but
buy infinitely many assets at any time. In contrast, for r > 1 one could sell infinitely
many but buy only finitely many assets at any time instant and (by (2.2)) also in any
finite time period. Note that [PSS11, p.185] assume infinite market depth in the target
trade direction. The case r = 1 describes infinite market depth in both directions. The
antiderivative Q and its inverse f are determined for x > 0 and (r − 1)y ̸= c as

Q(x) =

{
c log x, for r = 1,
c

1−r (x
1−r − 1), otherwise,

f(y) =

{
ey/c, for r = 1,(
1 + 1−r

c y
)1/(1−r)

, otherwise.
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2 A deterministic price impact model for optimal liquidation

q

−∆Θt −Yt−

f(Yt) f(Yt−) 1

Figure 2.1: Order book density q and behavior of the multiplicative price impact f(Y )
when selling a block of size −∆Θt > 0. Note that −Yt = −Yt− −∆Θt.

For the parameter function λ this yields λ(y) = f ′(y)/f(y) = (c+ (1− r)y)−1. Note
that for r ̸= 1 the functions f and λ are effectively constrained to the domain ( c

r−1 ,∞)
for r < 1 and (−∞, c

r−1 ) for r > 1. In the thesis, we assume that f > 0 is defined on
the whole real line for simplicity. Yet, let us use this example to explain next how also
interesting cases like r ∈ (0,∞) \ {1} can be dealt with by refining the definition of
the set of admissible strategies according to f . Indeed, properties of f are only needed
within the range of possible values of processes Y Θ. Hence, the more general case where
If := {y : 0 < f(y) < ∞} is an open interval in ℝ can be treated by imposing as an
additional requirement for admissibility of a strategy Θ (in (2.6), (2.30)) that Y Θ has to
evolve in If . For further investigations of this case, see [BBF18b, Example 4.3].

2.2 The problem case for monotone strategies

This section solves the optimal liquidation problem that is central for this chapter.
The large investor is facing the task to sell Θ0− risky assets but has the possibility to
split it into smaller orders to improve according to some performance criterion. Before
Section 2.3, we will restrict ourselves to monotone control strategies that do not allow
for intermediate buying. The analysis for this more restricted variant of control policies
will be shown later in Section 2.3 to carry over to an alternative problem with a wider
set of controls, being of finite variation, admitting also intermediate buy orders.

For an initial position of Θ0− shares, the set of admissible trading strategies is

𝒜mon(Θ0−) :=
{
Θ
⏐⏐ Θ is decreasing, càdlàg, predictable,

with Θ0− ≥ Θt ≥ 0
}
.

(2.6)

Here, the quantity Θt represents the number of shares held at time t. Any admissible
strategy Θ ∈ 𝒜mon(Θ0−) decomposes into a continuous and a discontinuous part

Θt = Θc
t +

∑
0≤s≤t

∆Θs, (2.7)
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2.2 The problem case for monotone strategies

where Θc
t is continuous (and decreasing) and ∆Θs := Θs − Θs− ≤ 0. Aiming for an

explicit analytic solution, we consider trading on the infinite time horizon [0,∞) with
discounting. The γ-discounted proceeds from strategy Θ up to time T <∞ are

LT (y; Θ) := −
∫ T

0

e−γtf(Yt)St dΘ
c
t −

∑
0≤t≤T
∆Θt ̸=0

e−γtSt

∫ ∆Θt

0

f(Yt− + x) dx, (2.8)

where y = Y0− is the initial state of process Y . Clearly, Y0− and Θ determine Y by
(2.2).

Remark 2.2.1. The (possibly) infinite sum in (2.8) has finite expectation. Indeed, for
any Θ ∈ 𝒜mon(Θ0−) one has supt≤T |Yt| < ∞. Hence, the mean value theorem and
properties of f imply for t ∈ [0, T ] that

0 ≤ −
∫ ∆Θt

0

f(Yt− + x) dx ≤ −∆Θt sup
x∈(∆Θt,0)

f(Yt− + x) ≤ −∆Θt · sup
t≤T

f(Yt) .

Thus, by finite variation of Θ the infinite sum in (2.8) a.s. converges absolutely. For
Θ ∈ 𝒜mon(Θ0−) the sum is bounded in expectation, because Y and hence supt≤T f(Yt)

are bounded, and we have 𝔼[supt∈[0,T ] St] <∞ and 0 ≤
∑

t∈[0,T ](−∆Θs) ≤ Θ0−.

Note that the monotone limit L∞(y; Θ) := limT↗∞ LT (y; Θ) always exists. We
consider the control problem to find the optimal strategy that maximizes the expected
(discounted) liquidation proceeds over an open (infinite) time horizon

max
Θ∈𝒜mon(Θ0−)

J(y; Θ) for J(y; Θ) := 𝔼[L∞(y; Θ)], (2.9)

with value function v(y, θ) := sup
Θ∈𝒜mon(θ)

J(y; Θ). (2.10)

For this problem maximizing over deterministic strategies turns out to be sufficient (see
Remark 2.2.6 below). Since expectations 𝔼[exp(−γt)St] = S0 exp(−t(γ − µ)), t ≥ 0,
depend on µ, γ only through δ := γ − µ, for our optimization problem just the difference
δ matters which needs to be positive to have v(y, θ) <∞ for θ > 0. Thus, regarding γ
and µ, only the difference δ will be needed, and it might be interpreted as impatience
parameter chosen by the large investor (when choosing γ), specifying her preferences to
liquidate earlier rather than later, as a drift rate of the risky asset returns dS/S, or as a
combination thereof. The following conditions on δ, f, h are assumed for the remaining
Sections 2.2 and 2.3 of this chapter.

Assumption 2.2.2. The map t ↦→ 𝔼[e−γtSt], t ≥ 0, is decreasing, i.e. δ := γ − µ > 0.
The price impact function f : ℝ → (0,∞) satisfies f(0) = 1, f ∈ C2 and is strictly
increasing such that λ(y) := f ′(y)/f(y) > 0 everywhere.
The resilience function h : ℝ→ ℝ from (2.2) is C2 with h(0) = 0 and h′ > 0.
Resilience and market impact satisfy (hλ)′ > 0 and (hλ+ h′)′ > 0.
There exist solutions y0 to h(y0)λ(y0) + δ = 0 and y∞ to h(y∞)λ(y∞) + h′(y∞) + δ = 0.
(Uniqueness of y0 and y∞ holds by the other conditions.)

Remark 2.2.3 (Interplay of impact and resilience functions). The two assumptions
(hλ)′ > 0 and (hλ+ h′)′ > 0 are technical requirements for our verification of optimality.
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2 A deterministic price impact model for optimal liquidation

Already from the shadow limit order book (LOB) perspective (cf. Remark 2.1.1), some
sort of condition connecting both resilience speed h and price impact f , thus LOB shape,
appears natural. Examples satisfying Assumption 2.2.2 with f(y) := eλy for constant
λ > 0 are e.g. linear resilience speed, h(y) = βy with β > 0 and any discounting δ > 0;
or for instance bounded resilience, h(y) = α arctan(βy), for α, β > 0, with β < λ and
not too large discounting 0 < δ < 1

2αλπ (a larger δ would give that the trivial strategy
to sell everything initially at time 0 is optimal).

The main results Theorems 2.2.4 and 2.3.2 of this chapter solve the optimal liquidation
problem for one- respectively two- sided limit order books in infinite time horizon. The
proof of Theorem 2.2.4 is developed in [BBF18b, Sect. 4] using smooth pasting and
calculus of variations approaches to obtain a candidate solution, together with direct
verification of the variational (in-)equalities (2.17)–(2.20).

Theorem 2.2.4. Let the model parameters h, λ, δ satisfy Assumption 2.2.2 and Θ0− ≥ 0
be given. Define y∞ < y0 < 0 as the unique solutions of h(y∞)λ(y∞) + h′(y∞) + δ = 0
and h(y0)λ(y0) + δ = 0, respectively, and let

τ(y) := −1

δ
log

(
f(y)

f(y0)

h(y)λ(y) + h′(y) + δ

h′(y)

)
, (2.11)

for y ∈ (y∞, y0] with inverse function τ ↦→ y(τ) : [0,∞) → (y∞, y0]. Moreover, consider
the decreasing function θ : (y∞, y0] → [0,∞) given by

θ(y) :=

∫ y

y0

(
1 +

h(z)λ(z)

δ
− h(z)h′′(z)

δh′(z)
+
h(z)

(
hλ+ h′ + δ

)′
(z)

δ
(
hλ+ h′ + δ

)
(z)

)
dz (2.12)

and denote its inverse by θ ↦→ 𝕪(θ), θ ≥ 0. For given Θ0− ≥ 0 and Y0− ∈ ℝ

∆0 := inf {d ∈ [0,Θ0−] | Y0− − d ≤ 𝕪(Θ0− − d)} ∧Θ0− ,

Tw := inf {t > 0 | yw(t) > 𝕪(Θ0−)} ,
T := Tw + τ

(
𝕪(Θ0− −∆0)

)
,

where yw ∈ C1([0,∞)) solves y′w(t) = −h(yw(t)), for t ≥ 0, with yw(0) = Y0−. Define
the process Θopt by

Θopt
t := (Θ0− −∆0)𝟙[0,Tw)(t) + θ

(
y
(
T − t

))
𝟙[Tw,T )(t) for t ≥ 0. (2.13)

Then the strategy Θopt is the unique maximizer to the problem (2.9) of optimal liquidation
maxΘ∈𝒜mon(Θ0−)𝔼[L∞(y; Θ)] for Θ0− assets with initial market impact being Y0− = y.

Note that the optimal liquidation strategy does not depend on the particular form
of the martingale M (what has been noted as a robust property in related literature).
Since T <∞ is finite, the open horizon control from Theorem 2.2.4 is clearly optimal for
the problem on any finite horizon T ′ ≥ T ; cf. Remark 2.2.10 and Chapter 3 for T ′ < T .

Remark 2.2.5 (The optimal sell-only strategy). The strategy Θopt from Theorem 2.2.4
acts as follows.

1. If Y0− ≥ y0 +Θ0−, sell all assets at once: Θ0 = 0.
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2.2 The problem case for monotone strategies

2. If 𝕪(Θ0−) < Y0− < y0 +Θ0−, then sell a block of size ∆0 ≡ Θ0− −Θ0 such that
Θ0 > 0 and Y0 ≡ Y0− +∆0 = 𝕪(Θ0).

3. If Y0− < 𝕪(Θ0−), wait until time Tw. That is, set Θt = Θ0− for t < Tw. This
leads to Yt = yw(t) for t < Tw.

4. As soon as step 2 or 3 lead to the state Ys = 𝕪(Θs) for some time s ≥ 0, sell
continuously: Θt = θ(y(T − t)), s ≤ t ≤ T , until time T = s+ τ(𝕪(Θs)).

5. Stop when all assets are sold at some time T <∞: Θt = 0, t ∈ [T,∞).

Remark 2.2.6 (On deterministic optimal controls). The optimal liquidation strategy
is deterministic and the value function turns out to be continuous (even differentiable).
More precisely, the value function is

V (y, θ) =

{
Vbdry(θ −∆(y, θ)) +

∫ y

y−∆(y,θ)
f(x) dx, for y ≥ 𝕪(θ)

Vbdry(θ −∆(y, θ)) · exp
(∫ y

𝕪(θ)
−δ
h(x) dx

)
for y ≤ 𝕪(θ)

(2.14)

where Vbdry(θ) =
(
fhhλ+δ

δh′

)
(𝕪(θ)) and ∆(y, θ) ≥ 0 such that 𝕪(θ−∆(y, θ)) = y−∆(y, θ)

for 𝕪(θ) ≤ y ≤ y0+θ, whereas ∆(y, θ) = θ for y > y0+θ with 𝕪(θ) denoting the boundary
solution of Theorem 2.2.4, cf. [BBF18b, Lemma 4.2]. This is shown in [BBF18b, Sect. 4]
while proving Theorem 2.2.4. Here, we show directly why non-deterministic strategies are
suboptimal for (2.9) and optimizing over deterministic admissible controls is sufficient.
Yet, finding explicit solutions here still requires to construct candidate solutions and
prove optimality, as in the sequel.

If one considers optimization just over strategies that are to be executed until a time
T <∞, then the value function will be the same as if we were optimizing over the subset
of deterministic strategies. Indeed, by optional projection (see [DM82, VI.57]) we have

𝔼[LT (y; Θ)] = −𝔼
[
MT

∫ T

0

e−δtf(Yt−) dΘ
c
t

]
−𝔼

[
MT

∑
0≤t≤T
∆Θt ̸=0

e−δt

∫ ∆Θt

0

f(Yt− +x) dx
]
.

For any T ∈ [0,∞), letting dℙ̃ =MT /M0 dℙ on ℱT yields 𝔼[LT (y; Θ)] = 𝔼ℙ̃[ℓT (Θ)] for

ℓT (Θ):= −M0

∫ T

0
e−δtf(Yt−) dΘ

c
t −M0

∑
0≤t≤T ,∆Θt ̸=0 e

−δt
∫∆Θt

0
f(Yt− + x) dx. Note

that ℓ is a deterministic functional of Θ, and that the measure ℙ̃ does not depend on Θ.
Thus, optimization for any finite horizon T can be done ω-wise, i.e. for the finite-horizon
problem optimizing over the subset of deterministic strategies gives the same value
function. Note that this is similar to [Løk12, Prop. 7.2]. Using monotonicity of LT in T ,
we have 𝔼[L∞(y; Θ)] = supT∈[0,∞)𝔼[LT (y; Θ)], hence the change of measure argument
above yields that v(y, θ) = supT∈[0,∞) supΘ∈𝒜mon(θ)𝔼[LT (y; Θ)] is equal to

sup
T∈[0,∞)

sup
Θ∈𝒜mon(θ)
deterministic

ℓT (Θ) = sup
Θ∈𝒜mon(θ)
deterministic

ℓ∞(Θ). (2.15)

Moreover, one can check that any deterministic maximizer Θ∗ ∈ 𝒜mon(θ) to (2.15) is
also optimal for the original problem (2.9), where v(y, θ) <∞ thanks to δ < 0.
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2 A deterministic price impact model for optimal liquidation

Remark 2.2.7. In [PSS11], Predoiu, Shaikhet and Shreve consider a similar optimal
execution problem, with an additive price impact ψ such that St = St + ψ(Yt) with
volume effect process Yt as in (2.2). They study the case of martingale St on a finite
time horizon [0, T ]. The execution costs, which they seek to minimize in expectation,
are equal to the negative liquidation proceeds −LT in our model (for γ, µ = 0) with
fixed Y0− := 0. See also Remark 2.2.10 below.

The next result provides sufficient conditions for optimality to the problem (2.9)
for each possible initial state Y0− = y ∈ ℝ of the impact process, by the martingale
optimality principle, for proof see [BBF18b, Prop. 3.6]. In contrast, in the related
additive model in [PSS11] the optimal buying strategy for finite time horizon without
drift (δ = 0), and impact process starting at zero was characterized using an elegant
convexity argument; cf. Remark 2.2.10.

Proposition 2.2.8. Let V : ℝ × [0,∞) → [0,∞) be a continuous function such that
Gt(y; Θ) := Lt(y; Θ)+e−γtSt ·V (Yt,Θt), with Y = Y Θ and y = Y0−, is a supermartingale
for each Θ ∈ 𝒜mon(Θ0−) and additionally G0(y; Θ)≤G0−(y; Θ) := S0 · V (Y0−,Θ0−).
Then

S0 · V (y, θ) ≥ v(y, θ)

with θ = Θ0−. Moreover, if there exists Θ∗ ∈ 𝒜mon(Θ0−) such that G(y; Θ∗) is
a martingale and it holds G0(y; Θ

∗) = G0−(y; Θ
∗), then S0 · V (y, θ) = v(y, θ) and

v(y, θ) = J(y; Θ∗).

Remark 2.2.9. The additional condition on G0 and G0− can be regarded as extending
the (super-)martingale property from time intervals [0, T ] to time

”
0−“.

In order to make use of Proposition 2.2.8, one applies Itô’s formula to G, assuming
that V is smooth enough and using the fact that [S·, e

−γ·V (Y·,Θ·)] = 0 because S is
quasi-left-continuous and e−γ·V (Y·,Θ·) is predictable and of bounded variation, to get

dGt = e−δtV (Yt−,Θt−) dMt

+ e−δtMt−

((
−δV − hVy

)
(Yt−,Θt−) dt

+
(
Vy + Vθ − f

)
(Yt−,Θt−) dΘ

c
t

+

∫ ∆Θt

0

(
Vy + Vθ − f

)
(Yt− + x,Θt− + x) dx

) (2.16)

with the abbreviating conventions
(
−δV − hVy

)
(a, b) := −δV (a, b)− h(a)Vy(a, b) and(

Vy +Vθ − f
)
(a, b) := Vy(a, b)+Vθ(a, b)− f(a). The martingale optimality principle now

suggests equations for regions where the optimal strategy should sell or wait, in that the
dΘ-integrands should be zero when there is selling and the dt-integrand must vanish
when only time passes (waiting). We will construct a classical solution to the variational
inequality max {−δV −hVy , f− Vy−Vθ} = 0, that is a function V in C1,1(ℝ× [0,∞),ℝ)
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2.2 The problem case for monotone strategies

and a strictly decreasing free boundary function 𝕪(·) ∈ C2([0,∞),ℝ), such that

−δV − h(y)Vy = 0 in 𝒲 (2.17)

−δV − h(y)Vy < 0 in 𝒮 (2.18)

Vy + Vθ = f(y) in 𝒮 (2.19)

Vy + Vθ > f(y) in 𝒲 (2.20)

V (y, 0) = 0 ∀y ∈ ℝ (2.21)

for wait region 𝒲 and sell region 𝒮 (cf. Figure 2.2) defined as

𝒲 := {(y, θ) ∈ ℝ× [0,∞) | y < 𝕪(θ)},
𝒮 := {(y, θ) ∈ ℝ× [0,∞) | y > 𝕪(θ)}.

(2.22)

The optimal liquidation studied here belongs to the class of finite-fuel control problems,

Figure 2.2: The division of the state space, for δ = 0.5, h(y) = y and λ(y) ≡ 1.

which often lead to free boundary problems similar to the one derived above. See [KS86]
for an explicit solution of the finite-fuel monotone follower problem, and [JJZ08] for
further examples and an extensive list of references. The proof of Theorem 2.2.4 consists
of an explicit construction of 𝕪(θ) and the value function V as in (2.14) by means of
smooth pasting (or alternatively calculus of variations) and direct verification of the
variational (in-)equalities (2.17)–(2.21). For details, see [BBF18b, Sect. 4].

Remark 2.2.10 (A first look on the finite time horizon problem). For a given finite
horizon T <∞, the execution problem with general order book shape has been solved by
[PSS11] for additive price impact and no drift (δ = 0). The problem with multiplicative
impact could be transformed to the additive situation using intricate state-dependent
order book shapes, cf. [Løk12]. Let us show how a convexity argument as in [PSS11] can
be applied also directly to solve the finite horizon case in the multiplicative setup when
the drift δ is zero, but not for δ ̸= 0. We will solve the general case δ ∈ ℝ in Chapter 3
using calculus of variations.
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2 A deterministic price impact model for optimal liquidation

By Remark 2.2.6 it suffices to consider deterministic strategies Θ ∈ 𝒜mon(Θ0−). Let
F (y) =

∫ y

0
f(x) dx. For deterministic Θ and g(x) := f(h−1(x))x+ δF (h−1(x)) we have

𝔼[LT (Θ)] = F (Y0−)− e−δTF (YT )−
∫ T

0

e−δtg(h(Yt)) dt . (2.23)

Since g′(x) =
(
f (hλ+ h′ + δ)/h′

)
(h−1(x)), the function g obtains a global minimum

at h(y∞) and is decreasing on the left and increasing on the right. So its convex

hull ĝ(x) = sup {ℓ(x) | ℓ is affine with ℓ ≤ g} exists. With Cδ,T :=
∫ T

0
e−δt dt, Jensen’s

inequality yields

𝔼[LT (Θ)] ≤ F (Y0−)− e−δTF (YT )− Cδ,T · ĝ
(∫ T

0

h(Yt)
e−δt

Cδ,T
dt

)
(2.24)

and we have equality in (2.24) if and only if h(Yt) stays constant in the interval where ĝ
and g coincide for almost all t ∈ (0, T ). Such impact-fixing strategies are analogous to
the type A strategies of [PSS11].
The integral in (2.24) can be solved in general only for δ = 0. Now let δ = 0 but

keep the other parts of Assumption 2.2.2. Note that y0 = 0 subsequently. In that case

Cδ,T = T and
∫ T

0
h(Yt) dt = Y0− −Θ0− − YT for any strategy that liquidates until time

T , so

𝔼[LT (Θ)] ≤ F (Y0−)− F (YT )− T ĝ

(
Y0− −Θ0− − YT

T

)
=: Ĝ(YT ) . (2.25)

In order to identify the convex hull ĝ explicitly for δ = 0, consider the second derivative

g′′(x) = 2f ′
(
h−1(x)

)(
h−1

)′
(x) + f ′′

(
h−1(x)

)(
(h−1)′(x)

)2
x+ f ′

(
h−1(x)

)(
h−1

)′′
(x)x

=

(
2
f ′

h′
+

f ′′h

(h′)2
− f ′hh′′

(h′)3

)(
h−1(x)

)
=

(
f

(h′)3

(
2λ(h′)2 + (λ′ + λ2)hh′ − λhh′′

))(
h−1(x)

)
=

(
f

(h′)3

((
hλ+ h′

)
λh′ − hλ(hλ+ h′)′ + (hλ+ h′)(hλ)′

))(
h−1(x)

)
.

Since hλ + h′ > 0 on (y∞,∞) and hλ < 0 on (−∞, y0), we find that g is strictly
convex on an open interval covering

[
h(y∞), h(y0)

]
. Moreover, by y0 = 0 we have

g′(0) = g′(h(y0)) = f(0) = 1 and for every x > 0, g′(x) > f(h−1(x)) ≥ f(0) = 1. Hence,
we found a convex function that is dominated by g and therefore also by ĝ:

g(x) ≥ ĝ(x) ≥

⎧⎪⎨⎪⎩
g(h(y∞)) for x ≤ h(y∞),

g(x) for x ∈ [h(y∞), 0],

g(0) + x for x ≥ 0.

(2.26)

Let e(y) := (Y0− − Θ0− − y)/T , so that we have Ĝ′(y) = −f(y) + ĝ′
(
e(y)

)
and

Ĝ′′(y) = −f ′(y) − 1
T ĝ

′′(e(y)) ≤ −f ′(y) < 0, i.e. strict concavity of Ĝ. Moreover, at

r := e−1(h(y∞)) we have Ĝ′(r) = −f(r) < 0 and at ℓ := e−1(0) = Y0− −Θ0− we have
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2.3 The problem case for non-monotone strategies

Ĝ′(ℓ) = −f(ℓ)+ ĝ′(0) = −f(ℓ)+1. Hence, if Y0− ≤ Θ0− we find Ĝ′(ℓ) ≥ 0. So Ĝ obtains
a global maximum at some y∗ ∈ [ℓ, r] in that case and therefore e(y∗) ∈ [h(y∞), 0], where
g = ĝ, if Y0− ≤ Θ0−.

Consider the so-called (as in [PSS11]) type A strategy Θ∗ that performs an initial block
trade ∆Θ∗

0 = Y0 − Y0− to reach impact level Y0 := h−1
(
e(y∗)

)
, then trades continuously

until time T at constant rate dΘ∗
t /dt = h(Y0) = e(y∗), and finishes with a block trade

of size ∆Θ∗
T = y∗ − Y0, reaching impact level YT = y∗. By construction, we have

𝔼[LT (Θ
∗)] = Ĝ(y∗), so Θ∗ is optimal (if Y0− ≤ Θ0−).

Remark 2.2.11 (Optimal execution). How to optimally acquire an asset position,
minimizing the expected costs, is the natural counterpart to the previous liquidation
problem; cf. [PSS11]. To this end, if we represent the admissible strategies by increasing
càdlàg processes Θ starting at 0 (describing the cumulative number of shares purchased
over time), then the discounted costs (negative proceeds) of an admissible (purchase)
strategy Θ takes the form∫ ∞

0

eηtf(Yt−)Mt dΘ
c
t +

∑
t≥0

∆Θt ̸=0

eηtMt

∫ ∆Θt

0

f(Yt− + x) dx, (2.27)

with discounted unaffected price process e−γtSt = eηtMt for η := µ− γ = −δ. To have
a well-posed minimization problem for infinite horizon, one needs to assume that the
price process increases in expectation, i.e. η > 0, and thus the trader aims to buy an
asset with rising (in expectation) price.
In this case, the value function of the optimization problem will be described by the

variational inequality min {f+Vy−Vθ , ηV −hVy} = 0. An approach as taken previously
for the optimal liquidation problem permits again to construct the classical solution to
this free boundary problem explicitly. Thereby, the state space is divided into a wait
region and a buy region by the free boundary, that is described by

θ′(y) = −1 +
h(y)λ(y)

η
− h(y)h′′(y)

ηh′(y)
+
h(y)(hλ+ h′ − η)′(y)

η(hλ+ h′ − η)(y)
, y ≥ y0, (2.28)

with initial condition θ(y0) = 0, where y0 is the unique root of h(y)λ(y) = η (similar
to (2.12) from the optimal liquidation problem). Verification of optimality will go
though under the assumptions η > 0, f ∈ C2 with f(0) = 1, λ(y) := f ′(y)/f(y) > 0,
resilience h ∈ C2 with h(0) = 0, h′ > 0, the technical condition (h′)2 > hh′′ and such
that (hλ)′ > 0 and (hλ + h′)′ > 0. Note that apart from η > 0 and (h′)2 > hh′′,
these match Assumption 2.2.2. Examples satisfying (h′)2 > hh′′ are h(y) = βy and
h(y) = α arctan(βy) for α, β > 0.
It may be interesting to note that the boundary defined by (2.28) does not have a

vertical asymptote, because such an asymptote could only occur at a root y∞ of the
denominator hλ + h′ − η, but y∞ < y0 and θ′(y0) =

(
h (hλ)′/(ηh′)

)
(y0) > 0. The

technical condition (h′)2 > hh′′ guarantees that the boundary is strictly increasing for
all y ≥ y0.

2.3 The problem case for non-monotone strategies

In this section, we solve under Assumption 2.2.2 the optimal liquidation problem when
the admissible liquidation strategies allow for intermediate buying. To focus again on
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2 A deterministic price impact model for optimal liquidation

transient price impact and explicit analytical results, we keep other model aspects simple
and consider the problem in a two-sided order book model with zero bid-ask spread.
This is an idealization of the predominant one-tick-spread that is observed for common
relatively liquid risky assets [CdL13]. See Remark 2.3.6 though. We show that the
optimal trading strategy is monotone when Y0− is not too small (see Remark 2.3.5).
More precisely, the two-dimensional state space decomposes into a buy region and a
sell region with a non-constant interface, that coincides with the free boundary from
Theorem 2.2.4.

In previous sections, we considered pure selling strategies and specified the model
for such, i.e. in the sense of Remark 2.1.1 we specified only the bid side of the LOB.
Now, we extend the model to allow for buying as well. In this case, a large investor’s
trading strategy may be described by a pair of increasing càdlàg processes (A+, A−)
with A±

0− = 0, where A+
t (resp. A−

t ) describes the cumulative number of assets sold

(resp. bought) up to time t. Her risky asset position is Θt = Θ0− − (A+
t − A−

t ) at
time t ≥ 0. We assume that the price impact process Y = Y Θ is given by (2.2) with
Θ = Θ0− − (A+ − A−), and that the best bid and ask prices evolve according to the
same process S = f(Y Θ)S, i.e. the bid-ask spread is taken as zero. The proceeds from
executing a market buy order at time t of size ∆A−

t > 0 are given again by (2.5) with
∆Θt = ∆A−

t . Proceeds being negative means that the trader pays for acquired assets.
Thus, the γ-discounted (cumulative) proceeds from trading strategy (A+, A−) over time
period [0, T ] are

LT = −
∫ T

0

e−γtf(Yt)St dΘ
c
t −

∑
∆Θt ̸=0
t≤T

e−γtSt

∫ ∆Θt

0

f(Yt− + x) dx . (2.29)

For finite variation strategies Θ the sum in (2.29) converges absolutely, cf. Remark 2.2.1.
We consider the optimization problem over the set of admissible trading strategies

𝒜bv(Θ0−) :=
{
Θ = Θ0−−(A+−A−) | A± is increasing, càdlàg, predictable, bounded,

with A±
0− = 0 and Θt ≥ 0 for t ≥ 0

}
, (2.30)

where A = A+ −A− denotes the minimal decomposition for a process A of finite (here
even bounded) variation; the last condition means that short-selling is not allowed.

For an admissible strategy Θ ∈ 𝒜bv(Θ0−), LT (y; Θ) as defined in (2.8), but extended
to general bounded variation strategies by (2.29), describes the proceeds from strategy Θ
until time T . These proceeds are a.s. finite for every T ≥ 0, see Remark 2.2.1. To show
that limT→∞ LT (y; Θ) exists in L1, let L(y; Θ) = L+(y; Θ)− L−(y,Θ) be the minimal
decomposition of the (finite variation) process L(y; Θ), i.e. L+(y; Θ) are the proceeds
from selling (according to A+), while L−(y; Θ) are the expenses for buying (according
to A−). For Θ in 𝒜bv(Θ0−), the processes A± and f(Y ) are bounded by some constant
C. By a change of measure argument, as in Remark 2.2.6, we obtain

𝔼
[
|L±

T (y; Θ)− L±
t (y; Θ)|

]
≤ e−δtC2M0 for all t ≤ T <∞,

with δ = γ − µ > 0 and M0 in (0,+∞). Hence
(
L±
T (y; Θ)

)
T≥0

are Cauchy se-

quences in L1, so they converge in L1 for T → ∞ to some limits L±
∞(y; Θ) ∈ L1,

and also almost surely (limits being monotone and finite). In particular, the difference
limT→∞ LT (y; Θ) = L+

∞(y; Θ)− L−
∞(y; Θ) =: L∞(y; Θ) exists in L1.
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2.3 The problem case for non-monotone strategies

Remark 2.3.1. The functional Θ ↦→ 𝔼[LT (y; Θ)] is not concave. For example, let
f(y) = eλy, h(y) = βy and Θ1 be the strategy that linearly interpolates between Θ1

0 = 0,
Θ1

t1 = θ, and Θ1
T = 0. It is not difficult to find parameters t1, θ, µ, λ, β, Y0− for which

already a plot reveals that the interpolation α ↦→ 𝔼[LT (αΘ
1 + (1− α)Θ0)], 0 ≤ α ≤ 1,

between Θ1 and the trivial strategy Θ0 = 0 is clearly non-concave.

So, the gain functional J(y; Θ) for the optimal liquidation problem with possible
intermediate buying,

max
Θ∈𝒜bv(Θ0−)

J(y; Θ) for J(y; Θ) := 𝔼[L∞(y; Θ)] , (2.31)

is well-defined. By arguments as in Section 2.2 (cf. Proposition 2.2.8 and (2.16)) one
sees that in this case it suffices to find a classical solution to the following problem

Vy + Vθ = f on ℝ× [0,∞), (2.32)

−δV − h(y)Vy ≤ 0 on ℝ× [0,∞), (2.33)

with suitable boundary conditions, ensuring that a classical solution exists and that the
(super-)martingale properties from Proposition 2.2.8 extend to [0−, T ], cf. Remark 2.2.9.
The optimal liquidation strategy then can be described by a sell region and a buy region,
divided by a boundary.
The sell region turns out to be the same as for the problem without intermediate

buying in Section 2.2, i.e. the region 𝒮, while the wait region 𝒲 there becomes a buy
region ℬ := ℝ× [0,∞) \ 𝒮 here. Similarly to Remark 2.2.6, we extend the definition of
∆(y, θ) to ℬ. For (y, θ) ∈ ℝ× [0,∞), let ∆(y, θ) be the signed ∥·∥∞ distance in direction
(−1,−1) of the point (y, θ) to the boundary ∂𝒮 = {(𝕪(θ), θ) | θ ≥ 0} ∪ {(y, 0) | y ≥ y0},
i.e. (y −∆, θ −∆) ∈ ∂S. Recall the definition of V 𝒮 := V in (2.14) and let

V ℬ(y, θ) := Vbdry(θ −∆(y, θ))−
∫ y−∆(y,θ)

y

f(x) dx, for (y, θ) ∈ ℬ.

The discussion so far suggests that the following function would be a classical solution
to the problem (2.32) – (2.33) describing the value function of the optimization problem
(2.31):

V ℬ,𝒮(y, θ) :=

{
V 𝒮(y, θ), if (y, θ) ∈ 𝒮,
V ℬ(y, θ), if (y, θ) ∈ ℬ,

(2.34)

up to the multiplicative constant S0. Note that both cases in (2.34) can be combined to

V ℬ,𝒮(y, θ) = Vbdry(θ −∆(y, θ)) +

∫ y

y−∆(y,θ)

f(x) dx, for all (y, θ).

The next theorem proves the conjectures already stated in this section for solving the
optimal liquidation problem with possible intermediate buying.

Theorem 2.3.2. Let the model parameters h, λ, δ satisfy Assumption 2.2.2. Consider
functions τ , 𝕪 and θ from Theorem 2.2.4 and let

∆0 := inf {d ∈ [−Θ0−,∞) | Y0− + d = 𝕪(Θ0− + d)} ∨ −Θ0− ,

T := τ
(
𝕪(Θ0− +∆0)

)
.
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2 A deterministic price impact model for optimal liquidation

For given number of shares Θ0− ≥ 0 to liquidate and initial state of the market im-
pact process Y0− = y, the unique optimal strategy Θopt of problem (2.9) is given by
Θopt

t = 𝕪(y(T − t))𝟙[0,T )(t) for t ≥ 0.
Moreover, the function V ℬ,𝒮 is in C1(ℝ× [0,∞)) and solves (2.32) and (2.33) and

the value function of the optimization problem (2.31) is given by S0 · V ℬ,𝒮 .

For the proof of Theorem 2.3.2, see [BBF18b, Thm. 5.1]. By continuity arguments
as in Chapter 5, one could show that the optimal strategy of Theorem 2.3.2 is even
optimal in a set of bounded semimartingale strategies (to which the definition of proceeds
can be extended continuously in certain topologies on the càdlàg space, see [BBF19,
Example 5.2]).

Remark 2.3.3 (The optimal buy-and-sell strategy). If (y,Θ0−) ∈ 𝒮, Θopt is the
liquidation strategy for Θ0− shares and impact process starting at y as described in
Theorem 2.2.4. If (y,Θ0−) ∈ ℬ, Θopt consists of an initial buy order of ∆0 shares (so that
the state process (Y,Θ) jumps at time 0 to the boundary between ℬ and 𝒮) and then
Θopt continues according to the liquidation strategy for Θ0− +∆0 shares and impact
process starting at y +∆0 as described in Theorem 2.2.4.

Remark 2.3.4 (Transient impact is essential). As already noted in [GZ15, Prop. 3.5(III)],
a multiplicative order book with permanent instead of transient impact, i.e. h ≡ 0, leads
to a trivial optimal control with complete initial liquidation at time 0, in absence
of transaction costs. This can also be seen directly as follows. If h ≡ 0 we have
Y Θ
t = Y0− −Θ0− +Θt and proceeds (2.8) may be written as

LT (Θ) =

∫ T

0

F (Y Θ
t ) d

(
e−δtMt

)
t
−
(
e−δTMTF (Y

Θ
T )−M0F (Y0−)

)
(2.35)

= −δ
∫ T

0

e−δtMtF (Y
Θ
t ) dt+

∫ T

0

e−δtF (Y Θ
t ) dMt −

(
e−δTMTF (Y

Θ
T )−M0F (Y0−)

)
with the antiderivative F (y) :=

∫ y

−∞ f(x) dx ≥ 0 of f , assuming F (0) <∞. So we get

for any two strategies Θ and Θ̂ with Θt ≥ Θ̂t for all t ≥ 0, that 𝔼[LT (Θ)] ≤ 𝔼[LT (Θ̂)].
Thus it is optimal to liquidate all assets at time 0, because Θ̂t := 0 ≤ Θt for all t ≥ 0
and Θ ∈ 𝒜bv(Θ0−). Equation (2.35) moreover shows that in the case of no drift (δ = 0)
and permanent impact, every strategy that liquidates until time T is optimal. This was
already observed in [GZ15, comment before Prop. 3.5] and shows a remarkable difference
of effects from permanent and transient impact; cf. also Remark 2.2.10.

Remark 2.3.5 (Price manipulation). The results show that when the initial level of
market impact is sufficiently small, i.e. Y0− < y0, so that the market price is sufficiently
depressed and has a strong upwards trend by (2.2), then the optimal liquidation strategy
may comprise an initial block buy, followed by continuous selling of the risky asset
position. In this sense our model admits transaction-triggered price manipulation in
the spirit of [ASS12, Definition 1] for sufficiently small Y0− < y0. Let us note that
[LS13, p. 745] emphasize the particular relevance of the martingale case (zero drift) when
analyzing (non)existence of price manipulation strategies, and that it seems natural
to buy an asset whose price tends to rise. The case Y0− < 0 could be considered as
adding an exogenous but non-transaction triggered upward component to the drift. In
any case, buying could only occur at initial time t = 0 and afterwards the optimal
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2.3 The problem case for non-monotone strategies

strategy is just selling. Nonetheless, for typical choices of the unperturbed price process S
(e.g. exponential Brownian motion) one can show that our model does not offer arbitrage
opportunities (in the usual sense) for the large trader, and so strategies, whose expected
proceeds are strictly positive, have to admit negative proceeds (i.e. losses) with positive
probability, see [BBF19, Section 4].

On the other hand, if the level of market impact is not overly depressed, i.e. Y0− ≥ y0,
then an optimal liquidation strategy will never involve intermediate buying. This includes
in particular the case of a neutral initial impact Y0− = 0 (as in [PSS11]), or of an only
mildly depressed initial impact Y0− ∈ [y0,∞). Monotonicity of the optimal strategy
would extend to cases with non-zero bid-ask spread, as explained below.

Remark 2.3.6 (On non-zero bid-ask spread). The results in this section also have
implications for models with non-zero bid-ask spread. Indeed, if the initial market
impact is not too small (Y0− ≥ y0) and the LOB bid side is described as in our model,
the optimal liquidation strategy in a model with non-zero bid-ask spread would still be
monotone (so relate only to the LOB bid side) and would be described by Theorem 2.3.2,
since

sup
Θ∈𝒜mon(Θ0−)

J(Y0−; Θ) = sup
Θ∈𝒜bv(Θ0−)

J(Y0−; Θ) ≥ sup
Θ∈𝒜bv(Θ0−)

J spr(Y0−; Θ),

with J spr(Y0−; Θ) denoting the cost functional for the non-zero spread model, as J(Y0−, ·)
and J spr(Y0−, ·) coincide on 𝒜mon(Θ0−) and the inequality is due to the spread.
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3 Optimal execution with price trends –
a three-dimensional free boundary
problem

In this chapter, we solve an optimal liquidation problem in finite time horizon in an
environment where the fundamental price has increasing or decreasing trend by means
of a nonzero drift factor. The martingale case could be solved with convexity arguments
à la [PSS11], as explained in Remark 2.2.10. That argument does not work for nonzero
drift, where the objective functional Θ ↦→ 𝔼[LT (Θ)] is non-concave (cf. Remark 2.3.1)
and I cannot see another convexity structure to exploit for easier verification. So
we prove optimality through a different method in two steps in Section 3.3. First,
calculus of variations gives a candidate optimal strategy that is characterized by a
smooth boundary surface separating buy and sell regions. This candidate satisfies a local
optimality criterion in the sense of Theorem 3.3.8 among strategies characterized by
smooth boundary surfaces. This local result implies validity of the variational inequality
in a neighborhood of our candidate surface, cf. Lemma 3.3.10, which we can extend in
a second step to the whole state space and thereby prove global optimality among all
bounded variation strategies.
In Section 3.1, we formulate the financial market model and optimization objective.

We discuss our main result Theorem 3.2.1 in Section 3.2. Section 3.3 is devoted to the
proof, from construction of the candidate solution and local optimality in Theorem 3.3.8,
via a necessary reparametrization of the state space in Section 3.3.1, to the verification
in Section 3.3.3. As a consequence of this result, suitably combined with the optimal
sell-only liquidation strategy for infinite time horizon, cf. Theorem 2.2.4, we obtain in
Section 3.4 the optimal sell-only liquidation strategy in finite time horizon, when prices
are generally decreasing, see Theorem 3.4.1.

3.1 The model and optimization objective

In absence of the large trader, the unaffected (fundamental) price is like in Chapter 2 of
the form

St = eµtMt, S0 ∈ (0,∞), (3.1)

for constant µ ∈ ℝ and M being a non-negative square integrable martingale on [0, T ]
that quasi-left continuous. The drift factor µ allows to model beliefs about the short time
price dynamics. The prime example being a geometric Brownian motion, M = S0ℰ(σW )
for a Brownian motion W and volatility σ > 0, as in the Black-Scholes model.
The large investor’s strategy is her position Θt in the risky asset, starting with an

exogenously given amount Θ0− ∈ ℝ. The predictable càdlàg process (Θt)t∈[0,T ] is of
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3 Optimal execution with price trends – a three-dimensional free boundary problem

bounded variation. Her trading activity causes transient market impact, which we denote
by the process Y = Y Θ. It follows the dynamics

dYt = −h(Yt) dt+ dΘt (3.2)

starting from some given initial impact Y0− ∈ ℝ. Let the resilience function h : ℝ→ ℝ

be strictly increasing with h(0) = 0. This way, the large investors impact reverts back
towards zero with resilience rate h(Yt) whenever she does not trade. For example, with
h(y) = βy, the market recovers at exponential rate β > 0.

The actual risky asset price is affected by the large investors trading activity through
the impact process Y as

St = f(Yt)St , (3.3)

with an increasing impact function f : ℝ → (0,∞). We consider a market with zero
bid-ask spread. Proceeds from a market sell order of size ∆Θt ∈ ℝ at time t are given
by

−St

∫ ∆Θt

0

f(Yt− + x) dx, (3.4)

which can be motivated by a limit order book perspective, cf. Remark 2.1.1, or by
stability considerations, cf. Chapter 5. For general bounded variation strategies (Θt)
with decomposition into continuous and discontinuous part Θt = Θc

t +
∑

u≤t:∆Θu ̸=0 ∆Θu,
proceeds from trading are

LT (Θ) := −
∫ T

0

f(Y Θ
t )St dΘ

c
t −

∑
0≤t≤T
∆Θt ̸=0

St

∫ ∆Θt

0

f(Y Θ
t− + x) dx . (3.5)

The large investors seeks to maximize expected proceeds 𝔼[LT (Θ)] while liquidating her
position, ΘT = 0. The set of admissible strategies is

𝒜T :=
{
Θ
⏐⏐ (Θt)t∈[0,T ] is predictable càdlàg, has bounded variation and ΘT = 0

}
.

(3.6)

So for given Y0− = y and Θ0− = θ, our objective reads

max
Θ∈𝒜T

J(T, y, θ; Θ) for J(T, y, θ; Θ) := 𝔼[LT (Θ) | Y0− = y,Θ0− = θ], (3.7)

with value function v(T, y, θ) := max
Θ∈𝒜T

J(T, y, θ; Θ). (3.8)

Note that predictability of Θ guarantees that S and Θ have no common jumps, as the
large investor could exploit such to her favor. If we take S to be continuous, adaptability
of Θ would suffice. To make our model assumptions concrete we have the following
standing assumptions.

Assumption 3.1.1. The resilience function h : ℝ → ℝ is in C3 with h(0) = 0 and
h′ > 0.
The impact function f : ℝ→ (0,∞) is in C3 with λ(y) := f ′(y)/f(y) > 0 everywhere
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3.2 The optimal liquidation strategy for finite horizon

and such that limy→−∞ f(y) = 0 and limy→∞ f(y) = ∞.
There exist y∞ and y0 with (hλ+ h′ − µ)(y∞) = 0 and (hλ− µ)(y0) = 0, respectively.
Resilience and market impact satisfy (hλ)′ > 0 and (hλ+h′)′ > 0 everywhere. Moreover,
we require h′′ < (hλ)′h′/(hλ− µ) on (y0,∞).

An example satisfying Assumption 3.1.1 is f(y) = eλy, h(y) = βy for constant λ, β > 0.
Note that the upper bound for h′′ on (y0,∞) is equivalent to q(y) := (hλ+h′−µ)(y)/h′(y)
being increasing on [y∞,∞), see Lemma 3.1.3. It is needed in Lemma 3.3.1. In comparison
to Assumption 2.2.2 for the infinite horizon problem, we require surjectivity and more
regularity for f : ℝ → (0,∞) and h here in order to calculate the second variation of
the proceeds functional in Theorem 3.3.8.

Remark 3.1.2. As in Remark 2.2.1, the possibly infinite sum in (3.5) has finite expec-
tation, since 𝔼[supt∈[0,T ] St] <∞ and Y Θ is bounded for any (bounded variation) Θ.

Lemma 3.1.3. The function q(y) := (hλ + h′ − µ)(y)/h′(y) satisfies q(y) < 0 for
y < y∞, q(y∞) = 0, q(y0) = 1, and q′ > 0 on [y∞,∞).

Proof. Since h′ > 0 and (hλ+ h′)′ > 0, the definition of y∞ gives q(y) ⋚ 0 for y ⋚ y∞
and the definition of y0, together with (hλ)′ > 0 gives q(y) ⋚ 1 for y ⋚ y0. For y > y0,
we have (h′)2q′ = (hλ)′h′ − (hλ− µ)h′′ > 0. It remains to show q′ > 0 on [y∞, y0]. On
that interval, we have

(h′)2q′ = (hλ+ h′ − µ)′h′ − (hλ+ h′ − µ)h′′.

So if h′′(y) < 0, then q′(y) > 0 for y ∈ [y∞, y0], because hλ+ h′ − µ ≥ 0 there. On the
other hand, we have

(h′)2q′ = (hλ− µ)′h′ +�
��h′′h′ − (hλ− µ)h′′ −�

��h′h′′.

So h′′(y) ≥ 0 also implies q′(y) > 0 for y ∈ [y∞, y0], because hλ− µ ≤ 0 there.

3.2 The optimal liquidation strategy for finite horizon

In this section, we will describe the main result of the chapter and discuss the basic
road map for verification. We will consider time backwards, as remaining time time
to liquidation τ = T − t. It turns out that the state space {(τ, y, θ) ∈ [0, T ] × ℝ2}
of remaining time τ , current impact level y and current asset position θ consists of a
buy region ℬ and a sell region 𝒮, separated by a smooth boundary surface ℐ. The
optimal strategy will perform an initial block trade to reach ℐ, then trade continuously
in rares along ℐ until time T . At terminal time, τ = 0, there is no choice but to clear
the position, ΘT = 0, with a block trade. Yet, the optimal strategy will reach a state
(0, YT−,ΘT−) ∈ ℐ that satisfies YT− > y∞ and ΘT− = g(YT−) with terminal impact
function

g(y) := y − f−1

((
f
hλ+ h′ − µ

h′

)
(y)

)
, (3.9)

for y > y∞. Now we can represent ℐ as the union of orbits of suitable curves
τ ↦→ (τ, y(τ ; z), θ(τ ; z)), τ ∈ [0, T ], that reach (0, z, g(z)), z ∈ (y∞,∞). These curves
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3 Optimal execution with price trends – a three-dimensional free boundary problem

satisfy differential equations yτ = D(y) and, in order to stay on ℐ by trading in rates,
θτ = D(y)− h(y), where

D(y) := µ

(
f (hλ+ h′ − µ)/h′

(f (hλ+ h′ − µ)/h′)′

)
(y), (3.10)

for y > y∞. Such representation ℐ = {(τ, y(τ ; z), θ(τ ; z)) | τ ∈ [0, T ], z > y∞} leads to
a reparametrization of the whole state space (τ, y, θ) = P (τ, z, d) in terms of terminal
impact (before the last block trade) z and initial jump d ∈ ℝ.
Moreover, the boundary surfaces ℐT1

and ℐT2
for different time horizons T1 < T2

coincide for τ < T1 in the sense that ℐT1 = ℐT2 ∩ [0, T1]×ℝ2.
To summarize this description, our main result for this chapter is as follows.

Theorem 3.2.1. Let f, λ, h, µ satisfy Assumption 3.1.1. Define y∞ and y0 as the unique
solutions to h(y∞)λ(y∞)+h′(y∞)−µ = 0 and h(y0)λ(y0)−µ = 0, respectively. Consider
the unique solutions y(·; z), θ(·; z) on [0, T ] to the system of differential equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yτ (τ ; z) = D(y(τ ; z)), for τ ∈ [0, T ],

θτ (τ ; z) = (D − h)(y(τ ; z)), for τ ∈ [0, T ],

y(0; z) = z,

θ(0; z) = g(z),

for z > y∞, with g from (3.9) and D from (3.10).
Then P (τ, z, d) := (τ, y(τ ; z)+d, θ(τ ; z)+d) is a bijection from [0, T ]× (y∞,∞)×ℝ to

[0, T ]×ℝ2. Moreover, let (T, z∗, d∗) := P−1(T, Y0−,Θ0−) and define Θ∗
t := θ(T − t, z∗),

for t ∈ [0, T ), and Θ∗
T := 0. Then Θ∗ is the maximizer of our objective problem (3.7),

𝔼[LT (Θ
∗)] = max

Θ∈𝒜T

𝔼[LT (Θ)].

We defer the proof to the end of Section 3.3 on page 47. It amounts to an application
of martingale optimality (Proposition 3.2.5) by proving variational (in)equalities (3.12) –
(3.14). In Section 3.3, we first restrict our attention to strategies Θ that are continuously
differentiable on (0, T ) with possible jumps at 0 and T . Such strategies can be described
by the dynamics of Y Θ

t alone, i.e. by y instead of θ. Rewriting our objective as a
calculus of variations problem, we obtain y as a local optimizer, cf. Theorem 3.3.8.
Global existence and uniqueness of y is shown in Lemma 3.3.2. The proceeds for the
corresponding strategy (Θ∗) define a candidate value function V for our original control
problem. By construction, V then already satisfies the variational equality (3.14). After
proving in Section 3.3.1 that our reparametrization P of the state space is indeed bijective,
we can prove the variational equality (3.12) on the boundary ℐ directly, cf. Lemma 3.3.9,
and show that the local optimality result for y implies the variational inequality (3.13)
in a neighborhood of ℐ, see Lemma 3.3.10. Validity of (3.13) in the whole state space
follows as a consequence, cf. Lemma 3.3.9.

Let us now comment on some properties of the optimal strategy Θ∗ from Theorem 3.2.1
and afterwards work out the details of the variational equalities and inequality.

Remark 3.2.2. Buy and sell regions are determined by the sign of d∗, i.e. he have
ℬ = P ([0, T ]× (y∞,∞)× (−∞, 0)) and 𝒮 = P ([0, T ]× (y∞,∞)× (0,∞)), respectively.
The optimal control Θ∗ acts as follows:

32



3.2 The optimal liquidation strategy for finite horizon

1. If (T, Y0−,Θ0−) ∈ ℬ, perform a block buy of size |d| to the boundary surface
ℐ := P ([0, T ]× (y∞,∞)× {0}). In case (T, Y0−,Θ0−) ∈ 𝒮, do a block sale of size
|d| to the surface ℐ.

2. Now that (T, Y Θ∗

0 ,Θ∗
0) = P (T, z, 0), trade in rates dΘ∗

t = −θτ (T − t; z) dt, so
(T − t, Y Θ∗

t ,Θ∗
t ) = P (T − t, z, 0) stays on the boundary ℐ for all t ∈ [0, T ).

3. At terminal time T , when Y Θ∗

T− = z and Θ∗
T− = g(z), perform a block trade (buy

or sale) of size −g(z) to clear the position, Θ∗
T = 0.

Remark 3.2.3 (Large time horizons). For large enough horizon T and µ < 0, i.e.
decreasing prices in expectation, the optimal non-short-selling strategy is the infinite
horizon solution of Theorem 2.3.2 which terminates in finite time τ(Y0−,Θ0−) ≤ T
(Note that Assumption 2.2.2 follows from Assumption 3.1.1 if µ < 0; we require more
smoothness on f and h here to apply the second variation in Theorem 3.3.8 below). If
T = τ(Y0−,Θ0−), the above solution y, θ equals the infinite horizon solution, but for
T > τ(Y0−,Θ0−), it is optimal to go short temporarily and buy back the assets at the
end.

Remark 3.2.4 (Intermediate buying). Depending on the model parameters, the optimal
trading strategy may also require continuous buying in rates before time T . For µ > 0,
i.e. increasing prices in expectation, this may even happen without any short sales,
see e.g. Figure 3.1a: to liquidate Θ0− = 1 asset with no initial impact, Y0− = 0, and
f(y) = ey, h(y) = y in T = 5 time when prices are generally increasing (µ = 0.2, top red
line) it is optimal to perform an initial block buy of size ∆Θ∗

0 ≈ 0.2, then slowly buy
more assets in decreasing rates until time t ≈ 1, subsequently selling assets in increasing
rates until terminal time T , when the remaining 0.6 assets are sold en bloc.
However, for decreasing prices, i.e. µ < 0, buying in rates, i.e. −θ′(T − t) ≥ 0

always implies a short position θ(T − t) ≤ 0: Indeed, on the interval (y∞, y0] we have
(hλ − µ)(hλ + h′ − µ)/h′ + ((hλ + h′ − µ)/h′)′h < 0, since hλ < µ on this interval,
y0 < 0 for µ < 0, and (hλ + h′ − µ)/h′ is positive and increasing on (y∞,∞). Hence
buying, −θτ (T − t; z) ≥ 0, implies y(T − t; z) ≥ y0 which leads to a short position by
Lemmas 3.3.1 and 3.3.2.

Key for the proof of Theorem 3.2.1 is the following principle.

Proposition 3.2.5 (Martingale optimality principle). Let V : [0, T ]×ℝ2 → ℝ satisfy
V (0, ·, 0) = 0, such that for each Θ ∈ 𝒜T , Gt(Θ) := Lt(Θ) + StV (T − t, Y Θ

t ,Θt) is
a supermartingale and additionally G0(Θ) ≤ G0−(Θ) := S0V (T, y, θ) where Y0− = y,
Θ0− = θ. Then

S0V (T, y, θ) ≥ v(T, y, θ).

Moreover, if there exists a strategy Θ∗ ∈ 𝒜T such that G·(Θ
∗) is a martingale with

G0(Θ
∗) = G0−(Θ

∗), then S0V (T, y, θ) = v(T, y, θ) and v(T, y, θ) = J(T, y, θ; Θ∗).

Proof. Since ΘT = 0, we have 𝔼[GT (Θ)] = 𝔼[LT ] + 𝔼[STV (0, YT , 0)] = 𝔼[LT (Θ)]. So
the supermartingale property immediately gives

S0V (T, y, θ) = 𝔼[G0−(Θ)] ≥ 𝔼[G0(Θ)] ≥ 𝔼[GT (Θ)] = 𝔼[LT (Θ)]

for all Θ ∈ 𝒜T . Hence S0V (T, y, θ) ≥ v(T, y, θ). The second part follows similarly from
the martingale property.
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3 Optimal execution with price trends – a three-dimensional free boundary problem

To utilize Proposition 3.2.5, assume V ∈ C1 and apply Itô’s formula to G:

dGt = V (T − t, Yt−,Θt−) dMt

+ St

((
−Vτ − hVy + µV

)
(T − t, Yt−,Θt−) dt

+
(
Vy + Vθ − f

)
(T − t, Yt−,Θt−) dΘ

c
t

+

∫ ∆Θt

0

(
Vy + Vθ − f

)
(T − t, Yt− + x,Θt− + x) dx

)
,

(3.11)

with abbreviations (−Vτ−hVy+µV )(u, a, b) := −Vτ (u, a, b)−h(a)Vy(u, a, b)+µV (u, a, b)
and (Vy + Vθ − f)(u, a, b) := Vy(u, a, b) + Vθ(u, a, b) − f(a). Since Y Θ and Θ are
bounded and S has integrable second moments, the local martingale part of dGt

is a true martingale. To apply Proposition 3.2.5, we will construct a classical so-
lution to the variational inequality min {ℒV, Vy + Vθ − f} = 0 with the differential
operator ℒV (τ, y, θ) := Vτ (τ, y, θ) + h(y)Vy(τ, y, θ) − µV (τ, y, θ), that is, a function
V ∈ C1([0, T ] × ℝ2;ℝ) and a function d : [0, T ] × ℝ2 → ℝ parametrizing the free
boundary surface ℐ = {d(τ, y, θ) = 0} such that

ℒV (τ, y, θ) = 0 for (τ, y, θ) ∈ ℐ, (3.12)

ℒV (τ, y, θ) > 0 for (τ, y, θ) ̸∈ ℐ, (3.13)

Vy(τ, y, θ) + Vθ(τ, y, θ) = f(y) for (τ, y, θ) ∈ [0, T ]×ℝ2, (3.14)

V (0, y, 0) = 0 for all y ∈ ℝ. (3.15)

The optimal strategy will be to buy whenever d(T − t, Yt,Θt) < 0 and sell whenever
d(T − t, Yt,Θt) > 0 in order to keep d(T − t, Yt,Θt) = 0 until time t = T when the
position is cleared with a block market order of size ∆ΘT = −ΘT . It will turn out
that d(τ, y, θ) < 0 for all y ≤ y∞, i.e. for Yt− ≤ y∞, a block buy will cause Yt > y∞
immediately. Let ℬ denote the buy region and 𝒮 denote the sell region,

ℬ = {(τ, y, θ) ∈ [0, T )×ℝ2 | d(τ, y, θ) < 0}, (3.16)

𝒮 = {(τ, y, θ) ∈ [0, T )×ℝ2 | d(τ, y, θ) > 0}. (3.17)

Remark 3.2.6. The optimal control is deterministic. Indeed, by optional projection
[DM82, Theorem VI.57] we have

𝔼[LT (Θ)] = 𝔼
[
MT

(
−
∫ T

0

eµtf(Yt) dΘ
c
t −

∑
0≤t≤T

eµt
∫ ∆Θt

0

f(Yt− + x) dx
)]

= 𝔼ℚ

[
−
∫ T

0

eµtf(Yt) dΘ
c
t −

∑
0≤t≤T

eµt
∫ ∆Θt

0

f(Yt− + x) dx
]
=: 𝔼ℚ[ℓT (Θ)]

for dℚ =MT dℙ. Since ℚ does not depend on Θ and ℓT is a deterministic functional,
the optimization can be done ω-wise and optimizing over deterministic controls will yield
the same value function.

Remark 3.2.7 (Comparing multiplicative and additive impact). Let us highlight some
differences between optimal liquidation strategies for our multiplicative transient price
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3.2 The optimal liquidation strategy for finite horizon

Θ∗
t

t

µ = −0.2

µ = −0.1

µ = −0.05

µ = 0

µ = 0.05

µ = 0.1

µ = 0.2

(a) Liquidation strategies Θ∗ in our multiplica-
tive price impact model St = St exp(Y

Θ
t ).

ΘLS
t

t

µ = −0.2

µ = −0.1
µ = 0

µ = 0.1

µ = 0.2

(b) Liquidation strategies ΘLS
t (ω) (solid lines)

and expected positions 𝔼[ΘLS
t ] (dashed)

in the additive price impact model
St = St + Y Θ

t .
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Θ∗
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µ = −0.1

µ = 0.1
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(c) Round-trip strategies Θ∗ in our model.
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ΘLS
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µ = −0.1

µ = 0.1

µ = 0.2

(d) Round-trip strategies ΘLS
t (ω) (solid lines)

and their expected positions 𝔼[ΘLS
t ]

(dashed) in the LS-model.

Figure 3.1: Optimal strategies Θ∗ in our model (left) and ΘLS the LS-model (right, cf.
Remark 3.2.7) to liquidate Θ0− = 1 asset (top row) or perform a round-trip
(Θ0− = 0, bottom row) in T = 5 time when prices are generally increasing
(red), generally decreasing (blue) or have no trend (black). Fundamental
price is dSt = µSt dt + σSt dWt with S0 = 1, σ = 0.5 and different µ,
initial impact is Y0− = 0 and resilience is linear with speed β = 1, i.e.
dY Θ

t = −Y Θ
t dt+ dΘt in both models.

impact model and the additive transient price impact model of [LS13], which gener-
alizes the continuous time model as in [OW13] by permitting non-zero drift for the
unaffected price process. Let us call these the mLOB- and the LS-model. We take
the unaffected price process in both models to be a geometric Brownian motion with
drift, St = S0e

µtℰ(σW )t with Brownian motion W , volatility σ > 0, drift factor µ ∈ ℝ
and initial price S0 ∈ (0,∞). The martingale case µ = 0 is solved in [PSS11] via a
convexity argument for additive impact, that can be adapted for multiplicative impact,
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3 Optimal execution with price trends – a three-dimensional free boundary problem

cf. Remark 2.2.10. For both models, a constant rate of trading is optimal when µ = 0.
Consider the decomposition St = S0 +Nt +Kt into martingale part Nt :=

∫ t

0
σSs dWs

and finite variation part Kt :=
∫ t

0
µSs ds.

[LS13] consider zero initial impact and linear resilience, i.e. dY Θ
t = −βY Θ

t dt+ dΘt

with resilience factor β > 0 and Y0− = 0 in our notation. For a bounded semimartingale
strategy (Θt)t∈[0,T ] with initial position Θ0− = θ and ΘT = 0, the price at which trading
occurs in the LS-model is SΘ

t := S0
t + ηY Θ

t−, motivated by a (additive) block-shaped
limit order book with height 1/η ∈ (0,∞).

In a similar fashion, as described in Remark 2.1.1, we can relate our multiplicative price
impact model to a multiplicative limit order book (mLOB). To compare both models,
their underlying limit order books should have similar features. In particular, both order
books should admit infinite market depth (LOB volume) for buy and for sell orders;
and prices should initially be similar for small volume impact y, i.e. S0 + ηy ≈ S0f(y).
Taking f(y) = eλy with constant λ := η/S0 satisfies these requirements, cf. Remark 2.1.1.
We take w.l.o.g. η = 1. The liquidation costs to be minimized in expectation in the
LS-model are given in [LS13, Lemma 2.5] as

𝒞(Θ) :=

∫
[0,T ]

S0
t− dΘt + [S0,Θ]T +

∫
[0,T ]

Y Θ
t− dΘt +

1

2
[Θ]T .

According to [LS13, Thm 2.6], the corresponding optimal semimartingale strategy which
minimizes 𝔼[𝒞(Θ)] is

ΘLS
t =

(1 + β(T − t))θ − 1
2 (1 + βt)Z0

2 + βT
− 1

2

∫
(0,t]

φ(s) dZs +
1

2β
K ′

t

− β

∫ t

0

(
1

2

∫
(0,s]

φ(r) dZr +
1

2
Ks

)
ds , t ∈ [0, T ),

with φ(t) = (2 + β (T − t))−1, derivative K ′
t := dKt/dt = µSt and martingale

Zt = 𝔼
[
KT + β

∫ T

0
Ks ds

⏐⏐ ℱ t

]
. With geometric Brownian motion for the unaffected

price, as in the Black-Scholes model, this gives Z0 =
(
(1 − eµT )(1 + β

µ ) + βT
)
S0 and

dZt =
((
1− eµ(T−t)

)(
1 + β

µ

)
+ β (T − t)

)
σSt dWt if µ ̸= 0 and Zt = 0 if µ = 0. Hence,

for µ ̸= 0, the optimal liquidation strategy ΘLS in the LS-model is a non-deterministic
adapted semimartingale. As noted in [LS13], it is not of finite variation. In contrast, cf.
Remark 3.2.6, the optimal strategy in our mLOB-model is deterministic and of finite
variation.

Consider for example the regime of generally decreasing prices, µ < 0: Apart from
a possible initial block buy, as long as the large investor has a long position Θt > 0 in
the asset at time t > 0, intermediate buying would be suboptimal in our mLOB-model,
cf. Remark 3.2.4. In comparison, the semimartingale nature of ΘLS requires perpetual
buying, a rather counter-intuitive outcome regarding that the postulated order book
shape is invariant over time and (unaffected) returns dS/S are i.i.d. In this sense, the
optimal strategy in the LS-model exhibits transaction-triggered price manipulation à
la [ASS12, Def. 1] (in continuous time) also for negative price trend µ < 0, whereas
such is not the case in our mLOB-model for moderate parameter choices where a short
position is not reached in time t < T . For generally increasing prices, µ > 0, it is natural
to expect intermediate buying to possibly be optimal also at times of long position.
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3.3 Free boundary construction and verification via calculus of variations

Figure 3.1b displays common realizations of optimal strategies in the LS-model for
different fundamental price trends µ for comparison to the corresponding optimizers of
the mLOB-model in Figure 3.1a.

From the point of view of an investor trading for herself, it is instructive to consider
optimal round-trips, i.e. Θ0− = 0. The LS-model seems to suggest a generally higher
intermediate buy position for positive fundamental price trends (µ > 0) than the mLOB-
model, cf. Figures 3.1c and 3.1d. Interestingly, the optimal trading activity also seems
to be more symmetric between µ > 0 and µ < 0 cases in the mLOB-model than in the
LS-model.

Let us note that the LS-model would give a deterministic optimal strategy (of finite
variation) if the unaffected price process would be an arithmetic Brownian motion,
dS0

t = µdt + σ dWt. This indicates that additive impact models are better suited
for additive (Bachelier) price dynamics, while a multiplicative impact model suits
multiplicative (Black-Scholes) price dynamics. Note that stochastic optimal strategies
would naturally occur if relevant state variables are stochastic, as we will investigate in
Chapter 4.

While additive models for asset prices and price impact have the benefit of easier
analysis, in particular for the martingale case without drift, we believe that multiplicative
models offer benefits from a conceptual point of view. For example, shares of company
are a relative concept, corresponding to a proportional amount of the companies value.
It is reasonable to follow early contributions like [Jar94, Fre98] and model price impact
in relative terms.

3.3 Free boundary construction and verification via
calculus of variations

We will now derive the functions g and D stated in (3.9) and (3.10) that characterize
the optimizer through a calculus of variations ansatz. Therefore, assume for a moment
that g ∈ C1 and D ∈ C0 are unknown functions on to be determined domains. We
verify assumed properties of g in Lemma 3.3.1 and of D in Lemma 3.3.2. For the general
theory of calculus of variations methods, see e.g. the book [GF00].

We use necessary conditions from calculus of variations to identify g and D. Then,
after showing in Section 3.3.1 that the reparametrization P of Theorem 3.2.1 is indeed
a bijection, we apply sufficient conditions for a local optimality result in Section 3.3.2,
which is necessary for the verification of global optimality in Section 3.3.3.

Heuristically, the optimal strategy Θ should consist of an initial jump from within
the buy or sell region to the (yet unknown) boundary ℐ the separates both, followed
by continuous trading in rates dΘt = −θ′(T − t) dt for t ∈ [0, T ) until terminal time T ,
and a terminal jump to reach ΘT = 0. We will first restrict our focus to such strategies
with possible initial and terminal jumps, and continuous rate of trading −θ′ during time
(0, T ). If Θt = θ(T − t), t ∈ [0, T ), for some θ ∈ C1, then by (3.2) the impact process
Y = Y Θ is of the form Yt = y(T − t) for y ∈ C1 such that y′(τ) = h(y(τ)) + θ′(τ). Let
us assume, that we can parametrize the boundary at terminal time (τ = 0) by a C1

function g on a to-be-determined interval such that ΘT− = g(YT−), i.e. θ(0) = g(y(0)).
Now, we can express the expected proceeds 𝔼[LT (Θ)] of the strategy Θ that corresponds
to θ ∈ C1([0, T ]) solely in terms of the corresponding y ∈ C1([0, T ]). Then we have
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3 Optimal execution with price trends – a three-dimensional free boundary problem

𝔼[LT (Θ)] = JT,Y0−(y) with

JT,Y0−(y) := F (Y0−)− F
(
y(T )

)
+ eµT

(
F (y)− F

(
y − g(y)

))⏐⏐
y=y(0)

+ eµT
∫ T

0

e−µτf
(
y(τ)

)(
y′(τ)− h(y(τ))

)
dτ,

(3.18)

where F : ℝ→ ℝ is an antiderivative of f . For notational convenience, we will abbreviate
J(y) = JT,Y0−(y) and usually skip the argument τ of y, y′. We will maximize J(y) not

for all y ∈ C1 but only for those which correspond to a strategy Θt = θ(T − t), t ∈ [0, T ),
that can be reached from (Y0−,Θ0−) by a suitable jump, (Y0,Θ0) = (Y0− +∆,Θ0− +∆).
That is, we need to consider those y for which θ(T ) − y(T ) = Θ0− − Y0−. Using the
assumed connection θ(0) = g(y(0)) of y and θ at τ = 0 through a function g, this
condition reads

Θ0− − Y0− = KT (y) := g
(
y(0)

)
+

∫ T

0

(
y′ − h(y)

)
dτ − y(T ) . (3.19)

We will abbreviate K = KT . In the language of calculus of variations, we now maximize
J(y) subject to the isoperimetric condition K(y) ≡ Θ0− − Y0−. This is equivalent to
maximizing (J +mTK)(y) for an unknown constant (in y) Lagrange multiplier mT ∈ ℝ,
cf. [GF00, Sect. 2.12.1]. We have

(J +mTK)(y) = F (Y0−)− F
(
y(T )

)
− y(T )mT

+ eµT
(
F (y)− F

(
y − g(y)

)
+ e−µTmT g(y)

)⏐⏐
y=y(0)

+ eµT
∫ T

0

G
(
τ, y(τ), y′(τ)

)
dτ ,

(3.20)

where G(τ, y, p) :=
(
e−µτf(y) + e−µTmT

)(
p− h(y)

)
. A necessary condition for y ∈ C1

maximizing J + mTK is that the first variation vanishes, cf. [GF00, Sect. 1.4], i.e.
δ(J +mTK)(y)[ζ] = 0 for every C1 perturbation ζ of y. Note that y(T ) fixed is on the
(to be found) boundary surface, so ζ(T ) = 0. The first variation of J +mTK at y in
direction ζ with ζ(T ) = 0 is

δ(J +mTK)(y)[ζ]

= eµT
(
f
(
y − g(y)

)
+ e−µTmT

)(
g′(y)− 1

)⏐⏐⏐
y=y(0)

ζ(0)

+ eµT
∫ T

0

(
Gy(τ, y(τ), y

′(τ))− d
dτGp(τ, y(τ), y

′(τ))
)
ζ(τ) dτ.

(3.21)

By first considering perturbations with ζ(0) = 0 we find that y(τ) must satisfy the Euler
equation Gy − d

dτGp = 0, i.e.

−e−µτf(y)(hλ+ h′ − µ)(y)− e−µTmTh
′(y) = 0 for all τ , at y = y(τ), (3.22)

or equivalently

e−µTmT = −e−µτf(y)

(
hλ+ h′ − µ

h′

)
(y) for all τ , at y = y(τ). (3.23)
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3.3 Free boundary construction and verification via calculus of variations

Hence the integral term in (3.21) vanishes and we obtain the boundary condition

eµT
(
f
(
y − g(y)

)
+ e−µTmT

)(
g′(y)− 1

)⏐⏐⏐
y=y(0)

= 0 . (3.24)

Now assume g′ ̸= 1. Then (3.23) and (3.24) yield at τ = 0, y = y(0) that

f
(
y − g(y)

)
h′(y) = f(y)(hλ+ h′ − µ)(y) . (3.25)

Since the left-hand side is positive and the right-hand side is only positive for y > y∞,
we find that g is to be defined on (y∞,∞) only and we would necessarily have for the
terminal impact YT− > y∞. Since f : ℝ→ (0,∞) is invertible by assumption, solving
(3.25) for g(y), we find the representation (3.9). Let us now summarize some properties
of g.

Lemma 3.3.1. The C1 function g : (y∞) → ℝ from (3.9) satisfies g(y) → ∞ as y ↘ y∞,
g > 0 on (y∞, y0), g(y0) = 0, g < 0 on (y0,∞) and g′(y) < 1 for all y ∈ (y∞,∞).

Note that for constant λ, we even have g(y) = − 1
λ log

(
(hλ+ h′ − µ)(y)/h′(y)

)
and

therefore g′ < 0 everywhere.

Proof. Since f ′ > 0, we have f−1 ∈ C1 and thus also g ∈ C1. The sign change at y0
follows from (hλ− µ)(y0) = 0 and monotonicity and positivity of (hλ+ h′ − µ)/h′ on
(y∞,∞). The limit as y ↘ y∞ follows similarly. We have g′ < 1 by direct calculation
since f ′ > 0 and (f (hλ+ h′ − µ)/h′)′ > 0 on (y∞,∞).

Differentiating both sides of the Euler equation (3.22) w.r.t. τ , we find

0 = µe−µτf(y)(hλ+h′ −µ)(y)− e−µτ
(
f · (hλ+h′ −µ)

)′
(y)y′ − e−µTmTh

′′(y)y′,

which, together with (3.23), gives and ODE for y.

y′ =

(
µh′(hλ+ h′ − µ)

(hλ+ h′ − µ)
(
λh′ + (hλ)′

)
− (hλ− µ)(hλ+ h′)′

)
(y)

= µ

(
f (hλ+ h′ − µ)/h′

(f (hλ+ h′ − µ)/h′)′

)
(y) = D(y) , (3.26)

where we recognize D from (3.10). Note that this is the same derivative as in the infinite
time horizon problem as can be seen from differentiating the right-hand side of (2.11).
With the initial (terminal time) condition g(y(0)) = θ(0) and θ′(τ) = y′(τ)− h(y(τ)),
the candidate boundary surface ℐ = {(τ, y(τ), θ(τ)) | y(0) ∈ (y∞,∞), τ ∈ [0, T ]} is now
uniquely determined. Let us summarize some properties of y and D.

Lemma 3.3.2. The function D : [y∞,∞) → ℝ from (3.10) is locally Lipschitz continu-
ous, satisfies D(y∞) = 0 and sgn(D(y)) = sgn(µ) for all y > y∞. Moreover, for each
initial value y(0) ∈ (y∞,∞), the ODE (3.26), y′ = D(y), has a unique global solution
y : [0,∞) → (y∞,∞).

In particular, the boundary surface ℐ is contained in [0, T ]× (y∞,∞)×ℝ.
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3 Optimal execution with price trends – a three-dimensional free boundary problem

Proof. The sign property of D and local Lipschitz-continuity on [y∞,∞) follow from the
properties of q = (hλ+h′−µ)/h′ in Lemma 3.1.3 by observingD(y) = µf(y)q(y)/(fq)′(y).

The constant function τ ↦→ y∞ is another solution of the autonomous ODE y′ = D(y).
Local Lipschitz continuity gives local existence and uniqueness for y′ = D(y) with
fixed y(0) = [y∞,∞). So that trajectories cannot cross and thus y(·) > y∞ whenever
y(0) > y∞.

To show global existence for initial value y(0) = z ∈ (y∞,∞), consider the in-
verse, τ(y) :=

∫ y

z
D(x)−1 dx. It suffices to prove τ(y) → ∞ for y → ∞. We have

τ(y) = 1
µ

(
log f(y)− log f(z) + log q(y)− log q(z)

)
. Hence f(y) → ∞ implies τ(y) → ∞

for y → ∞.

3.3.1 Reparametrizing the state space

Since y from Lemma 3.3.2 is defined via the terminal impact YT− = y(0) ∈ (y∞,∞),
it proves useful to reparametrize the whole state space in terms of terminal impact
z ∈ (y∞,∞), time to liquidation τ ∈ [0, T ], and initial block size d ∈ ℝ, instead of
τ and initial impact and position. We now prove that such reparametrization covers
the whole state space, cf. Corollary 3.3.5. In subsequent Section 3.3.2, we utilize this
reparametrization to formulate in (3.29) our candidate V for the value function v of
problem (3.7) and the corresponding free boundary surface ℐ in Theorem 3.3.8.
To stress the dependence of y and θ on z, let us write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yτ (τ ; z) = D
(
y(τ ; z)

)
, for τ ∈ [0, T ],

θτ (τ ; z) = yτ (τ ; z)− h
(
y(τ ; z)

)
, for τ ∈ [0, T ],

y(0; z) = z,

θ(0; z) = g(z),

(3.27)

where g is given by (3.9) and D is given by (3.10). Existence and uniqueness of
y(·; z), θ(·; z) ∈ C1([0, T ]) follow from Lemmas 3.3.1 and 3.3.2. Our candidate boundary
surface will be ℐ =

{(
τ, y(τ ; z), θ(τ ; z)

)
| τ ∈ [0, T ], z ∈ (y∞,∞)

}
, see also Theorem 3.3.8.

Intuitively, it is clear that given a point (τ, y, θ) on the boundary, we can follow the
path (y, θ) through that point backwards to reach (0, z, g(z)). To this end, we need to
invert z ↦→ y(τ ; z). By [Wal98, Theorem III.13.X], the map z ↦→ y(τ ; z) is continuously
differentiable. By the following lemma, it is moreover increasing and thus injective.

Lemma 3.3.3. We have yz(τ ; z) > 0 for all τ ∈ [0, T ] and z ∈ (y∞,∞).

Proof. Fix an arbitrary z. The pair (y, yz) := (y(·; z), yz(·; z)) solves the autonomous
ODE ∂τ (y, yz) = (D(y), D′(y)yz) with initial value (z, 1). But the pair (y(·; z), 0) also
solves this ODE and since two solution trajectories of autonomous ODEs cannot cross,
i.e. {(y(τ̃ ; z), 0) | τ̃} ∩ {(y(τ ; z), yz(τ ; z)) | τ} = ∅, we must have yz(τ ; z) ̸= 0 for all τ .
By continuity of yz(·; z) and the initial value 1 it follows that yz(τ ; z) > 0 for all τ .

By Lemma 3.3.2, y(τ, ·) has the range (y∞,∞), because τ ↦→ y(τ ; z) is continuous
and thus bounded on any compact interval [0, τ ] so that at τ we can reach any point
in (y∞,∞) by starting from an appropriate z = y(0, z) ∈ (y∞,∞). We will write
z(τ ; y) := (y(τ ; ·))−1(y), y > y∞, for the inverse. It solves the differential equation

zτ (τ ; y) =
−yτ

(
τ ; z(τ ; y)

)
yz
(
τ ; z(τ ; y)

) , with z(0; y) = y .
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3.3 Free boundary construction and verification via calculus of variations

Let gτ (y) = θ(τ ; z(τ ; y)), so that {(y, gτ (y)) | y > y∞} is the τ -slice of the (candidate)
boundary surface. In particular, we have g0(y) = g(y) and

g′τ (y) =
θz
(
τ ; z(τ ; y)

)
yz
(
τ ; z(τ ; y)

) . (3.28)

To show that the whole representation P (τ, z, d) := (τ, y(τ ; z) + d, θ(τ ; z) + d) is
injective, we investigate its Jacobian.

Lemma 3.3.4. The z derivatives of y and θ have the following representations

yz(τ ; z) = 1 +

∫ τ

0

D′(y(s; z))yz(s; z) ds ,

θz(τ ; z) = g′(z) +

∫ τ

0

(D′ − h′)(y(s; z))yz(s; z) ds .

Moreover, we have (yz − θz)(τ ; z) > 0 for all τ ∈ [0, T ] and z ∈ (y∞,∞).

Proof. The above representation of yz and θz follows from [Wal98, Theorem III.13.X
eq. (14)]. Now fix an arbitrary z. By Lemma 3.3.3, the difference yz − θz is increasing
in τ , because ∂τ (yz − θz) = h′(y)yz. Moreover, since (yz − θz)(0; z) = 1− g′(z) > 0 by
Lemma 3.3.1, we get yz − θz > 0 everywhere.

The desired bijective reparametrization P is provided by the next result.

Corollary 3.3.5. The state space representation P : [0, T ]× (y∞,∞)×ℝ→ [0, T ]×ℝ2

defined by P (τ, z, d) := (τ, y(τ ; z) + d, θ(τ ; z) + d) is bijective.

Proof. For injectivity, note that z ↦→ y(τ ; z) − θ(τ ; z) is injective by Lemma 3.3.4
and since y − θ = (y − d) − (θ − d), we can reconstruct z from τ and y − θ for
(τ, y, θ) ∈ P ([0, T ]×ℝ2). Now with d = y − y(τ ; z), we have uniquely identified (τ, z, d)
satisfying (τ, y, θ) = P (τ, z, d).
For surjectivity, note that the τ -slice of the (candidate) boundary surface has an

asymptote, gτ (y) → +∞ for y ↘ y∞, so it suffices to show that e.g. gτ (y) ≤ 0 for all y
large enough. By Lemma 3.3.1, we have g0(y) ≤ 0 for all y ≥ y0.
First consider the case µ ≤ 0, so that D(y) ≤ 0 by Lemma 3.3.2. Direct calculations

with (3.28) and Lemma 3.3.4 yield that ∂τgτ (y) = D(y)(1− g′τ (y))− h(y) ≤ −h(y) ≤ 0
for y ≥ 0. Hence, gτ (y) ≤ g0(y) whenever µ ≤ 0, for all τ and y > 0.

Now for µ > 0 we have y0 > 0 and thus (hλ−µ)(hλ+h′−µ)/h′+
(
(hλ+h′−µ)/h′

)′
h > 0

on (y0,∞) by Lemma 3.1.3. This implies θτ (τ ; z) =
(
D − h

)
(y(τ ; z)) < 0 whenever

y(τ ; z) > y0. Since moreover yτ = D(y) > 0 for µ > 0, we find in particular that
θτ (τ ; z) < 0 for all z > y0. Since already g0(y) < 0 for y large enough, we hence must
also have gτ (y) < 0 for all y > y(τ ; y0) large enough.

3.3.2 Local optimality for smooth strategies

We are now ready to formulate our candidate for the value function and optimal strategy
Θ and to prove a local optimality result for the boundary ℐ that characterizes Θ in
Theorem 3.3.8 using the second variation of the functional J +mTK.
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3 Optimal execution with price trends – a three-dimensional free boundary problem

For ℐ := P ([0, T ]× (y∞,∞)× {0}) let Θ be the strategy which performs a possible
initial jump to reach ℐ from Y0− = y, Θ0− = θ, then trades in rates −θ′ such as to stay
on ℐ, and finishes with a terminal jump to reach ΘT = 0. Then V (T, y, θ) = 𝔼[LT (Θ)]
is given by

V (τ, y, θ) := Jτ,y
(
y(·; z(τ, y, θ))

)
, (3.29)

where z(τ, y, θ) denotes the second component of P−1(τ, y, θ). The function V is our
candidate for the value function v of the original problem (3.7). We can rewrite V in
terms of the new coordinates, V (P (τ, z, 0)) = V̄ (τ ; z) with V̄ (τ ; z) = V

(
τ, y(τ ; z), θ(τ ; z)

)
given by

V̄ (τ ; z) = eµτ
(
F (z)−F (z−g(z))

)
−eµτ

∫ τ

0

e−µsf
(
y(s; z)

)(
h
(
y(s; z)

)
−yτ (s; z)

)
ds. (3.30)

By construction, V already satisfies (3.14).

Lemma 3.3.6. The function V from (3.29) satisfies V (0, ·, 0) = 0 and the variational
equality (3.14), Vy(τ, y, θ) + Vθ(τ, y, θ) = f(y), everywhere.

Proof. Note that J = Jτ,y and K = Kτ do not depend on θ directly, but y does. There-
fore, denote this function by yy,θ. We immediately see J0,y(yy,0) = 0. Now, consider the
diagonal (y + d, θ+ d) for arbitrary displacement d ∈ ℝ. Since Kτ (yy+d,θ+d) = Kτ (yy,θ)
and Jτ,y+d(·) = Jτ,y(·) + F (y + d)− F (y), we find yy+d,θ+d = yy,θ, and thus

V (τ, y + d, θ + d) = V (τ, y, θ) + F (y + d)− F (y) .

The variational equality (3.14), Vy + Vθ = f , follows.

By utilizing the second variation δ2(J +mTK)(y)[ζ] we get optimality of y in Theo-
rem 3.3.8 below. The second variation is the second order term in the Taylor expansion
of (J +mTK)(y + ζ) around y, cf. [GF00, Ch. 5]. The general Taylor expansion reads
as follows.

Proposition 3.3.7 (Taylor). Let φ ∈ Cn+1(ℝk;ℝ), x ∈ ℝk and h ∈ ℝk. Then we have

φ(x+ h) =

n∑
k=0

∑
|α|=k

hα

α!
∂αφ(x) +

∑
|α|=n+1

(n+ 1)

α!
hα
∫ 1

0

(1− t)n∂αφ(x+ th) dt,

with multi-index α ∈ ℕk
0 .

Theorem 3.3.8. The candidate boundary

ℐ = P ([0, T ]× (y∞,∞)×{0}) =
{
(τ, y(τ ; z), θ(τ ; z)

⏐⏐ τ ∈ [0, T ], z ∈ (y∞,∞)
}

(3.31)

with y, θ given by (3.27) is locally optimal in the following sense:
Let y := y(·; z) for (T, z, d) := P (T, Y0−,Θ0−). Then there exists ε > 0 such that

for all ŷ ∈ C1([0, T ]) which satisfy ∥y − ŷ∥W 1,∞ := ∥y − ŷ∥∞ ∨ ∥y′ − ŷ′∥∞ ∈ (0, ε) and
ŷ(T ) = y(T ) we have (J +mTK)(y) > (J +mTK)(ŷ).

The condition ŷ(T ) = y(T ) is necessary for ŷ to correspond to a strategy which starts
in (Y0−,Θ0−).
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3.3 Free boundary construction and verification via calculus of variations

Proof. The Taylor expansion of (J +mTK)(y + ζ) with ζ(T ) = 0 gives

(J+mTK)(y+ ζ) = (J+mTK)(y)+δ(J+mTK)(y)[ζ]+δ2(J+mTK)(y)[ζ]+ε(ζ)

where the first variation δ(J+mTK)(y)[ζ] given in (3.21) equals zero at y by construction
and the second variation δ2(J +mTK)(y)[ζ] and error term ε(ζ) are

δ2(J +mTK)(y)[ζ]

=
eµT

2

(
f
(
y−g(y)

)
g′′(y)+e−µTmT g

′′(y)−f ′
(
y−g(y)

)(
1−g′(y)

)2)⏐⏐⏐
y=y(0)

ζ(0)2

+
eµT

2

∫ T

0

(
Gyy(τ, y(τ), y

′(τ))− d
dτGyp(τ, y(τ), y

′(τ))
)
ζ(τ)2 dτ , (3.32)

ε(ζ) =
1

2
eµT
(∫ 1

0

(1− η)2f ′′(y + ηζ) dη

−
∫ 1

0

(1− η)2
(
F ◦ (id−g)

)′′′
(y + ηζ) dη

− e−µTmT

∫ 1

0

(1− η)2g′′′(y + ηζ) dη

)⏐⏐⏐⏐
τ=0

ζ(0)3

+ eµT
∫ T

0

∫ 1

0

(1−η)2
(

1
2ζ

3Gyyy+
3
2ζ

2ζ ′Gyyp

)
(τ, y+ηζ, y′+ηζ ′) dη dτ .

Since f, g, F,G are all C3, continuity of y, y′ and compactness of [0, T ] give that we can
bound the error term by |ε(ζ)| ≤ C ∥ζ∥3W 1,∞ for some constant C. For perturbations
ζ ∈ C1([0, T ]), which additionally satisfy ζ(0) = 0, we get

δ2(J +mTK)(y)[ζ] =
1

2
eµT

∫ T

0

(
Gyy − d

dτGyp

)
ζ2 dτ ,

with Gyy − d
dτGyp = −e−µτf ′ (hλ+ h′ − µ)− e−µτf (hλ+ h′)′ − e−µTmTh

′′, evaluated
at y(τ). By (3.23) this simplifies to

Gyy − d
dτGyp = −e−µτh′(y(τ))

(
f
hλ+ h′ − µ

h′

)′

(y(τ)),

which is negative because y > y∞ by Lemma 3.3.2 and h and f (hλ + h′ − µ)/h′ are
increasing on (y∞,∞) by Assumption 3.1.1. Hence for all perturbations ζ ̸≡ 0 with
ζ(0) = ζ(T ) = 0 we have δ2(J +mTK)(y)[ζ] < 0. Now considering ζ(0) ̸= 0, by (3.24)
and g′ < 1 we get

δ2(J +mTK)(y)[ζ] <
eµT

2
g′′(y)

(
f
(
y − g(y)

)
+ e−µTmT

)⏐⏐⏐
y=y(0)

ζ(0)2 = 0.

So for ∥ŷ − y∥W 1,∞ small enough, we get (J +mTK)(ŷ) < (J +mTK)(y).

Note that given a C1 path y : [0, T ] → ℝ of Yt = y(T − t), t ∈ [0, T ), the asset
position Θt = θ(T − t) is uniquely determined by θ(T ) = Θ0− + y(T ) − Y0− and
θ′(τ) = y′(τ)− h(y(τ)), subject to the condition that we can reach (y(T ), θ(T )) with an
initial jump, i.e. that K(y) = Θ0− − Y0−. The variational equality (3.14) and (3.15) for
the value of the candidate optimal strategy Θ given by y is straight forward.
Theorem 3.3.8 is key to verify the variational inequality ℒV < 0, cf. Lemma 3.3.10.

43



3 Optimal execution with price trends – a three-dimensional free boundary problem

3.3.3 Proving the variational inequality

We will now prove the variational inequality ℒV ≤ 0 for our candidate value function V
from (3.29). First, we rewrite ℒV in terms of the new variables τ , terminal impact z, and
initial jump size d. We prove equality ℒV = 0 on the boundary surface ℐ in Lemma 3.3.9.
The strict inequality ℒV < 0 in [0, T ]×ℝ2 \ ℐ then follows from Theorem 3.3.8, which
guaranties ℒV < 0 in a neighborhood of ℐ, cf. Lemma 3.3.10.

Let d(τ, y, θ) be the ∥·∥∞-distance in direction (−1,−1) of the point (τ, y, θ) ∈ [0, T ]×ℝ2

to the boundary ℐ = P ([0, T ]× (y∞,∞)×{0}), i.e. third component of P−1(τ, y, θ). For
brevity, we will usually abbreviate d = d(τ, y, θ), and its partial derivatives dτ = dτ (τ, y, θ)
etc. Since (τ, y − d, θ − d) lies on the boundary, we have θ − d = θ(y − d). This yields
all partial derivatives of d

dy =
( g′τ
g′τ − 1

)
(y − d) ,

dθ =
( 1

1− g′τ

)
(y − d) = 1− dy ,

dτ =
(
−D +

h

1− g′τ

)
(y − d) = −D(y − d) + h(y − d)dθ .

(3.33)

Using (3.30), we can now calculate the partial derivatives of the candidate value
function V (τ, y, θ) = V̄ (τ ; z(τ ; y − d)) + F (y)− F (y − d). For V̄ we get

V̄τ (τ ; z) = µV̄ (τ ; z)−
(
f (h−D)

)
(y(τ ; z)) ,

V̄z(τ ; z) = eµτ
(
f(z)− f(z − g0(z))(1− g′0(z))

)
− eµτ

∫ τ

0

e−µs
(
f ′ (h−D) + f (h′ −D′)

)
(y(s; z)) yz(s; z) ds .

For brevity, we will omit the arguments of V̄ (τ ; z(τ ; y− d)) and af the partial derivatives
of z(τ ; y − d), as we do it with d. We have

Vτ (τ, y, θ) = V̄τ + V̄z
(
zτ + zy (−dτ )

)
− f(y − d)(−dτ ) ,

Vy(τ, y, θ) = V̄z zy (1− dy) + f(y)− f(y − d)(1− dy) ,

Vθ(τ, y, θ) = V̄z zy (−dθ) + f(y − d)dθ .

Now checking the variational equality (3.12) is straight-forward.

Lemma 3.3.9. The candidate buy-sell value function V from Lemma 3.3.6 satisfies the
variational equality (3.12), ℒV = 0, on the boundary ℐ.

Proof. By direct calculation, using d = 0 in ℐ,

ℒV ≡ −µV + Vτ + hVy

= −µV̄ + V̄τ + V̄zzτ − V̄zzydτ + fdτ + hV̄zzydθ + hf − hfdθ

= −f · (h−D) + V̄zzτ − V̄zzy (−D + hdθ)

+ f · (−D + hdθ) + hV̄zzydθ + hf − hfdθ

= V̄zzτ + V̄zzyD = V̄z (−yτzy −Dzy) = 0 .
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3.3 Free boundary construction and verification via calculus of variations

Now, to investigate the variational inequality (3.13) for general (τ, y, θ), fix a point
(τ, yb, θb) ∈ ℐ on the boundary and vary the distance d. Since d(τ, yb + x, θb + x) = x,
we find that dθ(τ, yb + x, θb + x) = dθ(τ, yb, θb), dy(τ, yb + x, θb + x) = dy(τ, yb, θb), and
dτ (τ, yb+x, θb+x) = dτ (τ, yb, θb), i.e. dθ, dy and dτ are constant when (τ, yb, θb) is fixed.
Let

k(d) := ℒV (τ, yb + d, θb + d) (3.34)

= −µV (τ, yb+d, θb+d)+Vτ (τ, yb+d, θb+d)+h(yb+d)Vy(τ, yb+d, θb+d)

= −µ
(
V̄ (τ, z(τ ; yb)) + F (yb + d)− F (yb)

)
+ V̄τ (τ, z(τ ; yb)) + V̄z(τ, z(τ ; yb))

(
zτ (τ ; yb)− zy(τ ; yb)dτ

)
+ f(yb)dτ

+ h(yb + d)
(
V̄z(τ, z(τ ; yb))zy(τ ; yb)dθ + f(yb + d)− f(yb)dθ

)
.

By Lemma 3.3.9, we already know k(0) = 0. To prove k(d) > 0 for d ̸= 0, it suffices to
show k′(d) > 0 for d > 0 and k′(d) < 0 for d < 0. With now fixed zy = zy(τ ; yb) and
V̄z = V̄z(τ ; zy(τ ; yb)), we have

k′(d) = −µf(yb + d) + h′(yb + d)
(
V̄zzydθ + f(yb + d)− f(yb)dθ

)
+ h(yb + d)f ′(yb + d)

=
(
f (hλ+h′−µ)

)
(yb+d)+h

′(yb+d)
(
V̄zzy−f(yb)

)
dθ . (3.35)

In particular, at d = 0±, meaning the one-sided derivatives k′(0+) and k′(0−), respec-
tively, we get with q := (hλ+ h′ − µ)/h′ that

(
V̄z(τ, z(τ ; yb))zy(τ ; yb)− f(yb)

)
dθ =

k′(0±)

h′(yb)
− f(yb)q(yb) .

Note that the left-hand side does not depend on the value of d. Using our local optimality
result from Theorem 3.3.8, we will show k′(0−) ≤ 0 ≤ k′(0+) in Lemma 3.3.10 below.
This implies

−Vθ(τ, yb, θb) =
(
V̄z(τ, z(τ ; yb))zy(τ ; yb)− f(yb)

)
dθ = −f(yb)q(yb) , (3.36)

so that (3.35) simplifies to k′(d)/h′(yb+d) =
(
fq
)
(yb+d)−

(
fq
)
(yb). By Assumption 3.1.1

we have fq < 0 on (−∞, y∞) and fq is positive and increasing on (y∞,∞). Since yb > y∞
this implies k′(d) < 0 for d < 0 and k′(d) > 0 for d > 0, so that

k(d) > 0 for all d ̸= 0. (3.37)

The above derivation depends on the correct sign of k′(0±). The idea is that a wrong
sign of k′(0±), would cause a local violation of the variational inequality (3.13) which we
could exploit to construct a strategy near our candidate θ that would generate strictly
larger proceeds, contradicting Theorem 3.3.8.

Lemma 3.3.10. We have k′(0+) ≥ 0 and k′(0−) ≤ 0 for the function k from (3.34).

Proof. We will prove k′(0+) ≥ 0 by contradiction using Theorem 3.3.8. The proof
of k′(0−) ≤ 0 is analogous. To make the dependence of k and k′ on the boundary
point (τ, yb, θb) = P (τ, zb, 0) ∈ ℐ explicit, we use subscript notation kτ,zb(d) and k

′
τ,zb

(d),
respectively. By continuity of k and k′ in τ , we can assume τ < T .
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3 Optimal execution with price trends – a three-dimensional free boundary problem

Assume k′τb,zb(0+) < 0 for some τb, zb. By continuity of (τ, z, d) ↦→ k′τ,z(d) there
exists a neighborhood U = (τ1, τ2)× (zb − ε, zb + ε)× (0, ε) of “(τb, zb, 0+)” such that
k′τ,z(d) < 0 for all (τ, z, d) ∈ U , or “k′ < 0 in U” for short. Since moreover kτ,z(0) = 0
by Lemma 3.3.9, we also have k < 0 in U .
We now need to construct a path (τ, ŷ(τ), θ̂(τ)) = P (τ, ẑ(τ), d̂(τ)) that remains on

the boundary surface ℐ for τ /∈ (τ1, τ2) and runs inside U for τ ∈ (τ1, τ2), and such that

moreover θ̂′ = ŷ′ − h(ŷ) everywhere. Take a smooth function φ : [0, T ] → [0, 1] with

support [τ1, τ2] and let d̂(τ) := ε̂φ(τ) for some (to be determined) constant ε̂ ∈ (0, ε). It
remains to find an appropriate ẑ. By fixing ẑ(τ) constant with value z1 ∈ (zb − ε, zb + ε)

on [0, τ1] and constant with value z2 ∈ (zb − ε, zb + ε) on [τ1,∞), we have θ̂′ = ŷ′ − h(ŷ)
outside of [τ1, τ2]. We know that

ŷ′(τ) = ε̂φ′(τ) + yτ (τ ; ẑ(τ)) + yz(τ ; ẑ(τ))ẑ
′(τ),

θ̂′(τ) = ε̂φ′(τ) + θτ (τ ; ẑ(τ)) + θz(τ ; ẑ(τ))ẑ
′(τ).

Since θτ = yτ − h(y), the condition θ̂′ = ŷ′ − h(ŷ) reduces to the non-autonomous ODE

ẑ′ =
h
(
y(τ ; ẑ) + ε̂φ(τ)

)
− h
(
y(τ ; ẑ)

)(
yz − θz

)
(τ ; ẑ)

=: R(τ, ẑ, ε̂) , (3.38)

with abbreviation ẑ = ẑ(τ). By monotonicity of h and Lemma 3.3.4, we have R(τ, ẑ, ε̂)>0
for τ1 < τ < τ2, since ε̂φ > 0 there, and R(τ, ẑ, ε̂) = 0 for τ /∈ (τ1, τ2). Since R(τ, ·, ε̂) is
locally Lipschitz, there exists a unique local solution ẑ = ẑε̂ for (3.38) with ẑ(τb) = zb on
a maximal interval Iε̂ with τb ∈ Iε̂ such that ẑε̂(·) ∈ (zb − ε, zb + ε) everywhere. In the
limiting case ε̂→ 0 we have the constant solution ẑ0(·) ≡ zb globally. Hence there exists
ε̂ > 0 small enough, such that Iε̂ ⊃ [τ1, τ2]. Now, we immediately see that Iε̂ ⊃ [0, T ]
for T := τ2 and that ẑ = ẑε̂ is constant on [0, τ1]. Moreover, since ŷ(·)− y(·; ẑε̂(T )) → 0
in ∥·∥W 1,∞ on [0, T ] as ε̂ → 0, we can assume that ε̂ > 0 is small enough such that

Theorem 3.3.8 applies. Note that y(T ; ẑε̂(T )) = ŷ(T ) and θ(T ; ẑε̂(T )) = θ̂(T ), so

K
(
y(·; ẑε̂(T ))

)
= θ(T ; ẑε̂(T ))− y(T ; ẑε̂(T )) = θ̂(T )− ŷ(T ) = K(ŷ) .

Hence the corresponding strategy Θ̂ with Θ̂t = θ̂(T − t) for t ∈ [0, T ) and Θ̂T = 0 which
starts at impact Ŷ0− = Y0− with Θ̂0− = Θ0− generates strictly less expected proceeds
𝔼[LT (Θ̂)] = J(ŷ) than the strategy Θ with Θt = θ(T − t) for t ∈ [0, T ) and ΘT = 0
which starts from the same point. On the other hand, we have LT = GT (after the
terminal block trade) since V (0, ·, 0) = 0, so (3.11) gives

LT (Θ̂)− LT (Θ) = G0−(Θ̂)−G0−(Θ) +

∫ T

0

d
(
G·(Θ̂)−G·(Θ)

)
t

= S0V (T, Y0−,Θ0−)− S0V (T, Y0−,Θ0−) +

∫ T

0

d
(
G·(Θ̂)−G·(Θ)

)
t

=

∫ T

0

e−γtV (T − t, Ŷt, Θ̂t) dMt −
∫ T

0

e−γtV (T − t, Yt,Θt) dMt

−
∫ T

0

e−γtSt ℒV (T − t, Ŷt, Θ̂t) dt+

∫ T

0

e−γtSt ℒV (T − t, Yt,Θt) dt,
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using Lemma 3.3.6. Since V is continuous and Ŷ , Θ̂, Y,Θ are bounded, the local
martingales are true martingales, so in expectation we get

𝔼[LT (Θ̂)− LT (Θ)] =

∫ T

0

𝔼
[
e−γtSt

(
ℒV (T − t, Ŷt, Θ̂t)− ℒV (T − t, Yt,Θt)

)]
dt

= −
∫ T

0

eµ(T−τ)S0

(
kτ,ẑε̂(τ)(d̂(τ))− kτ,ẑε̂(0)(0)

)
dτ

= −S0

∫ τ2

τ1

eµ(T−τ)kτ,ẑε̂(τ)(ε̂φ(τ)) dτ > 0 ,

which contradicts 𝔼[LT (Θ̂)] < 𝔼[LT (Θ)].

Now we have all ingredients for the proof of our main result.

Proof of Theorem 3.2.1. By construction, Θ∗ is deterministic and thus predictable. Be-
cause jumps only occur at initial and terminal time and Θ∗ is absolutely continuous in
between, it is right-continuous and of bounded variation.

Since an admissible strategy Θ is of bounded variation, the state process (T−t, Y Θ
t ,Θt)

is bounded. More precisely, if C > 0 is a bound on the total variation of Θ = Θ+−Θ−, i.e.
Θ+

T (ω)+Θ−
T (ω) ≤ C, then |Θt| ≤ C and Yt ∈ [min {Y0−, 0}−C,max {Y0−, 0}+C]. Hence,

continuity of V gives boundedness of V (T − t, Yt,Θt) and so the local martingale part in
equation (3.11) is a true martingale for every strategy. By Lemmas 3.3.9 and 3.3.10 and
thus (3.37) we have that V satisfies the variational (in-)equality (3.12)–(3.13). Together
with Lemma 3.3.6 we have that G is a supermartingale for every Θ and a martingale
for Θ∗, so by Proposition 3.2.5, up to the factor S0, V is indeed the value function of
problem (3.7).

3.4 Solving the problem for monotone strategies

Let us now consider the monotone case of a large investor who cannot perform interme-
diate buying or short selling. The optimal free boundary ℐ1 ∪ℐ2 that separates wait and
sell regions in this case is a mixture of a part ℐ2 of the free boundary from Theorem 3.2.1
and a suitable enlargement ℐ1 of the free boundary for infinite horizon trading from
Chapter 2.

We will restrict ourselves to a regime of decreasing prices (in expectation), i.e. µ < 0
for the rest of this section. Moreover, in addition to Assumption 3.1.1, we will assume
that impact function f and resilience h are such that the terminal position function g
from Lemma 3.3.1 is strictly decreasing on (y∞, y0], which is the case for e.g. f(y) = eλy

with constant λ. Admissible strategies are

𝒜mon(θ) :=
{
Θ
⏐⏐ (Θt)t∈[0,T ] is adapted non-increasing with θ ≥ Θt ≥ ΘT = 0

}
. (3.39)

By Remark 3.2.3, the orbit ℐ0 := P ([0, T ] × {y0} × {0}) characterizes the optimal
solution to the corresponding infinite horizon problem whenever it liquidates it time T
(the optimal infinite horizon boundaries for the problems with buying but no short sales
and without buying coincide).
Denote by ℐ1 := {(τ + s, y, θ) | (τ, y, θ) ∈ ℐ0, s ≥ 0} the elongation of ℐ0 backwards

in time. The orbit ℐ0 splits our surface ℐ from Theorem 3.2.1 into two regions: by
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3 Optimal execution with price trends – a three-dimensional free boundary problem

Lemma 3.3.1, we have that the subset ℐ2 := P ([0, T ] × (y∞, y0) × {0}) ⊂ ℐ contains
all orbits (T − t, Yt,Θt)t∈[0,T ) that finish at positive position ΘT− = g(YT−) > 0 with
a block sale, while the other part ℐ \ (ℐ0 ∪ ℐ2) contains all orbits which finish with a
terminal block buy, ΘT− = g(YT−) < 0.
Let w̄(τ ; y) solve w̄(0; y) = y and ∂τ w̄(τ ; y) = h(w̄(τ ; y)). For i = 0, 1, 2 denote

𝒮i := {(τ, y + d, θ + d) | (τ, y, θ) ∈ ℐi, d ≥ 0},
𝒲i := {(τ + s, w̄(s; y), θ) | (τ, y, θ) ∈ ℐi, s ≥ 0},
𝒲3 := {(s, w̄(s; y), θ) | θ ≥ 0, s ≥ 0, y < g−1(θ)}.

(3.40)

Now the optimal sell only problem maxΘ∈𝒜mon(θ)𝔼[LT (Θ) | Y0− = y,Θ0− = θ] is solved
as follows.

Theorem 3.4.1. Let f, λ, h, µ satisfy Assumption 3.1.1 and such that additionally µ < 0.
Let w(·; y) solve the differential equation ∂tw(t; y) = −h(w(t; y)) with w(0; y) = y and
define

Tw := 0 ∨ sup {t ∈ [0, T ] | (T − t, w(t;Y0−),Θ0−) ∈ 𝒲1 ∪𝒲2 ∪𝒲3},
∆0 := 0 ∨ sup {d ≥ 0 | (T, Y0− − d,Θ0− − d) ∈ 𝒮1 ∪ 𝒮2 ∪ 𝒮3}.

Moreover, let y(t;x) and θ(t;x, θ0) solve the differential equations ∂ty = −D(y) and
∂tθ = ∂ty + h(y) for t ∈ [0, T ], with y(0;x) = x and θ(0;x, θ0) = θ0. Define the process
Θ∗ on [0, T ] by

Θ∗
t := (Θ0− −∆0)𝟙[0,Tw)(t) + θ

(
t− Tw;w(Tw;Y0−),Θ0− −∆0

)
𝟙[Tw,T )(t).

Then Θ∗ ∈ 𝒜mon(Θ0−) maximizes expected proceeds among all 𝒜mon(Θ0−), i.e.

𝔼[LT (Θ
∗)] = max

Θ∈𝒜mon(Θ0−)
𝔼[LT (Θ)].

Remark 3.4.2. The specification of Θ∗ in Theorem 3.4.1 is just a formalization of the
following procedure:

1. If (T, Y0−,Θ0−) ∈ 𝒲1 ∪ 𝒲2, wait until (T − t, Y Θ∗

t ,Θ∗
t ) ∈ ℐ1 ∪ ℐ2 at time

t = Tw ∈ [0, T ], i.e. with Θ∗
t = Θ0− on [0, Tw) so that Y Θ∗

t = w(t;Y0−) for
t ∈ [0, Tw].

2. If (T, Y0−,Θ0−) ∈ 𝒲3, wait until the end, Tw = T , and finish with a single block
sale of size ∆ΘT = −Θ0−.

3. If (T, Y0−,Θ0−) ∈ 𝒮1 ∪ 𝒮2, do not wait (Tw = 0), but perform a block sale of size
|∆0| to reach the boundary ℐ1 ∪ ℐ2 immediately.

4. If after waiting or initial jump (T − t, Y Θ∗

t ,Θ∗
t ) ∈ ℐ1 at time t = Tw, trade

continuously in rates dΘ∗
t /dt = (h − D)(Y Θ∗

t ) along the boundary, keeping
(T − t, Y Θ∗

t ,Θ∗
t ) ∈ ℐ1, until Θ

∗
s = 0 at some time s ∈ [Tw, T ] and stop trad-

ing.

5. If after waiting or initial jump (T − t, Y Θ∗

t ,Θ∗
t ) ∈ ℐ2 at time t = Tw, trade

continuously in rates dΘ∗
t /dt = (h − D)(Y Θ∗

t ) along the boundary, keeping
(T − t, Y Θ∗

t ,Θ∗
t ) ∈ ℐ2 for t ∈ [Tw, T ), until time T and perform a final block

sale of size ∆Θ∗
T = −Θ∗

T−.
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3.4 Solving the problem for monotone strategies

Proof of Theorem 3.4.1. The proof in 𝒮2 ∪ 𝒮1 ∪ 𝒲1 reduces to existing optimality
results. This will be done in Step 1. We will then handle the remaining cases
(T, Y0−,Θ0−) ∈ 𝒲2∪𝒲3 by proving the corresponding variational (in)equalities directly.
Similarly to Proposition 3.2.5 in the buy-and-sell case, it suffices to prove ℒV = 0 and
Vy + Vθ > f in (𝒲2 \ ℐ2) ∪𝒲3 with equality at the boundary surface ℐ2. This is done
in step 2 for 𝒲2 and in step 3 for 𝒲3.
Step 1. Form initial state (T, Y0−,Θ0−) ∈ 𝒮2, the solution to the maximization

problem over 𝒜T ⊃ 𝒜mon(Θ0−) from Theorem 3.2.1 is monotone, as described in
Remark 3.2.4, and coincides with Θ∗.

If (T, Y0−,Θ0−) ∈ 𝒮1∪𝒲1, the solution coincides with the optimal liquidation strategy
Θ∗ in infinite horizon from Theorem 2.2.4, which liquidates before time T .

Step 2. Consider (T, Y0−,Θ0−) ∈ 𝒲2, so that Y Θ∗

t = w(t;Y0−) during the ini-
tial waiting period [0, Tw]. Note that w(t; w̄(t; y)) = y and the derivative wy(t; y) of
w w.r.t. its initial condition, wy(t; y) := ∂yw(t; y), satisfies the differential equation
d
dtwy(t; w̄(t; y)) = −h′(w̄(t; y))wy(t; w̄(t; y)) and wy(0; y) = 1.
Since the boundary surface part ℐ2 coincides with the boundary surface from the

buy-and-sell problem Theorem 3.2.1, the initial waiting time is given by

s(τ, y, θ) := inf {t ≥ 0 | d(τ − t, w(t; y), θ) = 0}

and satisfies s(τ, y, θ) ∈ [0, T ]. Using (3.33) we find at the boundary ℐ2, that( d

dt
d(τ − t, w(t; y), θ)

)⏐⏐⏐
t=s(τ,y,θ)

= (D − h′)(yb) = θ′(τ − s) > 0,

where yb = w(s(τ, y, θ); y) and the trading rate −θ′(τ − s) along the boundary ℐ2 is
negative, as pointed out in Remark 3.2.4. Now, since the partial derivative of d along the
trajectory (τ − t, w(t; y), θ) is non-zero at t = s(τ, y, θ), the implicit function theorem
gives s ∈ C1(𝒲2) (with one-sided derivatives at the boundary ℐ2).
Let V 𝒮 denote the value function in 𝒮2, where it coincides with the buy-and-wait

value function from Theorem 3.2.1. Then the value of Θ∗ is given in 𝒲2 as

V𝒲(τ, y, θ) = eµs(τ,y,θ)V 𝒮(τ − s(τ, y, θ), w(s(τ, y, θ); y), θ) =: eµsV 𝒮 .

Using that ℒV 𝒮(τb, yb, θb) ≡
(
V 𝒮
τ + h(yb)V

𝒮
y − µV 𝒮)(τb, yb, θb) = 0 at the boundary

(τb, yb, θb) ∈ ℐ2, we get

V𝒲
τ = µeµsV 𝒮sτ + eµsV 𝒮

τ · (1− sτ )− h(w)eµsV 𝒮
y sτ = eµsV 𝒮

τ ,

V𝒲
y = µeµsV 𝒮sy + eµsV 𝒮

τ · (−sy)− h(w)eµsV 𝒮
y sy + eµsV 𝒮

y wy = eµsV 𝒮
y wy ,

V𝒲
θ = µeµsV 𝒮sθ + eµsV 𝒮

τ · (−sθ)− h(w)eµsV 𝒮
y sθ + eµsV 𝒮

θ = eµsV 𝒮
θ .

Now fix (τ − s(τ, y, θ)), w(s(τ, y, θ); y), θ) = (τb, yb, θb) ∈ ℐ2 on the boundary and vary
s = s(τ, y, θ), so that (τ, y, θ) = (τb + s, w̄(s; yb), θb). Let

ℓ(s) := e−µsℒV𝒲(τb + s, w̄(s; yb), θb)

= V 𝒮
τ (τb, yb, θb) + h(w̄(s; yb))V

𝒮
y (τb, yb, θb)wy(s; w̄(s; yb))− µV 𝒮(τb, yb, θb).

Since wy(0; yb) = 1, we immediately get ℓ(0) = ℒV 𝒮(τb, yb, θb) = 0. Now, using that
d
dswy(s; w̄(s; yb)) = −h′(w̄(s; yb))wy(s; w̄(s; yb)), we get ℓ′(s) = 0. Hence ℒV𝒲 = 0 in
𝒲2.
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For proving the variational inequality Vy +Vθ > f in 𝒲2 \ ℐ2, remember that we have

V 𝒮
θ (τb, yb, θb) =

(
f hλ+h′−µ

h′

)
(yb) on the boundary by (3.36) and consider

r(s) :=
V𝒲
y + V𝒲

θ

f
= eµs

−
(
f hλ−µ

h′

)
(yb)wy(s; w̄(s; yb)) +

(
f hλ+h′−µ

h′

)
(yb)

f(w̄(s; yb))
.

Since wy(0; y) = 1 and w̄(0; yb) = yb, we find r(0) = 1. Thus, to show that r(s) > 1 for
all s > 0 it suffices to prove r′(s) > 0. Direct calculations give

e−µsh′(yb)
f(w̄(s; yb))

f(yb)
r′(s)

=
(
hλ− µ

)
(yb)

(
hλ+ h′ − µ

)
(y)wy −

(
hλ− µ

)
(y)
(
hλ+ h′ − µ

)
(yb) =: R(y)

where y = w̄(s; yb) and wy = wy(s; y). Now it suffices to prove R(y) > 0 for all y < yb.
Since yb ∈ (y∞, y0), we have (hλ− µ)(y) < (hλ− µ)(yb) ≤ 0 and

(
hλ+ h′ − µ

)
(yb) > 0.

Hence, for y ≤ y∞, we immediately find R(y) >
(
hλ−µ

)
(yb)

(
hλ+h′−µ

)
(y)wy > 0. Now

consider y ∈ (y∞, yb). Note that wy ∈ (0, 1] for all s ≥ 0, since ∂swy = −h′wy. Hence,
we get R(y) ≥ Q(y, yb) :=

(
hλ− µ

)
(yb)

(
hλ+ h′ − µ

)
(y)−

(
hλ− µ

)
(y)
(
hλ+ h′ − µ

)
(yb).

However, y ↦→ Q(y, yb) is decreasing in [y∞, y0], because

∂yQ(y, yb) =
(
hλ− µ

)
(yb)

(
hλ+ h′

)′
(y)−

(
hλ
)′
(y)
(
hλ+ h′ − µ

)
(yb) < 0.

So R(y) > Q(y, yb) > Q(yb, yb) = 0 for y∞ < y < yb and therefore r′(s) > 0 for all s > 0,
which gives V𝒲

y + V𝒲
θ > f in 𝒲2 \ ℐ2.

Step 3. It remains to consider 𝒲3. In this region, the expected proceeds from Θ∗

are given by V𝒲3(τ, y, θ) = eµτ
∫ θ

0
f(w(τ ; y)− z) dz for w as in step 2 above. We have

partial derivatives

V𝒲3
τ = µV𝒲3 − h(w(τ ; y))eµτ

(
f(w(τ ; y))− f(w(τ ; y)− θ)

)
,

V𝒲3
y = eµτwy(τ ; y)

(
f(w(τ ; y))− f(w(τ ; y)− θ)

)
,

V𝒲3

θ = eµτf(w(τ ; y)− θ).

Fix yb := w(τ ; y) < g−1(θ) ≤ y0 and vary τ so that y = w̄(τ ; yb). Consider

ℓ(τ) := ℒV𝒲3(τ, w̄(τ ; yb), θ)

= eµτ
(
h(w̄(τ ; yb))wy(τ ; w̄(τ ; yb))− h(yb)

)  
=:ℓ̃(τ)

(
f(w(τ ; y))− f(w(τ ; y)− θ)

)
.

By w̄(0; yb) = yb and wy(0; ·) = 1, we find ℓ̃(0) = 0. Moreover, differentiation gives

ℓ̃′(τ) = h′(w̄(τ ; yb))wy(τ ; w̄(τ ; yb))− d
dτwy(τ ; w̄(τ ; yb)) = 0 and hence ℓ(τ) = 0 for all τ .

For the variational inequality, consider

r(τ) :=
V𝒲3
y + V𝒲3

θ

f
= eµτ

(
f(yb)− f(yb − θ)

)
wy + f(yb − θ)

f(w̄(τ ; yb))
.

As in step 2, r(0) = 1 is immediately clear and we will show r′(τ) > 0 for τ > 0. We
have

e−µτf(y)r′(τ) = −
(
f(yb)−f(yb− θ)

)
·
(
hλ+h′−µ

)
(y) ·wy −f(yb− θ) ·

(
hλ−µ

)
(y),
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so for τ large enough such that y = w̄(τ ; yb) ≤ y∞, it immediately follows that r′(τ) > 0.
Now consider the case of y = w̄(τ ; yb) > y∞. Since (hλ + h′ − µ)(y) > 0 in this case

and wy ≤ 1, we find e−µτf(y)r′(τ)/h′(y) ≥ −f(yb)
(
hλ+h′−µ

h′

)
(y) + f(yb − θ). Since

y∞ < yb < g−1(θ) and g is strictly decreasing on (y∞, y0) by assumption, we have
f(yb − θ) > f(yb − g(yb)). Hence

e−µτf(y)

f(yb)h′(y)
r′(τ) ≥ f(yb − g(yb))

f(yb)
−
(
hλ+ h′ − µ

h′

)
(y)

=

(
hλ+ h′ − µ

h′

)
(yb)−

(
hλ+ h′ − µ

h′

)
(y) > 0,

since (hλ+ h′ − µ)/h′ is increasing on (y∞,∞) as noted after Assumption 3.1.1. So we
have r′(τ) > 0 and thus r(τ) > 1 for all τ > 0.

Remark 3.4.3. When time horizon T is short, one might a priori attempt to just
follow the infinite horizon solution as long as possible and stop early with a terminal
block trade. Such a strategy would be optimal only in special cases like [Kar85] where
the controlled diffusion is a controlled Brownian motion. This is not the case here.
If such strategy would be optimal, the boundary surface would be constant in τ , i.e.
ℐ0 ∪ ℐ1 ∪ ℐ2 = {(τ, y, θ) | (s, y, θ) ∈ ℐ0 for some s}. In particular, in ℐ2, we would have
gτ (y) = g0(y) for the τ -slice {(τ, y, gτ (y)) | y ∈ (y∞, y0]} of the boundary given by gτ
from (3.28). However, by Lemma 3.3.4 this is not the case.
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Part II Transient price impact
with stochastic liquidity

4 Optimal liquidation under stochastic
liquidity

This chapter presents an explicit solution of a two-dimensional singular control problem
of finite fuel type for infinite time horizon. The problem stems from a modification
of the optimal liquidation setup of Chapter 2 considering stochastic liquidity in the
sense that the volume effect process, which determines the inter-temporal resilience of
the market in spirit of [PSS11], is taken to be stochastic, being driven by own random
noise. The optimal control is obtained as the local time of a diffusion process reflected
at a non-constant free boundary. To solve the HJB variational inequality and prove
optimality, we need a combination of probabilistic arguments and calculus of variations
methods, involving Laplace transforms of inverse local times for diffusions reflected at
elastic boundaries.

The present chapter is based on the article [BBF18c]. Section 4.2 states the solution
for the singular stochastic control problem posed in Section 4.1, and outlines the general
course of arguments to come. In Section 4.3, a calculus of variations problem is posed,
by restricting to strategies given by diffusions reflected at smooth boundaries. The
free boundary is thereby constructed in Section 4.4. By solving the HJB variational
inequality (4.9), we prove optimality and derive the value function and the optimal
control in Section 4.5. As an extension of the underlying article [BBF18c], Section 4.6
draws the link to optimal stopping and Section 4.7 provides an in-depth comparison to
the deterministic liquidity limit (Chapter 2).

4.1 The model and the optimal control problem

We consider a filtered probability space (Ω,ℱ , (ℱ t)t≥0,ℙ) with two correlated Brownian
motions W and B with correlation coefficient ρ ∈ [−1, 1], such that

[W,B]t = ρt , t ≥ 0.

for the quadratic co-variation of W and B. The filtration (ℱ t)t≥0 is assumed to satisfy
the usual conditions of completeness and right continuity, so we can take càdlàg versions
for semimartingales. For notions from stochastic analysis we refer to [JS03].
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4 Optimal liquidation under stochastic liquidity

We consider a market with a risky asset, in addition to the riskless numéraire asset
whose (discounted) price is constant at 1. The large investor holds Θt ≥ 0 shares of the
risky asset at time t. She may liquidate her initial position of Θ0− shares by trading
according to

Θt := Θ0− −At ,

where A is a predictable, càdlàg, monotone process, describing the cumulative number
of assets sold up to time t. We define the set of admissible strategies as

𝒜(Θ0−) := {A : A non-decreasing, càdlàg, predictable,

with 0 =: A0− ≤ At ≤ Θ0−}.

The unaffected fundamental price S = (St)t≥0 of the risky asset evolves according to

dSt = µSt dt+ σSt dWt , S0 ∈ (0,∞), with σ > 0, µ ∈ ℝ, (4.1)

as a geometric Brownian motion, in the absence of perturbations by large investor
trading. By trading, however, the large investor has market impact on the actual price

St := f(Yt)St , (4.2)

of the risky asset through some impact process Y , by an increasing positive smooth
function f > 0 with f(0) = 1. The process Y can be interpreted as a volume effect
process, representing the transient volume displacement by large trades in a limit order
book (LOB) whose shape corresponds to the price impact function f as in Remark 2.1.1.
For σ̂ > 0 the effect from perturbations σ̂ dBt − dAt on the process

dYt = −βYt dt+ σ̂ dBt − dAt , Y0− = y, (4.3)

is transient over time, in that Y is mean reverting towards zero with mean reversion rate
β > 0. Existence and uniqueness of a strong solution to (4.3) are guaranteed for instance
by [PTW07, Thm. 4.1]. Sometimes we shall write Y y,A to stress the dependence of Y
on its initial state y and the strategy A. The dynamics of Y are of Ornstein-Uhlenbeck
type, driven by σ̂ dB − dA. The mean-reversion property of the OU process has the
financial interpretation that in the absence of activity from the large trader, the impact
lessens since Y reverts back to the neutral state zero and hence the price recovers to the
fundamental price S, thus modeling the transient component of the impact (in absolute
terms).

For γ ≥ 0, the γ-discounted proceeds up to time t from a liquidation strategy A are

Lt(y;A) :=

∫ t

0

e−γuf(Yu)Su dA
c
u +

∑
0≤u≤t
∆Au ̸=0

e−γuSu

∫ ∆Au

0

f(Yu− − x) dx, (4.4)

for t ≥ 0, where At = Ac
t +

∑
u≤t ∆Au is the (pathwise) decomposition of A into

its continuous and pure-jump part, and Y = Y y,A solves (4.3). Jump terms in (4.4)
can be justified from a LOB perspective (cf. Remark 2.1.1) or by stability results, see
equation (5.15) and Theorem 5.2.7 for details. In particular, if An → A converges in the
Skorokhod M1 topology in probability for, e.g., continuous strategies An and possibly
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4.1 The model and the optimal control problem

non-continuous A, then the above definition ensures that L(y;An) → L(y;A) in M1 in
probability.
As L is an increasing process, the limit L∞ := limt→∞ Lt exists. The large trader’s

objective is to maximize expected (discounted) proceeds over an infinite time horizon,

max
A∈𝒜(Θ0−)

𝔼[L∞(y;A)] with v(y, θ) := sup
A∈𝒜(θ)

𝔼[L∞(y;A)], (4.5)

where v(y, θ) denotes the value function for y ∈ ℝ and θ ∈ [0,∞).

Remark 4.1.1. The value function v is increasing in y and θ. Indeed, monotonicity in θ
follows from 𝒜(θ1) ⊂ 𝒜(θ2) for θ1 ≤ θ2. For monotonicity in y, note that for y1 ≤ y2 and

any strategy A ∈ 𝒜(θ) one has Y y1,A
t ≤ Y y2,A

t for all t, implying Lt(y1;A) ≤ Lt(y2;A).

For the rest of this chapter, the function f and scalars β, µ, γ, σ, ρ, σ̂ satisfy

Assumption 4.1.2.

C1. We have δ := γ − µ > 0, that means the drift coefficient −δS for the γ-discounted
fundamental price e−γtSt is negative.

C2. The impact function f ∈ C3(ℝ) satisfies f, f ′ > 0 and (f ′/f)′ < (Φ′/Φ)′, where

Φ(x) := Φδ(x) := H−δ/β

(
(σρσ̂ − βx)/

(√
βσ̂
))
, x ∈ ℝ, (4.6)

with Hermite function Hν (cf. [Leb72, Sect. 10.2]) and σ, σ̂, β > 0 and ρ ∈ [−1, 1].

C3. The impact function f furthermore satisfies (f ′/f)′ < (Φ′′/Φ′)′.

C4. The function λ(y) := f ′(y)/f(y), y ∈ ℝ, is bounded, i.e. there exists λmax ∈ (0,∞)
such that 0 < λ(y) ≤ λmax for all y ∈ ℝ.

C5. The function k(y) := σ̂2

2
f ′′(y)
f(y) − (β + δ) + (σρσ̂ − βy) f

′(y)
f(y) , y ∈ ℝ, is strictly

decreasing.

C6. There exist y0 ∈ ℝ such that (f ′/f)(y0) = (Φ′/Φ)(y0) and y∞ ∈ ℝ such that
(f ′/f)(y∞) = (Φ′′/Φ′)(y∞).

Assumption 4.1.2 is satisfied by e.g. f(y) = exp(λy) with λ ∈ (0,∞), cf. Lemma 4.4.1
below. See Remark 2.1.1 for the shape of the related multiplicative LOB. Note that
Φ is (up to a constant factor) the unique positive and increasing solution of the ODE
σ̂2

2 Φ′′(y) + (σρσ̂ − βy)Φ′(y)− δΦ(y) = 0.
The overall negative drift in Assumption C1 ensures that the optimization problem on

an infinite time horizon has a finite value. Assumptions C2 and C3 imply uniqueness of
the (boundary) points y0 and y∞ from Assumption C6 which are needed in Lemma 4.4.3.
While C3, uniqueness of y∞, is not crucial there, it will be needed in (4.46) for the
verification. The bound on λ in Assumption C4 is used to show some growth condition
on the value function in Lemma 4.5.5, that is required to apply the martingale optimality
principle (Proposition 4.5.1). Assumption C5 is needed for the verification Lemma 4.5.7.

Let us now comment on the model and its financial interpretation. The price impact
function f can be interpreted through a (static) multiplicative limit order book with
volume effect process Y , as already described in Remark 2.1.1. By β > 0 we have mean
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4 Optimal liquidation under stochastic liquidity

reversion of Y towards the neutral level zero. This transient nature of Y relates to the
liquidity property that [Kyl85] calls resilience. Note that in our model the resilience is
stochastic in the sense that the volume effect process Y in (4.3) is, whereas the resilience
rate β is constant (differently e.g. to [GH17]).

Remark 4.1.3 (The meaning of y0). The level y0 can be interpreted as the optimal
level of Y where a small investor should sell an infinitesimal amount of assets. The small
investor trades at (discounted) prices e−γtStf(Yt) = e−δtS0ℰ(σW )tf(Yt), but incurs
no impact, i.e. cannot control Y . He wants to maximize expected (infinitesimal) gains
𝔼[e−δτS0ℰ(σW )τf(Yτ )] when selling at time τ . Assume for simplicity that W and B
are independent and we can ignore the factor ℰ(σW ). In the general case, a change
of measure as in (4.12) below with a priori integrability assumptions on τ would be
necessary. Taking w.l.o.g. S0 = 1, the small investor now maximizes 𝔼[e−δτf(Yτ )]. Due
to the Markovian structure of our problem and monotonicity of f , it is natural to assume
that the optimal stopping time would be of the form τ = τz := inf {t > 0 | Yt ≥ z}
for some (free boundary) level z, see e.g. [PS06] for the connections between opti-
mal stopping and free boundary problems. So for initial Y0 = y, the small investor’s
problem reduces to maxz 𝔼[e

−δτzf(Yτz)] = maxz f(z ∨ y)𝔼[e−δτz ]. The Laplace trans-
form of the hitting time τz is well-known, see e.g. [RW87, V.50] and the discussion in
Chapter 7. We have 𝔼[e−δτz ] = Φδ(y)/Φδ(z) for y < z. Hence we need to maximize

J(z) := f(y ∨ z)Φ(y ∧ z)/Φ(z) = f(z)Φ(y)
Φ(z)𝟙y<z + f(y)𝟙y≥z for given initial impact

y. We have J ′(z) = Φ(y)
(
f ′/Φ − fΦ′/Φ2

)
(z) for y < z and J ′(z) = 0 for y > z. In

particular, Assumption C6 implies J ′(y0) = 0. Starting at some y < y0, we indeed find
by Assumption C2 that y0 maximizes J . Hence the small investor’s optimal time to sell
will be τy0 = inf {t | Yt ≥ y0}. This is in fact optimal among all stopping times; we will
revisit the issue in Remark 4.6.2.

Remark 4.1.4 (Non-deterministic liquidity). Stochasticity may account for variations
of transient impact that cannot be entirely explained by the single agent’s own trading
activity, and thus not solely described by deterministic functional modeling.

(a) Most of the literature on transient impact considers impact that is a deterministic
function of the actions of a single large trader. We consider here an application problem
for an individual large trader, but we do not want to assume that she is the only large
trader in the market, or that she is as an aggregate of all large traders (a possibility
mentioned in [Fre98]). The additional stochastic noise term σ̂ dBt in (4.3) can be
understood as the aggregate influence on the impact by other large ‘noise’ traders (acting
non-strategically). Questions on strategic behavior between multiple traders (like in
[SZ17]) are interesting but beyond the present thesis.
(b) Note that the volatility and as well the drift of the (marginal) price process

S = f(Yt)St from (4.2), at which (additional infinitesimally) small quantities of the
risky assets would be traded, are stochastic via the additional stochastic component
of Y . Furthermore, we emphasize that the form of relative price impact function
∆ ↦→ f(Yt− +∆)/f(Yt−) can vary with Y in general. In the sense of Remark 2.1.1, this
means the general shape of the corresponding LOB can exhibit stochastic variations
from the large trader’s perspective.
(c) Recently, [LN19] suggested to model a signal, which predicts the short-term

evolution of prices, as an Ornstein-Uhlenbeck process that modulates the drift of the price
dynamics. One can interpret stochasticity of Y as such a signal as follows. For λ = f ′/f

56



4.2 The optimal strategy and how it will be derived

being constant, the log-price can be written as logS = (logS + λY sig) + λY trans,Θ,

where Y sig is a mean-reverting signal with dY sig
t = −βY sig

t dt+ σ̂ dBt and Y
trans,Θ is

the transient impact from trading with dY trans,Θ
t = −βY trans,Θ

t dt + dΘt. From this
perspective, the optimal liquidation strategy will be adaptive to the signal and depend
on the correlation between the signal and logS, see Theorem 4.2.1 and Remark 4.2.3.

Remark 4.1.5 (Level of interpretation for the model and relation to additive impact).
Noting that a bid-ask spread is not modeled explicitly and price impact f (i.e. the LOB
shape) is static, we consider the model as being at a mesoscopic level for low-frequency
problems, rather than for market microstructure effects in high frequency. At this
level and as pointed out in [AKS16, Rmk. 2.2], it is sensible to think of price impact
and liquidity costs as being aggregated over various types of orders. The LOB from
Remark 2.1.1 should be interpreted accordingly. Note that in this chapter we deal with
monotone strategies and thus only one (bid) side of the LOB is relevant. Considering
infinite time horizon can be viewed as approximation for a longer horizon with more
analytic tractability. Concerning the question of comparison with additive models for
transient impact, positivity of asset prices is desirable from a theoretical point of view,
relevant for applications with longer time horizons (as they may occur e.g. for large
institutional trades, cf. e.g. [CL95], or for hedging problems with longer maturities), and
appears to fit better to common models with multiplicative price evolutions like (4.1).
See Remark 3.2.7 for a more detailed discussion and further references.

4.2 The optimal strategy and how it will be derived

This section states the main theorem which describes the solution to the singular
stochastic control problem, and outlines afterwards the general course of arguments
for proving it in the subsequent sections. To explain ideas, let us first motivate how
the variational inequality (4.9), being the dynamical programming equation for the
optimization problem at hand, is readily suggested by an application of the martingale
optimality principle. To this end, consider for an admissible strategy A the process

Gt(y;A) := Lt(y;A) + e−γtStV (Yt,Θt), (4.7)

where G0−(y;A) = S0V (Y0−,Θ0−) and V ∈ C2,1(ℝ × [0,∞); [0,∞)) is some function.
Suppose V can be chosen such that G is a supermartingale. Then one should have

S0V (y,Θ0−) = 𝔼[G0−(y;A)]

≥ lim
T→∞

𝔼[LT (y;A)] + lim
T→∞

e−γT𝔼[STV (YT ,ΘT )]

= 𝔼[L∞(y;A)]

heuristically, provided that the second summand on the right-hand side converges to 0.
Hence, for V being such that G is a supermartingale for every admissible strategy A
and a martingale for at least one strategy A∗, one can conclude that V is essentially
the value function for (4.5) (modulo the factor S0). To describe V , one may apply Itô’s
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4 Optimal liquidation under stochastic liquidity

formula to get

dGt = e−γtSt

(
σ̂Vy(Yt−,Θt−) dBt + σV (Yt−,Θt−) dWt

+
(
(µ− γ)V + (σρσ̂ − βYt−)Vy +

σ̂2

2 Vyy
)
(Yt−,Θt−) dt

+
(
f − Vy − Vθ

)
(Yt−,Θt−) dA

c
t

+

∫ ∆At

0

(
f − Vy − Vθ

)
(Yt− − x,Θt− − x) dx

)
.

(4.8)

Define, with δ = γ − µ, a differential operator on C2,0 functions φ by

ℒφ(y, θ) := σ̂2

2
φyy(y, θ) + (σρσ̂ − βy)φy(y, θ)− δφ(y, θ).

By equation (4.8), solving the Hamilton-Jacobi-Bellman (HJB) variational inequality

0 = max {f − Vy − Vθ , ℒV } with V (y, 0) = 0, y ∈ ℝ, (4.9)

would suffice for G to be a local (super-)martingale. This suggests the existence of a sell
region 𝒮 (action region) where the dA-integrand f − Vy − Vθ is zero and it is optimal to
trade (i.e. sell), and a wait region 𝒲 (inaction region) in which the dt-integrand ℒV is
zero and it is optimal not to trade. Assume that the two regions

𝒮 = {(y, θ) ∈ ℝ× (0,∞) : 𝕪(θ) < y} and

𝒲 = {(y, θ) ∈ ℝ× (0,∞) : y < 𝕪(θ)}

are separated by a free boundary {(y, θ) : y = 𝕪(θ)}. An optimal strategy, i.e. a strategy
for which G is a martingale, would be described as follows: if (Y0−,Θ0−) ∈ 𝒮, then
perform a block sale of size ∆A0 such that (Y0,Θ0) = (Y0− −∆A0,Θ0− −∆A0) ∈ ∂𝒮 .
Thereafter, if Θ0 > 0, sell just enough as to keep the process (Y,Θ) within 𝒲. In this
way, the process (Y,Θ) should be described by a diffusion process that is reflected at
the boundary ∂𝒲 ∩ ∂𝒮 in direction (−1,−1), i.e. there is waiting in the interior and
selling at the boundary until all shares are sold, when (Y,Θ) hits {(y, 0) : 𝕪(0) ≤ y}.
For such reflected diffusions, existence and uniqueness follow from classical results, see
Remark 4.3.1, and Theorem 4.3.2 provides important characteristics which are key to the
subsequent construction of the optimal control. The solution of the optimal liquidation
problem is indeed described by the local time process of a diffusion reflected at a boundary
which is explicitly given by an ODE. This main result is stated as Theorem 4.2.1 below.

In the following sections, we will find the value function for our stochastic control
problem by constructing a classical solution of the variational inequality (4.9). Provided
that the key variational inequalities for the (candidate) solution are satisfied, optimality
can be verified by typical martingale arguments, see Proposition 4.5.1. Based on results
on reflected diffusions from Theorem 4.3.2, we reformulate in Section 4.3 the optimization
problem as a (nonstandard) calculus of variations problem. Its solution, derived in
Section 4.4, provides a candidate for the free boundary, separating the regions of action
and inaction, together with the value function on that boundary. Moreover, we show a
(one-sided) local optimality property of the derived boundary (cf. Theorem 4.4.6). This
will be crucial in Section 4.5 (cf. proof of Lemma 4.5.7) to verify (4.9) for the candidate
value function, constructed there, in order to finally conclude on p. 76 the proof for
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4.2 The optimal strategy and how it will be derived

Theorem 4.2.1. Let Assumption 4.1.2 be satisfied. Then the ordinary differential
equation

𝕪′(θ) =

(
((Φ′)2 − ΦΦ′′)(f ′Φ′ − fΦ′′)/Φ

(ΦΦ′′ − (Φ′)2)f ′′ + (Φ′Φ′′ − ΦΦ′′′)f ′ + (Φ′Φ′′′ − (Φ′′)2)f

)(
𝕪(θ)

)
(4.10)

with initial condition 𝕪(0) = y0 admits a unique solution 𝕪 : [0,∞) → ℝ, that is strictly
decreasing and maps [0,∞) bijectively to (y∞, y0], for y0 and y∞ from Assumption C6.

The boundary function 𝕪 characterizes the solution of problem (4.5) as the strat-
egy A∗ = (∆ +K)𝟙[[0,τ ]], where ∆ := Θ0−𝟙{Y0−≥y0+Θ0−} + ∆̃𝟙{Y0−<y0+Θ0−,∆̃≥0} with

∆̃ ≤ Θ0− satisfying Y0− − ∆̃ = 𝕪(Θ0− − ∆̃), and where (Y,K) is the unique continuous
adapted process on [[0, τ ]] with non-decreasing K which solves the 𝕪-reflected SDE

Yt ≤ 𝕪(Θ0− −∆−Kt) ,

dYt = −βYt dt+ σ̂ dBt − dKt ,

dKt = 𝟙{Yt=𝕪(Θ0−−∆−Kt)} dKt ,

starting in (Y0− −∆, 0), for time to liquidation τ := inf {t ≥ 0 : Kt = Θ0− −∆}.
Moreover, τ has finite moments.

Since 𝕪 is strictly monotone as we will show in Lemma 4.4.3, the ODE (4.10) is easily
solved by the inverse 𝕪 = θ−1 of

θ(y) :=

∫ y

y0

(
(ΦΦ′′ − (Φ′)2)f ′′ + (Φ′Φ′′ − ΦΦ′′′)f ′ + (Φ′Φ′′′ − (Φ′′)2)f

((Φ′)2 − ΦΦ′′)(f ′Φ′ − fΦ′′)/Φ

)(
x
)
dx,

for y ∈ (y∞, y0].

Remark 4.2.2. The optimal control A∗ acts as follows: 1) If Y0− ≥ y0 + Θ0−, sell
everything immediately at time 0 and stop trading; 2) Otherwise, if (Θ0−, Y0−) is such
that 𝕪(Θ0−) < Y0− < y0 +Θ0−, perform an initial block trade of size A∗

0 := ∆ > 0 so
that Y0 = Y0− −∆ is on the boundary Y0 = 𝕪(Θ0). Now being in the wait region 𝒲,
sell as much as to keep with the least effort the state process (Y,Θ) in 𝒲 until all assets
are liquidated at time τ (cf. Figure 4.1: waiting e.g. at times t ∈ [87, 100] since then
impact Yt is less than 𝕪(Θt)).

The inverse local time τℓ := inf {t > 0 : Kt > ℓ} is simply how long it takes to liquidate
ℓ assets (after an initial block sale). For τ > 0 (case 2 in Remark 4.2.2) its Laplace
transform is

𝔼
[
e−ατℓ

]
=

Φα(Y0)

Φα(𝕪(Θ0))
exp

(∫ ℓ

0

(
𝕪′(Θ0 − x) + 1

)Φ′
α(𝕪(Θ0 − x))

Φα(𝕪(Θ0 − x))
dx

)
(4.11)

for α > 0 and 0 ≤ ℓ ≤ Θ0 = Θ0− −∆, as it will be shown in the proof of Theorem 4.2.1.
Using analyticity of Φα w.r.t. the parameter α, one easily gets that τℓ has finite moments.
Moreover, the Laplace transform (4.11) gives access to the distribution of the time to
liquidation τ by efficient numerical inversion, as in e.g. [AW95].

Remark 4.2.3 (Volatility of the fundamental price). If correlation ρ is not zero, the
optimal strategy and the shape of the free boundary do depend on the volatility σ of the
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t

Yt Θt

Figure 4.1: Sample path of impact Yt (blue), asset position Θt (red, decreasing) and
reflecting boundary 𝕪(Θt) (orange, increasing) for optimally liquidating
Θ0 = 50 assets (after an initial block trade ∆), with δ = 0.1, β = 1, ρ = 0,
σ̂ = 1 and f(·) = exp(·).

fundamental price process. This is a notable difference to many additive impact models,
where the optimal liquidation strategy does not depend on the martingale part of the
fundamental price process, cf. e.g. [LS13, Sect. 2.2]. To stress the dependence on ρ, we
write Φρ for Φ in (4.6), denote by F ρ the right-hand side of (4.10) and by yρ0 the root of
f ′/f − (Φρ)′/Φρ. So the solution 𝕪ρ of the ODE (𝕪ρ)′(θ) = F ρ

(
𝕪ρ(θ)

)
with 𝕪ρ(0) = yρ0

is the optimal boundary function from Theorem 4.2.1. In the special case of constant λ,
i.e. f(y) = eλy, we have F ρ(y) = F 0(y−σρσ̂/β) since Φρ(y) = Φ0(y−σρσ̂/β), and thus
𝕪ρ(θ) = 𝕪0(θ) + σρσ̂/β. For general f , investigating y0 and y∞ from Assumption C6
still reveals a similar displacement of the boundary. Thus, when impact and fundamental
price are positively correlated (ρ > 0), it is optimal to trade slower if fundamental price
volatility is larger, since the wait region increases.

4.3 Reformulation as a calculus of variations problem

In this section we will recast the free boundary problem of the variational inequality (4.9)
as a (nonstandard, at first) calculus of variations problem. To sketch the idea, suppose
that the large trader has to liquidate Θ0 ≥ 0 shares and that (Y0,Θ0) is already on
the free boundary between sell and wait regions (after an initial jump or waiting). Let
𝕪 : [0,Θ0] → ℝ be a C1 function with 𝕪(Θ0) = Y0 and 𝕪′ < 0 (we expect the optimal
boundary to be such). To find the optimal boundary curve 𝕪, we will optimize expected
proceeds over the set of 𝕪-reflected strategies A := Arefl(𝕪,Θ0) from

Definition. Let (Y,A) be the (unique) pair of continuous adapted processes with
non-decreasing A such that Yt ≤ 𝕪(Θ0 −At) and

dYt = −βYt dt+ σ̂ dBt − dAt , Y0 = 𝕪(Θ0) ,

dAt = 𝟙{Yt=𝕪(Θ0−At)} dAt , A0 = 0 ,
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4.3 Reformulation as a calculus of variations problem

on [[0, τ ]] for τ := inf {t ≥ 0 : At = Θ0}. We call Arefl(𝕪,Θ0) := A a 𝕪-reflected strategy.

Remark 4.3.1. Existence and uniqueness of a strong solution (Y,A) follows from (a
careful extension of) classical results, cf. [DI93], by considering the pair (Y,A) as a
(degenerate) diffusion in ℝ2 with oblique direction of reflection (−1,+1) at a smooth
boundary. Considered as a one-dimensional diffusion, the process Y is reflected at
a boundary that moves with its local time A. In this sense, we call the reflection
elastic. Chapter 7 is devoted to stochastic differential equations with such kind of elastic
reflection.

Viewing Y as a diffusion with reflection at 𝕪, we can rewrite expected proceeds from A
as a deterministic functional of 𝕪, see (4.19) below, whose maximizer should describe
the optimal strategy. For this step we rely crucially on a representation for the Laplace
transform of the inverse local time of reflected diffusions from Theorem 4.3.2. Since the
integrand of (4.19) depends on the whole path 𝕪, a reparametrization is necessary to
obtain a tractable calculus of variations problem (4.21) – (4.22).

Let τΘ0
be the stopping time when A = Θ0. For the continuous 𝕪-reflected strategy

A with proceeds L := L(𝕪(Θ0);A), we have by [DM82, Thm. VI.57] for any T ∈ [0,∞),

𝔼[LT ] = 𝔼
[∫ τΘ0

∧T

0

f(Yt)e
−δtℰ(σW )t dAt

]
= 𝔼

[
ℰ(σW )T

∫ τΘ0∧T

0

f(Yt)e
−δt dAt

]
.

For fixed T , let ℚ be the measure given by dℚ/dℙ = ℰ(σW )T on ℱT . Then

𝔼[LT ] = 𝔼
ℚ
[∫ τΘ0

∧T

0

f(Yt)e
−δt dAt

]
. (4.12)

Girsanov’s theorem gives that the process B̃t := Bt− [B, σW ]t = Bt−σρt is a Brownian
motion under ℚ. Therefore, we have under ℚ

dYt = (σρσ̂ − βYt) dt+ σ̂ dB̃t − dAt ,

i.e. the impact process Y is a (reflected) Ornstein-Uhlenbeck process with shifted (non-
zero) mean reversion level, and A is its local time on the boundary. We cannot directly
pass to the limit T → ∞ in (4.12) because the measure change ℚ depends on T . However,
note that the right-hand side of (4.12) depends only on the law of the reflected diffusion
(Y,A) under the measure ℚ. That is why we consider the reflected diffusion (X,AX)
with the following dynamics under ℙ: for g(a) := 𝕪(Θ0 − a) let

dXt = (σρσ̂ − βXt) dt+ σ̂ dBt − dAX
t , X0 = g(0) , (4.13)

dAX
t = 𝟙{Xt=g(AX

t )} dA
X
t , AX

0 = 0 , (4.14)

τXℓ := inf {t > 0 : AX
t > ℓ or AX

t = Θ0} , (4.15)

such that in addition Xt ≤ g(AX
t ), on [[0, τXΘ0

]]. Existence and uniqueness of a strong

solution (X,AX) until τXΘ0
follows as in Remark 4.3.1.
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4 Optimal liquidation under stochastic liquidity

Now, by (4.12) we have 𝔼[LT ] = 𝔼[
∫ τX

Θ0
∧T

0 f(Xt)e
−δt dAX

t ], which gives for T → ∞
by monotone convergence on both sides

𝔼[L∞] = 𝔼
[∫ τX

Θ0

0

f(Xt)e
−δt dAX

t

]
= 𝔼

[∫ τX
Θ0

0

f
(
g(AX

t )
)
e−δt dAX

t

]
= 𝔼

[∫ Θ0

0

f
(
g(ℓ)

)
e−δτX

ℓ dℓ
]
=

∫ Θ0

0

f
(
g(ℓ)

)
𝔼
[
e−δτX

ℓ
]
dℓ , (4.16)

using (4.14). To express the latter as a functional of the free boundary only, we need

Theorem 4.3.2. The Laplace transform of τXℓ from (4.13)–(4.15) for Θ0 = θ is

𝔼
[
e−δτX

ℓ
]
= exp

(∫ θ

θ−ℓ

(
𝕪′(x)− 1

)Φ′
δ(𝕪(x))

Φδ(𝕪(x))
dx
)

for ℓ < θ. (4.17)

Proof. We will identify the Laplace transform by calculating the terms in (4.16) at first
for f being replaced with arbitrary test functions φ, and then using ideas from calculus

of variations. To identify q(y, θ) := 𝔼[
∫ T

0
e−δtφ(Xt) dA

X
t ] for continuous functions

φ : ℝ→ [0,∞) with X0 = y ≤ 𝕪(θ), Θ0 = θ and T := τXθ , it suffices to construct q such
that

Mt :=

∫ t

0

e−δuφ(Xu) dA
X
u + e−δtq

(
Xt, θ −AX

t

)
is a martingale on [[0, T ]] with e−δtq(Xt, θ−AX

t ) → 0 in L1 as t→ T . Consider the state
space ℐ := {(y, θ) : y < 𝕪(θ)}. To check the martingale property, assuming that we have
q ∈ C2,1(ℐ) ∩ C1,1(ℐ), Itô’s formula yields (similarly to (4.8)) that qy + qθ = φ on ∂ℐ
and ℒq(y, θ) = 0 in ℐ. Moreover, for q increasing in y we have q(y, θ) = Φ(y)C(θ) with
Φ = Φδ from (4.6) and some function C ∈ C1. Let H(θ) := q(𝕪(θ), θ). The condition
qy + qθ = φ leads to

H ′(θ) = Φ′(𝕪(θ))C(θ)𝕪′(θ) +
(
φ(𝕪(θ))− Φ′(𝕪(θ))C(θ)

)
= A(θ)H(θ) +B(θ)

where A(θ) :=
(
𝕪′(θ)− 1

)
Φ′(𝕪(θ))/Φ(𝕪(θ)) and B(θ) := φ(𝕪(θ)). Solving this ODE for

H gives (since H(0) = 0)

H(θ) =

∫ θ

0

φ
(
𝕪(z)

)
exp
(∫ θ

z

(
𝕪′(x)− 1

)Φ′
δ(𝕪(x))

Φδ(𝕪(x))
dx
)
dz,

which yields the candidate q(y, θ) = Φ(y)H(θ)/Φ(𝕪(θ)). It is straightforward to check
q ∈ C2,1(ℐ) ∩ C1,1(ℐ) and qy + qθ = φ on ∂ℐ, giving that M is a martingale, using
boundedness of qy(X, θ−AX) on [[0, T ]]. By monotonicity of q in y, hence q(y, θ) ≤ H(θ),
we obtain e−δtq(Xt, θ − AX

t ) → 0 in L1 as t → T via dominated convergence, so as in
(4.16) we find∫ θ

0

φ(𝕪(z))

(
𝔼[e−δτX

θ−z ]− exp
(∫ θ

z

(
𝕪′(x)− 1

)Φ′
δ(𝕪(x))

Φδ(𝕪(x))
dx
)

  
=:∆(z)

)
dz = 0. (4.18)
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4.4 Solving the calculus of variations problem

Note that z ↦→ 𝔼[exp(−δτXθ−z)] is left-continuous. Hence, if ∆(z1) > 0 for some z1 ∈ (0, θ],
there exists z0 < z1 such that ∆ > 0 on (z0, z1). Since 𝕪 is bijective (recall that 𝕪′ < 0),
we can find a continuous function φ with φ ◦ 𝕪 > 0 inside (z0, z1) and φ ◦ 𝕪 = 0 outside

(z0, z1), which yields
∫ θ

0
φ(𝕪(z))∆(z) dz > 0, contradicting (4.18). Similarly, ∆(z1) < 0

also leads to a contradiction. Therefore ∆ = 0 on (0, θ].

Remark 4.3.3. Let us note that Theorem 4.3.2 generalizes to general (regular) diffusions
reflected at increasing boundaries by taking Φδ to be the increasing non-negative δ-
eigenfunction of the generator of the diffusion. Indeed, the proof would not change.
In Chapter 7, we extend Theorem 4.3.2 to non-decreasing reflection boundaries and
investigate an approximation scheme for such reflected diffusions, that provides a more
intuitive understanding of (4.17) via the total lengths of excursions away from the
boundary.

Using Theorem 4.3.2 and (4.16) we derive the following representation for the proceeds
from a 𝕪-reflected strategy in terms of the boundary:

𝔼[L∞] =

∫ Θ0

0

f
(
g(ℓ)

)
exp

(
−
∫ ℓ

0

(
g′(a) + 1

)Φ′
δ(g(a))

Φδ(g(a))
da

)
dℓ . (4.19)

Since the dℓ-integrand in (4.19) depends on the whole path of g, classical calculus of
variations methods are not directly available. Since by definition g(a) = 𝕪(Θ0 − a) we

get with 𝕣(ℓ) :=
∫ ℓ

0
(1− 𝕪′(x))Φ

′(𝕪(x))
Φ(𝕪(x)) dx that

𝔼[L∞] = e−𝕣(Θ0)

∫ Θ0

0

f
(
𝕪(ℓ)

)
e𝕣(ℓ) dℓ. (4.20)

Since Φ′,Φ > 0 and 𝕪′ < 0, the function 𝕣 in strictly increasing and thus has an inverse
𝕣−1. Fixing R := 𝕣(Θ0) and setting w(r) := 𝕪(𝕣−1(r)), we find

𝕣−1(r) =

∫ r

0

(
w′(z) +

Φ(w(z))

Φ′(w(z))

)
dz.

Hence, by the reparametrization 𝕪(θ) = w(𝕣(θ)), finding a maximizing function 𝕪 for
(4.20) reduces to the problem of finding a function w which maximizes

J(w) :=

∫ R

0

f
(
w(r)

)
e−(R−r)

(
w′(r)+

Φ(w(r))

Φ′(w(r))

)
dr (= 𝔼[L∞]) (4.21)

subject to the condition K(w) :=

∫ R

0

(
w′(r)+

Φ(w(r))

Φ′(w(r))

)
dr = Θ0 . (4.22)

4.4 Solving the calculus of variations problem

In this section, we solve (locally) the calculus of variations problem of maximizing (4.21)
subject to (4.22) by employing necessary and sufficient conditions on the first and second
variation of the functionals involved. We obtain the candidate free boundary function
𝕪(θ), see equations (4.28) and (4.29), and show its local optimality in Lemma 4.4.4.
We then relate our results on the calculus of variations problem to the initial optimal
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4 Optimal liquidation under stochastic liquidity

execution problem in Theorem 4.4.6. This will be crucial later for Section 4.5 to verify
the desired inequality in the sell region, presented in Lemma 4.5.7.

A maximizer w of the isoperimetric problem (4.21) – (4.22) also maximizes J+mK for
some constant m := m(R) that is the Lagrange multiplier, cf. [GF00, Theorem 2.12.1].
Considering perturbations w(r) + h(r) of w with h(0) = h(R) = 0, a necessary condition
for an extremum w of a functional J +mK is that its first variation δ(J +mK) vanishes
at w, see [GF00, Thm. 1.3.2]. Integration by parts yields the Euler-Lagrange equation

0 = Fw − d

dr
Fw′ +

(
Gw − d

dr
Gw′

)
m, (4.23)

with G(r, w,w′) := w′ + Φ(w)/Φ′(w) and F (r, w,w′) := f(w)e−(R−r)G(r, w,w′), the
integrands of K and J , respectively.
Since we assume to start on the (yet unknown) boundary, one side is fixed, i.e.

w(R) = 𝕪(Θ0). But the other end w(0) is free. Thus, integration by parts of δ(J +mK)
with perturbations w(r) + h(r) of w where h(0) ̸= 0 imposes as an additional condition
for δ(J +mK) to vanish that

0 =
(
Fw′ +mGw′

)⏐⏐
r=0

.

This natural boundary condition (cf. [GF00, Sect. 1.6]) yields the Lagrange multiplier
m(R) = −f(y0)e−R for y0 := 𝕪(0) = w(0). After multiplication with eRΦ′(w)2,
equation (4.23) simplifies to

erΦ(w)
(
f ′(w)Φ′(w)− f(w)Φ′′(w)

)
= f(y0)

(
Φ′(w)2 − Φ(w)Φ′′(w)

)
. (4.24)

Inserting r = 0 gives a condition for y0, namely

f ′(y0)Φ(y0) = f(y0)Φ
′(y0).

Assumption C6 guarantees existence and C2 uniqueness of y0. On the other hand,
differentiating both sides of (4.24) with respect to r gives the ODE for w

0 =
(
er(f ′Φ′ − fΦ′′)Φ′ + er(f ′′Φ′ − fΦ′′′)Φ− f(y0)(Φ

′Φ′′ − ΦΦ′′′)
)
w′

+ er(f ′Φ′ − fΦ′′)Φ,
(4.25)

where f = f(w(r)), f ′ = f ′(w(r)), Φ = Φ(w(r)), etc.
Both sides in the above equality (4.24) are negative on the boundary w(r), due to

Lemma 4.4.1. The positive, increasing eigenfunctions Φ = Φδ corresponding to the
eigenvalue δ > 0 of the generator of an Ornstein-Uhlenbeck process satisfy(

Φ(n)(x)
)2
< Φ(n−1)(x)Φ(n+1)(x)

for all x ∈ ℝ and n ∈ ℕ. In particular, (Φ′)2 < ΦΦ′′. Moreover, for n ∈ ℕ

lim
x→−∞

Φ(n)(x)/Φ(n−1)(x) = 0 and lim
x→+∞

Φ(n)(x)/Φ(n−1)(x) = +∞.

Proof. Since H ′
ν(x) = 2νHν−1(x) for complex ν (see [Leb72, eq. (10.4.4)]), equation (4.6)

implies

Φ
(n)
δ Φ

(n+2)
δ −

(
Φ

(n+1)
δ

)2
=
(
Φδ+nβΦ

′′
δ+nβ − (Φ′

δ+nβ)
2
) 22n

σ̂2nβn

n∏
k=0

(δ + kβ)2 ,
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4.4 Solving the calculus of variations problem

so it suffices to prove (Φ′)2 < Φ′′Φ for every δ, β, σ, σ̂ > 0 and ρ ∈ [−1, 1] in (4.6).
This is equivalent to showing (H ′

ν)
2 < H ′′

νHν for every ν < 0. Since Γ(−ν) > 0

and Hν(x) = Γ(−ν)−1
∫∞
0
e−t2−2xtt−ν−1 dt for ν < 0 (cf. [Leb72, eq. (10.5.2)]), the

function φx(t) := e−t2−2xtt−ν−1 is the density of an absolutely continuous finite mea-
sure µ on [0,∞). For the probability measure ℙ̃[A] := µ([0,∞))−1µ(A) consider two
independent random variables X,Y ∼ ℙ̃. By [Kle08, Thm. 6.28], we can exchange
differentiation and integration (in the integral representation of Hν above) to see that
H ′′

ν (x)Hν(x)−H ′
ν(x)

2 = 4 𝔼̃[X2−XY ]. Symmetry gives 2 𝔼̃[X2−XY ] = 𝔼̃[(X−Y )2] ≥ 0.
Since X and Y are independent with absolutely continuous distribution, Fubini’s theorem
yields ℙ̃[X = Y ] = 0, so 𝔼̃[(X − Y )2] > 0.

The asymptotic behavior of Φ(n)/Φ(n−1) follows from [Leb72, eq. (10.6.4)] in the case
x→ −∞ and from [Leb72, eq. (10.6.7)] in the case x→ +∞.

Now (4.24) gives a representation of r given y0 and w as

r = log
f(y0)

Φ(w)
+ log

Φ′(w)2 − Φ(w)Φ′′(w)

f ′(w)Φ′(w)− f(w)Φ′′(w)
, (4.26)

which we can use to simplify the ODE (4.25) (assuming w′ ̸= 0 everywhere) to

1

w′ = −Φ′

Φ
+
fΦ′′′ − f ′′Φ′

f ′Φ′ − fΦ′′ +
Φ′Φ′′ − ΦΦ′′′

(Φ′)2 − ΦΦ′′ ,

reading the right hand side as a function of w(r). With 𝕪(θ) = w(𝕣(θ)) and r := 𝕣(θ),
we get 𝕪′(θ) = w′(r)𝕣′(θ) = w′(r)(1− 𝕪′(θ))Φ′(𝕪(θ))/Φ(𝕪(θ)), which simplifies to

𝕪′(θ) =
Φ′(𝕪)

Φ′(𝕪) + Φ(𝕪)/w′(r)

=
1

Φ

((Φ′)2 − ΦΦ′′)(f ′Φ′ − fΦ′′)

(ΦΦ′′ − (Φ′)2)f ′′ + (Φ′Φ′′ − ΦΦ′′′)f ′ + (Φ′Φ′′′ − (Φ′′)2)f

=
M2(𝕪(θ))

M ′
1(𝕪(θ))

, (4.27)

where M1 :=
fΦ′ − f ′Φ

(Φ′)2 − ΦΦ′′ and M2 :=
f ′Φ′ − fΦ′′

(Φ′)2 − ΦΦ′′ . (4.28)

By (4.24) and Lemma 4.4.1 we have M2(𝕪(θ)) > 0 for any θ. We get M ′
1(𝕪(θ)) < 0 by

Lemma 4.4.2. Under Assumption C2, M ′
1(y) < 0 for all y ∈ ℝ.

Proof. Let G := Φ′/Φ and H := Φ′′/Φ′. We have G,G′, H,H ′ > 0 and G < H by
Lemma 4.4.1. With λ(y) = f ′(y)/f(y) > 0, thus f ′′/f = λ′ + λ2, we get

(G′)2ΦM ′
1/f = λ′G′ + (λ2 − λH)G′ + (G2 − λG)H ′.

So M ′
1(y) < 0 if and only if λ′(y)G′(y) < q(λ(y)) where the right-hand side is

q(λ) := (H − λ)λG′ + (λ − G)GH ′. The function q is quadratic in λ and takes its
minimum in

λ∗ :=
HG′ +GH ′

2G′ with value q(λ∗) =
(HG′ +GH ′)2

4G′ −G2H ′.
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4 Optimal liquidation under stochastic liquidity

Note also, that G′ = (H −G)G. We find that

4G′ (λ′G′ − q(λ)) ≤ 4G′ (λ′G′ − q(λ∗)) < 4G′ ((G′)2 − q(λ∗)
)

= 4(G′)3 − (GH ′ +G′H)2 + 4G′G2H ′

= G2
(
4G(H −G)3 −

(
H ′ + (H −G)H

)2
+ 4(H −G)GH ′

)
= −G2

(
H ′ +H2 + 2G2 − 3GH

)2 ≤ 0,

using that λ′(y) < G′(y), y ∈ ℝ, by Assumption C2. So M ′
1(y) < 0 for all y ∈ ℝ.

Lemma 4.4.3. Let f satisfy Assumptions C2, C3 and C6. Then there exists a unique
solution θ ↦→ 𝕪(θ), θ ∈ [0,∞), of the ODE

𝕪′ =M2(𝕪)/M
′
1(𝕪), 𝕪(0) = y0, (4.29)

and 𝕪 is strictly decreasing to limθ→∞ 𝕪(θ) = y∞ (with y0 and y∞ from Assumption C6).

Proof. Since M2/M
′
1 is locally Lipschitz by f ∈ C3(ℝ), there exists a unique maximal

solution 𝕪 : [0, θmax) → ℝ of (4.29). We haveM2(𝕪(θ)) > 0 andM ′
1 < 0 by Lemma 4.4.2,

thus 𝕪′ < 0. Assume θmax < ∞, which implies limθ→θmax 𝕪(θ) = −∞. However, note
that {(θ,𝕪(θ)) : 0 ≤ θ < θmax} and [0,∞)×{y∞} are trajectories of the two-dimensional
autonomous dynamical system induced by the field (θ, y) ↦→ (1,M2(y)/M

′
1(y)). Since

trajectories of autonomous dynamical systems cannot cross, and y∞ < y0 by Lemma 4.4.1,
we must have y∞ < 𝕪(θ) for all θ ∈ [0, θmax), which contradicts θmax <∞.

Moreover, 𝕪−1(y) =
∫ y

y0
(M ′

1/M2)(x) dx is finite for every y ∈ (y∞, y0]. Since θmax = ∞,

it follows that 𝕪(θ) → y∞ as θ → ∞.

By considering the first variation δ(J +mK), we found a candidate boundary function
𝕪 in terms of a possible extremum w : [0, R] → ℝ of J +mK. Calculating the second
variation δ2(J +mK) at w, we find that w is indeed a local maximizer.

Lemma 4.4.4. The functional Ĵ := J + mK : C1([0, R]) → ℝ defined by (4.21) –
(4.22) with m = −f(y0)e−R has a strict local maximizer w(r) = 𝕪(𝕣−1(r)), with 𝕪

solving (4.29), in the following sense. There exists ε > 0 such that for all perturbations
0 ̸≡ h ∈ C1([0, R]) with endpoints h(0) = h(R) = 0 and ∥h∥W 1,∞ = ∥h∥∞ ∨ ∥h′∥∞ < ε
it holds

Ĵ(w + h) < Ĵ(w).

Proof. For a C1-perturbation h : [0, R] → ℝ of w with h(0) = h(R) = 0 we have by
[GF00, Sect. 5.25, (10) and (11)]

δ2(J +mK)[w;h] =

∫ R

0

(
Ph′(r)2 +Qh(r)2

)
dr

with P = P (r, w(r), w′(r)) and Q = Q(r, w(r), w′(r)) given by

P = 1
2

(
Fw′w′ +mGw′w′

)
= 0,

Q =
1

2

(
Fww +mGww − d

dr

(
Fww′ +mGww′

))
=

1

2
e−(R−r)

(
Φ

Φ′ f
′′ + 2

( Φ

Φ′

)′
f ′ +

( Φ

Φ′

)′′
f − f ′

)
+

1

2

( Φ

Φ′

)′′
m,
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with f , Φ and their derivatives being evaluated at w(r) when no argument is mentioned.
Differentiating (4.23) with respect to r yields

0 =
d

dr
e−(R−r)

(
Φ

Φ′ f
′ +
( Φ

Φ′

)′
f − f

)
+m

d

dr

( Φ

Φ′

)′
= e−(R−r)

(
Φ

Φ′ f
′ +
( Φ

Φ′

)′
f − f

)
+ e−(R−r)

(
Φ

Φ′ f
′′ + 2

( Φ

Φ′

)′
f ′ +

( Φ

Φ′

)′′
f − f ′

)
w′ +

( Φ

Φ′

)′′
mw′

= e−(R−r)

(
Φ

Φ′ f
′ +
( Φ

Φ′

)′
f − f

)
+ 2Qw′

= e−(R−r) Φ

(Φ′)2
(
f ′Φ′ − fΦ′′)+ 2Qw′ . (4.30)

By equation (4.24) and Lemma 4.4.1, the first summand in (4.30) is negative along w(r).
Since w(r) = 𝕪(𝕣−1(r)) and 𝕣−1 is strictly increasing, we have w′ < 0 by Lemma 4.4.3.
So Q(r, w(r), w′(r)) < −κ < 0 on [0, R] by (4.30) for some constant κ = κR, giving that
the second variation is negative definite at w, i.e. for h ̸≡ 0,

δ2(J+mK)[w;h]=

∫ R

0

Q(r, w(r), w′(r))h(r)2 dr<−κ
∫ R

0

h(r)2 dr<0 . (4.31)

To shorten notation, let F̂ := F + mG, so Ĵ := J + mK =
∫ R

0
F̂ dr. Unless the

arguments are explicitly written, take F̂ = F̂ (r, w(r), w′(r)). Taylor’s theorem gives
Ĵ(w+h)− Ĵ(w) = δĴ [w;h]+δ2Ĵ [w;h]+ℰ(h) with first variation δĴ [w;h] = 0 by (4.23),

second variation δ2Ĵ [w;h] =
∫ R

0
Qh2 dr < 0 by (4.31) and remainder

ℰ(h) =
∫ R

0

(∑
|α|=3

∂αF̂
(
r,w + ξrh

)hα

α!

)
dr

for some ξr ∈ [0, 1], with w = (w(r), w′(r))⊤, h = (h(r), h′(r))⊤ and multi-index α ∈ ℕ2
0,

considering F̂ (r, ·) as an function on ℝ2. Since F̂ is affine in w′ we get

ℰ(h) =
∫ R

0

(1
6
F̂www(r,w + ξrh)h+

1

2
F̂www′(r,w + ξrh)h

′
)
h2 dr =:

∫ R

0

Ah2 dr

Note that by compactness of [0, R] we have uniform convergence

sup
r∈[0,R]

sup
ξ∈[0,1]

⏐⏐A(h(r), h′(r), w(r), w′(r), ξ, r
)⏐⏐→ 0

as ∥h∥W 1,∞ → 0. Now choose ε > 0 small enough such that⏐⏐A(h(r), h′(r), w(r), w′(r), ξ, r
)⏐⏐ < κ/2

for all r ∈ [0, R], ξ ∈ [0, 1] and h with ∥h∥W 1,∞ < ε. Hence, with h ̸≡ 0

Ĵ(w + h)− Ĵ(w) =

∫ R

0

(Q+A)h2 dr < −κ
2

∫ R

0

h2 dr < 0 .
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Note that the definition w(r) := 𝕪(𝕣−1(r)) does not depend on the interval boundary
R. Hence the optimizer w over [0, R] from Lemma 4.4.4 is optimal for all R > 0. We
can calculate the value J(w) of our optimizer explicitly.

Lemma 4.4.5. For the optimal w from Lemma 4.4.4 we have

J(w) = (ΦM1)(𝕪(Θ0)) = (ΦM1)(w(R)).

Proof. By direct calculation we have fM ′
1/(ΦM

2
2 )=((fΦ′−f ′Φ)/(f ′Φ′−fΦ′′))′. More-

over, (4.24) gives er = f(y0)/(ΦM2)(w(r)). With r = 𝕣(ℓ) and using (4.29), we get from
(4.20) that

J(w) = e−𝕣(Θ0)

∫ Θ0

0

f(𝕪(ℓ))e𝕣(ℓ) dℓ

= (ΦM2)(𝕪(Θ0))

∫ Θ0

0

( f

ΦM2

)
(𝕪(ℓ)) dℓ

= (ΦM2)(𝕪(Θ0))

∫ 𝕪(Θ0)

y0

( fM ′
1

ΦM2
2

)
(x) dx

= (ΦM2)(𝕪(Θ0))

[
fΦ′ − f ′Φ

f ′Φ′ − fΦ′′

]𝕪(Θ0)

y0

= (ΦM1)(𝕪(Θ0)).

Now we can translate the results obtained so far back to the state space of impact and
asset position. The following theorem will be crucial for our analysis in the verification
arguments in Section 4.5.

Theorem 4.4.6. The function 𝕪 : [0,∞) → ℝ defined by equation (4.29) is a (one-sided)
local maximizer of 𝔼[L∞(Arefl(𝕪,Θ0))] in the sense that, for every θ > 0 there exists
ε > 0 such that for any decreasing 𝕪̃ ∈ C1([0,∞)) with 𝕪(·) ≤ 𝕪̃(·) ≤ y0, 𝕪 = 𝕪̃ on
[θ,∞) and 0 < ∥𝕪 − 𝕪̃∥W 1,∞ < ε, it holds

𝔼
[
L∞
(
Arefl(𝕪, θ)

)]
> 𝔼

[
L∞
(
Arefl(𝕪̃, θ)

)]
.

Proof. For sake of clarity, we write J = JR and K = KR to emphasize the depen-
dence of the functionals J,K on R. Call w(r) the parametrization of 𝕪 and w̃(r) the
parametrization of 𝕪̃.
Fix θ > 0 and choose R, R̂, θ̂ such that 𝕪(θ) = w(R), 𝕪̃(θ) = w̃(R̂) and w(R̂) = 𝕪(θ̂).

So R := 𝕣𝕪(θ), R̂ := 𝕣𝕪̃(θ) =
∫ θ

0
Φ′

Φ (𝕪̃(x)) dx +
∫ 𝕪̃(0)
𝕪̃(θ)

Φ′

Φ (u) du and θ̂ := 𝕣−1
𝕪 (R̂). By

𝕪 ̸≡ 𝕪̃, 𝕪(·) ≤ 𝕪̃(·) with equality outside (0, θ) and monotonicity of Φ′/Φ, we have R̂ > R

and thus θ̂ > θ.
Now, KR̂(w) = θ̂ and KR̂(w̃) = θ. Moreover, Jr(w) = (ΦM1)(w(r)) by Lemma 4.4.5.

So if ∥w − w̃∥W 1,∞ is small enough, by Lemma 4.4.4 we get

JR(w) =
(
ΦM1

)(
w(R)

)
−
(
ΦM1

)(
w(R̂)

)
+ JR̂(w)

=
(
ΦM1

)(
w(R)

)
−
(
ΦM1

)(
w(R̂)

)
+e−R̂f(y0)θ̂+

(
JR̂−e−R̂f(y0)KR̂

)
(w)

>
(
ΦM1

)(
w(R)

)
−
(
ΦM1

)(
w(R̂)

)
+e−R̂f(y0)θ̂+

(
JR̂−e−R̂f(y0)KR̂

)
(w̃)

=
(
ΦM1

)(
𝕪(θ̂ − η)

)
−
(
ΦM1

)(
𝕪(θ̂)

)
+ e−R̂f(y0)η + JR̂(w̃)

=: Ψ(η) + JR̂(w̃) .
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where η := θ̂ − θ > 0. By (4.26) we get e−R̂f(y0) = (ΦM2)(𝕪(θ̂)). With (4.27) follows

Ψ′(η) = −
(
(ΦM1)

′M2

M ′
1

)(
𝕪(θ̂ − η)

)
+
(
ΦM2

)(
𝕪(θ̂)

)
= −

(
Φ′M1M2

M ′
1

+ΦM2

)(
𝕪(θ̂ − η)

)
+
(
ΦM2

)(
𝕪(θ̂)

)
.

Hence Ψ′(0) = −(Φ′M1M2/M
′
1)(𝕪(θ̂)). Since M1 > 0 on (−∞, y0), M2 > 0 on (y∞, y0],

M ′
1 < 0 by Lemma 4.4.2 and Φ′ > 0, it follows Ψ′(0) > 0. So Ψ(η) > 0 for η > 0 small

enough. Therefore we have by (4.21)

𝔼
[
L∞
(
Arefl(𝕪, θ)

)]
= JR(w) > JR̂(w̃) = 𝔼

[
L∞
(
Arefl(𝕪̃, θ)

)]
.

The bounds on η and ∥w − w̃∥W 1,∞ are satisfied for small enough ε > 0, because
(𝕪, ℓ) ↦→ 𝕣𝕪(ℓ) and (𝕪, ℓ) ↦→ 𝕣−1

𝕪 (ℓ) are continuous in W 1,∞ ×ℝ, so ∥w − w̃∥W 1,∞ → 0,

R̂→ R and θ̂ → θ as ε→ 0.

4.5 Constructing the value function and verification

In this section, we construct a candidate for the value function and verify the variational
inequality (4.9) in Lemmas 4.5.6 and 4.5.7, relying on results from the previous sections.
This will be sufficient to conclude the proof of our main result, Theorem 4.2.1.

Having defined a candidate boundary via the ODE (4.29) to separate the sell and
wait regions 𝒮 and 𝒲, we will now construct a solution V of the variational inequality
(4.9) that will give the value function of the optimal liquidation problem. As a direct
consequence of Lemma 4.4.5, we get its value along the boundary

Vbdry(θ) := V
(
𝕪(θ), θ

)
= Φ

(
𝕪(θ)

)
M1

(
y(θ)

)
. (4.32)

Inside the wait region 𝒲, which we assume is to the left of the boundary, we require

V = V𝒲 to satisfy σ̂2

2 Vyy + (σρσ̂ − βy)Vy = δV . Note that V𝒲 solves the same ODE
in y as Φ. Since V should be also monotonically increasing, the only possibility is
that V𝒲(y, θ) = C(θ)Φ(y) for some increasing function C : [0,∞) → [0,∞). Using the
boundary condition V𝒲(𝕪(θ), θ) = Vbdry(θ), in light of equation (4.32) we then have

V𝒲(y, θ) := Φ(y)C(θ) (4.33)

for y ≤ 𝕪(θ) and θ ≥ 0, where C(θ) :=M1(𝕪(θ)). On the other hand, in the sell region
we require for V = V 𝒮 to satisfy f = V 𝒮

y + V 𝒮
θ . We divide 𝒮 in two parts:

𝒮1 := {(y, θ) ∈ ℝ× (0,∞) : 𝕪(θ) < y < y0 + θ} ,
𝒮2 := {(y, θ) ∈ ℝ× (0,∞) : y0 + θ < y} .

Let ∆ := ∆(y, θ) ≥ 0 denote the ∥·∥∞-distance of a point (y, θ) ∈ 𝒮 to the boundary ∂𝒮
in direction (−1,−1). This means in 𝒮1 (but not in 𝒮2) that

𝕪(θ −∆) = y −∆ . (4.34)
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4 Optimal liquidation under stochastic liquidity

Inside 𝒮1, we need to have

V 𝒮1(y, θ) := V𝒲(y −∆, θ −∆) +

∫ y

y−∆

f(x) dx , (4.35)

since V 𝒮1
y + V 𝒮1

θ = f in 𝒮 and V 𝒮1(𝕪(θ), θ) = V𝒲(𝕪(θ), θ). Similarly, in 𝒮2,

V 𝒮2(y, θ) :=

∫ y

y−θ

f(x) dx. (4.36)

To wrap up, the candidate value function is defined by:

V = V𝒲 on 𝒲, V = V 𝒮1 on 𝒮1, V = V 𝒮2 on 𝒮2. (4.37)

The rest of this section is devoted to verifying that V is a classical solution of the
HJB variational inequality (4.9) and thus concluding the proof of Theorem 4.2.1 by
an application of the martingale optimality principle. We first formalize the heuristic
verification from Section 4.2.

4.5.1 Martingale optimality principle

Recall that v is the value function of the optimal liquidation problem (cf. (4.5)). Analo-
gous to Proposition 2.2.8 for deterministic Y , we have can apply martingale optimality
in our setup of stochastic Y .

Proposition 4.5.1 (Martingale optimality principle).
Consider a C2,1 function V : ℝ× [0,∞) → [0,∞) with the following properties:

1. For every Θ0− ≥ 0, there exist constants C1, C2 so that

V (y, θ) ≤ C1 exp(C2y) ∨ 1 for all (y, θ) ∈ ℝ× [0,Θ0−];

2. For every Θ0− ≥ 0 and A ∈ 𝒜(Θ0−), the process G from (4.7) is a supermartingale,
where Y = Y y,A is defined in (4.3), and additionally G0(y;A) ≤ G0−(y;A).

Then we have S0 · V (y, θ) ≥ v(y, θ).
Moreover, if there exists A∗ ∈ 𝒜(Θ0−) such that G(y;A∗) is a martingale starting in
G0(y;A

∗) = G0−(y;A
∗), then we have S0V (y, θ) = v(y, θ) and v(y, θ) = 𝔼[L∞(y;A∗)]

for Θ0− = θ ≥ 0. In this case, any strategy A for which G(y;A) is not a martingale
would be suboptimal.

Proof. By the supermartingale property we have for every T ≥ 0

S0V (Y0−,Θ0−) ≥ 𝔼[G0(y;A)] ≥ 𝔼[LT (y;A) + e−γTSTV (YT ,ΘT )]

= 𝔼[LT (y;A)] + e−γT𝔼[STV (YT ,ΘT )]

= 𝔼[LT (y;A)] + e−δTS0𝔼[ℰ(σW )TV (YT ,ΘT )]. (4.38)

By monotone convergence, the first summand in (4.38) tends to 𝔼[L∞(y;A)] for T → ∞.
To see that the second summand converges to 0, consider the Ornstein-Uhlenbeck process
dXt = −βXt dt+ σ̂ dBt, X0 = y. An application of Itô’s formula gives

eβt(Yt −Xt) =

∫
[0,t]

eβu dΘu ∀t ≥ 0. (4.39)
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4.5 Constructing the value function and verification

Since Θ is non-increasing, we conclude Yt ≤ Xt for all t ≥ 0. Let p, q > 1 be conjugate,
i.e. 1 = 1/q + 1/p. Using Hölder’s inequality and the bound on V ,

𝔼
[
ℰ(σW )TV (YT ,ΘT )

]
≤ 𝔼

[
ℰ(σW )pT

]1/p
𝔼
[
V (YT ,ΘT )

q
]1/q

= 𝔼
[
exp
(
pσWT − 1

2pσ
2T
)]1/p

𝔼[V (YT ,ΘT )
q]1/q

= 𝔼[ℰ(pσW )T ]
1/p exp

(
1
p

(
1
2p

2σ2T − 1
2pσ

2T
))
𝔼
[
V (YT ,ΘT )

q
]1/q

= exp
(p− 1

2
σ2T

)
𝔼[V (YT ,ΘT )

q]1/q

≤ exp
(p− 1

2
σ2T

)
𝔼[Cq

1 exp(qC2YT ) ∨ 1]1/q

≤ exp
(p− 1

2
σ2T

)
𝔼[Cq

1 exp(qC2XT ) ∨ 1]
1/q
.

Using the fact that X is a Gaussian process with mean 𝔼[XT ] = ye−βT and variance

Var(XT ) =
σ̂2

2β (1− e−2βT ), we get for K := 𝔼[Cq
1 exp(qC2XT ) ∨ 1] that

K ≤ 1 + Cq
1 exp

(
qC2𝔼[XT ] +

1

2
q2C2

2 Var(XT )
)

≤ 1 + Cq
1 exp

(
qC2y +

σ̂2

4β
q2C2

2

)
.

This bound on K is independent of T . Now choosing p > 1 such that p−1
2 σ2 < δ ensures

that exp(−δT ) exp(p−1
2 σ2T ) is exponentially decreasing in T , and thus the second

summand in (4.38) converges to 0 for T → ∞. This implies that S0V (y, θ) ≥ 𝔼[L∞(y;A)]
for all A ∈ 𝒜(θ) and yields the first part of the claim. The second part follows similarly by
noting that, if A∗ ∈ 𝒜(θ) is such that G(y;A∗) is a martingale and G0(y;A) = G0−(y;A),
then we have equalities instead of inequalities in the estimates leading to (4.38). By
taking T → ∞ we conclude that S0V (y, θ) = 𝔼[L∞(y;A∗)]. Since S0V (y, θ) ≥ v(y, θ)
by the first part of the claim, we deduce the optimality of A∗.

To justify later why the stochastic integrals in (4.8) are true martingales, we need the
following technical

Lemma 4.5.2. Let Θ0− ≥ 0 be given and F ∈ C2,1(ℝ× [0,∞);ℝ) be such that there
exist constants C1, C2 ≥ 0 with |F (y, θ)| ≤ C1 exp(C2y) ∨ 1 for all (y, θ) ∈ ℝ× [0,Θ0−].
For an admissible strategy A ∈ 𝒜(Θ0−) let Y

A =: Y denote the impact process defined
by (4.3) for y ∈ ℝ. Then the stochastic integral processes∫ ·

0

SuF (Yu,Θu) dBu and

∫ ·

0

SuF (Yu,Θu) dWu are true martingales.

Proof. By the exponential growth of F , it suffices to check 𝔼[
∫ t

0
S
2

u exp(2C2Yu) du] <∞
for every t ≥ 0. Consider an Ornstein-Uhlenbeck process X given by the dynamics
dXt = −βXt dt+ σ̂ dBt, with X0 = y. As in the proof of Proposition 4.5.1 (see (4.39)),
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we have Yt ≤ Xt for all t ≥ 0. In particular,

𝔼
[∫ t

0

S
2

u exp(2C2Yu) du
]
≤ 𝔼

[∫ t

0

S
2

u exp(2C2Xu) du
]

=

∫ t

0

𝔼[S
2

u exp(2C2Xu)] du ≤
∫ t

0

√
𝔼[S

4

u]𝔼[exp(4C2Xu)] du <∞,

using the Cauchy-Schwarz inequality and the fact that X is a Gaussian process.

4.5.2 Verification and proof of Theorem 4.2.1

Now we verify that V is a classical solution of the variation inequality (4.9) with the
boundary condition V (y, 0) = 0 for all y ∈ ℝ. That V (y, 0) = 0 is clear because
M1(y0) = 0. The rest will be split into several lemmas.

Lemma 4.5.3 (Smooth pasting). Let (yb, θb) ∈ 𝒲 ∩ 𝒮. Then

Φ(yb)C
′(θb) + Φ′(yb)C(θb) = f(yb) , (4.40)

Φ′(yb)C
′(θb) + Φ′′(yb)C(θb) = f ′(yb) . (4.41)

Proof. This follows easily from C(θb) =M1(yb) and C
′(θb) =M2(yb), see the definition

of C and (4.29), together with the definitions of M1 and M2, see (4.28). Note that
when (yb, θb) = (y0, 0) we take the right derivative of C at 0 and the equalities still hold
true.

Remark 4.5.4. It might be interesting to point out that (4.40) and (4.41) are sufficient
to derive the boundary between the sell and the wait regions. Indeed, solving (4.40)
– (4.41) with respect to C(θb) and C ′(θb), it is easy to see that C(θb) = M1(yb) and
C ′(θb) =M2(yb). On the other hand, by the chain rule one gets θ′(yb)C

′(θb) =M ′
1(yb)

and thus we derive for the boundary parametrization θ(·) = 𝕪−1(·) in the appropriate
range

θ′(yb) =
M ′

1

M2
(yb),

which gives the ODE for the boundary in (4.29). To get the initial condition y0, note
that the boundary condition V (·, 0) ≡ 0 gives C(0) = 0, i.e. M1(y0) = 0, exactly as
in Lemma 4.4.3. Thus, one could derive the candidate boundary function 𝕪(·) after
assuming sufficient smoothness of the function V along the boundary. This is similar to
the classical approach in the singular stochastic control literature, cf. [KS86, Section 6].
The reason why we chose the seemingly longer derivation via calculus of variation
techniques is the local (one-sided) optimality that we derived in Theorem 4.4.6 and that
will be crucial in our verification of the inequalities of the candidate value function in
the sell region, see Lemma 4.5.7. In the special case of λ(·) being constant, a more direct
approach to verify the variational inequality is however available, see Section 4.5.3.

The smooth-pasting property translates to smoothness of V . Moreover, exponential
bound on V and Vy will be needed to rely on the verification results from Section 4.5.1.

Lemma 4.5.5. The function V is C2,1(ℝ × [0,∞)). Moreover, for every Θ0− there
exist constants C1, C2, that depend on Θ0−, such that both V (y, θ) and Vy(y, θ) are
non-negative and bounded from above by C1 exp(C2y) ∨ 1 for all (y, θ) ∈ ℝ× [0,Θ0−].
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Proof. Inside 𝒲, the function V is already C2,1 by construction and the fact that
C(θ) =M1(𝕪(θ)) is continuously differentiable since 𝕪(·) and M1(·) are so.
For (y, θ) ∈ 𝒮1, set (yb, θb) := (y − ∆(y, θ), θ − ∆(y, θ)) and ∆ := ∆(y, θ) (recall

(4.34)). We have by (4.35) for the first and (4.40) for the second equality

V 𝒮1
y = Φ′(yb)C(θb) (1−∆y) + Φ(yb)C

′(θb) (−∆y) + f(y)− f(yb) (1−∆y)

= Φ′(y −∆)C(θ −∆) + f(y)− f(y −∆). (4.42)

Since f , ∆, C and Φ′ are continuously differentiable, Vy will also be so. Hence by (4.41),

V 𝒮1
yy = Φ′′(yb)C(θb) (1−∆y) + Φ′(yb)C

′(θb) (−∆y) + f ′(y)− f ′(yb) (1−∆y)

= V𝒲
yy (yb, θb) + f ′(y)− f ′(yb), (4.43)

which is continuous. On the other hand, by (4.35) and (4.41) we have

V 𝒮1

θ (y, θ) = Φ′(yb)C(θb)(−∆θ) + Φ(yb)C
′(θb)(1−∆θ)− f(yb)(−∆θ)

= Φ(yb)C
′(θb), (4.44)

which is continuous. For (y, θ) ∈ 𝒲 ∩ 𝒮 on the boundary, the left derivative w.r.t. y is

lim
x↘0

1

x

(
V (y, θ)− V (y − x, θ)

)
= Φ(y)C(θ),

while the right derivative is again given by (4.42) and is equal to the left derivative since
∆(y, θ) = 0 in this case. Hence, V is continuously differentiable w.r.t. y on the boundary
with derivative Vy(y, θ) = Φ′(y)C(θ). Similarly, the left derivative of Vy on the boundary
is Φ′′(y)C(θ) and is equal to the right derivative which is given by (4.43) with y = yb.
The left derivative of V w.r.t. θ on the boundary is equal to the right derivative (given
by (4.44)). Therefore, V is C2,1 inside 𝒲 ∪ 𝒮1.
For (y, θ) ∈ 𝒮2, we have that V 𝒮2

y = f(y) − f(y − θ), V 𝒮2
yy = f ′(y) − f ′(y − θ) and

V 𝒮2

θ = f(y − θ) by (4.36), which are all continuous. On the boundary between 𝒮1

and 𝒮2, the left derivative of V w.r.t. y is given by (4.42) while the right derivative is
f(y) − f(y0). Since θ − ∆ = 0 in this case and C(0) = 0, they are equal and hence
V is continuously differentiable w.r.t. y there; similarly for Vyy. The left derivative of
V w.r.t. θ there is given by (4.44) with (yb, θb) = (y0, 0). The right derivative w.r.t. θ
is f(y − θ) = f(y0). They are equal by (4.41) and C(0) = 0. Therefore, V is C2,1 on
𝒮1 ∪ 𝒮2. It remains to check smoothness on {(y, 0) : y ∈ ℝ}. The derivatives w.r.t. y
there are 0. V is continuously differentiable w.r.t. θ in this case because 𝕪(·), C, and ∆
are continuously differentiable w.r.t. θ also at θ = 0 (we consider the right derivatives in
this case).
To conclude the proof, the bound of V and Vy can be argued as follows. In the

wait region, which is contained in (−∞, y0]× [0,∞), we have V (y, θ) = C(θ)Φ(y) and
Vy(y, θ) = C(θ)Φ′(y). Since Φ,Φ′ are strictly increasing in y (see (4.6) and [Leb72, Chap-
ter 10] for properties of the Hermite functions), V and Vy will be bounded by a constant
there. Now, in the sell region we have f − Vy − Vθ = 0. However, Vθ > 0 because in 𝒮1

(4.44) holds and C ′(θb) =M2(𝕪(θb)) > 0, while in 𝒮2 we have that Vθ(y, θ) = f(y−θ) > 0.
Similarly, Vy > 0 in the sell region. Therefore, 0 < Vy(y, θ) < f(y) ≤ exp(λ∞y) ∨ 1 by
Assumption C4. Hence, integrating in y gives V (y, θ) ≤ V (0, θ) + exp(λ∞y)/λ∞ for
y ≥ 0, which implies V (y, θ) ≤ C1 exp(C2y) ∨ 1 for appropriate constants C1, C2.
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Next we prove that V solves the variational inequality (4.9).

Lemma 4.5.6. The function V𝒲 : 𝒲 → [0,∞) from (4.33) satisfies

ℒV𝒲(y, θ) = 0 and f(y) < V𝒲
y (y, θ) + V𝒲

θ (y, θ) for y < 𝕪(θ).

Proof. From (4.27), we get representations V𝒲
θ = Φ(y)M ′

1(𝕪(θ))𝕪
′(θ) = Φ(y)M2(𝕪(θ))

and V𝒲
y = Φ′(y)M1(𝕪(θ)). Recall that at y = 𝕪(θ) we have by (4.40) the equality

V𝒲
y + V𝒲

θ = f(𝕪(θ)). Now consider y < 𝕪(θ). By Lemma 4.4.2, we then have
M1(y) > M1(𝕪(θ)) giving( f

Φ

)′
(y) >

(Φ′

Φ

)′
(y)M1

(
𝕪(θ)

)
=

d

dy

(
M1

(
𝕪(θ)

)Φ′(y)

Φ(y)
+M2

(
𝕪(θ)

))
.

Therefore, y ↦→ (f − V𝒲
y (y, θ) + V𝒲

θ (y, θ))/Φ(y) is increasing in y. Since at y = 𝕪(θ) it
equals to 0, we get the claimed inequality.

It remains to verify the inequality in the sell region. The proof is more subtle and
that is where Theorem 4.4.6 plays a crucial role. Recall Assumption 4.1.2 and note that
y∞ from Lemma 4.4.3 is unique by condition C3.

Lemma 4.5.7. The functions V 𝒮1 and V 𝒮2 satisfy on 𝒮1 and 𝒮2 respectively

ℒV 𝒮1 ≤ 0, ℒV 𝒮2 < 0.

Moreover, the inequality inside 𝒮1 is strict except on the boundary between the wait
region and the sell region (𝒲 ∩ 𝒮1) where we have equality.

Proof. First consider region 𝒮1. Recall from Lemma 4.5.5 (see (4.42) – (4.43)) that in
this case

V 𝒮1
y (y, θ) = V𝒲

y (y −∆, θ −∆) + f(y)− f(y −∆),

V 𝒮1
yy (y, θ) = V𝒲

yy (yb, θb) + f ′(y)− f ′(yb),

where y = yb +∆(y, θ) and θ = θb +∆(y, θ). Fix (yb, θb) ∈ 𝒲 ∩ 𝒮1 and consider the
perturbation ∆ ↦→ (y, θ) = (yb +∆, θb +∆). Set

h(∆) := ℒV 𝒮1(yb +∆, θb +∆)

= σ̂2

2 V
𝒲
yy (yb, θb)− σ̂2

2 f
′(yb) + σρσ̂V𝒲

y (yb, θb)− σρσ̂f(yb)− δV𝒲(yb, θb)

+ σ̂2

2 f
′(y)− βyV𝒲

y (yb, θb) + βyf(yb) + (σρσ̂ − βy)f(y)− δ

∫ y

yb

f(x) dx .

Note that h(0) = 0 by Lemma 4.5.6 and to show h(∆) < 0 for ∆ > 0, it suffices to prove
h′(∆) < 0 for all ∆ > 0. We have for all ∆ ≥ 0 at y = yb +∆ that

h′(∆) = β
(
f(yb)−V𝒲

y (yb, θb)
)
+f(y)

(
σ̂2

2

f ′′(y)

f(y)
−(β+δ)+(σρσ̂−βy)f

′(y)

f(y)  
=k(y)

)
, (4.45)
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4.5 Constructing the value function and verification

where at ∆ = 0 we consider the right derivative h′(0+). Now we show that k(y) < 0 for all

y ≥ y∞. To this end, recall that Φ solves the ODE δΦ(x) = σ̂2

2 Φ′′(x) + (σρσ̂− βx)Φ′(x).
Differentiating w.r.t. x and dividing by Φ′(x) yields

0 =
σ̂2

2

(
Φ′′(x)

Φ′(x)

)′

+
σ̂2

2

Φ′′(x)2

Φ′(x)2
− (β + δ) + (σρσ̂ − βx)

Φ′′(x)

Φ′(x)

So at the left end y∞ of our boundary, we have

k(y∞) =
σ̂2

2

(
f ′

f

)′

(y∞) +
σ̂2

2

Φ′′(y∞)2

Φ′(y∞)2
− (β + δ) + (σρσ̂ − βy∞)

Φ′′(y∞)

Φ′(y∞)

=
σ̂2

2

(
f ′

f

)′

(y∞)− σ̂2

2

(
Φ′′

Φ′

)′

(y∞) < 0 (4.46)

by Assumption C3. With Assumption C5 we get k(y) < 0 for every y ≥ y∞.
In particular, k(yb+∆) < 0 for all ∆ ≥ 0. Since f is positive and increasing, the product

∆ ↦→ (fk)(yb +∆) is decreasing. Therefore, proving h′(0+) ≤ 0 is sufficient to show the
inequality in 𝒮1. To stress the dependence of h on the point (yb, θb) = (𝕪(θb), θb), we
also write h(∆) = hθb(∆). Note that hθ(∆) is continuous in θ and ∆ on [0,∞)× [0,∞).

Assume h′θb(0+) > 0 at some boundary point (yb, θb) with θb > 0. By continuity of h′

on θ and ∆ there exists some ε > 0 such that ℒV 𝒮1 > 0 on U := 𝒮1 ∩Bε(yb, θb). This
will lead to a contradiction to the fact that the candidate boundary is a (one-sided)
strict local maximizer of our stochastic optimization problem with strategies described
by the local times of reflected diffusions, see Theorem 4.4.6.
Indeed, fix Θ0 > θb + ε and consider a perturbation 𝕪̃(·) ∈ C1 of the boundary 𝕪(·)

which satisfies the conditions of Theorem 4.4.6 and 𝕪(θ) < 𝕪̃(θ) ≤ y0 in (𝕪̃(θ), θ) ∈ U
and such that 𝕪̃ and 𝕪 coincide outside of U . For the corresponding reflection strategies
Ã := Arefl(𝕪̃,Θ0) and A := Arefl(𝕪,Θ0) denote by Θ̃t := Θ0−Ãt and Θt := Θ0−At their
asset position processes. The liquidation times of Ã and A are τ̃ := inf {t ≥ 0 : Ãt = Θ0}
and τ := inf {t ≥ 0 : At = Θ0}, respectively. By Theorem 4.3.2 (see also the discussion

after (4.11)), we have T := τ̃ ∨ τ < ∞ a.s. Fix initial impact Y Ã
0− = Y A

0− = 𝕪(Θ0). To

compare the strategies A and Ã, consider the processes G(𝕪(Θ0);A) and G(𝕪(Θ0); Ã)
from (4.7) for our candidate value function (which is C2,1 by Lemma 4.5.5). Since

V (·, 0) = 0, we have LT (Ã) = GT (Ã) and LT (A) = GT (A). However, since (Y Ã, Θ̃)
spends a positive amount of time in the region {ℒV > 0} until time T and always
remains in the region {ℒV ≥ 0}, the perturbed strategy Ã generates larger proceeds (in
expectation) than A.

Indeed, by (4.8) applied for G(Ã) and G(A), using monotone convergence (twice) and
arguments as in the proof of Proposition 4.5.1 for the first equality (by (4.19) expected
proceeds are bounded), and Lemma 4.5.2 for the stochastic integrals in the second line
(noting the growth condition from Lemma 4.5.5), we get

𝔼[L∞(Ã)− L∞(A)] = lim
n→∞

𝔼[Gn∧T (Ã)−Gn∧T (A)]

= lim
n→∞

𝔼
[∫ n∧T

0

. . . dWt +

∫ n∧T

0

. . . dBt +

∫ n∧T

0

ℒV (Y Ã
t , Θ̃t) dt

]
= 𝔼

[∫ T

0

ℒV (Y Ã
t , Θ̃t) dt

]
> 0 .
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4 Optimal liquidation under stochastic liquidity

This contradicts Theorem 4.4.6, so h′(0+) ≤ 0 and hence the inequality in 𝒮1 must hold.
It remains to consider the case (y, θ) ∈ 𝒮2, where V 𝒮2

y = f(y) − f(y − θ) and

V 𝒮2
yy = f ′(y)− f ′(y − θ). Fix y − θ =: a ≥ y0 and consider ℒV 𝒮2 as a function of θ. We

have

ℒV 𝒮2(y, θ) =
σ̂2

2

(
f ′(a+ θ)− f ′(a)

)
+
(
σρσ̂ − β(a+ θ)

)(
f(a+ θ)− f(a)

)
− δ

∫ a+θ

a

f(x) dx.

Differentiating the right-hand side w.r.t. θ we get f(a + θ)k(a + θ), which is again
decreasing in θ because a ≥ y0. Since at θ = 0 we have ℒV 𝒮2(y, θ) = 0 we deduce the
desired inequality.

Note that in the particular case of constant λ = f ′/f , a more direct approach is
available, see Section 4.5.3 below. Now we have all the ingredients in place to complete
the

Proof of Theorem 4.2.1. The function V constructed in (4.37) is a classical solution of
the variational inequality (4.9) because of Lemmas 4.5.5, 4.5.6 and 4.5.7. Thus, for
each admissible strategy A the process G(y;A) from (4.7) is a supermartingale with
G0(y;A) ≤ G0−(y;A): the growth condition on Vy and V from Lemma 4.5.5 guarantees
that the stochastic integral processes in (4.8) are true martingales by an application
of Lemma 4.5.2, while the variational inequality gives the supermartingale property
on [0−,∞). Moreover, for the described strategy A∗, whose existence and uniqueness
on [[0, τ ]] follows from classical results, cf. Remark 4.3.1, the process G(y;A∗) is a true
martingale with G0(y;A

∗) = G0−(y;A
∗) by our construction of V and the validity of

the variational inequality in the respective regions. Therefore A∗ is an optimal strategy
by Proposition 4.5.1. Any other strategy will be suboptimal because the respective
inequalities are strict in the sell and wait region, i.e., for any other strategy the process
G will be a strict supermartingale.

The Laplace transform formula (4.11) was derived in Theorem 4.3.2 for a 𝕪-reflected
strategy when the state process starts on the boundary. If the state process starts in
Y0 = x in the wait region, the behavior of the process until time Hx→ z when it hits the
boundary for the first time (at z := 𝕪(Θ0)) is independent from future excursions from
the boundary, and hence the multiplicative factor in (4.11), see e.g. [RW87, Prop. V.50.3]:
for x < z ∈ ℝ and α > 0, 𝔼[exp(−αHx→ z)] = Φα(x)/Φα(z).

4.5.3 Alternative verification for exponential impact function

The most difficult part in the proof of Lemma 4.5.7 is showing h′(0+) ≤ 0 for given
(yb, θb) on the boundary, i.e. yb ∈ (y∞, y0], θb = θ(yb), with h

′(∆) from (4.45). Written
in terms of yb only, we need to show g(yb) ≤ 0 for yb ∈ (y∞, y0] where

g(y) := β

(
f(y)− Φ′ fΦ

′ − f ′Φ

(Φ′)2 − ΦΦ′′

)
+ f(y)k(y),

using V𝒲
y (yb, θb) = Φ′(yb)M1(yb) andM1 = (fΦ′−f ′Φ)/((Φ′)2−ΦΦ′′) by (4.28). Direct

calculations give g(y0) = βf(y0) + f(y0)k(y0) = σ̂2

2

(
(f ′/f)′ − (Φ′/Φ)′

)
(y0) < 0 and,
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4.6 Relation to optimal stopping

using (4.46), also g(y∞) < 0. This implies g(y∞)/f(y∞) < 0 and g(y0)/f(y0) < 0, so it
would suffice to prove monotonicity of g/f on [y∞, y0] to deduce g < 0 on [y∞, y0].

Now consider constant λ = f ′/f . In this case k′(y) = −βλ and we get( g
f

)′
=

β

(ΦΦ′′ − (Φ′)2)2
Φ3(Φ′′)2

Φ′

(
(Φ′)2

ΦΦ′

)′(
Φ′

Φ
− λ

)
.

Since Φ′(y)/Φ(y) ≤ λ for y ≤ y0, we find (g/f)′ ≤ 0 on (−∞, y0] thanks to the following
result.

Lemma 4.5.8. The function y ↦→ Φ′(y)2

Φ(y)Φ′′(y) is increasing.

The proof is due to Torben Koch [Koc19].

Proof. Fix arbitrary numbers x < y and denote by τ := inf {t ≥ 0 | Xt = y} the first hit-
ting time of level y by an Ornstein-Uhlenbeck processX with dXt=(σρσ̂−βXt) dt+σ̂ dBt,
starting in X0 = x. For κ > 0, we have the Laplace transform 𝔼[e−κτ ] = Φκ(x)/Φκ(y),
cf. [RW87, V.50] or (7.8), which means 𝔼[e−(δ+nβ)τ ] = Φ(n)(x)/Φ(n)(y) for integer n ≥ 0.
Now, Hölder’s inequality yields

Φ′(x)

Φ′(y)
= 𝔼

[
e−

δ
2 τe−

δ+2β
2 τ

]
≤
√
𝔼
[
e−δτ

]√
𝔼
[
e−(δ+2β)τ

]
=

√
Φ(x)

Φ(y)

√
Φ′′(x)

Φ′′(y)
,

which implies Φ′(x)2

Φ(x)Φ′′(x) ≤
Φ′(y)2

Φ(y)Φ′′(y) by positivity of Φ,Φ′,Φ′′.

4.6 Relation to optimal stopping

Now that we have solved the optimal liquidation problem (4.5), we can relate it to an
optimal stopping problem in a similar way as it is done in the recent [FK19, Sect. 4.1] for
a model that closely resembles our setup, but with linear f(y) = y − c (in our notation).
For the relation between singular control and optimal stopping problems, cf. e.g. [KS84].
One theme in the literature is to utilize this relation to solve singular control problems
by solving the associated optimal stopping problems, see e.g. [DAFF17]. Such approach
usually hinges on convexity properties of the objective functional.

Throughout this section, denote by Xy the Ornstein-Uhlenbeck process with dynamics
dXy

t = (σρσ̂ − βXy
t ) dt+ σ̂ dBt, with X

y
0 = y. Recall that the infinitesimal generator of

Xy is ϕ ↦→ ℒϕ+ δϕ for the operator ℒϕ(y) = σ̂2

2 ϕ
′′(y) + (σρσ̂ − βy)ϕ′(y)− δϕ(y). We

also write ℒϕ(y, θ) := ℒ(ϕ(·, θ))(y) for functions ϕ of two variables.

Corollary 4.6.1. The function u(y, θ) := Vy(y, θ) + Vθ(y, θ) for y ∈ ℝ, θ ∈ [0,∞) is
the value function of an optimal stopping problem,

u(y, θ) = sup
τ
𝔼

[
e−δτf(Xy

τ )−
∫ τ

0

e−δtβC(θ)Φ′(Xy
t ) dt

]
(4.47)

where the supremum is taken over all (ℱ t)t≥0-stopping times τ and C(θ) =M1(𝕪(θ)) as
in (4.33). Moreover, the optimal stopping time for (4.47) is given by

τ∗(y, θ) = inf {t ≥ 0 | Xy
t ≥ 𝕪(θ)}.
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4 Optimal liquidation under stochastic liquidity

Proof. Fix θ ≥ 0 and note that u(·, θ) ∈ C1(ℝ) by Lemma 4.5.5. Moreover, we find
uyy ∈ L∞

loc since uy(·, θ) ∈ C(ℝ)∩C1(ℝ\{𝕪(θ)}), that is, u(·, θ) ∈W 2,∞
loc . With a version

of the Itô formula for such u, see e.g. [Pro05, Ch. IV, Thm. 71], standard arguments (cf.
[PS06, Ch. IV]) give that it suffices to prove that w = u(·, θ) solves

ℒw(y)− βC(θ)Φ′(y) = 0 and f(y)− w(y) < 0 for y < 𝕪(θ),

ℒw(y)− βC(θ)Φ′(y) < 0 and f(y)− w(y) = 0 for y > 𝕪(θ).

By construction of V in 𝒮 and Lemma 4.5.6, we immediately get f(y) = u(y, θ) for
y > 𝕪(θ) and f(y) < u(y, θ) for y < 𝕪(θ). Inside 𝒲, we have V (y, θ) = C(θ)Φ(y), so
that ℒVy = βVy and ℒVθ = 0. Hence, ℒu(y, θ) = βC(θ)Φ′(y) for all y < 𝕪(θ). Now for
y > 𝕪(θ) let

g(y) := ℒf(y)− βC(θ)Φ′(y) = (fk)(y) + β
(
f(y)− C(θ)Φ′(y)

)
.

Recall the auxiliary function h(∆) from the proof of Lemma 4.5.7, where we showed
h′(0+) ≤ 0. By (4.45) we have g(𝕪(θ)) = h′(0+) ≤ 0. Since Φ′/f is increasing on
(y∞,∞) by Assumptions C3 and C6 and k is decreasing by Assumption C5, we get that
g/f is decreasing for y > 𝕪(θ) and therefore g(y) < 0.

Remark 4.6.2. Using optional projection, we can rewrite the objective in (4.47) in
terms of the fundamental price S and impact Y up to localization: For fixed T ∈ [0,∞)
we have by [DM82, Thm. VI.57] that

𝔼
[
e−γ(τ∧T )Sτ∧T f(Yτ∧T )−

∫ τ∧T

0

e−γtStβC(θ)Φ(Yt) dt
]

= S0𝔼
[
e−δ(τ∧T )f(Xτ∧T )−

∫ τ∧T

0

e−δtβC(θ)Φ(Xt) dt
]
,

for the uncontrolled process Y = Y 0 with dYt = −βYt dt+ σ̂ dBt and Y0 = y = X0.

Noting that C(0) = 0, we again see the small investor’s stopping problem from
Remark 4.1.3. For θ > 0 we have C(θ) > 0, so the integral term in (4.47) can be
understood as an additional penalty for waiting compared to the (marginal) gains a
small investor would receive.

4.7 Sensitivity analysis for the impact stochasticity

We will discuss the sensitivity of the free boundary 𝕪 on the noise parameter σ̂ of the
impact process Y . To stress the dependence on σ̂, denote yσ̂0 := y0, y

σ̂
∞ := y∞ and

𝕪σ̂ := 𝕪, so that 𝕪σ̂ solves the ODE (𝕪σ̂)′(θ) = Gσ̂(𝕪σ̂(θ)) with 𝕪σ̂(0) = yσ̂0 and Gσ̂

given by the right-hand side of (4.10). By equation (4.27) and Lemma 4.4.2 we have
Gσ̂ ∈ C1(ℝ). We also have yσ̂∞ < 𝕪σ̂(θ) ≤ yσ̂0 with decreasing 𝕪σ̂ for all σ̂ > 0. We will
now investigate the limiting behavior for σ̂ ↘ 0.

Formally setting σ̂ = 0 in (4.3) yields the deterministic impact model (2.2) from
Chapter 2 with linear resilience h(y) = βy. Note that Assumption 4.1.2 implies Assump-
tion 2.2.2 in this case. According to Theorem 2.2.4, the optimal monotone strategy for
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deterministic impact dynamics is characterized by a free boundary function 𝕪0 that
solves the ODE (𝕪0)′(θ) = G0(𝕪0(θ)) with 𝕪0(0) = y00 where λ(y00) = −δ/(βy00) and

G0(y) :=
δ
(
βyλ(y) + β + δ

)(
βyλ(y) + δ

)(
βyλ(y) + β + δ

)
+ βy

(
βλ(y) + βyλ′(y)

) . (4.48)

Denote by y0∞ the unique solution to λ(y0∞) = −(β + δ)/(βy0∞). Then we have
y0∞ < 𝕪0(θ) ≤ y00 < 0 for all θ ≥ 0 and 𝕪0 is decreasing.
We will first show that yσ̂0 → y00 , y

σ̂
∞ → y0∞ and Gσ̂(y) → G0(y) pointwise for all

y < 0, as σ̂ ↘ 0. Note that Gσ̂ may be rewritten as

Gσ̂(y) =
(
A0

(A0 −A1)(λ−A1)

(λ′ + λ2)(A1 −A0) + λ · (A0A1 −A1A2) + (A0A1A2 −A0A2
1)

)
(y) ,

(4.49)

with An := Φ(n+1)/Φ(n). To obtain the limit of An(y) as σ̂ ↘ 0, for n ≥ 0, we utilize
[Leb72, eq. (10.6.6)], which yields in particular for real z > 0 and arbitrary ν the
asymptotic behavior

Hν(z) = (2z)ν
(
1 +𝒪(|z|−2)

)
. (4.50)

Moreover, we know the derivatives of Hermite functions by [Leb72, eq. (10.4.4)] as

H ′
ν(z) = 2νHν−1(z). (4.51)

Lemma 4.7.1. Let y < 0 and n ∈ ℕ0. Then we have An(y) → − δ+nβ
βy for σ̂ ↘ 0.

Proof. By (4.6) and (4.51) we have the nth derivative

Φ(n)(y) = 2n
∏n−1

k=0(δ + kβ)

βn/2σ̂n
H−(δ+nβ)/β(z).

with z := (σρσ̂ − βy)/(
√
βσ̂). Since z → +∞ as σ̂ ↘ 0 for y < 0, we find by (4.50) the

limit

An(y) = 2
δ + nβ√
βσ̂

·
H−(δ+(n+1)β)/β(z)

H−(δ+nβ)/β(z)

= 2
δ + nβ√
βσ̂

· (2z)
−(δ+(n+1)β)/β

(2z)−(δ+nβ)/β
· 1 +𝒪(|z|−2)

1 +𝒪(|z|−2)

=
δ + nβ√
βσ̂

·
√
βσ̂

σρσ̂ − βy
· 1 +𝒪(|z|−2)

1 +𝒪(|z|−2)
→ −δ + nβ

βy

for all y < 0, as σ̂ ↘ 0.

Now, since y := 𝕪σ̂(θ) ≤ yσ̂0 , for θ, σ̂ ≥ 0, and y00 < 0, we can assume y < 0 (and
therefore apply Lemma 4.7.1) for all σ̂ ≥ 0 small enough by the following

Lemma 4.7.2. We have yσ̂0 → y00 and yσ̂∞ → y0∞ as σ̂ ↘ 0.
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Proof. First, we will show that necessarily yσ̂0 < 0 for all σ̂ > 0 small enough. By (4.51),

Φ′(y)

Φ(y)
= 2

δ√
βσ̂

H−δ/β−1(z)

H−δ/β(z)
for all y ∈ ℝ, with z := σβσ̂−βy√

βσ̂
.

If y = 0, then z ≡ σ
√
β and therefore Φ′(0)/Φ(0) → +∞ as σ̂ ↘ 0. Since we know by

Lemma 4.4.1 that Φ′/Φ is strictly increasing for all σ̂ > 0, it follows Φ′(y)/Φ(y) → ∞
as σ̂ ↘ 0 for all y ≥ 0. Hence the solution y = yσ̂0 of λ(y) = Φ′(y)/Φ(y) needs to be
negative for all σ̂ > 0 small enough.
Now we can apply Lemma 4.7.1 to find A0 → −δ/(βy). Therefore, the function g

with g(σ̂, y) := λ(y)− (Φσ̂)′(y)/Φσ̂(y), if σ̂ > 0, and g(x, y) := λ(y) + δ/(βy), if x ≤ 0,
is continuous on (−ε, ε)× (−∞,−ε) for ε > 0 small enough. Since yσ̂0 is unique for all
σ̂ ≥ 0, it follows by [Kum80, Cor. 1.1] that the implicit function σ̂ ↦→ yσ̂0 exists and is
continuous in a neighborhood of zero.

For yσ̂∞, the proof is analogous, using λ(yσ̂∞) = A1(y
σ̂
∞) and A1(y) → −(δ+β)/(βy).

As a further step before showing convergence of 𝕪σ̂ to 𝕪0, we investigate Gσ̂.

Lemma 4.7.3. There exists ε > 0 such that the function (σ̂, y) ↦→ Gσ̂(y) is C0,1-
continuous on [0, ε]× [y0∞−ε, y00+ε] with uniform bound on the derivatives. In particular,
the family (Gσ̂)σ̂≥0 is equicontinuous on [y0∞ − ε, y00 + ε].

Proof. For continuity it suffices to show continuity as σ̂ ↘ 0. The denominator
in (4.10) is strictly negative on [y0∞, y

0
0 ], so G0(y) is continuous on a neighborhood

[y0∞ − ε, y00 + ε] ⊂ (−∞, 0). Now, direct calculations using (4.49) and Lemma 4.7.1 show
Gσ̂(y) → G0(y) as σ̂ ↘ 0 for every y ∈ [y0∞ − ε, y00 + ε]:

Gσ̂(y) =
( A0(A0 −A1)(λ−A1)

(λ′ + λ2)(A1 −A0) + λ · (A0A1 −A1A2) +A0A1A2 −A0A2
1

)
(y)

→
−δ
βy

(−δ
βy +

δ+β
βy

)(
λ(y)+ δ+β

βy

)
(λ′+λ2)(y)

(
− δ+β

βy + δ
βy

)
+λ(y)

( δ(δ+β)
β2y2 − (δ+β)(δ+2β)

β2y2

)
− δ(δ+β)(δ+2β)

β3y3 + δ(δ+β)2

β3y3

=
−δβ

(
βyλ(y) + β + δ

)
−β3y2(λ′ + λ2)(y)− 2β2y(β + δ)λ(y)− βδ(β + δ)

= G0(y)

by (4.48).
For equicontinuity, note that Gσ̂ is continuously differentiable on [y0∞ − ε, y00 + ε] for

all σ̂ ≥ 0. As shown above, the denominator of (4.49) converges to a non-zero value
for y ∈ [y0∞ − ε, y00 + ε]. Hence the derivative of (4.49), which is a function of λ and
An, converges for every y ∈ [y0∞ − ε, y00 + ε] to a finite value as σ̂ ↘ 0 that, moreover,
is continuous in y: Let ψ(σ̂, y) := d

dyG
σ̂(y), for σ̂ > 0, and ψ(0, y) := limσ̂↘0 ψ(σ̂, y).

So ψ is continuous on K := [0, ε] × [y0∞ − ε, y00 + ε]. Now we have a common upper
bound sup(σ̂,y)∈K |ψ(σ̂, y)| ∧ supy∈[y0

∞−ε,y0
0+ε]

⏐⏐ d
dyG

0(y)
⏐⏐ < ∞ for

⏐⏐ d
dyG

σ̂(y)
⏐⏐, σ̂ ≥ 0,

which implies equicontinuity of (Gσ̂)σ̂≥0.

Arzelà-Ascoli now gives local uniform convergence of Gσ̂ and thereby local uniform
convergence of ODE solutions 𝕪σ̂ by
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4.7 Sensitivity analysis for the impact stochasticity

Theorem 4.7.4. For every θ ≥ 0 we have 𝕪σ̂ → 𝕪0 uniformly on [0, θ].

Proof. By Lemma 4.7.2 there exists ε > 0 such that 𝕪σ̂(x) ∈ K := [y0∞ − ε, y00 + ε] for
all x ≥ 0 and σ̂ ∈ [0, ε]. Lemma 4.7.3 gives that L := supy∈K supσ̂∈[0,ε]|(Gσ̂)′(y)| <∞.

Moreover, equicontinuity and uniform boundedness of (Gσ̂)σ̂≥0, together with point-
wise convergence, imply uniform convergence by [Wal98, Thm. II.7.IV], i.e. we have
η(σ̂) := supy∈K

⏐⏐Gσ̂(y)−G0(y)
⏐⏐→ 0 as σ̂ ↘ 0. Now, for δ > 0 it follows

Cδ := sup
x∈[0,δ]

|𝕪σ̂(x)− 𝕪0(x)| ≤ |yσ̂0 − y00 |+
∫ δ

0

⏐⏐Gσ̂
(
𝕪σ̂(x)

)
−G0

(
𝕪0(x)

)⏐⏐dx
≤ |yσ̂0 − y00 |+

∫ δ

0

⏐⏐Gσ̂
(
𝕪σ̂(x)

)
−Gσ̂

(
𝕪0(x)

)⏐⏐ dx+∫ δ

0

⏐⏐Gσ̂
(
𝕪0(x)

)
−G0

(
𝕪0(x)

)⏐⏐dx
≤ |yσ̂0 − y00 |+ δCδ sup

y∈K

⏐⏐(Gσ̂)′(y)
⏐⏐  

≤L

+δ sup
y∈K

⏐⏐Gσ̂(y)−G0(y)
⏐⏐  

=η(σ̂)

,

which implies for δ ∈ (0, 1/L) that Cδ ≤
(
|yσ̂0 − y00 | + δη(σ̂)

)
/(1 − δL) → 0 as σ̂ ↘ 0,

since yσ̂0 → y00 by Lemma 4.7.2. Using 𝕪σ̂(δ) → 𝕪0(δ) instead of yσ̂0 → y00 in the above
estimation, we get

C2δ = sup
x∈[0,2δ]

|𝕪σ̂(x)− 𝕪0(x)| ≤ (Cδ + δη(σ̂))/(1− δL) → 0 as σ̂ ↘ 0.

With n := ⌈θ/δ⌉ iterative steps we cover all of [0, θ].
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5 Skorokhod M1/J1 stability for gains
from large investors’ strategies

This chapter is devoted to proving continuity of a controlled SDE solution in Skorokhod’s
M1 and J1 topologies and also uniformly, in probability, as a non-linear functional of
the control strategy. The functional comes from a generalization of the price impact
models introduced in Chapters 2 and 4. We show that M1-continuity is the key to ensure
that proceeds and wealth processes from (self-financing) càdlàg trading strategies are
determined as the continuous extensions for those from continuous strategies. Returning
to our overall theme of optimal liquidation problems, we demonstrate by example how
continuity properties are useful to identify asymptotically realizable proceeds. This
chapter presents a selection of the results and examples in [BBF19] and an extension of
the main result of [BBF19, Thm. 3.7] to a more general setup with possibly stochastic
liquidity. Section 5.1 sets the model and defines the proceeds functional for finite
variation strategies. In Section 5.2 we extend this definition to a more general set of
strategies and prove our main result of the chapter, Theorem 5.2.7. Section 5.3 gives
one particular application related to the stochastic liquidity model of Chapter 4 where
our stability result is a necessary prerequisite to extend the set of admissible strategies,
since finite variation controls are sub-optimal in this new setup. Technical lemmas are
deferred to Section 5.4.

5.1 Additive or multiplicative price impact

Extending on Chapters 2 and 4, without activity of large traders, the unaffected (dis-
counted) price process of the risky asset would evolve according to the stochastic
differential equation

dSt = St−(ξt d⟨M⟩t + dMt) , S0 > 0, (5.1)

where M is a locally square-integrable martingale that is quasi-left continuous (i.e. for
any finite predictable stopping time τ , ∆Mτ := Mτ −Mτ− = 0 a.s.) with ∆M > −1
and ξ is a predictable and bounded process. In particular, the predictable quadratic
variation process ⟨M⟩ is continuous [JS03, Thm. I.4.2], and the unaffected (fundamental)
price process S > 0 can have jumps. We moreover assume that ⟨M⟩ =

∫ ·
0
αs ds with a

(locally) Lipschitz and L0(ℙ) bounded density α, and that the martingale part of S is
square integrable on compact time intervals. The assumptions on M are satisfied e.g. for
M =

∫
σ dW , where W is a Brownian motion and σ is a predictable stochastic volatility

process that is bounded, or for Lévy processes M satisfying some integrability and lower
bound on jumps.
We will assume throughout this chapter that strategies Θ are predictable càdlàg

processes. The large investor’s market impact process Y has dynamics

dYt = −h(Yt) dt+ dNt + dΘt (5.2)
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5 Skorokhod M1/J1 stability for gains from large investors’ strategies

for some initial condition Y0− ∈ ℝ, where N is a locally square-integrable continuous mar-
tingale whose quadratic variation process ⟨N⟩ is absolutely continuous w.r.t. the Lebesgue

measure, ⟨N⟩t =
∫ t

0
βt dt with a (locally) Lipschitz continuous and L0(ℙ) bounded β,

such that the continuous covariation process ⟨N,M⟩ is of the form ⟨N,M⟩t =
∫ t

0
γt dt,

again with γ locally Lipschitz and L0(ℙ) bounded. With N ≡ 0, we are in the setup of
Chapter 2 and with Nt = σ̂Bt for a Brownian motion B correlated to M we can capture
the model of Chapter 4. The article [BBF19] which this chapter is based on essentially
considers the case N ≡ 0 where βt = γt = 0. But there the mean reversion of Y is w.r.t.
d⟨M⟩t instead of dt.
We assume that h : ℝ → ℝ is Lipschitz with h(0) = 0 and h(y) sgn(y) ≥ 0 for all

y ∈ ℝ. The Lipschitz assumption on h guarantees existence and uniqueness of Y in a
pathwise sense, see [PTW07, proof of Thm. 4.1] and Proposition 5.4.1 below. The sign
assumption on h gives transience of the impact which recovers towards 0 (if h(y) ̸= 0 for
y ̸= 0) when the large trader is inactive. The function h gives the speed of resilience
at any level of Yt and we will refer to it as the resilience function. For example, when
h(y) = βy for some constant β > 0, the market recovers at exponential rate (as in
[OW13, AFS10, Løk14] and Chapter 4). Note that we also allow for h ≡ 0 in which
case the impact is permanent as in [BB04]. Clearly, the process Y depends on Θ, and
sometimes we will indicate this dependence as a superscript Y = Y Θ. Moreover, we will
sometimes also indicate the dependence on the martingale N as Y = Y N,Θ. Note in
particular, that we have Y N,Θ = Y 0,N+Θ.

If the large investor trades according to a continuous strategy Θ, the observed price S
at which infinitesimal quantities dΘ are traded (see (5.4)) is given via (5.2) by

St := g(St, Yt) , (5.3)

where the price impact function (x, y) ↦→ g(x, y) is C2,1 and non-negative with gxx being
locally Lipschitz in y, meaning that on every compact interval I ⊂ ℝ there exists K > 0
such that |gxx(x, y) − gxx(x, z)| ≤ K|y − z| for all x, y, z ∈ I. Moreover, we assume
g(x, y) to be non-decreasing in both x and y. In particular, selling (buying) by the large
trader causes the price S to decrease (increase). This price impact is transient due to
(5.2).

Example 5.1.1. [BB04] consider a family of semimartingales (Sθ)θ∈ℝ being parame-
trized by the large trader’s risky asset position θ. In our setup, this corresponds to
general price impact function g and h ≡ 0, meaning that impact is permanent. A known
example in the literature on transient price impact is the additive case, S = S + f(Y ),
where [OW13] take f(y) = λy to be linear, motivated from a block-shaped limit order
book. For generalizations to non-linear increasing f : ℝ→ [0,∞), see [AFS10, PSS11].
Note that we require 0 ≤ g ∈ C2,1 for Theorem 5.2.7, see Remark 5.2.9. A (somewhat
technical) modification of the model by [OW13], that fits with our setup and ensures
positive asset prices, could be to take g(S, Y ) = φ(S + f(Y )) with a non-negative
increasing φ ∈ C2 satisfying φ(x) = x on [ε,∞) and φ(·) = 0 on (−∞,−ε] for some
ε > 0. An example that naturally ensures positive asset prices is multiplicative impact
S = f(Y )S as in as in Chapters 2 to 4, for f being strictly positive, non-decreasing, and
with f ∈ C1 (to satisfy the conditions on g). Also here, the function f can be interpreted
as resulting from a limit order book, see Remark 2.1.1.

While impact and resilience are given by general non-parametric functions, note that
these are static. Considering such a model as a low (rather than high) frequency model,
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5.1 Additive or multiplicative price impact

we do consider approximations by continuous and finite variation strategies to be relevant.
To start, let Θ be a continuous process of finite variation (f.v., being adapted). Then,
the cumulative proceeds (negative expenses), denoted by L(Θ), that are the variations
in the bank account to finance buying and selling of the risky asset according to the
strategy, can be defined (pathwise) in an unambiguous way. Indeed, proceeds over period
[0, T ] from a strategy Θ that is continuous should be (justified also by Lemma 5.2.1)

LT (Θ) := −
∫ T

0

Su dΘu = −
∫ T

0

g(Su, Yu) dΘu. (5.4)

Our main task in this chapter is to extend by stability arguments the model from
continuous to more general trading strategies, in particular such involving block trades
and even more general ones with càdlàg paths, assuming transient price impact but
no further frictions, like e.g. bid-ask spread. To this end, we will adopt the following
point of view: approximately similar trading behavior should yield similar proceeds.
The next section will make precise what we mean by “similar” by considering different
topologies on the càdlàg path space. It turns out that the natural extension of the
functional L from the space of continuous f.v. paths to the space of càdlàg f.v. paths
which makes the functional L continuous in all of the considered topologies is as follows:
for discontinuous trading we take the proceeds from a block market buy or sell order of
size |∆Θτ |, executed immediately at a predictable stopping time τ <∞, to be given by

−
∫ ∆Θτ

0

g(Sτ−, Yτ− + x) dx, (5.5)

and so the proceeds up to T from a f.v. strategy Θ with continuous part Θc are

LT (Θ) := −
∫ T

0

g(Su, Yu) dΘ
c
u −

∑
∆Θt ̸=0
0≤t≤T

∫ ∆Θt

0

g(St−, Yt− + x) dx. (5.6)

Note that a block sell order means that ∆Θt < 0, so the average price per share for

this trade satisfies St ≤ − 1
∆Θt

∫∆Θt

0
g(St, Yt− +x) dx ≤ St−. Similarly, the average price

per share for a block buy order, ∆Θt > 0, is between St− and St. The expression in
(5.5) could be justified from a limit order book perspective for some cases of g, as noted
in Example 5.1.1. But we will derive it in the next section using stability considerations.
The form (5.6) appears as a usual choice for the objective functional in the singular

stochastic control literature, see e.g. [Zhu92]. Already [Tak97, p. 609] justifies jump
terms as in (5.6) with an M1 approximation argument, although there he misqualifies
M1 convergence as pointwise convergence at continuity points of the limit, which is only
true for monotone processes.

Remark 5.1.2. The aim to define a model for trading under price impact for general
strategies is justified by applications in finance, which encompass trade execution,
utility optimization and hedging. While also e.g. [BB04, BR17, ÇJP04] define proceeds
for semimartingale strategies, their definitions are not ensuring continuity in the M1

topology, in contrast to Theorem 5.2.7. Another difference to [BB04, BR17] is that
our presentation is not going to rely on non-linear stochastic integration theory due to
Kunita or, respectively, Carmona and Nualart.
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5 Skorokhod M1/J1 stability for gains from large investors’ strategies

5.2 Continuity of the proceeds in various topologies

In this section we will discuss questions about continuity of the proceeds process
Θ ↦→ L·(Θ) with respect to various topologies: the ucp topology and the Skorokhod J1
and (in particular) M1 topologies. Each one captures different stability features, the
suitability of which may vary with application context.

Let us observe that for a continuous bounded variation trading strategy Θ the proceeds
from trading should be given by (5.4). To this end, let us make just the assumption that

a block order of a size ∆ at some (predictable) time t is executed at some

average price per share which is between St− = g(St, Yt−) and St = g(St, Yt),

where ∆Yt = ∆.

(5.7)

The assumption is natural, stating that a block trade is executed at an average price per
share that is somewhere between the asset prices observed immediately before and after
the execution. Assumption (5.7) means that proceeds by a simple strategy as in (5.9)
are

Lt(Θ
n) = −

∑
k: tk≤t

ξk(Θtk −Θtk−1
) (5.8)

for some random variable ξk between g(Stk , Y
Θn

tk−) and g(Stk , Y
Θn

tk
). Note that at this

point we have not specified the proceeds (negative expenses) from block trades, but we
only assume that they satisfy some natural bounds. Yet, this is indeed already sufficient
to derive the functional (5.4) for continuous strategies as a limit of simple ones.

Lemma 5.2.1. For T > 0, approximate a continuous f.v. process (Θt)t∈[0,T ] by a
sequence (Θn

t )t∈[0,T ] of simple trading strategies given as follows: For a sequence of
partitions {0 = t0 < t1 < · · · < tmn = T}, n ∈ ℕ, with sup1≤k≤mn

|tk − tk−1| → 0 for
n→ ∞, let

Θn
t := Θ0 +

mn∑
k=1

(
Θtk −Θtk−1

)
𝟙[tk,T ](t) , t ∈ [0, T ]. (5.9)

Assume (5.7) holds. Then sup0≤t≤T |Lt(Θ
n) +

∫ t

0
Su dΘu| → 0 a.s. for n→ ∞.

Proof. Note that supu∈[0,T ]|Θn
u − Θu| → 0 as n → ∞. The solution map Θ ↦→ Y Θ is

continuous with respect to the uniform norm, see Proposition 5.4.1. Therefore,

sup
u∈[0,T ]

|Y Θn

u − Y Θ
u | → 0 a.s. for n→ ∞. (5.10)

Note that for Y := Y Θ, ∆Θtk := Θtk −Θtk−1
= ∆Θn

tk
and ξk between g(Stk , Y

Θn

tk−) and

g(Stk , Y
Θn

tk
) we have

|ξk − g(Stk , Ytk)| ≤ Lipg(Stk , ω)max
{⏐⏐Ytk − Y Θn

tk

⏐⏐, ⏐⏐Ytk − Y Θn

tk−
⏐⏐}

≤ Lipg(Stk , ω)
(⏐⏐Ytk − Y Θn

tk

⏐⏐+ |∆Θtk |
)
,
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5.2 Continuity of the proceeds in various topologies

where Lipg(x, ω) denotes the Lipschitz constant of y ↦→ g(x, y) on a compact set,

depending on the (bounded) realizations for ω ∈ Ω of Y Θ and Y Θn

, n ∈ ℕ, on the
interval [0, T ]; such a compact set exits since Θ is continuous and supu∈[0,T ]

⏐⏐Y Θ
u − Y Θn

u

⏐⏐
can be bounded by a factor times the uniform distance between Θ and Θn on [0, T ], cf.
[PTW07, proof of Thm. 4.1]. Hence,

Lt(Θ
n) = −

∑
k: tk≤t

g(Stk , Y
Θ
tk
)
(
Θtk −Θtk−1

)
+ ℰn

t , (5.11)

where |ℰn
t | ≤

(
sup

u∈[0,T ]

Lipg(Su, ω)
) n∑

k=1

(⏐⏐Ytk − Y Θn

tk

⏐⏐+ |∆Θtk |
)
|∆Θtk | (5.12)

≤ C(ω)
(

sup
1≤k≤n

⏐⏐Ytk − Y Θn

tk

⏐⏐)|Θ(ω)|TV + C(ω)

n∑
k=1

|∆Θtk |2 (5.13)

→ 0 a.s. for n→ ∞ (uniformly in t), (5.14)

thanks to (5.10) and the fact that Θ has continuous paths of finite variation. The claim
follows since by dominated convergence the Riemann-sum process in (5.11) converges
a.s. to the Stieltjes-integral process −

∫ ·
0
Su dΘu uniformly on [0, T ].

Example 5.2.2 (Continuity issues for an alternative “ad-hoc” definition of proceeds).
Consider the problem of optimally liquidating Θ0− = 1 risky asset in time [0, T ] while
maximizing expected proceeds. In view of assumption (5.7), an alternative but possibly
“ad-hoc” definition for proceeds L̃T of simple strategies could be to consider just some
price for each block trade, similarly to [BB04, Section 3] or [HH11, Example 2.4]. For
multiplicative impact g(S, Y ) = Sf(Y ), taking e.g. the price directly after the impact
would yield for simple strategies Θn that trade at times {0 = tn0 < tn1 < · · · < tnn = T}
the proceeds L̃T (Θ

n) = −
∑n

k=0 Stnk
f(Y Θn

tnk
)∆Θn

tnk
. The family (Θn)n of strategies which

liquidate an initial position of size 1 until time 1/n in n equidistant blocks of uniform

size is given by Θn
t :=

∑n
k=1

n−k+1
n 𝟙[ k−1

n2 , k
n2 )(t). With unaffected price St = e−δtM̃t

for a continuous martingale M̃ , and permanent impact (h ≡ 0), i.e. Yt = Θt − 1, this

yields 𝔼[L̃T (Θ
n)] →

∫ 1

0
f(−y) dy for n→ ∞. Given δ ≥ 0, for any non-increasing simple

strategy Θ =
∑n

k=1 Θτk𝟙[[τk−1,τk[[ with Θ0− = 1 holds that 𝔼[L̃(Θ)] ≤
∫ 1

0
f(−y) dy with

strict inequality for δ > 0. So the control sequence (Θn) is only asymptotically optimal
among all simple monotone liquidation strategies.

Remark 5.2.3. Note that Example 5.2.2 is a toy example, since for permanent impact
the optimal strategy (considering asymptotically realizable proceeds) is trivial and in case
δ = 0 any strategy is optimal, cf. [GZ15, Prop. 3.5(III) and the comment preceding it].
Nevertheless, this example shows that the object of interest are asymptotically realizable
proceeds, an insight due to [BB04]. For analysis, it thus appears convenient and sensible
not to make a formal distinction of (sub-optimal) realizable and asymptotically realizable
proceeds, but to consider the latter and interpret strategies accordingly. Investigating
asymptotically realizable proceeds can help to answer questions on modeling issues,
e.g. whether the large investor could sidestep liquidity costs entirely and in effect act
as a small investor, cf. [BB04, ÇJP04]. One could impose, like [ÇST10], additional
constraints on strategies to avoid such issues; But in such tweaked models one could not
investigate the effects from some given illiquidity friction alone, in isolation from other
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constraints, because results from an analysis will be consequences of the combination of
both frictions.

Using Itô’s formula for G(St, Y
Θ
t ) for the C2 function G(x, y) :=

∫ y

c
g(x, z) dz with

constant c, we can obtain the following alternative representation of the functional in
(5.4) for continuous f.v. strategies:

L(Θ) =

∫ ·

0

Gx(Su−, Y
Θ
u−) dSu +

∫ ·

0

g(Su−, Y
Θ
u−) dNu +

∫ ·

0

k(Su, Y
Θ
u , αu, βu, γu) du

−
(
G(S·, Y

Θ
· )−G(S0, Y

Θ
0−)
)

+
∑

∆Su ̸=0
0≤u≤·

(
G(Su, Y

Θ
u )−G(Su−, Y

Θ
u )−Gx(Su−, Y

Θ
u )∆Su

)
, (5.15)

where k(x, y, a, b, c) := 1
2Gxx(x, y)x

2 − g(x, y)h(y)a + 1
2gy(x, y)b + gx(x, y)c and using

that S and Y have no common jumps. The advantage of this representation is that the
right-hand side of (5.15) makes sense for any predictable process Θ with càdlàg paths in
contrast to the term in (5.4) This form of the proceeds will turn out to be helpful for
the stability analysis. We will show that the right-hand side in (5.15) is continuous in
the control Θ when the path-space of Θ, the càdlàg path space, is endowed with various
topologies. Hence, it can be used to define the proceeds for general trading strategies by
continuity. Next section is going to discuss the topologies that will be of interest.

5.2.1 The Skorokhod space and its M1 and J1 topologies

We are going to derive a continuity result (Theorem 5.2.7) for the functional L in different
topologies on the space D ≡ D([0, T ]) := D([0, T ];ℝ) of real-valued càdlàg paths on the
time interval [0, T ]. Following the convention by [Sko56], we take each element in D[0, T ]
to be left-continuous at time T .1 One could also consider initial and terminal jumps by
extending the paths, see Remark 5.2.6. At this point, let us remark that finite horizon
T is not essential for the results below, whose analysis carries over to the time interval
[0,∞) because the topology on D([0,∞)) is induced by the topologies of D([0, T ]) for
T ≥ 0. More precisely, for the topologies we are interested in, xn → x as n → ∞ in
D([0,∞)) if xn → x in D([0, t]) for the restrictions of xn, x on [0, t], for any t being a
continuity point of x, see [Whi02, Sect. 12.9].
Convergence in the uniform topology is rather strong, in that approximating a path

with a jump is only possible if the approximating sequence has jumps of comparable
size at the same time. If one is interested in stability with respect to slight shift of the
execution in time, then a familiar choice that also makes D separable, the Skorokhod J1
topology, might be appropriate; for comprehensive study, see [Bil99, Ch. 3]. However,
also here an approximating sequence for a path with jumps needs jumps of comparable
size, if only at nearby times. To capture the occurrence of the so-called unmatched
jumps, i.e. jumps that appear in the limit of continuous processes, another topology on
D is more appropriate, the Skorokhod M1 topology. Recall that xn → x in (D, dM1

) if
dM1

(xn, x) → 0 as n→ ∞, with

dM1(xn, x) := inf
{
∥u− un∥ ∨ ∥r − rn∥

⏐⏐ (u, r) ∈ Π(x), (un, rn) ∈ Π(xn)
}
, (5.16)

1This is implicitly assumed also in [Whi02], see the compactness criterion in Thm. 12.12.2 which is
borrowed from [Sko56].
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where ∥·∥ denotes the uniform norm on [0, 1] and Π(x) is the set of all parametric
representations (u, r) : [0, 1] → Γ(x) of the completed graph (with vertical connections
at jumps) Γ(x) of x ∈ D, see [Whi02, Sect. 3.3]. In essence, two functions x, y ∈ D are
near to each other in M1 if one could run continuously a particle on each graph Γ(x)
and Γ(y) from the left endpoint toward the right endpoint such that the two particles
are nearby in time and space. In particular, it is easy to see that a simple jump path
could be approximated in M1 by a sequence of absolutely continuous paths, in contrast
to the uniform and the J1 topologies. More precisely, we have the following

Proposition 5.2.4. Let x ∈ D([0, T ]) and consider the Wong-Zakai approximation

sequence (xn) ⊂ D([0, T ]) defined by xn(t) := n
∫ t

t−1/n
x(s) ds, t ∈ [0, T ]. Then

xn → x for n→ ∞, in (D([0, T ]),M1).

Proof. To ease notation, we embed a path x in D([0,∞)) and consider the corresponding
approximating sequence for the extended path on [0,∞). The claim follows by restricting
to the domain [0, T ], as 0 and T are continuity points of x, cf. [Whi02, Sect. 12.9].
The idea is to construct explicitly parametric representations of Γ(x) and Γ(xn) that
are close enough. For this purpose, we need to add “fictitious” time to be able to
parametrize the segments that connect jump points of x. Indeed, let (ak) be a fixed
convergent series of strictly positive numbers and let t1, t2, . . . be the jump times of x
ordered such that |∆x(t1)| ≥ |∆x(t2)| ≥ . . . and tk < tk+1 if |∆x(tk)| = |∆x(tk+1)|. Set
δ(t) :=

∑
k ak𝟙{tk≤t}, the total “fictitious” time added to parametrize the jumps of x

up to time t.
Consider the time-changes γn(t) := n

∫ t

t−1/n
(δ(u) + u) du and γ0(t) := δ(t) + t, t ≥ 0,

together with their continuous inverses γ−1
n (s) := inf {u > 0 | γn(u) > s} for s ≥ 0,

n ≥ 0. It is easy to check that we have

γ−1
n (s)− 1/n < γ−1

0 (s) < γ−1
n (s) <∞ for s ≥ 0, (5.17)

because γn(t) < γ0(t) < γn(t+ 1/n), cf. [KPP95, Lemma 6.1]. Consider the sequence
un(s) := xn(γ

−1
n (s)) for s ≥ 0 and let

u(s) :=

{
x(γ−1

0 (s)) if η1(s) = η2(s),

x(γ−1
0 (s)) · s−η1(s)

η2(s)−η1(s)
+ x(γ−1

0 (s)−) · η2(s)−s
η2(s)−η1(s)

if η1(s) ̸= η2(s),

where [η1(s), η2(s)] is the “fictitious” time added for a jump at time t = γ−1
0 (s), i.e.

η1(s) := sup {s̃ | γ−1
0 (s̃) < γ−1

0 (s)} and η2(s) := inf {s̃ | γ−1
0 (s̃) > γ−1

0 (s)}, as in [KPP95,
p. 368]. Then [KPP95, Lemma 6.2] gives limn→∞ un = u, uniformly on bounded intervals;
our setup corresponds to f ≡ 1 there, so our un, u correspond to V 1/n, V there.

Now the claim follows by observing that (un, γ
−1
n ) is a parametric representation of the

completed graph of xn, i.e. (un, γ
−1
n ) ∈ Π(xn), and (u, γ−1

0 ) ∈ Π(x) which are arbitrarily
close when n is big.

Remark 5.2.5. A direct corollary of Proposition 5.2.4 is that D([0, T ]) is the closure
of the set of absolutely continuous functions in the Skorokhod M1 topology, in contrast
to the uniform or Skorokhod J1 topologies where a jump in the limit can only be
approximated by jumps of comparable sizes.
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Remark 5.2.6 (Extended paths). To include trading strategies that could additionally
have initial and terminal jumps in our analysis, one may embed the paths of such
strategies in the slightly larger space D([−ε, T + ε];ℝ) for some ε > 0, e.g. ε = 1, by
setting x(s) = x(0−) for s ∈ [−ε, 0) and x(s) = x(T+) for s ∈ (T, T + ε]; we will
refer to thereby embedded paths as extended paths. This extension is relevant when
trying to approximate jumps at terminal time by absolutely continuous strategies in a
non-anticipative way as e.g. in Proposition 5.2.4 where it is clear that a bit more time
could be required after a jump occurs in order to approximate it. In particular, by
considering extended paths the result of Proposition 5.2.4 holds if one allows for initial
and terminal jumps of x, but convergence holds in the extended paths space.

5.2.2 Main stability results

Our main result is stability of the functional L defined by the right-hand side of (5.15)
for processes Θ with càdlàg paths.

Theorem 5.2.7. Let a sequence of predictable processes (Θn) converge to the predictable
process Θ in (D, ρ), in probability, where ρ denotes the uniform topology, the Skorokhod
J1 or M1 topology, being generated by a suitable metric d. Assume that (Θn) is bounded
by an L0 variable, i.e. there exists K ∈ L0(ℙ) such that sup0≤t≤T |Θn

t | ≤ K for all n.
Then the sequence of processes L(Θn) converges to L(Θ) in (D, ρ) in probability, i.e.

ℙ
[
d
(
L(Θn), L(Θ)

)
≥ ε
]
→ 0 for n→ ∞ and ε > 0. (5.18)

In particular, there is a subsequence L(Θnk) that converges a.s. to L(Θ) in (D, ρ).

Note that e.g. for almost sure convergence Θn → Θ in (D, ρ), the L0(ℙ) boundedness
condition is automatically fulfilled.

Proof. By considering subsequences, one could assume that the sequence (Θn) con-
verges to Θ in (D, ρ) a.s. The idea for the proof is to show that each summand in
the definition of L is continuous. But as D endowed with J1 or M1 is not a topo-
logical vector space, since addition is not continuous in general, further arguments
will be required. Addition is continuous (and hence also multiplication) if for in-
stance the summands have no common jumps, see [JS03, Prop. VI.2.2] for J1 and
[Whi02, Cor. 12.7.1] for M1. In our case however, there are three terms in L that
can have common jumps, namely the stochastic integral process

∫ ·
0
Gx(Su−, Yu−) dSu,

the sum Σ :=
∑

u≤·
(
G(Su, Yu) − G(Su−, Yu) − Gx(Su−, Yu)∆Su

)
of jumps and the

term −G(S, Y ). At jump times of Θ (i.e. of Y ) which are predictable stopping
times, S does not jump since it is quasi-left continuous. Hence the only common
jump times can be jumps times of S which are totally inaccessible. If ∆Sτ ̸= 0, we
have for the jumps that ∆(

∫ ·
0
Gx(Su−, Yu−) dSu)τ = Gx(Sτ−, Yτ )∆Sτ and also that

∆(−G(S, Y ))τ = −
(
G(Sτ , Yτ ) − G(Sτ−, Yτ )

)
, because ∆Yτ = 0 a.s. Since moreover

∆Στ = G(Sτ , Yτ )−G(Sτ−, Yτ )−Gx(Sτ−, Yτ )∆Sτ , one has cancellation of jumps at jump
times of S. However, these are times of continuity for Y and this will be crucial below
to deduce continuity of addition on the support of

(∫ ·
0
Gx(Su−, Yu−) dSu,Σ,−G(S, Y )

)
in (D, ρ)× (D, ρ)× (D, ρ).
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5.2 Continuity of the proceeds in various topologies

First consider the case where (N +Θn) is a uniformly bounded sequence. Since N is
continuous, we get N +Θn → N +Θ in (D, ρ). Then the processes

dY n
t = −h(Y n

t ) dt+ dNt + dΘn
t , Y n

0− = y ,

are uniformly bounded, so we can assume w.l.o.g. that h, G, Gx and k are ω-wise
Lipschitz continuous and bounded (it is so on the range of all Y n, Y , which is contained
in a compact subset of ℝ). By Proposition 5.4.1 we have Y n → Y in (D, ρ), almost
surely. This implies (S, Y n) → (S, Y ) almost surely, by absence of common jumps of S
and Y , cf. [JS03, Prop. VI.2.2b] for J1 and2 [Whi02, Thm. 12.6.1 and 12.7.1] for M1. By
the Lipschitz property of G and (for the M1 case) monotonicity of G(·, y) and G(x, ·),
we get

G(S, Y n) → G(S, Y ) in (D, ρ), a.s. (5.19)

Indeed, for the M1 topology, it is easy to see that (G(u1, u2), r) ∈ Π(G(S, Y )) for any
parametric representation ((u1, u2), r) of (S, Y ), because at jump times t of G(S, Y ),
z ↦→ r(z) ≡ t is constant on an interval [z1, z2], and either u1 or u2 is constant on [z1, z2].
Note that jump times of Θ and Y coincide, and form a random countable subset of

[0, T ]. Moreover, convergence in (D, ρ) implies local uniform convergence at continuity
points of the limit (for ρ being the M1 topology, cf. [Whi02, Lemma 12.5.1], for the J1
topology cf. [JS03, Prop. VI.2.1]). Hence, Y n

t → Yt for almost all t ∈ [0, T ], ℙ-a.s. By
Lipschitz continuity of k, we get k(St, Y

n
t , αt, βt, γt) → k(St, Yt, αt, βt, γt), for almost-all

t ∈ [0, T ], ℙ-a.s. By dominated convergence, we conclude that∫ ·

0

k(Su, Y
n
u , αu, βu, γu) du→

∫ ·

0

k(Su, Yu, αu, βu, γu) du

uniformly on [0, T ], a.s. Hence these two summands in the definition of L, see (5.15),
are (ω-wise) continuous in Θ.

Now we treat the stochastic integral and jump terms in (5.15). By the above arguments
we can also deal with the drift in the process S, since ⟨M⟩ is absolutely continuous
w.r.t. Lebesgue measure. Thus we may assume w.l.o.g. that S is a martingale. In
particular, up to a localization argument (see below for details), we can assume that S
and N are bounded and therefore the stochastic integrals are true martingales, since their
integrands Gx(Su−, Y

n
u−) and g(Su−, Y

n
u−) are bounded. Having Y n → Y a.e. on the

space (Ω× [0, T ],ℙ⊗Leb([0, T ])), we can conclude convergence of the stochastic integrals
in the uniform topology, in probability. Dominated convergence on

(
[0, T ],Leb([0, T ])

)
yields∫ T

0

(Y n
u− − Yu−)

2 d⟨S⟩u → 0 as n→ ∞, ℙ-a.s.

Since Y n, Y are uniformly bounded one gets, again by dominated convergence, that

𝔼
[∫ T

0

(Y n
u− − Yu−)

2 d⟨S⟩u
]
→ 0 and 𝔼

[∫ T

0

(Y n
u− − Yu−)

2 d⟨N⟩u
]
→ 0,

2Using the strong M1 topology in D([0,∞);ℝ2).
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5 Skorokhod M1/J1 stability for gains from large investors’ strategies

as n→ ∞, i.e. Y n
− → Y− in L2(Ω× [0, T ], dℙ⊗ d⟨S⟩) and in L2(Ω× [0, T ], dℙ⊗ d⟨N⟩).

By localization (to bound S and use that Gx(x, y) and g(x, y) are locally Lipschitz in
y), Itô’s isometry and Doob’s martingale inequality, we get

ℙ

[
sup

0≤t≤T

⏐⏐⏐∫ t

0

Gx(Su−, Y
n
u−) dSu −

∫ t

0

Gx(Su−, Yu−) dSu

⏐⏐⏐ ≥ ε

]
→ 0 and

ℙ

[
sup

0≤t≤T

⏐⏐⏐∫ t

0

g(Su−, Y
n
u−) dNu −

∫ t

0

g(Su−, Yu−) dNu

⏐⏐⏐ ≥ ε

]
→ 0,

as n → ∞. For the sum of jumps Σn (defined like Σ, but with Y n instead of
Y ) we have a.s. uniform convergence Σn → Σ by Lemma 5.4.4. Hence, the sum∫ t

0
Gx(Su−, Y

n
u−) dSu +

∫ t

0
g(Su−, Y

n
u−) dNu + Σn converges in ucp. To conclude on

the proceeds, note that at jump times of S, when cancellation of jumps occurs,
one has continuity of Y and hence local uniform convergence of the sequence Y n.
For our setup, Lemmas 5.4.2 and 5.4.3 show continuity of addition on the support
of
(∫ ·

0
Gx(Su−, Yu−) dSu + Σ,−G(S·, Y·)

)
(that is, along the support of the pairs(∫ ·

0
Gx(Su−, Y

n
u−) dSu + Σn,−G(S·, Y

n
· )
)
) for the J1 and M1 topologies, respectively.

All other terms in (5.15) are continuous processes. So the continuous mapping theorem
[Kal02, Lem. 4.3] yields the claim for the proceeds functional L (the uniform topology
being stronger than ρ).

It remains to investigate the more general case of S, N and (Θn) being only bounded
in L0(ℙ). Note that the continuity of all terms except the stochastic integrals in the
definition of L was proven ω-wise; in this case supn sup0≤t≤T |Nt + Θn

t (ω)| < ∞ (by
the a.s. convergence of Θn to Θ in (D, ρ)) and hence the same arguments carry over
here by restricting our attention to compact sets (depending on ω). Hence refine-
ment of the argument above is only needed for the stochastic integral terms. The
bound on S, N and (Θn) means that for every ε > 0 there exists Ωε ∈ ℱ with
ℙ(Ωε) > 1 − ε and a positive constant Kε which is a uniform bound for the se-
quence (together with the limit Θ) on Ωε. For the stopping time τ := inf τn, where
τn := inf {t ≥ 0 | |Θn

t | ∨ |Nt| ∨ |St| > Kε}∧T (τ is a stopping time because the filtration
is right-continuous by our assumptions), we then have that τ = T on Ωε. By the argu-
ments above we conclude that d

(∫ ·∧τ

0
Gx(Su−, Y

n
u−) dSu,

∫ ·∧τ

0
Gx(Su−, Yu−) dSu

)
→ 0

in probability. Since
∫ ·∧τ

0
Gx(Su−, Y

n
u−) dSu =

∫ ·
0
Gx(Su−, Y

n
u−) dSu on Ωε, we conclude

ℙ

[
d
(∫ ·

0

Gx(Su−, Y
n
u−) dSu,

∫ ·

0

Gx(Su−, Yu−) dSu

)
≥ ε

]
≤ 2ε

for all n large enough. Similarly, we find

ℙ

[
d
(∫ ·

0

g(Su−, Y
n
u−) dNu,

∫ ·

0

g(Su−, Yu−) dNu

)
≥ ε

]
≤ 2ε

for all n large enough. Since N is continuous, the sum of both stochastic integrals also
converges in the same manner. This finishes the proof since ε was arbitrary.

Remark 5.2.8. Inspection of the proof above reveals that predictability of the strategies
is only needed to show why the addition map is continuous when there is cancellation of
jumps in (5.15); indeed, for predictable Θ the processes Y Θ and S will have no common
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jump and this was sufficient for the arguments. However, in the case when M (and thus
S) is continuous, only one term in (5.15) might have jumps, namely G(S, Y Θ). Hence,
in this case the conclusion of Theorem 5.2.7 even holds under the relaxed assumption
that the càdlàg strategies are merely adapted, instead of being predictable.

Remark 5.2.9. Our assumption of positive prices (and monotonicity of x ↦→ g(x, y))
has been (just) used to prove the M1-convergence of G(S, Y n) in (5.19). If one would
want to consider a model where prices could become negative (like additive impact
S = S + f(Y ), see Example 5.1.1), then M1-continuity of proceeds would not hold
in general, as a simple counter-example can show. Yet, the above proof still shows
Lt(Θ

n) → Lt(Θ) in probability, for all t ∈ [0, T ] where ∆Θt = 0. Also note that for
continuous Θn converging in M1 to a continuous strategy Θ, hence also uniformly, one
obtains that proceeds L(Θn) → L(Θ) converge uniformly, in probability.

An important consequence of Theorem 5.2.7 is a stability property for our model. It
essentially implies that we can approximate each strategy by a sequence of absolutely
continuous strategies, corresponding to small intertemporal shifts of reassigned trades,
whose proceeds will approximate the proceeds of the original strategy. More precisely, if
we restrict our attention to the class of monotone strategies, then we can restate this
stability in terms of the Prokhorov metric on the pathwise proceeds (which are monotone
and hence define measures on the time axis). This result on stability of proceeds with
respect to small intertemporal Wong-Zakai-type re-allocation of orders may be compared
to seminal work by [HHK92] on a different but related problem, who required that for
economic reason the utility should be a continuous functional of cumulative consumption
with respect to the Lévy-Prokhorov metric dLP, in order to satisfy the sensible property
of intertemporal substitution for consumption. Recall for convenience of the reader the
definition of dLP in our context: for increasing càdlàg paths on [0, T̃ ], x, y : [0, T̃ ] → ℝ

with x(0−) = y(0−) and x(T̃ ) = y(T̃ ),

dLP(x, y) := inf {ε > 0 | x(t) ≤ y((t+ε)∧T̃ )+ε, y(t) ≤ x((t+ε)∧T̃ )+ε ∀t ∈ [0, T̃ ]}.

Corollary 5.2.10. Let Θ be a predictable process with càdlàg paths defined on the time
interval [0, T ] (with possible initial and terminal jumps) that is extended to the time
interval [−ε, T + ε] as in Remark 5.2.6. Consider the sequence of f.v. processes (Θn)
where

Θn
t := n

∫ t

t−1/n

Θs ds, t ≥ 0, (5.20)

for n ∈ ℕ large enough, and let L := L(Θ), Ln := L(Θn) be the proceeds processes
from the respective trading. Then Ln

t → Lt at all continuity points t ∈ [0, T + ε] of
L as n → ∞, in probability. In particular, for any bounded monotone strategy Θ the
Borel measures Ln(dt;ω) and L(dt;ω) on [0, T + ε] are finite (a.s.) and converge in the
Lévy-Prokhorov metric dLP(L

n(ω), L(ω)) in probability, i.e. for any η > 0,

ℙ
[
dLP(L

n(ω), L(ω)) > η
]
→ 0 as n→ ∞.

Proof. An application of Proposition 5.2.4 together with Theorem 5.2.7 gives

dM1(L
n, L)

ℙ−→ 0.
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5 Skorokhod M1/J1 stability for gains from large investors’ strategies

The first part of the claim now follows from the fact that convergence in M1 implies local
uniform convergence at continuity points of the limit, see [Whi02, Lemma 12.5.1]. The
same property implies the claim about the Lévy-Prokhorov metric because convergence
in this metric is equivalent to weak convergence of the associated measures which on
the other hand is equivalent to convergence at all continuity points of the cumulative
distribution function (together with the total mass).

t

Θ

•

Θn+1 Θn Θn−1

. . .

Figure 5.1: The Wong-Zakai approximation in (5.20) for a single jump process.

Note that the sequence (Θn) from Corollary 5.2.10 satisfies Θn ≡ ΘT on [T+1/n, T+ε]
for all n ≥ ⌈1/ε⌉, i.e. the approximating strategies arrive at the position ΘT , however by
requiring a bit more time to execute. Based on the Wong-Zakai approximation sequence
from (5.20), we next show that each semimartingale strategy on the time interval [0, T ]
can be approximated by simple adapted strategies with uniformly small jumps that,
however, again need slightly more time to be executed.

Proposition 5.2.11. Let (Θt)t∈[0,T ] be a predictable process with càdlàg paths ex-
tended to the time interval [0, T + ε] as in Remark 5.2.6. Then there exists a sequence
(Θn

t )t∈[0,T+ε] of simple predictable càdlàg processes with jumps of size not more than

1/n such that dM1(L(Θ
n), L(Θ))

ℙ−→ 0 as n→ ∞, where dM1 denotes the Skorokhod M1

metric on D([0, T + ε];ℝ). Moreover, if Θ is continuous, the same convergence holds
true in the uniform metric on [0, T ] instead.

Proof. Consider the Wong-Zakai approximation sequence Θ̃n from Corollary 5.2.10 for

which dM1
(L(Θ̃n), L(Θ))

ℙ−→ 0, where the Skorokhod M1 topology is considered for
the extended paths on time-horizon [0, T + ε], with n ≥ ⌈1/ε⌉ large enough. Now we

approximate each (absolutely) continuous process Θ̃n by a sequence of simple processes
as follows.

For δ > 0, consider the sequence of stopping times with σδ,n
0 := 0 and

σδ,n
k+1 := inf

{
t
⏐⏐ t > σδ,n

k and |Θ̃n
t − Θ̃n

σδ,n
k

| ≥ δ
}
∧ (σδ,n

k + 1/n) for k ≥ 0.
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Note that σδ,n
k are predictable as hitting times of continuous processes and σδ,n

k ↗ ∞ as

k → ∞ because the process Θ̃n is continuous. When δ → 0, we have Θδ,n ucp−−→ Θ̃n for

Θδ,n := Θ̃n
0 +

∞∑
k=1

(
Θ̃n

σδ,n
k

− Θ̃n
σδ,n
k−1

)
𝟙[[σδ,n

k ,∞[[.

Moreover, if for each integer m ≥ 1 we define the (predictable) process Θδ,n,m by

Θδ,n,m := Θ̃n
0 +

m∑
k=1

(
Θ̃n

σδ,n
k

− Θ̃n
σδ,n
k−1

)
𝟙[[σδ,n

k ,∞[[ ,

then for each fixed δ and n we have Θδ,n,m ucp−−→ Θδ,n when m → ∞. Hence, we can
choose δ = δ(n) small enough and m = m(n) big enough such that

d(Θ̃n,Θδ(n),n,m(n)) < 2−n,

with d(·, ·) denoting a metric that metricizes ucp convergence (cf. e.g. [Pro05, p. 57]).
Thus, Θn := Θδ(n),n,m(n) will be close to Θ in the Skorokhod M1 topology, in probability,
because the uniform topology is stronger than the M1 topology.
Note that if Θ is already continuous, no intermediate Wong-Zakai approximation

would be needed, and so we obtain uniform convergence in probability in that case.

5.3 Case study: expectation constraints on the time to
liquidation

In this section, we present a particular example in the framework of multiplicative impact
g(S, Y ) = f(Y )S, cf. Example 5.1.1, where the M1 topology is key for identifying the
(asymptotically realizable) proceeds) and thus extend the market model from finite
variation controls to a larger class of trading strategies. This is key here, because it will
turn out that any finite variation control is suboptimal.
Let us investigate an optimal liquidation problem for a variant of the price impact

model which features stochastic liquidity. The singular control problem exhibits two
interesting properties: It still permits an explicit description for the optimal strategy
under a new constraint on the expected time to (complete) liquidation, but the optimal
control is not of finite variation. So the set of admissible strategies needs to accommodate
for infinite variation controls. As it is clear how to define the proceeds functional for
(continuous) strategies of finite variation (cf. equation (5.4)), and we want (and need) to
admit for jumps in the (optimal) control, the M1 topology is a natural choice to extend
the domain continuously. We consider no discounting or drift in the unaffected price
process, letting St = S0ℰ(σW )t with constant σ > 0. This martingale case will permit
to apply convexity arguments in spirit of [PSS11] to construct an optimal control, see
Theorem 5.3.2 below. In (2.2), the dynamics of market impact Y (called volume effect
in [PSS11]) was a deterministic function of the large trader’s strategy Θ. To model
liquidity which is stochastic (e.g. by volume imbalances from other large ’noise’ traders,
cf. Remark 4.1.4), let the impact process Y Θ solve

dY Θ
t = −βY Θ

t dt+ σ̂ dBt + dΘt , with Y Θ
0− = Y0− ∈ ℝ given, (5.21)
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for constants β, σ̂ > 0 and a Brownian motion B that is independent of W . For the
impact function f ∈ C3(ℝ), giving the observed price by St = f(Yt)St, we require
f, f ′ > 0 with f(0) = 1 and that λ(y) := f ′(y)/f(y) is bounded away from 0 and ∞,
i.e. for constants 0 < λmin ≤ λmax we have λmin ≤ λ(y) ≤ λmax for all y ∈ ℝ, with
bounded derivative λ′. Moreover, we assume that k(y) := σ̂2

2
f ′′(y)
f(y) − β − βy f ′(y)

f(y) is

strictly decreasing. An example satisfying these conditions is f(y) = eλy with constant
λ > 0. Let F (x) :=

∫ x

−∞ f(y) dy, which is positive and of exponential growth due to

the bounds on λ: 0 < F (x) ≤
(
eλmin + eλmax

)
/λmin. The liquidation problem on infinite

horizon with discounting and without intermediate buying in this model is solved in
Theorem 4.2.1.

For our problem here, proceeds of general semimartingale strategies Θ should be

LT (Θ) =

∫ T

0

Stψ(Y
Θ
t−) dt+ S0F (Y0−)− STF (Y

Θ
T )

+

∫ T

0

F (Y Θ
t−) dSt + σ̂

∫ T

0

Stf(Y
Θ
t−) dBt ,

(5.22)

with ψ(y) := −βyf(y) + σ̂2

2 f
′(y), because (5.22) is the continuous extension (in M1 in

probability, cf. Theorem 5.2.7 and see (5.15) with g(x, y) = xf(y), βt = σ̂2 and γt = 0)

of the functional L(Θc) = −
∫ T

0
Su dΘ

c
u from continuous f.v. Θc to semimartingales Θ

that are bounded in probability on [0,∞):
Our goal is to maximize expected proceeds 𝔼[L∞(Θ)] over some suitable set of

admissible strategies that we specify now. From an application point of view, it makes
sense to impose some bound on the time horizon within which liquidation is to be
completed. Indeed, since our control objective here involves no discounting, one needs
to restrict the horizon to get a non-trivial solution. Let some ηmax ≥ 0 be given. A
semimartingale Θ that is bounded in probability on [0,∞) will be called an admissible
strategy, if

there exists a stopping time τ with 𝔼[τ ] ≤ ηmax such that Θt = Θt𝟙t≤τ , with

𝔼[τSτ ] <∞,
(
Lτ (Θ)

)− ∈ L1(ℙ) and such that the processes

∫ ·∧τ

0

StF (Y
Θ
t−) dWt ,∫ ·∧τ

0

Stf(Y
Θ
t−) dBt , S·∧τ and (SB)·∧τ are uniformly integrable (UI) martingales.

The integrability conditions ensure Lτ (Θ) ∈ L1(ℙ). Indeed, for admissible Θ it suffices

to check
(∫ τ

0
Stψ(Y

Θ
t−) dt

)+ ∈ L1(ℙ). We will show in the proof of Theorem 5.3.2

that ψ attains a maximum ψ(y∗). Thus we can bound
∫ τ

0
Stψ(Y

Θ
t−) dt from above by

ψ(y∗)
∫ τ

0
St dt, which is integrable by optional projection [DM82, Thm. VI.57] since

𝔼[τSτ ] <∞.
Let 𝒜ηmax

be the set of all admissible strategies with given fixed initial value Θ0−,
where |Θ0−| is the number of shares to be liquidated (sold) if Θ0− > 0, resp. acquired
(bought) if Θ0− < 0. The definition of 𝒜ηmax involves several technical conditions.
But the set 𝒜ηmax is not small, for instance it clearly contains all strategies of finite
variation which liquidate until some bounded stopping times τ with 𝔼[τ ] ≤ ηmax, and
also strategies of infinite variation (see below). Note that intermediate short selling is
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permitted, and that 𝒜0 contains only the trivial strategy to sell (resp. buy) everything
immediately.

We will show that optimal strategies are impact fixing. For Υ̃,Υ ∈ ℝ an impact fixing

strategy Θ = ΘΥ̃,Υ is a strategy with liquidation time τ (i.e. Θt = 0 for t ≥ τ), such that

Y = Y ΘΥ̃,Υ

satisfies Yt = Υ̃ on [[0, τ [[ and Yτ = Υ. More precisely, Θ0 = Θ0− + Υ̃− Y0−,

dΘt = βΥ̃ dt− σ̂ dBt on ]]0, τ [[ until τ = τ Υ̃,Υ := inf {t > 0 | Θt− = Υ̃−Υ}, with final
block trade of size ∆Θτ = −Θτ− = Υ− Υ̃ and Θ = 0 on [[τ,∞[[. We have the following
properties of impact fixing strategies.

Lemma 5.3.1 (Admissibility of impact fixing strategies). The liquidation time τ = τ Υ̃,Υ

of an impact fixing strategy ΘΥ̃,Υ has expectation 𝔼[τ ] = (Y0− − Θ0− − Υ)/(βΥ̃) if
(Y0− −Θ0− −Υ)Υ̃ > 0, and 𝔼[τ ] = 0 if Υ = Y0− −Θ0−, otherwise 𝔼[τ ] = ∞.

Moreover, if 𝔼[τ Υ̃,Υ] ≤ ηmax then ΘΥ̃,Υ ∈ 𝒜ηmax
.

Proof. By [BS02, Ch. 2, Sect. 2, eq. (2.0.2) on p. 295], the law of the hitting time
Hz of level z by a Brownian motion with drift µ starting in x is for t ∈ (0,∞)

given by ℙx[Hz ∈ dt] = hµ(t, z − x) dt with hµ(t, x) := |x|√
2πt3/2

exp
(
− (x−µt)2

2t

)
and

ℙx[Hz = ∞] = 1− exp
(
µ(z−x)−|µ| · |z−x|

)
. With µ = βΥ̃/ρ, x = (Θ0−+Υ̃−Y0−)/ρ

and z = (Υ̃−Υ)/ρ we obtain the stated terms for 𝔼[τ ] = 𝔼x[Hz].
Now, let Υ̃, Υ be such that 𝔼[τ ] ≤ ηmax. Independence of τ and S gives 𝔼[Sτ ] = S0

and 𝔼[τSτ ] < ∞. We have
∫ τ

0
Stf(Yt) dBt = f(Υ̃)Mτ for MT :=

∫ T∧τ

0
St dBt and∫ τ

0
StF (Yt) dWt = F (Υ̃)σ−2Sτ . Note that [M ]τ = σ−2[S]τ . We will show that M , S·∧τ

and (SB)·∧τ are in ℋ1 and hence UI martingales. By Burkholder-Davis-Gundy [Pro05,

Thm. IV.4.48], there exists C > 0 with 𝔼
[
[S]

1/2
τ

]
≤ C𝔼[supu≤τ |Su|] = C𝔼[exp(σXτ )]

with Xt := supu≤t(Wu − σ
2u). Using {Xt > z} = {Hz < t} for z, t ≥ 0 with starting

point X0 = 0 and drift µ = −σ/2 we first obtain

𝔼[exp(σXt)] =

∫
[0,∞]

eσxℙ[Xt ∈ dx] =

∫
[0,∞]

eσx d
(
1− ℙ[Xt > x]

)
x

= −
∫
[0,∞]

eσx d
(
ℙ[Xt > x]

)
x
= −

∫
[0,∞]

eσx d
(
ℙ[Hx < t]

)
x
.

Since ℙ[H∞ < t] = 0 we can approximate the Riemann-Stieltjes integral and apply
integration by parts twice to get

𝔼[exp(σXt)] = − lim
ε↘0

∫ t

0

∫ 1/ε

ε

eσxh−σ/2
x (u, x) dxdu = −

∫ t

0

∫ ∞

0

eσxh−σ/2
x (u, x) dxdu

with h−σ/2
x (t, x) =

d

dx
h−σ/2(t, x) = −

x2 − t+ σ
2xt√

2πt5/2
exp
(
−
(x+ σ

2 t)
2

2t

)
.

So we have eσxh
−σ/2
x (t, x) = h

σ/2
x (t, x) − σhσ/2(t, x). The contribution from the first

summand of the integrand h
σ/2
x (t, x)−σhσ/2(t, x) is zero, since hσ/2(t, x) → 0 for x→ ∞

and for x→ 0. Hence, 𝔼[exp(σXt)] equals

σ

∫ t

0

∫ ∞

0

hσ/2(u, x) dx du = σ

∫ t

0

(
exp
(
−σ2

8 u
)

√
2πu

− σ

2
+
σ

2
φ
(
σ
2

√
u
))

du
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= 2φ
(
σ
2

√
t
)
− 1 + σ2

2 tφ
(
σ
2

√
t
)
− σ2

2 t+
σ
√
t√

2π
exp
(
−σ2

8 t
)
≤ 1 +

σ
√
t√

2π
,

where φ(x) =
∫ x

−∞ e−z2/2 dz/
√
2π. So by independence of X and τ

𝔼[exp(σXτ )] = 𝔼[(t ↦→ 𝔼[eσXt ])(τ)] ≤ 𝔼
[
1 +

σ√
2π

√
τ
]
≤ 1 +

σ√
2π

(1 + 𝔼[τ ]) <∞ .

Moreover, [SB]τ = τ [S]τ by independence of S and B, so we can bound 𝔼
[
[SB]

1/2
τ

]
by

𝔼
[√
τ [S]

1/2
τ

]
=𝔼

[√
t𝔼
[
[S]

1/2
t

]⏐⏐⏐
t=τ

]
≤C𝔼

[√
t𝔼[exp(σXt)]

⏐⏐⏐
t=τ

]
≤C𝔼[

√
τ + σ√

2π
τ ] < ∞.

Thus, (SB)·∧τ is in ℋ1 and hence a UI martingale.

Finally,
(
Lτ (Θ)

)− ∈ L1(ℙ) follows from
∫ τ

0
Stg(Y

Θ
t−) dt = g(Υ̃)

∫ τ

0
St dt, which is inte-

grable by optional projection [DM82, Thm. VI.57] since 𝔼[τSτ ] <∞, and integrability
of SτF (Y

Θ
τ ) = SτF (Υ).

Using convexity arguments we construct the solution for the optimization problem in

Theorem 5.3.2. For every ηmax ∈ [0,∞) there exist η̂ ∈ [0, ηmax] and Υ̃, Υ ∈ ℝ such

that the associated impact fixing strategy Θ̂ := ΘΥ̃,Υ generates maximal expected proceeds

in expected time 𝔼[τ Υ̃,Υ] = η̂ among all admissible strategies, i.e.

𝔼[L∞(Θ̂)] = max
{
𝔼[L∞(Θ)]

⏐⏐ Θ ∈ 𝒜ηmax

}
.

Moreover, if f(y) = eλy with λ ∈ (0,∞), then we have η̂ = ηmax and the optimal strategy
is unique.

The proof will also show that optimal strategies have to be impact fixing. In particular,
any non-trivial admissible strategy of finite variation is suboptimal.

Proof. Since f ′/f and (f ′/f)′ are bounded, then f ′′/f is also bounded and hence there is
a unique y∗ ∈ ℝ with k(y∗) = 0. So ψ is strictly increasing on (−∞, y∗) and decreasing
on (y∗,∞), since ψ′(y) = f(y)k(y). Note that ψ is strictly concave on [y∗,∞) and
ψ(y) > 0 for y < 0. Hence, the concave hull of ψ is

ψ̂(y) := inf {ℓ(y) | ℓ is an affine function with ℓ(x) ≥ ψ(x) ∀x} = ψ(y ∨ y∗) .

Let Θ ∈ 𝒜ηmax
with liquidation time τ . Denote by ℚ the measure with dℚ =

(
Sτ/S0

)
dℙ.

Then by optional projection, as in [DM82, Thm. VI.57], we obtain (taking w.l.o.g. S0 = 1):

𝔼[L∞] = 𝔼[Lτ ] = 𝔼
[∫ τ

0

Stψ(Yt) dt
]
+ F (Y0−)− 𝔼

[
SτF (Yτ )

]
= F (Y0−) + 𝔼ℚ

[∫ τ

0

ψ(Yt) dt
]
− 𝔼ℚ

[
F (Yτ )

]
= F (Y0−) +

∫
Ω×[0,∞)

ψ(Yt(ω))µ(dω,dt)− 𝔼ℚ
[
F (Yτ )

]
, (5.23)
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for the finite measure µ given by µ(A× B) :=
∫
A

∫ τ(ω)

0
𝟙B(t) dtℚ[dω] with total mass

µ(Ω, [0,∞)) = 𝔼ℚ[τ ] = 𝔼[τSτ ] <∞. For τ ̸= 0, Jensen’s inequality for ψ̂ and F gives

𝔼[L∞] ≤ F (Y0−) +

∫
Ω×[0,∞)

ψ̂(Yt(ω))µ(dω,dt)− 𝔼ℚ
[
F (Yτ )

]
(5.24)

≤ F (Y0−) + 𝔼ℚ[τ ]ψ̂

(
1

𝔼ℚ[τ ]

∫
Ω×[0,∞)

Yt(ω)µ(dω,dt)

)
− 𝔼ℚ

[
F (Yτ )

]
(5.25)

= F (Y0−) + 𝔼ℚ[τ ]ψ̂

(
1

β𝔼ℚ[τ ]
𝔼ℚ

[∫ τ

0

βYt dt
])

− 𝔼ℚ
[
F (Yτ )

]
(5.26)

= F (Y0−) + 𝔼ℚ[τ ]ψ̂

(
Y0− −Θ0− − 𝔼ℚ[Yτ ]

β𝔼ℚ[τ ]

)
− 𝔼ℚ

[
F (Yτ )

]
(5.27)

≤ F (Y0−) + 𝔼ℚ[τ ]ψ̂

(
Y0− −Θ0− − 𝔼ℚ[Yτ ]

β𝔼ℚ[τ ]

)
− F

(
𝔼ℚ[Yτ ]

)
(5.28)

= F (Y0−) + Ψ̂
(
𝔼ℚ[τ ],𝔼ℚ[Yτ ]

)
, (5.29)

for Ψ̂(η,Υ) := ηψ̂
(Y0−−Θ0−−Υ

βη

)
− F (Υ) when η > 0, while for τ = 0 we get that 𝔼[L∞]

is given by (5.29) with Ψ̂(0,Υ) := −F (Υ). The step from (5.26) to (5.27) uses that

𝔼[SτBτ ] = 0, due to (SB)·∧τ being UI, and
∫ t

0
βYs ds = σ̂Bt + Θt − Θ0− − Yt + Y0−.

Since F is strictly convex, we obtain equality in (5.28) if and only if Yτ is concentrated
at a point Υ ∈ ℝ ℙ-a.s. At (5.25) we obtain equality if and only if either Yt ∈ (−∞, y∗]

µ-a.e. (where ψ̂ is affine) or Yt is concentrated at a point Υ̃ ∈ ℝ µ-a.e. Equality at
(5.24) can only happen if Y ≥ y∗ µ-a.e. Hence, we only get equality

𝔼[L∞] = F (Y0−) + Ψ̂
(
𝔼ℚ[τ ],𝔼ℚ[Yτ ]

)
for impact fixing strategies Θ = ΘΥ̃,Υ with Υ̃ ≥ y∗, where 𝔼[Lτ ] = F (Y0−) + Ψ̂(𝔼[τ ],Υ).

Since y∗ is the largest maximizer of ψ̂, limy→∞ ψ′(y) = −∞ and F is strictly increasing,

Ψ̂(η, ·) has a unique maximizer ê(η) ∈ (−∞, e∗) where e∗ = e∗(η) = Y0− −Θ0− − βηy∗

for η > 0 and ê(0) = e∗(0) = Y0−−Θ0−. Because ŷ(η) :=
(
Y0−−Θ0−− ê(η)

)
/(βη) > y∗,

the impact fixing strategy Θŷ(η),ê(η) has expected time to liquidation η (cf. Lemma 5.3.1)
and generates F (Y0−)+ Ψ̂

(
η, ê(η)

)
expected proceeds that are optimal among all impact

fixing strategies with expected time to liquidation η.
Note that ê(η) is continuous in η ∈ (0,+∞) by the implicit function theorem; recall

that ê(η) solves 0 = Ψ̂Υ(η, ê(η)) = −ψ̂′(ŷ(η))/β − f(ê(η)), and Ψ̂ΥΥ(η,Υ) < 0 for
Υ < e∗(η). Moreover, ê(η) → ê(0) when η → 0, otherwise ŷ(η) → +∞ for a subsequence

giving −ψ̂′(ŷ(η))/β = −(fk)(ŷ(η))/β → +∞ and therefore also f(ê(η)) → +∞, which
would contradict lim supη→0 ê(η) ≤ limη→0 e

∗(η) = Y0− −Θ0−.
In particular, the contradiction argument above shows that ŷ(η) is contained in a

compact set for small η. As a consequence, Ψ̂(η, ê(η)) = ηψ̂(ŷ(η))−F (ê(η)) → Ψ̂(0, ê(0))
as η → 0, i.e. the map η ↦→ Ψ̂(η, ê(η)) is continuous on [0,+∞). Hence, it attains a
maximizer η̂ ∈ [0, ηmax] whose associated impact fixing strategy Θ̂ = Θŷ(η̂),ê(η̂) generates
maximal expected proceeds in expected time 𝔼[τ ŷ(η̂),ê(η̂)] = η̂ among all admissible
strategies 𝒜ηmax

.

If f(y) = eλy with λ ∈ (0,∞), one can check by direct calculations that Ψ̂η(η,Υ) > 0

for η > 0, Υ ∈ ℝ, and thus the map η ↦→ Ψ̂(η, ê(η)) is strictly increasing, because using
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d
dη Ψ̂(η, ê(η)) = Ψ̂η(η, ê(η)) + Ψ̂Υ(η, ê(η))ê

′(η) = Ψ̂η(η, ê(η)). So η̂ = ηmax is its unique

maximizer in [0, ηmax] and hence the optimal strategy is unique.

5.4 Auxiliary results

The next proposition collects known continuity properties of the solution map Θ ↦→ Y Θ

on D([0, T ];ℝ) from (5.2), with the presentation being adapted to our setup.

Proposition 5.4.1. Assume that h is Lipschitz continuous. Then the solution map
D([0, T ];ℝ) ↦→ D([0, T ];ℝ), with Θ ↦→ Y Θ from (5.2), is defined pathwise. The map is
continuous when the space D([0, T ];ℝ) is endowed with either the uniform topology or
the Skorokhod J1 or M1 topology. Moreover, if Θ is an adapted càdlàg process, then the
process Y Θ is also adapted.

Proof. By continuity of N , the pathwise defined map Θ ↦→ Θ + N on D([0, T ];ℝ)
is continuous w.r.t. the uniform and Skorokhod M1 and J1 topologies. Now, since
Y N,Θ = Y 0,N+Θ, it suffices to show that the deterministic impact solution map Θ ↦→ Y 0,Θ

is pathwise defined and continuous. The proof in the case of the uniform topology and
the Skorokhod J1 topology is given in [PTW07, proof of Thm. 4.1]. For the M1 topology,
cf. [PW10, Thm. 1.1]. That Y 0,Θ is adapted follows from the (pathwise) construction
of Y 0,Θ as the (a.s.) limit (in the uniform topology) of adapted processes, the solution
processes for a sequence of piecewise-constant controls Θn approximating uniformly Θ,
cf. [PTW07, proof of Thm. 4.1].

In general, we may have an → a and bn → b in D([0, T ]) endowed with J1 (or M1),
and yet an + bn ̸→ a+ b when a and b have a common jump time. However, in special
cases like in what follows, this does not happen.

Lemma 5.4.2 (Allowed cancellation of jumps for J1). Let an → a0 and bn → b0 in
(D([0, T ]), J1) with the following property: for every n ≥ 0 and every t ∈ (0, T )

∆an(t) ̸= 0 implies ∆bn(t) = −∆an(t).

Then an + bn → a0 + b0 in (D([0, T ]), J1).

Proof. By [JS03, Prop. VI.2.2, a] it suffices to check that for every t ∈ (0, T ) there exists
a sequence tn → t such that ∆an(tn) → ∆a0(t) and ∆bn(tn) → ∆b0(t).

Let t ∈ (0, T ) be arbitrary and first suppose that ∆a0(t) ̸= 0. Then [JS03, Prop. VI.2.1,
a] implies the existence of a sequence tn → t such that ∆an(tn) → ∆a0(t). Thus, our
assumption on the sequence (bn) gives ∆bn(tn) → ∆b0(t). For the case ∆a0(t) = 0, let
tn → t be such that ∆bn(tn) → ∆b0(t). By [JS03, Prop. VI.2.1, b.5] we conclude that
∆an(tn) → ∆a0(t) as well, finishing the proof.

Let us note that the conclusion of Lemma 5.4.2 does not hold for the M1 topology.

Consider for example a0 = 𝟙[1,∞) with approximating sequence an(t) := n
∫ t+1/n

t
a0(s) ds

and b0 = 1− a0 with approximating sequence bn(t) := n
∫ t

t−1/n
b0(s) ds. Thus we need

the following refined statement.

Lemma 5.4.3 (Allowed cancellation of jumps for M1). Let an → a0 in (D([0, T ]), ∥·∥∞)
and bn → b0 in (D([0, T ]),M1) with the following property: t ∈ Disc(a0) implies bn → b0
locally uniformly in a neighborhood of t. Then an + bn → a0 + b0 in (D([0, T ]),M1).
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Proof. We prove the following claim that suffices to deduce M1-convergence of an + bn:
For any t ∈ [0, T ] and ε > 0 there are δ > 0 and n0 ∈ N such that

ws(an + bn, t, δ) ≤ ws(an, t, δ) + ws(bn, t, δ) + ε for all n ≥ n0, (5.30)

where ws is the M1 oscillation function, see [Whi02, Chap. 12, eq. (4.4)]. Indeed, if
(5.30) holds, then the second condition in [Whi02, Thm. 12.5.1(v)] would hold, while the
first condition there holds because of local uniform convergence at points of continuity
of a0 + b0: Either there is cancellation of jumps and thus local uniform convergence by
our assumption, or both paths do not jump which still gives local uniform convergence
because M1-convergence implies such at continuity points of the limit.

To check (5.30), we have limδ↓0 lim supn→∞ v(an, a0, t, δ) = 0 at points t ∈ [0, T ] with
∆a0(t) = 0, where for x1, x2 ∈ D([0, T ])

v(x1, x2, t, δ) := sup
0∨(t−δ)≤t1,t2≤(t+δ)∧T

|x1(t1)− x2(t2)|,

see [Whi02, Thm. 12.4.1], which implies (5.30) for small δ and large n. Now if t ∈ Disc(a0),
an → a0 and bn → b0 locally uniformly in a neighborhood of t which implies that for
small δ and large n

ws(an + bn, t, δ) ≤ ws(a0 + b0, t, δ) + ε/2.

Because a0+b0 ∈ D([0, T ]), we can make ws(a0+b0, t, δ) smaller than ε/2, which finishes
the proof.

Lemma 5.4.4 (Uniform convergence of jump term). Let a, bn, b ∈ D([0, T ]) be such
that [a]dT :=

∑
t≤T :∆a(t)̸=0|∆a(t)|2 < ∞, bn are uniformly bounded and at every jump

time t ∈ [0, T ] of a, ∆a(t) ̸= 0, we have pointwise convergence bn(t) → b(t). Let G ∈ C2

such that y ↦→ Gxx(x, y) is Lipschitz continuous on compacts. Then the sum

J(a, bn)t :=
∑
u≤t

∆a(t)̸=0

G
(
a(t), bn(t)

)
−G

(
a(t−), bn(t)

)
−Gx

(
a(t−), bn(t)

)
∆a(t)

converges uniformly for t ∈ [0, T ] to J(a, b)t, as n→ ∞.

Proof. Since a, [a]d, bn and b are bounded on [0, T ] by a constant C ∈ ℝ, we can assume
w.l.o.g. thatGxx is globally Lipschitz in y with Lipschitz constant L. Hence J(a, bn)t <∞
by Taylor’s theorem. Let H(x,∆x, y) := G(x+∆x, y)−G(x, y)−Gx(x, y)∆x and denote
by J̃n,± the increasing and decreasing components of J(a, bn)− J(a, b), respectively, i.e.

J̃n,+
t :=

∑
u≤t

H̃(... )>0

H̃
(
a(u−),∆a(u), bn(u), b(u)

)
, J̃n,−

t :=
∑
u≤t

H̃(... )<0

H̃
(
a(u−),∆a(u), bn(u), b(u)

)
,

for H̃(x,∆x, y, z) := H(x,∆x, y) − H(x,∆x, z). Moreover, take any enumeration of
the jump times of a, {tk | k ∈ ℕ} = {t | ∆a(t) ̸= 0}, and arbitrary ε > 0. Since
[a]d <∞, there exists K ∈ ℕ such that

∑
k>K |∆a(tk)|2 < ε/(2CL). Moreover, we have

|H̃(x,∆x, y, z)| ≤ 1
2 |∆x|

2L|y − z| and thus

|J̃n,±
T | ≤ L

2

∞∑
k=1

|∆a(tk)|2|bn(tk)−b(tk)| <
ε

2
+
L

2

(
max

1≤k≤K
|bn(tk)−b(tk)|

) K∑
k=1

|∆a(tk)|2 .
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5 Skorokhod M1/J1 stability for gains from large investors’ strategies

By pointwise convergence bn(tk) → b(tk) at all tk, there exists N ∈ ℕ such that for all
k = 1, . . . ,K and n ≥ N we have |bn(tk)− b(tk)| < ε/(L[a]dT ) and therefore |J̃n,±

T | < ε

for n ≥ N . Hence Jn,±
T → 0 as n→ ∞.

Since Jn,± are monotone and do not cross zero, we have sup0≤t≤T |J̃
n,±
t | = |J̃n,±

T | and
therefore uniform convergence J̃n,± → 0 on [0, T ]. So in particular J(a, bn) converges to
J(a, b), uniformly on [0, T ].
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6 Proportional bid-ask spreads in
optimal trading – a double obstacle
problem

Building on Chapter 4, we now introduce a bid-ask spread through proportional transac-
tion costs in our market impact model. We consider finite variation strategies Θ. The
fundamental ask price St for selling, that prevails in absence of a large trader, is as in
(4.1) a geometric Brownian motion with drift, S = S0e

µtℰ(σW )t. As in Chapter 4, the
volume effect process Y given a strategy Θ is a controlled Ornstein-Uhlenbeck process,

dY Θ
t = −βY Θ

t dt+ σ̂ dBt + dΘt , Y0− = y, (6.1)

with resilience speed β > 0. The Brownian motions B andW have correlation ρ ∈ [−1, 1].
In our model for this chapter, bid and ask prices differ by a proportional transaction
cost factor κ > 1, with discounted bid price e−γtf(Y Θ

t )St and discounted ask price
e−γtκf(Y Θ

t )St. Let Θt = Θ+
t − Θ−

t with cumulative numbers of assets bought (Θ+
t )

and sold (Θ−
t ) until time t. Then γ-discounted proceeds from trading according to

non-decreasing processes Θ+, Θ− are

Lt(Θ
+,Θ−) := −

∫ t

0

e−γuκf(Y Θ
u )Su dΘ

c,+
u −

∑
0≤u≤t
∆Θ+

u ̸=0

e−γuSu

∫ ∆Θ+
u

0

κf(Y Θ
u− + x) dx

+

∫ t

0

e−γuf(Y Θ
u )Su dΘ

c,−
u +

∑
0≤u≤t
∆Θ−

u ̸=0

e−γuSu

∫ ∆Θ−
u

0

f(Y Θ
u− − x) dx,

(6.2)

with decompositions Θ±
t = Θc,±

t +
∑

u≤t ∆Θ±
u into continuous and pure jump parts.

In Section 6.1, we formulate the optimal liquidation problem with non-monotone
strategies. Finite variation optimization with different costs for the increasing and
decreasing parts of a strategy is also called a reversible investment problem, see e.g.
[KW01, DAF14, FP14]. In these articles, the price or cost for infinitesimal buying
(resp. selling) depends on time only, differently from our setup where the price depends
on the controlled diffusion (as well as time and S). Our objective has the form of a
generalized finite fuel problem (see e.g. [KS86]; the term fuel here is due to [BC67]
and originally indicates a monotone control). Through a heuristic derivation based on
smooth pasting techniques, we illustrate in Section 6.1.3 that the optimal strategy should
consist of two reflection local times which keep the controlled diffusion Y inside a moving
interval [𝕓(Θ), 𝕤(Θ)] for two free boundary curves 𝕓, 𝕤 that separate the wait region
from a buy region (y < 𝕓(θ)), respectively a sell region (y > 𝕤(θ)). See e.g. [LS84] for
diffusions with reflecting boundaries. We describe 𝕓, 𝕤 rather explicitly by a system of
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6 Proportional bid-ask spreads in optimal trading – a double obstacle problem

ordinary differential equations (6.14) with boundary condition at infinity. Numerical
calculation of 𝕓 and 𝕤 seems feasible (see Figure 6.1), although existence and uniqueness
of (𝕓, 𝕤) are not guaranteed, also due to this kind of boundary condition at infinity,
cf. Remark 6.1.6. Section 6.1.4 furthermore discusses the open problem of verification,
drawing a connection to Dynkin games (cf. e.g. [KW01]) and double obstacle problems.
Tightly connected to the so-called finite fuel problem is its infinite fuel variant (cf.

e.g. [KOWZ00]), which we formulate and solve in Section 6.2. Herein, the large investor
trades indefinitely without constraint on the asset position. This relaxation makes the
problem one-dimensional, where we can apply direct verification. The optimal strategy
is described by two reflection local times, for buying and selling, that keep the market
impact process Y inside a fixed interval. Heuristically, this problem can be understood
as a limit of optimal liquidation problems for initial position θ → ∞, as it is the case in
e.g. [KOWZ00] for a different problem.

6.1 Finite fuel variant

In this section, we will investigate the problem (6.6) of maximizing expected proceeds
for liquidating a given finite position in the risky asset. In Section 6.1.1, we state the
objective and discuss examples of admissible strategies. A heuristic derivation of a
candidate optimizer by means of two free boundaries, that separate buy, wait, and sell
regions, follows in Section 6.1.3 using smooth pasting. Verification remains an open
problem for future research we comment on in Section 6.1.4. Our standing assumptions
for the whole chapter are as follows.

Assumption 6.1.1.

• The transaction cost factor is κ ∈ (1,∞).

• We have δ := γ − µ > 0, that means the drift coefficient −δS for the γ-discounted
fundamental price e−γtSt is negative.

• The impact function f ∈ C3(ℝ) satisfies f, f ′ > 0.

• The function λ(y) := f ′(y)/f(y), y ∈ ℝ, is bounded from above and away from
zero, i.e. there exists λmin, λmax ∈ (0,∞) such that λmin < λ(y) ≤ λmax for all
y ∈ ℝ. Moreover, it satisfies λ′ < (Φ′/Φ)′ and λ′ < (Φ′′/Φ′)′, where Φ = Φ↑ with

Φ↑(x) := H−δ/β

(
(σρσ̂ − βx)/

(√
βσ̂
))
, x ∈ ℝ, (6.3)

with Hermite function Hν (cf. [Leb72, Sect. 10.2]) and σ, σ̂, β > 0 and ρ ∈ [−1, 1].

• The function k(y) := σ̂2

2
f ′′(y)
f(y) − (β + δ) + (σρσ̂ − βy) f

′(y)
f(y) , y ∈ ℝ, is strictly

decreasing and there exists y∗ ∈ ℝ with k(y∗) = 0.

These assumptions are satisfied e.g. for constant λ. Note that boundedness of λ
away from zero and infinity implies existence of real numbers y0 and y∞ solving
λ(y0) = Φ′

↑(y0)/Φ↑(y0) and λ(y∞) = Φ′′
↑(y∞)/Φ′

↑(y∞), respectively, since the right-
hand sides have range (0,∞), cf. Lemma 4.4.1. Therefore, Assumption 6.1.1 differs
from Assumption 4.1.2 only in the introduction of a constant κ, the existence of y∗, and
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6.1 Finite fuel variant

the existence of a lower bound λmin > 0 for λ. We require λmin > 0 in order to have
a positive antiderivative F (y) :=

∫ y

−∞ f(z) dz > 0 of f . Existence of y∗ is needed in
Lemma 6.1.3.

Note that Φ↑ is (up to a constant factor) the positive increasing eigenfunction to the
eigenvalue δ of the infinitesimal generator of an Ornstein-Uhlenbeck process, i.e. ℒΦ↑ = 0

for ℒϕ(y) = σ̂2

2 ϕ
′′(y) + (σρσ̂ − βy)ϕ′(y)− δϕ(y), cf. [BS02]. In addition to Φ↑, also the

decreasing positive solution Φ↓(y) = H−δ/β((βy − σρσ̂)/(
√
βσ̂)) will play a role in this

chapter.

6.1.1 Optimal liquidation with proportional transaction costs

Our large trader has an initial position of θ ≥ 0 assets that she seeks to liquidate in an
infinite time horizon through selling and buying according to non-decreasing processes
Θ− and Θ+, respectively. We take Θ+

0− := Θ−
0− := 0 to incorporate a possible jump at

time 0. Trading stops at first time

τθ(Θ
+,Θ−) := inf

{
t > 0

⏐⏐ Θ−
t −Θ+

t ≥ θ or Θ−
t− −Θ+

t− ≥ θ
}
, (6.4)

when the position is liquidated entirely (if τθ(Θ
+,Θ−) < ∞). We seek to maximize

total expected proceeds from trading, 𝔼[L∞(Θ+,Θ−)]. For this term to make sense, we
consider as admissible strategies

𝒜(θ) :=
{
(Θ+,Θ−)

⏐⏐⏐ Θ± are non-decreasing adapted càdlàg processes with

Θ±
0− = 0 and Θ±

t = Θ±
t∧τ for τ = τθ(Θ

+,Θ−), such that∫ ·

0

e−δtℰ(σW )tF (Y
Θ
t ) dWt and

∫ ·

0

e−δtℰ(σW )tf(Y
Θ
t ) dBt

are supermartingales, the almost sure limit

L∞(Θ+,Θ−) := lim
t→∞

Lt(Θ
+,Θ−) ∈ [−∞,∞] exists, and

lim
t→∞

𝔼[Lt(Θ
+,Θ−)±] = E[L∞(Θ+,Θ−)±]

}
,

(6.5)

where Lt(Θ
+,Θ−)+ = 0 ∨ Lt(Θ

+,Θ−) and Lt(Θ
+,Θ−)− = 0 ∨ −Lt(Θ

+,Θ−). The
definition of 𝒜(θ) guarantees that 𝔼[Lt(Θ

+,Θ−)] ∈ [−∞,∞) is well defined, as we show
in Lemma 6.1.3 below. Note that Lt(Θ

+,Θ−) = Lτ∧t(Θ
+,Θ−) for τ = τθ(Θ

+,Θ−).
We have 𝒜(θ1) ⊂ 𝒜(θ2) ⊂ 𝒜(∞) (using τ∞(Θ+,Θ−) = ∞) for θ1 ≤ θ2. Now our
optimization objective is

max
(Θ+,Θ−)∈𝒜(θ)

𝔼[L∞(Θ+,Θ−)], (6.6)

with value function

v(y, θ) := sup
(Θ+,Θ−)∈𝒜(θ)

𝔼[L∞(Θ+,Θ−)] where Y0− = y. (6.7)

We will now study the class𝒜(θ), investigate in Section 6.1.2 the variational inequalities
that the value function should satisfy and characterize in Section 6.1.3 a candidate
optimizer as a reflecting strategy, which will be defined below (see page 107).
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6 Proportional bid-ask spreads in optimal trading – a double obstacle problem

The set of admissible strategies, whose definition (6.5) is admittedly technical, includes
for instance the set of bounded variation strategies with finite stopping time, as shown in
the following lemma. A further important subset of 𝒜(θ) will be given by Lemma 6.1.4.

Lemma 6.1.2. Let Θ+,Θ− ≥ 0 be bounded non-decreasing adapted càdlàg processes
with Θ±

t = Θ±
t∧τ for a finite time τ <∞. Let θ ∈ [0,∞]. If for some θ ∈ [0,∞] we can

bound Θ−
t − Θ+

t ≤ θ for all t and Θ−
· − Θ+

· < θ on [[0, τ [[, then Θ+ and Θ− form an
admissible pair, i.e. (Θ+,Θ−) ∈ 𝒜(θ).

Note that τ ≤ τθ(Θ
+,Θ−) and we have τ = τθ(Θ

+,Θ−) if τθ(Θ
+,Θ−) <∞.

Proof. Consider the Ornstein-Uhlenbeck process X with dXt = −βXt + σ̂ dBt and
X0 = Y0−. We have Yt = Xt +

∫ t

0
e−β(t−s) dΘs for Θ = Θ+ − Θ−, which implies

|Yt −Xt| ≤ c for some constant c ∈ (0,∞) by boundedness of Θ. By τ < ∞, we have
C(ω) := supt∈[0,τ ] e

−δtf(Xt + c)ℰ(σW )t <∞. Hence we can estimate

I+t :=

∫ t

0

e−γuf(Y Θ
u )Su dΘ

c,+
u +

∑
0≤u≤t
∆Θ+

u ̸=0

e−γuSu

∫ ∆Θ+
u

0

f(Y Θ
u− + x) dx ≤ C(ω) · c,

I−t :=

∫ t

0

e−γuf(Y Θ
u )Su dΘ

c,−
u +

∑
0≤u≤t
∆Θ−

u ̸=0

e−γuSu

∫ ∆Θ−
u

0

f(Y Θ
u− − x) dx ≤ C(ω) · c.

It follows that Lt = Lt(Θ
+,Θ−) = I−t − κI+t exists ω-wise. Since τ <∞, we conclude

that L∞ = Lτ ∈ ℝ exists a.s.
That the stochastic integrals w.r.t. B, W in the definition (6.5) of 𝒜(θ) are true

martingales follows from the bound |Yt −Xt| ≤ c similarly to the proof of Lemma 4.5.2
using the exponential growth of F and f and that X and S are Gaussian.

For the expectation 𝔼[Lt], consider L̂t := I−t −I+t so that Lt ≤ L̂t. With Θt :=Θ+
t −Θ−

t ,
we can rewrite

L̂t = −
∫ t

0

e−γuf(Y Θ
u )Su dΘ

c
u −

∑
0≤u≤t
∆Θu ̸=0

e−γuSu

∫ ∆Θu

0

f(Y Θ
u− + x) dx. (6.8)

By integration by parts, we can rewrite (cf. also (5.15))

L̂t = S0F (Y0−)− e−γtStF (Y
Θ
t ) +

∫ t

0

e−γuSuψ(Y
Θ
u ) du

+

∫ t

0

e−γuσSuF (Y
Θ
u ) dWu +

∫ t

0

e−γuσ̂Suf(Y
Θ
u ) dBu ,

(6.9)

for ψ(y) := σ̂2

2 f
′(y)+(σρσ̂−βy)f(y)−δF (y). Due to boundedness of f ′/f ∈ [λmin, λmax],

we have limy→∞ ψ(y) = −∞. Moreover, ψ′(y) = f(y)(k(y) + β) and k > 0 on (−∞, y∗),
so that ψ is increasing on (−∞, y∗). Hence, there exists a positive upper bound
ĉ ≥ supy ψ(y) and we can conclude

L̂t ≤ S0F (Y0−) + ĉS0

∫ t

0

e−δuℰ(σW )u du

+ σS0

∫ t

0

e−δuℰ(σW )uF (Y
Θ
u ) dWu + σ̂S0

∫ t

0

e−δuℰ(σW )uf(Y
Θ
u ) dBu .
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6.1 Finite fuel variant

Using that the two stochastic integrals are true martingales, we can find an upper bound
𝔼[L̂t] ≤ S0F (Y0−) + ĉS0 (1− e−δt)/δ ≤ S0F (Y0−) + ĉS0/δ =: Ĉ for all t. This implies
𝔼[L∞ ∨ 0] ≤ 𝔼[L̂∞ ∨ 0] <∞, so that 𝔼[L∞] ∈ [−∞,∞) is well-defined.

The objective (6.6) is well-posed due to the following lemma.

Lemma 6.1.3. For all (Θ+,Θ−) ∈ 𝒜(θ) we have 𝔼[Lt(Θ
+,Θ−)+] <∞ and therefore

𝔼[Lt(Θ
+,Θ−)] ∈ [−∞,∞) exists for all t ∈ [0,∞].

Proof. As in the proof of Lemma 6.1.2 we get existence of 𝔼[Lt(Θ
+,Θ−)] ∈ [−∞,∞)

by considering the upper bound L̂t ≥ Lt from (6.8). For the integrability of L̂t, it
suffices that the stochastic integrals w.r.t. B, W in the definition (6.5) of 𝒜(θ) are
supermartingales.

Reflecting strategies, which keep the controlled impact process Y inside a (moving)
interval through local time reflections, will turn out to be of particular importance for
our analysis, as this set includes our (candidate) optimizer.

Definition (reflecting strategy). Let 𝕓, 𝕤 ∈ C1([0,∞)) satisfy 𝕓 < 𝕤 point-wise. A pair
(Θ+,Θ−) of non-negative non-decreasing continuous processes starting at Θ±

0 ≥ Θ0− = 0
(i.e. with a possible jump at time 0) is called reflecting strategy if it keeps Yt = Y Θ

t

with Θt = θ +Θ+
t −Θ−

t in the interval [𝕓(Θt), 𝕤(Θt)] for all t ∈ [[0, τθ(Θ
+,Θ−)[[, with

minimal initial jump |Θ0 −Θ0−| to enforce this condition at time 0 and no trading after
τ := τθ(Θ

+,Θ−) = inf {t > 0 | Θt = 0}. That is, Θ+ and Θ− satisfy

dΘ+
t = 𝟙{Yt=𝕓(Θt)} dΘ

+
t and dΘ−

t = 𝟙{Yt=𝕤(Θt)} dΘ
−
t ,

with Yt ∈ [𝕓(Θt), 𝕤(Θt)], for all t ∈ [[0, τ [[.
Herein, Θ+ is the reflection local time of Y Θ at the lower boundary 𝕓(Θ) and Θ− is

the reflection local time of Y Θ at the upper boundary 𝕤(Θ). In particular, the measures
dΘ+ and dΘ− have disjoint support, so we can reconstruct Θ+ and Θ− from Θ and the
initial position θ = Θ0−. We thus identify the pair (Θ+,Θ−) with Θ and also call the
latter a strategy, writing Θ = Θ𝕓,𝕤.
Similarly to Chapter 7 for a single reflection boundary, such Θ+,Θ− are unique by

known results on the Skorokhod problem, see [DI93] and cf. Remark 7.2.3.

For bounded, non-increasing 𝕓, 𝕤, reflecting strategies are admissible by Lemma 6.1.4
below. Compared to the bounded variation strategies from Lemma 6.1.2, reflecting
strategies are only of finite variation and liquidation in finite time is not clear a priori.

Lemma 6.1.4. Let 𝕓, 𝕤 ∈ C1([0,∞)) be non-increasing bounded functions with 𝕓+ε < 𝕤

everywhere for some ε > 0. Then the corresponding reflecting strategy is admissible, i.e.
(Θ+,Θ−) ∈ 𝒜(θ) for with decomposition Θ𝕓,𝕤

t = θ+Θ+
t −Θ−

t into continuous increasing
and decreasing parts Θ±.

Proof. Let C := ∥𝕓∥∞ ∨ ∥𝕤∥∞. Boundedness of Y Θ ≤ C gives the martingale property
of the stochastic integrals

∫ ·
0
e−δtℰ(σW )tF (Y

Θ)t dWt and
∫ ·
0
e−δtℰ(σW )tf(Y

Θ)t dBt,

since we can bound the quadratic variation process by C̃𝔼[
∫ t

0
(e−δuℰ(σW )u)

2 du] <∞
for all t.

Considering the integrals I±t =
∫ t

0
e−γuf(Y Θ

u )Su dΘ
±
t as in the proof of Lemma 6.1.2,

we find that L∞(Θ𝕓,𝕤) = L∞(Θ+,Θ−) is well-defined. It remains to show existence of the
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limit 𝔼[Lt(Θ
𝕓,𝕤)] → 𝔼[L∞(Θ𝕓,𝕤)] ∈ [−∞,∞), for which it suffices to prove integrability,

𝔼[I+∞] <∞ and 𝔼[I−∞] <∞.
By optional projection for 𝔼[I±T ] and monotone convergence, we have

𝔼[I±∞] = S0𝔼
[∫ ∞

0

e−δtf(Y Θ
t )ℰ(σW )t dΘ

±
t

]
= S0𝔼

[∫ ∞

0

e−δtf(Ỹt) dΘ̃
±
t

]
.

where dỸt = (σρσ̂ − βỸt) dt + σ̂ dBt + dΘ̃t, Ỹ0 = Y0, with Θ̃ = Θ0 + K̃+
t − K̃−

t for
continuous reflection local times K̃± satisfying Ỹt = 𝕓(Θ̃t) dK+-a.e. and Ỹt = 𝕤(Θ̃t)
dK−-a.e., such that Ỹt ∈ [𝕓(Θ̃t), 𝕤(Θ̃t)] for all t. That is, considering the shifted impact

Ỹ instead of Y , we can disregard W . It follows 𝔼[I±∞] ≤ f(C)S0

∫∞
0
𝔼[e−δτ±(ℓ)] dℓ for

stopping times τ±(ℓ) := inf {t > 0 | K̃±
t > ℓ}.

Let σ0 = 0 and define inductively σn := σ+
n ∨σ−

n with σ+
n+1 := inf {t > σn | K̃+

t > K̃+
σn

}
and similarly σ−

n+1 := inf {t > σn | K̃−
t > K̃−

σn
}. Note that σn → ∞ for n → ∞ since

both boundaries 𝕓 and 𝕤 are at least ε apart. Moreover, on each [[σn, σn+1[[ one of
K̃+ and K̃− is constant so that Ỹ on [[σn, σn+1[[ is a reflected diffusion with one-
sided reflection only. Conditioning on time σn and θn := Θσn

, ℓn := K̃−
σn
, we can

thus apply Theorem 7.2.2 with local-time dependent boundary g−(ℓ) = 𝕤(θn + ℓn − ℓ)
for ℓ ≥ ℓn. Let X solve dXt = (σρσ̂ − βXt) dt + σ̂ dB̂t − dAt, X0 = Yσn , with
(ℱσn+t)t≥0-Brownian motion B̂t := Bσn+t and reflection local time A satisfying A0 = 0,
Xt = g−(At) dAt-a.e. such that Xt ≤ g−(At) for all t ≥ 0. Denote the inverse local time
by τA(ℓ) := inf {t > 0 | At > ℓ}. On {σn ≤ σn + t ≤ σn+1}, we have Ỹσn+t = Xt and
K̃−

σn+t = At so that also τ−(ℓ) = σn + τA(ℓ− ℓn) whenever σn ≤ τ−(ℓ) ≤ σn+1. Hence,

𝔼
[
e−δτ−(ℓ)𝟙{σn≤τ−(ℓ)≤σn+1}

⏐⏐ ℱσn

]
= e−δσn𝔼

[
e−δτA(ℓ−ℓn)𝟙{τA(ℓ−ℓn)≤σn+1−σn}

⏐⏐ ℱσn

]
≤ e−δσn𝔼

[
e−δτA(ℓ−ℓn)

⏐⏐ ℱσn

]
= e−δσn exp

(
−
∫ ℓ−ℓn

0

(
g′−(a) + 1

)Φ′
↑(g−(a))

Φ↑(g−(a))
da

)
≤ e−δσn exp

(
−
Φ′

↑(−C)
Φ↑(−C)

(ℓ− ℓn)

)
= e−δσne−c(ℓ−ℓn) ,

with c := Φ′
↑(−C)/Φ↑(−C) > 0, using that Φ′

↑/Φ↑ is positive and increasing by

Lemma 4.4.1. Moreover, we have τA(ℓn+1 − ℓn) = τ−(ℓn+1)− σn ≤ τ−(ℓn+1)− τ−(ℓn),
since σn ≥ τ−(ℓn). Now considering an independent copy of B̂ we get a copy of τA which
is in particular independent of ℓn+1, so that 𝔼[e−δτA(ℓn+1−ℓn) | ℓn, ℓn+1] ≤ e−c(ℓn+1−ℓn).

Using τ−(ℓn) =
∑n

k=1(τ
−(ℓk)− τ−(ℓk−1)) we conclude 𝔼[e−δτ−(ℓ)] ≤ e−cℓ.

Similarly, for K̃+ reflecting −Ỹ Θ downwards at −g+(Θ̃) until σn+1 with boundary
g+(ℓ) = 𝕓(θn − ℓn + ℓ) where now ℓ ≥ ℓn := K̃+

σn
we first get

𝔼
[
e−δτ+(ℓ)𝟙{σn≤τ+(ℓ)≤σn+1}

⏐⏐ ℱσn

]
≤ e−δσn exp

(∫ ℓ−ℓ+n

0

(
1− g′+(a)

)Φ′
↓(g+(a))

Φ↓(g+(a))
da

)
≤ e−δσn exp

(
Φ′

↓(C)

Φ↓(C)
(ℓ− ℓ+n )

)
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6.1 Finite fuel variant

and then conclude 𝔼[e−δτ+(ℓ)] ≤ e−c̃ℓ for c̃ := −Φ′
↓(C)/Φ↓(C) > 0. Together, setting

ĉ := c ∨ c̃ > 0, we find
∫∞
0
𝔼[e−δτ±(ℓ)] dℓ ≤

∫∞
0
e−ĉℓ dℓ = 1/ĉ <∞, so 𝔼[I±∞] <∞.

6.1.2 Variational inequalities for the value function

The Hamilton-Jacobi-Bellman equation for the maximization problem maxΘ𝔼[L∞(Θ)]
suggests that the state space {(y, θ) ∈ ℝ×[0,∞)} separates into three regions ℬ (buying),
𝒲 (waiting) and 𝒮 (selling) such that the value function V (y, θ) = v(y, θ) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(y) = Vy(y, θ) + Vθ(y, θ) for (y, θ) ∈ 𝒮,
f(y) < Vy(y, θ) + Vθ(y, θ) < κf(y) for (y, θ) ∈ 𝒲,

κf(y) = Vy(y, θ) + Vθ(y, θ) for (y, θ) ∈ ℬ,
ℒV (y, θ) < 0 for (y, θ) ∈ ℬ ∪ 𝒮,
ℒV (y, θ) = 0 for (y, θ) ∈ 𝒲,

(6.10)

where ℒϕ(y) = σ̂2

2 ϕ
′′(y) + (σρσ̂ − βy)ϕ′(y)− δϕ(y) and ℒϕ(y, θ) := ℒ

(
ϕ(·, θ)

)
(y).

In Section 6.1.3, we make the ansatz that there exist smooth functions 𝕓 ∈ C1([0,∞))
(buy boundary) and 𝕤 ∈ C1([0,∞)) (sell boundary) with 𝕓 < 𝕤, such that

ℬ = {(y, θ) : y < 𝕓(θ)},
𝒲 = {(y, θ) : 𝕓(θ) < y < 𝕤(θ)},
𝒮 = {(y, θ) : 𝕤(θ) < y}.

Since ℒV = 0 in 𝒲, we would have

V (y, θ) = A(θ)Φ↓(y) +B(θ)Φ↑(y), for (y, θ) ∈ 𝒲, (6.11)

with suitable factors A(θ), B(θ) and the positive increasing and decreasing solutions of
ℒϕ = 0, Φ↑ and Φ↓, respectively.
After a possible initial jump to reach 𝒲, the strategy corresponding to 𝕓, 𝕤 consists

continuous reflecting local times Θ+ and Θ− where Θ+ reflects (Y Θ,Θ) obliquely in
direction (+1,+1) at the lower boundary 𝕓(Θ) and Θ− reflects (Y Θ,Θ) obliquely at 𝕤(Θ)
in direction (−1,−1), until Θτ = 0 is reached at liquidation time τ with Y Θ

τ = 𝕤(Θτ ), if
τ > 0.

6.1.3 Heuristic construction of the candidate optimal strategy

In this section, we derive heuristically a candidate optimal strategy Θ𝕓,𝕤 with a smooth
pasting approach based on the ansatz discussed in Section 6.1.2 that the optimizer should
be characterized by two smooth boundary curves 𝕓, 𝕤 that separate buy, wait, and sell
regions. In the course of this heuristic derivation, we will make additional assumptions.
We do not verify these assumptions, as direct verification seems out of reach as discussed
in Section 6.1.4.
Our candidate V (y, θ) for the value function v(y, θ) should satisfy the system of

variational inequalities and equalities (6.10). Let us assume that V is given in 𝒲 by
(6.11) for (yet unknown) factors A(θ), B(θ) and C1 boundary curves 𝕓(θ), 𝕤(θ) defining
𝒲 = {(y, θ) ∈ ℝ × (0,∞) | 𝕓(θ) < y < 𝕤(θ)}. With finite fuel singular control prob-
lems, reflecting boundaries are often accompanied by a “C2–smooth-fit principle” while
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6 Proportional bid-ask spreads in optimal trading – a double obstacle problem

repelling or absorbing boundaries correspond to “C1–smooth-fit”, see e.g. [KOWZ00].
Since our candidate optimizer Θ𝕓,𝕤 would stay in 𝒲 = {(y, θ) | 𝕓(θ) ≤ y ≤ 𝕤(θ)} by
means of reflection at both, 𝕓 and 𝕤, it is thus reasonable to expect a “C2–smooth-fit
principle” principle, so that we assume V ∈ C2,1.

Remark 6.1.5 (Difference to deterministic impact dynamics). Note that this setup of
two reflecting boundaries would be different from an analogous proportional transaction
cost modification of our deterministic impact model (σ̂ = 0) from Chapter 2. There,
buy and sell boundaries, 𝕓 and 𝕤, should lie in {y < 0} in order to have liquidation in
finite time, so no stochasticity would push the impact process towards 𝕓 which should
be to the left 𝕤, 𝕓(θ) < 𝕤(θ) for all θ ≥ 0. Thus, 𝕓 would be “repelling” if we apply the
language of stochastic processes to this deterministic problem.

The assumption V ∈ C2,1 means that the directional derivatives of V paste together
at y = 𝕓(θ) and y = 𝕤(θ). Inside 𝒲, we have the directional derivatives

Vy + Vθ = AΦ′
↓ +BΦ′

↑ +A′Φ↓ +B′Φ↑ ,

Vyy + Vyθ = AΦ′′
↓ +BΦ′′

↑ +A′Φ′
↓ +B′Φ′

↑ ,

with abbreviations A = A(θ), Φ↑ = Φ↑(y), Vy = Vy(y, θ), etc. Assuming that V ∈ C2,1

satisfies (6.10), C1-smooth pasting means Vy(y, θ) + Vθ(y, θ) = κf(y) for y = 𝕓(θ)
and Vy(y, θ) + Vθ(y, θ) = f(y) at y = 𝕤(θ). Similarly, C2-smooth pasting gives
Vyy(y, θ) + Vyθ(y, θ) = κf ′(y) for y = 𝕓(θ) and Vyy(y, θ) + Vyθ(y, θ) = f ′(y) for y = 𝕤(θ).
For fixed position θ, these are four linear equations in the four unknown variables

(A,B,A′, B′) = (A(θ), B(θ), A′(θ), B′(θ)). Let us rewrite this system in matrix form.
Given b = 𝕓(θ) and s = 𝕤(θ), we can write M(b, s) · (A,B,A′, B′)⊤ = f(b, s) with vector
f(b, s) := (κf(b) , f(s) , κf ′(b) , f ′(s))⊤ and block Toeplitz matrix M(b, s) ∈ ℝ4×4 given
by

M(b, s) :=

(
M1(b, s) M0(b, s)
M2(b, s) M1(b, s)

)
where Mn(b, s) :=

(
Φ

(n)
↓ (b) Φ

(n)
↑ (b)

Φ
(n)
↓ (s) Φ

(n)
↑ (s)

)
. (6.12)

Note that for ζ(x, y) := Φ↑(x)Φ↓(y)− Φ↓(x)Φ↑(y) = −detM0(b, s) we have ζx > 0,

ζxxy > 0 etc. so that ζ(b, s) ⋚ 0 for b ⋚ s, ζ(b, s) ⋛ 0 for b ⋚ s etc. using that Φ
(n)
↑ > 0

and (−1)nΦ
(n)
↓ > 0 for all n, by Lemma 4.4.1. Hence the 2×2 blocks Mn(b, s) of M(b, s)

are all invertible whenever b ̸= s.
Assume that moreover the whole block Toeplitz matrix M(b, s) is non-singular. Let

the symbols A,B, Ȧ, Ḃ to denote the four components of the solution vector as functions
of b, s instead of θ, (A(b, s),B(b, s), Ȧ(b, s), Ḃ(b, s))⊤ := M(b, s)−1f(b, s), so that

A(θ) = A(𝕓(θ), 𝕤(θ)), B(θ) = B(𝕓(θ), 𝕤(θ)),

A′(θ) = Ȧ(𝕓(θ), 𝕤(θ)), B′(θ) = Ḃ(𝕓(θ), 𝕤(θ)).
(6.13)

Now chain rule gives Ȧ = As 𝕤
′+Ab 𝕓

′ and Ḃ = Bs 𝕤
′+Bb 𝕓

′. Therefore, the candidate
(𝕓, 𝕤) : [0,∞) → ℝ2 for our two free boundaries should solve the autonomous differential
equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝕓′(θ) =

(
ȦBs − ḂAs

AbBs −BbAs

)
(𝕓(θ), 𝕤(θ)),

𝕤′(θ) =

(
ḂAb − ȦBb

AbBs −BbAs

)
(𝕓(θ), 𝕤(θ)).

(6.14)
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6.1 Finite fuel variant

The requirement of stopping as soon as Θ = 0 is reached at time at τθ(Θ
+,Θ−) yields

an (implicit) boundary condition at θ = 0, V (𝕤(0), 0) = 0, i.e.

A(b, s)Φ↓(s) +B(b, s)Φ↑(s) = 0, for b = 𝕓(0) and s = 𝕤(0). (6.15)

This single equation does not suffice to obtain both, 𝕓(0) and 𝕤(0). Assume that
b∞ = limθ→∞ 𝕓(θ) and s∞ = limθ→∞ 𝕤(θ) exist and also that Ṽ (y) := limθ→∞ V (y, θ)
exists. Regarding the literature on finite fuel singular control, e.g. discussed in [KOWZ00],
it is natural to expect that Ṽ solves an infinite fuel problem. We solve that problem in
Section 6.2 and characterize the infinite fuel optimizer by two levels b, s solving (6.23).
Then b∞ = b and s∞ = s would give an additional boundary condition at θ = ∞ for
the differential equation (6.14), which, together with (6.15), may suffice to find 𝕓, 𝕤, cf.
Remark 6.1.6.

6.1.4 Outlook and open problems

Through our heuristic discussion so far we reached at a quite constructive ODE char-
acterization (6.14) of a candidate optimal strategy Θ𝕓,𝕤. Having an ODE is useful e.g.
for simulations. However, at this point we are stuck with our analysis. Existence and
uniqueness of the two non-constant free boundary curves 𝕓 and 𝕤 in ℝ2 which separate
the wait region from the action regions of buying and selling, respectively, is not clear
(cf. Remark 6.1.6). Moreover, our previous verification scheme for the related problem
in Chapter 4 crucially depended on the monotonicity of strategies in (4.16) to formulate
a calculus of variations problem.

y

θ

𝕓(θ) 𝕤(θ)

Figure 6.1: Possible solution (𝕓, 𝕤) of (6.14) with boundary conditions (6.15) at zero and
(6.23) for (𝕓(∞), 𝕤(∞)). Parameters are δ = 0.1, β = 1, ρ = 0, σ = σ̂ = 1,
f ′/f = 1, κ = 1.1.

Remark 6.1.6. Existence and uniqueness of a solution (𝕓, 𝕤) to the autonomous differ-
ential equation (6.14) with boundary conditions at infinity given by (6.23) and at zero
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6 Proportional bid-ask spreads in optimal trading – a double obstacle problem

via (6.15) is in general not clear. However, numerical investigations suggest that the
system is well-behaved and a simple Euler scheme “starting at infinity” gives promising
results, cf. Figure 6.1. For this, denote by D(b, s) the vector field of (6.14), so that
(𝕓′(θ), 𝕤′(θ)) = D(𝕓(θ), 𝕤(θ)). Let (b∞, s∞) solve (6.23). We search an integral curve
which asymptotically reaches the point (b∞, s∞).

Let us shortly explain how to calculate Figure 6.1. By construction (cf. Section 6.2),
we have D(b∞, s∞) = 0. Numerical investigation suggests that (b∞, s∞) is not an
attractor, but only two integral curves (𝕓, 𝕤) converge to this point. To find their
asymptotic directions limθ→∞D(𝕓(θ), 𝕤(θ))/∥D(𝕓(θ), 𝕤(θ))∥, choose ε > 0 and solve
arg(−D(b∞ + ε cosα, s∞ + ε sinα)) = α in (−π, π], where arg(x, y) = arg(x + iy) is
the angular direction of a vector (x, y) ∈ ℝ2. Since we expect 𝕓, 𝕤 to be decreasing,
take a solution α∗ in [0, π/4] (the other solution α̂ seems to always lie in (−π,−π/4]).
Starting in 𝕓̃(0) := b∞ + ε cosα∗, 𝕤̃(0) := s∞ + ε sinα∗, follow the trajectory backwards,

solving (𝕓̃
′
, 𝕤̃′) = −D(𝕓̃, 𝕤̃) e.g. by Euler scheme until w(𝕓̃(x∗), 𝕤̃(x∗)) = 0 at some

x∗ > 0 for w(b, s) := A(b, s)Φ↓(s) +B(b, s)Φ↑(s). In fact, x ↦→ w(𝕓̃(x), 𝕤̃(x)) seems to
decrease, while it would increase following the other trajectory corresponding to α̂. Now
𝕓(θ) := 𝕓̃(x− θ), 𝕤(θ) := 𝕤̃(x− θ) for θ ∈ [0, x∗] solves (6.14) with (6.15) at zero and,
ε-approximately, (6.23) at x∗. Decreasing ε→ 0 would give x∗ → ∞.

Remark 6.1.7 (A double obstacle problem). Since we know little about the structure of
𝕓, 𝕤 solving (6.14), a direct verification of smoothness and of the variational (in-)equalities
for our candidate value function V seems rather ambitious. A different approach might
be to draw a connection to optimal stopping as in Section 4.6 for the sell-only problem.
In the case of non-monotone strategies, the analogue would be a double obstacle problem
or Dynkin game, cf. [KW01, DAF14, FP14]. In these articles, the connection to Dynkin
games uses a convexity structure for the singular control problem, that I cannot see in
our setup.
Assume we would already know A(θ) and B(θ). Regarding Corollary 4.6.1, it would

be natural to expect that the directional derivative w(y) = Vy(y, θ) + Vθ(y, θ) of the
value function should solve the double obstacle problem⎧⎪⎨⎪⎩

ℒw(y)− β
(
A(θ)Φ′

↓(y) +B(θ)Φ′
↑(y)

)
= 0 if f(y) < w(y) < κf(y),

ℒw(y)− β
(
A(θ)Φ′

↓(y) +B(θ)Φ′
↑(y)

)
≤ 0 if w(y) = f(y),

ℒw(y)− β
(
A(θ)Φ′

↓(y) +B(θ)Φ′
↑(y)

)
≥ 0 if w(y) = κf(y).

(6.16)

This is closely related to the Dynkin game where two players choose stopping times τ , σ
when to trade, one trying to maximize gains (sell at time τ), the other minimizes costs
(buy at time σ),

sup
τ

inf
σ
𝔼

[
e−δτf(Xτ )𝟙τ<σ + e−δσκf(Xσ)𝟙σ<τ (6.17)

−
∫ σ∧τ

0

βe−δt
(
A(θ)Φ′

↓(Xt) +B(θ)Φ′
↑(Xt)

)
dt

]
, (6.18)

with shifted uncontrolled impact process dXt = (σρσ̂ − βXt) dt+ σ̂ dBt, X0 = y.
Such reformulations are used in [DY09] and the recent [FR19] to solve different non-

monotone singular control problems. Therein however, the problems decouple, i.e. they
can be rewritten such that w = Vy has no dependence on θ (in our notation).
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6.2 Infinite fuel variant

6.2 Infinite fuel variant

As discussed in Section 6.1.4, the finite fuel problem of liquidating a given amount of
assets is rather involved. Moreover, our description (6.14) of a candidate optimizer
for that problem involves a rather intricate boundary condition at infinity. For this
reason, we now study the (simpler) the infinite fuel variant. Because the current amount
of assets (“fuel”) is no longer a relevant state variable of the control problem for this
variant, the problem becomes simpler, being a singular control problem in one dimension
(instead of two). We solve this one-dimensional problem with Theorem 6.2.8 using a
smooth pasting approach and direct verification of the variational inequalities.

Intuitively, since τθ(Θ
+,Θ−) → ∞ for θ → ∞, the finite fuel optimal strategy should

asymptotically equal the infinite fuel optimizer and the finite fuel value function V (y, θ)
should converge to the infinite fuel value function Ṽ (y) for initial position θ → ∞. The
same interpretation may be expected for the asymptote y∞ of the boundary surface 𝕪
in Chapter 4. See also [KOWZ00] for a discussion of the connection between finite and
infinite fuel solutions, or the recent [FK19], which is tightly related to our model from
Chapter 4.

6.2.1 A one-dimensional problem

Our large investor trades indefinitely without any short sale restriction. We impose the
same Assumption 6.1.1 as in the previous section. Note that formally τ∞(Θ+,Θ−) = ∞
for the “time to liquidation” from (6.4). Hence, our objective is (6.6) with θ = ∞, i.e.

max
(Θ+,Θ−)∈𝒜(∞)

𝔼[L∞(Θ+,Θ−)], (6.19)

for the set of admissible strategies 𝒜(∞) from (6.5), with value function

v(y) := sup
(Θ+,Θ−)∈𝒜(∞)

𝔼[L∞(Θ+,Θ−)] where Y0− = y. (6.20)

In spirit of the martingale optimality principle Proposition 4.5.1 from Chapter 4, we
will construct a C2 function y ↦→ Ṽ (y) and a strategy (Θ̂+, Θ̂−) such that the process

Gt := Lt(Θ
+,Θ−)+e−γtStṼ (Y Θ+−Θ−

t ) is a supermartingale for all admissible strategies
(Θ+,Θ−) and a martingale for (Θ̂+, Θ̂−), which proves optimality of the latter and that
Ṽ is indeed the value function, Ṽ = v. We will verify in Section 6.2.2 our assumptions
on Ṽ and about the structure of the state space, which we describe next.

The supermartingale property for G suggests that the state space ℝ of possible impact
levels y = Yt should separate into three regions – the buy region ℬ∞, wait region 𝒲∞,
and sell region 𝒮∞ – such that Ṽ satisfies the variational (in-)equalities⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f(y) = Ṽ ′(y) for y ∈ 𝒮∞,

f(y) < Ṽ ′(y) < κf(y) for y ∈ 𝒲∞,

κf(y) = Ṽ ′(y) for y ∈ ℬ∞,

ℒṼ (y) < 0 for y ∈ ℬ∞ ∪ 𝒮∞,

ℒṼ (y) = 0 for y ∈ 𝒲∞,

(6.21)

with differential operator ℒϕ(y) = σ̂2

2 ϕ
′′(y) + (σρσ̂ − βy)ϕ′(y)− δϕ(y).
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We make the ansatz that these are intervals ℬ∞ = (−∞, b∞), 𝒲∞ = (b∞, s∞), and
𝒮∞ = (s∞,∞), separated by two yet unknown boundary points b∞ < s∞. The optimal
strategy should then consist of the two reflection local times which keep the market
impact process Y inside 𝒲∞.

Since Φ↓ and Φ↑ span the space of solutions ϕ ∈ C2(ℝ) of ℒϕ = 0, imposing ℒṼ = 0

in (b∞, s∞) means that there exist factors A,B ∈ ℝ such that Ṽ (y) = AΦ↓(y)+BΦ↑(y),
for b∞ < y < s∞. The variational equalities inside ℬ∞ and 𝒮∞, cf. (6.21), hence suggest

Ṽ (y) =

⎧⎪⎨⎪⎩
AΦ↓(y) +BΦ↑(y), for y ∈ [b∞, s∞]

AΦ↓(b∞) +BΦ↑(b∞) +
∫ y

b∞
κf(x) dx, for y < b∞,

AΦ↓(s∞) +BΦ↑(s∞) +
∫ y

s∞
f(x) dx, for y > s∞,

(6.22)

which already gives continuity for all A,B and b∞ < s∞. Now Ṽ ∈ C2 means that
first and second derivatives from the left and right paste together at b∞ and s∞. Using
the matrices Mn from (6.12), this gives the two linear systems of equations for (A,B),

namely M1(b∞, s∞) ·
(
A
B

)
=
(
κf(b∞)
f(s∞)

)
by C1-pasting and M2(b∞, s∞) ·

(
A
B

)
=
(
κf ′(b∞)

f ′(s∞)

)
by C2-pasting. Since Mn(b∞, s∞) are non-singular for b∞ ̸= s∞, we may combine both
equations, eliminate (A,B), and obtain a non-linear system of equations

M2(b, s) ·M1(b, s)
−1 ·

(
κf(b)
f(s)

)
−
(

κf ′(b)

f ′(s)

)
=
(
0
0

)
, (6.23)

for b∞ = b and s∞ = s. Given a solution (b∞, s∞) of (6.23) with b∞ < s∞, we
have with (6.22) a candidate value function Ṽ ∈ C2(ℝ) that satisfies the variational
equalities in (6.21). It then remains to prove the variational inequalities, ℒṼ < 0 in
(−∞, b∞] ∪ [s∞,∞) and f < Ṽ < κf in (b∞, s∞). We verify these in Section 6.2.2. Let
us now comment on (6.23).

Remark 6.2.1 (Existence of a solution). In the same way existence of y∞ is just a
model assumption in Chapter 4 for general λ = f ′/f , that we verified e.g. for the
particular case of constant λ, we may simply impose existence of b, s with b < s solving
(6.23) as an additional model assumption. Again, for λ being constant, we can indeed
prove existence of such a solution, see Lemma 6.2.2 below.

Lemma 6.2.2. Let f(y) = eλy with constant λ > 0. Then there exists a solution
(b, s) ∈ ℝ2 of (6.23) with b < s.

Proof. For constant λ, (6.23) is an eigenvalue problem: We search b, s ∈ ℝ such that

λ is an eigenvalue of M2(b, s)M1(b, s)
−1 with eigenvector v :=

( κf(b)
f(s)

)
. The eigenvalue

property reads det(M2M
−1
1 −λI2) = 0. For ζ(x, y) = Φ↑(x)Φ↓(y)−Φ↓(x)Φ↑(y) we have

det(M2M
−1
1 − λI2) = det(M2 − λM1) det(M1)

−1

=
(Φ′′

↓ − λΦ′
↓)(s) (Φ

′′
↑ − λΦ′

↑)(b)− (Φ′′
↓ − λΦ′

↓)(b) (Φ
′′
↑ − λΦ′

↑)(s)

ζxy(b, s)
.

Note that Φ′′
↓ − λΦ′

↓ > 0 for λ ≥ 0. Hence for b ̸= s we have det(M2M
−1
1 − λI2) = 0 if

and only if(
Φ′′

↑ − λΦ′
↑

Φ′′
↓ − λΦ′

↓

)
(b) =

(
Φ′′

↑ − λΦ′
↑

Φ′′
↓ − λΦ′

↓

)
(s). (6.24)
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We know that g(y) := (Φ′′
↑−λΦ′

↑)/(Φ
′′
↓−λΦ′

↓) is negative on (−∞, y∞), with g(y) → 0 for
y → −∞, and positive on (y∞,∞), where λ = Φ′′

↑(y∞)/Φ′
↑(y∞) as in Assumption 4.1.2.

differentiating gives

g′ =
(Φ′′′

↑ − λΦ′′
↑)(Φ

′′
↓ − λΦ′

↓)− (Φ′′
↑ − λΦ′

↑)(Φ
′′′
↓ − λΦ′′

↓)

(Φ′′
↓ − λΦ′

↓)
2

.

By Lemma 4.4.1, there exists a unique solution z to Φ′′′
↑ (z) = λΦ′′

↑(z). Moreover, z < y∞
and Φ′′′′

↑ − λΦ′′′
↑ > 0 on [z,∞). So we get g′ > 0 on (y∞,∞) and g′ < 0 on (−∞, z). Let

y∗ ∈ [z, y∞] solve g′(y∗) = 0. Using monotonicity of Φ
(n+1)
↑ /Φ

(n)
↑ and the definitions of

z and y∞, we find

g′′(y∗) =

(
(Φ′′′′

↑ − λΦ′′′
↑ )(Φ′′

↓ − λΦ′
↓)− (Φ′′

↑ − λΦ′
↑)(Φ

′′′′
↓ − λΦ′′′

↓ )

(Φ′′
↓ − λΦ′

↓)
2

)
(y∗) > 0,

which implies uniqueness of y∗. So for every s ∈ [y∗, y∞) there exists exactly one
b ∈ (−∞, y∗] (and vice versa) such that g(b) = g(s), i.e. such that λ is an eigenvalue
of M2(b, s)M1(b, s)

−1, and all (b, s) with g(b) = g(s) satisfy b, s < y∞. The implied
function b(s) : (y∗, y∞) → (−∞, y∗) with g(b(s)) = g(s) is moreover decreasing, since
g′ > 0 on (y∗, y∞) and g′ < 0 on (−∞, y∗).

It remains to check for which b = b(s) the vector v :=
( κf(b)

f(s)

)
is an eigenvector of

M2(b, s)M1(b, s)
−1 =

1

ζxy(b, s)

(
ζxxy(b, s) ζxyy(b, b)
ζxxy(s, s) ζxyy(b, s)

)
to the eigenvalue λ. Since we already know that λ is an eigenvalue when b = b(s), the
eigenvector property reduces to the single equation κ = κ∗(b, s) with

κ∗(b, s) :=
−ζxyy(b, b)

ζxxy(b, s)− λζxy(b, s)

f(b)

f(s)
=

Φ′′
↑ (b)

Φ′′
↓ (b)

Φ′
↓(b)− Φ′

↑(b)(
1− λ

Φ′
↓(b)

Φ′′
↓ (b)

)(
g(b)Φ′

↓(s)− Φ′
↑(s)

) f(b)f(s)
.

From Lemma 4.4.1 it follows that Φ′
↓(b)/Φ

′′
↓(b) → 0 for b → −∞. Since moreover

g(b) → 0 and f(b) → 0 for b → −∞ and b(s) → −∞ for s ↗ y∞ we find that
lims↗y∞ κ∗(b(s), s) = +∞. On the other hand, we immediately see κ∗(y∗, y∗) = 1. Hence
by continuity of s ↦→ κ∗(b(s), s) there exist s∗ ∈ (y∗, y∞) and b∗ := b(s∗) ∈ (−∞, y∗)
such that κ = κ∗(b∗, s∗), i.e. the pair (b∗, s∗) solves (6.23).

Remark 6.2.3 (Transient impact is necessary). Note that for purely permanent impact,
i.e. formally β = 0, the equation (6.23) would have no solution with b < s in general.
If β = 0, the market impact process Y is a controlled Brownian motion, so that
the corresponding increasing and decreasing positive solutions of ℒϕ = 0 would be
Φ↑(y) = exp(−yσρ/σ̂+y

√
(σρ)2 + 2δ/σ̂) and Φ↓(y) = exp(−yσρ/σ̂−y

√
(σρ)2 + 2δ/σ̂),

respectively. Now proceeding as above for constant λ, (6.24) implies b = s.

6.2.2 Direct verification

Throughout this section, assume that (b∞, s∞) ∈ ℝ2 solves (6.23) with b∞ < s∞. Such
solution exists e.g. for constant λ = f ′/f , cf. Lemma 6.2.2. In particular, we know
Ṽ ∈ C2 for Ṽ from (6.22). Now, we can moreover show that Ṽ is increasing and convex
on (b∞, s∞).
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6 Proportional bid-ask spreads in optimal trading – a double obstacle problem

Lemma 6.2.4. The function Ṽ from (6.22) for b∞ < s∞ solving (6.23) is increasing
and convex, Ṽ ′, Ṽ ′′ > 0, on the interval (b∞, s∞).

Proof. From C1-smooth pasting, we have
(
A
B

)
= M1(b∞, s∞)−1 ·

(
κf(b∞)
f(s∞)

)
. Consider

the auxiliary function ζ(x, y) = Φ↑(x)Φ↓(y)− Φ↓(x)Φ↑(y) to express the determinant of
matrices Mn(b∞, s∞). Then we may rewrite

Ṽ (y) = κf(b∞)
ζy(y, s∞)

ζxy(b∞, s∞)
+ f(s∞)

ζx(b∞, y)

ζxy(b∞, s∞)
, for y ∈ [b∞, s∞]. (6.25)

Remember that by Lemma 4.4.1 we know Φ
(n)
↑ (y) > 0 and (−1)nΦ

(n)
↓ (y) > 0 for

integer n ≥ 0 and y ∈ ℝ. So ζ has partial derivatives ζxxy < 0 and ζxyy > 0 and
therefore −detM1(x, y) = ζxy(x, y) ⋛ 0 for x ⋚ y. Hence for y ∈ (b∞, s∞), we
find ζxy(b∞, s∞) > ζxy(y, s∞) > 0 and ζxy(b∞, s∞) > ζxy(b∞, y) > 0, and therefore

Ṽ ′(y) > 0.
Similarly, we get ζxxxyy > 0, ζxxyyy < 0 and hence −detM2(x, y) = ζxxyy(x, y) ⋚ 0

for x ⋚ y. Now, C2-smooth pasting yields yet another representation of Ṽ which gives
as derivative

Ṽ ′(y) =
κf ′(b∞)ζxyy(y, s∞) + f ′(s∞)ζxxy(b∞, y)

ζxxyy(b∞, s∞)
, (6.26)

for y ∈ [b∞, s∞]. From (6.26), we thus see Ṽ ′′ > 0 on (b∞, s∞).

We are now able to prove the variational inequalities for Ṽ . Remember that the function

k, k(y) = σ̂2

2
f ′′(y)
f(y) − (β + δ) + (σρσ̂− βy) f

′(y)
f(y) is strictly decreasing by Assumption 6.1.1.

Lemma 6.2.5. We have k(b∞) > 0 > k(s∞) and y ↦→ Ṽ ′(y)/f(y) is strictly decreasing
on [b∞, s∞]. Therefore κf > Ṽ ′ > f on the interval (b∞, s∞).

Proof. For notational convenience, denote b := b∞ and s := s∞. The function

g := Ṽ ′/f satisfies the ordinary differential equation σ̂2

2 g
′′(y) = −k(y)g(y) + c(y)g′(y)

with c(y) := βy − σρσ̂ − σ̂2 f ′(y)
f(y) .

We have g(b) = κ > 1 = g(s) and by C2-smooth fit also g′(b) = 0 = g′(s), because

f(b)2g′(b) = Ṽ ′′(b)f(b)− Ṽ ′(b)f ′(b) = κf ′(b)f(b)− κf(b)f ′(b) = 0,

f(s)2g′(s) = Ṽ ′′(s)f(s)− Ṽ ′(s)f ′(s) = f ′(s)f(s)− f(s)f ′(s) = 0.

Denote by y1 := b ∨ inf {y ∈ ℝ : k(y) < 0} ∧ s the zero of k in [b, s] (if it exists)
such that k(·) > 0 on [b, y1) and k(·) < 0 on (y1, s]. By [SLG84, Lemma 4.1], we have
(y − s)g(y)g′(y) > 0 for all y ∈ [y1, s). This implies g′(·) < 0 on [y1, s), since g > 0
on [b, s], as shown before. In particular, we must have k(b) > 0, i.e. y1 > b, because
otherwise g′(b) < 0.

For the interval [b, y1], we employ a change of variable φ(y) :=
∫ y

0
exp(

∫ u

0
2
σ̂2 c(v) dv) du

like in the proof of [SLG84, Lemma 4.1], so that l(x) := g(φ−1(x)) solves the differential

equation σ̂2

2 l
′′(x) = −k(φ−1(x))

(
φ′(φ−1(x))

)2
l(x). Let b̃ := φ(b) and x1 := φ(y1).

Since k(φ−1(x)) > 0 and l(x) > 0 for x ∈ [b̃, x1), l is strictly concave there. Hence,
l′(b̃) = g′(b)/φ′(b) = 0 implies that l is strictly decreasing on [b̃, x1). Thus, g′(·) < 0
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6.2 Infinite fuel variant

on (b, y1), because l
′(φ(y)) and g′(y) have the same sign. In particular, we must have

k(s) < 0, i.e. y1 < s, because otherwise g′(s) < 0 by strict convexity of l. By continuity
of g′, it follows g′(·) < 0 on the whole interval (b, s).

The variational inequalities inside buy and sell regions turn out to be direct conse-
quences of Lemma 6.2.5.

Lemma 6.2.6. We have ℒṼ (y) < 0 for y > s∞.

Proof. Note that Ṽ ′(y) = f(y) and Ṽ ′′(y) = f ′(y) for y > s∞. By C2-smooth fit, we

get h(s∞) = 0 for h(y) := ℒṼ (y) = σ̂2

2 f
′(y) + (σρσ̂− βy)f(y)− δṼ (s∞)− δ

∫ y

s∞
f(x) dx.

Moreover, h′(y) = f(y)k(y). Since k(·) < 0 on [s∞,∞) by Lemma 6.2.5, it follows
h(y) < 0 for all y > s∞.

Lemma 6.2.7. We have ℒṼ (y) < 0 for y < b∞.

Proof. Note that Ṽ ′(y) = κf(y) and Ṽ ′′(y) = κf ′(y) for y < b∞. By C2-smooth fit, we

get h(b∞) = 0 for h(y) := ℒṼ (y) = σ̂2

2 κf
′(y)+(σρσ̂−βy)κf(y)−δṼ (b∞)−δ

∫ y

b∞
κf(x) dx.

Moreover, h′(y) = κf(y)k(y). Since k(·) > 0 on (−∞, b∞] by Lemma 6.2.5, it follows
h(y) < 0 for all y < b∞.

With Lemmas 6.2.5 to 6.2.7, we now have all ingredients to prove our main result for
this section.

Theorem 6.2.8. Let Y0− = y ∈ ℝ and let (b∞, s∞) ∈ ℝ2 with b∞ < s∞ solve (6.23).
Then the strategy (Θ̂+, Θ̂−) given by Θ̂+

t = (0 ∨∆) +K+
t and Θ̂−

t = (0 ∨ −∆) +K−
t

maximizes 𝔼[L∞(Θ+,Θ−)] among all (Θ+,Θ−) ∈ 𝒜(∞) and Ṽ (y) = 𝔼[L∞(Θ̂+,Θ−)],
where the initial jump ∆ is

∆ =

⎧⎪⎨⎪⎩
s∞ − y if y > s∞,

b∞ − y if y < b∞,

0 if y ∈ [b∞, s∞],

and K+ and K− are the minimal continuous increasing adapted non-negative processes

that keep Yt = Y K+−K−

t (which starts in Y0 = y + ∆ ∈ [b∞, s∞]) inside the interval
[b∞, s∞] for all t ≥ 0. That is, K+ is the upward reflection local time of Y at the lower
boundary b∞ and K− is the downward reflection local time of Y at the upper boundary
s∞.

Proof. Admissibility (Θ̂+, Θ̂−) ∈ 𝒜∞ essentially follows in the same way as Lemma 6.1.4.
By construction Ṽ satisfies the variational equalities Ṽ ′ = f in 𝒮∞ := [s∞,∞), ℒṼ = 0
in 𝒲∞ := [b∞, s∞] and Ṽ ′ = κf in ℬ∞ := (−∞, b∞]. Lemmas 6.2.5 to 6.2.7 guarantee
that Ṽ also satisfies the corresponding variational inequalities, so that the process

Gt := Lt(Θ
+,Θ−) + e−γtStṼ (Y Θ+−Θ−

t ) is a supermartingale for every (Θ+,Θ−) ∈ 𝒜∞
and a martingale for (Θ̂+, Θ̂−), which implies optimality like in Proposition 4.5.1.

Note that existence of b∞ < s∞ as required in Theorem 6.2.8 is clear e.g. for constant
λ, cf. Lemma 6.2.2. For general λ this existence requirement is just another assumption
in addition to Assumption 6.1.1 as discussed in Remark 6.2.1.
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7 Approximating diffusion reflections at
elastic boundaries

This chapter corresponds to to the article [BBF18a]. Here, we show a probabilistic
functional limit result for one-dimensional diffusion processes that are reflected at an
elastic boundary which is a function of the reflection local time. Such processes are
constructed as limits of a sequence of diffusions which are discretely reflected by small
jumps at an elastic boundary, with reflection local times being approximated by ε-step
processes. The construction yields an alternative proof for the Laplace transform formula
of the inverse local time for reflection which is crucial in Chapter 4. The approximation
scheme has a natural interpretation as a small block approximation of the optimal
strategy from Chapter 4, cf. Remark 7.2.4.

X

t

(a) X against real time t.

X

L

(b) X against local time L.

Figure 7.1: Example. Brownian motion Xt (blue) reflected at the elastic boundary
g(L) =

√
L (red), where L is the reflection local time of X at boundary g(L).

7.1 Elastic reflection – model and notation

Let W be a one-dimensional (ℱ t)-Brownian motion. Consider Lipschitz-continuous
functions σ : ℝ → (0,∞) and b : ℝ → ℝ such that the continuous ℝ-valued (b, σ)-

diffusion dZt = b(Zt) dt+σ(Zt) dWt with generator 𝒢 := 1
2σ(x)

2 d2

dx2 + b(x)
d
dx is regular

and recurrent. Moreover, let X be a (b, σ)-diffusion with reflection at an elastic boundary.
This means that for a given non-decreasing g ∈ C1([0,∞)), the processes (X,L) satisfy

dXt = b(Xt) dt+ σ(Xt) dWt − dLt , X0 = g(0) , (7.1)

with the reflection local time L being a continuous non-decreasing process L that only
grows when X is at the (local-time-dependent) boundary g(L), i.e.

dLt = 𝟙{Xt=g(Lt)} dLt , L0 = 0 , with Xt ≤ g(Lt) for all t ≥ 0. (7.2)
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7 Approximating diffusion reflections at elastic boundaries

Note that the reflecting boundary is not deterministic in real time and space coordinates.
Instead, the boundary g(L), at which the diffusion X is being reflected, is elastic in the
sense that it is itself a stochastic process which retracts when being hit, cf. Figure 7.1b.
Strong existence and uniqueness of (X,L) follow from classical results (cf. Remark 7.2.3)
and are also an outcome of our explicit construction below, see Lemma 7.3.9.

We are particularly interested (see Remark 7.2.4) in the inverse local time

τℓ := inf {t > 0 | Lt > ℓ}. (7.3)

Remark 7.1.1. Note that {t ≥ 0 | Xt = g(Lt)} is a.s. of Lebesgue measure zero by
[RY99, ex. VI.1.16]. For a constant boundary g(ℓ) ≡ a, Tanaka’s formula for symmetric
local times [RY99, ex. VI.1.25] hence shows that the process L, that we obtain as a solution
to the SDE with reflection (7.1) – (7.2), is the symmetric local time of the continuous

semimartingale X at given level a ∈ ℝ, i.e. Lt = limε↘0
1
2ε

∫ t

0
𝟙(a−ε,a+ε)(Xs) d⟨X,X⟩s.

We denote by Hy the first hitting time of a point y by a (b, σ)-diffusion, and write
Hx→ y for the hitting time when the diffusion starts in x. Note that ℙ[Hx→ y <∞] = 1
for all x, y by our assumption on the diffusion being regular and recurrent.

7.2 Approximation by small ε-reflections

Xε

t

Figure 7.2: Approximating processes Xε and g(Lε) =
√
Lε for ε = 4.

We construct solutions to (7.1) – (7.2) and derive an explicit representation (7.12) of the
Laplace transform of the inverse local time at boundary g by approximating reflection
by jumps in the following system of SDEs:

dXε
t = b(Xε

t ) dt+ σ(Xε
t ) dWt − dLε

t , Xε
0− := g(0) , (7.4)

Lε
t :=

∑
0≤s≤t

∆Lε
s with ∆Lε

t :=

{
ε if Xε

t− = g(Lε
t−),

0 otherwise,
Lε
0− := 0 , (7.5)

τεℓ := inf {t > 0 | Lε
t > ℓ} for ℓ ≥ 0. (7.6)

As soon as process Xε hits the boundary, it is reflected by a jump of fixed size ε > 0.
We will speak of Lε as discrete local time, as it is approximating L in the sense of
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7.2 Approximation by small ε-reflections

Theorem 7.2.2. Since the target reflected diffusion X starts at the boundary g, we now
have Xε

0 = g(0)− ε after an initial jump ∆Lε
0 = ε away from Xε

0− := g(0).

Lemma 7.2.1. For any ε > 0, the SDE (7.4)–(7.5) has a unique (up to indistinguisha-
bility) strong global solution (Xε

t , L
ε
t )t≥0. Moreover, uniqueness in law holds.

Proof. Indeed, one can argue by results [RW87, V.9–11, V.17] for classical diffusion
SDEs with Lipschitz coefficients (b, σ) by inductive construction on [[0, τn[[ where for
n ≥ 1, τn := inf {t > τn−1 | Xε

t− = g(nε)} = τεεn with τ0 := 0. Clearly Lε
t equals

Lε
τn−1

for t ∈ [[τn−1, τn[[ and L
ε
τn =L

ε
τn−1

+ ε, while Xε
u = F (Xε

τn−1
, (Wτn−1+s)s≥0)u−τn−1

on [[τn−1, τn[[ holds for a suitable functional representation F of strong solutions to
(b, σ)-diffusions [RW87, Theorem V.10.4]. Such construction extends to [[0, τ∞[[ for
τ∞ := limn τn.
It suffices to show τ∞ = ∞ (a.s.). To this end, let g∞ := limn g(nε) ∈ ℝ ∪ {∞}.

In the case g∞ < ∞ , one can find x, y ∈ ℝ with g∞ − ε < x < y < g∞. By
recurrence of (b, σ)-diffusions, we have (a.s.) finite times τy0 := inf {t > 0 | Xε

t = y},
τxn := inf {t > τyn−1 | Xε

t = x}, τyn := inf {t > τxn | Xε
t = y}, for n ∈ ℕ. The durations

τyn − τxn , n ∈ ℕ, for upcrossings of the interval [x, y] are i.i.d., by the strong Markov
property of the time-homogeneous diffusion. Moreover, Xε is continuous on all [[τxn , τ

y
n ]].

By the law of large numbers, 1
n

∑n
i=1 exp(−λ(τ

y
i − τxi )) converges almost surely for

n → ∞ to the Laplace transform 𝔼x[exp(−λHy)], λ ≥ 0, of the time Hy for hitting y
by the (b, σ)-diffusion process (started at x). This expectation is strictly less than 1
for λ > 0, as Hy > 0 Px-a.s. for y > x, whereas the limit of 1

n

∑n
i=1 exp(−λ(τ

y
i − τxi ))

equals 1 on {τ∞ <∞}, where limi→∞(τyi − τxi ) = 0. Hence P [τ∞ <∞] = 0.
If g∞ = ∞, let τ ′n := inf {t > τn−1 | Xε

t− = g((n − 1)ε)}, for n ≥ 1, so that
τn−1 < τ ′n ≤ τn and Xε

τ ′
n− = g((n − 1)ε) = Xε

(τn−1)−. Using the time change

φt :=
∫ t

0

∑∞
n=1 1[[τ ′

n,τn[[
du with inverse st := inf {u | φu > t}, we get (cf. [RW87,

IV.30.10]) that X ′
t := Xε

st , t ≥ 0, solves the SDE dX ′
t = b(X ′

t) dt+σ(X
′
t) dW

′
t , X

′
0 = g(0),

on [[0, φ∞[[ for φ∞ := supt φt, with respect to W ′
t =

∫ st
0

∑∞
n=1 1[[τ ′

n,τn[[
dWu. We have

W ′
t = Bt∧φ∞ for some Brownian motion B on [0,∞) by the Dambis-Dubins-Schwarz

theorem, cf. [KS91, Thm. 3.4.6, Prob. 3.4.7]. So X ′ solves the (b, σ)-diffusion SDE w.r.t.
B on [[0, φ∞[[. Consider a (b, σ)-diffusion X̃ w.r.t. B on [0,∞). By the usual Gronwall
argument for uniqueness of SDE solutions, we get X ′ = X̃ on all [[0, φτn ]] and hence
X ′ = X̃ on [[0, φ∞[[. In particular, X ′ remains a.s. bounded on any finite time interval
[[0, T [[ with T ≤ φ∞. However, in the event {τ∞ < ∞} ⊂ {φ∞ < ∞}, we get from
X ′

φτn
= g(nε) → ∞ that supt<φ∞

X ′
t = ∞. Hence, we must have ℙ[τ∞ <∞] = 0.

By (7.4) – (7.6), we have τε0 = τε0− = 0 and τεℓ = τε(k−1)ε for ℓ ∈ [(k − 1)ε, kε) with

k ∈ ℕ, and τεkε is the k-th jump time of Xε and Lε within period (0,∞). For ℓ = kε,
the approximating process Xε is a continuous (b, σ)-diffusion on stochastic intervals
[[τεℓ−, τ

ε
ℓ [[, and X

ε
τε
ℓ
= Xε

τε
(ℓ−)

− ε = g(Lε
τε
(ℓ−)

)− ε = g(ℓ− ε)− ε. For such ℓ = kε, we shall

call τεℓ − τεℓ− the length of the (k-th) excursion of Xε away from the boundary. Note
that this excursion length is independent of ℱε

τε
(ℓ−)

and its (conditional) distribution is

τεℓ − τεℓ− ∼ Hg(ℓ) under ℙg(ℓ−ε)−ε , (7.7)

what is also denoted as τεℓ − τεℓ−
d
= Hg(ℓ−ε)−ε→ g(ℓ). The Laplace transform of first
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7 Approximating diffusion reflections at elastic boundaries

hitting times Hx→ z is well-known, see e.g. [RW87, V.50]: for x, z ∈ ℝ and λ > 0,

𝔼
[
e−λHx→ z]

≡ 𝔼x

[
e−λHz]

=

{
Φλ,↑(x)/Φλ,↑(z) if x < z,

Φλ,↓(x)/Φλ,↓(z) if x > z,
(7.8)

where functions Φλ,↑ and Φλ,↓ are uniquely determined up to a constant factor as the
increasing and decreasing, respectively, positive solutions ϕ of the differential equation

𝒢ϕ = λϕ with generator 𝒢 = 1
2σ(x)

2 d2

dx2 +b(x)
d
dx of the (b, σ)-diffusion. Since we assume

the boundary function g to be non-decreasing, only Φλ,↑ is of interest for our purpose
and we abbreviate Φλ = Φλ,↑.

Due to independence of Brownian increments over disjoint time intervals, the Laplace
transform of the inverse local time can be calculated from a sum of (independent)
excursion lengths at (discrete) local times ℓn := εn as

𝔼
[
exp
(
−λτεℓ

)]
= 𝔼

[
exp

(
−λ

⌊ℓ/ε⌋∑
n=1

(
τεℓn − τεℓn−

))]
=

⌊ℓ/ε⌋∏
n=1

𝔼
[
exp
(
−λ
(
τεℓn − τεℓn−

))]

=

⌊ℓ/ε⌋∏
n=1

𝔼g(ℓn−ε)−ε

[
exp
(
−λHg(ℓn)

)]
=

⌊ℓ/ε⌋∏
n=1

Φλ

(
g(ℓn − ε)− ε

)
Φλ

(
g(ℓn)

)
= exp

(⌊ℓ/ε⌋∑
n=1

log

(
Φλ

(
g(ℓn − ε)− ε

)
Φλ

(
g(ℓn)

) ))
, (7.9)

for ℓ ≥ 0 and λ > 0. With hn(ξ) := Φλ

(
g(ℓn − ξ)− ξ

)
, each summand in (7.9) equals

log hn(ε)− log hn(0) =

∫ ε

0

h′n(ξ)

hn(ξ)
dξ = −

∫ ε

0

(
g′(ℓn − ξ) + 1

)Φ′
λ

(
g(ℓn − ξ)− ξ

)
Φλ

(
g(ℓn − ξ)− ξ

) dξ
= −

∫ ℓn

ℓn−1

(
g′(a) + 1

)Φ′
λ

(
g(a) + a− ℓn

)
Φλ

(
g(a) + a− ℓn

) da . (7.10)

Therefore, we obtain

𝔼
[
exp
(
−λτεℓ

)]
= exp

(
−
∫ ε⌊ℓ/ε⌋

0

(
g′(a) + 1

)Φ′
λ

(
g(a) + a− ε⌈a/ε⌉

)
Φλ

(
g(a) + a− ε⌈a/ε⌉

) da). (7.11)

Intuitively, this already suggests the formula (7.12) when taking ε→ 0.

Theorem 7.2.2. The approximations (Xε
t , L

ε
t )t≥0 from (7.4)–(7.5) converge uniformly

in probability for ε→ 0 to a pair (Xt, Lt)t≥0 of continuous adapted processes with non-
decreasing L, which is the unique strong solution (globally on [0,∞)) to the reflected SDE
(7.1)–(7.2). The inverse local time τℓ := inf {t > 0 | Lt > ℓ} has the Laplace transform

𝔼
[
e−λτℓ

]
= exp

(
−
∫ ℓ

0

(
g′(a) + 1

)Φ′
λ

(
g(a)

)
Φλ

(
g(a)

) da) for λ > 0, ℓ ≥ 0, (7.12)

where Φλ is the (up to a constant factor) unique positive increasing solution of the
differential equation 𝒢ϕ = λϕ, for 𝒢 denoting the generator of the (b, σ)-diffusion.
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7.3 Tightness and convergence

Proof. Existence and uniqueness of (X,L) are shown in Lemma 7.3.9 below. Corol-
lary 7.3.10 gives uniform convergence in probability. Using dominated convergence for

the right-hand side of (7.11), we find limε→0𝔼[e
−λτε

ℓ ] = exp
(
−
∫ ℓ

0
(g′(a)+1)

Φ′
λ(g(a))

Φλ(g(a))
da
)
.

For the left-hand side, it suffices to prove weak convergence τεℓ ⇒ τℓ as ε → 0 for all
ℓ ≥ 0. This is done in Corollary 7.3.11 below.

Remark 7.2.3. Existence and uniqueness for (X,L) can also be concluded from classical
results, cf. [DI93, suitably extended to non-bounded domains], by considering the pair
(X,L) as a degenerate diffusion in ℝ2 with oblique reflection in direction (−1,+1) at
a smooth boundary, see Figure 7.1b. This uses an iteration argument involving the
Skorokhod-map and yields another approximation by a sequence of continuous processes.
Yet, these do not satisfy the target diffusive dynamics inside the domain, except at the
limiting fixed point (unless (b, σ) are constant). In contrast, (Xε, Lε) adheres to the
same dynamics as (X,L) between jump times, cf. (7.1) and (7.4), is Markovian and has
a natural interpretation.

Remark 7.2.4. An application example for (7.12) and elastically reflected diffusions is
the optimal execution for the sale of a financial asset position if liquidity is stochastic, see
Chapter 4. A large trader with adverse price impact seeks to maximize expected proceeds
from selling θ risky assets in an illiquid market. Her trading strategy A (predictable,
càdlàg, non-decreasing) affects the asset price St = f(Y A

t )St via a volume impact process
dY A

t = −βY A
t dt + σ̂ dBt − dAt with St = ℰ(σW )t for an increasing function f , and

Brownian motions (B,W ) with correlation ρ. The gains to maximize in expectation are

GT (A) :=

∫ T

0

e−δtf(Y A
t )St dA

c
t +

∑
0≤t≤T
∆At ̸=0

e−δtSt

∫ ∆At

0

f(Y A
t− − x) dx.

The optimal strategy turns out to be the local time L of a reflected Ornstein-Uhlenbeck
process X (with b(x) := ρσσ̂ − βx and σ(x) = σ > 0) at a suitable elastic boundary g,
as in (7.1)–(7.2), see Section 4.2. After a change of measure argument, one can write

the expected proceeds from such strategies as 𝔼[G∞(L)] =
∫ θ

0
f
(
g(ℓ)

)
𝔼
[
e−δτℓ

]
dℓ. To

find the optimal free boundary g, one can then apply (7.12) to express the proceeds as
a functional of the boundary g, and optimize over all possible boundaries by solving a
calculus of variations problem. This is key to the proof in Chapter 4. The discrete
local time Lε has a natural interpretation as the step process which approximates the
continuous optimal strategy L by doing small block trades, as they would be realistic
in an actual implementation, with identical (no-)action region. The approximation is
asymptotically optimal for the control problem. Indeed, straightforward calculations
similar to the derivation of (7.11) show that Lε is asymptotically optimal in first order,
i.e. 𝔼[G∞(L)] = 𝔼[G∞(Lε)] +𝒪(ε).

7.3 Tightness and convergence

To show convergence of (τεℓ )ε, we will prove that the pair of càdlàg processes (Xε, Lε)
forms a tight sequence in ε→ 0. Applying weak convergence theory for SDEs by Kurtz
and Protter [KP96], we show that any limit point (for ε→ 0) satisfies (7.1) and (7.2).
Uniqueness in law for solutions of (7.1) – (7.2) will then allow to conclude Theorem 7.2.2.
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7 Approximating diffusion reflections at elastic boundaries

Let (εn)n∈ℕ be a sequence with εn → 0 and consider the sequence (Xεn , Lεn)n. To
show tightness, we will apply the following criterion due to Aldous.

Proposition 7.3.1 ([Bil99, Cor. to Thm. 16.10]). Let (E, |·|) be a separable Banach
space. If a sequence (Y n)n∈ℕ of adapted, E-valued càdlàg processes satisfies the following
two conditions, then it is tight.

(a) The sequences
(
JT (Y

n)
)
n
and (Y n

0 )n are tight (in ℝ, resp. E) for any T ∈ (0,∞),

with JT (Y
n) := sup0<t≤T

⏐⏐Y n
t − Y n

t−
⏐⏐ denoting the largest jump until time T .

(b) For any T ∈ (0,∞) and ε0, η > 0 there exist δ0 > 0 and n0 ∈ ℕ such that for all
n ≥ n0, all (discrete) Y

n-stopping times τ̂ ≤ T and all δ ∈ (0, δ0] we have

ℙ
[
|Y n

τ̂+δ − Y n
τ̂ | ≥ ε0

]
≤ η .

To get tightness one needs to control both jump size and, regarding (Lε
n)n, the frequency

of jumps simultaneously. As we are considering processes with jumps of size ±εn → 0,
only the latter is not yet clear. To this end, the next lemma provides a technical bound
on Xεn , Lεn , while a second lemma constricts the probability that Xεn (respectively
Lεn) performs a number of Nn jumps in a time interval of fixed length.

Lemma 7.3.2 (Upper bound). Fix a time horizon T ∈ (0,∞) and η ∈ (0, 1]. Then
there exists a constant M ∈ ℝ such that ℙ[∃n : g(Lεn

T − εn) > M ] ≤ η, with the domain
of definition for the function g being extended by g(−x) := g(0) for −x < 0.

Proof. Consider a continuous (b, σ)-diffusion Y that starts at time t = 0 at g(0).
For n ∈ ℕ and k = 0, 1, 2, . . ., let ℓ(n, k) := kεn. By induction over k, using
comparison for diffusion SDEs, cf. [KS91, Theorem 5.2.18], one obtains that (a.s.)
Xεn

t ≤ Yt for t ∈ [[0, τεnℓ(n,k)[[ for all k ≥ 1, and hence Xεn ≤ Y on [0,∞) (a.s.)

because limk→∞ τεnℓ(n,k) = ∞ for any n by Lemma 7.2.1. Therefore, on the event

{∃n : g(Lεn
T − εn) > M} we have supt∈[0,T ] Yt ≥ M , and hence Hg(0)→M ≤ T .

Thus ℙ[∃n : g(Lεn
T − εn) > M ] ≤ ℙ[Hg(0)→M ≤ T ] . Now the claim follows because

limM→∞ℙ[H
g(0)→M ≤ T ] = 0.

Lemma 7.3.3 (Frequency of jumps). Fix T ∈ (0,∞), ε0, η > 0, and set Nn := ⌈ε0/εn⌉.
Then there exists δ > 0 and n0 ∈ ℕ such that for every bounded stopping time τ̂ ≤ T we
have ℙ

[
Jεn
τ̂ ,δ ≥ Nn

]
≤ η for all n ≥ n0, where J

εn
τ̂ ,δ := inf {k | Lεn

τ̂ + kεn ≥ Lεn
τ̂+δ} is the

number of jumps of Xεn , respectively Lεn , in time ]]τ̂ , τ̂ + δ]].

Proof. We will first find an estimate for the jump count probability for arbitrary but fixed
δ > 0, n ∈ ℕ, Nn ∈ ℕ and τ̂ ≤ T . Only in part 2) of the proof we will consider (Nn)n∈ℕ
as stated, to study the limit n→ ∞. More precisely, we will show in part 1) that, given
ℱ τ̂ , for every λ > 0 there exist kn,λ ∈ {0, 1, . . . , Nn − 1} s.t. for xn := g(Lεn

τ̂ + εnkn,λ),

ℙ
[
Jεn
τ̂ ,δ ≥ Nn

⏐⏐ ℱ τ̂

]
≤ eλδ

(
Φλ(xn − εn)

Φλ(xn)

)Nn−1

. (7.13)

1) In this part, fix arbitrary δ > 0, n ∈ ℕ, Nn ∈ ℕ and τ̂ ≤ T . We enumerate the
jumps and estimate the sum of excursion lengths by δ. Let ℓk := Lεn

τ̂ + kεn be the
(discrete) local time at the k-th jump after time τ̂ . If Xεn has at least Nn jumps in the
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7.3 Tightness and convergence

interval ]]τ̂ , τ̂ + δ]], it is doing at least Nn − 1 complete excursions (cf. (7.7)), so that,
noting that τεn

Lεn
t −εn

≤ t < τεn
Lεn

t
(for all t ≥ 0) and ℓNn−1 + εn ≤ Lεn

τ̂+δ, we have

δ = (τ̂ + δ)− τ̂ ≥ τεn
Lεn

τ̂+δ−εn
− τεn

Lεn
τ̂

≥
Nn−1∑
k=1

(
τεnℓk − τεnℓk−1

) d
=

Nn−1∑
k=1

Hk

with the last equality being in distribution conditionally on Fτ̂ , for Hk being conditionally
independent and distributed as Hg(ℓk−1)−εn → g(ℓk). Clearly, ℓk is Fτ̂ -measurable. By
the Laplace transform (7.8) of Hk and the Markov inequality, we get for λ > 0

ℙ
[
Jεn
τ̂ ,δ ≥ Nn

⏐⏐ ℱ τ̂

]
≤ ℙ

[Nn−1∑
k=1

Hk ≤ δ

⏐⏐⏐⏐ ℱ τ̂

]
≤ eλδ𝔼

[
exp

(
−λ

Nn−1∑
k=1

Hk

) ⏐⏐⏐⏐ ℱ τ̂

]

= eλδ
Nn−1∏
k=1

𝔼
[
exp
(
−λHg(ℓk−1)−εn → g(ℓk)

) ⏐⏐⏐ ℱ τ̂

]
= eλδ

Nn−1∏
k=1

Φλ

(
g(ℓk−1)− εn

)
Φλ

(
g(ℓk)

) ≤ eλδ
Nn−1∏
k=1

Φλ

(
g(ℓk)− εn

)
Φλ

(
g(ℓk)

)
≤ eλδ

(
max

0≤k<Nn

Φλ

(
g(ℓk)− εn

)
Φλ

(
g(ℓk)

) )Nn−1

= eλδ
(
Φλ(xn − εn)

Φλ(xn)

)Nn−1

where xn := g(ℓk) for the index k = kn,λ attaining the maximum.
2) For given δ > 0 and τ̂ ≤ T , let us now consider the sequence Nn = ⌈ε0/εn⌉, n ∈ ℕ.

To investigate the limit n→ ∞, first observe that by Taylor expansion

log
Φλ(x− εn)

Φλ(x)
= −εn

Φ′
λ(x)

Φλ(x)
+ εnr(x, εn),

where r(·, εn) → 0 converges uniformly on compacts for εn → 0. Since τ̂ + δ ≤ T + δ
is bounded, Lemma 7.3.2 yields a constant M ∈ ℝ such that ℙ

[
∃n : xn > M

]
≤ η

2 for
the xn from above. On the event {∀n : xn ∈ I} with compact I := [g(0),M ], we have
uniform convergence of r(xn, εn) and thereby get

lim sup
n→∞

eλδ
(
Φλ(xn − εn)

Φλ(xn)

)Nn−1

= exp

(
λδ + lim sup

n→∞
(Nn − 1) log

Φλ(xn − εn)

Φλ(xn)

)
= exp

(
λδ + lim sup

n→∞
(Nnεn − εn)

(
r(xn, εn)−

Φ′
λ(xn)

Φλ(xn)

))
≤ exp

(
λδ − ε0 inf

x∈I

Φ′
λ(x)

Φλ(x)

)
= sup

x∈I
exp

(
λδ − ε0

Φ′
λ(x)

Φλ(x)

)
.

By [PY03, Theorem 1], ψx(λ) := 1
2Φ

′
λ(x)/Φλ(x) is the Laplace exponent of Ax(κx· ),

where κxℓ is the inverse local time at constant level x of a (b, σ)-diffusion Zx starting

at x, and Ax(t) is the occupation time Ax(t) :=
∫ t

0
𝟙{Zx

s ≤x} ds . So we get for λ → ∞
that exp

(
−2ε0ψ

x(λ)
)
= 𝔼x

[
exp
(
−λAx(κx2ε0)

)]
→ 0. By compactness of I and Dini’s

theorem there exists λ = λε0,η,M such that for δ := 1/λ we have

lim sup
n→∞

eλδ
(
Φλ(xn − εn)

Φλ(xn)

)Nn−1

≤ eλδ sup
x∈I

exp
(
−2ε0ψ

x(λ)
)
≤ η

2
(7.14)
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7 Approximating diffusion reflections at elastic boundaries

on the event {xn ≤ M for all n}. By equation (7.13) and ℙ[∃n : xn > M ] ≤ η/2, this
completes the proof.

Using the preceding two lemmas, we will first prove tightness of (Lεn)n and of (Xεn)n
separately. Tightness of the pair (Xεn , Lεn)n is handled afterwards.

Lemma 7.3.4 (Tightness of the local time approximations). The sequence (Lεn)n of
càdlàg processes defined by (7.4) and (7.5) satisfies Aldous’ criterion and thus is tight.

Proof. Part (a) of Proposition 7.3.1 is clear, as the initial value Lεn
0 = εn is deterministic

and JT (L
εn) ≤ εn. For part (b), consider T, η, ε0 > 0 and any bounded Lεn-stopping

time τ̂ ≤ T . The event |Lεn
τ̂+δ−L

εn
τ̂ | ≥ ε0 means that Lεn performs at least Nn := ⌈ε0/εn⌉

jumps in the stochastic interval ]]τ̂ , τ̂ + δ]]. Lemma 7.3.3 yields some n0 and δ0 = δ0(ε0)
such that Aldous’ criterion is satisfied for all n ≥ n0. Hence, (Lεn)n is tight by
Proposition 7.3.1.

Next we show boundedness of (Xεn)n, needed for Lemma 7.3.6 to prove tightness.

Lemma 7.3.5 (Bounding the diffusion approximations). Let T ∈ (0,∞) and η > 0.
Then there exists M ∈ ℝ such that ℙ[supt∈[0,T ]|X

εn
t | > M ] < η for all n ∈ ℕ.

Proof. By Lemma 7.3.2, for every n ∈ ℕ the process Xεn on [0, T ] is bounded from
above by a constant M with probability at least 1− η/2. It remains to show that it is
also bounded from below with high probability. To this end, we will construct a process
Y that is a lower bound for all Xεn and then argue for Y .

For ε̂ := supn εn consider a (b, σ)-diffusion Y which is discretely reflected by jumps of
size −ε̂ at a constant boundary c := g(0)−ε̂, with Y0 = y := g(0)−2ε̂. Such Y is a special
case of (7.4)–(7.5), for a constant boundary function: dYt = b(Yt) dt+ σ(Yt) dWt − LY

t

with LY
t :=

∑
0≤s≤t ∆L

Y
t and ∆LY

t := ε̂𝟙{Yt−=c}. Let τYk := inf {t > 0 | LY
t > kε̂}

be the k-th hitting time of Y at the boundary c. Thus on all intervals [[τYk , τ
Y
k+1[[,

Y is a continuous (b, σ)-diffusion starting in y. Now for fixed n, ε := εn, note that
Xε

τε
mε

= g((m − 1)ε) − ε ≥ c ≥ Yτε
mε

by monotonicity of g. As τεmε → ∞ for m → ∞
by Lemma 7.2.1, induction over the inverse (discrete) local times τεmε, m ∈ ℕ, yields
Xε ≥ Y on [[τYk , τ

Y
k+1]] if X

ε
τY
k

≥ YτY
k

by comparison results [KS91, Thm. 5.2.18]. Since

Xε
0 ≥ Y0, the latter follows by induction over k. As τYk → ∞ for k → ∞ by Lemma 7.2.1,

we get Xεn ≥ Y on [0,∞) for all n. So it suffices to show ℙ[inft∈[0,T ] Yt < −M ] < η/2
for some M , which directly follows from the càdlàg property of Y .

Lemma 7.3.6 (Tightness of the reflected diffusion approximations). The sequence
(Xεn)n of càdlàg processes from (7.4) and (7.5) satisfies Aldous’ criterion and thus is
tight.

Proof. Condition (a) of Proposition 7.3.1 holds. To verify part (b), let η > 0, T ∈ (0,∞),
and τ̂ ≤ T be a stopping time. By Lemma 7.3.5, |Xεn

τ̂ | is with a probability of at least
1− η/4 bounded by some constant M (not depending on n and τ̂). Let us consider the
events {Xεn

τ̂+δ ≤ Xεn
τ̂ − ε0} ∪ {Xεn

τ̂+δ ≥ Xεn
τ̂ + ε0} = {|Xεn

τ̂+δ −Xεn
τ̂ | ≥ ε0} separately.

1) First consider {Xεn
τ̂+δ ≤ Xεn

τ̂ − ε0}. For ξ := Xεn
τ̂ we construct a reflected process

Y ξ such that Y ξ
t ≤ Xεn

τ̂+t for all t ≥ 0. We then estimate ℙ[Xεn
τ̂+δ ≤ Xεn

τ̂ − ε0] by means
of ℙ[Y x

δ ≤ x− ε0] in (7.15), uniformly for all n large enough. We estimate the latter in
(7.16) using the probability of a down-crossing in time δ of intervals [x− ε0, x− 2ε̂] by a
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7.3 Tightness and convergence

continuous diffusion. Covering
⋃

x[x− ε0, x− 2ε̂] by finitely many intervals [yk, yk+1] in
(7.17) then allows us to choose δ > 0 sufficiently small.

To this end, choose ε̂ ≤ ε0/4 and n large enough such that εn ≤ ε̂, and let (Y ξ
t )t≥0

be the (b, σ)-diffusion w.r.t. the Brownian motion (Wτ̂+t −Wτ̂ )t≥0 with Y ξ
0 = ξ − 2ε̂,

which is discretely reflected by jumps of size −ε̂ at a constant boundary at level
ξ − ε̂. More precisely, dY ξ

t = b(Y ξ
t ) dt + σ(Y ξ

t ) dWτ̂+t − Kξ
t with (discrete) local

time Kξ
t :=

∑
0≤s≤t ∆K

ξ
s for ∆Kξ

t := ε̂𝟙{Y ξ
t−=ξ−ε̂}. Global existence and uniqueness of

(Y ξ,Kξ) follows from the proof of Lemma 7.2.1. By comparison arguments and induction

as in the proof of Lemma 7.3.5, one verifies Y ξ
t ≤ Xεn

τ̂+t for t ∈ [0,∞). Indeed, [KS91,

Theorem 5.2.18] gives Y ξ
· ≤ Xεn

τ̂+· on [[0, τ1[[ until the first jump of either Y ξ
· or Xεn

τ̂+·
at time τ1 > 0. If only Y ξ jumps, we have Y ξ

τ1 = Y ξ
(τ1)− − ε̂ ≤ Xεn

(τ1)− − ε̂ = Xεn
τ1 − ε̂,

but if Xεn
τ̂+· jumps, we have Xεn

τ̂+τ1
= g(Lεn

(τ̂+τ1)−)− εn ≥ g(Lεn
τ̂ )− εn = ξ ≥ Y ξ

τ1 . Now

Y ξ
τ1 ≤ Xεn

τ̂+τ1
, so we get Y ξ

· ≤ Xεn
τ̂+· on [[τk, τk+1[[ by induction for all jump times τk of

(Y ξ
· , X

εn
τ̂+·).

Using Y ξ
δ ≤ Xεn

τ̂+δ and the strong Markov property of Y ξ w.r.t. (Fτ̂+t)t≥0, we get

ℙ
[
Xεn

τ̂+δ ≤ Xεn
τ̂ − ε0, |Xεn

τ̂ | ≤M
]
≤ sup

−M≤x≤M
ℙ[Y x

δ ≤ x− ε0] . (7.15)

By construction Y ξ depends on n and τ (through ξ), while the right-hand side of (7.15)
does not. Thus one only needs to bound the probability of an (ε0 − 2ε̂)-displacement
of diffusions Y x with starting points x − 2ε̂ from a compact set, which are reflected
(by (−ε̂)-jumps) at constant boundaries x − ε̂. By the arguments in the proof of
Lemma 7.3.3 (here applied for Y x which is reflected at a constant boundary), for
δ = δ0 > 0 there exists N ∈ ℕ with the following property: for every x ∈ [−M,M ], the
number Jx

δ := inf {k | kε̂ ≥ Kx
δ } of jumps of Y x until time δ is bounded by N − 1 with

probability at least 1− η/8.
Indeed, by (7.13), fixing δ > 0, λ := 1/δ, one gets for any x that ℙ[Jx

δ ≥ ⌈N(x)⌉] ≤ η/8
where N(x) := 1 +

(
log(η/8) − 1

)
/
(
log Φλ(x − ε̂) − log Φλ(x)

)
∈ ℝ. Compactness of

[−M,M ] and continuity of N(x) gives N := ⌈supx∈[−M,M ]N(x)⌉ <∞. Hence,

sup
x∈[−M,M ]

ℙ[Y x
δ ≤ x− ε0, J

x
δ ≤ N − 1] ≤ N sup

x∈[−M,M ]

ℙ[Hx−2ε̂→ x−ε0 ≤ δ], (7.16)

since for the event under consideration, the process Y x would have to move at least
once (in at most N occasions) continuously from the point x − 2ε̂ to x − ε0. Let
d := (ε0 − 2ε̂)/2 ≥ ε0/4 > 0, K := ⌊2M/d⌋ and yk := kd −M . For x ∈ [yk, yk+1],
we have Hyk−2 → yk−2−d ≤ Hx−ε0 → x−2ε̂ since [yk−2 − d, yk−2] ⊂ [x− ε0, x− 2ε̂], so by
[−M,M ] ⊂ [y0, yK+1] we get

ℙ
[
HXεn

τ̂ −εn →Xεn−ε0 ≤ δ, |Xεn
τ̂ | ≤M

]
≤ η/8 +N sup

x∈[−M,M ]

ℙ[Hx−2ε̂→ x−ε0 ≤ δ]

= η/8 +N max
k=0,...,K

sup
x∈[kd−M,(k+1)d−M ]

ℙ
[
Hx−2ε̂→ x−ε0 ≤ δ

]
≤ η/8 +N max

k=−2,...,K
ℙ
[
Hyk → yk−d ≤ δ

]
. (7.17)

For a sufficiently small δ = δ1 ∈ (0, δ0] the right-hand side of (7.17) can be made smaller
than η/4. The above holds for all n such that εn ≤ ε̂, meaning that there is some n0
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7 Approximating diffusion reflections at elastic boundaries

such that is holds for all n ≥ n0. Note that δ1 only depends on T (via M and K) and
on n0 but not on n. Hence, for all δ ∈ (0, δ1], all n ≥ n0 and all τ̂ ≤ T we have

ℙ[Xεn
τ̂+δ ≤ Xεn

τ̂ − ε0] ≤
η

2
. (7.18)

2) For the alternative second case Xεn
τ̂+δ ≥ Xεn

τ̂ + ε0, consider the solution (Yt)t≥τ̂

on [[τ̂ ,∞[[ of dYt = b(Yt) dt+ σ(Yt) dWt with Yτ̂ = Xεn
τ̂ . Using comparison results for

continuous diffusions [KS91, Theorem 5.2.18] inductively over times [[τεn(k−1)εn
, τεnkεn [[, we

find Yt ≥ Xεn
t for all t ∈ [[τ̂ ,∞[[, a.s. Hence, arguing like in the previous case

ℙ
[
Xεn

τ̂+δ ≥ Xεn
τ̂ + ε0, |Xεn

τ̂ | ≤M
]
≤ ℙ

[
Yτ̂+δ ≥ Yτ̂ + ε0, |Yτ̂ | ≤M

]
≤ sup

−M≤y≤M
ℙ
[
Hy→ y+ε0 ≤ δ

]
. (7.19)

As in (7.17) we find a δ2 > 0 such that for all δ ∈ (0, δ2] the right side of (7.19) is bounded
by η/4. Hence we have ℙ[Xεn

τ̂+δ ≥ Xεn
τ̂ + ε0] ≤ η/2, so with (7.18), Proposition 7.3.1

applies.

Now, to prove joint tightness of (Xεn , Lεn)n, we can utilize the fact that both processes
satisfy Aldous’ criterion and that their jump times and jump magnitudes are identical.

Lemma 7.3.7 (Tightness of joint approximations). The sequence (Xεn , Lεn)n of càdlàg
ℝ2-valued processes defined by (7.4) and (7.5) is tight.

Proof. In view of Proposition 7.3.1, choose the space E := ℝ2 equipped with Euclidean
norm |·| and let Y n := (Xεn , Lεn) ∈ D

(
[0,∞), E

)
. Then Y n

0 = (g(0) − εn, εn) and

JT (Y
n) =

√
2εn form tight sequences in E and ℝ, respectively. Furthermore,

ℙ
[
|Y n

τ̂+δ − Y n
τ̂ | ≥ ε0

]
≤ ℙ

[
|Xεn

τ̂+δ −Xεn
τ̂ | ≥ ε0

2

]
+ ℙ

[
|Lεn

τ̂+δ − Lεn
τ̂ | ≥ ε0

2

]
.

Hence Y n also satisfies Aldous’s criterion and therefore is tight.

Tightness only implies weak convergence of a subsequence. It remains to show (in
Lemma 7.3.9) that every limit point satisfies (7.1) and (7.2) and that uniqueness in law
holds. The latter will follow from pathwise uniqueness results for SDEs with reflection,
while for the former we apply results from [KP96] on weak converges of SDEs. For that
purpose, note that the approximated local times form a good sequence of semimartingales
(cf. [KP96, Definition 7.3]), as shown in the following lemma.

Lemma 7.3.8. The sequence (Lεn)n is of uniformly controlled variation and thus good.

Proof. Let δ := supn εn. Then all processes Lεn have jumps of size at most δ <∞. Fix
some α > 0. By tightness, there exists some C ∈ ℝ such that ℙ[Lεn

α > C] ≤ 1/α. So the
stopping time τn,α := inf {t ≥ 0 | Lεn

t > C} satisfies ℙ[τn,α ≤ α] = ℙ[Lεn
α > C] ≤ 1/α .

Moreover, by monotonicity of Lεn we have 𝔼
[∫ t∧τn,α

0
d|Lεn |s

]
= 𝔼[Lεn

t∧τn,α
] ≤ C <∞ .

Hence (Lεn) is of uniformly controlled variation in the sense of [KP96, Definition 7.5].
So by [KP96, Theorem 7.10] it is a good sequence of semimartingales.

We have gathered all necessary results to prove convergence of our approximating
diffusions and local times to the continuous counterpart.
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7.3 Tightness and convergence

Lemma 7.3.9 (Weak convergence of the approximations). The sequence (Xεn , Lεn)n
of càdlàg processes defined by (7.4) – (7.5) converges weakly to the unique continuous
strong solution (X,L) of (7.1) – (7.2).

Proof. By Prokhorov’s theorem, tightness of (Xεn , Lεn ,W )n implies weak convergence
of a subsequence to some limit point, (Xεnk , Lεnk ,W )k ⇒ (X̃, L̃, W̃ ) ∈ D

(
[0,∞),ℝ3

)
.

Continuity of (X̃, L̃) is clear since εn → 0 is the maximum jump size. First we prove
that (X̃, L̃) satisfies the asserted SDEs. Afterwards, we will prove uniqueness of the
limit point. To ease notation, let w.l.o.g. the subsequence (nk) be (n).
By [KP96, Theorem 8.1] we get that (X̃, L̃) satisfy (7.1) for the semimartingale W̃ .

That W̃ is a Brownian motion follows from standard arguments, cf. [NO10, proof of
Theorem 1.9]. As D

(
[0,∞),ℝ3

)
is separable we find, by an application of the Skorokhod

representation theorem, that L̃ is non-decreasing and X̃t ≤ g(L̃t) for all t ≥ 0, ℙ-a.s.
because these properties already hold for (Xεn , Lεn).
To prove that L̃ grows only at times t with X̃t = g(L̃t), we have to approximate the

indicator function by continuous functions. For δ > 0 define

hδ(x, ℓ) :=

⎧⎪⎨⎪⎩
(
x− g(ℓ)

)
/δ + 1 for g(ℓ)− δ ≤ x ≤ g(ℓ),

1−
(
x− g(ℓ)

)
/δ for g(ℓ) ≤ x ≤ g(ℓ) + δ,

0 otherwise,

h0(x, ℓ) := 𝟙{x=g(ℓ)} and Hδ,n
t := hδ(X

εn
t , Lεn

t ) and H̃δ
t := hδ(X̃t, L̃t) .

For δ ↘ 0 the functions hδ ↘ h0 converge pointwise monotonically. Continuity
of hδ implies weak convergence (Hδ,n, Lεn) ⇒ (H̃δ, L̃). By Lemma 7.3.8, (Lεn) is a

good sequence. So for every δ > 0 the stochastic integrals
∫ ·
0
Hδ,n

s− dLεn
s ⇒

∫ ·
0
H̃δ

s− dL̃s

converge weakly. Note that dLεn
t = H0,n

t− dLεn
t . Hence, for every δ > 0 we have∫ ·

0

Hδ,n
s− dLεn

s =

∫ ·

0

Hδ,n
s−H

0,n
s− dLεn

s =

∫ ·

0

H0,n
s− dLεn

s = Lεn .

By the weak convergence Lεn ⇒ L̃ it follows for every δ > 0 that L̃t =
∫ t

0
H̃δ

s− dL̃s .

By monotonicity of L̃, dL̃t defines a random measure on [0,∞). Hence monotone
convergence of H̃δ

t ↘ H̃0
t yields dL̃t = h0(X̃t, L̃t) dL̃t .

Thus, we showed that (Xε, Lε) converges in distribution to a weak solution (X̃, L̃) of
the reflected SDE, i.e. it might be defined on a different probability space with its own
Brownian motion. Note that (X̃, L̃) is continuous on [0,∞) and that τ̃∞ := supk τ̃k = ∞
a.s., where τ̃k := inf {t > 0 | |X̃t| ∨ L̃t > k}. To show the existence and uniqueness of a
strong solution as stated in the theorem, we will use the results from [DI93]. Consider the
domain Ḡ := {(x, ℓ) ∈ ℝ2 | x ≤ g(ℓ), ℓ ≥ 0}. We may interpret the process (Xt, Lt) as a
continuous diffusion in Ḡ with oblique reflection in direction (−1,+1) at the boundary,
although the notion of a two-dimensional reflection seems unusual here, because (X,L)
only varies in one dimension in the interior of G. The unbounded domain G can be
exhausted by bounded domains Gk :=

{
(x, ℓ) ∈ G

⏐⏐ |x|, |ℓ| < k
}
, which might have a non-

smooth boundary especially at (g(0), 0), but still satisfy [DI93, Cond. (3.2)]. Hence, by
[DI93, Cor. 5.2] the process (X,L) exists (up to explosion time) on the initial probability
space and is (strongly) unique on [[0, τk[[ with exit time τk := inf {t > 0 | |Xt| ∨ Lt > k},
for all k ∈ ℕ. So (X,L) is unique until explosion time τ∞ := supk τk. Moreover, by [DI93,
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7 Approximating diffusion reflections at elastic boundaries

Theorem 5.1] we have the following pathwise uniqueness result: for any two continuous
solutions (X1, L1) and (X2, L2) with explosion times τ1∞ and τ2∞, respectively defined
on the same probability space with the same Brownian motion and the same initial
condition, we have that X1 = X2 and L1 = L2 on [[0, τ1k ∧ τ2k ]] for every k ∈ ℕ a.s. Using
a known argument due to Yamada and Watanabe, ideas being as in [KS91, Ch. 5.3.D],
one can bring the two (weak) solutions (X̃, L̃, W̃ ) and (X,L,W ) to a canonical space
with a common Brownian motion. By pathwise uniqueness there, one concludes that
τ∞ = ∞ a.s. (as τ̃∞ = ∞). Hence the strong solution (X,L) does not explode in finite
time. In addition, we conclude uniqueness in law like in [KS91, Prop. 5.3.20] and thus
any weak limit point of the approximating sequence (Xε, Lε) will have the same law as
(X,L).

This convergence result can be strengthened as follows.

Corollary 7.3.10 (Convergence in probability). The sequence (Xεn , Lεn)n of càdlàg
processes defined by (7.4)–(7.5) converges in probability to (X,L) defined by (7.1)–(7.2).

Proof. Following the proof of [KP91, Cor. 5.6], we will strengthen weak convergence
(Xεn , Lεn) ⇒ (X,L) to convergence in probability. First, note that Lemma 7.3.9 implies
weak convergence of the triple (Xεn , Lεn ,W ) ⇒ (X,L,W ) by e.g. [SK85, Corollary 3.1].
Hence, for every bounded continuous F : D([0,∞);ℝ2) → ℝ and every bounded continu-
ous G : C([0,∞);ℝ) → ℝ, we have limn→∞𝔼[F (X

εn , Lεn)G(W )] = 𝔼[F (X,L)G(W )] .
Now, the previous equation even holds for all bounded measurableG by L1-approximation
of measurable functions by continuous functions. By strong uniqueness of (X,L), there
exists a measurable functionH : C([0,∞);ℝ) → C([0,∞);ℝ2) such that (X,L) = H(W ).
In particular, G(W ) := F (H(W )) = F (X,L) is bounded and measurable, so we conclude

lim
n→∞

𝔼
[
(F (Xεn , Lεn)− F (X,L))2

]
= lim

n→∞

(
𝔼
[
F (Xεn , Lεn)2

]
− 2𝔼

[
F (Xεn , Lεn)F (X,L)

]
+ 𝔼

[
F (X,L)2

])
= 0

and hence convergence in probability follows.
To show this, first consider D([0, T ]) with Skorokhod-metric dT , instead of D([0,∞)),

by restricting paths on [0, T ]. Fix an arbitrary η > 0 and write Y n := (Xεn , Lεn) and
Y := (X,L). Since ℙ[∥Y ∥∞ ≤ K] → 1 and ℙ[∥Y n∥∞ ≤ K] → 1 as K → ∞, we have
that Y, Y n are bounded with high probability.

By compactness of [0, T ]× [−K,K]2 and separability of D([0, T ]) (cf. e.g. [Bil99, Thm.
12.2]), there exists a finite covering of D([0, T ]; [−K,K]2) with balls Bη/4(q). For each
of these finitely many q ∈ D([0, T ]) let Fq : D([0, T ]) → [0, 1] be a continuous function
with value 1 on Bη/4(q) and 0 outside of Bη/2(q).

For two bounded paths x, y ∈ D([0, T ]; [−K,K]2) we have that dT (x, y) > η implies
(Fq(x) − Fq(y))

2 = 1 for at least one of the chosen q. We can therefore estimate the
probability ℙ[dT (Y, Y

n) ≥ η, ∥Y ∥ ∨ ∥Y n∥ ≤ K] ≤
∑

q 𝔼[(Fq(Y )− Fq(Y
n))2]. Since the

finite sum on the right-hand side converges to 0 as n→ ∞, we get that dT (Y, Y
n) < η

with high probability. By repeating this argument for multiple time horizons T , we can
also bound the D([0,∞);ℝ2)-distance d(Y, Y n) =

∑∞
T=1 2

−T (1 ∧ dT (Y, Y n)) ≤ η with
high probability.

Corollary 7.3.11 (Weak convergence of the inverse local times). For any ℓ > 0, the
sequence (τεnℓ )n from (7.6) converges in law to the inverse local time τℓ defined by (7.3).
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7.3 Tightness and convergence

Proof. Convergence Lεn ⇒ L implies Lεn
t ⇒ Lt at all continuity points of L, i.e. at all

points, hence ℙ
[
τεnℓ ≤ t

]
= ℙ

[
Lεn
t ≥ ℓ

]
→ ℙ[Lt ≥ ℓ] = ℙ[τℓ ≤ t] .

This completes the proof of Theorem 7.2.2.
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