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Neuromodulatory non-invasive brain stimulation (NIBS) techniques are experimental therapies
for improving motor function after stroke. The aim of neuromodulation is to enhance adaptive or
suppress maladaptive processes of post-stroke reorganization.

However, results on the effectiveness of these methods, which include transcranial magnetic
stimulation (TMS) and transcranial direct current stimulation (tDCS), are mixed. The results
of recent large clinical trials and meta-analyses range from no improvement in motor function
(1, 2) to moderate improvement (1–6) at the group level. Though evidence supporting efficacy is
better for TMS (7) than for tDCS (6), individual stroke patients’ response to NIBS is nevertheless
extremely variable (8–11). This is reminiscent of the development of other stroke therapies, such as
thrombolysis andmechanical thrombectomy, where early studies were largely mixed before patient
selection was refined (12, 13). NIBS in stroke faces a similar challenge of refining patient selection
and individualizing protocols to determine its therapeutic potential.

The variable response to NIBS in stroke patients is a byproduct of multiple factors that influence
response to NIBS in healthy controls (14, 15), as well as factors that influence the response
specifically in stroke patients (8). The former include factors such as age, gender, anatomical
variability, intake of stimulant substances, and baseline neurophysiological state but also technical
factors such as stimulation intensity, TMS coil orientation, and stimulation duration (16–18).
Specifically in stroke patients, symptom severity, size and location of lesions, stroke etiology, and
time from symptom onset to intervention influence the response to NIBS as well. Importantly, these
different variability-causing factors interact to affect the response to NIBS, such as the potential
amplification of inter-individual differences in brain anatomy (19, 20) by stroke lesions (21, 22).
Such interactionsmake understanding the causes of NIBS response variability in stroke challenging.

Although the need for individualized stimulation protocols in stroke patients is widely accepted,
it is still unclear exactly how this will be achieved. At the very least, the factors influencing variability
in healthy subjects should be controlled as much as possible through appropriate and careful study
design (23) and checklist-based reporting of factors during data collection (24). To address the
specific factors for stroke, patient selection for NIBS should be informed by pathophysiological
processes. This requires that we know which processes are relevant, that we are capable of
measuring them, and that we know the optimum timing and patient-related characteristics for
treatment administration.
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MODELS OF REORGANIZATION AS A
BASIS FOR STIMULATION PROTOCOLS

Until recently, NIBS protocols have mostly been based on the
interhemispheric competition model (25, 26), which postulates
that the unaffected hemisphere overly inhibits the affected
hemisphere. Despite NIBS strategies based on this model being
largely ineffective at the group level (27–30), it is still a popular
approach used by several recent (9) and ongoing clinical trials. In
severely affected patients in particular, the validity of this model
has been questioned (31, 32) and an alternative, the vicariation
model, suggested (33). The vicariation model postulates that
the function of the unaffected hemisphere compensates for the
impairment of the affected hemisphere, thereby presenting an
adaptive, rather than maladaptive, process (32, 34–37).

These contradictory models have been unified in the bimodal-
balance recovery model, taking us a step further to individualized
therapy (25). This uses a metric, the “structural reserve,”
defined as the integrity of the white matter motor pathways,
to determine whether the inter-hemispheric competition or
vicariation model is applicable in a given patient. According to
the model, in patients with high structural reserve, the over-
activation of the unaffected hemisphere is maladaptive, while
in patients with low structural reserve, this over-activation is
compensatory. Supporting this model, severely affected patients,
with presumably low structural reserve, have poorer outcomes
when inhibitory NIBS protocols are applied to their unaffected
hemispheres (28, 37), emphasizing the need to modify “one-size-
fit-all” NIBS protocols.

However, it is yet to be resolved which clinical and imaging
characteristics are appropriate proxies for structural reserve.
Most evidence thus far comes from studies investigating the
ability of these characteristics to predict stroke outcome. White
matter integrity, quantified with the fractional anisotropy of
white matter tracts on diffusion tensor imaging, is commonly
used (38–42). However, a good predictor of stroke outcome
(prognostic biomarker) is not necessarily useful for predicting
the response to specific NIBS paradigms (selection biomarker)
(43). Prognostic biomarkers may provide a good starting point;
however, they need to be validated to demonstrate their specific
role and relative importance in influencing the response to NIBS
after stroke. Two recent promising studies show that behavioral
measures such as the Action Research Arm Test and the Fugl-
Meyer score are predictors of the response to NIBS in correlation
with white matter integrity measured using imaging (44, 45).
These studies show that both clinical and imaging measures
associated with structural reserve influence the effectiveness
of facilitation of the affected hemisphere or inhibition of the
unaffected hemisphere, providing direct support for the bimodal-
balance recovery model, and setting the ground for future studies
validating these selection biomarkers.

On the methodological level, to develop a framework to
guide individualized NIBS therapy, large studies with many
patients and variables must be conducted (46). The analysis of
such large-volume, complex data would be suited for machine
learning approaches. Considering preliminary evidence on the
high correlation between clinical and imaging-based biomarkers
(44, 45), as well as the high correlation within the different

FIGURE 1 | Potential biomarkers to predict NIBS response. fMRI-based

connectivity techniques (top) provide information on the brain’s large-scale

functional organization. Moving beyond the description of single networks,

whole-brain (“connectome”) connectivity models capture the heterogeneity

and individual reorganization after stroke using a single scan. The individual

connectome “fingerprint” could therefore be used as a predictor of NIBS

response based on stroke pathophysiology in an individual patient. Properties

of ongoing neuronal oscillations measured using EEG (bottom) carry both

stable, heritable (“trait”), and transiently changing (“state”) information. EEG

power and temporal dynamics can be used as “trait” measures and provide

prediction of NIBS response at the individual level. EEG phase can be used to

temporally align NIBS stimulation with excitability states to improve NIBS

efficacy at the individual level.

clinical features of stroke (47, 48), potential models guiding NIBS
therapy need not to be overly complex, and it is likely that highly
correlatedmeasures can be reduced to factors of lower dimension
that explain substantial variability.

Two potential imaging-based biomarkers of NIBS response
in stroke—whole-brain connectivity and the brain’s propensity
to respond to stimulation—have been largely ignored and are
addressed here (Figure 1).

WHOLE-BRAIN NETWORK CONNECTIVITY

Stroke is not a mere localized phenomenon. Widespread effects
of stroke are found within the affected network (49), but also
beyond it (50–54), and connectivity has been suggested as the
underlying mechanism mediating these indirect effects (33, 55).

Whole-brain connectivity models based on resting-state
functional magnetic resonance imaging (rs-fMRI) show that
modulation of long-range connections between different regions
outside lesions and their changes over time relate to stroke
recovery on the individual level (56–58). In addition, most
strokes affect multiple behavioral domains and thus changes
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in multiple functional networks better characterize a single
patient. These factors likely contribute to the observed response
variability to NIBS, but have not been sufficiently considered
thus far, as both connectivity alterations in stroke and NIBS
protocols have mostly been investigated in the context of
isolated networks (8, 59–62). Given the effects of NIBS on
distributed networks (63–65) and the understanding of stroke as
a distributed pathology (55, 66, 67), when applying stimulation in
these patients, assuming that a single functional network is being,
or indeed should be, targeted is problematic.

Whole-brain connectivity using rs-fMRI is well-suited for
use in patients because it captures, with a single task-
free scan, information on functional connectivity of multiple
brain networks (55, 66). In our opinion, this approach can
be used to develop more realistic models of spontaneous
reorganization after stroke, and could prove beneficial for
designing individualized stimulation protocols.

A methodological limitation of connectivity approaches is
that they rely on a-priori delineation of somewhat arbitrary
boundaries between networks. Dimensionality reduction of
whole-brain connections overcomes this problem (68). Using this
data-driven approach, areas are clustered according to similarity
of their connectivity patterns in a parametric, continuous
manner. Dimensionality reduction of whole-brain connections
can provide a fingerprint of the connectome at the individual
patient level (69), thereby representing a more realistic picture
of stroke involving multiple functional domains. Using this
approach, we recently showed that the location of a stroke lesion
in whole-brain connectivity space is related to the degree of
reorganization that occurs within the first week of stroke onset,
as measured by whole-brain functional connectivity (70). This
preliminary result supports the value of developing whole-brain
connectivity models to characterize the widespread effects of
localized lesions in detail.

Given the promising results of predicting NIBS response using
electroencephalogram (EEG) connectivity (71) and the added
value of functional connectivity changes to prognostic models of
stroke outcome (72), we suggest that connectivity patterns may
be useful biomarkers for response to NIBS. Going forward, the
link between a connectome fingerprint and spontaneous recovery
in multiple functional domains has to be established, followed
by the predictive role of the connectome fingerprint prior to
stimulation on the clinical response to NIBS, with the eventual
goal of using this information to design NIBS protocols.

ONGOING NEURONAL OSCILLATIONS

Factors influencing response to NIBS can be subclassified into
momentary (“state”) and phenotypic (“trait”) factors. Both can
be assessed using properties of neuronal oscillations that reflect
the cortex’s susceptibility to stimulation.

An individual’s response to a stimulation protocol is hard to
predict. The exact same NIBS protocol may lead to excitatory,
inhibitory, or no effects on motor evoked potentials in different
individuals, even in the absence of pathology (14, 15, 73, 74).
One way to reduce this variability is to align the stimulation

with states in which the brain is most susceptible (“excitability
states”) (75). There is evidence for the relevance of these states,
including the observation that the variability of pre-stimulus
alpha oscillations correlate with the variability of responses to
TMS (76), power of sensorimotor mu (8–12Hz oscillations above
central-parietal electrodes) correlates with amplitude of motor
evoked potentials (77), and synchronicity of mu oscillations
in bilateral M1 is associated with stronger interhemispheric
inhibition (75). These approaches are currently being pursued for
targeted “state-dependent” NIBS (78, 79).

Properties of neuronal oscillations define instantaneous
cortical reactivity to NIBS but are also subject-specific and highly
heritable. This particularly relates to the power in the alpha band
(80), and the temporal dynamics of the oscillations in alpha
and beta bands (81). These results support the idea that beyond
momentary states, properties of neuronal oscillations during rest
can also represent a phenotypic trait.

The response to NIBS itself is also highly heritable (82), and
intra-subject reliability of NIBS response is relatively high in
healthy individuals (15). A recent EEG study showed that the
temporal dynamics in the alpha band obtained before stimulation
correlates on an individual level with the response to paired-pulse
TMS in healthy individuals (83). These studies provide evidence
that cortical plasticity is in part genetically determined, indicating
a trait-like capacity of the brain to be modulated.

Studies show that neural networks might operate at the
critical state, representing a balance between excitation and
inhibition which is optimal for information processing (84–
86). Critical states are also associated with the presence of
long-range temporal correlations (LRTC) in the amplitude
dynamics of neuronal oscillations (87). Given that LRTCs relate
to cortical excitability (83), they are likely to be perturbed after
stroke, as they are in several other neurological and psychiatric
disorders (88–90). The patterns of perturbation may be linked
to spontaneous recovery through reaching a compensatory state
that effectively balances out the state of the network.

Trait-like properties of neuronal oscillations can be quantified
using clinically accessible methods such as resting EEG. In our
opinion, these may serve as potentially meaningful biomarkers
for response to NIBS by accounting for variability in the cortex’s
susceptibility to stimulation in individual patients.

NEW NIBS APPROACHES

Recent developments in NIBS technology will likely contribute to
individualized therapy. Moving beyond single-area stimulation,
targeting specific muscle groups that play different roles in post-
stroke motor recovery (for example, finger flexors vs. extensors)
will be possible using multi-locus TMS (91). This approach
enables stimulation of multiple regions with high temporal
precision, as it does not involve repositioning of the coil. The
exact changes induced by NIBS on a sub-regional level (for
example, in specific parts of the motor homunculus) can be
predicted using advanced induced electrical field modeling (92,
93), further refining such targeting. Finally, deep brain structures,
inaccessible using TMS and tDCS yet relevant for dexterity
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deficits and pathological synergies in stroke (94, 95), might
be targeted using new non-invasive stimulation approaches
such as transcranial focused ultrasound (96) or temporal
interference (97). These technological advances along with the
development and validation of meaningful biomarkers associated
with response to NIBS can help advance the translation of NIBS
while embracing the inevitable heterogeneity associated with
stroke pathology.
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