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Abstract 
 
Three-dimensional (3D) in vitro cell culture systems have advanced the modeling of cellular 

processes in health and disease by reflecting physiological characteristics and architectural 
features of in vivo tissues. As a result, representative patient-derived 3D culture systems are 

emerging as advanced pre-clinical tumor models to support individualized therapy decisions. 
Beside the additional progress that has been achieved in molecular and pathological 

analyses towards personalized treatments, a remaining problem in both primary lesions and 
in vitro cultures is our limited understanding of functional tumor cell heterogeneity. This 

phenomenon is increasingly recognized as key driver of tumor progression and treatment 
resistance. Recent technological advances in next generation sequencing (NGS) have 

enabled unbiased identification of gene expression in low-input samples and single cells 

(scRNA-seq), thereby providing the basis to reveal cellular subtypes and drivers of cell state 
transitions. However, these methods generally require dissociation of tissues into single cell 

suspensions, which consequently leads to the loss of multicellular context. Thus, a direct or 
indirect combination of gene expression profiling with in situ microscopy is necessary for 

single cell analyses to precisely understand the association between complex cellular 
phenotypes and their underlying genetic programs. 

In this thesis, I will present two complementing strategies based on combinations of NGS 
and microscopy to dissect tumor cell heterogeneity in 3D culture systems. First, I will 

describe the development and application of the new method ‘pheno-seq’ for integrated 
high-throughput imaging and transcriptomic profiling of clonal tumor spheroids derived from 

models of breast and colorectal cancer (CRC). By this approach, we revealed characteristic 

gene expression that is associated with heterogeneous invasive and proliferative behavior, 
identified transcriptional regulators that are missed by scRNA-seq, linked visual phenotypes 

and associated transcriptional signatures to inhibitor response and inferred single-cell 
regulatory states by deconvolution. Second, by applying scRNA-seq to 12 patient-derived 

CRC spheroid cultures, we identified shared expression programs that relate to intestinal 
lineages and revealed metabolic signatures that are linked to cancer cell differentiation. In 

addition, we validated and complemented sequencing results by quantitative microscopy 
using live-dyes and multiplexed RNA fluorescence in situ hybridization, thereby revealing 

metabolic compartmentalization and potential cell-cell interactions.  

Taken together, we believe that our approaches provide a framework for translational 
research to dissect heterogeneous transcriptional programs in 3D cell culture systems which 

will pave the way for a deeper understanding of functional tumor cell heterogeneity. 
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Zusammenfassung 
 
Dreidimensionale (3D) in vitro Zellkultursysteme haben maßgeblich die Modellierung 

zellulärer Prozesse verbessert, indem physiologische Eigenschaften und strukturelle 
Merkmale von in vivo Geweben besser reflektiert werden. Darauf basierend entwickeln sich 

nun vermehrt repräsentative patientenabgeleitete 3D-Kultursysteme als verbesserte 

präklinische Tumormodelle, um individualisierte Therapieansätze zu unterstützen. Neben 
den zusätzlichen Fortschritten, die durch molekulare und pathologische Analysen 

hinsichtlich personalisierter Behandlungen erzielt wurden, verbleibt sowohl in primären 
Tumoren als auch in in vitro Zellkultur Systemen das begrenzte Verständnis der 

funktionellen Tumorzellheterogenität, was zunehmend als Schlüsselfaktor für 
Tumorprogression und Behandlungsresistenz erkannt wird. Neueste technologische 

Fortschritte basierend auf Next-Generation-Sequencing (NGS) ermöglichen nun Genom-
weite Genexpressions-analysen in Proben mit geringem RNA-Gehalt und sogar Einzelzellen 

(scRNA-seq). Somit wurde die Grundlage geschaffen, sowohl zelluläre Subtypen 
aufzudecken als auch Gene zu identifizieren, die spezifisch Zellzustandsübergänge 

antreiben. Diese Ansätze erfordern jedoch im Allgemeinen die Dissoziation von Geweben in 

Einzelzellen, was folglich zum Informationsverlust multizellulärer Zusammenhänge führt. 
Daher wird grundsätzlich eine direkte oder indirekte Kombination von RNA-Sequenzierung 

und Mikroskopie für Einzelzellanalysen benötigt, um die Assoziation zwischen komplexen 
zellulären Phänotypen und ihren zugrunde liegenden genetischen Programmen genau zu 

verstehen. 
In dieser Arbeit präsentiere ich zwei komplementäre Strategien basierend auf der 

Kombination von Mikroskopie und NGS, um die Heterogenität von Tumorzellen in 3D-
Zellkultursystemen zu analysieren. Zunächst werde ich die Entwicklung und Anwendung der 

neuen Methode "pheno-seq" beschreiben, in welcher Hochdurchsatz-Bildgebung und RNA-
Sequenzierung klonaler Tumor-Sphäroide direkt kombiniert wird. Durch diesen Ansatz 

konnten wir charakteristische Genexpressionssignaturen in 3D-Modellen von Brust- und 

Dickdarmkrebs nachweisen, die mit heterogenem invasivem und proliferativem Verhalten 
assoziiert sind. Zudem konnten wir Transkriptionsregulatoren identifizierten, die mit Hilfe von 

scRNA-Seq nicht identifiziert werden konnten, aus visuellen Phänotypen und assoziierten 
Genexpressionssignaturen Inhibitorantworten vorhersagen und regulatorische 

Einzelzellzustände errechnen. Zweitens haben wir durch Anwendung von scRNA-seq auf 
12 Patienten-abgeleitete Kolorektalkrebs-Sphäroidkulturen gemeinsame Expressions-

programme identifiziert, die sich auf intestinale Subtypen beziehen und konnten 
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metabolische Signaturen aufzeigen, die mit der Krebszelldifferenzierung in Verbindung 

stehen. Darüber hinaus haben wir Sequenzierungsergebnisse durch quantitative 
Mikroskopie unter Verwendung von Fluoreszenzfarbstoffen und multiplexed RNA-

Fluoreszenz-in-situ-Hybridisierung (FISH) validiert und ergänzt, wodurch eine metabolische 
Kompartimentierung und mögliche Zell-Zell-Wechselwirkungen aufgedeckt werden konnte. 

Wir sind davon überzeugt, dass unser Rahmenkonzept zur Analyse der zellulären 
Heterogenität in 3D-Zellkultursystemen mithilfe von Kombinationen aus NGS und 

Mikroskopie von hohem Wert für die translationale Forschung ist und den Weg für ein 
detaillierteres Verständnis der intratumoralen Heterogenität ebnen wird.  
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1 Introduction 
 
1.1 Three-dimensional in vitro cell culture systems 
1.1.1 Cellular in vitro models: Controlling environment, space and time 

Understanding biological systems in detail often requires modelling of cellular processes 
outside of their natural environment, generally defined as ‘in vitro’ cell culture. This term 

today mainly refers to human or animal cells that are cultivated, expanded and passaged in 

defined media and experimental setups. Although real physiological conditions are always 
preferred, visual examination by microscopy, molecular analyses, (epi)genetic manipulation 

and drug perturbation approaches require reproducible, flexible and cost-effective 
experimental setups that are often not available for living multicellular eukaryotes. This holds 

especially true for human tumor samples for which in vitro culture confers the ability to 
observe dynamic cellular processes over time in multiple replicates. 

In the last 50 years, the application of in vitro cell culture systems has expanded in nearly 
every field of biological and biomedical research, including developmental and stem cell 

biology, disease modeling, drug discovery and regenerative medicine1. Until recently, most 

widely used experimental setups include classical two-dimensional (2D) cell culture systems 
that are mainly based on immortalized or cancer cell lines that are grown on solid, 

impermeable surfaces. Despite their obvious limitations in reflecting three-dimensional (3D) 
tissue physiology, 2D cell culture systems have greatly contributed to the understanding of 

basic principles in biology. Furthermore, many of these are still widely used for 
methodological development and proof-of-concept studies due to their convenience in 

culture and maintenance2. However, several alternative and more physiologically relevant 
human cell culture models were developed in the last decades which are progressively 

replacing standard 2D in vitro methods. 
 

1.1.2 From 2D to 3D: Modeling tissues in three dimensions 

A major limitation of adherent 2D monolayer cultures is their lack of physiologic tissue 
geometry and architecture that fails to reflect cellular and microenvironmental interactions. 

Cell-cell and cell-extracellular matrix (ECM) contacts as well as bio-mechanical cues 
mediate specific transcriptional programs and signaling cascades that are required for stem 

cell maintenance and functional differentiation3–6. Thus, environmental stimuli and cellular 
heterogeneity that characterize primary tissues are severely limited in 2D culture systems, 

which most probably explains why pre-clinical drug-screening in 2D does often not reflect in 
vivo outcomes7,8.  
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To overcome these limitations, the first efforts to culture cells in three dimensions have been 

made already 70 years ago by isolating and maintaining primary mammary glands from 
mice9. Major landmark publications that provided the basis for today´s research include the 

discovery and characterization of main components of the ECM10,11, as well as the isolation 
of laminin-rich matrix hydrogels from chondrosarcomas12, now widely used as the basement 

membrane surrogate (Matrigel). In the late 80´s and 90´s, pioneering work by Mina Bissell 
and co-workers revealed principles and mechanisms of how ECM components regulate 

cellular morphologies and differentiation in the mammary gland3,7,13,14. They also developed 
standard Matrigel-based assays to study mammary morphogenesis that revealed phenotypic 

differences between healthy and tumor cells15,16. Alternatively, also a variety of spherical 
ECM-independent floating 3D culture models were established to model physiologic 

characteristics of tissues and tumors or to enrich for (cancer) stem cells17.  

In 2007, two milestone studies transformed the fields of adult stem cell research and tissue 
modeling in 3D. First, Takahashi et at. generated induced pluripotent stem cells (iPS) from 

dermal fibroblasts that can be differentiated into all three germ layers in vitro18. Six years 
later, this tool was used to generate cerebral organoids based on skin fibroblasts from a 

patient with microcephaly19. Second, Barker et al. identified intestinal stem cells at the base 
of the crypts by the marker gene LGR5 (Leucin-rich repeat–containing G protein–coupled 

receptor 5)20. Based on this finding, they adapted Matrigel-based protocols from mammary 
gland literature15 to generate clonal self-organizing 3D organoids with crypt-villus 

architecture and all differentiated cell types of the intestinal epithelium21,22. Furthermore, they 
designed a serum-free culture system that mimics the in vivo stem cell niche enabling long-

term maintenance of intestinal organoids. Their results indicate no inherent restriction of the 

replicative potential of adult stem cells in vitro23 and their methodological strategy could be 
successfully transferred to other tissues, including the stomach24, pancreas25 and liver26, 

respectively.  
 

1.1.3 3D cell culture system in translational cancer research 
Our understanding of the origin and progression of cancer has significantly increased during 

the last decades. Despite parallel advancements in treating many types of cancer, it remains 
a major health problem worldwide27. One limiting factor is the high variability of cellular drug 

responses between (intertumor heterogeneity) and within single patients (intratumor 

heterogeneity) that severely complicates therapy decisions (detailed description in section 
1.1)28. Thus, the development of new personalized therapies appears as a key strategy to 

effectively treat cancer that consequently requires physiologically relevant human cancer 
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models. However, standard 2D in vitro culture systems based on cancer cell lines have been 

the most widely used models for drug screening and a high proportion of drugs that perform 
well in these setups fail in clinical trials29. Alternatively, animal cancer models have greatly 

contributed to understand basic disease mechanisms, the high costs, time consuming 
generation and low throughput limit their broad applicability.  

More recently developed 3D in vitro culture methods (section 1.1.2) do not only provide a 
more physiologic basis for research on adult stem cells and tissue homeostasis than 

classical 2D models, but also for translational cancer research. The general approach 
involves the isolation of tumor and/or normal cells from a patient as well as the subsequent 

3D culture, passaging and cryopreservation. Optimally, the success rate in establishing 
cultures from different patients should be high (>50%) and cells should remain genetically 

and phenotypically stable over time. Established cultures can then serve as patient-specific 

‘Avatars’ that can be used in combination with various other molecular tools and profiling 
methods to understand disease mechanisms and cellular heterogeneity (Figure 1.1). 

 
 

 

Figure 1.1 | 3D cell cultures systems in translational research. Schematic overview of possible applications 
for patient-derived 3D cell culture systems. Omics profiling involves genomic, transcriptomic, epigenomic, 
proteomic and metabolomic profiling. Many of the listed methodological strategies can be applied simultaneously, 
in pairwise or multiple combinations (dotted arrows). (HT: high-throughput, HC: high-content) 

 
 

1.1.3.1 Spherical tumor models 
Free-floating tumor spheroids cultured in serum-free medium supplemented with growth 

factors represent are one of the two most widely used patient-derived 3D in vitro models 
(also called tumorospheres or according to their origin colospheres, mammospheres or 

neurospheres, respectively). First described in 2003, the culture method has been initially 
developed for the expansion of cancer stem cells (CSCs)30. While non-malignant cells are 
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depleted due to inhibition of adherence and subsequent anoikis, it is generally assumed that 

single CSCs are able to generate continuously growing spheroids whereas more-
differentiated cells have a limited proliferative capacity. However, this hypothesis still needs 

to be proven in detail. Although other types of floating spheroid models exist, this kind of 3D 
model has been highly valuable for the study of CSCs17. Floating tumor spheroids are often 

used in combinations with serial xenotransplantation in immunocompromised mice in order 
to assess the presence of tumorigenic CSCs31 (see section 1.3.1.2 for more details on 

CSCs). However, little is still known about the biology of free-floating spheroids, including 
presence and proportional composition of subtypes and the grade of differentiation across 

patient cultures. 
 

1.1.3.2 Patient-derived cancer organoids  

Stem cell-derived organoid cultures that are based on the same protocols as those for non-
malignant cells are probably the most widely used 3D culture systems for translational 

cancer research32. Although the methods are more cost and time intensive than those for 
free-floating spheroids, their physiologic relevance might be increased due to the presence 

of ECM, their highly defined medium composition and their high efficiency in establishing 
cultures from different patients. In order to deplete for non-malignant cells, the main strategy 

involves culture under selective growth conditions. For example, tumor cells with mutations 
in the epidermal growth factor receptor (EGFR) signaling pathway can be selected by EGF 

withdrawal33. Currently, many biobanks are generated from large collections of patient-
derived tumor and matching healthy organoids. These resources can then be used for 

personalized medicine, including drug screening and NGS, as well as for the development of 

tumor specific therapies8,34,35. Moreover, healthy organoids have been used for disease 
modeling by targeted gene editing of the most commonly mutated CRC genes, thereby 

showing that organoid growth becomes independent of stem cell niche factors upon 
successive incorporation of mutations36. Furthermore, patient-derived CRC organoids have 

been used for lineage tracing of putative CSCs in combination with xenotransplantation37. 
However, relatively little is known about the biology and composition of tumor organoids, 

similar to floating spheroid cultures. Taken together, 3D cell culture systems significantly 
improve the physiologic complexity compared to classical 2D methods and at the same time 

maintain high experimental flexibility. Thus, they represent attractive tools for translational 

cancer research and personalized medicine.  
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1.2 Single cell analysis 
1.2.1 Cellular phenotyping and in situ analysis by microscopy 
Cells are the constituents of life in all organisms. For example, the human body consists of 

approximately 3.72 x 1013 cells with distinct functional roles that define human physiology 
and when perturbed result in diseased states like cancer38. Robert Hooke was the first to 

describe ‘cells’ in plants in 1665 with the microscope invented by Antoni van Leeuwenhoek. 
However, it took almost two centuries (1838-1855) until the ‘Cell Theory’ was formulated, in 

which Rudolf Virchow and others stated that (i) all organisms consist of one or more cells; (ii) 
that cells are the basic unit of life; (iii) and cells derive from pre-existing cells39. Following this 

guideline, biological research then aimed to classify and characterize cellular subtypes 
based on various properties that were, until recently, mainly detected by light microscopy.  

For over 150 years, visual observation of contextual cellular phenotypes in situ represents a 

common strategy. In order to overcome optical restrictions in imaging whole tissues, physical 
sectioning (histology) or in vitro cell culture are the most widely used preparation techniques 

to analyze cellular heterogeneity, although intravital microscopy40 and optical clearing41 are 
potential alternatives for deep tissue imaging. Whereas early work in staining histological 

sections mainly involved the analysis of general tissue architecture and cellular 
morphologies, the advent of immunohistochemistry (IHC)42, monoclonal antibodies43 and 

in situ hybridization techniques44 enabled researchers to more precisely distinguish subtypes 
based on molecular markers. With time, it became more and more evident that different 

molecular profiles usually define distinct functionalities even if cells were morphologically 
indistinguishable from one another. This step was the onset to understand biology at the 

systems-level as molecular characteristics are the direct consequence of underlying genetic 

programs.  
The invention of the fluorescence microscope45 alongside the development of additional 

molecular staining tools based on fluorescently-labelled antibodies46, fluorescent dyes47 and 
fluorescent proteins48 where the key technological advances in molecular imaging. The 

general principle of enhancing the contrast by using fluorophores that emit light at different 
wavelengths to the excitation wavelength as well as the usage of dichroic mirrors49 shaped 

the basic design of microscopes that are now standard in most biological laboratories. 
Several innovative illumination and detection strategies have been developed, including 

confocal50, two-photon51 and light sheet fluorescence microscopy52, that enable imaging at 

higher spatial-temporal resolution. Image-based profiling of cells has now evolved towards a 
quantitative science53 and recent technological advances in microscopy automation and data 
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analysis enable high-throughput phenotyping to quantitatively characterize cellular 

heterogeneity54.  
RNA fluorescence in-situ hybridization (RNA-FISH)55,56 has developed into the method of 

choice for quantitative measurements of transcript abundance in situ. The general principle 
relies on the design of fluorophore-labelled oligonucleotide probes that are complementary 

to the RNA of interest. One key advantage compared of RNA-FISH over 
immunofluorescence (IF) is its high specificity and robustness because the binding of the 

designed probe is sequence dependent and not limited by the quality of an antibody. Thus, a 
broad range of hybridization probes can be used without significant differences in signal 

intensities. In addition, more recently developed methods for single molecule (sm)RNA-
FISH57 enable the detection of absolute mRNA copy numbers even if genes are expressed 

at very low levels.  

 
 

 

Figure 1.2 | In situ single cell analysis by microscopy. Summary of diverse imaging-based strategies for 
molecular single cell analysis in situ that generally require pre-selection of a limited number of defined markers 
but provide information of both cellular phenotypes and subtype-specific molecular features at the same time.   

 
 

Despite the ability to detect molecular features and visual cellular in situ phenotypes in 
parallel (Figure 1.2), light microscopy-based methods are inherently limited by the number of 

molecular measurements that can be obtained from a single cell. Specifically, all these 
methods share the fundamental bottleneck in multiplexing due to the limited number of 

fluorescent probes with spectrally distinct fluorophores. To overcome this limitation, new 

methods for highly multiplexed fluorescence in situ hybridization (FISH)58 and protein 
staining59 have been developed that enable parallel detection of 10´s to 100´s of different 

molecular features per cell. However, these methods require highly complex experimental 
setups and pre-selection of transcript-specific probes or protein-specific antibodies. Thus, 

alternative methods are needed to enable the unbiased detection of molecular features in 
single cells in order to more systematically define cellular subtypes.  
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1.2.2 Single cell sequencing 

1.2.2.1 Towards whole transcriptome analysis by RNA-sequencing 
A single somatic cell usually contains two copies of its DNA, approximately 50,000 – 

300,000 mRNA molecules60 and millions of proteins61. Optimally, one would like to acquire 
an unbiased and system-wide view of all molecular components (genomic, epigenomic, 

transcriptomic, proteomic and metabolomic) in single cells to fully understand the causal 
relationships between genetic variation, regulatory mechanisms and phenotypic outcomes in 

heterogeneous populations. However, obtaining even one layer of information from minute 
amounts of molecules in single cells is technically challenging (DNA: approximately 6 pg, 

total RNA: 5-30 pg62, protein: approximately 20-200 pg63).  
Single cell transcriptomics, a general term for methods to quantitatively measure the 

abundance of RNAs, has evolved as a major strategy for multiplexed or unbiased 

measurement of gene expression. Technically, RNAs can be targeted specifically by 
sequence and/or reverse transcribed to more stable and easily amplifiable complementary 

(c)DNA. As the transcriptome represents the first output layer of gene expression, it can 
serve as fingerprint to reveal subtype identity and associated genetic markers, lineage 

relationships as well as underlying regulatory networks (see section 1.2.2.3). Initial methods 
for quantitative single cell transcriptomics include smRNA-FISH (see section 1.2.1) and 

single cell quantitative PCR (sc-qPCR)64,65, of which the latter involves the conversion of 
RNA to cDNA by reverse transcription (RT) followed by cDNA amplification and 

quantification. Until today, both approaches still represent the gold-standard for targeted 
analysis of transcripts in single cells although they require pre-selection of transcript-specific 

probes or primers, respectively.  

In contrast, unbiased whole transcriptome analysis was first restricted to cellular bulk 
measurements due to the required input amount of RNA. The first step towards this goal was 

made by the development of microarrays66, a hybridization-based approach that involves the 
incubation of fluorescently labelled cDNA with custom-made arrays of complementary DNA 

sequence. However, a key advancement towards unbiased analysis of whole transcriptomes 
at base pair resolution was made by the development of next generation sequencing (NGS) 

platforms67, of which the bridge amplification and reversible termination technology (Illumina) 
evolved as a standard worldwide. The methodological principle for RNA-sequencing (RNA-

seq) by Illumina NGS relies on the ligation of adaptor sequences to the ends of fragmented 

cDNA that can bind to covalently attached primers on a glass flow cell. Upon binding, single 
cDNA molecules are then amplified by bridge amplification to form clusters of clonal 

sequences. These populations of identical templates (usually 100 – 500 million clusters) 
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then undergo the actual sequencing reaction with reversible terminator chemistry: The major 

steps involve (i) the addition and incorporation of all four nucleotides each labelled with a 
different dye, (ii) washing to remove unbound nucleotides, (iii) fluorescent readout by 

imaging, (iv) cleavage reaction to remove dye and terminating group and (v) washing. By 
successive rounds of base incorporation, washing and imaging followed by image analysis, 

single nucleotide signals derived from a cluster of clonally amplified sequences are 
assembled to short reads (typically 30-250 base pairs). These can then be aligned to a 

reference genome to generate a nucleobase-resolution gene expression profile68.  
 

1.2.2.2 Methodological strategies for single cell RNA-sequencing 
Despite the major improvements in transcriptomic analyses enabled by RNA-seq, initial 

protocols based on bulk measurements share the fundamental limitation of averaging 

signals from individual cells together. Consequently, crucial information of subtype specific 
expression is lost that can lead to misinterpreting data69. The first time RNA-seq was 

adapted for the analysis of single cells was in 2009 (scRNA-seq)70 - only 2 years after this 
method was applied to bulk populations of cells. Generally, scRNA-seq requires different 

sample preparation workflows compared to above described in situ methods (section 1.2.1). 
Primarily, cells need to be first dissociated from tissues, followed by isolation of single cells 

in suspension and subsequent molecular profiling (Figure 1.3). Although these approaches 
lead to a loss of information regarding tissue context and cellular morphology, the placement 

of individual cells in defined and independent reaction volumes facilitates higher throughput 
and precision for transcript processing and measurement.  

Capturing single cells with high efficiency and at high throughput is one of the key 

challenges in scRNA-seq workflows. Whereas cells have been picked manually by 
micromanipulation in early studies70, technological advances now enable the isolation of 

hundreds to thousands of cells in a single experiment71,72. One of the earliest techniques to 
isolate and analyze cells in suspension is fluorescence activated cell sorting (FACS)73,74, 

which not only enables fluorescent measurements, but also the separation of cells based on 
their molecular properties. This approach turned out to be a powerful way to understand the 

hematopoietic and immune systems75, especially because the isolation of these cell types 
usually don´t require dissociation. Although multiplexed molecular detection in FACS 

analyses faces the same optical restrictions as other light microscopy methods, isolation of 

tens to hundreds of cells by flow cytometry still represents one of the most widely used 
methods for single cell capture in scRNA-seq workflows76.  
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Automation as well as miniaturization of reaction volumes are key improvements to more 

recently developed scRNA-seq technologies. Aside from the fact that the reduction to 
nanoliter scale reaction volumes dramatically decreases the reagent cost, it has also been 

shown that lower reaction volumes have a positive influence on accuracy and sensitivity, 
most probably due to a higher effective concentration of the reactants77,78. Typically, this has 

been achieved by the use of microfluidics79–81 or well-based82,83 platforms (further description 
below).  

 
 

 

Figure 1.3 | Single cell analysis by next-generation sequencing. Overview of dissociation-dependent 
strategies for single cell analysis based on next-generation sequencing for unbiased identification of subtype-
specific molecular features. Plate/tube-based assays generally require fluorescence-activated cell sorting 
(FACS). In Well-based setups (e.g. SeqWell82 or iCELL884) cells are isolated by limiting dilution, thereby 
assuming Poisson-based distribution per well.  

 
 

Most of the current scRNA-seq protocols capture polyadenylated RNA species by using 
poly(T) primers to initiate reverse transcription (RT). The efficiency of this key step varies 

between different scRNA-seq methods. It is estimated that approximately 5-40% of 
transcripts are reverse transcribed, resulting in high technical noise, especially for lowly 

expressed genes78. Second-strand synthesis is typically achieved by template switching at 
the 5´-end of the transcript85 to generate full-length cDNA. Next, the minute amounts of 

cDNA need to be amplified either by PCR or by in vitro transcription to acquire enough 

material for library preparation and NGS.  
The introduction of barcodes during generation of scRNA-seq libraries is inevitable for highly 

parallel single cell processing and multiplexed sequencing. Depending on the strategy for 
NGS library preparation, two kinds of library structure and transcript data have been mainly 

generated during the last years. First, SmartSeq85 and SmartSeq286 protocols enable the 
generation of full-length libraries to additionally facilitate the analysis of alternative splicing 

and allele-specific expression. However, since index barcodes for multiplexing are 
introduced late during sequencing adapter ligation after cDNA amplification, full-length 
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protocols are limited in parallel processing or require sophisticated robotic workflows to 

achieve high-throughput. Alternatively, cell specific barcodes can be introduced already 
during RT with the Poly(T) primer. This strategy enables a much higher throughput, as 

libraries can be pooled at early time points which reduces reagent cost and hands on time. 
However, sequencing of these libraries is restricted to the counting of 3´- or 5´-ends.   

In general, most studies employing full-length workflows use FACS to isolate and process 
cells in 96 or 384 well plates87–89.  Alternatively, one of the first commercially available and 

automated scRNA-seq systems is the laminar-flow microfluidics system Fluidigm C1, 
capable of generating up to 96 full-length libraries in a single experiment79. More recently, 

droplet-based microfluidic instruments for 3’-end counting was developed to capture 
thousands of single cells in individual partitions with barcoded beads80,81, thereby increasing 

the throughput by at least one order of magnitude per assay. Most of the droplet-based 

platforms are already commercially available (10x Genomics Chromium, 1CellBio InDrop, 
Dolomite µEncapsulator). Alternatively, methods based on distribution of cells into micro- or 

nanowells, either by manual pipetting (SeqWell90) or solenoid valve dispensing (TakaraBio 
iCELL883), also achieve profiling of >1000 cells per experiment. Whereas SeqWell uses 

barcoded beads similar to droplet-based methods, barcoded Poly(T) primers are pre-printed 
in nanowells of the iCELL8 system. In general, cell capture in well-based setups relies on 

limiting dilution, assuming Poisson-based distribution per well. A major advantage of the 
iCELL8 system is an integrated imaging step that enables automated evaluation and 

selection of cells for sequencing based on their visual properties. Lastly, ‘split and pool’ 
barcoding methods based on combinatorial indexing of single cells are the newest 

generation of scRNA-seq methods91. Notably, these methods don´t require complex 

experimental setups and enable transcriptional profiling of >104 cells per experiment.  
In addition, other methods for unbiased genomic92, epigenomic93–95 or even multimodal96–100 

molecular profiling of single cells have been developed recently. However, a detailed 
description of these methods is not provided here due to the lack of relevance for the results 

of this work.  
 

1.2.2.3 Computational analysis of scRNA-seq data 
Although computational analysis workflows for bulk and single cell transcriptomic NGS data 

share many similarities including read pre-processing, alignment and generation of read 

counts, scRNA-seq data has unique characteristics and its analysis is associated with 
specific statistical challenges101. First, the sample numbers of published single cell datasets 

increased dramatically during the last years, ranging from hundreds to >105 cells and thus 
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strongly exceed classical bulk RNA-seq datasets in size. Moreover, scRNA-seq data is 

characterized by substantial technical noise that can be introduced by dissociation102, 
inefficient cell lysis, low RT efficiency78, cDNA amplification (up to 1 million fold) and 

sequencing. A major consequence of technical noise due to the low starting material are 
gene ‘dropouts’. It describes the case in which a transcript is not detected because it has not 

been captured or amplified although it is present in the profiled single cell. This mainly 
affects lowly and moderately expressed genes and leads to zero-inflated expression 

matrices103. Another major challenge is the presence of biological noise (e.g. oscillating 
processes like the cell cycle) that strongly contribute to gene expression heterogeneity and 

can therefore complicate the identification of cellular subtypes104. Thus, scRNA-seq analysis 
requires careful examination in order to understand cellular heterogeneity and to avoid 

misinterpretations.  

After the generation of read counts, typical scRNA-seq workflows consist of the following 
steps: (i) removal of low-quality libraries that are usually characterized by a low amount of 

total reads and by high numbers of mitochondrial reads105,106; (ii) count normalization to 
correct for differences in library complexity or to account for other technical or biological 

confounders107; (iii) ‘feature selection’ to remove uninformative (typically low-expressed) 
genes108–110; (iv) dimensionality reduction which is usually achieved by principal component 

analysis (PCA)104,111 or T-distributed stochastic neighbor embedding (tSNE)112; (v) 
computation of pairwise cell-cell distances and clustering (e.g. k-means) to identify cellular 

subpopulations113; (vi) and characterization of subpopulations (e.g. by identification of 
subtype markers by differential expression analysis109,114). The last two steps of grouping 

and characterizing cells represent the most popular applications in scRNA-seq analysis. 

Biologically, identified populations can be distinct cell types (e.g. epithelial vs. stromal 
fibroblasts in the intestine), or they correspond to different states of the same cell type (e.g. 

activated vs. non-activated T-cells). 
During the last years, the number of computational tools developed for the analysis of 

scRNA-seq data are increasing, but no gold-standard has evolved, yet. However, several 
toolkits have been developed to enable the streamlined analysis and exploration of scRNA-

seq data including abovementioned steps and their multiple combinations105,115. More recent 
tools focus on correlated gene expression for the ‘feature selection’ step by testing 

annotated and de novo identified gene sets for coordinated expression variability across 

cells116,117. Aside from utilizing prior knowledge, this strategy facilitates the identification of 
overlapping aspects of gene expression heterogeneity and the removal of unwanted 

confounders. 
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Furthermore, more specific scRNA-seq analysis tools have been developed that go beyond 

subtype identification, including the pseudo-temporal ordering of cells and the identification 
of drivers of cell state transitions118,119, reconstruction of transcriptional networks120,121, 

analysis of allelic gene expression122 and detection of alternative splicing123. Although 
scRNA-seq is a relatively young technology that still requires improvements for both 

experimental and computational workflows, it provides a promising basis to understand 
cellular heterogeneity in a systematic and unbiased way. However, scRNA-seq methods 

should be directly or indirectly combined with imaging approaches in situ in order to 
understand contextual phenotypes, as spatial information and cellular morphologies are lost 

during sample preparation.  
 

1.2.3 Combinations of NGS and microscopy for the analysis of cellular heterogeneity 

in situ  
Cellular fate and behavior are mainly governed by the spatial location, which directly 

influences its gene expression by external molecular signals and interactions. In addition, 
contextual morphological features are highly informative for cellular function that is a direct 

consequence of its underlying regulatory gene expression network. Understanding these 
relationships represents a main focus of developmental and translational research but 

requires sophisticated genomic tools to dissect these processes. Although scRNA-seq alone 
can in principle be used to predict cellular interdependencies based on anticipated receptor-

ligand interactions124, this approach requires prior-knowledge and is therefore limited for the 
discovery of new interactions. Moreover, cellular morphologies and spatial contexts are lost 

upon dissociation and therefore cannot be correlated with gene expression profiles. Thus, 

combining transcriptome-wide gene expression profiling with visualization of morphological 
features and physical cell-cell interactions in situ is required to fully understand complex 

tissue biology.  
When subpopulations have been identified with scRNA-seq, RNA-FISH, IF or fluorescent 

reporter genes are commonly used to link subtypes to their spatial location or morphology in 
an independent experiment in order to compensate for the lost cellular context. This strategy 

is most often used for qualitative validation of scRNA-seq data22,125,126, but several studies 
also quantitatively integrate both datasets, for example by mapping cell types to specific 3D 

coordinates in model organisms127,128. Although this indirect combination has contributed 

significantly to understand complex tissue biology, imaging-based methods for molecular in 
situ profiling are usually limited to a handful of pre-selected markers and are therefore limited 

in the number of subtypes that can be mapped in parallel. Moreover, single cell 
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transcriptomes in complex biological systems are not solely characterized by discrete cell 

types, but also by oscillating or transient cell states (e.g. cell cycle104 or metabolism) as well 
as by continuous differentiation processes129 and transcript gradients128. Thus, mapping a 

few cell types by single selected markers will only give an incomplete picture of contextual 
cellular phenotypes and underlying gene expression. As mentioned previously, highly 

multiplexed RNA-FISH approaches (see section 1.2.1)58,130 would represent powerful tools to 
dissect gene expression in situ, especially in combination with scRNA-seq. However, they 

require highly complex and specialized experimental setups which limits their wide 
applicability.  

 
 

 

Figure 1.4 | Hybrids of imaging and sequencing. Overview of existing methods that directly combine 
microscopy and RNA sequencing for unbiased identification of gene expression and associated contextual 
cellular phenotypes at the same time.  

 

 
To overcome these limitations, ‘hybrid’ approaches have been developed that directly 

combine microscopy and unbiased gene expression profiling (Figure 1.4). For example, 
laser capture microdissection (LCM) describes a method that enables the isolation of cells 

from histological slices by laser cutting, which has already been combined with low input 
gene expression profiling in archived frozen tissue131 and 3D cell culture systems132. 

Although this strategy maintains the spatial information of isolated cells, key limitations are 
the low throughput and associated low sample quality that usually requires gene expression 
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profiling of multiple cells in order to acquire enough material for cDNA generation. 

Alternatively, recent studies have demonstrated the direct combination of histology and 
RNA-seq on primary samples to spatially and morphologically resolve intratumor 

heterogeneity (spatial transcriptomics)133,134. This method relies on a Poly(T) primer array 
with regional barcodes that are distributed in 100 µm spots, thereby reaching a 

transcriptomic cellular resolution of 10-30 cells. However, this method is limited in cellular 
resolution and is not suited for 3D cell cultures systems. Finally, in situ RNA-sequencing 

describes methods that sequence transcripts directly in tissue sections135 or in 2D cultured 
cells136. This is achieved by hydrogels that are used for crosslinking of cellular components, 

followed by RT, cDNA amplification and consecutive rounds of hybridization and imaging. 
Although these methods most likely represent the future of whole tissue imaging, they 

require highly elaborate sample preparation and imaging technology similar to multiplexed 

RNA-FISH. Additionally, available in situ sequencing publications only represent proof-of-
concept studies that have not evaluated technical biases and restrictions in detail. 

Taken together, the indirect combination of scRNA-seq and imaging with a limited set of pre-
selected markers represents a straightforward strategy but is limited in resolution for in situ 

analysis. Alternatively, new methods for a direct combination of microscopy and unbiased 
gene expression profiling exist, but these technologies are only beginning to emerge or still 

suffer from technical limitations. In addition, there is no method yet to directly combine 
imaging and sequencing in 3D cell culture systems in a high-throughput manner. 
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1.3 Intratumor heterogeneity  
1.3.1 Origin and consequences of intratumor heterogeneity 
Tumor development is characterized by successive (epi)genetic alterations that activate 

oncogenes and inactivate tumor suppressors. These lead to the progressive acquisition of 
biological capabilities (generally described as the ‘hallmarks’ of cancer137) where cells evolve 

from normal to neoplastic, and finally to malignant states. However, the pattern and 
succession of mutational profiles and epigenetic changes as well as associated phenotypic 

outcomes do not only vary between different tumor entities and patients (intertumor 
heterogeneity), but also between cancer cells in a single tumor or patient28 (intratumor 

heterogeneity). In addition, homotypic and heterotypic interactions of cancer, stromal and 
immune cells in the tumor microenvironment seem to have fundamental roles in cancer 

progression138. Thus, single cell analyses appear as key strategies to dissect cellular 

heterogeneity in tumors.  
 

 

 

Figure 1.5 | Causes and consequences of intratumor heterogeneity. Upper: Schematic representation of 
factors influencing in tumor cell heterogeneity. Differences in cancer cell states can originate from genetically 
distinct subclones, from perturbed epigenetic regulation or developmental programs similar to those occurring 
during normal tissue homeostasis, and from regional differences of the tumor microenvironment. Lower: 
Functional consequences of heterogeneous cancer cell states affecting tumorigenicity including differences in 
long-term proliferative capacity, local tissue invasion and metastasis, metabolic preferences and dependencies, 
susceptibility and resistance to immune responses, angiogenic potential, loss of niche dependencies and drug 
resistance.  
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Large-scale studies based on bulk NGS have contributed significantly to understand 

interpatient heterogeneity139,140, but these approaches, although a fundamental resource, are 
limited in revealing molecular variability between cells in individual tumors141. The 

remarkable progress in the development of single cell sequencing approaches (see section 
1.2.2) has already started to transform research on intratumor heterogeneity by the ability to 

molecularly dissect tumors in an unbiased way142. In the following sections, I will summarize 
key findings of causes and consequences of intratumor heterogeneity (Figure 1.5), while 

focusing on the contribution of single cell analysis and sequencing. Finally, I will provide an 
overview of how in vitro cell culture systems have been used to study tumor cell 

heterogeneity.  
 

 

1.3.1.1 Genetic alterations and tumor evolution 
The acquisition of mutations and other genomic alterations is regarded as prerequisite for 

tumorigenic progression. The general theory implies that mutant cells gain selective 
advantages that enable clonal outgrowth. Thus, tumor evolution and progression can be 

described as consecutive clonal expansions that are mainly enabled by genomic instability - 
generating genetically heterogeneous cell populations143. This genetic heterogeneity in 

tumors also leads to therapeutically relevant phenotypic diversity, including drug resistance 
and clinical prognosis144. Initially, genetic intratumor heterogeneity and tumor evolution have 

been studied in different entities by multi-region DNA sequencing145 or ultra-deep DNA 
sequencing146. Whereas sampling of multiple distinct regions is limited to the identification of 

clones that are actually spatially segregated, the inference of subclones by clustering of 

mutation frequencies from bulk data can be blurred by copy number variations (CNVs).   
Technical advances in whole genome amplification from single nuclei for single cell DNA-seq 

(scDNA-seq) enabled a much more detailed view on tumor evolution, although these 
methods still suffer from technical errors and limited coverage uniformity142. Major insights 

have been acquired by the study of breast cancer by Nicholas Navin and co-workers, who 
could detect different clonal subpopulations that were missed by bulk approaches147. In a 

later study, they combined scDNA-seq and scRNA-seq to show that resistant clones were 
pre-existing before therapy and adapted their transcriptional profile in response to therapy148. 

Similar to the previously mentioned spatial transcriptomics technology, Casasent et al. 

developed topographic single cell sequencing (TSCS) for inference of copy number profiles 
from single tumor cells while preserving their spatial context149. By the combination of breast 

cancer histology, LCM and scDNA sequencing, the authors revealed a direct genomic 
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lineage of cells derived from ductal carcinoma in situ regions and those derived from 

invasive regions (further description on cancer cell invasion in section 1.3.1.4). In addition, 
they showed that genomic evolution occurs before invasion and that migration into adjacent 

tissues involved multiple clones, thereby demonstrating the power of combining molecular 
profiling and visual phenotyping.  

Broad CNVs can be also detected from scRNA-seq profiles, either by averaging gene 
expression from larger chromosomal regions87 or by using allelic gene expression 

information150. Interestingly, the latter study revealed transcriptionally distinct subpopulations 
in multiple myeloma patients that did not match the underlying subclonal structure, indicating 

for the presence of additional non-genetic alterations that drive tumor progression.  
 

1.3.1.2 Epigenetic heterogeneity and the cancer stem cell model  

Beside genetic differences between cancer cells, phenotypic and functional heterogeneity in 
single tumors also arise from epigenetic changes. These can be induced by cell-intrinsic 

(e.g., mutations, developmental programs) or cell-extrinsic (e.g., microenvironmental cues) 
mechanisms that affect chromatin and DNA methylation states of cancer cells151. 

Heterogeneous epigenetic states in tumors seem to share many similarities to those 
occurring during cellular differentiation in healthy tissues152. For example, self-renewal in the 

intestinal epithelium153 and the hematopoietic system154 is based on well described long-lived 
adult stem cells that give rise to multiple short-lived subtypes with specialized function. 

Similarly, the cancer stem cell (CSC) model states that tumors are also hierarchically 
organized, with tumorigenic CSCs that fuel tumor growth and differentiate into non-

tumorigenic progeny. However, recent studies indicate for a more complex concept of CSC 

biology, including microenvironmental dependencies and cancer cell plasticity155. 
CSCs have been defined by their long-term proliferative potential in vitro, by their ability to 

seed new heterogeneous tumors upon serial transplantation in immunodeficient mice (also 
termed tumor-initiating cells) and that they share expression profiles with normal stem 

cells156. Furthermore, observations that CSCs can exhibit a slow-cycling phenotype or have 
the ability to switch to quiescent states might explain failed chemotherapies and drug 

resistance157. Recent scRNA-seq studies could support the CSC model by linking identified 
tumor cell subtypes to developmental transcriptional programs87,89,158, but the underlying 

mechanisms during tumorigenic progression are poorly understood.  

The intestinal epithelium most probably represents the best described stem cell 
compartment in both healthy and neoplastic tissues. Under normal conditions, LGR5+ stem 

cells reside at the base of the small intestinal crypt and migrate upwards where they 
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differentiate into more specialized cell types, including absorptive enterocytes, mucus-

producing goblet cells and hormone-secreting enteroendocrine cells, respectively159. One 
exception are terminally differentiated Paneth cells (‘deep crypt secretory’ [DCS] cells in the 

colon) that intermingle with LGR5+ stem cells at the crypt base where they provide important 
niche-factors including epidermal growth factor (EGF) as well as WNT and Notch 

ligands4,160. WNT ligands are especially essential to maintain the undifferentiated state of 
intestinal stem cells. This is supported by the fact that most CRCs are characterized by 

genetic changes that constitutively activate WNT signaling161, thereby inducing a general 
crypt progenitor phenotype in CRC cells162. However, gene expression of WNT pathway 

components exhibit a high variability in individual cells of single tumors despite sharing the 
same mutational signatures, indicating that microenvironmental factors also influence tumor 

cell gene expression and differentiation163.  

Key insights have been acquired by the deletion of the tumor suppressor and negative WNT 
regulator APC in combination with lineage tracing in a mouse model. In this study, Schepers 

et al. showed that, similar to healthy tissues, LGR5 marks a Paneth cell-framed 
subpopulation that fuels the growth of developing adenomas, suggesting a similar niche 

dependency and developmental hierarchy in intestinal neoplastic tissue164. More recently, 
three studies investigated the functional role of LGR5+ CSCs in CRC by using engineered or 

patient-derived organoid cultures, xenotransplantation, LGR5 lineage tracing and cellular 
ablation to demonstrate the essential role of LGR5+ cells for tumor growth and 

metastasis37,165,166. In sum, the studies revealed (i) tumor initiating cell activity of LGR5+ cells 
in serial transplantations, (ii) the presence of quiescence LGR5+ tumor cells, (iii) re-

expression of LGR5 in differentiated cells upon ablation of LGR5+ cells and (iv) different roles 

of LGR5+ cells in primary tumors and metastases.  
Albeit these studies provide strong arguments for the CSC model in CRC, several questions 

remain. For example, little is known about the cellular composition of CRC and no study has 
yet reported detailed information about heterogeneous tumor cell subtypes identified by 

scRNA-seq. Furthermore, niche dependencies and molecular mechanisms that drive tumor 
cell differentiation and plasticity remain largely unknown but could provide promising targets 

to eliminate CSCs.  
 

1.3.1.3 Influence of the tumor microenvironment  

Tumors are not composed of a homogeneous mass of proliferating cells, but are rather 
complex tissues with multiple interdependent malignant and non-malignant cell types and 

states138,167. Because of this high grade of heterogeneity, single cell approaches have 
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already proven highly valuable to dissect the composition of the ‘tumor microenvionment’ in 

an unbiased way87,168,169.  
In general, microenvironmental interactions that influence cancer progression can be 

distinguished in homotypic interactions between tumor cells, and heterotypic interactions 
between malignant cells and non-malignant cells, including cancer associated fibroblasts 

(CAFs), endothelial cells and immune cells138. Referring to the hierarchical organization of 
CRC described in the previous section, homotypic interactions are most likely similar to 

niche dependencies occurring in healthy tissues. Supporting evidence has been provided by 
studies of different lung cancer entities, in which the authors could identify niche-promoting 

tumor subpopulations that are defined by the expression of WNT170 and Notch171 signaling 
components. Moreover, by using patient-derived xenograft and genetic engineering, Ebinger 

et al. could identify a rare subpopulation of drug-resistant cells with stem-like 

characteristics in acute lymphoblastic leukemia, whose dormant phenotype is dependent on 
its in vivo niche172. However, the characteristics of the niche itself have not been described in 

further detail, which is the case for virtually all tumor entities to date.  
In contrast, a growing number of studies using scRNA-seq revealed stromal and immune cell 

types and interactions in the tumor microenvironment, including immune cell phenotypes173 
and T-cell exhaustion87, endothelial gene expression signatures174 as well as subtypes of 

cancer associated fibroblasts167. As current 3D cell culture systems restricted and immature 
in modeling non-malignant components of the tumor microenvironment, this topic will not be 

covered here in further detail due to the lack of relevance for this work.   
Besides cellular interactions in the microenvironment, ECM composition and variations in 

oxygen supply are additional factors that can influence tumor cell heterogeneity and cancer 

progression137. Whereas the influence of different components of the ECM is currently 
difficult to assess with single cell methods, the cellular response to limited oxygen supply is 

well defined. Similar to normal tissue, oxygen supply in tumors is provided by the vascular 
system. Although tumors are typically characterized by sustained proliferation of endothelial 

cells, and consequently by continuous development of new blood vessels137, the rapid 
proliferation of cancer cells often leads to uneven and inefficient vascularization. The 

development of hypoxic regions is then associated with phenotypic changes, including 
reduced proliferation rates, downregulation of oxidative phosphorylation (OXPHOS) and 

upregulation of glycolytic metabolism175 (for further description of tumor cell metabolism see 

section 1.3.1.5). Importantly, hypoxia has been linked to poor survival, which might be 
explained by therapy-resistant dormant states or increased metastatic potential of tumor 

cells176,177.   
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The presence of hypoxic single cell gene expression signatures has been validated in 

glioblastoma by using scRNA-seq168. In this study, the authors showed that cells highly 
expressing hypoxic genes are in a non-proliferating state, thereby supporting previous 

notions of hypoxic phenotypes. However, this study could not provide any spatial information 
and therefore lacks evidence for the direct link between regional hypoxic niches and 

identified gene expression programs.  
 

1.3.1.4 Cancer cell invasion and EMT 
Most malignancies originate from epithelial tissues, generating so called carcinomas (e.g., 

including tumors of the colon, lung, pancreas, breast and liver). Whereas tumors in early 
stages keep epithelial characteristics, cells of late-stage carcinomas gain phenotypic 

features that enables them to invade local tissue and finally to metastasize to other 

organs178. In general, metastasis represents a key event during tumorigenic progression that 
causes approximately 90% of cancer deaths179.  

During the earliest stages of metastasis, cancer cells need to down-regulate genes that 
sustain epithelial phenotypes and up-regulate genes that mediate motility and local invasion. 

Later on, this switch needs to be reversed in order to colonize distant sites of the body. On 
the mechanistic level, this seems to be achieved by hijacking the developmental gene 

expression programs ‘epithelial-mesenchymal transition’ (EMT), and its counterpart 
mesenchymal-epithelial transition (MET) that normally occur during embryogenesis and 

wound healing180. For example, extensive studies in breast cancer models emphasize the 
link between EMT, tumorigenicity and metastasis, where the depletion of EMT transcription 

factor families such as Snail, Twist and Zeb1 strongly inhibited metastatic dissemination 

from primary tumors181,182. Aside from its role in tumor cell dissemination, the EMT program 
appears to influence additional cellular functions in tumor progression, including drug 

resistance183, immunosuppression184 and stemness185.  
It is not clear yet whether genetic or non-genetic mechanisms confer the ability of local 

tissue invasion and dissemination, although several studies indicate for a central role of the 
microenvironment as well180. Moreover, relatively little is known about the dynamic gene 

expression changes that occur during the switch from epithelial to mesenchymal behavior of 
cancer cells, however first single cell and spatial gene expression studies could shed light on 

this process. Other than the previously mentioned topographic scDNA-seq approach149 (see 

section 1.3.1.1), spatial transcriptomics could reveal EMT related genes in histologically 
invasive regions of advanced breast cancer133. Furthermore, Sidharth et al. used scRNA-seq 

to identify tumor cells expressing EMT-related transcriptional programs (‘partial-EMT’) in 
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metastatic head and neck squamous cell carcinoma that localize to the leading edge of 

primary tumors169. They showed that partial-EMT gene expression programs are predictive 
for nodal metastasis and pathological grade. However, advanced 3D in vitro cell culture 

systems might enable a more detailed view on dynamic cellular behavior and associated 
gene expression changes during EMT.  

 
1.3.1.5 Metabolic heterogeneity 

Both normal and tumor cells rely on the ability to transform nutrients to energy, mostly in the 
form of adenosine triphosphate (ATP), and to building blocks of cellular components, 

including proteins, lipids, nucleic acids and complex carbohydrates. This happens in 
complex sequences of biochemical reactions that can be reprogrammed depending on the 

state and function of cells186. Hence, metabolic pathways are strongly inter-connected with 

gene expression programs that lead to highly heterogeneous metabolic states and 
dependencies in both normal and tumor tissues187,188. Furthermore, metabolic states are 

strongly influenced by genetic or epigenetic alterations that affect the expression metabolic 
enzymes during cancer progression189.   

Glucose represents the main source of energy, which is first transformed to pyruvate via 
glycolysis, and subsequently to carbon dioxide (CO2) in the mitochondria via tricarboxylic 

(TCA) cycle and OXPHOS. Although glycolysis is much faster in providing ATP and cellular 
building blocks, mitochondrial respiration by OXPHOS is approximately 18-fold more efficient 

in generating ATP186. However, OXPHOS generates toxic by-products in form of reactive 
oxygen species (ROS) that can, at high levels, impair cellular functions. Metabolic states can 

be affected by regional differences in oxygen supply. The general and simplified notion 

implies that normal cells favor OXPHOS under aerobic conditions but shift towards glycolytic 
metabolism under anaerobic conditions. This phenomenon can be also linked to cellular 

differentiation as observed for hematopoietic stem cells (HSCs). Since HSCs reside in 
hypoxic niches190, they mainly utilize glycolysis instead of OXPHOS191 in order to maintain 

their quiescent state and to minimize oxidative stress by ROS. On the other hand, more 
differentiated and highly proliferative hematopoietic progenitors favor OXPHOS191. In 

contrast, small intestinal stem cells favor OXPHOS independent of oxygen supply and 
against the general notion that adult stem cells favor glycolytic metabolism187, while 

neighboring and terminally differentiated Paneth cells are characterized by glycolytic 

metabolism192. In addition, lactate (the waste product of glycolysis in Paneth cells) fuels 
OXPHOS in intestinal stem cells. Thus, metabolic heterogeneity can be an intrinsic feature 



 

 22 

of cellular subtypes in normal tissues and is not only the consequence of environmental 

influences. 
Aberrant proliferation of tumor cells requires the adaption of metabolism in order to sustain 

increased energy consumption. Otto Warburg first observed a counterintuitive effect in 
cancer cells, which mostly limit their energy metabolism to glycolysis even in the presence of 

oxygen193, probably to generate glycolytic intermediates to fuel biosynthetic pathways194. 
However, recent studies revealed more complex metabolic heterogeneity similar to normal 

tissues. Beside strong microenvironmental influences on metabolic preferences in tumor 
cells195, that could be also linked to WNT signaling in CRC196, CSC features seem to be 

characterized by distinct metabolic states depending on the tumor entity197. For example, the 
acquisition of breast CSCs properties depends on a switch to glycolytic metabolism198, while 

putative colorectal CSCs have increased mitochondrial function compared to tumor cells 

without CSC properties199. Furthermore, Sonveaux et al. revealed metabolic symbiosis of 
tumor cells based on lactate similar to those described for the normal intestinal stem cell 

niche200.  
Taken together, these results indicate that intrinsically regulated metabolic preferences and 

interdependencies during cancer cell differentiation might represent promising targets for 
cancer therapy. However, single cell metabolic states and underlying gene expression 

networks have been poorly defined. Although new methods for single cell metabolomics are 
emerging201, scRNA-seq might help to reveal metabolic cancer cell heterogeneity based on 

the wiring of metabolic and transcriptomic networks202. In addition, imaging based in situ 
analysis will support the dissection of microenvironmentally influenced or differentiation 

related metabolic heterogeneity in primary samples or in vitro. 

 
1.3.2 Analysis of tumor cell heterogeneity in vitro 

Although in vitro cell culture systems are still limited in reflecting important stromal and 
microenvironmental characteristics of intratumor heterogeneity, they have proven highly 

valuable to understand important features of functional tumor cell heterogeneity. Advances 
in single cell analysis by imaging and NGS technology have provided further insight and will 

likely continue to be the basis for further studies. For example, bulk RNA-seq combined with 
multiplexed RNA-FISH revealed rare, transient transcriptional states that confer drug 

resistance in melanoma cells cultured in 2D203. Very recently, scRNA-seq combined with 

computational correction of dropouts has been used to study Transforming Growth Factor 

Beta (TGF-b) induced EMT in 2D cultured transformed mammary epithelial cells, revealing 

asynchronous induction and networks of transcriptional regulators that govern EMT121. 
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Beyond these basic principles underlying EMT and drug resistance, patient-derived cultures 

require a more physiological environment to more closely reflect and maintain characteristics 
of the primary tumor, which is now achieved by 3D cell culture systems17,32 (see section 

1.1.3). Initially, single cell analysis of tumor cell heterogeneity in 3D cell culture systems was 
performed by isolating subpopulations by FACS based on a few defined markers, and their 

subsequent xenotransplantation30,31. Later on, genetic marking of subclones enabled in vivo 
tracing of single cell behavior. For example, lentiviral delivery of molecular barcodes into 

cells derived from CRC spheroids in combination with xenotransplantation and next 
generation sequencing (NGS) was used to trace the proliferative potential of single clones204, 

which validated the presence of functionally distinct subpopulations in vivo. More recently, 
genetic engineering of organoids enabled lineage tracing and ablation of LGR5+ cells upon 

xenotransplantation and revealed the functional role of LGR5+ tumor cells in CRC205 (see 

section 1.3.1.2). NGS has been primarily used for bulk expression profiling in 3D cell culture 
systems34, but has been recently extended for single cell analysis. Roerink et al. used single 

cell isolation and clonal organoid expansion in combination with molecular profiling to 
investigate CRC evolution in single patients, thereby revealing extensive diversification at 

the DNA, methylome and transcriptome level that are maintained in 3D culture206. 
Although several single cell transcriptome studies could dissect subtype compositions in 

healthy small intestinal organoids22,88,207, state-of-the-art single cell analysis in 3D tumor cell 
culture systems has not been performed in further detail. A deeper understanding of 

complex cellular phenotypes and underlying gene expression will be required to understand 
tumor cell heterogeneity as basis for functional studies in the future, especially because 

advanced in vitro systems are capable of closely reflecting in vivo characteristics. 

 

1.4 Aim of study 
Cellular behavior is the direct consequence of its underlying gene expression network, which 
itself is influenced by the genetic background, developmental programs and the cellular 

environment. A key goal in biology is to understand these gene(network) – function 
relationships and recent technical advances have now opened the door to characterize 

genomes, gene expression and epigenetic states in its native context: the single cell. 
Although transcriptomes can now be reliably measured at the single cell level in an unbiased 

way, these technologies require the dissociation of tissues into single cell suspensions which 

consequently results in the loss of contextual and phenotypic information. On the other hand, 
imaging-based methods for in-situ single cell analysis are generally restricted by the limited 

number of pre-selected markers that can be analyzed simultaneously. Moreover, hybrids of 
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imaging and sequencing are only beginning to emerge. Thus, direct or indirect combinations 

of both NGS and imaging technologies are required to fully understand contextual cellular 
phenotypes and underlying gene expression. Intratumor heterogeneity represents a key 

phenomenon in translational research whose mechanisms are poorly understood, and 
recent studies have impressively demonstrated the high cellular complexity in various tumor 

entities by single cell analysis and sequencing. Still, very little is known about functional 
tumor cell heterogeneity including subtype-specific behavior, spatial organization and cellular 

interactions. As the analysis of contextual single cell phenotypes in primary tumors is limited 
to histology-based methods, functional assays based on 3D in vitro cell culture systems that 

closely mirror tumor subtype compositions and neoplastic tissue architecture are required. 
In order to understand intratumor heterogeneity beyond subtype composition, this study 

aims to provide a framework for 3D in vitro analysis of tumor cell heterogeneity by directly 

and indirectly combining NGS and quantitative microscopy. Therefore, we use, adapt and 
extend existing state-of-the-art sequencing and imaging technology and apply these to 

established and patient-derived 3D cell culture systems, which provide the optimal trade-off 
between flexibility and complexity for single cell analysis.    

 

 

Figure 1.6 | Aim of this study as graphical overview. 3D cell culture systems provide the physiological context 
for in vitro culture of patient-derived material, NGS enables unbiased identification of gene expression and 
microscopy gives information about cellular phenotypes and context. This study aims to use, adapt and improve 
state-of-the-art technology to directly and indirectly combine NGS and quantitative microscopy for single cell 
analysis to understand tumor cell heterogeneity in 3D cell culture systems. 
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2 Results 
 
This results chapter is subdivided into two major sections. First, I describe the development 

of the ‘pheno-seq’ method that directly combines high-throughput imaging and gene 
expression profiling of clonal spheroids and its application on established and patient-

derived 3D culture models of breast and colorectal cancer (section 2.1). Second, I will 
present the results of dissecting the cellular composition of 12 spheroid culture lines derived 

from patients with CRC by scRNA-seq. In addition, I will present the validation and extension 
of sequencing results by multiplexed RNA-FISH analysis in situ (section 2.2). For data 

generated or analyzed in collaboration with others, co-workers are indicated by name in 
figure legends. More detailed information about contributions can be found on page iii. 

Figures and text in section 2.1 are widely adapted from the associated publication for which I 

have written the original text208. Although multicellular structures derived from MCF10CA 
breast cancer cells could, by definition209, also be described as organoids, I use the term 

‘spheroid’ throughout the whole work for both CRC and MCF10CA.   
 

2.1 Pheno-seq – linking morphological and functional features to gene 
expression in 3D cell culture systems 

2.1.1 Using single cell in-vitro 3D cell culture to analyze patho-phenotypes of tumor 
cells 

Although single cell gene expression profiling provides biologically rich information, identified 

genes that can be assigned to subtypes do not necessarily inform about complex cellular 
phenotypes. However, visual characteristics of cells or cell clusters can be highly 

informative, especially for classification of tumor subtypes and disease states210. This also 
holds true for patient-derived 3D cell culture systems, but most studies have so far focused 

on inter-patient differences35,211 rather than heterogeneous phenotypes and behavior of cells 
isolated from a single patient.  

Single-cell 3D-culture in combination with microscopy and molecular analyses appears as a 
key strategy for the analysis of functional tumor cell heterogeneity in-vitro as it enables 

analysis of clonal behavior in defined spatial and temporal conditions206,212. Ideally, the visual 
phenotype of the cell or the emerging multicellular complex (spheroids, organoids, etc.) 

reflects the characteristics of the primary neoplastic tissue and consequently informs about 

the functional outcome of heterogeneous cancer cell states. Informative subpopulation-
specific oncogenic phenotypes can reflect differences in long-term proliferative capacity204, 
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or morphologically complex phenotypes such as deregulation of epithelial growth and 

invasiveness, a well-established prerequisite for metastasis180.  
In breast cancer entities that originate from the mammary gland, normal epithelial cells 

undergo a stepwise transformation from local hyperplasia to premalignant carcinoma in-situ 
and invasive carcinoma213 (for further description of cancer cell invasion see section 1.3.1.4). 

Importantly, the switch from epithelial to invasive phenotypes requires transcriptional 
programs that resemble those occurring during embryogenesis and wound healing, 

commonly described as epithelial-to-mesenchymal transition (EMT)180. A common 3D model 
of tumorigenic progression in breast cancer is the basal-like MCF10 progression line214,215. 

Originating from the non-neoplastic immortalized parent cell line MCF10A216, more 
transformed derivatives have been generated by transfection with the c-Ha-ras oncogene 

and by xenograft passaging217–219. Of those, the MCF10CA cell line represents a fully 

malignant derivative with invasive and metastatic properties in xenografts218. 
 

 

 

Figure 2.1 | Breast cancer 3D model MCF10CA. (a) Single-cell seeding efficiency of MCF10CA cells assessed 
by image analysis. Example image of CellTracker Red stained and seeded cells and magnified image that 
corresponds to dashed box in left image (scale bar: 100 µm). Right bar plot: Cell singlets and doublets imaged 
and quantified after seeding (289 objects in total). (b) Brightfield microscopy images of clonal MCF10CA 
spheroids in Matrigel after 0, 5 and 12 days of culture. Spheroid phenotypes reflect histological characteristics of 
key steps during malignant progression of breast cancer (Brightfield, scale bar 50 µm). Red box: ‘round’ 
phenotype; Blue box: ‘aberrant’ phenotype. (c) Spheroids derived from cells independently isolated from ‘round’ 
and ‘aberrant’ spheroid phenotypes and quantification after regrowth by ‘ilastic’ machine learning based pixel 
classification. Upper: Example images of reseeded MCF10CA ‘round’ and ‘aberrant’ spheroids 5 days after 
reseeding (scale bar: 50 µm). Lower: Spheroid classification confusion matrix. Heatmap reflecting classified 
pixels by ilastic as aberrant or round after reseeding (four replicates, indicated are relative pixel numbers and 
standard error of the mean below). Image analysis in (b) and (c) has been done together with Friedrich Preußer.  
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As invasive properties are most likely not inherent to all cells from a tumorigenic epithelial 

cell line, we expected heterogeneous cell states in the MCF10CA cell line with different 
phenotypic characteristics. In order to follow growth of individual cells, we first established a 

simple single cell seeding strategy in reconstituted basement membrane (Matrigel) and 
assessed seeding efficiency by image analysis (Figure 2.1a, Figure 2.2a). After 5 days in 3D 

culture, single-cell-derived MCF10CA spheroids show a remarkable morphological 
heterogeneity, with cellular phenotypes reflecting characteristics of both carcinoma in-situ 

(‘round’ phenotype) and invasive carcinoma (‘aberrant’ phenotype) (Figure 2.1b). Next, we 
developed a workflow based on enzymatic digestion to isolate single spheroids without 

perturbing their phenotypic identity (Figure 2.2b) in order to analyze cells derived from both 
phenotypes independently. To functionally assess the observed visual heterogeneity, we 

reseeded and cultured cells from both phenotype classes independently and quantified 

reoccurrence of spheroid phenotypes by supervised machine learning220. Results inferred by 
this strategy revealed a high cell state stability and validated efficient isolation of spheroid 

phenotypes (Figure 2.1c).  
As local invasion of cancer cells and the formation of distant metastases are critical events 

during progression to higher pathological grades of malignancy, we reasoned that the 
MCF10CA cell line represents a valid proof-of-concept model to further analyze 

heterogeneous and pathologically relevant spheroid phenotypes.  
 

2.1.2 Pheno-seq as new approach to relate clonal spheroid phenotypes to gene 
expression 

As next step, we aimed to understand the link between heterogeneous spheroid phenotypes 

and associated changes in gene expression. Based on a commercial continuous-flow 
microfluidic platform (Fluidigm C1)79, we first generated and deeply sequenced full-length 

scRNA-seq libraries of both ‘aberrant’ and ‘round’ phenotypes independently (166 cells in 
total, Figure 2.2c). Notably, this strategy does not enable a direct phenotypic correlation as 

multiple spheroids (>30) needed to be pooled and dissociated to ensure a sufficient number 
of input cells. For transcriptomic analysis of cells from both spheroid phenotypes combined, 

we tested annotated and de-novo identified gene sets for coordinated expression variability 
across cells116. After correcting for cell cycle variability, tSNE112 2D embedding revealed two 

distinct clusters and a tight association of cells to their original spheroid phenotype class 

(Figure 2.2d).  
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Figure 2.2 | Pheno-seq enables direct image correlation and complements the identification of 
morphology-specific gene expression. (a) Workflow overview for the isolation of clonal spheroids for the 
identification of morphology-specific gene expression. (b) Brightfield images of clonal MCF10CA spheroids 
(phenotype classes ‘round’ and ‘aberrant’) after isolation from Matrigel (scale bar 50 µm). (c) Indirect phenotype – 
transcriptome correlation by scRNA-seq using cells isolated from multiple (>30) spheroids with annotated 
morphology phenotype. (d) tSNE visualization116 of 166 scRNA-seq (*cell-cycle corrected) full-length expression 
profiles of cells derived from manually isolated round and aberrant spheroids. Coloring based on manual 
phenotype classification. (e) Same tSNE visualization as shown in (d) with coloring based on PC scores for 
**HALLMARK_EMT gene set derived from the Molecular Signature Database221 (MSigDB). (f and g) tSNE 
visualization of 8 full-length manual pheno-seq expression profiles based on manually isolated single spheroids. 
Same coloring as presented in (d) and (e). (h) Number of detected genes in downsampled scRNA-seq and 
pheno-seq libraries (sc: scRNA-seq; M: manual pheno-seq; HT-DSP: high-throughput pheno-seq combined with 
dithio-bis(succinimidyl) propionate fixation; HT-control: HT-pheno-seq bottom control). Numbers of samples 
indicated on x-axis under respective strategy. (i and j) Selected genes identified by manual pheno-seq and not 
by scRNA-seq (Differential expression analysis109: Fold change > 1.3; adjusted P-value < 0.1) and imaging based 
validation of phenotype-specific expression for SNAI2 (aberrant) and KRT15 (round). RNA-FISH for SNAI2: 
Plotted values reflect the percentage of pixels that exceed the background threshold per spheroid. KRT15 
immunofluorescence: Plotted values reflect the mean pixel intensity per spheroid. Box plot center-line: median; 
box limits: first and third quartile; whiskers: min/max values. Numbers of samples indicated on x-axis under 
respective phenotype class. Indicated are P-values from unpaired two-tailed Students t-test. scRNA-seq libraries 
shown in (d) and (e) have been generated together with Jan-Philipp Mallm. RNA-seq analysis in (d-h) has been 
performed together with Jeongbin Park, Simon Steiger and Zuguang Gu. Image analysis in (i) has been done 
together with Friedrich Preußer. 

 

 

Furthermore, differential expression analysis109 identified biologically relevant expression 
patterns: Cells derived from aberrant spheroids show enhanced expression of EMT related 

genes (Figure 2.2e, Figure 2.3a, Supplementary Figure 1a), including vimentin (VIM), Beta-



 

 
 

29 

Actin (ACTB) and fibroblast activating protein (FAP), whereas cells isolated from round 

phenotypes showed higher expression of genes involved in adherence and formation of 
tissue structures including desmoglein 3 (DSG3) and keratin 16 (KRT16) (Figure 2.3a). Next, 

we validated RNA-seq results by whole mount immunofluorescence (IF) of individual marker 
genes for aberrant phenotypes, in particular the EMT marker VIM and the cytoskeleton 

component ACTB (Supplementary Figure 2a and b). 
Current scRNA-seq methods can be strongly affected by low RNA input72 and dissociation 

bias102. To avoid these technical influences, we next tested expression profiling of manually 
isolated single spheroids (manual pheno-seq) as complementary approach to identify 

transcriptional differences between clonal spheroid phenotypes. Despite the loss of single-
cell resolution, we reasoned that pheno-seq should improve accuracy by enabling a direct 

correlation of image phenotype to transcriptome, and at the same time provide more RNA 

material for cDNA library preparation. First, we started with low spheroid sample numbers in 
a tube-based setup to evaluate the ability to detect relevant heterogeneous gene expression 

that is missed by scRNA-seq. Manual pheno-seq expression profiling of only eight spheroids 
yielded a similar phenotype-specific clustering defined by high and low expression of EMT-

related genes (Figure 2.2f and g, Figure 2.3a, Supplementary Figure 1b). Although the 
sample number was approximately 20 times lower (166 single-cells vs. 8 single spheroids), 

the gene detection rate per sample was significantly higher compared to scRNA-seq (Figure 
2.2h, Supplementary Table 1), and differential expression analysis revealed over 50 

phenotype-specific genes for each of the two phenotype classes that could not be detected 
by scRNA-seq (Figure 2.2 i and j, Figure 2.3b). Importantly, these genes include the 

transcriptional EMT master regulator SNAI2222 (aberrant) and keratin 15 (KRT15, round) a 

basal-myoepithelial marker in the mammary gland223 (Figure 2.3c, Supplementary Figure 
1b). However, we detected more differentially expresses genes by scRNA-seq, which is 

most likely due to the much higher sample number.  
We validated spheroid phenotype-specific expression of SNAI2 and KRT15 by RNA-FISH 

and immunofluorescence (IF), respectively (Figure 2.2 i and j, Supplementary Figure 2c and 
d). We reasoned that SNAI2 was not identified by scRNA-seq due to its low expression 

(Figure 2.3c), a frequent phenomenon for transcriptional regulators in EMT121. Although 
KRT15 is one of the top pheno-seq markers for round spheroids, the presence of residual 

KRT15+ cells in aberrant spheroids (Supplementary Figure 2c) seemed to mask the 

identification of KRT15 as round-specific when single-cell profiles were analyzed. 
Remarkably, differential expression of KRT15 and SNAI2 could not be robustly restored from 

single cell data by generating pseudo pheno-seq profiles from averaged scRNA-seq 
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expression (Figure 2.3d, Supplementary Figure 1c), indicating for the additional influence of 

dissociation bias on KRT15 mRNA abundance. In sum, pheno-seq provides the direct 
correlation of clonal spheroid phenotypes and transcriptomes and complements scRNA-seq 

in identifying heterogeneous gene expression already with low sample numbers.  
 

 

 

Figure 2.3 | pheno-seq identifies highly relevant gene expression that is missed by scRNA-seq. (a) Gene 
set enrichment analysis of differentially expressed genes identified by scRNA-seq and manual pheno-seq. Shown 
are FDR q-values for enrichments of HALLMARK_EMT and GO_TISSUE_DEVELOPMENT gene sets (derived 
from the MSigDB). (b) Venn-Diagrams showing overlaps of identified phenotype-specific genes between scRNA-
seq and manual pheno-seq identified by differential expression analysis (fold change>1.3; adjusted p-value<0.1). 
(c) Violin plots presenting expression of individual genes (VIM, SNAI2, KRT15) for identified phenotype-specific 
clusters for scRNA-seq and manual pheno-seq. Expression magnitude is plotted as Fragments per Million (FPM, 
log10). Violin-plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR. (d) Boxplots reflecting 
expression of individual genes (VIM, SNAI2, KRT15) per phenotype-specific clusters for pseudo pheno-seq 
profiles. Expression magnitude is plotted as Fragments per Million (FPM, log10) of four independent 
randomizations. Boxplot center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR. RNA-seq 
analysis in (b-d) has been done together with Jeongbin Park. 

 
 

2.1.3 Development of high-throughput pheno-seq in barcoded nanowells 
A key limitation of both scRNA-seq and manual pheno-seq presented in the previous section 

is the non-quantitative and biased selection of spheroid phenotypes based on visual 
inspection by eye. In addition, profiling a higher number of spheroids per pheno-seq 

experiment is necessary to comprehensively understand the link between visual phenotypes 
and gene expression in 3D culture models. Therefore, we developed high-throughput (HT) 

pheno-seq by adapting and improving the nanowell-based iCELL8 scRNA-seq system224, a 
technology for integrated imaging and gene expression profiling of single cells or nuclei, for 

transcriptomic profiling of spheroid samples of up to 100 µm in size. Major modifications for 

MCF10CA spheroids included: (i) cellular fixation225 compatible with RNA isolation and 
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reverse transcription in order to compensate for prolonged imaging time, (ii) altered chip 

setup and higher-resolution confocal microscopy for detection of complex spheroid 
phenotypes, (iii) an automated image-processing pipeline (iv) and the ‘PhenoSelect’ 

software for interactive analysis and selection of spheroids for sequencing (Figure 2.4, 
Supplementary Figure 3, Supplementary Figure 4). These significant technical changes had 

only minor influences on the gene detection rate, which fell in between scRNA-seq and 
manual pheno-seq (Figure 2.2h, Supplementary Table 1).  

 
 

 

 

Figure 2.4 | Technical adaptions and controls for high-throughput pheno-seq. (a) Comparison of images 
acquired by the default iCELL8 microscope (4x objective, 6x6 wells per image) with spheroid nuclei stained with 
Hoechst dye, and higher resolution microscopy with confocal laser scanning microscope (10x objective, 2x2 wells 
per image) with spheroids stained with Hoechst dye and CellTracker Red CMTPX. (b) Patterned Fluorescein 
dispensing for leakage analysis. Average fluorescence intensity plotted onto 72x72 well grid corresponding to 
nanowell chip architecture (left). All average intensity values exceeding 77 were set to maximum in the color code 
scheme for better visualization. Top right: Image example showing border between wells that have been filled 
with PBS or PBS with Fluorescein. Lower right: Macroscopic image of nanowell surface with droplets, showing 
dispensing errors that are reflected by the absence of fluorescence signal at the associated position. (c) High 
percentage of reads that only map to selected well barcodes excludes significant leakage of barcoded Poly-T 
primers upon centrifugation of spheroids to the foil. (d) cDNA and Nextera XT sequencing library Bioanalyzer 
traces show compatibility of HT-pheno-seq with iCELL8 system. HT pheno-seq microscopy in (a) and image 
analysis in (b) has been done together with Friedrich Preußer. RNA-seq analysis in (c) has been done together 
with Jeongbin Park.  
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Figure 2.5 | High-throughput pheno-seq of MCF10CA spheroids. (a) High-throughput (HT) pheno-seq 
workflow for MCF10CA spheroids based on automated dispensing and confocal microscopy of recovered 
spheroids in barcoded nanowells. (b) tSNE visualization of 210 HT-pheno-seq 3´-end profiles with individual 
spheroid data points colored by image feature ‘circularity’. For better visualization, all circularity values below 0.8 
were set to minimum in the color code scheme. (c) Circularity plotted per cluster (k-means clustering, k=2) as 
shown in (b). Violin-plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR. Indicated P-
value derived from unpaired two-tailed Students t-test. (d) Same tSNE visualization as shown in (b) but coloring 
based on PC scores for **HALLMARK_EMT gene set. (e and f) Same tSNE visualization as shown in (b and d) 
but coloring based on expression magnitude for genes VIM (e) and KRT15 (f). RNA-seq and image analysis in 
(b-f) has been done together with Jeongbin Park. The automated microscopy workflow, the image pre-processing 
pipeline and PhenoSelect have been jointly developed with Friedrich Preußer. 

 
 

MCF10CA HT-pheno-seq yielded very similar results as described for manual pheno-seq in 
the previous section, with two distinct clusters driven by expression of genes involved in 

EMT (VIM+) as well as tissue formation (KRT15+) but at much higher throughput (n = 210) 

(Figure 2.5a, d, e, f). Both pheno-seq approaches show good concordance in identifying 
differentially expressed genes between spheroid phenotypes (Supplementary Figure 5c), 

despite unbiased capture of spheroids by HT-pheno-seq as well as differences in sample 
number and library structure (3´-end vs. full-length, Supplementary Table 1).  

HT-pheno-seq allows profiling of mRNA abundance and image features from the same 
spheroid, which enabled straightforward correlation of genetic programs and complex visual 

phenotypes based on the fluorescence signal emitted from a cytoplasmic dye (CellTracker 
Red). Biologically relevant phenotypes included the morphology-related feature ‘circularity’ 

which informs about (de)regulation of lobular development (Figure 2.5b and c), and spheroid 
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size, indicating for a higher proliferative activity of epithelial cells (Supplementary Figure 5a). 

In addition, pheno-seq linked negatively skewed pixel intensity distributions to round 
phenotypes (Supplementary Figure 5b), indicative of an increased cell density in round 

spheroids that leads to an increased fraction of high pixel intensity values derived from the 
cytoplasmic signal. Hence, HT-pheno-seq represents a new method that, unlike scRNA-seq, 

directly and quantitatively links heterogeneous visual phenotypes to underlying gene 
expression in a single experiment.  

 
2.1.4 HT-pheno-seq of a patient-derived 3D model of colorectal cancer  

Next, we set out to analyze the functional correlation between visual phenotypes and gene 
expression in a physiologically relevant and patient-derived 3D model isolated from a liver 

metastasis of a CRC patient (Figure 2.6a). Similar to the phenotypic heterogeneity in the 

MCF10CA model described in the previous section, functionally distinct subpopulations in 
3D cultures of CRC patients have been previously identified204. The reported heterogeneity 

in proliferative capacity of single cells seems to be independent of mutational subclone 
diversity226, thereby supporting the existence of a differentiation-like hierarchy in CRC (see 

section 1.3.1.2). As reseeding of cells from different spheroid sizes classes (20-40 µm and 
>70 µm) revealed substantial differences in spheroid forming capacity (Figure 2.6b), we 

reasoned that specific stem- and differentiation-related gene expression signatures should 
underlie these heterogenous proliferative phenotypes.  

 

 

Figure 2.6 | 3D spheroid model of colorectal cancer. (a) Brightfield microscopy image of 10 day cultured 
clonal CRC spheroids derived from a liver metastasis (scale bar 100 µm). (b) Reseeding assay with cells isolated 
from distinct spheroid size classes (20-40 µm and >70-100 µm). Plotted are spheroid counts 10 days after 
reseeding (three replicates, center-line: mean; indicated P-value of paired two-tailed Students t-test). (c) Single-
cell seeding efficiency in inverse pyramidal shaped microwells (upper left) assessed by image analysis. Upper 
right: Example image of CellTracker Red stained cells seeded in microwells (scale bar: 100 µm). Lower right: 
Magnified image that corresponds to dashed box in upper right image. Lower left: Quantified cell singlets and 
multiplets after seeding (three wells, four images per well, 70 objects in total). The CRC spheroid culture has 
been provided by Hanno Glimm and Claudia Ball. Image analysis in (b) and (c) has been jointly performed with 
Friedrich Preußer. 
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2.1.4.1 Analysis of relative transcript abundances between CRC spheroids 

To investigate this hypothesis, we performed HT-pheno-seq based on clonal CRC spheroids 
cultured in an inverse pyramidal-shaped microwell setup (Figure 2.6c, Figure 2.7a). 2D tSNE 

visualization of relative gene expression differences between 95 HT-pheno-seq profiles 
revealed two transcriptionally distinct clusters (Figure 2.7b) and image analysis of the 

associated spheroids showed a strong difference in spheroid size composition between both 
clusters (Figure 2.7b and c).  

 

Figure 2.7 | HT-pheno-seq of a 3D model of colorectal cancer links heterogeneous proliferative 
phenotypes to expression signatures enriched for cell type-specific markers. (a) Clonal 3D culture in 
inverse pyramidal shaped microwells and recovery for HT-pheno-seq of CRC spheroids. Yellow and purple cells 
reflect heterogeneous subpopulations with functional differences in long-term proliferative capacity. (b) 2D tSNE 
visualization of 95 HT-pheno-seq gene expression profiles. Coloring by spheroid size (in pixels). (c) Violin plot 
describing spheroid sizes per cluster as shown in (b). Violin-plot center-line: median; box limits: first and third 
quartile; whiskers: ±1.5 IQR). Indicated P-value calculated from unpaired two-tailed Students t-test. (d) Heatmap 
describing results of differential expression analysis of identified clusters in (b); purple: big-enriched, yellow: 
small-enriched. Selected genes are indicated beside the heatmap; Fold change > 1.5; adjusted P-value < 0.05; 
*P < 0.05, **P < 0.01, ***P < 0.001; cluster1 (‘small-enriched’): 313 differentially expressed genes; cluster2 (‘big’ 
enriched): 130 differentially expressed genes. (e) Validation of HT-pheno-seq results by quantitative RNA-FISH 
for size-dependent differentiation marker TFF3 (‘small’) and stem cell markers CD44/MYC (‘big’). Plotted values 
represent pixel fraction that exceeds the background threshold per spheroid (Box plot center-line: median; box 
limits: first and third quartile; whiskers: min/max values; P-values from unpaired Students t-test. Numbers of 
samples n indicated on x-axis under respective class). RNA-seq analysis in (b-d) has been performed together 
with Jeongbin Park. Image analysis in (e) has been done together with Friedrich Preußer 
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Differential expression analysis between detected clusters showed that the first cluster 

(‘small’ phenotype) is enriched for genes involved in ribosomal activity (GO_RIBOSOME, 
FDR q-value 2.41x10-45) as well as for intestinal secretory lineage markers, including Trefoil 

Factor 3 (TFF3), KRT18 and SPINK488 (Figure 2.7d). In contrast, the second cluster (‘big’ 
phenotype) is characterized by the expression of genes previously described to be involved 

in (i) stem cell maintenance (including CD44, MYC, NOTCH1, APP, MSI1 and ITGA6)88227, 
(ii) the formation of cell-cell junctions (including EPCAM, CLDN4, CDH1) and (iii) WNT 

signaling (ZNRF3, LGR4, JUN) (Figure 2.7d).  
 

 

 

Figure 2.8 | Identified pheno-seq expression signatures for CRC spheroid model. PAGODA RNA-seq 
analysis of CRC spheroid HT-pheno-seq data. Dendrogram indicates overall clustering (left: ‘small’, right: ‘big’) 
and the rows below represent top four significant aspects of heterogeneity based on HALLMARK/GO gene sets 
derived from the MSigDB and on de-novo identified gene sets. High aspect scores (PC Scores) correspond to 
high expression of associated gene sets. Corresponding top gene sets are listed next to rows (including cZ 
scores as measure of gene set overdispersion). Expression patterns below reflect top 10 loading genes for 
selected gene sets that are associated with respective aspects. Expression patterns of genes exhibiting the 
highest correlation to the major intestinal stem cell marker LGR5 and putative cancer stem cell marker PROX1 
(Pearson’s correlation, top 20 genes). Bottom: Expression pattern of top 10 genes most highly correlated with 
Paneth marker DEFA5 is independent of the major (size-associated) clustering. RNA-seq analysis has been 
performed together with Jeongbin Park. 
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Furthermore, this expression signature showed a very high overlap with the top correlated 

genes of the major intestinal stem cell marker LGR5, including CD44, APP and SMOC2 
(Figure 2.8). We validated sphere size-dependent expression for selected markers by 

quantitative RNA-FISH (Figure 2.7e, Supplementary Figure 6).  
In the cluster enriched for big spheres, we identified several genes related to the γ-secretase 

machinery (Figure 2.7d), a key component of the Notch signaling pathway and target of 
novel therapies that aim to disrupt cancer stem cell signaling228. Selective targeting of the γ-

secretase with a small molecule inhibitor in concentration ranges that have been shown to 
force colonic stem cells into differentiation229 showed a pronounced inhibitory effect on 

spheroid growth (Figure 2.9). This finding suggests similar signaling dependencies of the 
normal and transformed intestinal stem cell niche and shows the potential of pheno-seq to 

identify relevant signaling components required for long-term cellular proliferation. 

 
 

 

Figure 2.9 | Influence of g-secretase inhibitor on spheroid growth. (a) Plotted values show average CRC 
spheroid sizes after 10 days in culture in the presence of different concentrations of the γ-secretase inhibitor PF-
03084014 (Three replicates; dot plot center line: mean; whiskers: standard deviation; P-values from paired two-
tailed Students t-test). (b) Example images of CellTracker Red stained spheroids in the presence of different γ-
secretase inhibitor concentrations after 10 days in culture (scale bar 200 µm). Image analysis in has been done 
together with Marcel Waschow. 

 

 

Moreover, we determined a transcriptional signature primarily driven by the expression of 
deep crypt secretory (Paneth) cell markers DEFA5 and DEFA6 that seems to be 

independent of the size-related clusters shown above (Figure 2.8). Paneth cells represent a 
post-mitotic secretory and anti-microbial subpopulation at the bottom of colonic crypts that 

serves as niche for LGR5+ stem cells229. In line with pheno-seq results, we validated high-
expressing DEFA5+ cells as rare subpopulation with spheroid size-independent relative 

expression by RNA-FISH (Figure 2.10). Thus, pheno-seq is able to directly assign 
heterogeneous proliferative phenotypes to expression signatures enriched for specific 

intestinal cell-type markers, results that cannot be directly obtained from scRNA-seq data 
and also not without explicit single cell culture. 
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Figure 2.10 | DEFA5+ cells show heterogeneous growth phenotype. (a) Validation of pheno-seq by 
quantitative RNA-FISH for size-independent Paneth-cell marker DEFA5. Plotted values reflect the pixel fraction 
that exceeds the background threshold per spheroid (Box plot center-line: median; box limits: first and third 
quartile; whiskers: min/max values; P-values from unpaired Students t-test, ns: non-significant. Numbers of 
samples n indicated on x-axis under respective spheroid size class). (b) Example images shown as Z-projections 
for RNA-FISH staining for DEFA5 of big (>70 µm) and small (20-40 µm) spheroids with (top) and without (lower) 
Hoechst counterstain visualization (Hoechst: cyan; RNA: yellow). Dashed line in images without Hoechst 
visualization reflect spheroid border (scale bar 50 µm). Image analysis in has been done together with Friedrich 
Preußer. 

 

2.1.4.2 Single cell deconvolution by image analysis and maximum likelihood inference 
Pheno-seq enables the direct association of spheroid phenotypes and transcriptomes at a 

depth that cannot be reached by current scRNA-seq methods alone. However, these 
advances come at the cost of lower cellular resolution. Thus, gene expression signatures 

derived from CRC spheroids inform about general phenotype-specific expression and trends 

in subtype composition but might derive from multiple cellular subtypes present within the 
same spheroids. While these results are highly valuable for understanding growth behavior 

in clonal cell culture systems (section 2.1.4.1), obtaining ‘real’ single-cell information from 
pheno-seq data without profiling single cells would be of high importance to distinguish 

between genes that are generally associated with spheroid phenotypes and those who are 
robustly expressed at the single cell level. Therefore, we aimed to computationally infer 

single-cell regulatory states by deconvolution of pheno-seq data using both image 
information and a maximum likelihood inference approach. First, we generated a high-

resolution imaging reference dataset from spheroids of different sizes by 3D light-sheet 
microscopy, which we used to determine the relationship of spheroid size and nuclei counts 

in order to estimate cell numbers from CRC spheroid pheno-seq imaging data (Figure 

2.11a). As the PAGODA-normalized pheno-seq data exhibited no correlation between 
detected genes and estimated cell numbers (Figure 2.11b), we downsampled the data to 

achieve a uniform number of mRNA counts per estimated single cell content (Figure 2.11c). 
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Figure 2.11 | Estimation of cell numbers from pheno-seq data and normalization by downsampling to 
estimated counts per cell. (a) Generation of a two color (Hoechst and CellTracker Red) 3D image reference 
dataset (20 spheroids) by using dual-view inverted selective plane microscopy (di-SPIM). 3D Segmentation and 
image analysis enables counting of nuclei. The calculated cell number – spheroid size relationship is used to 
estimate cell numbers from HT-pheno-seq data. (b) Violin plot showing detected genes plotted per cluster shown 
in Figure 2.7. Violin-plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR. (c) Correction 
for lost correlation of cell numbers and library complexity by transforming counts to approximated total mRNA 
abundances in spheroids of different sizes. Raw mRNA counts are divided by estimated cell numbers and the 
calculated minimal average mRNA count is used to normalize the data by downsampling counts to 2300 counts 
per cell in the CRC phenoSeq dataset. This strategy results in a perfect correlation of cell numbers and mRNA 
counts. The estimated cell number is plotted against normalized mRNA counts. (d) Pearson’s correlation 
coefficients (r) distributions of gene expression and cell numbers for all 13,868 genes before and after data 
transformation. Light-sheet microscopy and associated image analysis in (a) has been done together with Björn 
Eismann and Friedrich Preußer. RNA-seq analysis in (b) has been jointly performed with Jeongbin Park. RNA-
seq analysis in (c) and (d) has been jointly performed with Christiane Fuchs and Lisa Amrhein.  

 
 

As expected, this transformation introduces a positive overall shift of correlations between 

gene expression and cell numbers compared to raw mRNA counts (Figure 2.11d), which can 
be mainly explained by housekeeping genes with a constant number of mRNA molecules 

per cell (Supplementary Figure 7a). However, heterogeneously expressed genes such as 
previously identified secretory markers TFF3 and DEFA5 do not exhibit any correlation with 

cell numbers (Supplementary Figure 7b and c), thereby validating our normalization 
approach. 
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To identify genes with heterogeneous single-cell regulatory states, we used a maximum 

likelihood inference approach previously developed to deconvolve cell-to-cell heterogeneities 
from random 10-cell samples230 (Figure 2.12a). The adapted algorithm uses estimated cell 

numbers per spheroid to fit two log-normal distributions (LN-LN model) to given ‘mixed-n’ 
datasets in order to identify genes with bimodal expression pattern at the single-cell level 

(Stochastic Profiling, see Methods). Importantly, this approach unbiasedly identifies genes 
that are likely to show a heterogeneous and robust expression within spheroids at the single-

cell level, instead of comparing gene expression between spheroids.  
Whilst the deconvolution algorithm assumes that cellular subtypes are identically distributed 

across spheroid samples, pheno-seq is principally based on clonal spheroids whose cell 
number, subtype composition and transcriptional profile is dependent on the state of the 

founding cell. Based on the CSC model and the above indicated CRC differentiation 

hierarchy, we assume that continuously growing spheroids (‘big’ phenotype) harbor all 
cellular subtypes present in this culture system, including stem-like cells, whereas small 

spheroids with limited proliferative capacity and low cell numbers are more homogeneous 
and contain only differentiated subtypes. Thus, inferred single cell regulatory states should 

be enriched for genes specific for the stem-like compartment, as these represent the major 
source of heterogeneity at the single-cell level.  

Deconvolution of the CRC pheno-seq dataset (n=95 spheroids) revealed 1,012 genes that 
exhibit an improved two-population fit as compared to a one-population fit, assessed by the 

Bayesian information criterion (BIC) to calculate the quality of the fit relative to the number of 
inferred parameters (Figure 2.12b). Most fits resulted in a highly-expressing cellular fraction 

of 5-15% (Figure 2.12c) thereby matching the fraction of cells with spheroid forming capacity 

in this model204. Interestingly, the positive shift of correlations between mRNA counts and 
cell numbers (before and after downsampling) is much more pronounced in two-population 

genes compared to non-two-population genes (Supplementary Fig. 13d), suggesting that 
many of the inferred two-population genes are involved in proliferative capacity. Indeed, 

gene set enrichment analysis revealed a high proportion of MYC targets and genes involved 
in the regulation of cell growth and proliferation (Figure 2.12d). In addition, high enrichment 

of genes involved in oxidative phosphorylation (OXPHOS) indicated for heterogeneous 
mitochondrial activity at the single-cell level, a phenomenon recently identified for intestinal 

stem cells and neighboring Paneth cells in the small intestine192. Strikingly, a high number of 

identified genes are overlapping with a recently identified stem cell signature of the small 
intestine revealed by massively parallel scRNA-seq88, including SMOC2, APP, PRMT1, 

RGMB, MAPK1 and CTNND1, respectively (Figure 2.12e).  
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Figure 2.12 | Single-cell deconvolution of CRC spheroid pheno-seq data by maximum likelihood 
inference. (a) Adapted maximum likelihood approach230 based on estimated cell numbers and transformed 
pheno-seq data (n = 95 spheroids): 1) Transformed pheno-seq data build a distribution of measurements for 
inference by the model. Coloring of cells in spheroids: red = stem-like; cyan = differentiated. 2) Assumptions on 
single cell distributions: Model of heterogeneous gene regulation in which individual cells are supposed to exhibit 
gene expression at low (Pop I) or high (Pop II) levels with common coefficient of variation. Four parameters of the 
model are the log-mean expression for each subpopulation (𝜇1 and 𝜇2), the proportion of cells in the high 
subpopulation (𝐹), and the common logarithmic standard deviation of gene expression (σ). 3) Based on the 
model in (2), a likelihood function is derived that takes different numbers of cells per spheroid into account. The 
likelihood function is maximized by searching through the four parameters of the model to identify those that are 
most likely given the experimental observations. 4) The four parameters define inferred single cell distributions of 
low and high-level populations. (b) 1,012 genes show improved two-population fit as compared to a one 
population fit (BIC: Bayesian information criterion). Densities of the means of the first (Pop I: low regulatory state) 
and second population (Pop II: high regulatory state) for all identified 1,012 genes. (c) Frequency distribution of 
single cells with high regulatory state (Pop II) of identified 1,012 genes. (d) Gene set enrichment analysis for two-
population genes (1,012 genes) based on HALLMARK gene sets231 derived from the MSigDB. Bar plot shows top 
enriched gene sets ranked by FDR q-values. (e) Overlap between identified two-population genes and murine 
intestinal stem cell signature from scRNA-seq study88 shown as Venn-diagram. Selected genes are listed below 
ordered by mean for high-state population Pop II (Mean2). (f) Scatter plots for relations of PROX1 expression 
and estimated cell numbers (upper) and between PROX1 expression and expression of the major intestinal stem 
cell marker LGR5 (lower) as well as associated Pearson’s correlation coefficients (r). (g) Validation by 
quantitative RNA-FISH. Co-staining of CRC spheroids by probes labelling PROX1 (Atto550) and DEFA5 
(Alexa488) mRNA and Hoechst counterstaining for visualization of DNA. Merged images: DNA: cyan; DEFA5 
yellow; PROX1: red. Images show Z-projections (scale bar 30 µm and 10 µm for magnified merged image). RNA-
seq analysis in (a-f) has been performed together with Christiane Fuchs and Lisa Amrhein. 
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Here, we identified the transcriptional regulator PROX1 as gene with a high population mean 

(Pop II) (Figure 2.12e) that shows a strong correlation with cell numbers and also with 
expression of the major stem cell marker LGR5 (Figure 2.12f). In addition, PROX1 top 

correlated genes exhibited a strong overlap with the signature defining big spheres when 
relative gene expression differences between spheroids were analyzed (Figure 2.8). In the 

normal intestinal epithelium, PROX1 is specifically expressed in the enteroendocrine 
lineage232. However, two studies based on mouse tumor models suggest a role for PROX1 

in CSC maintenance and metastatic outgrowth233,234. In line with these observations, we 
validated PROX1+ cells as rare subpopulation in a patient-derived human tumor model by 

RNA-FISH (Figure 2.12g). Furthermore, PROX1+ cells seemed to be framed by DEFA5+ 
Paneth-like cells, suggesting a similar niche dependency for normal stem cells and CRC 

stem-like cells at distant sites of neoplasia. Taken together, gene expression deconvolution 

of pheno-seq data provides information about gene expression patterns at the single cell 
level even without acquiring additional single cell expression profiles.  

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 



 

 42 

 

 



 43 

2.2 Heterogeneous metabolic signatures are linked to cancer cell 

differentiation in a 3D model of colorectal cancer 
2.2.1 scRNA-seq of 12 spheroid lines derived from CRC patients 

2.2.1.1 Culture of CRC spheroid cultures with unique sets of driver mutations 
Colorectal cancer (CRC) is the third most common cancer worldwide, causing approximately 

10% of all cancers235. On the molecular level, CRC tumors have been classified in detail by 
bulk DNA and RNA-seq in order to identify markers or marker profiles with prognostic and 

therapeutically predictive value161,236. In general, CRC tumors can be subdivided into 
hypermutated (16% of cases) and non-hypermutated (84% of cases) tumors. Hypermutation 

is caused by mutations in DNA-mismatch repair genes that lead to the accumulation of DNA 
mutations mainly in repetitive microsatellite fragments (microsatellite instable, MSI). In 

contrast, non-hypermutated tumors are typically characterized by chromosomal instability236.  

Several investigations could reveal critical genes and pathways that are relevant for the 
initiation and progression of CRC, of which the tumor suppressor and negative WNT 

regulator APC belongs to the most mutated genes in both hypermutated and non-
hypermutated tumors. Importantly, nearly all CRC tumors carry activating mutations in the 

WNT pathway236 which is known to maintain the undifferentiated state of stem cells at the 
base of the intestinal crypt (see section 1.3.1.2). On the gene expression level, CRC tumors 

can be subdivided into four consensus molecular subtypes (CMS) with defining 
characteristics related to immune infiltration (CMS1), WNT activation (CMS2), metabolic 

deregulation (CMS3) and stromal infiltration (CMS4) that largely coincide with MSI status 

and chromosomal instability161. In addition, nearly all CRC tumors seem to exhibit changes in 
targets of the transcriptional regulator MYC236, a WNT downstream target that controls 

proliferation and differentiation in the normal intestine162,237, suggesting an important role for 
MYC in the progression of CRC.  

Despite differences between tumors in mutational signatures and bulk expression profiles, 
recent investigations could reveal a general hierarchical organization of CRC cells that is 

similar to the healthy intestinal crypt, including LGR5+ stem-like cells as putative tumor cell of 
origin238,239 that give rise to more differentiated cells with reduced tumorigenic potential205 

(see section 1.3.1.2). Relatively little is known about the tumor cell composition in CRC. For 
example, by using multiplexed single cell qPCR, Dalerba et al. could show that CRC tissue 

contains distinct cancer cell populations whose transcriptional profiles are similar to known 

intestinal lineages, including LGR5+ stem-like cells and KRT20+ differentiated cells227. 
However, the number of profiled genes is limited in this approach and no study has yet 
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applied unbiased scRNA-seq to dissect the molecular heterogeneity and cellular composition 

of tumor cells in CRC. 
To fill this gap at least for 3D in vitro models, we aimed to dissect 12 floating spheroid lines 

derived from CRC patients by scRNA-seq. The cultures originate from different primary 
tumor sites and metastases, and include the culture derived from a liver metastasis that was 

used for pheno-seq in the previous chapter (Supplementary Table 2). As these 3D cultures 
lack stromal and immune cell types but reproduce functional CRC tumor cell heterogeneity204 

and maintain subclonal composition226, they represent appropriate models of CRC 
complexity with a much lower number of single cells required to understand heterogeneity 

between tumor cells. Overall, we selected 10 lines with a unique set of driver mutations 
inferred by whole exome sequencing, including two spheroid cultures derived from MSI 

tumors, and two cultures with unknown genotype (Table 1).  

 

Table 1 | Driver mutations and microsatellite status (MSI) of CRC cultures* 
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# ID 

TP
53

 

A
PC

 

K
R

A
S 

TT
N

 

SO
X9

 

SM
A

D
4 

FB
XW

7 

PI
K

3C
A

 

C
TN

N
B

1 

TC
ER

G
1 

TC
F7

L2
 

SM
A

D
2 

G
PC

6  

M
SH

6 

M
YO

1B
 

B
R

A
F 

 

M
SI

 

P1                    
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P3                    

P4                    

P5                    

P6                    

P7                    

P8                    

P9                    

P10                    

P11                    

P12                    

(*Whole exome sequencing information from Dr. Claudia Ball/Prof. Dr. Hanno Glimm) 

 

 

2.2.1.2 Generation of single cell RNA sequencing libraries and classification of tumors 
Depending on the growth rate, spheroids were grown for 6-14 days after trypsinization 

(Supplementary Table 3). In order to avoid secondary cell culture artifacts that might affect 
gene expression heterogeneity, including hypoxic cores in the inner regions of spheroids 

larger than 300-400 µm in diameter240, we did not grow spheroids to sizes larger than 200 
µm. Spheroid morphologies differed strongly between patients and most likely reflect grades 

of differentiation, ranging from compact spheres to loose and instable cell-cell connections. 
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Moreover, spheroid morphologies were correlated with the required dissociation time to 

generate single cell suspensions (Supplementary Table 3).  
To obtain RNA-seq expression profiles of single cells, we used the TakaraBio iCELL8 

platform to generate 3´-end sequencing libraries (see section 1.2.2.2). By using the 
integrated imaging system, we detected single cells by nuclear staining with Hoechst and 

excluded dead cells detected by propidium iodide. Notably, several cultures were difficult to 
dissociate despite applying high Trypsin concentrations and shear forces or exhibited strong 

tendencies to quickly rebuild cell clusters after dissociation. Therefore, we needed to exclude 
several cell multiplets manually that could not be detected by the image analysis software 

provided. After sequencing, pre-processing and library QC (see Methods 5.2.4.1), we 
obtained 4663 single cell profiles, an average of 389 cells per patient, and detected on 

average more than 4000 genes per cell (Table 2). 

 

Table 2 | scRNA-seq library information of cells derived from CRC spheroids, LGR5 score and predicted 
consensus molecular subtype 

Patient # ID Mean reads 
per cell 

Mean detected 
genes (> 0 

counts) per cell 

Cell number 
after QC LGR5 score* CMS 

P1  348,016 3535 325 12.85 3 
P2  261,595 4072 309 0.23 - 
P3  460,471 4537 551 6.43 2 
P4  1,061,813 4186 263 87.72 3 
P5  334,099 3943 502 4.61 - 
P6  1,276,856 5116 141 0.03 3 
P7  359,362 4335 434 10.18 - 
P8  190,170 4174 197 3.38 4 
P9  527,407 4354 464 0.00 4 
P10  391,680 3418 736 3.35 - 
P11  505,439 4036 308 1.43 3 
P12  454,258 3977 433 0.00 3 

(*Total LGR5 counts divided by cell number) 

 

 
To approximate the abundance of CSCs in individual patient cultures, we scored each 

patient for the presence of reads that map to the CSC marker LGR5. Notably, the 
abundance of LGR5 reads per patient differed strongly, indicating different proportions of 

CSCs in individual patients (Table 2). Moreover, LGR5 gene expression may be globally 
deregulated in individual CRC samples. In support of this, four patients exhibited only very 

low numbers of LGR5 reads, indicating that these tumors are LGR5-negative241. Next, we 
classified individual cultures for their CMS using pseudo-bulk profiles that were assembled 
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from single cell expression counts161,242. Whereas eight cultures could be significantly 

classified as CMS 2,3 or 4, four cultures could not be assigned to any CMS, potentially 
because they belong to CMS1 which is normally characterized by immune infiltration.  

 
2.2.1.3 Seurat scRNA-seq analysis reveals patient-specific clustering and gene expression 

Next, we explored single cell expression profiles derived from all 12 patients using the 
Seurat analysis tool115 (see Methods 5.2.4.2). 2D visualization using tSNE maps revealed 

that tumor cells cluster according to their tumor of origin (Figure 2.13a), a phenomenon that 
that has been observed for multiple tumor entities87,168,169. Hundreds of genes were 

preferentially expressed per individual tumor. Hierarchical clustering based on the top 10 
differentially expressed genes per patient showed that tumor cells cluster, with one 

exception, by the tumor site they originate from but not by microsatellite status or CMS 

(Figure 2.13b). Tumor-specific top differentially expressed genes contained many WNT 
signaling components and downstream targets (e.g., FRZB, DKK1, TCF4, SOX2) as well as 

secretory differentiation markers (e.g. MUC12, MUC17, SPINK1, SPINK4, DEFA5, DEFA6), 
indicating that tumor-specific perturbations induce expression of different sets of signaling 

components and lineage-specific genes (Figure 2.13b).  
 

 

 

Figure 2.13 | 2D visualization and clustering of CRC single cell expression profiles reflects inter-patient 
variability. (a) 2D tSNE embedding of scRNA-seq profiles colored by patient. (b) Heatmap showing hierarchical 
clustering of absolute single cell gene expression based on top 10 differentially expressed genes per patient. 
Dendrograms reflect overall clustering and rows below show metadata information, including patient ID, sample 
origin (tumor site), microsatellite status (MS) and predicted consensus molecular subtype (CMS) of pseudo-bulk 
profiles per patient based on CMS-caller242. Three example genes for 5 selected patients are shown beside the 
heatmap. Data analysis was jointly performed with Teresa Krieger. 
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2.2.1.4 Analysis of relative single cell expression reveals shared metabolic heterogeneity 

In order to identify shared expression programs across patients, we corrected for inter-
patient variability in gene expression by calculating relative expression levels for each 

patient individually by mean-centering (see Methods 5.2.4.3)87,89,243. Upon correction, 
patient-specific clustering is completely eliminated, enabling the identification of potential 

gene expression programs that are shared across patients (Figure 2.14a). As classical 
clustering approaches did not result in distinct clusters, we analyzed variable gene 

expression by principal component analysis (PCA). Genes with high PC scores in the first 
principal component (PC1) were associated with hypoxia, Tumor Necrosis Factor alpha 

(TNF-a) signaling via NFkB and glycolysis, whereas genes with low PC scores are linked to 

cellular proliferation, growth and OXPHOS (Figure 2.14b).  
 

 

 

Figure 2.14 | Identification of intra-patient variability by mean-centering and PCA. (a) 2D tSNE visualization 
of mean-centered scRNA-seq profiles colored by patient. (b) Gene set enrichment analysis of top 300 genes with 
highest and lowest PC scores for first principle component using hallmark genes sets231. Bar plot shows top 
enriched gene sets ranked by FDR q-values. (c) Heatmap showing hierarchical clustering of top 30 genes with 
highest and lowest PC scores for first principle component of mean centered scRNA-seq data across all patients. 
Dendrograms reflect overall clustering and row below shows patient ID information. Example genes are listed 
beside the heatmap. Data analysis was jointly performed with Teresa Krieger. 
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Hierarchical clustering of the top 30 genes with high and low PC1 scores showed a clear 

anti-correlated pattern independent of patient origin. More detailed examination of the genes 
with highest PC1 scores revealed many intestinal differentiation markers (e.g., KRT19, 

TFF3, FABP1)88 as well as the epigenetic regulator H1 Histone Family Member 0 (H1F0) 
that is primarily expressed in terminally differentiated cells244. Moreover, expression of H1F0 

has been shown to be anti-correlated with self-renewal and tumorigenic capacity of cancer 
cells245. As these differentiation markers co-varied with hypoxic (e.g., CA9, EGLN3, VEGFA) 

and glycolytic markers (e.g., ALDOA, PKM), and cell cycle genes were correlated with 
OXPHOS genes, we reasoned that self-renewal and tumor cell differentiation are associated 

with metabolic preferences in CRC. Previously, OXPHOS has been linked to stem cell 
metabolism in normal192 and cancer199 intestinal tissues. However, we could neither identify 

known stem cell markers in the first PC, nor could we identify gene expression signatures in 

the other PCs that related to intestinal lineages. Thus, we reasoned that PCA is capable of 
revealing broad gene expression variability across patients but is limited in identifying gene 

expression programs that are expressed by a lower number of cells. 
 

2.2.1.5 Non-negative matrix factorization identifies metabolic gene expression programs 
and signatures specific for intestinal cell types 

In order to more accurately identify variable transcriptional programs across patients, we 
adapted a computational approach based on non-negative matrix factorization (NNMF)246 

that has been used to identify EMT related gene expression signatures in primary and 
metastatic head and neck cancer cells169 (see Methods 5.2.4.3). The adapted NNMF 

workflow (Supplementary Figure 8) included the following steps: (i) inference of variable 

gene expression programs (factors) by NNMF, (ii) identification and removal of patient-
specific factors (Supplementary Figure 9), (iii) evaluation of factors for biological relevance 

(Supplementary Figure 10), (iv) definition and clustering of core meta-signatures 
(Supplementary Figure 11), (v) computation and clustering of binary ON/OFF cell states per 

core meta-signature. We applied NNMF only to the eight LGR5+ spheroid lines (Table 2) in 
order to identify lineage-specific transcriptional programs including a potential CSC 

population. Of the 25 initial factors, we excluded eight that were preferentially expressed in 
individual patients. Next, we removed an additional four factors with high enrichments of 

genes involved in RNA binding and processing (e.g., GO_POLY_A_RNA_BINDING: FDR q-

value 1.86 x 10-32), as they are most likely associated with technical variation.  
The remaining 13 factors could be classified into two main categories: those linked to known 

intestinal ‘lineage’ (or cell type) marker genes, and the rest which we defined as transient or 
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oscillatory ‘cell states’ (Supplementary Figure 10). The identified cell states can be further 

subdivided into three subcategories. The first contains three factors enriched for genes 
involved in the regulation of proliferation, including cell cycle stages G1/S (e.g., PCNA, 

RRM2, MCM4/10, BRCA2) and G2/M (e.g., TOP2A, CENPF, MKI67, CDK1) as well as MYC 
targets (e.g., CCND1, MYC, MINA). The second is characterized by genes involved in 

immune and stress responses, including antimicrobial chemokines (e.g., CXCL1/2/3, CCL20, 

IL-8), TNF-a signaling via NFkB (e.g., HBGEF, FOS, FOSL2, IL18), and Interferon signaling 

(e.g., ISG20, STAT1, STAT3, IRF7, IFI27). The third contained five factors with genes 

relating to diverse metabolic functions, including OXPHOS (e.g., PRDX3/4, ATP5O, 
ATP5G1, COX16), fatty acid metabolism (e.g., CES2, RETSAT, FABP2) and 

hypoxia/glycolysis (e.g., HILPDA, VEGFA, CA9, PGK1, CKB, ALDOA). One of the two 
factors enriched for genes involved in hypoxia/glycolysis contained many genes that were 

associated with high PC1 scores (Figure 2.14) and also included many differentiation 
markers (e.g., H1F0, TFF3, FABP1, KRT20, KRT19, MUC13). Thus, this factor overlapped 

with the second ‘lineage’ category, which also comprised a stem-like factor with many known 
markers for normal intestinal stem cells, including SMOC2, PTPRO, SP5, RGMB and 

LGR588,229. This factor also contained the transcriptional regulator PROX1 that we identified 
as a putative CSC marker by pheno-seq (Figure 2.12). Moreover, NNMF enabled the 

identification of a Paneth-like subpopulation also detected by pheno-seq, which might serve 

as cellular niche for CSCs (e.g. DEFA5, DEFA6, FCGBP, MUC2)88,229.  
Next, we computed meta-signatures scores for each cell based on the averaged expression 

of the top 200 genes per factor and merged signatures that exhibit similar enrichments and 
clustering patterns (Supplementary Figure 10 and Supplementary Figure 11), resulting in 

eight ‘core’ meta-signatures. Hierarchical clustering of these core meta-signatures showed 
that signature gene expression is independent of patient origin, similar to PCA (Figure 

2.15a). Although NNMF analysis did not result in mutually exclusive patterns of gene 
expression signatures, clear tendencies for discrete and overlapping transcriptional 

programs were visible. For example, the cell cycle, OXPHOS and MYC-target signatures 
exhibited a pronounced overlap. This observation indicates that high proliferation rates in 

this putative transit-amplifying (TA) compartment are driven by MYC and accompanied by 

OXPHOS, similar to hematopoietic progenitor cells247–249. In contrast, high signature scores 
for immune responses, hypoxia/glycolysis, stem and Paneth cells showed a relatively 

exclusive pattern. 
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Figure 2.15 | Identification of shared gene expression programs in eight LGR5+ CRC patients by NNMF. 
(a) Heatmap showing hierarchical clustering of core-meta signature scores identified by NNMF across cells 
fromeight LGR5+ tumors. Dendrograms reflect overall clustering and row below shows patient ID information. 
Names of meta-signatures reflecting enriched genes are listed beside the heatmap. (b) Heatmap showing 
hierarchical clustering of binary core-meta signature scores (reflecting ON/OFF states of respective signatures 
per cell) across cells from eight LGR5+ tumors. Dendrograms reflect overall clustering and row below shows 
patient information. Names of meta-signatures reflecting enriched genes are listed beside the heatmap. For 948 
cells, no ‘ON’ state could be assigned for any core meta-signatures. Data analysis was jointly performed with 
Teresa Krieger. 

 

 
In order to assess whether core meta-signatures are active in individual cells, we inferred 

binary ON/OFF states of defined core meta-signatures per cell (see Methods 5.2.4.3), 
thereby generating a reduced representation of signature scores. Hierarchical clustering of 

binary states resulted in a similar pattern as for meta-signature scores but also revealed a 
partial overlap of fatty acid metabolism, Paneth signature, immune response and, to some 

extent, hypoxia/glycolysis (Figure 2.15b). Quantification of cellular fractions per patient 
revealed varying proportions of active core meta-signatures that can be linked to differential 

expression between patients (Supplementary Figure 12). For example, P4 had the highest 

LGR5 score and exhibited the highest fraction of cells with an active stem signature. 
Moreover, Paneth markers DEFA5 and DEFA6 were preferentially expressed in P7, which 

showed the highest number of cells with an active Paneth signature. Taken together, NNMF 
enabled the inference of lineage-specific transcriptional signatures and overlapping cell 

states across tumor cells of multiple CRC patients.  
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2.2.1.6 Lineage-specific metabolic preferences in CRC 

Metabolic heterogeneity can be tightly linked to cellular differentiation in healthy and 
neoplastic tissues (see section 1.3.1.5). Rodriguez-Colman et al. recently revealed 

differential metabolic programs and associated interdependencies between LGR5+ stem cell 
cells (OXPHOS) and niche-forming Paneth cells (glycolysis) in the healthy small intestinal 

epithelium, but the metabolic state of other cell types was not determined192. In CRC, several 
indications suggest a dependency of CSCs on mitochondrial function199 but associated 

genetic programs and metabolic preferences of other cancer cell subtypes in CRC are 
unknown.  

Based on both PCA and NNMF analysis, variable metabolic programs seem to be a major 
source of heterogeneity across CRC patients, but lineage-specific metabolic states could 

only be partially inferred. Whereas glycolysis/hypoxia can be assigned to terminally 

differentiated (Tdiff) cells (FABP1+/H1F0+), OXPHOS strongly overlaps with the MYC target 
signature and actively cycling cells that might, at least in part, represent the TA compartment 

that is located above the crypt in the normal intestine57,159 (Figure 2.15). From our binary 
‘ON’/’OFF’ categorization of cells that was based on a comparison of gene expression 

across the entire data set (Supplementary Figure 13) no distinct metabolic preferences could 
be directly assigned to stem and potentially niche-forming Paneth meta-signatures as 

previously described for the healthy intestine192. However, we reasoned that differential 
metabolic trends between stem and Paneth cells could be masked by much higher or lower 

expression of individual metabolic signatures in highly cycling cells or the terminally 
differentiated subpopulation, which Rodriguez-Colman et al. did not report on. For example, 

it is known that few intestinal cells are actively cycling in crypts compared to TA cells57; 

consistently, in our binary classification, we observed significant overlap between the MYC 
signature, OXPHOS and cell cycle, but only a very small overlap between stem cells and the 

OXPHOS or cell cycle signatures. We therefore conducted a pair-wise comparison of cell 
state meta-signature expression across the identified intestinal lineages, and further refined 

our scoring approach by focusing solely on genes that are known to relate to the inferred 
metabolic identities of meta-signatures, including cell cycle, OXPHOS, hypoxia and 

glycolysis (see Methods 5.2.4.3). 
As expected, the strongest differences in metabolic states were visible between the Tdiff 

(FABP1+) and MYC+ subpopulations, showing that most MYC+ cells are actively cycling and 

OXPHOShigh, whereas Tdiff cells exhibit high hypoxia and glycolysis scores but low cell cycle 
and OXPHOS scores. Although the differences are less pronounced, we detected similar 

and highly significant trends for stem and Paneth cells. Compared to Paneth cells, stem cells 
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show increased OXPHOS and lower hypoxia/glycolysis scores and vice versa (Figure 2.16b, 

c, and d), in line with previous observations in the healthy intestine192. Interestingly, the 
stem-like signature is also associated with enhanced expression of OXR1 and PON2. These 

genes are essential for the protection against oxidative stress250,251 and might thus represent 
a compensatory mechanism against high ROS levels due to enhanced rates of OXPHOS. 

Additionally, the stem-like signature contains the gene Glutamate Ammonia Ligase (GLUL) 
that catalyzes the synthesis of glutamine (a major source for OXPHOS252) as well as 

MAP2K6, an essential component of the p38 signaling cascade253, whose activity is known 
to coincide with high OXPHOS levels in intestinal stem cells192. At the same time, we 

observed that cell cycle scores are only slightly higher in stem cells compared to Paneth 
cells, indicating that putative CSCs are slow-cycling in CRC. In sum, these results show that 

proliferation as well as tumor cell differentiation are linked to metabolic identity in this model 

of CRC, that also includes putative LGR5+ stem and DEFA5+ Paneth-like subpopulations. 
 

 

 

Figure 2.16 | Paneth and stem cell meta-signatures are associated with distinct metabolic tendencies. 

Violin plots reflecting cell state scores (cell cycle, OXPHOS, glycolysis, hypoxia) for cells with active lineage-
specific meta-signatures based on binary classification (see Figure 2.15b): Paneth (n=381), stem (n=458), MYC+ 
(n=552) and Tdiff (n=483). Violin-plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR. 
Indicated are P-values from unpaired two-tailed Students t-test. 
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2.2.2 In situ analysis reveals metabolic compartmentalization and potential cellular 

interdependencies  
Despite the rich information content of scRNA-seq data, inference of spatial locations, 

morphologies and cellular interactions requires additional in situ analysis based on 
microscopy. Therefore, we aimed to map identified molecular markers to their spatial 

location in spheroids by using live-dyes and RNA-FISH56. We selected three representative 
CRC spheroid lines with distinct morphologies (Figure 2.17a), including one line derived from 

a primary tumor (P5) and two from liver metastases (P1 and P4).  
 

 

 

Figure 2.17 | Morphological heterogeneity and mitochondrial abundance in three CRC spheroid cultures. 

(a) Brightfield images of three representative CRC spheroid cultures; Scale bar 100 µm. (b) Histological sections 
of CRC spheroid cultures shown in (a). Images represent maximum projections of 10 µm slices stained for nuclei 
(DAPI, Cyan) and mitochondria (MitoTracker Red CMXRos, Red); Scale bar 50 µm. 
 

 

Histological examination revealed intestinal crypt-like phenotypes in all three spheroid lines, 
including luminal structures and partially polarized cells (Figure 2.17b), thus indicating for a 

high degree of differentiation in line with scRNA-seq results. To further validate scRNA-seq 
data, we stained spheroids with a mitochondrial live-dye (Mitotracker Red CMXRos) before 

histological preparation in order to asses metabolic heterogeneity for OXPHOS. In all three 
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patients, we could detect strong differences in mitochondrial content between cells and a 

compartmentalization of cells with high numbers of mitochondria especially at the outer layer 
of crypt-like regions (Figure 2.17b). Similar patterns have been observed in healthy intestinal 

organoids, where crypt formation (‘budding’) and associated differentiation are driven by 
OXPHOS and ROS signaling192. As the abundance of mitochondria is correlated with 

increased mitochondrial activity in intestinal organoids192, we defined outer regions with high 
Mitotracker signal as OXPHOShigh regions.  

 
 

 

Figure 2.18 | Validation of lineage specific marker genes by RNA-FISH. Histological section of CRC spheroid 
derived from P1 co-stained for representative lineage-specific marker genes by RNA-FISH. Middle: overview 
image; scale bar 50 µm. Left and right: magnified images that represent dashed box regions in overview image 
(4x digital zoom); scale bar 10 µm. DEFA5: Paneth cells (green), LGR5: stem cells (yellow), FABP1: 
differentiated cells (red). Images represent Z-projections from 10 µm slices. DNA counterstain by DAPI (blue). 
For P4 and P5 see Supplementary Figure 14. 

 
 

Next, we used RNA-FISH to visualize mRNA abundance of subtype markers that we 
identified by scRNA-seq. Multiplexed RNA-FISH for representative intestinal lineage markers 

LGR5 (Stem), DEFA5 (Paneth) and FABP1 (TDiff) resulted in discrete staining of individual 
cells by either one or none of the three markers, thereby strongly indicating for the existence 

of distinct intestinal lineages in all three patients (Figure 2.18 and Supplementary Figure 14). 
Consistent with scRNA-seq results, spheroids from different patients differ both in 

abundance of subtypes (Supplementary Figure 12) and in expression magnitude of marker 
genes. In addition, clear tendencies of the spatial location of subtypes were visible. For 

example, DEFA5+ cells primarily localized to the inner regions of spheroids, whereas LGR5+ 

showed a tendency towards outer regions (Figure 2.18 and Supplementary Figure 14). In 
many cases, we could identify DEFA5+ cells in direct proximity to LGR5+ cells (Figure 2.18), 

as also observed for PROX1+ cells (Figure 2.12), indicating for similar cellular interactions 
and dependencies between stem and Paneth cells as in the healthy intestine4,229. In healthy 
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intestinal organoids, crypt formation is associated with enhanced OXPHOS and with the 

emergence of Paneth cells and LGR5+ stem cells at budding sites that later on develop 
distinct metabolic identities192. In CRC spheroids, we could detect enhanced mitochondrial 

abundance at budding sites (Figure 2.17), tendencies for the spatial location of subtypes 
(Figure 2.18 and Supplementary Figure 14) as well as anti-correlated trends in metabolic 

transcriptional programs for DEFA5+ and LGR5+ cells (Figure 2.16). Thus, we asked whether 
metabolic compartmentalization at budding sites is associated with the spatial distribution of 

lineage subtypes in CRC spheroids.  
 

 
 

 

Figure 2.19 | The spatial location of LGR5+ cells coincides with high mitochondrial abundance in budding 
spheroid regions. Histological section of CRC spheroid derived from P1 co-stained for representative lineage-
specific marker genes by RNA-FISH and for mitochondria with Mitotracker Red CMXRos (100 nM). Top left: 
overview image (merge); scale bar 50 µm. Lower left: magnified image that represents dashed box regions in 
overview image (4x digital zoom); scale bar 10 µm. Middle and right: Individual channels of magnified image; 
scale bar 10 µm. DEFA5: Paneth cells (green), LGR5: stem cells (yellow), mitochondria (red). Images represent 
Z-projections from 10 µm slices. DNA counterstain by DAPI (blue). For P4 and P5 see Supplementary Figure 15. 
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By combining mitochondrial staining and RNA-FISH, we could detect that DEFA5+ are 

largely excluded from OXPHOShigh regions. In contrast, LGR5+ cells were primarily located in 
OXPHOShigh regions in all three patients (Figure 2.19 and Supplementary Figure 15). 

However, LGR5+ cells are not restricted to the outer layer of CRC spheroids as we could 
also detect LGR5+ in inner regions of spheroids in some cases (Supplementary Figure 16). 

Differentiated FABP1+ cells do not locate to OXPHOShigh regions (Supplementary Figure 17), 
which is consistent with scRNA-seq results that revealed a co-expression of FABP1 with 

hypoxic and glycolytic markers (Figure 2.14 and Supplementary Figure 10). Furthermore, 
actively cycling cells stained by the cell cycle marker MKI67 were frequently but not solely 

present in OXPHOS regions in all patients (Supplementary Figure 18) which is in line with 
scRNA-seq data that showed a strong but not complete overlap of OXPHOS and cell cycle 

gene expression signatures (Figure 2.15 and Supplementary Figure 13). 

In order to quantify observed compartmentalization of OXPHOShigh states and lineage-
specific gene expression across multiple spheroids and thousands of cells, we developed an 

automated image analysis pipeline that includes (i) nuclei segmentation by deep learning, (ii) 
single cell quantification of binarized fluorescence signals, (iii) k-means clustering to identify 

‘ON’ states in gene expression and mitochondrial abundance and (iv) computation of 
overlaps between ‘ON’ states of imaged channels (Figure 2.20 and Supplementary Figure 

19). In line with scRNA-seq results and qualitative image evaluation, quantitative image 
analysis of overlaps between LGR5, DEFA5 and Mitotracker ‘ON’ states in three patients 

revealed a much higher fraction of LGR5+ cells that are OXPHOShigh at the same time 
compared to DEFA5+ cells (Figure 2.21). In addition, overlaps between LGR5+ and DEFA5+ 

cells were very low, showing that both markers define independent CRC subtypes.  

Taken together, in situ analysis by microscopy validated scRNA-seq data and further 
indicated for lineage-specific metabolic preferences of putative stem and Paneth subtypes in 

CRC. Furthermore, metabolic tendencies of both lineage subtypes seemed to be associated 
with their spatial localization in spheroids, indicating for dynamic processes (e.g., cellular 

budding) that might influence functional tumor cell heterogeneity.  
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Figure 2.20 | Detection of single cell ‘ON’ states in gene expression and mitochondrial abundance by 
automated image analysis. Example images (same position/spheoid) from P1 reflecting major steps during 
image processing and analysis. Upper: raw DAPI signal (left) and nuclei detection by deep learning (right). 
Lower: Binarized fluorescence signals from RNA FISH probes (DEFA5 and LGR5) and Mitotracker Red (left) and 
detected single cell ‘ON’ states (white dashed circles) inferred by k-means clustering (right). Scale bar 50 µm. 
The image analysis pipeline was developed together with Foo Wei Ten.  
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Figure 2.21 | LGR5+ cells show higher overlap with Mitotracker ‘ON’ states compared to DEFA5+ cells. (a) 
Venn diagrams showing overlaps between ‘ON’ states in gene expression (LGR5 and DEFA5) and mitochondrial 
abundance (Mitotracker Red) in three patients inferred by fluorescence microscopy and image analysis. Total 
number of analyzed cells: P1 n=4032; P2: n=3813; P3: n=2861. (b) Barplot reflecting fraction of LGR5+ and 
DEFA5+ cells that overlap with Mitotracker ‘ON’ states in three patients. The image analysis pipeline was 
developed together with Foo Wei Ten. 
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3 Discussion and Outlook 
With this study, we provide a methodological framework to analyze tumor cell heterogeneity 

in 3D cell culture systems using combinations of NGS and microscopy. First, we developed 
pheno-seq as straightforward strategy for combined gene expression profiling and imaging 

of clonal tumor spheroids that enables a direct correlation of patho-phenotypes and 

underlying trancriptomes. Second, we applied scRNA-seq to 12 patient-derived CRC 
spheroid cultures and complemented results by RNA-FISH analysis in situ. Thereby, we 

could reveal a link between metabolic preferences and cancer cell differentiation, spatial 
spheroid organization and potential cellular interdependencies.  

In the following, I will discuss the obtained results for both methodological strategies in the 
context of related work and previous studies. Furthermore, I will provide an outlook on 

required future work, potential applications as well as improvements regarding both 
technology and data analysis. In the final conclusion, I will relate both strategies to each 

other in the context of 3D cell culture systems as tool for personalized medicine. (Parts of 
section 3.1 have been adapted from the original publication for which I have written the 

original text208) 

 

3.1 Pheno-seq – linking morphological and functional features to gene 

expression in 3D cell culture systems 
3.1.1 Pheno-seq – a complementary method to understand tumor cell heterogeneity  

Imaging-based classification is used as standard method to classify tumor subtypes and 
disease states in primary samples, but this has not been broadly transferred to 3D cell 

culture systems, and if it was, only to compare inter-patient differences211 rather than 
intratumor heterogeneity. On the other hand, recently developed technologies for scRNA-

seq have been primarily used to dissect tumor cell heterogeneity in primary samples of 

several entities87,89,168,169,254. However, scRNA-seq does not provide a direct link to 
contextual cellular phenotypes since the available protocols involve dissociation of cells and 

loss of their multicellular context.  
Spatial transcriptomics (see section 1.2.3) represents a promising approach to resolve 

intratumor heterogeneity both morphologically and transcriptionally133,134. Although this 
strategy would be of high relevance for 3D cell culture systems, in vitro cultures are not yet 

able to spatially reconstruct whole tumor mass, but rather small parts (spheroids, organoids) 
with characteristic morphologies and cellular subtype composition. Nevertheless, their 
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flexibility enables a much deeper analysis with various molecular tools and imaging 

technology (Figure 1.1), including time-resolved single cell analysis, which can inform about 
functional tumor cell heterogeneity and behavior.  

Here we present pheno-seq, that complementary to spatial transcriptomics in primary 
samples, links cellular morphologies to underlying gene expression in vitro by directly 

combining high-throughput imaging and next generation sequencing of clonal tumor 
spheroids (Morpho-Transcriptomics). Besides functionally explaining heterogeneous 

behavior in 3D cell culture systems, pheno-seq also complements scRNA-seq in revealing 
heterogeneous gene expression by providing more RNA material than single cells, thereby 

increasing the gene detection rate per sample (Figure 2.2h) and decreasing drop-out rates. 
Despite lower cellular resolution than scRNA-seq, we show that pheno-seq is able to link cell 

type-specific genes to heterogeneous growth phenotypes even in a highly complex and 

patient-derived CRC cell culture system (Figure 2.7).  
We could show that Paneth-like cells, are present in both small and big spheres, but with 

varying cellular ratios (Figure 2.8 and Figure 2.10). It has been shown previously that the 
fraction of functionally different subpopulations in this CRC model remains stable over 

several rounds of replating, suggesting that the composition of cells in continuously growing 
spheroids remains relatively stable204. Consequently, for a cellular subtype with limited 

proliferative potential in the putative CRC differentiation hierarchy, we would have expected 
a similar association of relative expression and size as observed for the TFF3+ secretory 

signature above (Figure 2.7d). However, as we also detected several big spheres with high 
numbers of DEFA5+ cells, we reasoned that Paneth-like cells exhibit a heterogeneous 

proliferative phenotype (high- and low-cycling) that could relate to the delayed-contributing 

subpopulation in CRC that has been described previously204. A recent study could show that, 
upon injury, proliferation and a stem-like transcriptomic profile is induced in a subset of 

Paneth cells that are post-mitotic under normal conditions255. Interestingly, this fate change 
depends on Notch signaling, which we identified as crucial for long-term proliferative 

potential of CRC spheroids (Figure 2.7 and Figure 2.9). Future studies will need to address 
the question whether a permanent injury or immune response256 induces the observed 

proliferative phenotype of Paneth-like cells and analyze its functional implication in CRC 
development and progression.  

Furthermore, we show that deconvolution by maximum likelihood inference provides an 

additional layer of information by revealing single-cell regulatory states of which many are 
likely to be associated with a distinct stem-like population (Figure 2.12), thereby further 

supporting a differentiation-like hierarchy in CRC. Based on our results, future studies should 
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shed light on functional characteristics and dependencies of the intestinal CSC 

compartment, potential cancer cell plasticity and the impact of subtype-specific metabolic 
preferences (further discussion on intratumor heterogeneity in CRC in section 3.2).  

 
3.1.2 Future applications of pheno-seq 

Pathologically relevant phenotypes are readily apparent from microscopy in both primary 
samples and in 3D culture systems. However, extracting functionally relevant features from 

both bulk and single cell RNA-seq data alone is difficult due to the high complexity of the 
data. Thus, adding visual information to Omics profiling provides an important functional 

layer of information.  
Similar to spatial transcriptomics (section 1.2.3) and topographic single cell sequencing 

(section 1.3.1.1), we could identify molecular signatures that are associated with visual 

oncogenic phenotypes in 3D cell culture systems. These included invasive phenotypes that 
can be both identified in and ex vivo, as well as heterogeneous proliferative behavior whose 

characterization is restricted to in vitro systems. Thus, if 3D cell culture systems will be 
further embedded in personalized translational and clinical pipelines, pheno-seq might be a 

promising tool for identifying potential drugs targets to inhibit observed oncogenic behavior. 

For instance, we could show that perturbing identified CSC signaling with a g-secretase 

inhibitor had a concentration-dependent negative effect on CRC spheroid growth (Figure 

2.9). If the inhibitory effect is based on driving CSC into differentiation as described for 
mouse colonic stem cells229 needs to be further validated.  

An additional promising application for pheno-seq could be the mechanistic characterization 
of invasive cancer cell behavior. Defining the expression changes that are associated with 

visual phenotypes of cancer cell invasion is challenging due to high intratumor heterogeneity 
and technical limitations in isolating and characterizing cellular subpopulations. Hence, 3D 

cell culture systems and pheno-seq might be promising tools to analyze cancer cell motility 

over time and under defined conditions. As proof-of-concept, we could link EMT related gene 

expression programs to invasive cancer cell behavior in the MCF10CA breast cancer model, 

although it is not clear whether genetic or epigenetic alterations induce this phenotypic 

heterogeneity. In addition, the applicability of patient-derived material to characterize 

mesenchymal tumor cell phenotypes with pheno-seq still needs to be demonstrated. 

Taken together, we expect that pheno-seq as combination of functional single cell growth 

assay with combined image and gene expression profiling will be widely applied in cancer 
biology, ranging from primary34,35 to circulating tumor cells (CTCs)257. Moreover, pheno-seq 

might be extended to developmental biology based on model organisms where embryonic 
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development following fertilization is often not completely synchronized. Hence, pheno-seq 

might be used to resolve transcriptional changes that are associated with morphological 
transitions in non-synchronized developmental processes. Finally, pheno-seq might be 

applied in combination with single cell pooled-screening approaches258 but with single cell 
growth and spheroid phenotype readout in addition to gene expression profiling (Figure 3.1).  

 
3.1.3 Limitations and possible improvements of pheno-seq 

3.1.3.1 Spheroid isolation 
Pheno-seq represents a straightforward methodological strategy that does not necessarily 

require complex experimental setups (manual pheno-seq) and which can be applied to 
virtually any 3D culture system given that the phenotypic identity is maintained upon 

spheroid isolation. The isolation of spheroids or organoids from Matrigel might influence 

fragile phenotypes including highly invasive cells with long protrusions which should be kept 
in mind for downstream analysis and data interpretation. Fixation prior to isolation or 

alternative experimental setups where spheroids are imaged in Matrigel before isolation/lysis 
might be considered if the phenotype of interest cannot be maintained after isolation. 

However, the latter strategy would not be possible with the iCELL8 system. 
 

3.1.3.2 Lysis, RT and cDNA amplification chemistry 
Whereas lysis, RT and cDNA amplification reagents and reaction conditions for scRNA-seq 

have been highly optimized during the last years, there is still room for improvement for HT-
pheno-seq. For instance, the gene detection rate is significantly higher for manual compared 

to HT-pheno-seq (Figure 2.2). As a consequence, low-expressed genes like the EMT master 

regulator SNAI2 could be identified as ‘aberrant’-specific by manual pheno-seq, but not with 
the high-throughput approach. Although there is always a trade-off between throughput and 

sensitivity even for scRNA-seq78, several steps of the HT-pheno-seq workflow might 
influence library quality compared to manual pheno-seq.  

In general, the reagent composition in both methods is very similar and consists of optimized 
components for full-length scRNA-seq based on template switching technology86. However, 

cellular lysis is most likely more effective for manual pheno-seq workflow, which involves 
strong detergents and subsequent RNA-isolation. In contrast, HT-pheno-seq relies on 

cellular lysis by freezing/thawing and Triton-X detergent. Although we already increased the 

detergent concentration 5-fold compared to the single cell protocol, this might have to be 
further optimized. In addition, the reaction volume is approximately 500-fold lower for HT-

pheno-seq, which could in principle improve performance of the RT reaction77. At the same 
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time, the amount of cellular material present during the reaction is increased and could have 

an inhibitory effect on both RT and cDNA amplification. Whereas manual pheno-seq cDNA 
libraries are generated by separated lysis, RT and cDNA amplification and enable full-length 

sequencing, HT-pheno-seq libraries are generated in a one-step PCR and only consist of 3´-
ends due to the high multiplexing. A major improvement of HT-pheno-seq could be the 

usage of unique molecular identifiers (UMIs), random barcodes that enable transcript 
counting to avoid amplification bias, or the ability to generate full-length libraries. However, 

the used protocol for the iCELL8 system does not support the generation of UMI or full-
length libraries to date. Finally, fixation by DSP seems to have a slight negative influence on 

either lysis or RT efficiency (Figure 2.2h). Although de-crosslinking is based on Dithiothreitol 
(DTT), a general component of the reverse transcription buffer, the concentration, 

temperature and incubation time with DTT might have to be optimized.  

 
3.1.3.3 Pheno-seq imaging 

A major advancement of pheno-seq is the direct combination of gene expression profiling 
and imaging. Whereas library preparation and RNA-sequencing workflows are relatively 

straightforward and well established, high-throughput microscopy is less well optimized and 
technically more challenging, especially in this specific setup. A key consideration for pheno-

seq is the balance between time and image resolution as increased imaging time that is 
generally necessary for enhanced image quality can severely affect RNA quality. The current 

protocol based on confocal laser scanning microscopy takes approximately 30 minutes, 
which we considered as maximum to not severely affect RNA quality, even in DSP fixed 

samples. Although we could highly increase spheroid image quality compared to the default 

iCELL8 imaging system (Figure 2.4), there is still much room for improvement. We envision 
pheno-seq to become even more powerful with single cell or even subcellular resolution, 3D 

image acquisition and time-lapse microscopy, as well as integrated staining by IF, live dyes 
or even RNA-FISH. Whereas heterogeneous spheroid phenotypes of >10-20 cells are 

distinguishable with the current workflow, significantly enhanced image resolution might 
resolve ‘spheroid’ phenotypes of very low cell numbers (1-5 cells), which would 

simultaneously simplify gene expression deconvolution to single cell resolution (Figure 2.12). 
Increasing pheno-seq image content to that extent requires alternative imaging technology, 

and light sheet fluorescence microscopy (LSFM)259–261 most probably represents the only 

possible solution that meets all requirements. In contrast to point-detection and scanning in 
confocal microscopy where the whole sample is illuminated throughout imaging, LSFM uses 

a sheet of light that illuminates the sample only in one thin section perpendicularly to the 
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detection objective. This ‘optical sectioning’ principle enables high-speed imaging at high 

spatial and temporal resolution with minimal photodamage. Very recently, a new generation 
of LSFM have been introduced, combining lattice light sheet microscopes with adaptive 

optics, thereby enabling detailed imaging of subcellular events in vivo262. As proof-of-
concept, we were able to image spheroids in the iCELL8 nanowell chip setup with a dual-

view inverted selective plane illumination microscope261 in combination with a fluorinated 
ethylene propylene (FEP) foil to seal the chip (not shown). Notably, imaging of one row only 

(72 nanowells) at one time-point can generate data in the range of hundreds of gigabytes. 
Thus, additional challenges for data processing and storage arise when using this kind of 

microscopy for pheno-seq. Alternatively, decreasing the number of samples/wells in 
alternative culture and imaging setups might enable detailed time-lapses of clonal spheroids 

without producing vast amounts of data.  

 
3.1.3.4 Data integration and analysis  

To our knowledge, pheno-seq is the first method that enables direct combined data analysis 
of both gene expression and contextual image features. However, combined analysis 

presented in this study does not involve a real integration of imaging and RNA-seq datasets 
but rather a mapping of image features on pre-defined gene expression clusters and 

subsequent statistical analysis. Although this represents a significant technical advancement 
with high biological relevance, this strategy has been mainly chosen due to the low image 

complexity and future efforts should generally focus on gaining single cell imaging resolution. 
Besides technological future goals for pheno-seq implementing higher resolution microscopy 

and content, key advancements will include the direct integration of complex image feature53 

and RNA-seq datasets. Similar to the integration of different (single cell) Omics datasets263–

265, profiling different layers from the same sample will aid to identifying biologically relevant 

molecular and phenotypic features and their connection. For example, informative image 
features might improve gene expression clustering and vice versa. Moreover, this strategy 

might help to identify subtype-specific but primarily unobserved phenotypes and associated 
molecular features.  

If more complex pheno-seq imaging datasets are generated and the higher the sample 
number is, more challenges will arise for efficient and accurate data analysis. Especially for 

image analysis, precise single cell segmentation and feature extraction represent the biggest 

hurdles especially for huge datasets (e.g. LSFM-derived). In addition, most available tools 
have been developed for 2D cultured cells or histological slices and not for 3D objects like 

spheroids. Recent state-of-the art developments in computer vision tasks have been 
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primarily dominated by deep-learning algorithms266 of which convolutional neuronal 

networks267 (CNNs) are the most relevant for image analysis. In contrast to ‘classical’ image 
analysis methods, CNNs learn to extract relevant profiles/patterns directly from raw image 

data by multiple non-linear transformations without explicit image segmentation and feature 
extraction. As CNNs provide several advantages including enhanced speed and improved 

performance, these approaches appear as most promising to handle complex imaging 
datasets. For instance, a CNN combined with non-linear dimension reduction has been used 

to infer cell cycle stages and other single cell phenotypes from high-throughput imaging flow-
cytometry, thereby substantially increasing speed and decreasing error rates compared to 

‘classical’ approaches based on feature extraction. Finally, CNNs might even improve RNA-
seq and image data integration although this needs to be demonstrated.  

 

3.1.4 Potential extensions of pheno-seq 
In addition to above described possible improvements of the current workflow (section 

3.1.3), pheno-seq might be also extended to other experimental setups or combined with 
other imaging and NGS technologies to improve cellular, spatial and temporal resolution or 

to add other regulatory layers of gene expression.  
 

3.1.4.1 Acquiring single cell resolution at the gene expression level 
Pheno-seq enables unbiased detection of heterogeneous gene expression with a higher 

sensitivity than scRNA-seq, but at cost of lower cellular resolution (Figure 2.2). Although 
pheno-seq still provides single cell information as the profiled spheroid phenotype and its 

transcriptome are the direct consequence of its founding cell, the resulting multicellular 

structure will consist of several distinct cell types or states if the used 3D culture system 
closely reflects physiological conditions. Thus, the more complex the 3D cell culture system 

is, and the higher the cell numbers in profiled spheroids are, the more important will it be to 
acquire ‘real’ single cell information on the gene expression level.  

We could deconvolve CRC pheno-seq data by a maximum likelihood inference approach 
and identified over 1000 highly relevant genes, including many known stem cell markers 

which we also identified by scRNA-seq (Supplementary Figure 10), that are likely to exhibit 
heterogeneous expression at the single cell level (Figure 2.12). However, the deconvolution 

approach in its current form does not inform about the global relationship of these genes, 

including gene expression correlation across single cells, which would be needed to 
specifically define cellular subtypes. Thus, combining pheno-seq with scRNA-seq and 

integrated data analysis might be a pragmatic strategy to circumvent current limitation in 
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cellular resolution. For instance, Moncada et al. circumvented the lower cellular resolution of 

spatial transcriptomics by combining this approach with scRNA-seq from the same tissue 
piece of pancreatic ductal adenocarcinoma268. By combining information regarding inferred 

cellular subpopulations and gene expression maps, they could deconvolve proportions of 
cell types that localize to specific regions inside the tissue, including cancer cell subtypes, 

fibroblasts, normal epithelial cells and different kinds of immune cells. Accordingly, the same 
strategy could be applied to deconvolve cell type compositions in imaged spheroids. 

 
3.1.4.2 Pheno-seq and time-lapse microscopy 

Enhancing image resolution will be one of the key improvements of pheno-seq to ultimately 
gain single cell or even subcellular resolution (discussed in section 3.1.3.3). A key 

advantage of in vitro cell culture systems is the experimental control over time. This does not 

only enable sampling at defined time-points and under defined conditions, but also imaging 
of dynamic processes over time. Therefore, integration of time-lapse microscopy in pheno-

seq workflows appears as a key step to understand growth dynamics, changes and 
appearances of visual cellular phenotypes and, most importantly, underlying gene 

expression at defined end time-points. For example, pheno-seq gene expression profiling at 
various time points after single cell seeding and integrated time-lapse microscopy could 

reveal the link between visual cellular phenotypes, including dynamic behavior, and 
appearances of subtypes. Alternatively, the end time point for gene expression profiling 

could be defined by the occurrence of specific cellular events. Moreover, time-resolved 
microscopy prior to gene expression profiling could be combined with fluorescent reporters 

for subtype markers that were identified beforehand with scRNA-seq or pheno-seq. 

Prominent examples of how continuous time-lapse microscopy with fluorescent reporters for 
subtype markers can change previous assumptions of lineage choice based on single cell or 

bulk RNA-seq come from studies with hematopoietic stem cells. First, Hoppe et al. could 
show that different myeloid lineage associated transcription factors are ‘only’ executing and 

reinforcing lineage choices that are already made, rather than competing against each 
other269. In addition, by using a CNN based on brightfield images, they could later show that 

lineage choice can be detected up to three generations before known lineage markers are 
even detectable270. As already mentioned before, combining time-lapse microscopy with 

pheno-seq will not be possible with the current iCELL8 based workflow. However, first trials 

of experimental setups that are compatible with time-lapse microscopy based on LSFM, 
including single cells spotted in small drops of Matrigel, show promising results (not shown). 
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Figure 3.1 | Pheno-seq summary and outlook. Left: Overview and key characteristics of pheno-seq as new 
method to directly combine unbiased gene expression profiling and microscopy in 3D culture systems (similar to 
Figure 1.4). Upper right: Possible application strategies for pheno-seq. Lower right: Potential technical and 
analytical improvements and extensions for pheno-seq.  

 
 

3.1.4.3 Additional extensions for pheno-seq 
In recent years, the ability to perform unbiased gene expression analysis in single cells has 

led to the development of many other molecular methods that reveal other or additional 
layers of information in low-input samples or single cells, including single cell (epi)genomic 

profiling92,94,95,271,272, combinations of single cell -Omics from the same single cell96–100,273, as 
well as lineage tracing274–277 and functional screening258,278–280 combined with scRNA-seq. 

Obviously, many of these methods might be combined with the pheno-seq principle. For 
instance, pheno-seq can be easily extended to other low-input, next-generation sequencing 

modalities such as chromatin accessibility prolifiling95, even with the iCELL8 technology281.  

Furthermore, the combination of lineage tracing with time-lapse microscopy and subsequent 
gene expression profiling would reveal a direct link between continuous single cell behavior 

and developmental trajectories, although a ‘real’ single cell readout might be required in this 
experimental setup. In order to achieve such resolution for direct image and gene expression 

profiling at the single cell level, technological advances need to either (i) enable the isolation 
of all cells of one particular spheroid after imaging, or (ii) enable unbiased spatial 

transcriptomics at single cell resolution, optimally in 3D135.  
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3.2 Heterogeneous metabolic signatures are linked to cancer cell 

differentiation in a 3D model of colorectal cancer 
3.2.1 Cellular composition and hierarchical organization in a 3D model of CRC 

The intestinal epithelium represents a well characterized hierarchically organized cellular 
compartment, with self-renewing LGR5+ stem cells at the crypt base giving rise to more 

specialized and short-lived cellular progeny that differentiate upon moving upwards the crypt. 
An increasing number of investigations suggests that CRC exhibits a similar hierarchical 

organization in which LGR5+ cancer stem cells represent the cells of origin fueling the 
growth of developing adenomas and tumors164,205,238 (see section 1.3.1.2). However, 

relatively little is known about the cellular composition and underlying transcriptional 
programs in CRC and understanding phenotypic characteristics and dependencies of CSCs 

could reveal potential targets to efficiently treat CRC.  

In order to resolve cellular heterogeneity in CRC in more detail, we applied scRNA-seq to 3D 
spheroid cultures derived from 12 CRC patients. Using the same culture model, Dieter et al. 

have identified functionally distinct subpopulations with different self-renewal and 
tumorigenic capacity204. These functional differences were independent of underlying 

subclone composition226, indicating non-genetic factors that drive tumorigenicity. In addition, 
we identified transcriptional signatures that correlated with the proliferative potential of clonal 

CRC spheroids by pheno-seq. These included known stem and differentiation markers, 
further supporting a differentiation hierarchy in CRC and indicating for multiple functionally 

different cellular subtypes that relate to known intestinal lineages (see section 2.1). 

In line with these observations, we inferred lineage-specific transcriptional signatures by 
scRNA-seq from multiple patients, including LGR5+ stem cells, potentially niche forming 

DEFA5+ Paneth cells, a putative transit-amplifying compartment driven by MYC as well as a 
terminally differentiated subtype (FABP1+/H1F0+). In addition, we identified diverse cell 

states including metabolic signatures for OXPHOS, hypoxia/glycolysis and fatty acid 
metabolism as well as signatures associated with cellular proliferation (Figure 2.15). Finally, 

we identified transcriptional programs linked to immune response (e.g., CCL20, IL-8; 
CXCL1) and antigen presentation (HLA-E, HLA-F), indicating that immune-modulatory gene 

expression is maintained in culture and associated with specific cellular subtypes or 
states282,283. As this 3D cell culture model was previously believed to ‘only’ enrich for 

CSCs17,31,204, the degree of heterogeneity and differentiation is surprisingly high and might be 

much closer to the actual cancer cell composition in primary tumors (or CSC derived 
organoids) than expected. In line with this, CRC spheroids clearly reflect crypt-like 

morphological characteristics (Figure 2.17). While further validation is still required, we 
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derived a potential lineage hierarchy in CRC from the identified transcriptional signatures 

and previous knowledge of marker genes and lineage relationships of intestinal subtypes159 
(Figure 3.2a): LGR5+ cells represent the CSC pool that gives rise to either DEFA5+ Paneth-

like cells or to putative highly cycling transit-amplifying cells (MYC+) that further differentiate 
into terminally differentiated cells (FABP1+). Moreover, these subtypes are characterized by 

heterogeneous metabolic states, a phenomenon that has been also observed in the healthy 
small intestine192 (see section 3.2.3). However, the accurate determination of lineage 

relationships most probably requires additional analysis strategies and alternative 
experimental setups (see section 3.2.2 and 3.2.4). Furthermore, it is important to note that 

the definitions of and differences between cell ‘state’ and ‘type’ are not yet fully understood38. 
Most likely, cell type transitions are characterized by continuous processes that involve 

multiple cell states and that are influenced by intrinsic and extrinsic factors129,284. 

 
3.2.2 Challenges and limitations in analyzing scRNA-seq data of cancer patients 

The analysis of scRNA-seq data is associated with specific computational and statistical 
challenges (see section 1.2.2.3). Additional complications arise for scRNA-seq data 

generated from cancer cells, for example due to patient-specific (epi)genomic alterations. 
Similar to tSNE and PCA, NNMF analysis did not result in mutually exclusive clusters, as 

observed for cell types in the healthy small intestine88, but rather in overlapping signatures 
and tendencies. This phenomenon has been observed in multiple tumor entities87,89,243 and 

could be due to increased transcriptional noise similar to aging cells285. Moreover, several 
studies have shown that differentiated intestinal cell types can de-differentiate into LGR5+ 

stem cells upon ablation or irradiation in both tumor and healthy tissue166,255,286. This 

plasticity could be deregulated in CRC due to lowered regulatory barriers between lineages, 
leading to ongoing interconversion between subtypes and thus to a higher occupancy of 

transition states that might blur cellular clustering. The co-expression of PROX1 with LGR5 
provides another indication of mis-regulated lineage plasticity, as PROX1 is normally 

expressed in cells of the enteroendocrine lineage that revert into LGR5+ stem cells upon 
injury in normal intestinal tissue232. 

Although the total number of cells in this study is relatively high (nearly 5000), the number of 
cells per patient is relatively low (approximately 400) which limited the detailed analysis of 

individual patients. Thus, profiling of greater numbers of tumor cells will be important for 

further analysis, including improved clustering and the identification of lineage relationships 
between cellular subtypes287,288.   
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Furthermore, in our approach we combined data from multiple patients in order to identify 

shared expression programs across patients. Although mean-centering represents a 
straightforward and widely used method to circumvent inter-patient variability, it might be 

limited in integrating unique mutational signatures. Several alternative methods have been 
developed for technical or biological batch effect correction115,289,290, but are more tailored to 

combining datasets from different technologies or species. Thus, more sophisticated 
strategies will be needed to correct for inter-patient variability, potentially by using 

approaches that ‘learn’ cellular subtypes from healthy cells of the same tissue291. Adding 
information from bulk or single cell DNA sequencing will also be crucial to understanding the 

link between genomic alterations, subclone composition and single cell transcriptomes. In 
addition, other single cell sequencing modalities for epigenetic95,271 or multimodal 

profiling96,98,292 will further extend our understanding of regulatory gene expression networks 

and their perturbations during tumorigenic progression.  
 

3.2.3 Metabolic heterogeneity in CRC  
Besides the lineage-related cancer cell subtypes detected in our study, heterogeneous 

metabolic gene expression programs represented a major source of variability across CRC 
patients. The anti-correlated OXPHOS and glycolysis/hypoxia signatures showed the most 

pronounced patterns and were mainly associated with the highly cycling MYC+ compartment 
and FABP1+/H1F0+ terminally differentiated cells, respectively (Figure 2.14, Figure 2.15 and 

Figure 2.16). More detailed analysis of other lineage-specific transcriptional signatures 
revealed similar metabolic trends, showing that stem-like cells preferentially express 

OXPHOS genes, whereas Paneth-like cells showed higher expression of genes involved in 

glycolysis/hypoxia (Figure 2.16). These differential metabolic signatures have also been 
observed in the intestinal stem cell niche, where Paneth cells favor glycolysis and fuel 

OXPHOS in stem cells by providing lactate192.  
In general, high rates of OXPHOS can lead to enhanced generation of reactive oxygen 

species (ROS) that contribute to cellular oxidative stress. However, it has been shown that 
intestinal stem cells do not exhibit enhanced cytoplasmic ROS compared to Paneth cells 

despite higher rates of OXPHOS192. Although no compensatory mechanism was described, 
the authors could show that enhanced ROS induce differentiation in stem cells by activating 

intracellular signaling involving p38. In the scRNA-seq data presented in this work, the meta-

signatures for OXPHOS and stem cells both contain genes involved in the protection against 
oxidative stress, which might represent a compensatory mechanism for high intracellular 

ROS levels in highly cycling and stem cells of CRC. Whereas the OXPHOS signature is 
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associated with expression of the thiol-specific peroxidases PRDX3 and PRDX4 

(Supplementary Figure 10), the stem-like signature is associated with enhanced expression 
of OXR1 and PON2, genes essential for protection against oxidative stress250,251, Glutamate 

Ammonia Ligase (GLUL) that catalyzes the synthesis of glutamine (a major source for 
OXPHOS252) as well as MAP2K6, an essential component of the p38 signaling cascade253.  

Overall, our scRNA-seq data thus reveals a tight link between cellular differentiation and 
metabolism in CRC and indicates the preservation of similar mechanisms as observed in 

healthy intestinal cells. Notably, this link is not restricted to stem and Paneth-like cells but 
also extends to other subtypes. For example, the Tdiff FABP1+ subtype exhibits the highest 

expression of genes involved in glycolysis (Figure 2.16) and therefore might also provide 
lactate to stem-like cells or even to highly cycling TA (MYC+) cells. In addition, the 

glycolysis/hypoxia signature contains the gene vascular endothelial growth factor A 

(VEGFA), a secreted factor known to be involved in signaling that sustains survival and 
proliferation in CSCs293. Thus, glycolytic/hypoxic signaling of differentiated CRC cells might 

support CSCs beyond providing metabolic products (previous section summarized in Figure 
3.2).  

Metabolic heterogeneity and dependencies of CSCs have been also described for other 
tumor entities, including pancreatic cancer294, breast cancer198, glioma295 and leukemia296, 

indicating a widespread phenomenon. Metabolic preferences of CSCs depend on the tumor 
entity and might be characterized by a high degree of plasticity in order to adapt to changing 

environments155,295. In addition, analysis of intrinsically driven metabolic identities in primary 
tumors might be confounded by environmental influences, such as hypoxic regions. In vitro 

cell culture systems provide an alternative strategy to analyze metabolic heterogeneity as 

they enable control over environmental conditions, but most studies so far have used cells 
that were cultured under high glucose and oxygen conditions, thus favoring glycolysis. 

Notably, the 3D culture system utilized in this study exhibits a high degree of metabolic 
heterogeneity despite culture conditions that favor glycolysis, indicating that intrinsic 

metabolic preferences of inferred intestinal lineages are hardwired in CRC.   
Optimally, single cell gene expression profiles should be complemented by single cell 

metabolic profiles in order to assess whether detected gene expression heterogeneity 
results in functionally different metabolic profiles. However, most quantitative methods for 

single cell metabolomics are relatively new and immature201. Alternatively, subpopulations 

identified by scRNA-seq could be isolated by FACS to acquire enough material for accurate 
metabolic profiling.  
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3.2.4 Niche dependencies, metabolic compartments and the future of in situ analysis 

The intestinal stem cell niche is characterized by specific cellular interdependencies, in 
which stem cells compete with each other for cellular surface of adjacent Paneth cells which 

sustain the niche by providing growth factors4,229 and metabolic products192. This 
interdependency seems to be maintained in developing adenomas where LGR5+ stem cells 

are frequently localized adjacent to Paneth cells164. In this work, we could detect both stem 
(LGR5+) and Paneth-like (DEFA5+) transcriptomic signatures in 3D cultures of advanced 

CRC (Figure 2.15 and Supplementary Figure 10), suggesting similar interactions.  
In situ analysis by microscopy did not only validate results obtained by scRNA-seq in terms 

of identified subpopulations (Figure 2.18 and Supplementary Figure 14), but also provided 
further insight into the spatial distribution of subtype and states. For example, we could 

frequently detect LGR5+ and DEFA5+ in close proximity to each other in all three patients 

(Figure 2.18 and  Supplementary Figure 14), thus indicating for niche promoting effects of 
the Paneth-like subpopulation similar to the healthy intestine. This notion is supported by the 

fact that the Paneth-like expression signature contained the secreted and WNT-pathway 
related factors Midkine (MDK)297 and FRZB298, which might modulate niche characteristics of 

Paneth-like cells in CRC. Similarly, niche-promoting subpopulations that express WNT and 
NOTCH components have been identified in different lung cancer entities170,171, suggesting 

that niche-specific cellular interactions are a central feature of tumor progression across 
different cancer entities. However, the strict spatial distribution of intestinal cell types in the 

healthy crypt is strongly perturbed in CRC spheroids (Figure 2.17), which is most probably 
associated with partial loss of niche dependencies driven by perturbations of WNT pathway 

signaling155.  

Additionally, we could detect strong differences in numbers of mitochondria between single 
cells by using a mitochondrial live-dye (Figure 2.17). As the abundance of mitochondria is 

correlated with increased respiratory activity in intestinal organoids, we reasoned that cells 
with high numbers of mitochondria represent the same cells that exhibit high expression of 

the OXPHOS expression signature identified by scRNA-seq (defined as OXPHOShigh). Most 
intriguingly, OXPHOShigh regions are specifically located at the outer layer of crypt-like 

regions in all three patients (Figure 2.17). This observation has striking similarities to healthy 
intestinal organoids (Figure 3.2b), where crypt formation (‘budding’) and associated 

differentiation are driven by OXPHOS and ROS signaling192. As OXPHOS and cell cycle 

signatures exhibit a high overlap in scRNA-seq data, OXPHOShigh compartmentalization 
could be associated with continuous crypt budding and proliferation of high-cycling MYC+ 

cells at the outer regions of CRC spheroids, which might enable tumor growth in vivo. 
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Notably, histological classification and quantification of tumor budding regions serves as 

prognostic marker for CRC299.   
Furthermore, anti-correlated metabolic tendencies of stem and Paneth-like cells inferred by 

scRNAseq could be validated in situ, showing that LGR5+ cells exhibit a more pronounced 
overlap with OXPHOShigh cells at putative budding regions (Figure 2.19, Figure 2.21 and 

Supplementary Figure 15). It is important to note that observed metabolic identities in 
OXPHOS and glycolysis are not mutually exclusive for stem and Paneth-like cells in both 

scRNA-seq and in situ data, but rather represent strong tendencies. This is most likely 
associated with the spatial location of subtypes in spheroids, leading to variable metabolic 

programs in both subtypes. For example, we also observed LGR5+ cells in OXPHOSlow 
regions in the inner part of spheroids (Supplementary Figure 16) which might represent 

quiescent CSCs that have been described previously165.  

Nevertheless, these results suggest a central role of stem-like cells and their associated 
metabolic state in driving tumor cell growth at peripheral tumor regions which might be 

supported by Paneth and Tdiff cells. Due to the similarity to the maturation of healthy 
intestinal organoids from spherical embryonic-like spheroids192, it is likely that CRC cells 

hijack developmental programs to sustain tumor growth as observed in other tumor 
entities89,291. However, it remains unclear which mechanisms drive crypt budding in CRC 

spheroids. Although this needs to be further validated, cellular interactions and mechanical 
forces might influence these processes.  

In order to analyze cellular interactions and dynamic processes in more detail, several 
improvements and alternative experimental setups will be necessary in the future. First, the 

number of profiled genes by RNA-FISH is highly restricted by the current approach and limits 

the number of cellular subtypes and states that can be mapped at the same time. Thus, 
utilizing methods for high multiplexing of RNA-FISH probes58,130,300 will enable a much more 

detailed view on the spatial organization and associated genetic programs in CRC 
spheroids. Second, RNA-FISH staining of intact spheroids and 3D image acquisition will 

avoid confounding effects of histological preparation and enable a deeper understanding of 
spheroid morphology, cellular architecture and spatial localization of subtypes. Finally, both 

scRNA-seq and RNA-FISH only provide a snap-shot of gene expression and does not inform 
about dynamic processes the are inherent to cellular behavior. Therefore, multi-color 3D 

time-lapse microscopy with metabolic live-dyes and fluorescent-reporters for lineage marker 

genes will answer remaining questions about dynamic metabolic states, lineage plasticity 
and mechanical forces as well their contribution to crypt budding and proliferative behavior in 

CRC spheroids.  
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Figure 3.2 | Schematic summary of the main findings regarding cancer cell heterogeneity in CRC. 
(a) Potential lineage relationships and potential interactions between identified CRC subtypes as well as 
associated metabolic preferences. (b) Schematic intestinal crypt (left) and CRC spheroid (right). Representative 
spatial distribution of lineage subtypes and mitochondria as inferred by quantitative in situ analysis using RNA-
FISH and Mitotracker live-dye in CRC spheroids.  
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3.2.5 Functional analysis of tumor cell heterogeneity and metabolic states 

The results presented in this work demonstrate a surprisingly high degree of heterogeneity in 
the analyzed patient-derived 3D model of CRC, including interconnections between intestinal 

lineages, metabolic states and spatial locations. However, the results are mainly descriptive 
and thus do not demonstrate functional implications of identified subtype characteristics. 

Therefore, future work will need to address the question whether identified subtypes, 
overlapping cell states and associated genes can be linked to functional differences, for 

example in proliferative and tumorigenic potential. Pheno-seq results provide first indications 
regarding the proliferative behavior of identified CRC subtypes, as genes associated with the 

putative LGR5+ CSC subpopulation identified by scRNA-seq show a clear overlap with 
genes that are associated with high proliferative capacity (e.g., LGR5, SMOC2, PROX1, 

APP, ITM2B). Moreover, pheno-seq indicates for a heterogeneous growth phenotype of 

DEFA5+ cells that we also identified by scRNA-seq (see section 2.1.4), which might indicate 
for cancer cell plasticity and de-differentiation of Paneth into stem-like CRC cells, potentially 

initiated by autocrine signaling if a certain number or density of DEFA5+ cells is reached.  
The most striking questions regarding functional implications of identified cancer cell 

heterogeneity refer to lineage-specific metabolic preferences as they may provide promising 
targets to eradicate colorectal CSCs. The identified metabolic patterns are closely 

resembling those occurring in the healthy intestine and future experiments will need to 
address the question whether similar mechanisms and dependencies drive CSC 

maintenance and cancer cell differentiation. For example, lactate might also be a source for 
OXPHOS in stem-like cells that is provided by glycolytic Paneth and Tdiff cells, and the 

expression of MAP2K6 in the stem expression signature indicates for p38-dependent cancer 

cell differentiation in CRC. Moreover, stem-like cells seem to protect themselves against 
oxidative stress by expression of OXR1 and PON2, indicating that these genes are required 

for CSC maintenance. Hence, perturbation assays by targeting metabolic pathways, p38 
signaling and genes protecting against ROS will provide more information on functional 

metabolic states in CRC.  
Optimally, proliferative capacity and tumorigenic potential of identified cellular subtypes and 

states should be analyzed independently for each subpopulation, which involves sorting of 
identified subtypes based on surface marker heterogeneity or by engineering of fluorescent 

reporter lines for specific marker genes. In addition, live-dyes can used to selectively stain 

cells with distinct metabolic states. First results of sorted and replated Mitotrackerhigh and 
Mitotrackerlow cells revealed strongly enhanced spheroid forming capacity in the 

Mitotrackerhigh compartment (not shown), thereby indicating for functional implications of 
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heterogeneous metabolic states in CRC. Ultimately, results obtained from in vitro assays will 

need to be validated in serial xenograft transplantations or lineage tracing experiments in 
vivo.  

 
3.2.6 Reliability and limitations of 3D cell culture models to reflect primary tumors 

During the last years, 3D cell culture systems have evolved as promising tools to model 
primary tumor cell behavior and drug responses17,32. For example, the spheroid cultures 

utilized in this study have been derived from CRC patients and maintain many features or 
primary tumors, including intestinal morphologies (Figure 2.17), genomic alterations and 

subclone architecture226, inter-patient variability in gene expression (Figure 2.13), 
hierarchical organization204 and lineage-specific gene expression (Figure 2.15) as well as 

gene expression that is associated with immune-modulatory function (Supplementary Figure 

10).  
However, flexibility of in vitro systems comes at cost of reduced representation of the tumor 

microenvironment. Initial studies have recently started to model and improve 
microenvironmental influences in 3D culture systems, including ECM5, vascularization301, 

fibroblasts302 or peripheral blood lymphocytes303, but these models are still limited in 
comprehensively reflecting all environmental influences304. In addition, 3D culture systems 

underlie several artificial influences, including the composition of applied media as well as 
cellular dissociation and passaging, which can lead to substantial differences in cultivation 

efficiencies and potentially in the loss of cellular subclones. Thus, future studies will need to 
focus on the analysis of reliability of 3D cell culture systems compared to primary samples, 

optimally by single cell approaches207. 
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3.3 Conclusion 
In vitro cell culture systems are inevitably necessary models for human disease and the 
more physiologic they are, the more predictive they will be for personalized treatments. 

Novel 3D cell culture systems have recently found their way into translational research and 
clinical settings, where they might become standard tools if combined with state-of-the-art 

molecular profiling and computational analysis (https://lifetime-fetflagship.eu). However, in 
order to use them as patient-specific ‘avatars’, these in vitro cultures should optimally be 

analyzed in the same depth as primary samples, which holds especially true for the analysis 
of intratumor heterogeneity. Whereas single cell approaches based on NGS have already 

started to transform our understanding of tumor cell heterogeneity in primary samples, these 
technological advances have not been broadly transferred to in vitro models, although they 

provide much more experimental flexibility.  

With this work, we provide two complementary strategies to demonstrate the power of single 
cell analysis in 3D cell culture systems by combining quantitative imaging and NGS. First, 

pheno-seq directly links functional single cell growth phenotypes and morphological features 
with transcriptional programs, which represents a complementary strategy to spatial 

transcriptomics in primary tumor samples. Second, we used an indirect approach by 
applying scRNA-seq to 3D cultures of multiple patients, integrating acquired data to identify 

shared expression programs and extending results by mapping identified markers to spatial 
locations by RNA-FISH. As both methods complement each other, we envision that the 

combination of both approaches across multiple patients evolves as standard strategy to 
analyze tumor cell heterogeneity in 3D cell culture systems. For example, pheno-seq could 

be used to further define budding phenotypes of CRC spheroids and associated dynamic 

transcriptional programs. Meanwhile, especially the applied imaging-based methods will 
require significant improvements, including higher imaging resolution and content. In 

addition, these two approaches represent initial strategies to understand the underlying cell 
culture systems in detail and should provide the basis for further functional experiments, for 

example in vivo lineage tracing with identified markers. Finally, 3D cell cultures systems are 
still limited in reflecting all components of primary tumors. Thus, the optimal approach to 

tackle intratumor heterogeneity will involve the integration of results obtained from both 
primary tumor samples and in vitro cultured cells in order to assess the predictive power of 

the used cell culture system.  
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5 Materials & Methods 
 
The following Material and Methods section (especially section 5.1) is widely adapted from 

the pheno-seq manuscript208 for which I have written the original text including the 
associated methods part. 

 

5.1 Pheno-seq – linking morphological and functional features to gene 

expression in 3D culture systems  
5.1.1 Breast cancer model MCF10CA  

5.1.1.1 Cell culture 
The cell line MCF10CA1d clone 1 (acquired from The Barbara Ann Karmanos Cancer 

Institute), a transformed derivative of the immortalized breast epithelial cell line MCF10A, 

was cultured and passaged in 25 cm2 culture flasks (greiner bio-one). Cells grown in 2D 
were cultured in growth medium composed of DMEM/F12 medium supplemented with 5% 

horse serum, 10 µg/ml Insulin (Life Technologies), 20 ng/ml EGF, 0.5 mg/ml hydrocortisone 
and 100 ng/ml Cholera Toxin (Sigma). Cells were passaged with 0.05% Trypsin (Life 

Technologies) at 80% confluency.  
For 3D ‘on top’ culture, cells were grown in assay medium (growth medium with 2% horse 

serum and 5 ng/ml EGF) in 24-well cell culture plates (greiner bio-one). As a reconstituted 
basement membrane, a bed of laminin-rich hydrogel (Matrigel, Corning) was generated by 

pipetting 70 µm cold Matrigel into the center of pre-wetted 24-well plates. The Matrigel bed 

was dried for 20 min at 37oC before adding cells. For seeding single cells on top of the 
Matrigel bed, 2D cultures were dissociated to single-cell suspensions, washed in assay 

medium, passed through a 35 µm cell strainer and counted by a LUNA automated cell 
counter (Logos Biosystems). Finally, 4000 cells in 400 µl assay medium (supplemented with 

5% Matrigel) were seeded per well by adding cell suspensions in a 45o angle to the wall of 
the well, resulting in a uniform distribution of cells throughout the well. Assay medium was 

replaced every 3 days and cells cultured for up to 12 days. In general, all experiments were 
carried out after 5 days culture on Matrigel. 

 
5.1.1.2 Spheroid recovery from hydrogel  

After culturing MCF10CA cells in 3D for 5 days, medium was removed completely and 500 µl 

filtered and pre-warmed Dispase (Sigma) was added. The Matrigel bed was then detached 
from the wells by scratching over the well bottom with a 1000 µl pipette tip and the 
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suspension was resuspended carefully five times. Spheroids were then incubated at 37oC 

for 7 min, transferred to a 15 ml falcon and 5 ml assay medium was added and resuspended 
slowly with a 5 ml pipette. Afterwards, spheroids were spun down (300 g, 3 min) and 

resuspended in DMEM (Life Technologies). At these steps, it is not recommended to use 
PBS due to perturbation of the spheroid morphology. Generally, this procedure resulted in 

approximately 2000 isolated spheroids per well.  
 

5.1.1.3 Spheroid isolation and dissociation to single-cell suspensions 
For isolation and classification of individual MCF10CA spheroids before dissociation, 

spheroid suspensions were diluted in assay medium to 100 spheroids per ml and distributed 
into GravityTRAP ultra-low attachment 96-well plates in 10 µl per well (PerkinElmer). Plates 

were then centrifuged for 2 min at 250 g. V-shaped and 1 mm flat-bottom wells enabled 

efficient classification of spheroids (round vs. aberrant) with an inverted brightfield 
microscope and 10x or 20x objectives. After isolation and identification of 30-40 spheroids of 

each class, 50 µl Accumax was added to each well and spheroids were dissociated to single 
cell for 10-15 min at 37oC. Shear forces were applied to stimulate dissociation by 

resuspending wells of one class with the same 200 µl pipette. After a second incubation time 
of 5 min at 37oC, wells of one class were pooled in 1.5 ml microcentrifuge tubes, centrifuged 

at 300 g for 3 min and resuspended in either assay medium or DMEM/F12.   
 

5.1.1.4 Reseeding assay 
For independent seeding of cells derived from round and aberrant spheroid phenotypes, 

spheroids were isolated, dissociated and pooled as described above (section 5.1.1.3). 

During dissociation, a 10 µl Matrigel bed was generated in 15µ angiogenesis slides (Ibidi). 
Cells were resuspended in 50 µl assay medium (supplemented with 5% Matrigel) and added 

to pre-treated angiogenesis slides. Medium was replaced every 3 days and cells were 
cultured for up to 6 days.  

 
5.1.1.5 Single-cell capture, mRNA library preparation and sequencing 

For preparation and sequencing of single-cell RNA sequencing libraries, spheroids were 
dissociated as described above (section 5.1.1.3) and resuspended in DMEM/F12 medium. 

Capture, lysis, full-length cDNA synthesis and amplification was performed on the Fluidigm 

C1 Single-Cell Auto Prep IFC. Cell suspensions at a concentration of 350 cells/µl were 
mixed with C1 Cell Suspension Reagent (Fluidigm; ratio of 4:1) before loading on the IFC. 

Single-cell capture was checked with an inverted brightfield microscope and capture sites 
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with only 1 cell were marked. Protocol and reagents for single-cell RNA extraction, reverse 

transcription (RT) and mRNA amplification amplification (21 amplification cycles) were used 
as written in the SMARTer Ultra Low RNA Kit for Fluidigm C1. Sequencing libraries were 

generated with the Nextera XT kit (Illumina) according to the adapted Fluidigm protocol. 
Concentration, quality and size of cDNA and Nextera XT libraries was assessed with a 

fluorometer (Qubit) and by on-chip electrophoresis (Agilent Bioanalyzer high sensitivity DNA 
chips). Libraries of up to 24 cells were pooled and sequenced on an Illumina HiSeq 2000 

machine (1 × 50-bp single-end reads).  
 

5.1.1.6 Manual pheno-seq workflow, library preparation and sequencing 
For RNA-sequencing of libraries derived from manually isolated single spheroids (manual 

pheno-seq), spheroid suspensions were diluted to 500/ml and 2 µl was carefully dispensed 

to the wall of the well of GravityTRAP 96-well ULA plates. After vertical tapping of the plate, 
wells with single spheroids were identified and classified with an inverted brightfield 

microscope. Prior to RT and amplification, RNA was extracted with the Arcturus PicoPure kit 
(ThermoFisher). Therefore, 50 µl extraction buffer was directly added to 96-wells, incubated 

for 2 min at room temperature and transferred to 1.5 ml microcentrifuge tubes. RNA was 
extracted as described in the PicoPure Kit (Appendix B and Section 4B.2) including DNase 

digestion (Appendix A, RNase-Free DNAse Set, Qiagen). RNA was eluted in Nuclease-free 
water (~10 µl) which was used as input for full-length cDNA synthesis and amplification 

amplification (16 amplification cycles) by the SMART-Seq v4 Ultra Low Input RNA Kit for 
sequencing (TakaraBio). Sequencing libraries were generated with the Nextera XT kit 

(Illumina) as described in the SMART-Seq v4 protocol. Concentration, quality and size of 

cDNA and Nextera XT libraries was assessed with a fluorometer (Qubit) and by on-chip 
electrophoresis (Agilent Bioanalyzer high sensitivity DNA chips). Ten libraries were pooled 

and sequenced on an Illumina HiSeq 2000 machine (1 × 50-bp single-end reads).  
 

5.1.1.7 High-throughput pheno-seq workflow, library preparation and sequencing 
The nanowell-based iCELL8 scRNA-seq system (TakaraBio), that integrates imaging and 

gene expression profiling of big samples of up to 100 µm83, was adapted and improved for 
high-throughput (HT-)pheno-seq. For fluorescence detection of cytoplasm and DNA, 

spheroids were first stained for three hours with 10 µM CellTracker Red CMTPX dye and 

1 µg/ml Hoechst 33258 (ThermoFisher). To acquire a high number of spheroids for 
dispensing into the 5,184 nanowell chip, spheroids from 6-8 wells were recovered as 

described above (section 5.1.1.2) and washed with 7 ml DMEM (Life Technologies). Three 
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wells were combined per 15 ml falcon tube for centrifugation. The reversible cross-linker 

dithio-bis(succinimidyl) propionate (DSP) was prepared for cellular fixation as described 
previously225 in PBS and directly filtered through a 10 µm strainer before usage (PluriSelect) 

to avoid excessive precipitation. Spheroids were then resuspended in 400 µl DSP at a 
working concentration of 1 mg/ml and incubated at room temperature for 30 min. Spheroids 

were then washed two times with cold PBS (centrifugation at 650 g and 500 g, 3 min, 4oC) 
and finally resuspended in 650 µl cold PBS with 1x second diluent (for iCELL8) and 0.4 U/µl 

recombinant RNase Inhibitor (TakaraBio). Spheroids were dispensed into the barcoded 
5184-nanowell chip (version 1) with the iCELL8 Single-Cell System (TakaraBio) as described 

in the Rapid Development Protocol (in-chip RT-PCR amplification). As a control, we first 
processed one chip without cellular fixation using the default chip setup, the standard 

microscope and provided CellSelect software.  

The following modifications were applied for improved HT-pheno-seq: Wells in the 384-well 
source plate were mixed with a 200 µl pipette tip between dispensing intervals in order to 

minimize spheroid settling in source plate wells for enabling even distribution of spheroids in 
nanowells. Next, the iCELL8 chip was tightly sealed with a strongly adhesive imaging foil 

(TakaraBio) similar to the standard single-cell protocol. However, instead of spinning cells to 
the bottom, spheroids were centrifuged upside-down to the foil (700 g, 5 min, 4oC) in order to 

reduce the objective working distance and to avoid light reflections inside the well during 
imaging. We used an inverted confocal laser-scanning microscope (Leica SP8) with 10x 

objective (2x2 wells per field of view) instead of the standard and system-integrated 
fluorescence wide-field microscope with 4x objective (6x6 wells per field of view) to further 

enhance imaging resolution. After imaging, spheroids were centrifuged to the well bottom 

(700 g, 5 min, 4oC) and chips were frozen and stored at -80oC.  
A KNIME image pre-processing workflow as well as the PhenoSelect software were used for 

spheroid detection and interactive selection (for more detailed description of microscopy, 
image pre-processing and PhenoSelect section 5.1.3.5). The ‘filter file’ generated by 

PhenoSelect was used to dispense reagents in selected nanowells as described in the 
Rapid Development Protocol (TakaraBio), with the exception that we adjusted the amount of 

Triton-X100 to a final well concentration of 1% for enhanced efficiency of spheroids lysis 
(Master mix: 52.8 µl 5 M Betaine, 24 µl 25 mM dNTP mix (TakaraBio), 3.2 µl 1 M MgCl2 

(Invitrogen), 8.8 µl 100 mM Dithiothreitol (TakaraBio), 61.9 µl 5x SMARTScribe first-strand 

buffer, 33.3 µl 2x SeqAmp PCR buffer, 4.0 µl 100 µM RT E5 Oligo, 8.8 µl 10 µM Amp primer 
(all TakaraBio), 4.8 µl 100% Triton X-100 (Acros), 28.8 µl SMARTScribe Reverse 

Transcriptase, 9.6 µl SeqAmp DNA Polymerase (TakaraBio)). The maximum spheroid size 
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(that correlates with the number of cells per spheroid/well) should not exceed 100-150 µm to 

avoid any negative influence on RT efficiency. Furthermore, lysis reagents, concentration 
and timing might have to be adjusted for different 3D cell culture models.  

After in-chip mRNA reverse transcription and cDNA amplification (18 amplification cycles, In-
chip RT/Amp Rapid Development Protocol) inside a modified SmartChip Cycler (Bio-Rad), 

libraries were pooled, concentrated (DNA Clean and Concentrator−5 kit, Zymo Research) 
and purified using 0.6x Ampure XP beads. Barcoded cDNA was processed to 3´-end 

sequencing libraries by the Illumina Nextera XT kit with adaptions described in the Rapid 
Development Protocol. Concentration, quality and size of cDNA and Nextera XT libraries 

was assessed with a fluorometer (Qubit) and by on-chip electrophoresis (Agilent Bioanalyzer 
high sensitivity DNA chips). Improved HT-pheno-seq paired-end iCELL8 libraries (21 + 70 bp 

paired-end reads) were sequenced on an Illumina NextSeq 500 machine in high-output 

mode. The ‘bottom control’ chip without improved imaging was sequenced on a HiSeq 2000 
machine with similar settings. However, the ‘bottom control’ was only used to assess library 

quality and not for further downstream analysis.  
 

5.1.2 Colon TICs spheroids 
5.1.2.1 Cell culture 

The primary patient-derived colon tumor spheroid culture derived from a liver metastasis was 
established as described previously204. Human CRC tissue was obtained from Heidelberg 

University Hospital in accordance with the declaration of Helsinki. Informed consent on 
tissue collection was acquired from each patient and approved by the University Ethics 

Review Board. CRC cells were cultured in 75 cm2 ultra-low attachment flasks (Corning) in 

advanced D-MEM/F-12 medium supplemented with 0.6% Glucose, 2 mM L-glutamine (Life 
Technologies), 4 μg/ml heparin, 5 mM HEPES, 4 mg/ml BSA (Sigma), 10 ng/ml FGF basic 

and 20 ng/ml EGF (R&D Systems). EGF/FGF was added every 4 days and medium was 
exchanged every 4-8 days. For dissociation, spheroid cultures were spun down for 5 min at 

900 rpm and resuspended in 2-4 ml 0.25% Trypsin (Life Technologies). Shear forces were 
applied with a 1000 µl pipette every 5 min for 20 min in total to stimulate dissociation. 

Subsequently, 4-8 ml stop solution (PBS supplemented with 20% heat inactivated and sterile 
filtered fetal bovine serum, Life Technologies) was added and cells were spun down for 

5 min at 900 rpm. For passaging, cells were resuspended in medium, passed through a 

40 µm strainer and counted. 
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5.1.2.2 Reseeding assay 

We cultured colon spheroids for 10 days and performed a stepwise size exclusion by 
(reverse-) filtering with standard 100 µm, 70 µm, 40 µm and 20 µm cell strainers in order to 

independently isolate, dissociate and reseed cells from different size classes (70-100 µm 
and 20-40 µm). Spheroids were dissociated to single-cell suspension as described above 

(section 5.1.2.1) with the exception that cells were passed through a 15 µm cell strainer.  
Finally, 50,000 cells were re-seeded in 60 mm Ultra Low Attachment Culture Dishes 

(Corning). Growth factors were added every 4 days and cells cultured for 10 days. Culture 
dishes were shaken every day to avoid clustering of spheroids. 

 

5.1.2.3 g-secretase inhibitor assay 

To selectively inhibit the g-secretase machinery during growth of spheroids, the g-secretase 

inhibitor PF-03084014 (Sigma) was dissolved in sterile and distilled water (stock 
concentration 1 mM). Cells were dissociated as described above and 20,000 cells were 

seeded in 24-well ultra-low attachment plates (Corning) in the presence of PF-03084014 at 

final concentrations of 5, 10 or 20 µM. In addition, we included a solvent control for the 
maximum amount of added water (20 µl). Growth factors were added every 4 days and cells 

were cultured for 10 days.  
 

5.1.2.4 Single-cell culture and HT-pheno-seq of colon tumor spheroids 
To specifically culture single floating CRC spheroids, spheroids were dissociated, passed 

through a 15 µm cell strainer and counted as described above (section 5.1.2.1). Cells were 
seeded in Aggrewell400 6-Well plates (StemCell Technologies) in which each well contains 

an array of approximately 7000 inverse pyramidal shaped microwells with a size of 400 x 
400 µm. Wells were pre-treated according to the manufacturer´s instructions and washed 

once with PBS and once with medium. Afterwards, 3500 cells in 3 ml medium were added in 

a 45o angle to the wall of the well, which resulted in uniform distribution of cells in microwells. 
EGF/FGF was added every 4 days and cells were cultured for 10 days, resulting in 300-400 

spheroids (>20 µm) per 6-well. Spheroids isolated from 4-6 plates (24-36 6-wells, 168,000-
252,000 microwells) were stained for three hours with 10 µM CellTracker Red CMTPX dye 

and 1 µg/ml Hoechst 33258 (ThermoFisher), harvested, pooled and washed once with 
FluoroBrite DMEM (Life Technologies, 900 rpm for 5 min).  

HT-pheno-seq was performed as described for MCF10CA spheroids above (section 5.1.1.7) 
but with following modifications: In contrast to MCF10CA spheroids, colon spheroids were 

not fixed by DSP because spheroid isolation did not involve contact loss from Matrigel. To 
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minimize disassembly of spheroids during processing, cells were dispensed in FluoroBrite 

DMEM instead of PBS.  
 

5.1.3 Microscopy and image analysis 
5.1.3.1 Image processing and analysis 

Acquired microscopy images were processed and analyzed using KNIME Image Processing 
(https://www.knime.com/community/image-processing, Version 3.2.1), ImageJ/FIJI 

(https://imagej.nih.gov/ij/), R (Version 3.3.1)/R studio (https://www.rstudio.com/) and/or 
Graph Pad Prism 7 (https://www.graphpad.com /scientific-software/prism/). The ggplot2 

package implemented in R and Graph Pad Prism 7 were used for visualization of data and 
the PhenoSelect web app is based on the shiny package (https://shiny.rstudio.com).  

 

5.1.3.2 Assessing single-cell seeding efficiency 
Wells with single MCF10CA (section 5.1.1.1) or CRC cells (section 5.1.2.4) stained with 

Hoechst 33258 (1 µg/ml) and CellTracker Red CMPTX (10 µM) were imaged one hour after 
seeding with a confocal laser-scanning microscope (Leica SP8) equipped with a 10x/0.30 air 

objective (Leica HC PL FLUOTAR). Images of cells in 24 wells (MCF10CA) or 6-well 
AggreWell400 (CRC spheroids) were pre-processed and analyzed with custom made 

KNIME image analysis workflows (Triplicates, three independent wells). Based on the 
CellTracker signal, images were first flattened by Gaussian convolution (sigma=1) followed 

by otsu’s method for global thresholding. Next, water shedding (default ImageJ settings) and 
a minimum filter (minimum 5 pixels) were applied. Cells touching the border were excluded 

from further analysis. To detect doublets, the same workflow was used for a duplicated set of 

images, but with radially increasing the size of the labels (Max filter node, span 6) after 
thresholding, resulting in larger cell masks. Generated labels were then projected back on 

the primary generated original single-cell segmentations. All cell masks with more than two 
single-cell segmentations in enlarged segmentations were counted as doublets.  

 
5.1.3.3 Reseeding assay 

For reseeded cells derived from isolated spheroid phenotypes of MCF10CA (section 5.1.1.4) 
and CRC cultures (5.1.1.4), images were acquired with a Zeiss LSM780 Axio Observer 

confocal laser scanning microscope equipped with a 10x/0.3 air objective (Zeiss EC PLAN-

NEOFLUAR) in brightfield.  
For MCF10CA spheroids, a training dataset was first generated based on randomly seeded 

and cultured cells, whereas classification was based on independently reseeded cells from 
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round and aberrant 3D phenotypes. The training dataset was used for the ‘Pixel 

classification’ option in the random-forest machine learning software ilastik220. Spheroids and 
background pixel classes were labeled with the paintbrush tool and assigned as ‘round’ and 

‘aberrant’ and iterative training allowed the generation of stable probability maps to 
distinguish the three object types ‘round’, ‘aberrant’ and ‘background’. For automated 

analysis of MCF10CA reseeding assays, a custom KNIME workflow loaded the previously 
trained project file using the ‘ilastik headless node’ and images to be classified were 

imported into KNIME and classified by applying the trained model to each image. The 
probability maps for ‘round’ and ‘aberrant’ spheroids were smoothed using a manual 

threshold of 0.5 and a size threshold (3000 pixels) was applied for all objects based on the 
probability maps. Spheroids of both phenotype classes were automatically quantified and 

assigned to their respective experiment and condition.  

For CRC cells derived from size classes ´big´ (70-100 µm) and ´small´ (20-40 µm), 8 x 8 
images per well were automatically acquired in 6-well plates (Greiner) using a custom Zeiss 

VBA macro. Images were analyzed using a custom KNIME workflow: Briefly, edges were 
detected using the default function “Find Edges” (implemented in ImageJ). Subsequently, 

images were thresholded manually (value=20) and default watershedding algorithm was 
applied to each image to separate neighboring spheroids. After segmentation, only 

segments of 500 to 1x105 pixels (1 pixel = 0.73 μm) were used and counted for downstream 
analysis.  

 

5.1.3.4 g-secretase inhibitor assay 

Spheroids treated with the g-secretase inhibitor PF-03084014 that have been cultured for 10 

days (section 5.1.2.3) were stained with CellTracker Red CMPTX (10 µM) for 3 hours before 
imaging with a Leica SP8 confocal laser-scanning microscope equipped with a 10x/0.30 air 

objective (Leica HC PL FLUOTAR). 5 x 5 images per well (10 Z-stacks per position) were 

acquired automatically using the ‘TileScan’ option to directly stitch acquired images of one 
well to one final composite image.  

Stiched CellTracker Red images were then analyzed using a custom KNIME workflow: 
Briefly, acquired Z-stacks were merged using minimum intensity projection and the local 

contrast was enhanced by ´Contrast Limited Adaptive Histogram Equalization´ (CLAHE) in 
order to correct for unevenness of wells (8 contextual regions, 256 bins, slope=6.0). 

Afterwards, images were median-filtered, manually thresholded (value=20) and connected 
component analysis was applied to assign labels to objects/spheroids. Only segments > 200 
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pixels (1 pixel = 0.44 μm) were used for downstream analysis to exclude single-cells. 

Spheroid size (area) was calculated in KNIME using the ´Feature Calculator´ node.  
 

5.1.3.5 HT-pheno-Seq microscopy, image processing and PhenoSelect 
For image acquisition of all 5,184-nanowells after dispensing of spheroids (sections 5.1.1.7 

and 5.1.2.4), chips were fixed on a metallic Chip Spinner (TakaraBio) with conventional 
adhesive tape and placed into a standard plate holder for inverted imaging. Nanowells were 

imaged upside-down automatically with an inverted Leica SP8 confocal laser scanning 
microscope system: To span four nanowells per field of view, we used a 10x/0.30 air 

objective (Leica HC PL FLUOTAR) but images were acquired with 0.9x digital zoom. 
Excitation was set to 405 and 552 nm and emission filters were set to receive signals 

between 415 – 485 nm (for DNA/Hoechst) and 555 – 625 nm (for cytoplasm/CellTracker 

Red). Laser intensity and gain were slightly optimized for every experiment, but the pinhole 
aperture was set to 5.0 Airy Units permanently. To extrapolate the correct focus position for 

each well, the ´predictive focus´ option was used. Images had a resolution of 512 x 512 
pixels, with 2.53 μm/pixel. A pre-defined HCS A template of the LAS X microscope software 

(Leica) was used for grid design matching the 72 x 72 nanowell chip dimensions. Scanning 
of one chip with the abovementioned settings took approximately 30 minutes, thereby 

resulting in 2 x 1296 images. 
The first part of the image analysis workflow in KNIME/ImageJ was used for image pre-

processing, including assignment of correct well positions, cropping, detection and 
segmentation, as well as feature extraction and quantification: Image names were first 

changed to match order of image acquisition and well location. The resulting format is 

comparable to the in-build iCELL8 microscope, although with 2 x 2 instead of 6 x 6 wells per 
field of view. Importantly, images were rotated 90o to correct for the camera orientation of the 

Leica SP8 system. Next, image cropping generated images containing only one nanowell 
per image. Based on the segmentation of the field of view containing the four most round 

segments, a mask was built for each well over all positions for cropping of images containing 
four nanowells. Since the SP8 microscope can image four wells so that only minimal offset 

between well positioning was visible, this method allowed cropping of all nanowells over all 
positions. Next, names of images with single wells were transformed to row/column positions 

to exactly match iCELL8-specific barcode assignments. As an example, the four wells of the 

first top-left image were transformed to ‘0_0’, ‘0_1’, ‘1_0’ and ‘1_1’. Segmentation, feature 
extraction and analyses were only performed on the cytoplasmic signal (CellTracker Red). 

The image was first smoothed by a Gaussian convolution algorithm (sigma = 5), then 
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manually thresholded (value=20) and spheroids in close proximity were separated by the 

watershed algorithm (ImageJ command ‘watershed’, default parameters). Only objects 
between 25 and 40,000 pixels were considered for downstream analysis to exclude imaging 

artefacts and single-cells. Spheroids touching the border of images were excluded. Cropped 
nanowell images were saved automatically and individually for each channel but also as 

overlay of the two channels for better visualization in the shiny web app. Finally, a .csv file 
was generated containing names and calculated 2D image features (derived from KNIME 

image processing node ‘Feature Calculator’) of nanowells containing at least one spheroid.  
The second part of the image analysis workflow in a shiny web app format (PhenoSelect, 

Supplementary Figure 4) has been developed for interactive analysis and selection of 
spheroids for sequencing: A saved .csv file containing quantified spheroid features is 

automatically handled by a custom R script and directly embedded together with the images 

in an interactive R/shiny application (PhenoSelect). Thereby, images and visualization of 
associated image feature statistics can be browsed interactively. In addition, direct visual 

inspection of given image features over the whole population allows the identification of 
distinct subtypes, e.g. by a particular shape or size. For quantification of absolute spheroid 

sizes, the respective spheroid major axis length value (in pixels) was multiplied with the 
physical length of a pixel in segmented objects. Spheroids can be selected based on applied 

thresholds and/or and individual wells can be selected/discarded manually. A list of selected 
wells can be saved and reloaded to proceed with selection at later time-points. Once 

spheroids had been selected for sequencing, PhenoSelect generated a ‘filter file’, which is 
used to instruct the iCELL8 dispenser software. In addition, a ´well-list file´ was generated 

containing well-barcode assignments for demultiplexing and calculated image features for 

selected spheroids. Finally, we implemented visualization of image features in t-SNE maps 
based on gene expression computed by PAGODA. After sequencing and analysis of 

selected spheroids, this tab enabled combined analysis for direct association of functional 
visual phenotypes to transcriptomic heterogeneity.  

 
5.1.3.6 Leakage test 

To assess potential leakage between wells, we dispensed a highly fluorescent solution of 
PBS + 1 µg/ml fluorescein sodium salt (Sigma) into one half of the nanowells and dispensed 

only PBS into the other half and into control wells. A specific dispensing pattern was chosen 

to generate a high number of borders between nanowells filled with fluorescein and those 
filled with PBS. Afterwards, the chip was handled and imaged as described above (section 

5.1.1.7) but with laser and filter sets matching fluorescent properties of fluorescein (λex 460 
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nm; λem 515 nm). Acquired images were processed for well assignment, segmentation and 

cropping by the HT-pheno-seq pre-processing workflow and average fluorescence intensity 
was measured for every well. Average fluorescence intensity values ranging from 0 to 255 (8 

bit) were color coded and plotted onto a 72 x 72 grid resembling the iCELL8 chip layout 
using a custom R script.  

 
5.1.3.7 Antibody staining for immunofluorescence 

Whole mount immunofluorescence staining of MCF10CA spheroids was performed as 
described previously214. Briefly, cells were fixed in 24-wells with 2% Methanol-free 

Formaldehyde solution (ThermoFisher) for 20 min at room temperature and washed 2x with 
PBS. Spheroids were permeabilized with PBS + 0.5% TritonX-100 (Sigma) for 10 min and 

washed 3x with PBS + 75 mg/ml Glycine (pH=7.4, Sigma). Unspecific binding sites were 

blocked for one hour at room temperature with 10% goat serum in IF-wash solution (PBS + 5 
mg/ml NaN3, 10 mg/ml bovine serum albumin, 2% TritonX-100 and 0.4% Tween20, pH=7.4, 

Sigma). Subsequently, primary antibodies (in blocking solution) were added and incubated 
at 4oC overnight. The next day, cells were washed three times with IF-wash and then 

incubated with fluorescently labeled secondary antibodies in blocking solution for one hour at 
room temperature if primary antibodies were unlabeled. Afterwards, cells were washed three 

times with IF-wash and two times with PBS and then incubated in PBS + 1 µg/ml Hoechst for 
20 min at room temperature. Cells were then washed with PBS, removed from the surface 

with a 1,000 µl pipette and transferred into 8-well Nunc Lab-Tek Chamber Slides 
(ThermoFisher) for improved fluorescence detection. Following antibodies were used in this 

study: Rabbit anti-Vimentin antibody Alexa Fluor® 594 (1:100, EPR3776, abcam), mouse 

anti-b-Actin antibody (1:200, 8H10D10, Cell Signaling), Mouse anti-Cytokeratin 15 antibody 
(1:50, LHK15, ThermoFisher), Goat anti-mouse Alexa Fluor 594 (1:200, Cell Signaling).  

3 x 3 images per well (20 Z-stacks per position) were acquired automatically on a Zeiss 
LSM780 Axio Observer confocal microscope equipped with a 10x/0.3 air objective (Zeiss EC 

PLAN-NEOFLUAR) using a custom Zeiss VBA macro. Lasers and filters were set to 
measure fluorescence emitted from Hoechst (DNA) and from Alexa Fluor 594-labeled 

antibodies. Brightfield images were obtained in parallel.   

Acquired images were analyzed using a custom KNIME workflow as follows: Z-stacks were 
first merged by average intensity projection and masks for single spheroids were created 

based on the Hoechst signal. To generate spheroid masks, images were smoothed by 
Gaussian convolution (sigma=2) and Otsu´s method was used for thresholding. Labels were 

assigned to objects by connected component analysis and objects < 300 and > 800,000 
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pixels were filtered out to remove segmentation artifacts. For comparison of expression of 

antibody targets between round and aberrant 3D phenotypes, single spheroids were 
manually classified as ‘round’ or ‘aberrant’ based on brightfield images. Protein abundances 

were defined as mean pixel intensity of the fluorescence signal emitted from labeled 
antibodies per spheroid.  

 
5.1.3.8 RNA FISH 

For histological preparation of MCF10CA spheroids, cells were cultured and isolated as 
described above (section 5.1.1.1), fixed with 2% Formaldehyde solution for 20 min at room 

temperature and washed 2x with PBS. Next, spheroids were incubated in PBS + 15% 
sucrose (Sigma) and PBS + 30% sucrose for cryopreservation (both 15 min at room 

temperature), embedded in Richard-Allan Scientific™ Neg-50™ Frozen Section Medium 

(ThermoFisher) and frozen in the gaseous phase of liquid nitrogen.  
For histological preparation of CRC spheroids, different size classes of spheroids (> 70 µm 

and 20-40 µm) derived from single-cells were isolated by (reverse-) filtering (sections  
5.1.2.2 and 5.1.2.4). The filtering step was added in order to distinguish between small 

spheroids and big spheroids that were cut in peripheral regions. Spheroids were fixed with 
4% Formaldehyde solution for 20 min at 4oC, washed 2x with PBS and incubated in 30% 

sucrose for cryopreservation at 4oC overnight. The next day, spheroids were embedded in 
Neg-50™ and frozen in the gaseous phase of liquid nitrogen.  

Sectioning was performed at −20°C on a cryostat (Leica) and 10 µm slices were mounted on 
Superfrost Plus slides (ThermoFisher). Specimens and cryosections were stored at -80°C 

until further use. 

For RNA fluorescence in-situ hybridization (RNA-FISH), we used the RNAscope Fluorescent 
Multiplex Assay 2.0 (ACDbio). Cryosections were processed as described in the ‘Sample 

Preparation Technical Note for Fixed Frozen Tissue’ and the ‘Fluorescent Multiplex Kit User 
Manual PART 2’. Briefly, cryosections were pre-treated with Protease IV (ACDbio) for 15 min 

at room temperature. Subsequently, mRNA-specific probes were hybridized at 40°C for 120 
min followed by stepwise hybridization of probes for signal amplification and fluorescent 

detection (Amp-1-FL – Amp-4-FL). Up to three transcripts were labeled by Alexa488, 
Atto550 and Atto647 fluorescent dyes (overview of used RNA-FISh probes in Supplementary 

Table 10). Cryosections were counterstained with DAPI, mounted in SlowFade Gold 

Antifade solution (ThermoFisher) and stored at 4°C until further use.  
RNA-FISH microscopy was performed with a Leica SP8 confocal laser-scanning microscope 

equipped with a 40x/1.30 oil objective (Leica HC APO CS2). Individual spheroids were 
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imaged at 1024 x 1024 pixel-resolution semi-automatically using the ‘Mark and Find’ option 

in the Leica SP8 acquisition software. To acquire signals from the whole 10 µm cryosection 
height, a Z-range of 20 µm was imaged by 15 stacks (1.43 µm distance between frames). 

Lasers and filters were set to match fluorescent properties of DAPI and RNA-FISH dyes. 
MCF10CA spheroids were classified as ‘aberrant’ or ‘round’ manually during imaging, 

whereas CRC spheroid classes were separated during sample preparation.   
For analysis of RNA-FISH images we used a custom KNIME workflow: Z-stacks were 

merged using maximum intensity projection and masks for single spheroids were created 
using the DAPI signal. Acquired DAPI signals were smoothed by Gaussian convolution 

(sigma = 5) and a maximum filter with a radius of 12 pixels was applied, resulting in 
individual masks for all spheroids within one image. Only the biggest spheroid per image 

was used for analysis if two or more objects were present in one field of view. To 

approximate transcript abundances (measured as fluorescence intensities derived from 
specifically labeled probes) we first corrected for background noise by fitting two local 

maxima (j and k) to the pixel intensity histogram of each spheroid using the ‘intermodes’ 
function in KNIME. Based on the determined pixel intensity threshold between two maxima 

calculated as (j+k)/2 (probe-specific), we defined the relative transcript expression per 
spheroid as quantified pixel % that exceeds this threshold per spheroid.  

 
5.1.3.9 Cell count determination by light sheet imaging and 3D segmentation 

To approximate cell numbers from images acquired in CRC HT-pheno-seq experiments, we 
generated a 3D image reference dataset to calculate the linear relationship of size (area) 

and cell numbers. CRC spheroids were stained for three hours with CellTracker Red CMPTX 

(10 µM) and 1 µg/ml Hoechst and subsequently isolated and fixed as described above 
(section 5.1.3.8). Next, spheroids were mounted in 2% low-melting agarose (Sigma) and 

image stacks were acquired using a Dual-View Inverted Selective Plane Illumination 
Microscope (ASI di-SPIM) using Nikon 40x/0.80W NA NIR-Apo water dipping objectives. 

Dual-view raw image data was processed to generate isotropic images at a resolution of 
0.325px/µm (400 images per Z-stack, 0.325 µm distance). Image pre-processing and 3D 

segmentation was performed with a custom KNIME workflow as follows: A 2D projection of 
the smoothed CellTracker image was used to produce a mask that was generated for each 

spheroid individually. Obtained 2D masks covering spheroids were applied to all individual 

slices in order to count nuclei only within this area and exclude artifacts. Single cells were 
first segmented and counted for each slice individually. Next, overlapping cells were 

separated by watershedding (KNIME node: Waehlby Cell Clump Splitter). Afterwards, the 2D 
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segments were used as ‘seeds’ for 3D Voronoi segmentation in order to obtain a 3D 

segmentation that accounts for cells spanning multiple slices. Cell numbers and 
corresponding 2D spheroid dimensions were exported from KNIME and analyzed using a 

custom R script. First, we converted the respective pixel numbers for minor and major axis of 
all 2D spheroid masks to metric distances. To account for variable spheroid morphologies, 

we further estimate the spheroid size as the product of its biggest and smallest diameter 
(minor and major axis). Afterwards, we plotted the measured size of every spheroid against 

its respective cell count determined by 3D segmentation in KNIME. A linear model was fitted 
through the acquired data points and the obtained slope was used to calculate cell count 

approximations for spheroids o HT-pheno-seq experiments. 
 

5.1.4 Sequencing data analysis 

5.1.4.1 Pre-processing of RNA-seq data and library quality control 
For single-cell and spheroid RNA-seq data pre-processing, an automated in-house workflow 

based on Roddy (https://github.com/TheRoddyWMS/Roddy) was established. Briefly, read 
quality was evaluated using FastQC. For iCELL8 libraries, barcodes from the 1st 21 bp read 

were assigned to the associated nanowell with the Je demultiplexing suite305. Remaining 
primer sequences, Poly-A/T tails and low-quality ends (<25) were trimmed using Cutadapt. 

Furthermore, since NextSeq (Illumina) encodes undetected bases as incorrect ‘Gs’ with high 
quality, Cutadapt’s ‘—nextseq-trim’ option was used for improved quality trimming. Trimmed 

reads were mapped to the reference genome hs37d5 (derived from the 1000 genomes 
project) using the STAR aligner. Mapped BAM files were quantified using featureCounts with 

reference annotation gencode v19.  

RNA-seq libraries were filtered out that did not match the following criteria: MCF10CA 
scRNA-seq: (i) > 300,000 reads, (ii) > 3000 detected genes (i.e. > 0 read count), (iii) < 10% 

mitochondrial reads; MCF10CA pheno-seq: (i) > 100,000 reads, (ii) > 2000 detected genes, 
(iii) < 15% mitochondrial reads; Colon spheroid pheno-seq: (i) > 200,000 reads, (ii) > 3000 

detected genes, (iii) < 15% mitochondrial reads.   
For performance comparison of scRNA-seq and pheno-seq methods in detecting genes, 

MCF10CA sequencing libraries were downsampled to 100,000 reads with a custom R script.  
Spheroids of HT-pheno-seq datasets with imaging artifacts (e.g. segmentation errors) were 

removed if detected during combined downstream analysis.   
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5.1.4.2 RNA-seq subpopulation and differential expression analysis 

We analyzed transcriptional heterogeneity by pathway and gene set overdispersion analysis 
(PAGODA/SCDE-package116) to identify expression signatures that separate distinct cellular 

subpopulations. Genes with less than 10 mapped reads in the whole dataset were excluded 
from further analysis. First, PAGODA generates error models for cells/spheroids using a 

binominal/Poisson mixture model, thereby controlling for technical aspects of variability, like 
effective sequencing depth, drop-out rate and amplification noise, respectively. For K-

nearest neighbor error modelling, k was set to 30 (for manual pheno-seq and pseudo pheno-
seq dataset: k=3), and the minimum number of reads required to be considered non-failed 

was set to 2. Subsequently, PAGODA performs weighted principal component analysis 
(wPCA) on de-novo identified and annotated gene sets in order to identify gene sets that 

exhibit statistically significant variability. Generally, the scores for the first principal 

component (PC) are presented. Annotated hallmark (H) and gene ontology (GO_C5) gene 
sets were downloaded from the Molecular Signature Database (MSigDB). De-novo gene 

sets were identified by hierarchical clustering (Ward method; dendrogram was cut into 150 
clusters). Gene set overdispersion was calculated as Z-score relative to the genome-wide 

model and corrected Z-scores (cZ) were computed using multiple hypothesis testing by the 
Holm procedure. Hierarchical clustering was then performed on top significant aspects of 

heterogeneity and redundant aspects were grouped with a similarity threshold of 0.7. Up to 
ten top significant aspects were used for visualization. In addition, 2D t-SNE maps112 were 

generated based on PAGODA's weighted Pearson correlation distances. In addition, the 
following confounding expression signatures (e.g. technical aspect or cell cycle influence) 

were removed using the ‘pagoda.substract.aspect’ function: 

1.) All datasets were corrected for the influence of gene coverage (estimated as a number of 
genes with non-zero magnitude per cell)  

2.) MCF10CA scRNA-seq: GO_REGULATION_OF_CELL_CYCLE and HALLMARK 
_G2M_CHECKPOINT;  

3.) MCF10CA HT-pheno-seq: GO_ NUCLEOSIDE_MONOPHOSPHATE_ METABOLIC 
_PROCESS, GO_MITOCHONDRIAL_ENVELOPE, GO_STRUCTURAL _MOLECULE 

_ACTIVITY, GO_ HOMEOSTATIC_PROCESS and corresponsing de-novo identified gene 
sets.  

Differentially expressed genes (MCF10CA: fold change > 1.3; adjusted p-value < 0.1; CRC: 

fold change > 1.5; adjusted p-value < 0.05) between detected subpopulations that refer to 
observed visual phenotypes (k-means clustering, k=2) were identified by the SCDE-

package109.  
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5.1.4.3 In-silico reconstruction of pseudo pheno-seq profiles from single-cell data 
MCF10CA pseudo-spheroid RNA-seq profiles were constructed from scRNA-seq data by 

randomly dividing cells either derived from round or aberrant phenotypes in four groups 
each. Read counts for each gene were then averaged over each group, resulting in eight 

pseudo-spheroid profiles (4 round and 4 aberrant) that were then analyzed by PAGODA 
similar to the manual pheno-seq dataset. Calculations were carried out in four independent 

randomizations. 
 

5.1.4.4 Deconvolution of the CRC spheroid dataset by maximum likelihood inference 
To infer heterogeneous gene regulatory states informative for single cell expression by 

deconvolution, we adapted the maximum likelihood inference approach previously 

developed to identify cell-cell heterogeneities from random 10-cell samples230 (Stochastic 
Profiling). In contrast to the previous version of the algorithm, we allowed each sample to 

consist of different numbers of cells (implemented in the R package stochprofML version 2.0:  
https://github.com/fuchslab/stochprofML) 

As the algorithm assumes that the expression of a spheroid linearly scales with its cell 
number, we approximated absolute counts per spheroid by using estimated cell numbers 

derived from light sheet microscopy and image analysis (section 5.1.3.9): First, counts per 
spheroid were divided by the respective estimated cell number and the minimal average 

mRNA count per cell over the whole dataset was determined (2374.644). Subsequently, we 
downsampled the whole dataset to 2300 counts per cell resulting in a perfect correlation of 

mRNA counts and cell numbers. The downsampled dataset was then filtered by removing 

genes with less than one count per well on average over the original CRC HT-pheno-seq 
dataset and genes were removed with less than 5 counts in at least two wells, leaving 

13,868 genes that have been taken into account during the profiling procedure. To avoid 
problems with zeros and log-normal distributions, all zeros were transformed to 0.1. 

 
5.1.4.5 Statistical analysis and visualization  

Statistical analysis and visualization of sequencing data was performed in R (Version 3.3.1) 
or R studio (https://www.rstudio.com/) using PAGODA/SCDE, ggplot2, 

ComplexHeatmaps306, the stats package (R version 3.3.1), stochprofML (R version 3.4.1) 

and in Graph Pad Prism 7 (https://www.graphpad.com/scientific-software/prism/). Gene set 
enrichment analysis was done by calculating overlaps between identified signatures and 
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gene sets derived from the Molecular Signature Database221 (MSigDB, 

https://software.broadinstitute.org/gsea/ msigdb).  
 

5.1.5 Data and code availability 
Raw sequencing data files for MCF10CA datasets are accessible at the European 

Nucleotide Archive (https://www.ebi.ac.uk/ena) under Accession Number PRJEB26737.  

CRC HT-pheno-seq raw sequencing data are accessible at the European Genome‐

Phenome Archive (http://www.ebi.ac.uk/ega/) under Accession Number EGAS00001002999. 

 

KNIME image analysis workflows, R code for PhenoSelect and PAGODA/SCDE RNA-seq 
analysis as well as a download link for MCF10CA HT-pheno-seq image data and associated 

components to run the pre-processing workflow and/or the PhenoSelect web app for 
interactive selection of spheroids can be found in the pheno-seq github repository 

(https://github.com/eilslabs/pheno-seq). More detailed information on the automated in-
house RNA-seq workflow is available upon request. The newest version of stochProfML 

3.4.1 can be found under: https://github.com/lisaamrhein/stochprofML.  
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5.2 Heterogeneous metabolic signatures are linked to cancer cell 

differentiation in a 3D model of colorectal cancer 
5.2.1 Cell culture and staining 

Primary patient-derived colon tumor sphere cultures were received from Heidelberg 
University Hospital and established as described previously204. From each patient, informed 

consent on the collection of tissue was obtained and approved by the Ethics Board of the 
University. Cells were cultured in 75 cm2 ultra-low attachment flasks in advanced D-MEM/F-

12 medium supplemented with Glucose (0.6%), 2 mM L-glutamine (Life Technologies), 4 
μg/ml heparin, 5 mM HEPES, 4 mg/ml BSA (Sigma), 10 ng/ml FGF basic and 20 ng/ml EGF 

(R&D Systems). Growth factors were added every 4 days and medium was exchanged 
every 4-8 days. For passaging, sphere cultures were centrifuged for 5 min at 900 rpm and 

resuspended in 2-4 ml 0.25% Trypsin (Life Technologies). Cells were trypsinized for 10-20 

min depending on the culture. Subsequently, 4-8 ml stop solution (PBS + 20% heat 
inactivated and sterile filtered fetal bovine serum, Life Technologies) was added and cells 

were centrifuged for 5 min at 900-1000 rpm. Cells were then resuspended in medium, 
passed through a 40 µm strainer and counted. For long-term storage, 2-4 million cells were 

frozen in medium supplemented with 30% fetal bovine serum and 15% dimethyl sulfoxide 
(DMSO, Roth). For mitochondrial staining, MitoTracker Red CMXRos (Thermo Fisher) was 

added to spheroids at a final concentration of 100 nM for three hours.  
 

5.2.2 Preparation of single cell suspensions for single cell RNA-sequencing 

For scRNA-seq experiments, cells were cultured for 6-14 days after trypsinization depending 
on the growth rate of the respective patient culture (Supplementary Table 3). Transcriptional 

heterogeneity induced by cell culture artifacts like hypoxia in inner cores were avoided by 
limiting the diameter of spheroids to ~150 µm, thereby ensuring general oxygen supply. For 

dissociation to single cell suspensions, sphere cultures were centrifuged for 5 min at 
900 rpm and resuspended in 4 ml 0.25% Trypsin (Life Technologies). To stimulate 

dissociation, shear forces were applied with a 1000 µl pipette every 5 min for 10-30 min in 
total depending on the culture (Supplementary Table 3). Subsequently, 8 ml stop solution 

(PBS + 20% heat inactivated and sterile filtered fetal bovine serum, Life Technologies) was 
added and cells were centrifuged for 5 min at 1000 rpm. Cells were washed twice in PBS 

(room-temperature) passed through a 15-20 µm cell strainer (PluriSelect) and counted by a 

LUNA automated cell counter (Logos Biosystems).  
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5.2.3 Nanogrid based single cell library preparation and RNA sequencing 

The TakaraBio iCELL8 system and the associated Rapid Development Protocol (in-chip RT-
PCR amplification) were used for single cell isolation, reverse transcription and cDNA 

amplification83. Single cell suspensions were stained with Hoechst and Propidium Iodide 
(ReadyProbe Cell Viability Imaging Kit, Invitrogen) for 10 min at room temperature and cell 

numbers and viability was checked with a Countess automated cell counter (Thermo Fisher). 
Samples were discarded if cell viability was below 85%. Cell suspensions were diluted to 

25 cells/µl in a 384-well source plate and distributed into a barcoded nanowell chip (oligo dT 
primer with unique barcode for every well) with a multi-sample microsolenoid valve 

dispenser, thereby achieving up to 30% nanowells with single cells due to Poisson 
distribution. All libraries were generated using chip version 1 except for Patient 8 (chip 

version 2: randomized distribution of barcodes in nanowell chip, 14 bp instead of 11 bp well 

barcode). Subsequently, the nanowell chip is sealed and centrifuged at 300g for 5 min and 
wells were imaged using an automated fluorescent microscope. After imaging, chips were 

frozen at -80oC until further use. Images were processed and analyzed using the CellSelect 
software and manually curated in order to exclude non-detected doublets or dead cells. A 

filter file generated by the CellSelect software was used to instruct the dispenser to deposit 
reagents for reverse transcription and amplification only into selected wells. After thawing 

frozen chips, 50 nl of RT/Amp solution was dispensed into selected nanowells (Master mix: 
56 µl 5 M Betaine, 24 µl 25 mM dNTP mix (TakaraBio), 3.2 µl 1 M MgCl2 (Invitrogen), 8.8 µl 

100 mM Dithiothreitol (TakaraBio), 61.9 µl 5x SMARTScribe™ first-strand buffer, 33.3 µl 2x 
SeqAmp™ PCR buffer, 4.0 µl 100 µM RT E5 Oligo, 8.8 µl 10 µM Amp primer (all 

TakaraBio), 1.6 µl 100% Triton X-100 (Acros), 28.8 µl SMARTScribe™ Reverse 

Transcriptase, 9.6 µl SeqAmp™ DNA Polymerase (TakaraBio)). After in-chip RT/Amp 
amplification (18 amplification cycles, in-chip RT/Amp Rapid Development protocol) inside a 

modified SmartChip Cycler (Bio-Rad), libraries were pooled, concentrated (DNA Clean and 
Concentrator−5 kit, Zymo Research) and purified using 0.6x Ampure XP beads. 

Concentration and quality of cDNA was assessed by a fluorometer (Qubit) and by 
electrophoresis (Agilent Bioanalyzer high sensitivity DNA chips). Next generation 

sequencing libraries were constructed using the Nextera XT kit (Illumina) following the 
manufacturer´s instructions. Final libraries were sequenced with the NextSeq 500 system in 

high-output mode (paired-end, 21 x 70 for v1, 24 x 67 for v2 chip).  
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5.2.4 scRNA-seq data analysis 

5.2.4.1 Pre-processing of RNA-seq data, library quality control and normalization 
For pre-processing of CRC single-cell RNA-seq data, an automated in-house workflow 

based on Roddy was used. Read quality was evaluated using FastQC. iCELL8 library 
barcodes from the first 21 bp read (24 bp for chip version 2) were assigned to the associated 

nanowell with the Je demultiplexing suite305. Remaining primer sequences, Poly-A/T tails 
and low-quality ends (<25) were trimmed using Cutadapt. Furthermore, since NextSeq 

(Illumina) encodes undetected bases as incorrect ‘Gs’ with high quality, Cutadapt’s ‘—
nextseq-trim’ option was used for improved quality trimming. Trimmed reads were mapped 

to the reference genome hs37d5 (derived from the 1000 genomes project) using the STAR 
aligner. Mapped BAM files were quantified using featureCounts with reference annotation 

gencode v19.  

RNA-seq libraries were filtered out that did not match the following criteria: (i) > 100,000 
reads, (ii) > 1000 detected genes, (iii) < 15% mitochondrial reads. In addition, we removed 

strong PCA outliers (section 5.2.4.2) and libraries with top 5% of reads for every patient 
independently. The latter was done in order to control for non-detected cell doublets307.  

Adapting a previously published approach169, we quantified expression levels based on raw 
read counts as Ei,j = log2(CPMi,j / 10 + 1), with CPMi,j  referring to count-per-million for gene i  

in sample j. To focus on genes expressed at high or intermediate levels, we calculated the 
aggregate expression of each gene across all cells as Ea = Ei,j = log2(mean[Ei,1…n] + 1), and 

excluded genes with Ea < 3.5. 
 

5.2.4.2 Analysis of inter-tumor heterogeneity and subtype classification 

Filtered and normalized data of all patients combined was used to characterize inter-patient 
differences in gene expression. For identification of highly variable genes, principal 

component analysis (PCA), clustering and differential expression analysis, we used the 
Seurat package81 as implemented in R.  

Highly variable genes were identified using the ‘FindVariableGenes’ function (with y.cutoff = 
0.5), and PCA was used for dimensionality reduction prior to clustering. The number of 

significant PCs was determined using the ‘PCElbowPlot’ function, and cells were clustered 
using the ‘FindClusters’ function (with resolution = 1.0) on the significant PCs only. tSNE112 

was used to visualize clustering results and patient-specific marker genes were identified by 

differential expression analysis using the Wilcoxon Rank Sum test. Expression levels of the 
top 10 differentially expressed genes from every patient were clustered based on average 
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group linkage (UPGMA) of Pearson correlation coefficients, using the ‘aheatmap’ function 

from the ‘NMF’ package in R. 
Consensus Molecular Subtypes (CMS) of CRC as defined by the Cancer Genome Atlas161 

were assigned for each patient independently by ‘CMScaller’ implemented in R242, either for 
each cell individually or after pooling data from all cells, with the false discovery rate set to 

0.25. 
 

5.2.4.3 Analysis of intra-tumor heterogeneity to identify shared expression programs 
To correct for global inter-patient shifts in gene expression levels, we first calculated relative 

expression levels for every patient independently by mean-centering: Eri,j = Ei,j – mean[Ei,1…n] 
and then combined the data of all patients.  

As a first approach, for each patient separately, we applied PCA to highly variable genes (as 

implemented in Seurat (section 5.2.4.2), and genes that were identified to be highly 
correlated with significant PCs were evaluated for biological relevance. The top 30 genes 

with high and low PC scores in the first principal component were clustered based on 
average group linkage (UPGMA) of Pearson correlation coefficients, using the ‘aheatmap’ 

function from the ‘NMF’ package in R. 
As an alternative, we adapted an approach based on non-negative matrix factorization 

(NNMF246) previously used for the analysis of scRNA-seq data derived from primary and 
metastatic head and neck cancers169 to more precisely identify variable gene expression 

programs (meta-signatures) that are shared between patients. In contrast to the previously 
applied approach, we did not apply NNMF to every patient individually but used mean-

centered data of all patients combined. We applied NNMF as implemented in MATLAB 

(‘nnmf’ function) to the mean-centered data from all LGR5+ CRC cultures (Table 2), with the 
number of factors set to k=25 and all negative values (including drop-out events) set to zero. 

As drop-outs, defined as genes that are expressed but not detected due to technical 
reasons, are known to be problematic for scRNA-seq data normalization and analysis, using 

NNMF is most likely beneficial as it inherently discounts their effects.  
In order to exclude signatures that are specific to one or a few patients, we calculated 

pairwise overlaps in the frequency distributions across cells of factor scores for individual 
factors and excluded factors that did not show a 50% overlap in at least five patients. Next, 

factors were analyzed for biological relevance by GSEA221 and by manual evaluation, and 

factors likely to be driven by technical artifacts were excluded. Subsequently, we defined 
meta-signatures as the averaged expression of the top 200 genes per factor and merged 

redundant meta-signatures that showed similar enrichments and clusterings by combining 
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genes from different factors (core-signatures). Meta-signature scores were clustered using 

complete linkage of Euclidean distances. We repeated NNMF analysis with various numbers 
of factors which resulted in the identification of similar core signatures (not shown).  

To assess the degree to which individual cells express specific gene expression programs, 
we adapted a previously described cell scoring approach based on the expression of pre-

defined meta-signatures169 that uses control random gene sets as a background model in 
order to control for technical confounders such as library complexity. In addition, we 

binarized the meta-signature scores for each cell by defining a meta-signature as ‘ON’ if its 
expression was more than one standard deviation above the mean across all cells, and 

‘OFF’ otherwise.  
For refinement of signature scores to compare lineage-specific cell states for cell cycle, 

OXPHOS, hypoxia and glycolysis (Figure 2.16), we extracted genes from cell state meta-

signatures that actually overlap with HALLMARK gene sets for functional enrichments of 
interest (MSigDB231). The following HALLMARK gene sets were used: 

HALLMARK_OXIDATIVE_PHOSPHORYLATION (OXPHOS); HALLMARK_HYPOXIA 
(hypoxia); HALLMARK_GLYCOLYSIS (glycolysis); HALLMARK_G2/M, 

HALLMARK_MITOTIC_SPINDLE, HALLMARK_DNA_REPAIR (cell cycle). Similar to meta-
signature scores, cell state scores were defined as averaged expression per gene set.  

 
5.2.5 In-situ analysis of gene expression by microscopy 

5.2.5.1 Histological preparation and multiplexed RNA-FISH 
For histological preparation, spheroids of Patients 1, 4 and 5 were fixed with 4% 

Formaldehyde solution for 20 min at 4oC, washed twice with PBS and incubated in 30% 

sucrose at 4oC overnight. The next day, spheroids were embedded in Neg-50™ and frozen 
in the gaseous phase of liquid nitrogen.  

Histological sectioning was performed at −20°C on a cryostat (Leica) and 10 µm slices were 
mounted on Superfrost Plus slides (ThermoFisher). Embedded specimens and cryosections 

were stored at -80°C until further use. 
For RNA fluorescence in-situ hybridization (RNA-FISH), we used the RNAscope® 

Fluorescent Multiplex Assay 2.0 (ACDbio). Cryosections were processed as described in the 
‘Sample Preparation Technical Note for Fixed Frozen Tissue’ and the ‘Fluorescent Multiplex 

Kit User Manual PART 2’. Cryosections were first pretreated with Protease IV (ACDbio) for 

15 min at room temperature. Next, transcript-specific probes were hybridized at 40°C for 120 
min followed by stepwise hybridization of probes for signal amplification and fluorescent 

detection (Amp-1-FL – Amp-4-FL). Up to three transcripts were labeled by Alexa488, 
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Atto550 and Atto647 fluorescent dyes (overview of used RNA-FISH probes in 

Supplementary Table 10). For parallel mitochondrial and mRNA staining, the Atto550 probe 
has been replaced by the Mitotracker Red CMXRos dye (section 5.2.1). Finally, cryosections 

were counterstained with DAPI, mounted in SlowFade Gold Antifade solution 
(ThermoFisher) and stored at 4°C until further use.  

 
5.2.5.2 RNA-FISH microscopy 

RNA-FISH images were acquired on a Leica SP8 confocal laser-scanning microscope 
equipped with a 40x/1.30 oil objective (Leica HC APO CS2). Images of individual spheroids 

at pixel resolution 1024 x 1024 (16 bit) were generated semi-automatically using the ‘Mark 
and Find’ option in the Leica SP8 acquisition software. To cover the 10 µm cryosection 

height by imaging, a Z-range of 20 µm was acquired by 15 stacks (1.43 µm distance 

between frames). Lasers and filters were set to match the fluorescent properties of DAPI and 
abovementioned dyes/probes.  

 
5.2.5.3 RNA-FISH image analysis  

For quantitative analysis of RNA-FISH imaging data, we estimated cellular transcript in cells 
by measuring fluorescence signals of mRNA targeting probes in single nuclei. Although we 

thereby miss cytoplasmic signal, relative mRNA abundances between nuclei and whole cells 
have been shown to be highly correlated308.  

To prepare spheroid images for further analysis, we performed Maximum Intensity Projection 
on each channel separately. For automated nuclei instance detection and segmentation in 

spheroids, a deep learning object detection and instance segmentation workflow 

incorporating Mask R-CNN309 was implemented. The neural network was initialized using 
pre-trained models trained on the Microsoft COCO: Common Objects in Context dataset310 

and fine-tuned using images of nuclei acquired from various unrelated sources. The 
maximum intensity projections of the DAPI images were used as inputs for the neural 

network to produce segmentation for each individual nucleus as outputs. The nuclei sizes 
were calculated using these segmented DAPI masks, and objects < 350 pixels were filtered 

out and excluded from subsequent analysis. 
For analyzing transcript abundance, maximum intensity projections of the RNA-FISH 

channels were binarized using the ‘Maximum Entropy’ thresholding method in FIJI/ImageJ. 

Transcript abundance was estimated by overlaying the nuclei masks on the maximum 
projected probe channels and calculating the number of pixels that lies within each mask. 

For quantification of mitochondrial abundance per cell, MitoTracker signals were binarized 
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using the ‘Moments’ thresholding method in FIJI/ImageJ. In order to account for the 

MitoTracker signals that are predominantly localized outside of the nuclei masks, we 
expanded the nuclei before pixel counting by morphological dilation (two iterations) as 

implemented in scikit-image (Python). For RNA-FISH and Mitotracker signals, we then 
performed k-means clustering on frequency distributions of pixel counts per cell (Nucleus) to 

identify and separate the cells into two distinct ‘ON’ (high expression/abundance) and ‘OFF’ 
(low expression/abundance) states. k = 2 was used for LGR5 and DEFA5 mRNA probes, 

while k = 3 was used for MKI67 and Mitotracker signals to better capture gradual differences 
between cells. Venn diagrams were computed with the matplotlib-venn package as 

implemented in Python. 
 

5.2.6 Statistical analysis 

Statistical analysis and visualization of sequencing data was performed in R (Version 3.3.1) 
or R studio (https://www.rstudio.com/) using Seurat, ggplot2, the stats package (R version 

3.3.1), in MATLAB using non-negative matrix factorization (‘nnmf’) and in Graph Pad Prism 
7. Gene set enrichment analysis was done by calculating overlaps between identified 

signatures and gene sets derived from the Molecular Signature Database221 (MSigDB, 
https://software.broadinstitute.org/gsea/ msigdb). Image pre-processing, statistical analysis 

and visualization of was performed in Python, R studio and in Graph Pad Prism 7. 
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6 Appendix 
 

6.1 Supplementary Figures 
 

 

Supplementary Figure 1 | Comparison of scRNA-seq and manual pheno-seq by tSNE visualizations.       
(a, b, c) PAGODA tSNE visualizations of MCF10CA scRNA-seq (a), manual pheno-seq (b) and Pseudo pheno-
seq (c, based on averaged single cell data, first randomization also shown in Figure 2.3). Datasets are colored by 
PC scores for HALLMARK_EMT gene sets (including associated cZ scores as measure of gene set 
overdispersion) and by expression magnitude of spheroid phenotype-specific markers VIM, SNAI2 and KRT15. 
RNA-seq analysis has been performed together with Jeongbin Park, Simon Steiger and Zuguang Gu. 
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Supplementary Figure 2 | Validation of pheno-seq data by quantitative fluorescence microscopy. (a, b, c) 
IF staining with primary antibodies targeting VIM (a), ACTB (b) and KRT15 (c). Images show Z-projections of 
whole mount spheroid immunofluorescence images. Plotted values represent mean pixel intensity per classified 
spheroid of the respective phenotype class. Dashed boxes in overview images (scale bar 100 µm) correspond to 
magnified images (scale bar 30 µm). (d) RNA-FISH with probe targeting SNAI2 mRNA (Alexa488, scale bar 100 
µm). Images represent Z-projections. Plotted values represent pixel percentage that exceeds the threshold per 
spheroid of the respective class after background correction. (a-d) All samples are counterstained with Hoechst 
dye for nuclei visualization (Hoechst: cyan; antibody signal for ‘round’ specific markers: yellow; labelled 
antibodies and RNA-FISH probe for ‘aberrant’ specific markers: red). (Box plot center-line: median; box limits: 
first and third quartile; whiskers: min/max values; Indicated P-values calculated from unpaired two-tailed Students 
t-test; Numbers of samples indicated on x-axis under respective class). Image analysis has been done together 
with Friedrich Preußer. 
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Supplementary Figure 3 | Detailed high-throughput pheno-seq workflow. (a) After staining and recovery 
(optional: fixation by DSP), spheroids are distributed into a nanowell chip by a microsolenoid-valve dispenser in 
50 nl per well. For improvement of imaging quality, spheroids are centrifuged upside-down to the imaging foil and 
automatically imaged by inverted confocal laser scanning microscope. The chip is frozen at -80oC until further 
processing. (b) Images are processed by a custom-made image processing pipeline in KNIME and ImageJ. A 
Shiny-based web-app (PhenoSelect) enables interactive visualization, analysis and selection of spheroids based 
on quantified image features. (c) A filter-file generated in the PhenoSelect web-app is used to dispense RT/Amp 
reagents only in selected nanowells. cDNA generation and amplification are performed in the nanowell chip. After 
pooling of barcoded cDNA, 3´-library generation and next generation sequencing, resulting raw data can be de-
multiplexed using internal barcodes listed in the welllist/feature-file generated by PhenoSelect. (d) Combined 
imaging and gene expression profiling enables combined analysis of gene expression and image features. Image 
processing pipeline and PhenoSelect has been developed together with Friedrich Preußer. 

 

 

 

Supplementary Figure 4 | PhenoSelect software for interactive visualization, analysis and selection of 
spheroids from high-throughput pheno-seq. (a) Primary selection of single spheroids as well as analysis and 
curation of selected spheroids. Filter- and welllist/feature-files are generated at this point and can be reloaded or 
changed at any time. (b) PhenoSelect enables import of externally generated 2D tSNE maps (PAGODA) for 
combined analysis of image features and gene expression. PhenoSelect has been developed together with 
Friedrich Preußer. 
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Supplementary Figure 5 | HT-pheno-seq cluster specific image features and comparison to manual 
pheno-seq. (a and b) Same t-SNE map for MCF10CA pheno-seq data as shown in Figure 2.5, but colored for 
image features ‘size’ (a) and ‘skewness’ (b). Right: Violin plots reflect image feature quantification per cluster (k-
means clustering: k=2; violin center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR; Indicated 
P-values from unpaired two-tailed Students t-test). Image feature associations can be interpreted according to 
the biological background (e.g. proliferation and cell density). (c) Venn-diagrams showing overlaps of identified 
spheroid phenotype-specific genes between manual pheno-seq and HT-pheno-seq based on differential 
expression analysis (fold change > 1.3; adjusted p-value < 0.1). RNA-seq analysis has been performed together 
with Jeongbin Park. 

 
 

 

Supplementary Figure 6 | Validation of CRC pheno-seq data by RNA-FISH. (a, b, c) Representative RNA-
FISH images (Z-projections) of different spheroid size classes for differentiation marker TFF3 (a) and cancer 
stem cell markers CD44 (b) and MYC (c). RNA-FISH staining of big (>70 µm) and small (20-40 µm) spheroids 
with (left) and without (right) Hoechst counterstain visualization (Hoechst: cyan; RNA: yellow). Dashed line in 
images without Hoechst visualization represents spheroid border (scale bar 50 µm). 
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Supplementary Figure 7 | Gene-specific and global correlation analysis of expression with estimated cell 
numbers after CRC pheno-seq data transformation.  (a) Relations of estimated cell numbers and 
downsampled mRNA counts visualized as scatter plots as well as associated Pearson’s correlation coefficients 
(r) for housekeeping gene ACTB and differentiation markers TFF3 and DEFA5. (b) Pearson’s correlation 
coefficient (r) distributions of gene expression and cell numbers for all genes before and after data transformation 
(cell number dependent downsampling) subdivided into non-2 population genes (left) and 2-population genes 
(right) as identified by maximum likelihood inference. RNA-seq analysis in has been performed together with 
Christiane Fuchs and Lisa Amrhein. 
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Supplementary Figure 8 | Workflow to identify shared expression programs across single cells of CRC 
patients by non-negative matrix factorization (NNMF). (a) NNMF is applied to the normalized and mean-
centered single cell expression matrix of eight LGR5+ CRC patients with predicted factor numbers of k=25. (b) 
Patient-specific factors are removed by calculating overlaps in factor score distributions between patients. (c) Top 
200 genes per factor are evaluated for biological relevance by GSEA and manual curation. (d) Meta-signature 
scores per cell are defined by averaged expression of top 200 genes per factor and redundant factors with similar 
enrichments and clustering are merged, resulting in eight core meta-signatures. (e) Core meta-signature scores 
can be clustered to evaluate relations between identified factors. (f) Binary ON/OFF states of core meta-
signatures are inferred per cell that can be used for clustering or to quantify cellular fractions per patient and to 
identify cells with multiple active signatures per patient. The NNMF workflow was jointly developed with Teresa 
Krieger. 

 

 

Supplementary Figure 9 | Identification of patient-specific factors identified by NNMF. (a) Violin plots of 
factor scores plotted per patient. Shown are patient specific (upper) and shared gene expression program (lower: 
cell cycle). (b) Frequency distributions of factor scores per patient for factors shown in (a). (c) Fractions of 
pairwise factor score overlaps between patients plotted as binned frequency distribution. Factors are removed 
from further analysis if less that 5 patients overlap at least 50%. The NNMF workflow was jointly developed with 
Teresa Krieger. 
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Supplementary Figure 10 | Biological classification of factors identified by NNMF derived from LGR5+ 
CRC patients. Identified factors (n=13) and associated top 200 genes can be categorized according to their 
biological enrichments (e.g. G2/M or OXPHOS). These can be classified in four main categories: cell cycle, 
metabolism, differentiation and immune response. Shown are 10 representative genes per factor ranked by 
NNMF factor score. Grey boxes below contain major gene set enrichments of HALLMARK gene sets231 for 
representative factors.  

 

 
 

 

 

Supplementary Figure 11 | Clustering of meta-signature scores identified by NNMF. Hierarchical clustering 
of residual 13 meta-signature scores after removal of patient-specific and non-relevant factors. Dendrograms 
reflect overall clustering and row below shows patient ID information. Names of meta-signatures reflecting 
enriched genes are listed beside the heatmap. Core-signatures are written in bold letters and can originate from 
merged meta-signatures. Data analysis was jointly performed with Teresa Krieger. 
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Supplementary Figure 12 | Cellular fractions of active core meta-signatures vary between patients.  
Barplots showing cellular fractions with active core meta-signature (reflecting ON/OFF states of respective 
signatures per cell) per patient identified by NNMF. Data analysis was jointly performed with Teresa Krieger. 
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Supplementary Figure 13 | Identification of cells with multiple active signatures per patient. Heatmaps 
showing fractions of cells with active meta-signatures per patient (diagonal from upper left to lower right) and 
fractions of cells with pairwise overlaps of meta-signatures. Data analysis was jointly performed with Teresa 
Krieger. 
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Supplementary Figure 14 | Validation of lineage-specific marker genes by RNA-FISH. Histological sections 
of CRC spheroids derived from P4 (upper) and P5 (lower) co-stained for representative lineage-specific marker 
genes by RNA-FISH. Left: overview images; scale bar 50 µm. Right: magnified images that represent dashed box 
regions in overview images (4x digital zoom); scale bar 10 µm. DEFA5: Paneth cells (green), LGR5: stem cells 
(yellow), FABP1: differentiated cells (red). Colored arrowheads mark associated subtypes in magnified images. 
Images represent Z-projections from 10 µm slices. DNA counterstain by DAPI (blue). 
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Supplementary Figure 15 | Spatial location of LGR5+ cells coincides with mitochondrial abundance in 
budding regions. Histological sections of CRC spheroids derived from P4 (upper) and P5 (lower) co-stained for 
representative lineage-specific marker genes by RNA-FISH and for mitochondria with Mitotracker Red CMXRos 
(100 nM). Middle: overview images; scale bars 50 µm. Left and right: magnified images that represent dashed 
box regions in overview image (4x digital zoom); scale bars 10 µm. DEFA5: Paneth cells (green), LGR5: stem 
cells (yellow), mitochondria (red). Images represent Z-projections from 10 µm slices. DNA counterstain by DAPI 
(blue).  

 

 

Supplementary Figure 16 | LGR5+ cells are not restricted to the outer layer of CRC spheroids. Histological 
section of CRC spheroid derived from P1 co-stained for representative lineage-specific marker genes by RNA-
FISH and for mitochondria with Mitotracker Red CMXRos (100 nM). Left: overview image; scale bar 50 µm. 
Right: magnified image that represents dashed box region in overview image (4x digital zoom); scale bar 10 µm. 
DEFA5: Paneth cells (green), LGR5: stem cells (yellow), mitochondria (red). Yellow arrowheads mark LGR5+ 
cells. Images represent Z-projections from 10 µm slices. DNA counterstain by DAPI (blue).  
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Supplementary Figure 17 | Differentiated FABP1+ cells are primarily located in OXPHOSLow regions. 

Histological section of CRC spheroid derived from P4 co-stained for lineage-specific marker gene FABP1 (yellow) 
by RNA-FISH and for mitochondria (red) with Mitotracker Red CMXRos (100 nM). Top left: overview image; scale 
bar 50 µm. Top right: magnified image that represents dashed box region in overview image (4x digital zoom); 
scale bar 10 µm. Lower left and right: Individual channels of magnified image. Images represent Z-projections 
from 10 µm slices. DNA counterstain by DAPI (blue).  
 

 

 

Supplementary Figure 18 | Actively cycling cells frequently locate to OXPHOShigh regions. Histological 
sections of CRC spheroids derived from P1, P4 and P5 co-stained for cell cycle marker MKI67 (yellow) by RNA-
FISH and for mitochondria (red) with Mitotracker Red CMXRos (100 nM). Scale bars 50 µm. Images represent Z-
projections from 10 µm slices. DNA counterstain by DAPI (blue).  
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Supplementary Figure 19 | Methodological overview for quantitative in situ analysis of CRC spheroids by 
RNA-FISH and Mitotracker. After Mitotracker staining, fixation and embedding, CRC spheroids underwent 
histological preparation and RNA-FISH staining (RNAScope). Images were acquired semi-automatically on a 
confocal laser scanning microscope (Leica SP8). Image pre-processing involved nuclei segmentation by deep-
learning (TensorFlow) as well as thresholding for binarization of fluorescence signals (*RNA-FISH: maximum 
entropy, Mitotracker: moments-preservation). Per channel, pixels were then counted per nucleus (**for 
Mitotracker quantification, nuclei were expanded by morphological dilation to acquire cytoplasmic signals from 
mitochondria) and ON/OFF states per cell for each channel were defined by k-means clustering on frequency 
distributions of pixel counts per nucleus. Finally, overlaps of active cell states can be computed. The image 
analysis pipeline was developed together with Foo Wei Ten. 
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6.2 Supplementary Tables 

Supplementary Table 1 | Dataset overview and QC metrics for pheno-seq project 

3D-culture 
model MCF10CA MCF10CA MCF10CA MCF10CA MCF10CA CRC spheroid 

Method scRNA-seq Pseudo  
pheno-seq 

M-pheno-
seq 

HT-pheno-seq 
(bottom 
control) 

HT-pheno-
seq (DSP) HT-pheno-seq 

Library 
structure 

Full-length 
C1 

Full-length 
C1 

Full-length 
Tube-based 

3`-end 
iCELL8 

3`-end 
iCELL8 

3`-end 
iCELL8 

Sequencer HiSeq 2000 HiSeq 2000 HiSeq 2000 HiSeq 2000 NextSeq 500 NextSeq 500 

Sample #  
(after QC) 166 8 8 64 210 95 

Origin Cell line Cell line Cell line Cell line Cell line Patient-derived 

Mean total 
read count per 

sample 
3,820,057 3,685,536 9,965,986 485,975 803,669 1,304,480 

Mean detected 
genes (> 0) per 

sample (all 
reads) 

8,844 15,783 12,360 8,458 8,221 9,891 

Mean detected 
genes (> 0) 
per sample 

(down-
sampled to 
100k reads) 

5,554 13,374 8,411 7,051 6,377 7,412 

 
 

 

Supplementary Table 2 | Diagnostic background of CRC spheroid cultures* 

Patient # ID Sex Year of 
birth Diagnosis Origin 

P1  male   Liver metastasis 
P2  male   Lung metastasis 
P3  female   Liver metastasis 
P4  female   Liver metastasis 
P5  female   Primary tumor 
P6  female   Primary tumor 
P7  male   Liver metastasis 
P8  male   Liver metastasis 
P9  male   Primary tumor 

P10  n.a.   Primary tumor 

P11  n.a.   Primary tumor 
P12  male   Primary tumor 

(*Information provided by Dr. Claudia Ball/Prof. Dr. Hanno Glimm) 
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Supplementary Table 3 | Phenotypic overview of CRC spheroid cultures   

Patient # ID Spheroid 
phenotype Growth rate Culture time Dissociation 

time 
Validation 

assays 

P1  compact  ++ 9-10 days 30 min ✓ 
P2  loose connection  +++ 6-7 days 20 min ✘ 
P3  compact  + 14 days 30 min ✘ 
P4  compact  +++ 6-7 days 20 min ✓ 
P5  compact  +++ 6-7 days 30 min ✓ 
P6  loose connection, Mucus  +++ 6-7 days 15 min ✘ 
P7  compact  ++ 9-10 days 30 min ✘ 
P8  compact  ++ 9-10 days 30 min ✘ 
P9  loose connection  +++ 6-7 days 10 min ✘ 
P10  loose connection  +++ 6-7 days 25 min ✘ 
P11  compact/loose  +++ 6-7 days 35 min ✘ 
P12  compact/loose  +++ 6-7 days 25 min ✘ 

 

Supplementary Table 4 | Media, supplements, buffers and chemicals 

Product Application Company 

Phosphate buffered saline (PBS) Buffer Sigma 

DMEM/F12  Cell culture medium Life Technologies 

Advanced DMEM/F12 Cell culture medium Life Technologies 

Fluorobrite DMEM Cell culture medium Life Technologies 

DMEM Cell culture medium Life Technologies 

Fetal bovine serum Culture medium supplement Life Technologies 

Bovine serum albumin Culture medium supplement Life Technologies 

Horse Serum Culture medium supplement Life Technologies 

HEPES Culture medium supplement Sigma 

Epidermal growth factor (EGF) Culture medium supplement R&D Systems 

Fibroblast growth factor (FGF) Culture medium supplement R&D Systems 

D-Glucose Culture medium supplement Sigma 

L-Glutamine Culture medium supplement Sigma 

Heparin Culture medium supplement Sigma 

Cholera Toxin Culture medium supplement Sigma 

Insulin Culture medium supplement Sigma 

Hydrocortisone Culture medium supplement Sigma 

Matrigel ECM surrogate Corning 

Glycine Immunofluorescence Sigma 

Tween20 Immunofluorescence Sigma 

NaN3 Immunofluorescence Sigma 

Goat serum Immunofluorescence Sigma 

Dispase ECM dissociation Sigma 

Accumax Cellular dissociation StemCell Technologies 

Trypsin 0.05% & 0.25% Cellular dissociation Life Technologies 

Formaldehyde solution (Methanol-free) Cellular fixation Thermo Fisher 

dithio- bis(succinimidyl propionate) (DSP) Cellular fixation Sigma 

Richard-Allan Scientific Neg-50 Frozen Section Medium Histology Thermo Fisher 

Sucrose Histology Sigma 
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SlowFade Gold Antifade solution Histology Thermo Fisher 

fluorescein sodium salt Fluorescence microscopy Sigma 

PF-03084014 g-secretase inhibitor Sigma 

 

 

Supplementary Table 5 | Cell culture plates and flasks 

Plates/Flask type Company 

25 cm2 culture flasks greiner 

24-well cell culture plates greiner 

15µ angiogenesis slides ibidi 

8-well Nunc Lab-Tek Chamber Slides Thermo Fisher 

GravityTRAP ultra-low attachment 96-well plates InSphero 

75 cm2 ultra-low attachment flasks Corning 

60 mm Ultra Low Attachment Culture Dishes Corning 

Aggrewell400 6-Well plates StemCell Technologies 

 
 
 
Supplementary Table 6 | PCR cycler programs for RT and cDNA amplification 

SMARTer C1 (scRNA-seq) 
 

Smart-Seq v4 (M-pheno-seq) 
 HT-pheno-seq &  

CRC scRNA-seq 
72oC – 3 min   72oC – 3 min   50oC – 3 min  
4oC – 10 min   4oC – ¥   4oC – 5 min  
25oC – 1 min      42oC – 90 min  

4oC – ¥   42oC – 90 min   50oC –  2 min 
2 cycles 

   70oC – 10 min   42oC – 2 min 
42oC – 90 min   4oC – ¥   70oC – 15 min  
70oC – 10 min      95oC – 1 min  

4oC – ¥   95oC – 1 min   98oC – 10 sec 
18 cycles    98oC – 10 sec 

16 cycles 
 65oC – 30 sec 

95oC – 1 min   65oC – 30 sec  68oC – 3 min 
95oC – 20 sec 

5 cycles 
 68oC – 3 min  72oC – 10 min  

58oC – 4 min  72oC – 10 min   4oC – ¥  
68oC – 6 min  4oC – ¥     
95oC – 20 sec 

9 cycles 
      

64oC – 30 sec       
68oC – 6 min       
95oC – 30 sec 

7 cycles 
      

64oC – 30 sec       
68oC – 7 min       
72oC – 10 min        

4oC – ¥        
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Supplementary Table 7 | Kits and reagents for reverse transcription, cDNA amplification and sequencing 
library preparation 

Application Protocol Library 
structure Component Company Pheno-

seq 
CRC scRNA-

seq 

scRNA-seq SMARTer 
C1 

Full-
length SMARTer kit for C1 TakaraBio ✓ ✘ 

   C1 IFC for mRNA-seq 
10-17 µm Fluidigm ✓ ✘ 

   Nextera XT kit Illumina ✓ ✘ 

   Ampure XP beads Beckman 
Coulter ✓ ✘ 

       

Manual pheno-
seq 

Smart-Seq 
v4 

Full-
length Smart-Seq v4 kit TakaraBio ✓ ✘ 

   PicoPure RNA-isolation 
kit 

Life-
technologies ✓ ✘ 

   Nextera XT kit Illumina ✓ ✘ 

   Ampure XP beads Beckman 
Coulter ✓ ✘ 

       

HT-pheno-seq 
& scRNA-seq 

Rapid 
development 3´-end SmartChip v1/v2 kit TakaraBio ✓ ✓ 

   Recombinant RNase 
Inhibitor TakaraBio ✓ ✓ 

   DNA Clean and 
Concentrator−5 kit 

Zymo 
Research ✓ ✓ 

   Nextera XT kit Illumina ✓ ✓ 

   Betaine Sigma ✓ ✓ 

   dTNPs TakaraBio ✓ ✓ 

   MgCl2 Invitrogen ✓ ✓ 

   Dithiothreitol TakaraBio ✓ ✓ 

   5x SMARTScribe™ first-
strand buffer TakaraBio ✓ ✓ 

   2x SeqAmp™ PCR 
buffer 

TakaraBio ✓ ✓ 

   Triton X-100 Acros ✓ ✓ 

   SMARTScribe 
 Reverse Transcriptase TakaraBio ✓ ✓ 

   SeqAmp 
DNA Polymerase TakaraBio ✓ ✓ 

   Ampure XP beads Beckman 
Coulter ✓ ✓ 
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Supplementary Table 8 | Microscopes and objectives 

Microscope Objective Application Pheno-seq CRC scRNA-seq 

Olympus BX43 
(iCELL8) 4x Air (iCELL8 in-built) iCELL8 ✓ ✓ 

     

Leica SP8 40x/1.30 oil  
(Leica HC APO CS2) RNA-FISH ✓ ✓ 

 10x/0.30 air objective  
(Leica HC PL FLUOTAR) Single cell seeding ✓ ✘ 

  g-secretase inhibitor 
assay ✓ ✘ 

  HT-pheno-seq ✓ ✘ 

  Leakage test ✓ ✘ 
     

Zeiss Axio 
observer 

10x/0.3 air  
(Zeiss EC PLAN-NEOFLUAR) Reseeding assay ✓ ✘ 

  Immunofluorescence ✓ ✘ 

     

ASI diSPIM 40x/0.80 water  
(Nikon NIR-Apo) Cell count reference ✓ ✘ 

 

 
 

 
 

Supplementary Table 9 | Antibodies and live dyes 

Target/Antigen Antibody/dye # Host Concentration/ 
Dilution Company 

anti-Vimentin (Alexa Fluor 
594) EPR3776 rabbit 1:100 abcam 

anti-b-Actin 8H10D10 mouse 1:200 Cell Signaling 

anti-Cytokeratin 15 LHK15 mouse 1:50 ThermoFisher 
anti-mouse  
(Alexa Fluor 594) 8890 goat 1:200 Cell Signaling 

Mitochondria Mitotracker Red 
CMXRos - 100 nM Thermo Fisher 

Cytoplasm 
CellTracker Red 

CMTPX - 10 µM Thermo Fisher 

DNA Hoechst 33258 - 1 µg/ml Thermo Fisher 

DNA and dead cells Readyprobes Cell 
Viability Imaging Kit - n.a. Invitrogen 
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Supplementary Table 10 | ACDbio RNAScope probes for RNA-FISH 

Gene Channel Catalog # Pheno-
seq 

Pheno-seq 
subtype 

CRC 
scRNA-seq 

CRC scRNA-seq 
Subtype 

ATF3 C1 470861 ✘  ✓ Immune response 
CCL20 C3 409611-C3 ✘  ✓ Immune response 
CD44 C3 311271-C3 ✓ big ✘  

CD9 C3 430671-C3 ✓ big ✘  

CFB C1 402101 ✓ round ✘  

CKB C1 480671 ✘  ✓ Glycolysis/Hypoxia 
CLDN2 C1 492051 ✘  ✓ Stem 
DEFA5 C1 423981 ✓ Paneth ✓ Paneth 
FABP1 C3 534801-C3 ✘  ✓ Glycolysis/Hypoxia 

FTL C1 315051 ✓ small ✘  

HES1 C2 311191-C2 ✘  ✓ Stem 
HES1 C1 311191 ✘  ✓ Stem 
HES6 C2 521301-C2 ✘  ✓ Paneth 

HILPDA C1 320269/300031 ✘  ✓ Glycolysis/Hypoxia 
JUN C1 470541 ✓ big ✓ Immune response 

KDM3A C1 454631 ✘  ✓ Glycolysis/Hypoxia 
KRT18 C3 310211-C3 ✓ small ✓ OXPHOS 
KRT19 C3 426221-C3 ✘  ✓ Glycolysis/Hypoxia 
LDHA C1 487811 ✘  ✓ Glycolysis/Hypoxia 
LDHB C1 NM_001174097.2 ✘  ✓ OXPHOS 
LGR5 C2 311021-C2 ✘  ✓ Stem 
LGR5 C3 311021-C3 ✘  ✓ Stem 
MKI67 C3 591771-C3 ✘  ✓ Cell Cycle 
MYC C2 311761-C2 ✓ big ✓ MYC 
PGK1 C1 310401 ✘  ✓ Glycolysis/Hypoxia 

PROX1 C2 530241-C2 ✓  ✓ Stem 
PROX1 C1 530241 ✘ Stem ✓ Stem 
RHOA C1 416291 ✓ aberrant ✘  

SNAI2 C1 554581 ✓ aberrant ✘  

SOX4 C1 469911 ✘  ✓ Stem 
SOX9 C1 404221 ✘  ✓ Stem 
TFF3 C1 403101 ✓ small ✓ Glycolysis/Hypoxia 

VEGFA C2 423161-C2 ✘  ✓ Glycolysis/Hypoxia 
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Supplementary Table 11 | Software and core extensions 

Software Components/packages Reference 

R / RStudio Stats https://www.r-project.org 
 ggplot2 https://www.rstudio.com 
 shiny  
 PAGODA/SCDE  
 ComplexHeatmaps  
 stochprofML2  
 Seurat  
   
In-house RNA-seq pipeline 
(Roddy based) FastQC https://github.com/TheRoddyWMS/Roddy 

 Cutadapt  
 Star  
 featureCounts  
   
KNIME KNIME Analytics Platform https://www.knime.com 
 KNIME File Handling Nodes  
 KNIME Image Processing  

 KNIME Image Processing - ImageJ Integration 
(Beta)  

 KNIME Interactive R Statistics Integration  
   
Microsoft Office 2016 Word https://www.office.com 
 Excel  
 Powerpoint  
   
Python tensorflow https://www.python.org 
 numpy https://www.tensorflow.org 
 pandas  
 matplotlib  
 scikit-learn  
 scikit-image  
 OpenCV  
   
MATLAB Non-negative matrix factorization (nnmf) https://de.mathworks.com 
GraphPad Prism 7  https://www.graphpad.com 
Adobe Illustrator  https://www.adobe.com/de 
Mendeley Desktop  https://www.mendeley.com 
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6.5 Abbreviations  
 
   
Units 
pg picogram 
ng nanogram 
µg microgram 
mg milligram 
  
nl nanoliter 
µl microliter 
ml milliliter 
  
nm nanometer 
µm micrometer 
mm millimeter 
cm centimeter 
  
M molar 
mol mole 
  
oC degree Celsius 
  
sec seconds 
min minutes 
h hours 
  
rpm revolutions per minute 
g relative centrifugal force 
  
λ wavelength 

 
 
 
Further abbreviations   

2D two-dimensional 
3D three-dimensional 
ACTB Beta-Actin 
Amp amplification 
APC  Adenomatosis Polyposis Coli Tumor Suppressor 
ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing 
ATP adenosine triphosphate  
BIC bayesian information criterion  
bp base pair 
BS-seq bisulfite sequencing 
BSA bovine serum albumin 
cDNA complementary DNA 
CLAHE Contrast Limited Adaptive Histogram Equalization 
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CMS consensus molecular subtypes  
CNAs copy number alterations 
CNNs convolutional neural networks 
CNVs copy number variations  
CO2 carbon dioxide  
CPM counts per million 
CRC colorectal cancer 
CSC cancer stem cell 
CTCs circulating tumor cells  
cZ corrected Z-score  
Paneth deep crypt secretory 
DEFA5 Defensin A5 
DNA  deoxyribonucleic acid 
dNTP deoxynucleotide triphosphate 
DSG3 desmoglein 3  
DSP dithio-bis(succinimidyl) propionate  
DTT dithiothreitol  
ECM extracellular matrix 
EGF epidermal growth factor 
EGFR epidermal growth factor receptor  
EMT epithelial-mesenchymal transition’  
F frequency 
FACS fluorescence activated cell sorting  
FAP fibroblast activating protein  
FEP fluorinated ethylene propylene  
FGF fibroblast growth factor 
FISH fluorescence in situ hybridization 
FPM fragments per million  
GLUL Glutamate Ammonia Ligase  
H1F0 histone Family Member 0  
HC   high-content 
HSCs hematopoietic stem cells  
HT   high-throughput 
IF immunofluorescence 
IHC immunohistochemistry 
iPS induced pluripotent stem cells 
IQR interquartile range 
KRT keratin  
LCM  laser capture microdissection 
LGR5 Leucin-rich repeat–containing G protein–coupled receptor 5 
LN log-normal 
LSFM light sheet fluorescence microscopy  
MET mesenchymal-epithelial transition  
MgCl2 magnesium chloride  
mRNA messenger RNA 
MSI microsatellite instable 
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MSigDB Molecular Signature Database 
NA numerical aperture 
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 
NGS next generation sequencing 
NNMF non-negative matrix factorization  
OXPHOS oxidative phosphorylation 
P patient 
PAGODA pathway and geneset overdispersion 
PBS phosphate buffered saline 
PC principal component 
PCA principal component analysis 
PCR  polymerase chain reaction 
poly(T)  poly thymine 
Pop population 
qPCR quantitative PCR 
RNA  ribonucleic acid 
ROS reactive oxygen species 
RT reverse transcription 
sc single cell 
seq sequencing 
sm single molecule 
TA transit-amplifying  
TCA tricarboxylic 
Tdiff Terminally differentiated CRC subtype 
TFF3 Trefoil Factor 3  
TGF-b Transforming Growth Factor Beta  
TNF-a Tumor Necrosis Factor alpha 
TSCS topographic single cell sequencing  
tSNE t-distributed stochastic neighbor embedding  
UMIs unique molecular identifiers  
VIM vimentin 
WNT Wingless int1 

 

 
 

 
 

 
 

 


