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Glacier and ice sheet surfaces are important microbe-dominated ecosystems that

are changing rapidly due to climate change, with potentially significant impacts. A

theoretical framework of the supraglacial (glacier surface) ecosystem is needed to

enable its mathematical modeling, a necessary tool for understanding, quantifying and

predicting present day and future ecosystem dynamics. Here, we review key biological

processes occurring on glacier and ice sheet surfaces and present three frameworks

for constructing process-based models of the surface ecosystem, using the largest

supraglacial ecosystem on Earth—the Greenland ice sheet surface—as an important

example. The models are based on organic carbon transformations, but vary in numerical

complexity and in the level of detail of biological processes. This perspective is intended

to guide future supraglacial ecosystem model development, field data collection for

parameterization and validation purposes, and encourage inter-disciplinary collaboration

between modelers and experimentalists.

Keywords: ecological modeling, process-basedmodel, supraglacial ecosystem,microbial activity, carbon cycling,

climate change, Greenland ice sheet

INTRODUCTION

Glaciers and ice sheets currently cover∼10% of the surface of continents and contain >30 million
km3 of ice. They contain distinct ecosystems that harbor diverse microbial communities and
are places of significant biological activity (Hodson et al., 2008). The largest supraglacial (glacier
surface) ecosystem on Earth is found on the Greenland ice sheet (GrIS). This is due to its high
surface melting that may reach nearly 100% of the surface during extreme events (Nghiem et al.,
2012). Supraglacial ecosystems in Greenland and elsewhere are changing rapidly due to climate
warming, which causes retreat of the margins of glaciers and ice sheets and a potential inward
expansion of the biologically active ablation areas.

Microorganisms in supraglacial ecosystems cycle carbon and nutrients (Hodson et al., 2008;
Stibal et al., 2012a), and may also affect the physical behavior of glaciers by increasing melt via
lowering the surface reflectivity of ice (Takeuchi et al., 2015; Lutz et al., 2016; Musilova et al., 2016).
Supraglacial ecosystems may significantly impact neighboring terrestrial and marine ecosystems
via meltwater export of live cells, organic carbon (OC), and other nutrients (Lawson et al., 2014;
Hawkings et al., 2015; Cameron et al., 2017).

Insights into the supraglacial ecosystem have been driven mostly by empirical approaches
relying on field sampling and laboratory measurements. However, these are often constrained
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by patchy spatial and temporal coverage, limiting their
appropriateness for upscaling. Mathematical models are ideally
suited to studying the supraglacial ecosystem since they can
disentangle and quantify the interplay of various biogeochemical
and physical processes, bridge the vast spatial scale of ice
sheets, make scenario-based predictions, identify gaps in the
current understanding, and thus help design future sampling
and laboratory analyses, as reviewed by Bradley et al. (2016a).
Despite increasing data on sources, sinks, and transformations of
carbon and nutrients in the supraglacial ecosystem, few attempts
of linking them together into an ecosystem model have been
made to date (e.g., Hodson et al., 2010; Cook et al., 2012). As a
result, estimates of microbial activity and associated carbon and
nutrient transformations on a large scale are highly uncertain,
and predictions of future ecosystem change are virtually
impossible.

The aim of this perspective paper is to provide a theoretical
framework of the supraglacial ecosystem in order to facilitate
ecological modeling as a tool for understanding present day
and future ecosystem dynamics. To do so, we focus on the
largest supraglacial ecosystem on Earth—the GrIS surface—as
an important example and present three conceptual models
of the GrIS microbial ecosystem. However, these models are
not Greenland-specific and can be applied to other supraglacial
ecosystems. Themodels focus on organic carbon transformations
but differ in complexity by the detail that biological processes
are represented. We discuss the strengths and weaknesses
of each modeling approach, their role in improving the
understanding of carbon cycling and ecosystem dynamics,
and the necessary integration of these modeling approaches
with field data to parameterize and validate numerical output.
This perspective is intended to guide future supraglacial
ecosystem model development and field data collection, and
encourage cross-disciplinary collaboration between modelers
and experimentalists.

THE SUPRAGLACIAL ECOSYSTEM

The supraglacial ecosystem comprises the top layer of the ice
which is in contact with the atmosphere and receives solar
radiation and atmospheric deposition of dust, aerosols, and
microbial inocula. Three distinct but inter-connected habitats
host living organisms which contribute to biogeochemical
activity in the system: melting snow, bare ice, and surface
debris (cryoconite). Meltwater, a key constraint on biological
activity on glacier and ice sheet surfaces, is present in all
three habitats during the melt season and also provides a
transient habitat through which viable microorganisms can be
transported.

Melting snow is an ephemeral habitat colonized by diverse
microbial communities, including photoautotrophic snow algae
(Uetake et al., 2010; Cameron et al., 2015). Microbial cells
deposited with snow may remain on the ice surface after
the snow has melted and become part of the surface ice
community, or they can be flushed from the ice sheet surface
with meltwater (Cameron et al., 2015). Bare ice is exposed
seasonally around the margins of the ice sheet and hosts a

high abundance of algae (Uetake et al., 2010; Yallop et al.,
2012) and other microorganisms (Stibal et al., 2015a; Cameron
et al., 2016). The algae are important primary producers in
the ecosystem and may contribute to surface melting via
darkening the ice due to pigment production (Cook et al., 2012;
Yallop et al., 2012). Abundance of other, mostly heterotrophic,
microbes in surface ice has been found to correlate with
dust concentration (Stibal et al., 2015a). Cryoconite, usually
concentrated in cryoconite holes (Hodson et al., 2010), hosts
diverse and highly active microbial communities that consist of
photoautotrophic cyanobacteria and a range of heterotrophic
bacteria (Cameron et al., 2012, 2016; Stibal et al., 2012b,
2015b; Edwards et al., 2014; Uetake et al., 2016). Cryoconite
holes provide a stable and nutrient-rich habitat within the
supraglacial ecosystem, and are considered hotspots of microbial
activity on glacier surfaces (Anesio et al., 2009; Cook et al.,
2016a). Microbial activity in cryoconite may also contribute
to surface darkening (Takeuchi et al., 2015; Musilova et al.,
2016). The interconnected nature of these three habitats
allows for transportation of biomass and nutrients between
them over the course of an annual cycle (Cameron et al.,
2016).

There is a wealth of data on the principal carbon
cycling processes (primary production, secondary production,
respiration) from the supraglacial ecosystems of the GrIS and
other glaciers and ice sheets (e.g., Bagshaw et al., 2007, 2016;
Foreman et al., 2007; Hodson et al., 2007, 2010; Stibal et al.,
2008, 2012b; Anesio et al., 2009, 2010; Telling et al., 2010; Cook
et al., 2012, 2016b; Bellas et al., 2013; Chandler et al., 2015;
Rassner et al., 2016; Smith et al., 2016). However, data on rates of
microbial exudation (biotic release of dissolved organic carbon
(DOC) from living cells), decomposition of particulate organic
carbon (POC), and cell mortality on glacier surfaces are currently
lacking.

Numerous environmental controls on supraglacial microbial
activity have been identified (as reviewed in Hodson et al., 2008;
Anesio and Laybourn-Parry, 2012; Stibal et al., 2012a). First,
liquid water, a key prerequisite for biological activity, is generated
during the ablation season by snowmelt and ice melt. Data
on meltwater quantity can be obtained from existing surface
mass balance (SMB) models (e.g., Fettweis et al., 2013; Langen
et al., 2017, for the GrIS). Second, sunlight provides energy for
phototrophic growth, and melts snow and ice producing the
water needed to support biological activity.Wintertime biological
activity has not beenmeasured in supraglacial ecosystems to date,
however due to almost complete absence of light and liquid water
during polar night, most biological processes are likely to stop
or decline considerably. Third, the availability of organic carbon
and dissolved inorganic nutrients is known to limit supraglacial
microbial activity. Nitrogen is supplied to the ice surface in
significant amounts by precipitation (e.g., Fischer et al., 1998;
Geng et al., 2014). However, it may be limiting in glacier and
ice sheet marginal areas, where microbial nitrogen fixation has
been measured (Telling et al., 2011, 2012). Phosphorus, a critical
macronutrient derived mainly from rock weathering, is likely
to be a key factor limiting biological activity in the supraglacial
ecosystem (Stibal et al., 2009).
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MODELING THE SUPRAGLACIAL
ECOSYSTEM

In order to provide a theoretical framework of the supraglacial
ecosystem of the GrIS and other glaciers and ice sheets, we
present three process-based conceptual models of increasing
complexity (Figure 1). The ultimate choice of model complexity
will depend on the nature of the research question(s), the scale
that is being resolved, the existing knowledge and data, and
the potential of new knowledge gained. Each unique scientific
question may have several best-possible approaches integrating
models and data (Bradley et al., 2016a). Insight can be gained by
exploring multiple approaches and developing models to varied
levels of detail (Sierra and Müller, 2015). Here, we focus on a
process-based approach and present the conceptual models as
suggestions, intended to illustrate the varying levels of complexity
that may be incorporated into each model formulation. Other
modeling approaches are discussed in Bradley et al. (2016a). First,
we discuss the major OC fluxes individually (see Table 1), before
describing how they are applied and combined in each model
formulation (Figure 1).

The foci of the presented models are the sources, sinks, and
transformations of OC and biomass (Table 1). OC reservoirs
and fluxes form the basis of these models, since most biological
processes are in essence OC transformations, and much of

FIGURE 1 | Conceptual models of the supraglacial ecosystem. M1: simple

DOC:POC model in which microbial biomass and processes are included in

the POC pool. M2: model with a separate biomass state variable. M3: model

with biomass divided between autotrophs and heterotrophs. State variables

and fluxes are described in Table 1.

the data available from field studies which may be used to
inform and validate model predictions are presented as such
(e.g., Hodson et al., 2010; Stibal et al., 2012b; Yallop et al.,
2012; Chandler et al., 2015). Transformations of other elements
such as nitrogen and phosphorus may be incorporated into
model formulations using fixed or variable stoichiometries (e.g.,
Soetaert and Herman, 2009; Bradley et al., 2015), provided that
appropriate knowledge and empirical/experimental data exist to
inform and validate predictions. Conventional units in which
data from the supraglacial ecosystem are reported are usually
related to surface area (cells cm−2, g Cm−2; e.g., Cook et al., 2012;
Yallop et al., 2012). Data reported as chemical concentrations
or weight per volume of snow/ice (e.g., Chandler et al., 2015)
can be converted to area by integrating over the “active” surface
layer, while data from cryoconite, usually expressed per gram of
debris, can be converted to area using measurements of surface
cryoconite coverage (Bøggild et al., 2010; Hodson et al., 2010;
Stibal et al., 2012b; Takeuchi et al., 2014).

There are three abiotic OC fluxes resolved within the
suggested framework. Atmospheric deposition (W) of POC
and microbial biomass is an important OC source for the

TABLE 1 | State variables, fluxes, and formulation of the supraglacial ecosystem

models presented in Figure 1.

State variable Description

DOC Dissolved organic carbon

POC Particulate organic carbon

BIO Total biomass

BIOA Autotrophic biomass

BIOH Heterotrophic biomass

Flux Description

Abiotic W Atmospheric deposition

M Melting out of old ice

F Meltwater flushing

Biotic GA Autotrophic growth

GH Heterotrophic growth

R Respiration

E Exudation of DOC from biomass

L Decomposition of POC to DOC

D Cell death

Model Complexity Balance equations

M1 Low ∂DOC
∂t = L+ E − GH − FDOC

∂POC
∂t = WPOC + GA + GH − L− E − R− FPOC

M2 Medium ∂DOC
∂t = L+ E − GH − FDOC

∂POC
∂t = WPOC +M+ D− L− FPOC

∂BIO
∂t = WBIO +GA + GH − R− D− E − FBIO

M3 High ∂DOC
∂t = L+ EA + EA − GH − FDOC

∂POC
∂t = WPOC +M+ DA + DH − L− FPOC

∂BIOA
∂t = WA +GA − DA − EA − FA

∂BIOH
∂t = WH + GH − R− DH − EH − FH
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GrIS supraglacial ecosystem (Edwards et al., 2014; Stibal et al.,
2015b; Cameron et al., 2016). Direct measurements of W are
challenging; however, first successful attempts from an Arctic
glacier showed a cell flux of 107 cells per m2 per day (Irvine-Fynn
et al., 2012). Melting of POC out of old ice (M) is a well-known
phenomenon from the GrIS surface (Wientjes et al., 2012), the
flux of which is dependent on the OC concentration in the ice,
which can be directly measured, and the amount of ice melt,
which can be obtained from SMB models (Fettweis et al., 2013;
Langen et al., 2017). Meltwater flushing (F) is also dependent on
surface melt rate, which can be obtained from SMB models, and
on the concentration of OC in the meltwater leaving the ice sheet
surface, which has been measured (Lawson et al., 2014).

The following biotic fluxes are resolved within the suggested
framework. Net primary production (GA), or growth of
autotrophic microbes (BIOA), is an important source of OC
on glacier surfaces, and has been shown to be in the range
of 10−4–10−2 g C m−2 d−1 for supraglacial habitats (Hodson
et al., 2007; Anesio et al., 2009; Telling et al., 2010; Stibal et al.,
2012b; Yallop et al., 2012). GA is dependent on the abundance of
BIOA, the incident photosynthetically active radiation, and the
concentration of limiting nutrients (Yallop et al., 2012; Bagshaw
et al., 2016), and can be numerically formulated using e.g. Monod
kinetics (Soetaert and Herman, 2009; Bradley et al., 2016b).
Secondary production, or heterotrophic growth (GH), represents
the consumer component of the ecosystem (BIOH). BIOH

consists of a range of heterotrophic microorganisms in all three
environments. Due to the nature of the supraglacial environment,
these are likely to be mostly aerobic chemoheterotrophs, i.e.,
oxidizing OC compounds by atmospheric oxygen to gain energy
while also usingOC as a carbon source. Typical rates of secondary
production in supraglacial environments are between 10−7 and
10−4 g C m−2 d−1 (Hodson et al., 2007; Anesio et al., 2010;
Bellas et al., 2013). Monod kinetics may also be appropriate
for formulating GH, since heterotrophic growth on GrIS is
likely dependent on the concentration of DOC and limiting
nutrients (Anesio et al., 2010). Respiration (R) is an important
biotic sink of OC for the supraglacial ecosystem of the GrIS,
with field measurements in the range of 10−4 and 10−2 g C
m−2 d−1 (Anesio et al., 2009; Telling et al., 2010; Stibal et al.,
2012b). Estimates of bacterial growth efficiency (e.g., Anesio et al.,
2010) may be used to explicitly relate bacterial production to
respiration (e.g., Bradley et al., 2015). Similarly, exudation (E)
can be modeled as a fraction of microbial growth (Bradley et al.,
2015). Decomposition of POC (L) can be modeled using Monod
kinetics as dependent on the proportion of BIOH capable of
decomposing POC, and POC concentration. Cell death rates (D)
are problematic to define experimentally (Toal et al., 2000), and
may be simplified as a density-dependent fraction of BIOA and
BIOH (Bradley et al., 2015).

The simplest model (M1; Figure 1) adopts a simplistic
approach and only resolves dissolved OC (DOC) and particulate
OC (POC). POC comprises microbial active and inactive
biomass and various types of organic residue. Deposition of
wind-borne organic materials (WPOC), melting of POC out
of old ice (M), autotrophic growth (GA), and heterotrophic
growth (GH) contribute to the POC pool. GA comprises net

primary production (i.e., CO2 fixed from the atmosphere during
photosynthesis less CO2 respired back) of snow algae, ice
algae, and cryoconite cyanobacteria, whereas GH serves as the
conversion of DOC to biomass (POC) during heterotrophic
growth. POC is depleted by decomposition (L), respiration
(R), bacterial exudation (E), and meltwater flushing (FPOC).
The DOC pool is depleted by heterotrophic uptake (GH) and
meltwater flushing (FDOC), while decomposition of POC (L) and
exudation (E) provide a source of DOC. This approach may be
useful for testing hypotheses concerning the GrIS supraglacial
ecosystem as net carbon sink or source using data derived from
field measurements of carbon fluxes, similar to prior upscaling
attempts (Hodson et al., 2010; Cook et al., 2012; Chandler et al.,
2015). If fluxes are formulated such that they are sensitive to
perturbations in environmental conditions, the model could
address such questions as:How will future climate warming affect
the OC reservoir in the GrIS surface ice? However, biological
processes are implied, rather than explicitly simulated, and
insights into the biotic drivers of ecosystem dynamics are limited.

The next model (M2; Figure 1) adopts a more complex
process-focussed approach, and distinguishes biomass (BIO)
from non-living organic matter (POC). BIO captures living
microbes in all three supraglacial environments (melting snow,
bare ice, and surface debris). Abiotic fluxes are adjusted fromM1
as follows: wind deposition of OC is split between POC and BIO
(WPOC, WBIO), meltwater flushes material from all OC pools
(FDOC, FPOC, FBIO), and no live biomass is assumed to melt out
of old ice. For the biotic component, GA, GH, R, and E apply to
the BIO pool. Cell death (D) results in the flux of OC from BIO
to POC. This level of complexity may be suitable for answering
questions related to the overall quantity and potential activity of
microbes within the system. For example, will microbial biomass
at the surface of the GrIS increase with enhanced surface melting?
However, microbial functional diversity is not represented in
sufficient detail to resolve the different controls of the principal
carbon cycling processes, since all microbes are lumped into a
single state-variable (BIO).

Finally, M3 (Figure 1) adopts a process-focussed approach,
but differs from M2 by explicitly resolving the main functional
groups of biomass, depending on principal carbon cycling
pathways (autotrophic BIOA and heterotrophic BIOH). For
abiotic fluxes, wind deposition of OC is split between POC,
BIOA, and BIOH (WPOC, WA, WH, respectively), and all pools
lose OC to meltwater flushing (FDOC, FPOC, FA, FH). For biotic
fluxes, GH and R only apply to the BIOH pool, while GA applies
only to BIOA. D and E are separate for autotrophs (BIOA)
and heterotrophs (BIOH). A model of this level of complexity
contains the basic components of the carbon cycle at the GrIS
surface and may be useful in testing hypotheses concerning the
impacts of various factors on carbon cycling processes such as
primary production and respiration. For example, this model
may provide answers to questions such as:May increased surface
melting on the GrIS cause the system to switch between net
autotrophy (carbon sink) and net heterotrophy (carbon source)?
However, the model will require more robust and comprehensive
datasets to inform and support predictions to an acceptable level
of confidence.
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The conceptual models presented in Figure 1 merge all the
supraglacial habitats described above (snow, surface ice, and
cryoconite). If hypotheses about specific components are to be
tested, each component can be resolved individually, possibly at
the expense of increased model complexity.

Field measurements and controlled experiments provide
useful data that can inform model values, including initial
conditions and parameters. Environmental controls onOC fluxes
can then be included mathematically in a number of ways, as
reviewed by Bradley et al. (2016a). If insufficient experimental
data exist to directly inform parameters, their value may be
estimated based on calibration to data from similar process-based
models, or measurements from comparable low-temperature
ecosystems such as Arctic soils or lakes (e.g., Jones et al., 2000;
Mindl et al., 2007; Hollesen et al., 2011; Bradley et al., 2016b).
Sensitivity analysis may then be used to determine the relative
importance of obtaining an accurate value for each parameter,
thereby informing future experimental work.

Forcing data can be obtained from existing monitoring
networks and regional climate models. For example, the
Programme forMonitoring the Greenland Ice Sheet (PROMICE)
provides surface energy budget closure via automated weather
stations distributed across the ice sheet ablation area (Ahlstrøm
et al., 2008; van As et al., 2016). Models such as MAR (Fettweis
et al., 2013) and HIRHAM5 (Langen et al., 2017) are useful
to provide parameters influencing biological activity, such as
surface temperature and precipitation (and so the availability of
liquid water), under different climate scenarios. Thus, they may
provide estimates of the spatial and temporal extensions of the
biologically active area on the ice sheet and so enable predictions
of the fate of the GrIS supraglacial ecosystem under a number of
scenarios.

Spatial variability in carbon and nutrient concentrations and
microbial abundance and activity has been reported from the
GrIS (e.g., Hodson et al., 2010; Stibal et al., 2010, 2012b,
2015a; Telling et al., 2012; Yallop et al., 2012). However,
direct measurements exist from very few discreet locations, and
upscaling from point measurements to the whole ice sheet may
introduce large errors. Therefore, it is crucial to identify processes
and parameters for which spatial variability is a concern. For
example, a small-scale zero-dimensional model simulating a unit
surface area (e.g., a SMB model grid point) will be relatively
easy to constrain in terms of forcing and validation data,
thereby increasing confidence in model simulations. Under the
assumption of homogeneity across the entire GrIS, estimates of
whole ice sheet scale fluxes could be derived from a single 0D

model simulation. Such a model will be tractable but would
require substantial generalizations, thus possibly introducing
errors. Alternatively, whole ice sheet scale fluxes can be derived
from independently runmodel simulations with spatially discreet
initial conditions, forcings, and parameter values, or by including
transport terms between model grid points informed by existing
ice flow models (e.g., Goelles et al., 2015).

Model validation is crucial for determining that model
dynamics accurately represent the conceptual description and
specifications, and presents an opportunity for collaboration
between modelers and experimentalists. Where appropriate,
model results may be validated using data from a short/small
scale observations, upon which meaningful upscaling might
provide robust predictions. Such data for the GrIS comprise
measurements of microbial abundance and activity, and OC
and nutrient concentrations, amongst others. Future efforts
to provide useful field data to inform and validate the next
generation of supraglacial ecosystem models should be a
priority.

CONCLUDING REMARKS

Modeling the supraglacial ecosystem will provide insights into
present day dynamics going beyond simple extrapolation of in
situmeasurements, and enable the prediction of future ecosystem
change in a warming climate. Iterative model development
will also generate new hypotheses and improve sampling and
experimental designs for in situ work. Exploring models of
varying complexity and spatial and temporal scales, as presented
here, will help answer specific questions of interest to the
scientific community, including accurate quantification of OC
fluxes, and the future fate of carbon and biomass on the GrIS
surface and elsewhere. Close collaboration betweenmodelers and
experimentalists will be key to designing appropriate models and
collecting useful data. Thus, ecological modeling forms a valuable
contribution to the mosaic of cryosphere research currently
underway.
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