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Abstract

Audio signals are characterised and perceived based on how their

spectral make-up changes with time. Uncovering the behaviour of latent

spectral components is at the heart of many real-world applications

involving sound, but is a highly ill-posed task given the infinite number

of ways any signal can be decomposed. This motivates the use of prior

knowledge and a probabilistic modelling paradigm that can characterise

uncertainty.

This thesis studies the application of Gaussian processes to audio,

which offer a principled non-parametric way to specify probability distri-

butions over functions whilst also encoding prior knowledge. Along the

way we consider what prior knowledge we have about sound, the way it

behaves, and the way it is perceived, and write down these assumptions

in the form of probabilistic models.

We show how Bayesian time-frequency analysis can be reformulated

as a spectral mixture Gaussian process, and utilise modern day inference

methods to carry out joint time-frequency analysis and nonnegative

matrix factorisation. Our reformulation results in increased modelling

flexibility, allowing more sophisticated prior knowledge to be encoded,

which improves performance on a missing data synthesis task. We demon-

strate the generality of this paradigm by showing how the joint model

can additionally be applied to both denoising and source separation

tasks without modification.

We propose a hybrid statistical-physical model for audio spectrograms

based on observations about the way amplitude envelopes decay over

time, as well as a nonlinear model based on deep Gaussian processes.

We examine the benefits of these methods, all of which are generative in

the sense that novel signals can be sampled from the underlying models,

allowing us to consider the extent to which they encode the important

perceptual characteristics of sound.
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Chapter 1

Introduction

No two instances of natural sound are identical in terms of their time-

domain waveform. Yet the human auditory system is able to perceive

and classify sounds, likely based on statistical representations (Turner,

2010; McDermott et al., 2013), and as human listeners we are implicitly

aware that the sounds we hear around us are realisations of a physical

process. Hence studying natural sound requires consideration of a unique

blend of physical, stochastic, and statistical information. This thesis

is concerned with techniques for audio analysis that incorporate these

qualities.

The task of uncovering the hidden structure in an audio waveform,

or estimating the sound production mechanism from its time-frequency

representation, is highly ill-posed. For example, there are uncountably

many ways in which an audio signal can be decomposed into a sum of

time-varying periodic components (Cohen, 1995). Such unidentifiability

motivates a Bayesian perspective on audio analysis, which marries the

quantification of uncertainty and stochasticity with the use of prior

information. We propose prior knowledge based on statistical features

inspired by human audition and signal analysis, and physical properties

based on our knowledge about how natural sound behaves.

The probabilistic approach is a natural fit for the difficult task of

representing signals with complex latent structure. However, despite

some promising initial results, these methods are not yet widely used

for audio analysis. Their links to traditional signal processing are not

fully understood, and they come at a large computational cost given

that audio signals necessarily contain a large number of temporal data

points. Here we utilise the Gaussian process paradigm to formulate our
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probabilistic models, and to draw links between seemingly disparate

methods in the hope that this will inspire further research surrounding

probabilistic treatment of sound.

Gaussian processes (Rasmussen and Williams, 2006) are an extension

of the multivariate Gaussian distribution to infinite dimensions, allowing

us to specify distributions over functions. Their popularity is growing

in the field of machine learning due to their principled treatment of

uncertainty, applicable in many regression and classification tasks. It

has been shown that Gaussian processes have strong connections to

stochastic differential equations and dynamical systems (Hartikainen

and Särkkä, 2010), and we exploit this fact to deploy them as a tool for

modelling audio signals.

Connections between the fields of machine learning and signal pro-

cessing are explored. In chapter 3 we show that a state of the art

probabilistic time-frequency analysis method is in fact identical to a

Gaussian process whose kernel is a sum of quasi-periodic components (a

spectral mixture Gaussian process, Wilson and Adams, 2013), allowing

us to exploit the benefits of both perspectives in terms of inference

methods and modelling flexibility.

In chapter 4 we go on to show how a joint model for time-frequency

analysis and nonnegative matrix factorisation can be viewed as a nonsta-

tionary version of the spectral mixture Gaussian process, again utilising

a signal processing perspective to ease the computational overhead, but

showing how state of the art statistical inference methods, namely power

expectation propagation (Minka, 2004), are crucial in such a complex

setting. These models are very general, and we show how they can be

applied to many practical tasks without modification, such as audio

inpainting, denoising and source separation.

Drawing further connections between different modelling perspectives

in chapter 5, we propose a hybrid statistical-physical model for audio

magnitude spectrograms, a latent force model (Alvarez et al., 2009),

which allows us to interpret learnt latent functions as physical forces

driving a dynamical system to produce sound. Finally in chapter 6 we

study how a multi-layer approach to analysis, deep Gaussian processes

(Damianou and Lawrence, 2013), can be viewed as a nonlinear generali-

sation of temporal nonnegative matrix factorisation, and we consider

the benefits of such a model in terms of missing data synthesis.
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1.1. Publications

1.1 Publications

Publication I “Unifying Probabilistic Models for Time-

Frequency Analysis” William J. Wilkinson, Michael Riis Andersen,

Joshua D. Reiss, Dan Stowell, and Arno Solin in Int. Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2019

chapter 3 is an extension of Publication I, containing a more detailed

derivation of the key result as well as additional discussion of the problem

domain and insights provided by the empirical results.

WJW carried out most of the theoretical development, designed all

the experiments and wrote the majority of the paper. AS provided key

theoretical insights involving the stochastic differential equation form of

the quasi-periodic covariance function. MRA contributed to theoretical

discussion and writing.

Publication II “End-to-End Probabilistic Inference for Non-

stationary Audio Analysis” William J. Wilkinson, Michael Riis An-

dersen, Joshua D. Reiss, Dan Stowell, and Arno Solin in Int. Conference

on Machine Learning (ICML), 2019

Publication II forms the basis of chapter 4, but extra discussion

and background are provided, particularly around the infinite-horizon

approximation. We also improve the presentation of the state space

model derivation and the connections to nonstationary spectral mixture

models.

Theoretical contribution and paper writing was shared amongst WJW,

MRA and AS. WJW took responsibility for practical implementations

and designing and running all experiments. MRA assisted in formu-

lating and implementing the expectation propagation algorithm. AS

implemented the extended Kalman filter baseline algorithm.

Publication III “Latent Force Models for Sound: Learning

Modal Synthesis Parameters and Excitation Functions from

Audio Recordings” William J. Wilkinson, Joshua D. Reiss and Dan

Stowell in Int. Conference on Digital Audio Effects (DAFx), 2017

Publication III forms the basis of section 5.1 and section 5.2, propos-

ing the latent force model paradigm for audio envelopes and drawing

connections to modal synthesis.

WJW contributed the majority of work towards this publication, with

10



1.1. Publications

guidance from JDR and DS.

Publication IV “A Generative Model for Natural Sounds

Based on Latent Force Modelling” William J. Wilkinson, Joshua

D. Reiss and Dan Stowell in Int. Conference on Latent Variable Analysis

and Signal Separation (LVA/ICA), 2018

Publication IV forms the basis of section 5.3 and section 5.4, extend-

ing and generalising the latent force model approach to a wider class

of sounds and evaluating the results via a listening test with human

participants.

WJW contributed the majority of work towards this publication, with

guidance from JDR and DS.

Chapter 6 “Deep Gaussian Processes as a Nonlinear Model

for Audio Spectrograms”

chapter 6 is unpublished work. Concept and theoretical development

carried out by WJW, as well as experimental design and most of the

implementation, with guidance from DS and JR. MRA contributed to

implementation of the new likelihood function and many theoretical

discussions. Sachith Pai helped with part of the implementation of

monotonic deep Gaussian processes.
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Chapter 2

Background

Here we provide an overview of the necessary background required to

motivate a probabilistic approach to audio signal processing, and we

formally introduce Gaussian processes for time series modelling.

Throughout this document we notate time-domain observations of

an audio signal, sampled at time instances k = 1, . . . , T , as y =(
y1 . . . yT

)> ∈ RT . Assume that y comprises D (quasi-)periodic

subband components sd =
(
sd,1 . . . sd,T

)> ∈ RT , d = 1, . . . , D, which

can be summed to produce the signal. Further assume that the sd

can themselves be modelled as the product of a (quasi-)periodic car-

rier signal zd =
(
zd,1 . . . zd,T

)> ∈ RT and a nonnegative amplitude

ad =
(
ad,1 . . . ad,T

)> ∈ RT ,

yk =
D∑
d=1

sd,k =
D∑
d=1

ad,kzd,k. (2.1)

The majority of research in this thesis is concerned with identifying or

modelling these unobserved (latent) components ad, zd or sd, when we

only have access to observations of the audio signal y.

A typical approach to decomposing the signal is by passing y through

a fixed set of arbitrary filters with coefficients θfilt,

sd,k = filterd(y1:k, sd,1:k−1,θ
(d)
filt ). (2.2)

Any such decomposition requires parametric choices to be made in

determining θfilt, such as filter centre frequencies and bandwidths, and

uncertainty in prediction of the latent components is not typically

considered.
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2.1. From Deterministic to Probabilistic: Bayesian Inference

2.1 From Deterministic to Probabilistic: Bayesian Inference

Statistical inference (Gelman et al., 2013) is the practice of drawing

conclusions about unobserved quantities, say sd, from numerical data,

say y. In the deterministic paradigm laid out in Eq. (2.1) and Eq. (2.2),

the data tell us nothing about our choice of parameters θfilt. That is

to say, our choice of filters cannot be assessed or updated based on the

decomposition they provide. Reversing this logic, it is also the case

that the filters themselves (or their parameters) provide no information

about the characteristics of the signal.

The Bayesian approach to statistical inference involves first writing

down our model in terms of probability statements. In the general

case, we specify a joint probability distribution over data y and model

parameters θ, which can be written as a product of the prior distribution

p(θ) and the likelihood function p(y |θ),

p(θ,y) = p(θ)p(y |θ). (2.3)

The prior distribution characterises our assumptions about the possible

forms of the model, whilst the likelihood describes the data observation

mechanism. Once these two components are defined, it is possible to

draw conclusions about θ via application of Bayes’ rule, resulting in a

posterior distribution

p(θ |y) =
p(θ,y)

p(y)
=
p(θ)p(y |θ)

p(y)
, (2.4)

where the normalisation term, the marginal likelihood, for continuous θ

is

p(y) =

∫
p(θ)p(y |θ) dθ. (2.5)

Considering our example in Eq. (2.2), the prior p(θfilt) should specify

how probable the various choices of filter coefficients θfilt are, based on

our knowledge about auditory filters.

The most common form of the likelihood model used in this thesis is

a Gaussian distribution, which states that the latent components are

observed through Gaussian noise. Continuing with our model for an
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2.1. From Deterministic to Probabilistic: Bayesian Inference

audio signal, we can express this statement mathematically as

p(y |θ) = N

(
D∑
d=1

sd, σ
2
yIT

)
(2.6a)

i.i.d.
=

T∏
k=1

N

(
D∑
d=1

sd,k, σ
2
y

)
, (2.6b)

for T -dimensional identity matrix IT . The likelihood factorises over the

time steps to give Eq. (2.6b) since the Gaussian noise is independently

and identically distributed (i.i.d.). Equivalently we can add a noise term

to Eq. (2.1),

yk =
D∑
d=1

sd,k + σyεk, (2.7)

where εk ∼ N(0, 1) is unit-variance Gaussian distributed. The entire

model is now parameterised by θ = {σy, θfilt}.
A crucial advantage of the Bayesian paradigm as laid out above is its

capacity for model selection and prediction. The marginal likelihood

can be interpreted as the evidence provided for θ by the signal y. In

other words, it measures the agreement between the model and the data.

Hence optimising Eq. (2.5) via gradient-based methods provides a way

to tune the parameters to fit the data.

Given a set of tuned parameters, we can make predictions about

the value of an unknown data point y∗ using the posterior predictive

distribution

p(y∗ |y) =

∫
p(y∗ |θ)p(θ |y) dθ. (2.8)

As we will see, in terms of temporal data where y∗ = yT+1, prediction

amounts to synthesis of the next data point in the sequence. For our

proposed model of an audio signal, tuning θfilt would mean that the

model now represents the most probable set of filters characterising the

signal (given our choice of p(θ) and p(y |θ)).

In the case of auditory filters however, as shown in section 2.2 and

chapter 3, it can be more beneficial to treat the components sd as

latent variables and specify a probabilistic model for them directly,

i.e. with priors p(sd), potentially parameterised by a further set of

hyperparameters θ. This results in the joint model,

p(sd,y |θ) = p(sd |θ)p(y | sd,θ). (2.9)

14



2.2. Statistical Models for Sound and for the Perception of Sound

The posterior in this case, p(sd |y,θ), is now a probability statement

about the latents sd. We now write the marginal likelihood as p(y |θ) =∫
p(sd |θ)p(y | sd,θ) dsd, which can be maximised to find the optimal θ.

2.2 Statistical Models for Sound and for the Perception of

Sound

The idea that perceptual representations of sound should be statistical

is supported by two recent advances in analysis of sound textures. This

class of sounds encapsulates composite (multi-source) signals who’s

characteristics do not vary over time, such as running water, or a

crackling fireplace.

Firstly, McDermott et al. (2009) showed that perception of these

composite sounds is likely based on a set of summary statistics of subband

modulation and energy distribution. An optimisation procedure was

designed in which the statistics of a synthetic signal, initially instantiated

as noise, were iteratively updated via gradient descent until they match

those of a target signal. Such a process results in generation of novel

stimuli that are recognisable as the same sound type as the target, and

their realism is evidence supporting the claim that these statistics are

in fact the ones utilised during human audition.

Consider the case where the subbands, sd, in Eq. (2.1) are generated

by a deterministic set of cochlear filters: D ≈ 30 band pass filters

that logarithmically span an audible frequency range (52 − 8844 Hz)

with equal rectangular bandwidth (ERB) spacing in a loose analogy

with the processing performed in the human cochlea (Glasberg and

Moore, 1990). Much of the perceptual information present in a sound,

whether it be environmental sound or speech, is contained within the

amplitude envelopes of these filter outputs (Shannon et al., 1995). For

this reason many of the statistics, which we list below, are based on the

spectrographic information ad (McDermott and Simoncelli, 2011).

Cochlear envelope marginal statistics The first four normalised

moments (mean, variance, skew and kurtosis) of the amplitude envelopes

ad multiplied by a windowing function.

Cross-band envelope correlation The correlation between ad and

aj for d− j ∈ [1, 2, 3, 5, 8, 11, 16, 21], eight neighbouring envelopes which
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2.2. Statistical Models for Sound and for the Perception of Sound

are sufficient to reproduce the full covariance structure.

Modulation power The envelopes ad are passed through a second

set of 20 filters, spanning 0.5− 200 Hz, intended to measure amplitude

modulation rates. The variance of the outputs of these filters represents

the modulation power.

Modulation correlation The correlation between the modulation

filter outputs, both within acoustic frequency channels d (across modu-

lation bands) and across acoustic frequency channels.

As we can see from the list above, the perceptual statistics are con-

cerned with modulation and co-modulation of amplitude envelopes. The

success of this statistical approach has been followed by more work on

synthesis of audio textures, as well as musical notes, most commonly

based on convolutional neural networks applied to either the spectrogram

(Antognini et al., 2018) or directly on the audio waveform (van den Oord

et al., 2016; Engel et al., 2017). Whilst these models don’t explicitly

target perceptual characteristics, Kell et al. (2018) showed that a neural

network architecture inspired by the human auditory cortex performed

similarly to human listeners on speech and music recognition tasks, and

perhaps even more significantly, made similar errors to human listeners.

Likewise, rather than explicitly calculating perceptual statistics, Turner

(2010) proposed to write down a probabilistic model which implicitly

encodes many of the same characteristics. In this case, samples drawn

from the model were also shown to be recognisable as the same sound

type as the recording from which their parameters were learnt.

The likelihood model proposed by Turner (2010) is similar to Eq. (2.7)

where the subbands are decomposed as a product of slowly-varying

positive amplitudes ad and fast-varying carriers zd plus Gaussian noise,

yk =
D∑
d=1

ad,kzd,k + σyεk, (2.10)

but in this case the amplitudes are modelled as a linear mixture of

N < D processes gn ∈ RT , n = 1, . . . , N , projected through a nonlinear
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2.2. Statistical Models for Sound and for the Perception of Sound

mapping to enforce positivity (the softplus function φ(g) = log(1 + eg)),

ad,k =
N∑
n=1

Wd,nφ(gn,k). (2.11)

Wd,n is the mixture weight specifying how the nth process affects the

dth envelope. This low-dimensional mapping ensures that cross-band

amplitude correlation is captured, one of the important perceptual

statistics listed by McDermott and Simoncelli (2011). The prior over gn

is Gaussian,

p(gn) = N
(
0,K(n)

)
, (2.12)

where K(n) ∈ RT×T is the covariance matrix constructed via the exponen-

tiated quadratic covariance function, K
(n)
i,j = Cn(ti, tj) (see Rasmussen

and Williams (2006) and section 2.5), which encodes the prior assump-

tion that the amplitudes are smooth and vary slowly over time.

The prior over the latent carriers zd is a second-order Gaussian au-

toregressive process,

p(zd,k) = N
(
λd,1zd,k−1 + λd,2zd,k−2, σ

2
d

)
(2.13a)

= λd,1zd,k−1 + λd,2zd,k−2 + σdεk. (2.13b)

The model is parameterised by θ = {{λd,1, λd,2, σd}Dd=1, {σn, `n}Nn=1, σy},
where σn, `n are the hyperparameters of the kernel Cn. Notice that

this represents significantly fewer parameters than in the summary

statistics model above whilst still implicitly encoding similar features,

and they have been used to compare the perceptual response of normal-

hearing and cochlear-implant human listeners to changes in behaviour

of stochastic envelopes ad (Gomersall et al., 2016).

A slight modification to this model in which the prior over zd contains

a periodic component results in a joint Gaussian time-frequency analysis

and nonnegative matrix factorisation model (GTF-NMF) (Turner and

Sahani, 2014), which we provide a new interpretation of in chapter 4.

Nonnegative matrix factorisation NMF (Lee and Seung, 1999)

decomposes a high-dimensional matrix A =
(
a1 . . . aD

)> ∈ RD×T ,

such as the magnitude spectrogram of an audio signal, into a product of

two lower-rank nonnegative matrices: a temporal dictionary G, and a
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2.2. Statistical Models for Sound and for the Perception of Sound

spectral dictionary W,

A 'WG. (2.14)

Typically W ∈ RD×N and G ∈ RN×T are learnt by minimising the

divergence between the left and right hand sides of Eq. (2.14), whereas

in the above model, a Gaussian prior, p(gn), is placed over the rows

of G =
(
g1 . . . gN

)>
and the elements of W are treated as free

parameters of the probabilistic model. If we were to disregard the

subband carrier signals, such a prior over the temporal components

would result in a probabilistic extension to NMF called temporal NMF

(tNMF, Bertin et al., 2010; Turner and Sahani, 2014).

Inference in the GTF-NMF model is not straightforward. The poste-

rior can no longer be calculated in closed form since the likelihood model

now contains a nonlinear mixture of the latents gn and zd, which makes

the integral for the marginal likelihood, Eq. (2.5), intractable. For this

reason, Turner and Sahani (2014) use a two-stage inference method that

separates out the amplitude model from the carrier model, iteratively

updating one whilst fixing the other. Calculation of the posterior, tuning

of the parameters, and prediction in the GTF-NMF is carried out via

Kalman filtering (Kalman, 1960, see section 2.3). We provide a new way

to perform joint inference on the full model in chapter 4.

Bayesian time-frequency analysis The application of statistical

inference in time-frequency analysis has been addressed in a number

of ways, most notably Bayesian Spectrum Estimation (BSE, Qi et al.,

2002) and the probabilistic phase vocoder (PPV, Cemgil and Godsill,

2005). For an overview see Turner and Sahani (2014), where it is also

shown that the PPV and BSE are equivalent up to a shift in frequency.

The PPV version of this adaptive time-frequency analysis approach is

sd,k = ψde
iωdsd,k−1 + ρdζd,k, (2.15a)

yk =
D∑
d=1

Re[sd,k] + σykεk, (2.15b)

where sd,k ∈ C is now a complex phasor representing the latent subband

signal in frequency channel d. ζd,k ∼ CN(0, 1) is i.i.d. complex Gaussian

noise and now the likelihood sums the real parts of sd plus noise to
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2.3. Covariance Through Time in Stochastic Differential Equations

produce the signal y. Parameters ψd and ρd represent the process

and noise variances respectively, whilst ωd is the instantaneous angular

frequency.

Whilst it was known that the above PPV, BSE and GTF-NMF ap-

proaches fall under the paradigm of Gaussian processes (see section 2.4),

it was not clear until now how these models relate to the usual set of

Gaussian process modelling techniques developed in the machine learn-

ing community. This is because they were partly conceived from the

perspective of discrete-time autoregressive filters, rather than through

design of covariance functions encoding our prior knowledge. We address

this issue in chapter 3. We now introduce the Gaussian process frame-

work, arriving at it from the perspective of signal processing, dynamical

systems and stochastic differential equations.

2.3 Covariance Through Time in Stochastic Differential

Equations

Any audio recording of natural sound comes about as a result of a

physical process. As such, one view of our signal y is as a realisation of

a dynamical system: a process which evolves over time based on some

known physical model. We can choose to approximate such a system

with a linear time-invariant (LTI) stochastic differential equation (SDE),

which can be written in a general continuous state space form as (Särkkä

and Solin, 2019):

d̃f(t)

dt
= Ff̃(t) + Lw(t), (2.16a)

yk = Hf̃(tk) + σyεk, (2.16b)

for state vector f̃(t) =
(
f(t) d/dtf(t) . . . dM−1/dtM−1f(t)

)> ∈ RM ,

driven by white noise w(t) ∈ RS with spectral density Qc ∈ RS×S. The

prior, Eq. (2.16a), is characterised by feedback matrix F ∈ RM×M and

noise effect matrix L ∈ RM×S, and without loss of generality is centred

about zero. We have assumed that there exists a single function of

interest, f , which is observed through Gaussian noise in the measurement

model, Eq. (2.16b), via measurement matrix H ∈ R1×M , and under this

assumption typically H =
(
1 0 . . . 0

)
such that Hf̃(tk) = f(tk).

The white noise term represents stochasticity in the system, and is the
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2.3. Covariance Through Time in Stochastic Differential Equations

means by which we characterise uncertainty. Inferring the state of the

continuous prior, Eq. (2.16a), boils down to calculating the mean m(t) =

E[f̃(t)] and covariance P(t) = Var[f̃(t)] = E[(f̃(t)−m(t))(f̃(t)−m(t))>]

at each time step. To do so, we calculate their time derivative, which in

the LTI case is (Särkkä and Solin, 2019),

dm(t)

dt
= Fm(t), (2.17a)

dP(t)

dt
= FP(t) + P(t)F> + LQcL

>. (2.17b)

It is now beneficial to consider the steady state solution to the SDE,

which occurs as t → ∞, or rather as initial time step t1 → −∞ such

that the system is in a steady state at current time step t. In our linear

model, the derivatives of the steady state mean m∞ and covariance

P∞ should be zero. Eq. (2.17a) implies that m∞ = 0, whilst setting

Eq. (2.17b) to zero requires us to solve the Lyapunov equation:

FP∞ + P∞F> + LQcL
> = 0. (2.18)

In the interest of capturing our desired perceptual statistics from

section 2.2, including modulation rates, smoothness and correlations, we

seek to calculate the covariance of the system in Eq. (2.16) across time

steps, rather than at a single time instance t. Stationary covariance

functions act on the time difference between two steps, τ = t− t′, and

in the LTI case are

C(τ) =

{
HP∞ exp(τF)>H>, if τ > 0

H exp(−τF)P∞H>, if τ ≤ 0
(2.19)

where exp(τF) is the matrix exponential of the feedback matrix.

Filtering and smoothing solutions to SDEs Eq. (2.16) represents

a continuous-discrete system: a continuous process from which we

observe noisy samples at discrete time steps k. In the Gaussian likelihood

case, its filtering and smoothing problems have closed form solutions.

The filtering problem, to determine p(f̃(tk) |y1:k) = N(m
(f)
k ,P

(f)
k ), is

solved via Kalman filtering (Kalman, 1960). First we use the matrix
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2.4. Gaussian Processes for Time Series Modelling

exponential to discretise the model, giving

f̃(tk+1) = Af̃(tk) + qk, (2.20a)

yk = Hf̃(tk) + σyεk, (2.20b)

where qk ∼ N(0,Q), Q = P∞ −AP∞A> and A = exp(F∆t) for time

step size ∆t = tk − tk−1, which we assume to be constant since audio

signals are typically sampled at a constant rate.

Now the Kalman filter is applied as follows, where the initial state is

distributed p(f̃(t0)) = N(m0,P0) and typically m0 = m∞, P0 = P∞:

prediction step:

m−k = Am
(f)
k−1,

P−k = AP
(f)
k A> + Q.

(2.21)

update step:

vk = yk −Hm−k ,

Sk = HP−k H> + σ2
y,

Kk = P−k H>S−1
k ,

m
(f)
k = m−k + Kkvk,

P
(f)
k = P−k −KkSkK

>
k .

(2.22)

Similarly, the smoothing problem, p(f̃(tk) |y1:T ) = N(m
(s)
k ,P

(s)
k ), is

solved via the Rauch–Tung–Striebel (RTS) smoother (Särkkä, 2013):

RTS smoother:

m−k−1 = Am
(s)
k ,

P−k−1 = AP
(s)
k A> + Q,

Gk = P
(s)
k A>(P−k+1)−1,

m
(s)
k = m

(f)
k + Gk(m

(s)
k+1 −m−k+1),

P
(s)
k = P

(f)
k + Gk(P

(s)
k+1 −P−k+1)G>k .

(2.23)

2.4 Gaussian Processes for Time Series Modelling

Given these tools for calculating covariance in dynamical systems, we

now consider as an example the physical system represented by the

Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930):

df (t)

dt
= −λf(t) + w(t), (2.24)
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Figure 2.1: Samples from the Ornstein-Uhlenbeck process prior with
q = 0.2, λ = 0.1.

which is a first-order LTI SDE driven by one-dimensional Gaussian noise

w(t) (the time-derivative of Brownian motion). Solving the Lyapunov

equation in Eq. (2.18) for F = −λ, L = 1 and Qc = q we get

− 2λP∞ + q = 0, (2.25)

so that P∞ = q
2λ

and

C(t, t′) =
q

2λ
exp(−λ|t− t′|). (2.26)

Our information regarding the system in Eq. (2.24) can be summarised

as follows: the function values f(t) and f(t′) are jointly Gaussian, since

the Gaussianity of w(t) is preserved under linear operations, with steady

state mean of zero, m∞(t) = 0, and whose stationary covariance between

time steps decays exponentially with the time gap according to the

function C(t, t′).

This information completely characterises a Gaussian process (GP,

Rasmussen and Williams, 2006), and shows how the Ornstein-Uhlenbeck

process is a particular form of the GP models that are commonly used

for regression and classification tasks in the machine learning community.

A similar equivalence can also be shown for many more SDE models

(Solin, 2016).

Canonical form of a Gaussian process GPs are a generalisation

of the Gaussian distribution to infinite dimensions, and hence they

can be interpreted as a way to specify a distribution over functions

(infinite-length vectors). A full GP model in its standard formulation
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2.4. Gaussian Processes for Time Series Modelling

with one-dimensional input and output is written as follows:

f(t) ∼ GP(µ(t), C(t, t′)) (2.27a)

y | f ∼ p(y | f) (2.27b)

iid
=

T∏
k=1

p(yk | f(tk)) (2.27c)

Eq. (2.27a) is the GP prior, which states that any finite collection

of function values has a joint multivariate Gaussian distribution f =(
f(t0) . . . f(tT )

)> ∼ N(m,K) where mi = µ(ti) and Ki,j = C(ti, tj):
f(t1)

...

f(tT )

 ∼ N



µ(t1)

...

µ(tT )

 ,


C(t1, t1) . . . C(t1, tT )

...
. . .

...

C(tT , t1) . . . C(tT , tT )


 . (2.28)

Our choice of mean function µ(t) and covariance function C(t, t′) should

be determined by our prior assumptions about the latent process f(t).

That is, we encode our assumptions about f by defining how its function

values co-vary when evaluated at different points in time. Eq. (2.27b)

is the likelihood model, which factorises across data points in the i.i.d.

case, and the data D = {(tk, yk)}Tk=1 consist of input–output pairs.

Inference in Gaussian process models Following the Bayesian

approach, we aim to infer a posterior distribution that tells us about the

form of f |y. Assume again that the likelihood is Gaussian, p(y | f) =∏T
k=1 N(f(tk), σ

2
y). Now for t∗ =

(
t∗1 t∗2 . . .

)>
, a new set of input

locations which could correspond to the next set of points in the sequence

or a missing segment in the signal, the joint distribution is also Gaussian

by the definition of a GP:(
y

f∗

)
∼ N

((
m

m∗

)
,

(
K + σ2

yIT K∗

K>∗ K∗∗

))
(2.29)

where f∗ and m∗ represent f and µ evaluated at t∗ respectively. K∗∗i,j =

C(t∗i , t∗j) is the covariance matrix evaluated on t∗, whilst K∗i,j =

C(ti, t∗j) is the cross-covariance at t =
(
t1 . . . tT

)>
and t∗. The

observation noise σ2
y is included to obtain the covariance for the observed

signal y.
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Figure 2.2: Samples from the posterior distribution of an Ornstein-
Uhlenbeck process with q = 0.2, λ = 0.1 where five data points have
been observed with Gaussian measurement noise σ2

y = 0.05.

Using the properties of the multivariate Gaussian distribution, we

can now calculate the posterior over f evaluated at all time steps

tjoint = (t, t∗)
>, with mjoint = (m,m∗)

>, as

fjoint |y ∼ N
(
mjoint + K∗

(
K + σ2

yIT
)−1

(y −m) ,

K∗∗ −K∗
(
K + σ2

yIT
)−1

K>∗

)
.

(2.30)

Non-Gaussian likelihood models If the likelihood model is non-

Gaussian, then the posterior no longer has a closed form Gaussian

solution. In such a case, many methods for approximation of the pos-

terior have been developed. These are generally based on variations

of expectation propagation (EP) (Minka, 2001), the Laplace approxi-

mation (LA) (Williams and Barber, 1998), or variational bounds (VB)

(Gibbs and MacKay, 2000). Bui et al. (2017) demonstrates how these

methods can be considered members of a single unified paradigm for

approximating non-Gaussian distributions with Gaussians, and give an

excellent overview of these methods.

In the SDE representation of a GP model, nonlinear filtering and

smoothing methods developed in the signal processing field can also be

used to perform inference and parameter estimation in more complex

models whose likelihood goes beyond the linear Gaussian form (Nickisch

et al., 2018). The most common signal processing methods are the

extended Kalman filter (EKF, Jazwinski, 1970; Bar-Shalom et al., 2001)

and unscented Kalman filter (UKF, Wan and Van Der Merwe, 2000).

The EKF linearises the model about the mean at each time step before
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2.4. Gaussian Processes for Time Series Modelling

applying the filtering equations, while the UKF uses sigma-point methods

(see McNamee and Stenger, 1967; Kokkala et al., 2016) to approximate

the intractable integrals required for calculating the filter and smoothing

distributions in the nonlinear case. However, Nickisch et al. (2018)

showed that the approximate inference methods listed above (single-

sweep EP, LA, VB) can also be implemented in the filter and smoother

setting for GP models, and we demonstrate fully iterated EP in the

GTF-NMF setting in chapter 4.

System identification via hyperparameter learning As stated

in section 2.2, we can tune the hyperparameters θ by maximising the

(log) marginal likelihood, log p(y |θ). In the canonical form of GPs,

assuming a Gaussian likelihood, this can be calculated analytically as

(Rasmussen and Williams, 2006)

log p(y |θ) = −1

2
y>(K+σ2

yIT )−1y−1

2
log |K+σ2

yIT |−
T

2
log 2π. (2.31)

The approximate inference methods required for non-Gaussian like-

lihoods also typically provide ways to calculate or approximate the

marginal likelihood.

In the SDE form of GPs, the Kalman filter equations provide us with

the means by which to calculate the energy function υ(θ) (Särkkä, 2013),

which is equivalent to the negative log marginal likelihood,

υ(θ) =
T∑
k=1

1

2
log |2πSk|+

1

2

T∑
k=1

(yk −Hm−k )>S−1
k (yk −Hm−k ). (2.32)

In the non-Gaussian case we still have access to the required model

components during filtering (Sk, H, m−k ), and so hyperparameter opti-

misation proceeds in the same manner (Mbalawata et al., 2013; Nickisch

et al., 2018).

Computational issues with GP inference A major issue with

the canonical GP approach for time series data is that the posterior

requires calculation of a matrix inverse which scales cubicly with the

number of data points, O(T 3). Perhaps even more fundamentally, simply

calculating and sampling from a covariance matrix at many thousands

of input locations is impractical both in terms of compute and memory.
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2.4. Gaussian Processes for Time Series Modelling

For example, a 5 second audio recording sampled conservatively at

16kHz contains 80000 data points, and hence naive calculation of all the

elements of K requires 800002 = 6.4 billion calculations.

Again, many methods for alleviating these computational issues have

been considered. Perhaps the most popular is the inducing point method

(Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani,

2006), which leverages sparsity in the covariance to choose a set of T̄ < T

pseudo-points producing function values fT̄ such that the joint model

can be augmented: p(y, f , fT̄ ) = p(y | f)p(f | fT̄ )p(fT̄ ), giving a new form

of the posterior predictive distribution:

p(y∗ |y) =

∫ ∫
p(y∗ | fT̄ , f)p(f | fT̄ ,y)p(fT̄ |y) df dfT̄ (2.33a)

=

∫
p(y∗ | fT̄ )p(fT̄ |y) dfT̄ , (2.33b)

where the second line is arrived at via the assumption that fT̄ is a

sufficient statistic for f , forcing an independence between y∗ and f . It

can be shown that, via a further approximation that involves defining a

lower bound on the marginal likelihood, the posterior of the augmented

model can be calculated with computational scaling O(T̄ 2T ), and that

the inducing points can be treated as additional hyperparameters of the

model (Titsias, 2009).

Whilst the inducing point method has proven useful in many appli-

cations, it is deficient for temporal data. In the case of missing data

prediction in signal processing, the inducing points will not lie sufficiently

close to the required input locations for anything but the shortest of gaps.

Synthesis of future time steps will also necessarily go beyond the region

covered by fT̄ . Both situations require us to define new inducing points

by hand. Furthermore, as the signal grows in time, T̄ must also grow to

maintain the required level of sparsity, and as such the complexity still

scales cubicly with time.

One approach to alleviating these issues further is via framing (Liutkus

et al., 2011; Alvarado et al., 2019), which performs inference on short

time segments before ultimately recombining them via an overlap-add

procedure, however this still requires new inducing points to be defined

whenever new data regions are considered. Other methods for speeding

up inference, including interpolation approaches (Wilson and Nickisch,

2015), stochastic methods (Hensman et al., 2013; Krauth et al., 2017),
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basis function approximations (Lázaro-Gredilla et al., 2010; Hensman

et al., 2018; Solin and Särkkä, 2014a) and band-structured or Toeplitz

methods (Saatçi, 2012), also scale poorly for long and unbounded time

series with potential for missing segments.

Fortunately, the dual formulation of the Gaussian process model as a

dynamical system, Eq. (2.16), alleviates these issues since the smoothing

solution p(f̃(tk) |y1:T ) to the state space model is exactly equivalent

to the posterior predictive distribution in Eq. (2.30) (Hartikainen and

Särkkä, 2010). This approach scales linearly in the number of time steps

and cubicly in the state dimensionality, which is independent of time,

O(M3T ). Additionally, it only requires calculation and storage of T

covariance matrices P(tk) ∈ RM×M (T ×M2 calculations), rather than

the full covariance K. The majority of the commonly used covariance

functions for GPs are compatible with the LTI SDE form, either exactly

or approximately. We discuss some of these below, and refer the reader

to Solin (2016) for a more detailed review.

Despite this improvement in scalability, practical issues still remain

when processing audio signals with the Kalman filter methods, since the

state dimensionality M is likely to be large (often in the hundreds) and

because the memory requirements, O(M2T ), can still become infeasible.

The infinite-horizon GP (IHGP) framework proposed by Solin et al.

(2018) addresses both these issues by calculating a posterior steady state

approximation to each GP such that propagation of the covariance terms

in the filter and smoother can be simplified, leading to computational

scaling of O(M2T ) and memory scaling O(TM). This approximation is

accurate in the Gaussian likelihood case, but as we show in chapter 4,

in the GTF-NMF model the computational benefits come at the cost of

reduced performance on tasks such as audio inpainting and denoising.

Even taking into account all of the above, there still exists a com-

putational barrier preventing wide-scale use of these methods for long

temporal data. The IHGP method involves an overhead cost of calculat-

ing the stationary solutions, and the nested for-loops involved in learning

the hyperparameters in the Kalman filter setting are inefficient, despite

scaling linearly in time. Potential solutions for future work not consid-

ered in this thesis are online methods (to deal with remaining memory

issues, e.g. Csató and Opper (2002); Nguyen-Tuong et al. (2009)) and

the use of banded matrix operators to make GP models amenable to
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automatic differentiation (Durrande et al., 2019), significantly reducing

the computation involved in each time step.

2.5 Useful Covariance Functions in SDE Form

Here we list the covariance functions (kernels) used in this thesis, in

their canonical and SDE forms. For a more exhaustive list see Solin

(2016).

Exponential By considering the Ornstein-Uhlenbeck process, Eq. (2.24),

we derived the exponential kernel, Eq. (2.26), which we write again here

for completeness:

Cexp(t, t′) = σ2 exp

(
−|t− t

′|
`

)
(2.34)

The SDE analogue has model matrices F = −λ, L = 1, Qc = q,

P∞ = q/2λ, and equivalence is obtained when we set σ2 = q/2λ and

` = 1/λ. We consider σ2 to be the magnitude parameter, and ` the

characteristic lengthscale.

Matérn The Matérn class (Matérn, 1960) has general form:

CMat(t, t
′) = σ2 21−ν

Γ(ν)

(√
2ν|t− t′|
`

)ν

Bν

(√
2ν|t− t′|
`

)
(2.35)

where Γ(ν) is the Gamma function and Bν(·) is the modified Bessel

function of the second kind (Abramowitz and Stegun, 1965). The Matérn

class is additionally parameterised by ν, and the resulting process is

n-times differentiable if n < ν, and hence ν controls the stiffness, or

smoothness, of the function.

Eq. (2.35) simplifies for half-integer ν, and has an exact SDE represen-

tation (Hartikainen and Särkkä, 2010). Letting ν = 3/2, the covariance

function is:

CMat3/2(t, t
′) = σ2

(
1 +

√
3|t− t′|
`

)
exp

(
−
√

3|t− t′|
`

)
(2.36)
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In this case, the SDE model components are:

F =

(
0 1

−λ2 −2λ

)
, L =

(
0

1

)
, P∞ =

(
σ2 0

0 λ2σ2

)
, (2.37)

for λ =
√

3/`. The noise process in the SDE model has spectral density

Qc = 4λ3σ2. The measurement matrix takes the form H = (1 0).

Exponentiated Quadratic Also known as the radial basis function

(RBF) or squared exponential, this kernel is infinitely differentiable, and

is an extension of the Matérn kernel as ν → ∞. Its spectral density

takes a Gaussian form by design, and it is defined as:

Ceq(t, t′) = σ2 exp

(
−(t− t′)2

2`2

)
(2.38)

The infinite differentiability of Ceq means that its SDE form would require

us to construct a state vector f̃ of infinite height, however approximations

can be made based on Taylor series expansions (Hartikainen and Särkkä,

2010) or Padé approximations (Särkkä and Piché, 2014).

Quasi-Periodic Solin and Särkkä (2014b) demonstrated how periodic

kernels can also be written in state space form. Quasi-periodic processes

can be constructed via the product of a periodic kernel and another

arbitrary kernel. We consider an example comprising the cosine and

exponential kernels:

Cq−per(t, t
′) = σ2 cos(ω(t− t′)) exp

(
−|t− t

′|
`

)
(2.39)

We can construct the SDE form of the feedback matrix for a product of

kernels by taking the Kronecker sum of the component matrices:

F = Fcos ⊕ Fexp

=

(
0 −ω
ω 0

)
⊗ I1 + I2 ⊗ − λ =

(
−λ −ω
ω −λ

)
,

(2.40)

and the other model matrices are calculated via the Kronecker product

of the corresponding components such that L = I2, Qc = 2λσ2I2,

P∞ = σ2I2.
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Spectral Mixture A sum of (quasi-)periodic kernels is called a spec-

tral mixture kernel (Wilson and Adams, 2013). This type of kernel

was originally conceived to be a sum of cosine-modulated exponentiated

quadratic functions, in order to generate a process whose spectral density

is a sum of Gaussians. For one-dimensional input this is written:

Csm(t, t′) =
D∑
d=1

cos(ωd(t− t′))C(d)
eq (t, t′) (2.41)

It has also been proposed to construct a Matérn spectral mixture, a

sum of multiple Cq−per(t, t
′) functions, which results in a kernel with

Cauchy-Lorentz spectral density (Alvarado and Stowell, 2017). We

discuss the state space form of these kernels, as well as their equivalence

to the PPV model, Eq. (2.15), in chapter 3.

2.6 Latent Force Models

The models proposed so far are generally motivated by observations

(i.e. prior knowledge) regarding the statistical behaviour of signals. An

alternative to this approach is to write down the deterministic physical

process by which the observed signal was generated. See Smith (2010)

for a detailed discussion of the various physical modelling approaches

for audio signal processing.

A hybrid statistical-physical method that incorporates physical as-

sumptions into the Bayesian inference paradigm is called a latent force

model (LFM, Alvarez et al., 2009). We consider the physical system in

which D observed output functions, ad(t), d = 1, . . . , D, are produced by

some N < D latent functions, fn(t), n = 1, . . . , N , being forced through

a set of first-order differential equations:

dad(t)

dt
+ Udad(t) =

N∑
n=1

Vd,nfn(t), (2.42a)

fn(t) ∼ GP(0, C
(n)
Mat3/2(t, t

′)). (2.42b)

Ud can be interpreted as the damping parameter of output ad, and Vd,n

as the sensitivity of ad in response to fn. We have assumed a Matérn-3/2

GP prior over fn.

If this set of differential equations represents some physical behaviour
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in the system we are modelling, even if only in a simplistic manner, then

modifying our covariance function to incorporate Eq. (2.42a) can improve

our ability to perform inference (Alvarez et al., 2013). In this example

the covariance of the outputs ai and aj can be calculated analytically,

as can the cross-covariance between a force fn and an output ad (see

Alvarez et al. (2009) for the full formulation).

Hartikainen et al. (2012) showed that LFMs can be reformulated in

SDE form, Eq. (2.16). For the first-order ODE above, letting ḟ(t) be

the time derivative of f(t) and still assuming a Matérn-3/2 kernel, the

state vector and model matrices are

f̃(t) =



a1(t)
...

aD(t)

f1(t)

ḟ1(t)
...

fN(t)

ḟN(t)


, L =



0
...

0

0

1
...

0

1


, H =

(
1 . . . 1 0 0 . . . 0 0

)
,

F =



−U1 V1,1 V1,N

. . .
...

...

−UD VD,1 VD,N

0 1

−λ2
1 −2λ1

. . .

0 1

−λ2
N −2λN


,

P∞ =



0
. . .

0

σ2
1 0

0 λ2
1σ

2
1

. . .

σ2
N 0

0 λ2
Nσ

2
N


.

(2.43)
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The bottom right block-partitions of F and P∞ represent the feedback

and stationary covariance matrices for the individual Matérn-3/2 GPs as

outlined in Eq. (2.37). Therefore a different choice of covariance function

requires modification of these sub-matrices. Inference in the above LTI

SDE proceeds with Kalman filtering and RTS smoothing as usual.

Nonlinear extensions of the LFM, which arise when we wish to impose

positivity on the latent functions, fn(t), can also be handled. Hartikainen

et al. (2012) use sigma-point methods to approximate the intractable

integrals required during nonlinear filtering. In chapter 5 we follow the

same approach to model the amplitude envelopes of the vibrating modes

of natural sound events.

2.7 Deep Gaussian Processes

All the models proposed above take known input (time) and project

it through a non-parametric GP mapping to produce the observed

data, often via a separate parametric mapping, such as the ODE in

the latent force model, Eq. (2.42a), the sum operation in the Bayesian

time-frequency analysis model, Eq. (2.15b), or the NMF and softplus

mappings in the GTF-NMF model, Eq. (2.11). Deep Gaussian processes

(Damianou and Lawrence, 2013) remove the need to specify these para-

metric mappings by replacing them with another GP. Their form as

described by Bui et al. (2016), in which L layers of GPs are stacked

such that the output of one GP is treated as the input to the GP in the

next layer, is

fl(hl−1,·) ∼ GP(ml,Kl), l = 1 . . . , L

hl | fl ∼
T∏
k=1

N(fl(hl−1,k), σ
2
l ), h0,k = tk

a1:D ∼
T∏
k=1

p(a1:D,k | fL(hl−1,k)),

(2.44)

for l = 1, . . . , L, where we have assumed Gaussian noise between the

layers, and the input to the first layer is time, h0 = t. We show a

version with one-dimensional GPs here, but a more general model with

multi-output kernels (Alvarez et al., 2012) is common, particularly since

our observed data, a1:D, is D-dimensional.

Inference in this multi-layer model is notoriously difficult, however
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2.8. Conclusion

recent advances have shown them to be applicable to large datasets,

outperforming deep (Bayesian) neural networks on many tasks (Salim-

beni and Deisenroth, 2017). All approaches to date employ the inducing

point method, with inference carried out via power expectation propa-

gation (Bui et al., 2016), stochastic variational inference (Salimbeni and

Deisenroth, 2017) and most recently stochastic gradient Hamiltonian

Monte Carlo (Havasi et al., 2018), which has the advantage of being

able to represent non-Gaussian posterior distributions.

2.8 Conclusion

Now that we have defined our terminology and laid out the relevant

background relating to audio analysis and Gaussian processes, we are

ready to present our investigation into the connection between GPs

and traditional signal processing tools. We begin in chapter 3 with

time-frequency analysis.
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Chapter 3

Gaussian Models for

Time-Frequency Analysis

In chapter 2 we outlined the theoretical ideas surrounding statistical

inference and Gaussian process modelling. In this chapter we focus

these tools on time-frequency analysis : the task of uncovering the time-

varying spectral components of a one-dimensional time-domain signal.

So far, the introduction of the SDE form of GPs was motivated by

computational issues, but here we utilise the dual formulation to draw

explicit links between the use of GPs as a tool for machine learning and

their use in Bayesian signal processing. These links lead to a better

understanding of all the modelling assumptions implicit in probabilistic

time-frequency analysis. But in a more practical sense they allow for

greater flexibility in both modelling and inference.

3.1 Probabilistic Time-Frequency Analysis

Traditional time-frequency (TF) analysis, a ubiquitous part of the sig-

nal processing chain for many real-world applications, requires various

choices to be made regarding windowing functions, filter transfer func-

tions, or wavelet functions, depending on the representation being used

(Cohen, 1995). There is no consensus on how best to make these choices,

for example the filter coefficients θfilt in Eq. (2.2), and their implications

on downstream tasks is unclear. This drawback is particularly noticeable

when TF analysis is used as a pre-processing tool for machine learning

applications such as classification or source separation, where training

times are long but the input data can vary significantly. In this sce-

nario, a suboptimal one-size-fits-all TF representation is common, since
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3.1. Probabilistic Time-Frequency Analysis
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Figure 3.1: A comparison between a standard filter bank typically used
in TF analysis (top), and a probabilistic filter bank (bottom), whose
centre frequencies, magnitudes and bandwidths have been optimised to
fit to the spectrum of a speech signal (shown in black).

manual testing of all possible parameter settings for all input signals is

completely impractical.

Probabilistic TF analysis promises to remove the need for these

difficult decisions by adapting to the incoming signal (Qi et al., 2002;

Cemgil and Godsill, 2005; Sejdić et al., 2009; Zhong and Huang, 2010)

and by propagating uncertainty information to downstream applications

(Gillespie and Atlas, 2001; Turner and Sahani, 2014). By specifying

a probabilistic model characterised by hyperparameters θ, a posterior

distribution over the frequency components given the data, p(sd |y,θ),

can be found. Different modelling choices can be compared in a principled

manner by evaluating the model likelihood given the parameters, p(y |θ),

which allows for parameter tuning in order to find the statistically

optimal TF representation for a given signal. Figure 3.1 demonstrates

the difference between filter banks used in the traditional TF analysis

approach vs. those used in probabilistic TF analysis, namely that the

probabilistic version adapts to the signal.
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3.2. Spectral Mixture Gaussian Processes

As outlined in section 2.2, existing state-of-the-art methods for prob-

abilistic TF analysis can be viewed as modifications of the probabilistic

phase vocoder (PPV, Cemgil and Godsill, 2005), which we rewrite here,

sd,k = ψde
iωdsd,k−1 + ρdζd,k, (3.1a)

yk =
D∑
d=1

Re[sd,k] + σykεk, (3.1b)

where sd,k ∈ C is a complex phasor, ζd,k ∼ CN(0, 1) is i.i.d. complex

Gaussian noise and the likelihood sums the real parts of sd,k plus noise to

produce the observation yk. Parameters ψd and ρd represent the process

and noise standard deviations respectively, whilst ωd is the instantaneous

angular frequency and σyk is the observation noise standard deviation.

Such a probabilistic model that acts directly on the signal wave-

form implicitly captures correlation between a signal’s amplitude and

phase information (Turner, 2010), which has the major implication that

time-domain synthesis does not require the phase-reconstruction stage

necessary in many traditional methods, which often introduces artefacts.

Fitting the model parameters to the signal provides us with the ability to

sample new data from the underlying generative model, making missing

data imputation and denoising tasks intuitive.

Despite these benefits, existing probabilistic TF models are still not

widely used, perhaps due to their higher computational complexity and

because they are formulated in such a way that they can be difficult to

interpret and understand.

3.2 Spectral Mixture Gaussian Processes

In Wilson and Adams (2013), GPs, along with their neural network

counterparts, are presented as “intelligent agents” capable of automating

the learning and decision making process. It is shown how detailed prior

knowledge can be encoded in the system by constructing new covariance

functions composed of the sum and product of simpler ones, resulting

in spectral mixture kernels Csm(t, t′), Eq. (2.41).

These flexible multi-component kernel structures were initially con-

ceived for the general task of automatic pattern detection, addressing

the fact that in many modelling tasks it is unclear what covariance

functions should be used. However, Alvarado et al. (2019) adapted them
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3.3. Unifying Probabilistic Models for Time-Frequency Analysis

to modelling musical audio signals by treating each of the components as

a harmonic of the signal. This method outperformed spectrogram-based

techniques in a source separation task of uncovering the individual notes

played during a simple musical sequence of two-note chords.

Until now, this Gaussian process model has not been formulated as an

SDE, and inference has been carried out via the inducing point method

which suffers from the issues outlined in section 2.4. Additionally, the

fact that spectral mixture models are a sum of periodic components

suggests a connection to the PPV, which has regularly been noted to

be a GP model (see, for example, Turner and Sahani (2014)), but the

precise relationship between these two methods has not previously been

explored. In the next section we address both these shortcomings.

3.3 Unifying Probabilistic Models for Time-Frequency

Analysis

Here we show that probabilistic TF analysis and Matérn spectral mixture

GPs are in fact equivalent. In other words, spectral mixture kernels

are probabilistic filter banks. By doing so we reinterpret TF modelling

assumptions under the GP paradigm and provide a general procedure for

rewriting spectral mixture GPs in discrete state space form, such that

more complex TF models can be easily constructed, and inference can

be performed efficiently via Kalman smoothing, whose computational

complexity scales linearly in the number of time steps T and cubicly in

state dimensionality M , O(M3T ).

We start by recognising that Eq. (3.1) represents a (discrete) complex

first-order autoregressive process, and hence it can be written in state

space form if we construct a state vector by stacking the real and imag-

inary components, s̃k =
(
Re[s1,k] Im[s1,k] . . . Re[sD,k] Im[sD,k]

)>
,

such that

s̃k+1 = As̃k + qk, qk ∼ N(0,Q), (3.2a)

yk = Hs̃k + σykεk. (3.2b)

The measurement model selects the real components and sums them,

H =
(
1 0 . . . 1 0

)
, and the transition and process noise covariance
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3.3. Unifying Probabilistic Models for Time-Frequency Analysis

matrices are

A =


ψ1R(ω1) 0

. . .

0 ψDR(ωD)

 , Q =


ρ2

1I2 0
. . .

0 ρ2
DI2

 ,

(3.3)

for rotation matrix R(ωd) =

(
cosωd − sinωd

sinωd cosωd

)
. This model is now

in the form Eq. (2.20), and as such, inference can proceed via Kalman

filtering and smoothing.

The PPV as a spectral mixture GP The transition matrix A in

Eq. (3.3) hints at a connection to the quasi-periodic kernel in Eq. (2.40)

if we notice that the rotation R(ωd) is the discrete version of the cosine

kernel feedback F =
(

0 −ωd
ωd 0

)
. It turns out that the model in Eq. (3.2)

is in fact the discrete form of a Matérn spectral mixture GP, Eq. (2.41),

which we write down now before going on to show their equivalence:

f(t) ∼ GP

(
0,

D∑
d=1

C
(d)
q−per(t, t

′)

)
, (3.4a)

yk = f(tk) + σyk εk, (3.4b)

for C
(d)
q−per(t, t

′) = C
(d)
cos(t, t′)C

(d)
exp(t, t′) = σ2

d cos (ωd(t− t′)) exp
(
− |t−t

′|
`d

)
.

The kernel for each frequency channel d is a product of the cosine kernel

and the exponential kernel (the Matérn-1/2).

Encoded in this model is the assumption that the signal is made up

of a sum of D latent components, and that these latent components are

periodic, as determined by the cosine kernel whose function realisations

are pure sinusoids. But they are not perfectly periodic — the covariance

between neighbouring time steps decays exponentially with the gap

between steps, as described by Cexp(t, t′).

The continuous state space model We now utilise the relationship

between periodic kernels and state space models (Solin and Särkkä,

2014b) to write down the SDE version of Eq. (3.4). The model matrices

corresponding to the cosine and exponential kernels for the d = 1, . . . , D
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3.3. Unifying Probabilistic Models for Time-Frequency Analysis

quasi-periodic components are

F(d)
cos =

(
0 −ωd
ωd 0

)
, F(d)

exp = − 1

`d
,

Q(d)
c,cos = N/A, Q(d)

c,exp =
2σ2

d

`d
,

L(d)
cos = N/A, L(d)

exp = 1,

P(d)
∞,cos = I2, P(d)

∞,exp = σ2
d,

H(d)
cos =

(
1 0

)
, H(d)

exp = 1.

(3.5)

The cosine kernel represents a deterministic process, therefore its SDE

form does not have a diffusion term and so Q
(d)
c,cos and L

(d)
cos are not

defined.

The product of two kernels can be calculated via the Kronecker sum

of the component feedback matrices and the Kronecker product of the

remaining component matrices, which gives

F(d) = F(d)
cos ⊕ F(d)

exp = F(d)
cos ⊗ I2 + I1 ⊗ F(d)

exp =

(
− 1
`d
−ωd

ωd − 1
`d

)
,

Q(d)
c = I2 ⊗Q(d)

c,exp =
2σ2

d

`d
I2,

L(d) = I2 ⊗ L(d)
exp = I2,

P(d)
∞ = P(d)

∞,cos ⊗P(d)
∞,exp = σ2

dI2,

H(d) = H(d)
cos ⊗H(d)

exp =
(
1 0

)
.

(3.6)

These submatrices can now be used to construct the full continuous

SDE form of the spectral mixture GP, Eq. (3.4), which is

d̃f(t)

dt
= Ff̃(t) + Lw(t), w(t) ∼ N(0,Qc) (3.7a)

yk = Hf̃(tk) + σyεk, (3.7b)

for state vector f̃ =
(
Re[f1(t)] Im[f1(t)] . . . Re[fD(t)] Im[fD(t)]

)> ∈
RM where M = 2D, and the model matrices have block-diagonal struc-
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ture:

F =


F(1)

F(2)

. . .

F(D)

 , Qc =


Q

(1)
c

Q
(2)
c

. . .

Q
(D)
c

 ,

L =


L(1)

L(2)

. . .

L(D)

 , P∞ =


P

(1)
∞

P
(2)
∞

. . .

P
(D)
∞

 ,

H =
(
H(1) H(2) . . . H(D)

)
.

(3.8)

It is important to note that this method of writing the spectral mixture

model in SDE form is not specific to the exponential kernel. For example,

if the Matérn-3/2 kernel was used instead, we could combine F
(d)
cos and

F
(d)
Mat3/2 (as well as the other model components) in a similar manner. In

this case, since the Matérn-3/2 kernel has second-order state space form,

the state vector would additionally contain the real and imaginary parts

of the first time derivative and would have dimensionality M = 4D.

Returning to discrete state space form LTI SDE models in the

form of Eq. (3.7) have an exact discrete-time solution, and the corre-

sponding state space model is given by

f̃(tk+1) = Af̃(tk) + qk, qk ∼ N(0,Q) (3.9a)

yk = Hf̃(tk) + σyεk, (3.9b)

where A = exp(F∆t) for time step size ∆t = tk − tk−1 which we assume

to be constant, and Q = P∞ −AP∞A> such that

A =


exp

(
−∆t

`1

)
R(ω1∆t)

. . .

exp
(
−∆t
`D

)
R(ωD∆t)

 ,

Q =


σ2

1(1− exp(−2∆t
`1

))I2

. . .

σ2
D(1− exp(−2∆t

`D
))I2

 ,

(3.10)
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where we have used the identity exp(X+Y ) = exp(X) exp(Y ) to obtain

A(d) = exp(F(d)∆t) = exp(− 1

`d
I2∆t) exp(

(
0 −ωd
ωd 0

)
∆t)

= exp(−∆t

`d
)I2

(
cos(ωd∆t) − sin(ωd∆t)
sin(ωd∆t) cos(ωd∆t)

)
= exp(−∆t

`d
)R(ωd∆t).

(3.11)

The measurement matrix remains H =
(
1 0 . . . 1 0

)
.

Written in this form it becomes clear that this Matérn spectral

mixture GP is in fact equivalent to the PPV model in Eq. (3.3) if

we select the PPV hyperparameters to be ψd = exp(−∆t/`d) and

ρd = σ2
d(1− exp(−2∆t/`d)). If ∆t 6= 1 then we must also scale the

frequency parameters by the step size for equivalence: ω
(PPV)
d = ω

(SM)
d ∆t.

This result shows that, despite being developed from a very different

perspective, the PPV is a special case of the spectral mixture GP. Looking

at the hyperparameter mappings above, a long lengthscale `d results in

high process variance ψ2
d and low noise variance ρ2

d, which characterises

a smoothly varying process. Hence we can now also interpret spectral

mixture GPs as probabilistic filter banks in which the lengthscales

determine the bandwidth of the filters.

We will now investigate the benefits of drawing such a link. As

we will see, inference methods developed from the signal processing

perspective are advantageous, but hyperparameter tuning and modelling

flexibility benefit from the GP perspective, making these two paradigms

complimentary to each other.

3.4 Hyperparameter Learning in the Frequency Domain

The model proposed above retains a linear Gaussian form, and inference

can be carried out in the state space model via Kalman filtering and RTS

smoothing (see section 2.3), which scales linearly in time. Additionally,

we are able to tune the hyperparameters (filter bandwidths, centre

frequency and scale) by minimising the energy function, Eq. (2.32), the

negative log marginal likelihood.

However, despite the linear computational scaling, iterated filtering

of the entire time domain signal can still be prohibitive for long time

series. For this reason, we utilise Bayesian spectrum analysis (Bretthorst,
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3.4. Hyperparameter Learning in the Frequency Domain

2013) to tune the hyperparameters in the frequency domain. To do

so, we must first consider the spectral properties of our model, and a

beneficial side effect of our new unifying perspective is that the kernel-

based spectral mixture representation provides us with a straightforward

way to calculate the frequency-domain properties of the system via the

spectral density of the covariance functions.

Spectral density of the spectral mixture As well as helping us

to tune the hyperparameters, calculating the spectral density of the

GP prior covariance provides us with a further way to interpret our

modelling assumptions. The spectral density is the Fourier transform of

the covariance function (letting τ = |t− t′|),

S(ω) =

∫ ∞
−∞

C(τ)e−iωτ dτ. (3.12)

The Fourier transform of the exponential kernel, C
(d)
exp = σ2

d exp(−τ/`d),
results in the spectral density

S(d)
exp(ω) = 2σ2

dλd(λ
2
d + ω2)−1, λd = `−1

d (3.13)

which is a Cauchy-Lorentz function centred at the origin ω = 0. The

cosine kernel, whose realisations are pure sinusoids, is represented by a

dual peak in the spectral domain at ±ωd:

S(d)
cos(ω) =

1

2
(δ(ω − ωd) + δ(ω + ωd)). (3.14)

The product of these two kernels in the time domain is equivalent to

their convolution in the frequency domain, hence the spectral density of

mixture component d is a frequency shifted version of the exponential:

S(d)
sm (ω) =

1

2
(S(d)

exp(ω − ωd) + S(d)
exp(ω + ωd))

= σ2
dλd
(
(λ2

d + (ω − ωd)2)−1 + (λ2
d + (ω + ωd)

2)−1
)
,

(3.15)

again with λd = `−1
d . A demonstration of this is shown in Figure 3.2.

Bayesian spectrum analysis Now that we have access to the spec-

tral density of the full spectral mixture model, Ssm(ω) =
∑D

d=1 S
(d)
sm (ω),

we follow the approach of Turner and Sahani (2014) to fit the parame-
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Figure 3.2: The cosine kernel acts as a frequency shift operator on
the exponential kernel to produce the quasi-periodic kernel, i.e. one
component of the spectral mixture kernel (σ2

d = 1, `d = 3, ωd = π/2).

ters of the model via a maximum likelihood approach in the frequency

domain.

We take the discrete Fourier transform of the observed signal to

calculate the power in frequency bin j as |ỹj|2 = |
∑T

k=1 FTj,kyk|2. Now,

letting γy,j(θ) = Ssm(ωj) + Tσ2
y where ωj is the centre frequency of bin

j, we obtain the frequency domain form of the log marginal likelihood,

log p(y |θ) = cprior −
1

2

T∑
j=1

(
log(γy,j(θ)) +

|ỹj|2

γy,j(θ)

)
, (3.16)

where cprior is the hyper-prior contribution (a Gamma prior is placed

over the variance hyperparameters). Calculating Eq. (3.16) is much

more efficient than running the Kalman filter; however a practical

modification to the learning algorithm is made by Turner and Sahani

(2014) in which the signal spectrum is smoothed by replacing |ỹj|2 with

Welch’s periodogram computed on multiple data segments. This helps

avoid local optima during the training process, with its effect being

annealed over time by reducing the number of data segments used until

eventually the process fits to the original noisy spectrum.

A final practical consideration is that hyperparameter optimisation

benefits from parametrising the model with the marginal variances σ2
d,marg

rather than the conditional variances σ2
d, where σ2

d,marg = σ2
d/(1− λ2

d).

The parameters are better behaved in the marginal space since, at least

for the Matérn class of kernels, this mapping accounts for the dependence

between σ2
d and λd.
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3.5. Modifying the Time-Frequency Kernel

The benefits of using the kernel spectral density The frequency

domain learning outlined above demonstrates the benefits of considering

the signal processing perspective for GP models. However, the GP

kernels themselves provide a significant advantage in this setting. When

the PPV model was not known to be a spectral mixture GP, its kernel

representation was unclear, and the spectral density Ssm had to be

calculated via consideration of the model’s autocorrelation function.

This is straightforward for a first- or second-order autoregressive process,

but as the order increases this becomes much more cumbersome.

Furthermore, in the autoregressive filter setting, stationarity of the

filters must be ensured by calculating and implementing parameter

constraints for the model coefficients ψd, ρd (Turner, 2010). The GP

kernel approach sidesteps both these practical issues because calculation

of the spectral density is done via the Fourier transform, and kernel

stationarity is guaranteed by design.

3.5 Modifying the Time-Frequency Kernel

We have seen some benefits of the unified treatment of these proba-

bilistic TF analysis models in terms of inference, but perhaps the most

significant advantage is to modelling flexibility, since all the stationary

kernels designed in the GP community can now be applied in the TF

analysis setting. Extensions to the PPV model in its standard form

involved constructing higher-order autoregressive processes, but we can

now get the same effect via kernels that admit higher-order Markov

representations.

Consider again the assumptions encoded in the model prior, Eq. (3.1).

Its first-order state space form implies that the instantaneous frequency

is not correlated through time, since the gradient of the process at time

step tk has no influence over the gradient at step tk+1. A higher-order

model would produce smoother sample paths that exhibit slowly varying

instantaneous frequencies, a feature of real-world audio signals that

should be leveraged to aid the highly ill-posed task of inferring a TF

representation from data.

Therefore, one intuitive example of a way to update the model is

to swap the exponential kernel (Matérn-1/2, with state dimensionality

M = 2D) with a similar function that admits a higher-order state space

representation. This corresponds to a filter bank whose filter transfer
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Figure 3.3: Four representations of the same Gaussian process-based
probabilistic filter bank (with three filters). Each filter / process is a
frequency shifted Matérn-ν GP. All three filters have the same lengthscale
(bandwidth) parameter, but they exhibit quite different spectral densities
(top-left). See main text for demonstration of how filter banks can
be represented in canonical GP form, such as with kernels (top-right)
and covariance matrices (bottom-left). Samples from the prior vary in
smoothness (bottom-right), suggesting that the choice of ν will affect
how the model fits the signal.

functions are no longer first-order autoregressive processes, but take a

more complex form. We use the Matérn-3/2 (M = 4D) and Matérn-5/2

(M = 6D) kernels, which correspond to second- and third-order filter

banks respectively and whose spectral densities have flatter tails and

taller peaks (see Figure 3.3).

The Matérn-3/2 kernel, C
(d)
Mat3/2(τ) = σ2

d (1 + λdτ) exp (−λdτ), has feed-

back matrices F(d) =
(

0 1
−λ2d −2λd

)
and its spectral density is

S
(d)
Mat3/2(ω) = 4σ2

dλ
3
d(λ

2
d + ω2)−2, λd =

√
3`−1
d (3.17)

The noise effect matrix, L(d) =
(
0 1

)>
, states that the second order
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term, i.e. the first time derivative of the process, is influenced by the

process noise w(t), which results in a smoother prior over functions f .

For a Matérn-5/2 kernel, C
(d)
Mat5/2(τ) = σ2

d

(
1 + λdτ +

λ2d
3

)
exp (−λdτ),

it is the second time derivative that is influenced by the noise, L(d) =(
0 0 1

)>
, and the spectral density is

S
(d)
Mat5/2(ω) =

16

3
σ2
dλ

5
d(λ

2
d + ω2)−3, λd =

√
5`−1
d (3.18)

with feedback matrices F(d) =
( 0 1 0

0 0 1
−λ3d −3λ2d −3λ

)
.

Missing data synthesis experiment One way to evaluate updates

to the TF model that incorporate these kernels is on a missing data

synthesis, or audio inpainting (Adler et al., 2012), task. In general, the

better our generative TF model is at representing audio data, the more

capable it will be at predicting missing or corrupted segments of the

signal. Audio inpainting is useful for a number of real-world applications,

including de-clipping, de-clicking, and interference removal.

Each version of the model (Matérn-1/2, Matérn-3/2, Matérn-5/2), with

D = 40 filters, was trained on 10 short speech excerpts (between 1

and 2 seconds in duration) and then used to calculate the posterior

predictive distribution for versions of the recordings in which some data

had been removed. Practically, this involves calculating the smoothing

distribution, p(s1:D,1:T |y), whilst skipping the Kalman update step at

the time locations where the data is missing or corrupted.

Missing data gaps of between 1 ms and 20 ms were studied, with

the results shown in Figure 3.4. Whilst the differences are subtle (the

overall models are similar), the higher-order models’ reconstruction

achieved an improved signal to noise ratio for all missing data durations

averaged across the 10 speakers. We also calculated the PESQ score

(Rix et al., 2001) (a standardised perceptual speech quality metric),

which demonstrated some signs of improvement, however all models

performed similarly for large gap durations.

We found that training the model with second- and third-order kernels

was less stable than with the first-order one (the standard PPV). In

particular, it was much more sensitive to initial parameter settings. For

this reason, in the above experiment we always pre-trained the model

with the Matérn-1/2, and used the learnt parameters as the initial setting
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Figure 3.4: Missing data synthesis results for three Matérn-ν probabilistic
time-frequency models. Segments of data were removed from 10 speech
recordings. Performance measured via perceptual quality metric (top-
left) and signal-to-noise ratio (top-right) as a function of gap duration.
Median value across speakers shown (shaded area is standard error). A
reconstruction example (bottom) shows how the higher-order models
(ν = 3/2, 5/2) recover the overall shape in clearer detail (ground truth in
grey). Matérn-1/2 is the standard probabilistic phase vocoder.

for training with the kernel of interest.

The small differences in results shown in Figure 3.4 are somewhat

surprising, given that the stiffer model prior described by the higher-order

kernels should better describe the true behaviour of an audio signal. To

investigate further, we compare the spectral density of the three model

variants in Figure 3.5. The higher-order kernels have rounder peaks but

narrower bandwidths in general and flatter tails, as we would expect

from smoothly varying processes. This leads to a good representation

of the data in most regions of the frequency domain, but in some areas

the Matérn-1/2 model seems to fit the spectrum more tightly. These

observations suggest that there is room for improvement in GP kernel
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Figure 3.5: Three versions of the probabilistic filter bank / spectral
mixture GP are fit to a speech signal (spectrum shown in black). The
red lines show the sum of the spectral densities of the component filters
/ GPs. The Matérn-1/2 model (top) has narrower peaks and fatter
tails. The Matérn-3/2 (middle) and Matérn-5/2 (bottom) models have
rounder peaks but their tails are flat. The higher-order kernels allow for
a more accurate fit in some regions and exhibit smoother sample paths,
but more often exhibit pathological behaviour such as the stacking of
two filters around 3,700 Hz in the middle plot.

design for audio data. Additionally, the noisy signal spectrum suggests

that there is natural variation in the signal not being captured in the

model, potentially due to nonstationary behaviour.
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3.6 Conclusion

We have unified the theory surrounding probabilistic TF analysis and

explained clearly how it relates to Gaussian process modelling, with

the aim to motivate further research at the intersection of these fields.

The general framework outlined here for converting spectral mixture

GP models to a state space form enables efficient frequency domain

optimisation and efficient time domain filtering and prediction, showing

how these two perspectives are complementary to each other. We ap-

plied the framework to Matérn spectral mixture GPs and demonstrated

improved performance over the standard probabilistic phase vocoder on

a generative task.

The improved modelling flexibility allowed us to make clear com-

parisons between the competing TF models, but the relatively modest

performance gains motivate further work on kernel design specifically

for audio signals. Alternatively, it may prove more fruitful to learn the

kernel itself (or its spectral density) from the data in a nonparametric

fashion, an approach proposed by Tobar et al. (2015).

Practical limitations of probabilistic TF models still remain due

to the Kalman smoother’s cubic computational scaling in the state

dimensionality and from the significant memory requirements involved

in storing the entire covariance structure for every time step.

The methods presented here also assume independence across fre-

quency channels and don’t explicitly model time-varying amplitude

behaviour. Our state space framework provides a foundation on which

to construct more complex models that incorporate these features, which

we explore next in chapter 4.
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Chapter 4

End-to-End Probabilistic

Inference for Nonstationary

Audio Analysis

A typical (non-probabilistic) way to perform feature analysis on an

audio signal is to apply nonnegative matrix factorisation (NMF) to

the amplitude components ad of a time-frequency (TF) representation

– the spectrogram. This disjoint approach has limitations, as outlined

in Turner and Sahani (2014). It discards phase information calculated

during the TF stage, as well as dependencies between TF coefficients,

and it fails to capture and share any uncertainty information between

the analysis stages, which could be useful in determining an appropriate

signal decomposition in such an ill-posed setting.

Moreover, the map that takes the waveform to the space of TF

coefficients is not a bijection. This means that any function operating on

the signal in the TF domain (e.g. noise removal), especially those that

act only on the magnitude component, might push the signal outside the

manifold of realisable waveforms (Turner, 2010). Hence, the modified

TF representation must be projected back to the manifold of valid TF

representations before the waveform can be re-synthesized (see, e.g.,

Griffin and Lim (1984)). This projection might distort the signal and

introduce undesirable artefacts.

These issues have motivated a large body of research on probabilistic

models that operate directly on signal waveforms rather than on TF

representations. Such models have been shown to outperform their

spectrogram-based counterparts on several tasks, including source sepa-
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4.1. The Gaussian Time-Frequency NMF Model

ration (Liutkus et al., 2011; Alvarado et al., 2019; Magron and Virtanen,

2019), audio inpainting and denoising (Badeau and Plumbley, 2014;

Turner and Sahani, 2014).

In chapter 3 we showed that probabilistic TF analysis can be performed

using a GP model whose kernel is a sum of quasi-periodic functions. An

extension to this approach, which we introduced in section 2.2, is the

Gaussian time-frequency NMF (GTF-NMF) model for joint TF analysis

and spectrogram feature analysis. The observation mechanism in this

joint model is a nonlinear function of the latent components, which

makes inference non-trivial and previous work relies on a suboptimal

inference scheme, where the separate model components are updated

independently in an iterative fashion.

In this chapter we devise a fully probabilistic joint inference method

for the GTF-NMF model based on power expectation propagation

in the Kalman smoother setting. First we construct its state space

form, showing how it can be viewed as a spectral mixture GP with

nonstationary NMF priors over the amplitude variance parameters, (see

Figure 4.1 for an overview of the idea).

We also consider new ways to deal with computational issues that

arise in this nonlinear model. We construct its infinite-horizon GP

representation (Solin et al., 2018), which scales as O(M2T ) in complexity

and O(MT ) in memory, where M is the dimensionality of the state

and T the number of time steps. Then we show performance of our

approximate inference scheme on various tasks, and compare it to a

classical signal processing approach: the iterated extended Kalman filter.

4.1 The Gaussian Time-Frequency NMF Model

We aim to decompose the signal y into D unknown frequency (oscillator)

channels, whose relative amplitudes are modulated by N temporal NMF

components. The GP priors for the D + N latent model component

functions are:

gn(t) ∼ GP(0, C(n)
g (t, t′)), n = 1, 2, . . . , N, (4.1a)

zd(t) ∼ GP(0, C(d)
z (t, t′)), d = 1, 2, . . . , D, (4.1b)

where gn(t) denotes the nth temporal NMF component function and

zd(t) the dth frequency channel. The kernel C
(d)
z = C

(d)
q−per is chosen to be
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GP spectrogram = NMF weights (W) × positive modulator GPs (gn(t))
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Figure 4.1: Nonstationary modelling of audio data. The input (bottom)
is a sound recording of female speech. We seek to decompose the signal
into Gaussian process carrier waverforms (blue block) multiplied by a
spectrogram (red block). The spectrogram is learned from the data as a
nonnegative matrix of weights times positive modulators (top).

a quasi-periodic function, i.e. the dth component of a spectral mixture.

C
(n)
g should be determined by our assumptions about the behaviour of

the amplitude modulators, such as their smoothness properties.

The likelihood (observation) model, letting ad,k = ad(tk) and zd,k =

zd(tk), is given by:

yk =
∑
d

ad,k zd,k + σy εk, (4.2)

for squared amplitudes (the magnitude spectrogram):

a2
d(tk) =

∑
n

Wd,n φ(gn(tk)). (4.3)
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We model the squared amplitudes in order to encourage the analogy

between this model and a traditional approach, in which the spectrogram

is the square of the STFT magnitude.

Positivity of the NMF components is enforced by a link function, in

our case the softplus φ(gn) = log(1 + egn). W ∈ RD×N are the NMF

weights determining how strongly each modulator affects each oscillator.

Crucially, if we choose N < D, then the model captures amplitude

behaviour shared across frequency channels, i.e. co-modulation, one of

the important perceptual characteristics of sound discussed in section 2.2.

Note that if we set ad(tk) = 1, ∀ d, k then Eq. (4.2) reduces to standard

probabilistic time-frequency analysis, the model given in chapter 3. If

we discard zd(tk) by calculating a fixed spectrogram, such that a2
d(tk)

become our observations, then Eq. (4.3) is standard temporal NMF

(Bertin et al., 2010; Turner and Sahani, 2014). Further removing the

GP prior over gn brings us back to the NMF model in Eq. (2.14).

Figure 4.1 shows the model diagrammatically – the frequency channel

subbands zd are D independent, unit variance GPs with quasi-periodic

kernel functions. The modulators gn and the NMF weights constitute

a model for the spectrogram, the squared amplitudes of the frequency

channels.

The inference methods we will present next allow for any choice

of Cg, Cz, so long as they can be written in state space form, either

approximately or exactly (see section 2.5). We focus on the Matérn

class of kernel functions due to their strong connection to autoregressive

filters, and because their parameters have convenient interpretations for

our task – their lengthscales and variances relate to the bandwidth and

scale of the filters in a filter bank (see chapter 3).

4.2 Nonstationary Spectral Mixture GPs

If we write down our model in its hierarchical form, we observe a striking

similarity to the nonstationary spectral mixture GPs presented in Remes

et al. (2017). These nonstationary models treat the hyperparameters of a

spectral mixture model as functions of time, and place a GP hyper-prior
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over them. Such a model can be written

s(t) ∼ GP

(
0,

D∑
d=1

σd(t)σd(t
′) cos

(
ωd(t)t− ωd(t′)t′

)
Cd
(
t, t′ | `d(t), `d(t′)

))
,

(4.4a)

yk = s(tk) + σy εk, (4.4b)

with hyper-priors

log σ2
d(t) ∼ GP(0, C(d)

σ (t, t′)),

logωd(t) ∼ GP(0, C(d)
ω (t, t′)),

log `d(t) ∼ GP(0, C
(d)
` (t, t′)).

In this setting, the positive variance, frequency and lengthscale of the

mixture components are allowed to vary smoothly over time.

By contrast the GTF-NMF model, Eqs. (4.1)-(4.3), keeps the length-

scales and frequencies fixed but introduces a similar nonstationary prior

over the variances / amplitudes. Therefore its hierarchical form can be

written in a similar way to the nonstationary spectral mixture, i.e. with

a GP hyper-prior gn(t) ∼ GP(0, C
(n)
g (t, t′)) for each component with an

NMF-like positivity mapping α2
d(t) =

∑
nWd,n φ(gn(t)), such that

s(t) ∼ GP

(
0,

D∑
d=1

αd(t)αd(t
′) cos

(
ωd(t− t′)

)
Cd
(
t, t′ | `d

))
, (4.6a)

yk = s(tk) + σy εk. (4.6b)

We use the notation α2
d(t) to represent the variance here rather than

a2
d(t) since these parameters are not identical: multiplying the kernel

by a real value is not the same as multiplying realisations of the GP by

that value. However, these parameters play a similar role in the model

and have a similar interpretation.

This equivalence means that the inference methods laid out in sec-

tion 4.4 and section 4.5 also apply to some nonstationary spectral mixture

models, as do their formulation as stochastic differential equations (we

leave the SDE formulation of nonstationary frequencies and lengthscales

to future work).
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4.3 SDE Form of the Nonstationary Model

Following the approach outlined in section 3.3, we write the spectral

mixture GP component (which we now call zd since it represents the

subband carrier signal) in its SDE form using a product of cosine and

Matérn kernels. For example the feedback matrix is constructed via the

Kronecker sum as Fsm = blkdiag
(
F

(1)
cos ⊕ F

(1)
Mat, . . . ,F

(D)
cos ⊕ F

(D)
Mat

)
, and

the other model components (Lsm, Qc,sm, P∞,sm, Hsm) are constructed

via the Kronecker product of the cosine and Matérn parts, again in a

block-diagonal structure.

We now append to the model the GP prior over the amplitudes,

constructing a new state space model, Eq. (2.16), whose state vector

f̃(t) is the concatenation of the subband state z̃(t) and the amplitude

state g̃(t):

f̃(t) =

(
z̃(t)

g̃(t)

)
∈ RM . (4.7)

If we notate the amplitude prior model matrices Famp, Lamp, etc., then

the full model matrices are again constructed by stacking the components

along the diagonal,:

F =

(
Fsm 0

0 Famp

)
, L =

(
Lsm 0

0 Lamp

)
,

Qc =

(
Qc,sm 0

0 Qc,amp

)
, P∞ =

(
P∞,sm 0

0 P∞,amp

)
.

(4.8)

However, since the likelihood model is now a nonlinear mixture of zd

and gn, we replace the linear observation matrix H with a nonlinear

operator H that takes the carrier and amplitude states and outputs the

sum of the subbands:
∑

d sd,k = H(f̃(tk)). In the GTF-NMF model,

Eqs. (4.1)-(4.3), this is given by:

H(f̃(tk)) =
D∑
d=1

ad,kzd,k

= µ>1:DWφ
(
µD+1:D+N

)
, for µ = Hf̃(tk) ∈ RD+N×1

(4.9)

with NMF weights W ∈ RD×N and softplus function φ(·). The matrix

H selects and stores the real-valued first-order terms corresponding to z

and g from the state vector f̃ , i.e. µ = Hf̃ =
(
z1:D g1:N

)>
. In terms
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of the initial model we can interpret these likelihood components as the

amplitudes a1:D = Wφ
(
µD+1:D+N

)
and the carriers z1:D = µ1:D. Now

the continuous-discrete SDE is written

d̃f(t)

dt
= Ff̃(t) + Lw(t), (4.10a)

yk = H(f̃(tk)) + σyεk. (4.10b)

An example state space model The SDE formulation is made

clearer by considering an example model in which the carrier priors have

a Matérn-3/2 kernel, C
(d)
z (t, t′) = CMat3/2(t, t

′), and the amplitude priors

have a Matérn-5/2 kernel, C
(n)
g (t, t′) = CMat5/2(t, t

′).

In this case, using the dot notation for the time derivative żd(t), the

spectral mixture model for the carriers has a second-order complex

state space, z̃d(t) =
(
Re[zd(t)] Im[zd(t)] Re[żd(t)] Im[żd(t)]

)>
. For

the amplitude prior, the Matérn-5/2 admits a third-order real-valued

state space, g̃n(t) =
(
gn(t) ġn(t) g̈n(t)

)>
.

We must now write down the appropriate observation model to enable

Eq. (4.9) to represent a product of the NMF-weighted amplitudes and

the carriers. Letting H4 =
(
1 0 0 0

)
and H3 =

(
1 0 0

)
, we stack

the model components as follows:

H =



H
(1)
4

. . .

H
(D)
4

H
(1)
3

. . .

H
(N)
3


, f̃(t) =



z̃1(t)
...

z̃D(t)

g̃1(t)
...

g̃N(t)


,

(4.11)

which gives us the desired result.

4.4 Linearisation-Based Inference

The inference methods laid out in the remainder of this chapter generally

act on time discretised versions of the above model, Eq. (4.10), and

hence it is useful to define the notation f̃k = f̃(tk) to represent the

discrete state vector.

Given the model in Eq. (4.10), we now attempt again to perform

inference via Kalman filtering. The Kalman filter prediction step (see
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Eqs. (2.21)) can proceed as usual given the linear Gaussian form of the

prior component, Eq. (4.10a). However now that our observation model,

Eq. (4.10b), is nonlinear (and non-Gaussian since Gaussianity is not

preserved through nonlinear operations) we must modify the update step

to account for this nonlinearity. Typically this is done by approximating

the state distribution p(f̃1:T |y) via local Gaussian approximations to

the time-marginals q(f̃k |y) ' N(f̃k |mk,Pk).

Perhaps the most widely used technique for calculating these local

Gaussian approximations is the extended Kalman filter (EKF, Jazwinski,

1970; Bar-Shalom et al., 2001). The EKF, together with the backward-

pass known as the extended Rauch–Tung–Striebel smoother, takes first-

order Taylor series linearisations of the nonlinear components, replacing

the feedback and measurement projections in the prediction and update

steps with their Jacobian matrices evaluated at the mean: Ff̃ (mk−1)

and Hf̃ (m
−
k ).

For GPs, a related local linearisation scheme is known as the Laplace

approximation, where the approximation is improved iteratively by

mode-seeking. In signal processing, iterative versions of the EKF are

known as iterated filters, where the iteration is typically in the inner

update loop (local iterated EKF, Jazwinski, 1970; Maybeck, 1982).

Outer-loop variants which—similar to the GP Laplace method—seek

a global approximation are known as the global iterated EKF (Zhang,

1997).

To apply this to the GTF-NMF model we must calculate the Jacobian

of the measurement function H(f̃), Eq. (4.9), which we will denote

Hf̃ ∈ RM and is given via the chain rule as

Hf̃ = H>

(
Wφ

(
µD+1:D+N

)
diag

(
µ>1:DW

)
φ̇
(
µD+1:D+N

)) (4.12)

where φ̇(x) = ex/(ex+1) is the derivative of the softplus, i.e. the sigmoid

function. The elements inside the parentheses in Eq. (4.12) correspond

to the state dimensions of interest in the likelihood,
(
·
)
∈ RD+N×1. The

EKF now essentially runs the standard Kalman filter steps, Eq. (2.22),

using this updated (linearised) measurement matrix.

In Algorithm 1 we present an iterated (outer-loop) EKF scheme

for Laplace-like approximate inference. The local linearisation is still

performed according to Eq. (4.12), but once we have run the smoother
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Algorithm 1 Linearisation-based inference (Laplace approximation
scheme) formulated as a global iterated extended Kalman filter.

Input: {tk, yk}Tk=1, A, Q, P0 data and discretised state space model
H(f̃), H, Hf̃ (f̃) measurement model and Jacobian

m0 ← 0 init state mean
while not converged do iterated EKF loop

for k = 1 to T do forward pass
if k == 1 then

Pk ← P0 init state covariance
else

mk ← A mk−1; Pk ← A Pk−1 A>+Q predict
end if
if has label yk then
vk ← yk−H(mk); Sk ← Hf̃ (mk) Pk H>

f̃
(mk)+σ

2
y inn.

kk ← Pk H>
f̃

(mk)S
−1
k gain

mk ←mk + kk vk; Pk ← Pk − kk Sk k>k
end if

end for
for k = T − 1 to 1 do backward pass

Gk ← Pk A> (A Pk A> + Q)−1 gain
mk ←mk + Gk (mk+1 −A mk)
Pk ← Pk + Gk (Pk+1 −A Pk A> −Q) G>k

end for
end while
rows of H select states of interest, e.g. hg

n corresponds to row for gn
Return: E[gn(tk)] = hg

nmk;V[gn(tk)] = hg
nPkh

g>
n

E[zd(tk)] = hz
dmk;V[zd(tk)] = hz

dPkh
z>
d

log p(y |θ) ' −
∑T

k=1
1
2
(log 2πSk + v2

k/Sk)

we use the current mean, m1, as the starting point for the next run of

the EKF, repeating this process until convergence. We consider this

algorithm as the baseline for our experiments in section 4.7. Its use as

a baseline is motivated by its ubiquity in signal processing, as well as

by recent work showing that the iterated EKF can outperform other

inference methods such as EP for many tasks (Tronarp et al., 2018;

Garćıa-Fernández et al., 2019).

4.5 Expectation Propagation for GTF-NMF

The inference methods laid out so far in this thesis, despite being

scalable and efficient, are limited to systems that are well approximated

by linear models and they are in general not capable of producing
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accurate inference in the presence of strong nonlinear dependencies such

as in the model presented in Eq. (4.10).

Nickisch et al. (2018) combine classical methods with modern tools for

approximate inference, e.g. variational Bayes and assumed density filter-

ing (ADF), to enable handling of more complex models. We generalise

this work by extending the ADF algorithm to expectation propagation

and thus combining the best methods from the signal processing and

machine learning communities.

Expectation propagation (EP) and power expectation propagation

(PEP) are methods for approximating intractable probability distribu-

tions using tractable distributions from the exponential family. EP is a

generalisation of ADF and works by minimising local Kullback-Leibler

(KL) divergences in an iterative fashion. PEP can be seen as a further

generalisation of EP that minimises local α-divergences rather than KL

divergences (Minka, 2005).

Using PEP, we approximate the intractable likelihood terms as follows:

p(yk | z1:D,k,g1:N,k) ≈ qk(z1:D,k,g1:N,k), (4.13)

where each site approximation qk is Gaussian. Specifically, we assume

that qk factorises across the latent components (as it would if they were

linearly mixed rather than nonlinearly) and takes the form

qk(z1:D,k,g1:N,k) =
D∏
d=1

N(zd,k | νzd,k, τ zd,k)
N∏
n=1

N(gn,k | νgn,k, τ
g
n,k), (4.14)

where νzd,k and τ zd,k are the precision-adjusted mean and precision, re-

spectively, for zd,k etc. This choice leads to a joint Gaussian posterior

approximation. Rather than simply matching moments of the two distri-

butions in Eq. (4.13), the EP algorithm iteratively refines the posterior

approximation by updating each site approximation qk in the context of

the so-called cavity distribution q−k. The cavity distribution for the kth

observation is defined by removing the contribution of the kth site ap-

proximation from the posterior approximation q(z1:D,k,g1:N,k |y). That

is,

q−k(z1:D,k,g1:N,k) ∝
q(z1:D,k,g1:N,k |y)

qk(z1:D,k,g1:N,k)η
(4.15)
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for η ∈ (0, 1], where η = 1 corresponds to regular EP and η < 1 to PEP.

In the Kalman filtering and smoothing paradigm we are interested

in, the smoothing distribution is used for the marginal posterior ap-

proximation q. Crucially, on the first pass through the data, the cavity

distributions can be approximated by the Kalman filter predictions

q(z1:D,k,g1:N,k |y1:k−1) which can be interpreted as the prior over the

latents conditioned on the past data. On subsequent EP iterations, the

cavities can be calculated by removing the site approximations from the

smoothing distribution as usual (see Algorithm 2).

The kth site approximation qk is then updated by minimising the

KL-divergence between the tilted distribution,

p̂k =
1

Zk
p(yk | z1:D,k,g1:N,k)

ηq−k(z1:D,k,g1:N,k), (4.16)

i.e. the true Bayesian local update, and the PEP approximation

qk(z1:D,k,g1:N,k)
ηq−k(z1:D,k,g1:N,k), i.e. the estimate given by rearranging

Eq. (4.15), to obtain our new posterior approximation:

q∗k (z1:D,k,g1:N,k |y) = arg min
qk

DKL [p̂k ‖ qηkq−k] . (4.17)

The normalisation constant Zk is given by

Zk = Eq−k
[p(yk | z1:D,k,g1:N,k)

η] . (4.18)

Minimising the KL divergence between Gaussians is equivalent to

matching their first two moments, hence algorithmically the EP updates

correspond to a moment matching procedure. The moments of the tilted

distribution can be obtained from the first two partial derivatives of

logZk with respect to two sets of cavity mean parameters {µgn,−k}Nn=1

and {µzd,−k}Dd=1:

Zk = Eq−k
[p(yk | z1:D,k,g1:N,k)

η]

=

∫
...

∫
N
(
yk|
∑
d

∑
n

zd,kWd,nφ(gn,k), σ
2
y

)η
×
∏
d

N
(
zd,k |µzd,−k, ζzd,−k

)
×
∏
n

N
(
gn,k |µgn,−k, ζ

g
n,−k

)
dz1,k ... dzD,k dg1,k ... dgN,k (4.19)

60



4.5. Expectation Propagation for GTF-NMF

= constη

∫
...

∫
N
(
yk |

∑
d

∑
n

µzd,−kWd,nφ(gn,k),

σ2
y +

∑
d

∑
n

ζzd,−kW
2
d,nφ(gn,k)

2
)

×
∏
n

N
(
gn,k |µgn,−k, ζ

g
n,−k

)
dg1,k ... dgN,k

for constη = (2πσ2
y)

1/2(1−η)η−1/2 and where we have used the marginal-

isation properties of the Gaussian distribution to obtain the last line.

Setting

my =
∑
d

∑
n

µzd,−kWd,nφ(gn,k)

and

vy = σ2
y +

∑
d

∑
n

ζzd,−kW
2
d,nφ(gn,k)

2

and differentiating w.r.t. µz, µg, we get

dZk

dµz
d ,−k

= constη

∫
...

∫
N
(
yk |my, vy

)
×
∑
n

Wd,nφ(gn,k)
y −my

vy

×
∏
n

N
(
gn,k|µgn,−k, ζ

g
n,−k

)
dg1,k ... dgN,k,

(4.20)

dZk

dµg
n,−k

= constη

∫
...

∫
N
(
yk |my, vy

)gn,k − µgn,−k
ζgn,−k

×
∏
n

N
(
gn,k |µgn,−k, ζ

g
n,−k

)
dg1,k ... dgN,k,

(4.21)

d2Zk

dµz
d ,−k

2 = constη

∫
...

∫
N
(
yk |my, vy

)
×
∑
n

(Wd,nφ(gn,k))
2

[(
y −my

vy

)2

− 1

vy

]
×
∏
n

N
(
gn,k |µgn,−k, ζ

g
n,−k

)
dg1,k ... dgN,k,

(4.22)
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d2Zk

dµg
n,−k

2 = constη

∫
...

∫
N
(
yk |my, vy

)
×

(gn,k − µgn,−k
ζgn,−k

)2

− 1

ζgn,−k


×
∏
n

N
(
gn,k | µgn,−k, ζ

g
n,−k

)
dg1,k ... dgN,k.

(4.23)

We can see from the above that all the required integrals are N -

dimensional, where N is the number of NMF components. The partial

derivatives of logZk can be obtained from the equations above using

the chain rule:

dlog Zk

dµz
d ,−k

=
1

Zk

dZk

dµz
d ,−k

,

dlog Zk

dµg
n,−k

=
1

Zk

dZk

dµg
n,−k

,

d2log Zk

dµz
d ,−k

2 = − 1

Z2
k

(
dZk

dµz
d ,−k

)2

+
1

Zk

d2Zk

dµz
d ,−k

2 ,

d2log Zk

dµg
n,−k

2 = − 1

Z2
k

(
dZk

dµg
n,−k

)2

+
1

Zk

d2Zk

dµg
n,−k

2 .

(4.24)

We use these derivatives of the log-partition function to update the

site parameters in Eq. (4.14), whilst also converting them back to the

precision-adjusted (natural) parameter space, via the following mapping

(Seeger, 2005): letting bd,k = dlogZk

dµzd,−k
and cd,k = d2logZk

dµzd,−k
2 and for damping

parameter ρ,

τ zd,k = (1− ρ)τ zd,k +
ρ

η

(
−cd,k

1 + ζd,−kcd,k

)
, (4.25a)

νzd,k = (1− ρ)νzd,k +
ρ

η

(
bd,k − µd,−kcd,k

1 + ζd,−kcd,k

)
. (4.25b)

Mapping to the natural parameter space in this way makes the updates

in the EP algorithm more straightforward (see Algorithm 2). The

updates for τ gn,k and νgn,k are carried out similarly using the derivatives

with respect to µgn,−k.

We numerically approximate the N -dimensional integrals required for

moment matching with 9th-order sigma-point methods (McNamee and
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4.5. Expectation Propagation for GTF-NMF

Stenger, 1967; Kokkala et al., 2016). However, the number of sigma-

points required in this 9th-order approximation scales poorly with the

number of NMF components, 1
2
(2N4 − 4N3 + 22N2 − 8N + 3), which

slows down inference for large N. Lower-order approximations, e.g. 5th-

and 7th-order sigma point methods, are sufficient in many cases and scale

much more efficiently, however in the experiments laid out in section 4.7

we found that the 9th-order approach was required to obtain consistent

results.

The proposed algorithm is prone to convergence issues due to the

complexity of the data, ambiguities / non-identifiability in the model,

and the nonlinearity in the likelihood. To prevent EP from oscillating

we use damped updates for the site parameters (Minka and Lafferty,

2002). That is, the site parameters are updated as a convex combination

of the current parameter values and the new parameters values, i.e.

the first and second terms in Eq. (4.25). Given the large amount of

damping required, we generally had to run EP for 20 iterations to

reach convergence, more than the 5-10 that is often reported for simpler

models.

Standard EP scales cubicly in the number of observations. However,

by using the RTS smoother, Eq. (2.23), to approximate the marginal

posterior distributions q(z1:D,k,g1:N,k |y) in Eq. (4.15), we can reduce the

complexity of the algorithm to be linear in the number of observations.

The EP algorithm is summarised in Algorithm 2.

Hyperparameter Tuning Model learning is difficult in this setting

due to the highly correlated nature of the kernel hyperparameters and

the non-identifiability of the NMF mapping (due to the fact that there

are two sources of amplitude variation in the model: the envelopes

themselves, ad, but also the natural variation in the quasi-periodic

subbands, zd). We initialise the parameters via frequency domain fitting

with the standard probabilistic TF model, as outlined in chapter 3,

which is fast and gives an accurate estimate of the subband frequencies

and lengthscales. We initialise the NMF weights using standard NMF

applied to a spectrogram calculated with our subband model. Further

tuning is then carried out by direct optimisation of the (log) marginal

likelihood, log p(y |θ), which is calculated during Kalman smoothing as

shown in Algorithm 2.

63



4.5. Expectation Propagation for GTF-NMF

Algorithm 2 Expectation propagation using Kalman smoothing

Input: {tk, yk}Tk=1 training inputs and targets
A, Q, H, H(f̃), P0 discretised state space model

τ ← 0, ν ← 0 likelihood eff. precision and location
while EP not converged do EP loop

for k = 1 to T do forward pass
if k == 1 then

mk ← 0; Pk ← P0 init
else

mk ← Amk−1; Pk ← APk−1A
>+Q predict

end if
if has label yk then
µ← Hmk; U← PkH

>; σ2 ← diag (HU) latent
if first EP iteration then
τ−k ← σ2; ν−k ← µ cavity
set (νk, τk) to minimise the KL div. in Eq. (4.17) by calcu-
lating Zk and its gradients via Eqs. (4.19)-(4.25)

end if
ck ← µ� τk − νk
Kk ← U (σ2 + 1� τk)−1

(multiplication is column-wise)
Pk ← Pk −KkU

> variance
mk ←mk + Kkck mean

end if
end for
for k = T − 1 to 1 do backward pass

Gk ← Pk A> (A Pk A> + Q)−1 gain
mk ←mk + Gk (mk+1 −A mk)
Pk ← Pk + Gk (Pk+1 −A Pk A> −Q) G>k
µ← Hmk; σ

2 ← diag
(
HPkH

>) latent
τ−k ← 1� σ2 − ητk; ν−k ← µ� σ2 − ηνk cavity
set (νk, τk) to minimise the KL div. in Eq. (4.17) by calculating
Zk and its gradients via Eqs. (4.19)-(4.25)

end for
end while
rows of H select states of interest, e.g. hg

n corresponds to row for gn
Return: E[gn(tk)] = hg

nmk;V[gn(tk)] = hg
nPkh

g>
n

E[zd(tk)] = hz
dmk;V[zd(tk)] = hz

dPkh
z>
d

log p(y |θ) '
∑

k logZk

Notation: a ◦ b and a� b denote the element-wise multiplication and
element-wise divison of the vectors a and b, respectively.
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4.6. Infinite-Horizon Gaussian Processes

4.6 Infinite-Horizon Gaussian Processes

The inference method laid out above has linear time complexity, O(TM3)

(with M � T ), with respect to the number of data points T , and state

dimensionality M . The memory scaling is O(TM2) due to the need

for storing the state covariances at every time step. However, in the

case of audio data T can be tens or hundreds of thousands even for

short audio segments. This is mainly problematic with regards to the

required memory (M typically in the range of 100–1000). For example,

for M = 100, the required memory is in the range of 1.2 Gb per second

of data.

To mitigate the memory bottleneck, we use the infinite-horizon GP

(IHGP) framework proposed by Solin et al. (2018), where the GP is

approximated by finding an associated posterior steady state of the

filter for each of the D +N latent functions. This way the propagation

of the covariance terms in Algorithm 2 can be simplified, leading to a

computational time scaling of O(TM2) and memory scaling O(TM).

Solin et al. (2018) derived their method to work with ADF, but our

EP formulation directly lends itself to the approach by using the cavity

parameters for updating the likelihood variance terms. With these

changes, the required memory drops by orders of magnitude to 12.2 Mb

per second of data.

The main idea is to drop the dependence on time of the state covariance

Pk, replacing it with a dependence only on the likelihood variance of the

individual i = 1, . . . , D+N model components, which can be estimated

as σ2
i,k = 1/τi,k, treating it as a function Pi(σ2

i,k). A steady state solution

exists when the covariance doesn’t change between time steps, hence we

can calculate Pi(σ2
i,k) by writing down one full recursion of the Kalman

filter prediction and update steps to get

Pi(σ2
i,k) =APi(σ2

i,k)A
>

−APi(σ2
i,k)h

>
i (hiP

i(σ2
i,k)h

>
i + σ2

k)
−1hiP

i(σ2
i,k)A

> + Q,

(4.26)

where hi is the row of H corresponding to the ith latent component.

Eq. (4.26) is the form of a discrete algebraic Riccati equation (DARE,

see Lancaster and Rodman, 1995), which can be solved by the Schur

method (Laub, 1979) in O(M3). Instead of solving the DARE at every

time step, an interpolation method is used in which, prior to inference,
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4.7. Comparing Inference Schemes for GTF-NMF

multiple DAREs are solved for a range of likelihood variance values

and their associated steady state covariances Pi are stored in a look-up

table.

This approach adds a computational overhead to the inference scheme,

but now that the covariance does not depend on time, the Kalman filter

equations can be simplified such that they no longer rely on matrix

multiplications, but rather only on vector-matrix multiplications which

leads to computational scaling of O(TM2). Crucially, since we no longer

need to store a large covariance matrix at every time step, we achieve

the reduced memory requirement of O(TM).

4.7 Comparing Inference Schemes for GTF-NMF

In this section we compare the proposed inference methods, showing that

fully iterated EP is absolutely necessary for inference in the GTF-NMF

model, since the iterated EKF and single-sweep EP approaches fail to

uncover the latent functions with sufficient accuracy and show inferior

performance in signal processing applications. Our generative model

is extremely flexible, and we demonstrate here how it can be applied

to three different real world tasks (and one simulated task) with no

adjustment of the model or algorithm: missing data synthesis, denoising

and source separation. The GTF-NMF performs on a similar level to

application specific algorithms (better in missing data imputation, worse

in denoising), whilst being much more general.

For ease of comparison, in all the real-world experiments we set

D = 16, N = 3 and tune the parameters via single-sweep EP (ADF),

with η = 0.75 and damping of ρ = 0.1. The benefit of adapting the

model to the signal is that even just 16 filters can be sufficient to describe

the data, however computational challenges were also considered when

choosing these settings. We use the learnt parameters to directly compare

the different inference methods (with the exception of the simulated

data experiment where we use the known parameters). We use the

exponential and Matérn-5/2 kernels for κd and κg. The advantages

of the infinite-horizon approach become clear when we consider the

source separation problem, in which the mixture signal contains multiple

sources (leading to a very high-dimensional state space M = 123), and

is 6 seconds in duration (T = 96,000).
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EP1 EP20 IHGP1 IHGP20 EKF1 EKF20 MP

RMSE (sim.) 0.044 0.003 0.042 0.029 0.124 0.128 —

SNR (mis.) 7.494 8.087 4.520 4.591 3.716 3.735 5.232
RMSE (mis.) 0.590 0.551 0.720 0.716 0.746 0.743 0.761

Table 4.1: Performance measures for each inference scheme. ‘sim.’ shows
fit to observed data y in the simulated data experiment (likelihood noise
variance is σ2

y = 10−4). ‘mis.’ shows mean missing data imputation
results on a dataset of 10 musical instrument sounds, with segments of
20ms removed. Signal-to-noise ratio (in dB, larger is better) and root
mean square error (smaller is better). Based on predictive mean. MP is
the matching pursuit baseline.

Simulated Data Experiment We set D = 5, N = 2 and fix the

hyperparameters by hand, before sampling from the generative model

to create synthetic data. Figure 4.2 shows how each of the proposed

inference methods estimates the hidden subband signals and NMF

modulators. Uncovering the latents is a highly non-identifiable problem,

especially due to the ambiguous nature of the model in which amplitude

variation can occur due to variance in the subbands or the modulators.

However, EP finds a much better match to the ground truth than

EKF, and we see that iterating the IHGP method resolves part of

the ambiguity. Table 4.1 shows how closely the approximate inference

methods are able to fit the training data. Note that the likelihood noise

variance is σ2
y = 10−4, and hence we would hope the RMSE to be below

σy = 0.01, a feat which only full EP manages.

Missing Data Imputation The generative model handles missing

data synthesis naturally by treating the time steps where there are

missing data as test locations and making predictions as usual. Table 4.1

shows the results of the prediction task on a dataset of 10 musical

instrument recordings. Figure 4.3 shows an example segment from a

recording of a bamboo flute. As a baseline for comparison we compare

our methods to a well known matching pursuit algorithm (Adler et al.,

2012), designed for denoising tasks such as de-clipping, de-clicking and

interference removal. This baseline was outperformed by the iterated EP

scheme, and exhibited results roughly in line with the IHGP approach.

Denoising Assuming a signal is corrupted by Gaussian noise of known

variance, the GTF-NMF model can be adapted to a denoising task by
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Figure 4.2: A simulated data experiment examining the ability of various
inference methods to uncover the spectral components zd (one example
shown in the bottom plot) and NMF components gn (top two plots)
when the true parameters are known. Simulated ground truth is in
black. Due to the ambiguity inherent in the model, (multiple sources
of amplitude modulation), uncovering the latents is a difficult task.
Standard EP and the IHGP methods far outperform EKF. “EP 1”
relates to inference with one EP iteration (ADF). The iterated methods
(dashed lines, each using 20 iterations) resolve the ambiguity better than
the single sweep approach, except in the EKF case. Only the mean of
the predictive distributions is shown.
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Figure 4.3: An example of missing data imputation with the GTF-NMF
model for each inference method with 20 iterations. Grey signal is
the ground truth, a recording of a bamboo flute. The yellow shaded
region indicates where the data is missing. Blue shaded area is the 95%
confidence region for the EP method.
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Figure 4.4: Denoising with various inference methods across five levels of
corruption noise variance (0.01–0.5). y-axis is the signal-to-noise ratio of
the recovered waveform. Mean values across 10 speech signals are shown.
Shaded areas are standard error. SpecSub is the spectral subtraction
baseline.

setting the measurement noise variance σ2
y to the appropriate level.

Figure 4.4 shows the denoising results for the various inference methods

for five different noise levels. Here we also compare against a spectral

subtraction baseline algorithm (Ephraim and Malah, 1984) commonly

used for denoising tasks. Figure 4.5 is an example of denoising a speech

recording, where the clean signal is corrupted with σ2
y = 0.3. GP models

are expected to deal with Gaussian noise well, however the approximate

nature of inference in the GTF-NMF, as well as the potential for model
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Figure 4.5: Spectrograms of a clean, corrupted, and reconstructed signal
(from top to bottom) for audio denoising in the GTF-NMF model with
inference via EP, applied to a speech signal.

misspecification when the optimisation procedure gets stuck in local

minima, prevents it from outperforming the application-specific baseline.

Source Separation As a further demonstration, we follow the ap-

proach taken in Alvarado et al. (2019) by training the model on musical

instrument notes (sources), and then attempting to uncover these sources

when they are mixed via summation of their waveforms in a series of

two-note chords. The only inference method capable of processing these

series of notes is IHGP, due to the computation and memory require-

ments of stacking the sources in a state space model for 6 seconds of

data (sampled at 16 kHz, T = 96,000, M = 123). Therefore we cannot

compare performance on this task, but we show an example separation

result in Figure 4.6.

70



4.8. Conclusion

Input audio, y

Source one: piano note C

Source two: piano note E

Source three: piano note G
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Figure 4.6: Source separation example using infinite-horizon Gaussian
processes, showing three piano notes (sources) recovered from a mixture
signal (top), where two notes are played at a time in the original
recording.

4.8 Conclusion

We have constructed a novel scheme for inference in the Gaussian time-

frequency NMF model based on power expectation propagation and

leveraging infinite-horizon GPs, leading to an end-to-end probabilistic

approach for audio modelling that goes beyond the disjoint analysis

approach of Turner and Sahani (2014). By outlining how this model

is similar to a nonstationary spectral mixture GP, we have further

unified the theory connecting probabilistic machine learning and signal

processing.

We demonstrated that our inference scheme consistently outperforms

extended Kalman filtering. Recent work comparing the iterated EKF

and EP approaches in a more general setting showed that for many

models / datasets the EKF approach outperforms EP (Tronarp et al.,

2018; Garćıa-Fernández et al., 2019). The significant benefits observed

with EP in the GTF-NMF therefore suggest that those results are

extremely model-dependent, and further investigation into the specific

modelling scenarios that lend themselves to either approach is required.

Our results suggest that it is indeed necessary to go beyond classical
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signal processing techniques if we are to build more in-depth nonsta-

tionary methods for audio analysis, and that probabilistic modelling has

much potential in this domain. By considering various real world tasks,

we have shown the flexibility of such end-to-end generative models.

To extend this work, it is necessary to further reduce the inherent

computational burden. One approach could be via the use of banded

matrix operators which make GP models amenable to automatic differen-

tiation (Durrande et al., 2019), significantly reducing the computational

overhead involved in iteratively running the Kalman filter and RTS

smoother. Speeding up the numerical integration step would have a

significant effect on processing time, and sampling methods may be

more accurate than our sigma-point approach.

Another avenue for investigation is an online algorithm that can

handle data streaming and signals of longer duration. It has been shown

that the IHGP method is suitable for data streaming since its steady

state covariance reduces the risk of edge effects at the real-time frame

boundaries (Solin et al., 2018). For such an approach to be practical,

it may be necessary to improve the convergence properties of the EP

algorithm, which currently requires many iterations and large damping.

The development of a more efficient and robust parameter learning

scheme would also allow the GTF-NMF model to become more widely

used: it is currently dependent on pre-processing via NMF and stan-

dard probabilistic TF analysis, and the fully probabilistic approach of

maximising the marginal likelihood is very susceptible to getting stuck

in local minima due to noisy signal spectra.
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Chapter 5

Latent Force Models for

Sound

The model considered in chapter 4 assumes the amplitude envelopes

of the subbands of an audio signal, ad, come about as a linear sum

of isotropic GPs projected through a positivity-enforcing link function.

Whilst this link function provides some amount of anisotropic behaviour,

NMF remains a very simplistic model for the amplitudes. Additionally,

inferring the latent activations and the weights simultaneously is a highly

ill-posed task, and it is common to leverage assumptions regarding

smoothness, nonnegativity, sparsity etc. to aid in uncovering something

representative of the “true” sound production mechanism. In this chapter

we consider whether we can go beyond a scalar weighting of GPs, and

incorporate physical knowledge about how audio signals behave into the

prior.

One significant drawback of the NMF model considered so far is its

symmetry in time. That is, the covariance of the latent process is the

same forward in time as it is backwards in time. For audio signals, this

is an unrealistic assumption since the attack and decay of a sound event

can exhibit very different behaviour. Figure 5.1 shows the amplitude

envelopes of a recording of a metal impact sound, which have been

smoothed to clearly show the behaviour over time. This example, like

many natural sounds, has a fast attack in which the envelopes are highly

correlated and a slower decay in which the envelopes’ decay rates vary

and some envelopes modulate independently of the others.

In the next section we will motivate and implement a latent force

model (LFM, see section 2.6) that takes into account these features.
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Figure 5.1: Amplitude envelopes of a metal impact sound.

In order to study the efficacy of a physical amplitude model prior, we

isolate the envelopes by applying a fixed time-frequency analysis method

and treating ad as observations. Hence this chapter differs from the

preceding two in that the models considered here are applied in the

spectrogram domain rather than the waveform domain.

5.1 Learning Physical Parameters of Modal Synthesis

Physics-based approaches to sound synthesis vary from detailed nu-

merical simulation of the sound production mechanism represented by

differential equations (Trautmann and Rabenstein, 1999; Bensa et al.,

2003), to standard digital filtering techniques informed by those same

differential equations (Cook, 2002; Smith, 2010). These approaches

require significant knowledge regarding the complex interactions that

produce sound, and as such are limited to systems for which much of

the pertinent physics are known.

Modal synthesis is a more generalisable, physically-inspired approach

which typically represents the vibrational modes of a sounding object as a

set of decoupled second-order differential equations, also known as mass-

spring-damper systems (Adrien and Ducasse, 1989; Cook, 1997). The

forced mass-spring-damper corresponding to the dth mode has coefficients

relating to mass Md, springiness (or stiffness) Sd and damping Gd:

Md
d2xd(t)

dt2
+ Sd

dxd(t)

dt
+Gdxd(t) = f(t), (5.1)

where f(t) is the forcing function that excites the system. The exact

sound production mechanism is not modelled in full detail. Instead it

is assumed that sound is produced through the vibration of an object
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or column of air, and that the frequency and relative amplitude of

these vibrations can be predicted based on mass, stiffness and damping

parameters determined by the physical properties of the object.

The solution to these mass-spring-damper systems is a bank of modes,

xd(t) = ad(t)sin(2πωdt+ ψd), (5.2)

for d = 1, . . . , D, with time-varying amplitude ad(t), frequency ωd and

initial phase ψd, referred to as damped sinusoids, or damped oscillators.

In traditional modal synthesis f(t) is assumed to be an impulse, and we

obtain the solution ad(t) = αde
−βdt where αd and βd are the amplitude

and damping of the mode respectively. If we allow f(t) to be uncon-

strained, then no analytical solution for the amplitude exists. Here we

will constrain f(t) by placing a GP prior over its possible values.

Sinusoidal modelling Sinusoidal modelling (McAulay and Quatieri,

1986) is an analysis-synthesis technique that compartmentalises a sound

into its deterministic and stochastic components, and models the deter-

ministic part as a sum of sinusoids such as those in Eq. (5.2). Energy is

tracked through sequential frames of the Short Time Fourier Transform

to create “partials” — sinusoids with frequency and amplitude that

can vary over time. In the remainder of this section we use the Spear

software (Klingbeil, 2005) to obtain the partials from an audio recording.

Modelling the amplitude data Our approach is to view sinusoidal

amplitude data as the output of a series of digital filters representing the

amplitudes ad(t) of the physical modes. This motivates the introduction

of such filters (in ODE form) into the prior for a GP model looking to

infer knowledge from audio recordings. In order for synthesis in this

setting to be intuitively controllable, parameters must be physically

meaningful and the learnt latent function f(t) must also be interpretable

in a physical sense.

We assume that the physical modes in Eq. (5.2) have fixed frequencies

ωd, and will limit any experiments in this chapter to sounds whose

frequencies can reasonably be assumed not to vary significantly over

time. We will further assume in this section that there exists a single

forcing function driving the system, f(t). Given this assumption, the

problem becomes how to model ad(t).
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Figure 5.2: Comparison of amplitude model choice: γ = 1 represents the
standard model for the amplitude of a sinusoid. Selecting γ < 1 alters
the decay behaviour to more closely represent the real data obtained
from the decay section of the second harmonic of a recording of a clarinet.

The analytical solution to this problem when f(t) is an impulse is

xd(t) = αde
−βdt. This inverse exponential equation can be modelled

with a linear first-order ODE obtained by removing the second-order

term from the mass-spring-damper system, Eq. (5.1). By doing so we

obtain the model (letting Md = 1 and replacing xd(t) with ad(t) to make

it explicit that we are now modelling amplitudes),

dad(t)

dt
+ Udad(t) = Vdf(t), (5.3)

where Vd = Gd/Sd and Vd = 1/Sd are physically relevant parameters

related to damping Gd and stiffness Sd of the system.

In practice, when observing real amplitude data (for which f(t) will

never truly be an impulse), we found that partials tend to decrease

in a more linear fashion than can be described by equation Eq. (5.3).

Therefore we propose an alternative model containing a parameter γ

which alters the “linearity” of the decay of the signal,

dad(t)

dt
+ Uda

γ
d(t) = Vdf(t). (5.4)

We found that a suitable range of values for representing real audio data

was γ ∈ [1
2
, 1], where a reduction in γ increases the linearity of the decay.

γ < 1/2 represents an almost straight line, whilst γ > 1 would mean

the data may never reduce to zero. Figure 5.2 shows the comparison

between different choices of γ.

76



5.1. Learning Physical Parameters of Modal Synthesis

We aim to learn meaningful parameters representing damped modes

which reduce to zero in the absence of input. As such it is beneficial to

enforce a positivity constraint on input f(t) via a link function φ(·). This

has two major benefits. Firstly, the new excitation force φ(f(t)) becomes

interpretable as a physical entity; positive energy driving the system.

Secondly, it encourages the optimiser to learn damping coefficients Ud

that are more physically realistic (i.e. larger / more damped), since they

must enable the system to reduce to zero when φ(f(t)) = 0, whereas

in the unconstrained case this could be achieved via negative inputs

rather than damping. As in previous chapters, we use the softplus

φ(f(t)) = log(1 + ef(t)).

Introducing this nonlinearity gives us our final model for the amplitude

of the dth damped vibrational mode of a sounding object:

dad(t)

dt
+ Uda

γ
d(t) = Vdφ(f(t)). (5.5)

If we place a GP prior over f(t), then Eq. (5.5) becomes an SDE and is

of the form described in section 2.6, a nonlinear latent force model.

Inference in nonlinear latent force models Now that our model

is based on nonlinear functions of both the amplitudes ad(t) and the

latent forcing function f(t), inference is no longer straightforward and,

as in chapter 4, we must use approximate Gaussian filtering methods.

Constructing our SDE model in a general form by stacking the state

vectors for the output processes, ãd(t), and the latent GP, f̃(t), in a new

vector z̃(t) =
(
ã1(t), . . . , ãD(t), f̃(t)

)>
, we get

dz̃(t)

dt
= F(z̃(t)) + L(z̃(t))w(t), (5.6a)

yk = Hz̃(tk) + σyεk (5.6b)

for nonlinear functions F and L, chosen to represent our model in

Eq. (5.5). w(t) is a white noise process and εk is D-dimensional i.i.d.

Gaussian noise. It is important to note that our observations yk ∈ RD

are the observed amplitudes obtained after applying sinusoidal modelling

to the audio signal, not the signal itself.

The time derivatives of the Kalman filter mean and covariance, which

for the linear case are given by Eq. (2.17), must now be reformulated in
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terms of our new state space model. They can be written as (Hartikainen

et al., 2012),

dm(t)

dt
= E [F(z̃(t))] , (5.7a)

dP(t)

dt
= E

[
(z̃(t))−m(t)F(z̃(t))>

]
+ E

[
(F(z̃(t))z̃(t))−m(t)>

]
+ E

[
L(z̃(t))QcL(z̃(t))>

]
. (5.7b)

We follow Hartikainen et al. (2012), solving these differential equations

by first approximating the integrals required in the expectations with

sigma-point methods (as in section 4.5), and then applying a numerical

ODE solver in Matlab.

Learning the parameters in our LFM framework proceeds as usual by

maximising the marginal likelihood, but we now have a high-dimensional

optimisation problem, since we have parameters Ud and Vd to estimate

for all d = 1, . . . , D outputs in addition to the hyperparameters of the

GP kernel for the latent input (we use the Matérn-5/2 kernel). As such

it is common for optimisation to get stuck in local minima, and choice

of initial parameter settings can significantly affect the optimality of our

outcome.

Selecting the modes In this section, we aim to isolate the true

vibrational modes of an audio recording, and discard the signal content

relating to broadband noise. This is largely due to the fact that modelling

all of the sinusoids that relate to the noisy, broadband content would be

impractical. A separate noise-based approach could be used to model the

remaining sinusoids, but we don’t address that here (see section 5.3 for

an extension of the approach which captures the entire signal content).

We must therefore identify which partials in the sinusoidal model are

representative of the vibrational modes. If our analysis signal has strong

harmonic content (as in musical instruments, for example), then picking

the modes / harmonics is straightforward. For inharmonic sounds (such

as a hammer striking a metal plate), energy is distributed across the

sinusoidal model, and there may be a strong noise component. In this

case, selecting the modes is not as simple as selecting the largest D

partials. In Figure 5.3, we analyse the frequency spectrum of the signal,

designing a filter based on the shape of the spectrum. We invert the

filter to flatten the data, allowing us to pick the modes of vibration from
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Figure 5.3: A filter is designed by fitting a polynomial to the shape
of the frequency spectrum (top). The filter is inverted and applied to
the signal to flatten the spectrum (bottom). Peaks in the flattened
spectrum are then used to pick the vibrational modes of the signal.

the peaks of the filtered spectrum. Once we have selected our D modes,

we calculate the median frequency value for each partial, and then treat

that frequency as fixed.

Resynthesis with the state space model After tuning the model

parameters and inferring a posterior over the outputs and the latent

force, it is also useful to project the latent force through the physical

system, i.e. through a discretised state space version of Eq. (5.5), in

order to determine how much of the amplitude behaviour has been

encoded. This is not the same as studying the posterior mean of the

outputs, since the likelihood component is not taken into account (so the

values are not updated based on the observations). Performing synthesis

in this manner allows us to compare our method to other dimensionality

reduction techniques, and also to synthesise novel sounds by passing

new latent forces through the model.
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Figure 5.4: Latent force modelling of a clarinet note. Six modes are
picked based on their amplitude, and resynthesis is performed by propa-
gating the latent force (middle) through the state space model. The
output is shown in comparison to the real data (top). The frequency
data (bottom) shows the modes are, in order of magnitude, the 1st, 3rd,
5th, 4th, 7th and 6th harmonics. The mean and 95% confidence interval
(uncertainty) of the latent input f(t) is shown.

The discrete form of the model for a single output ad can be written(
ad(tk)

ȧd(tk)

)
=

(
1 ∆tk

0 0

)(
ad(tk−1)

ȧd(tk−1)

)
+

(
0

−Ud

)
aγd(tk−1)+

(
0

−Vd

)
φ(f(tk))

(5.8)

for time step size ∆tk.

Figure 5.4 shows the result of the LFM applied to a clarinet note. The

amplitude of six harmonics are modelled, and the learnt latent force is

propagated through the model to resynthesise the outputs. Whilst not

all the detail is captured, we can see that the outputs exhibit variable
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Figure 5.5: Latent force modelling of a metal impact sound. The real
data shows some variation in behaviour between modes (top left). An
increase in uncertainty in the latent posterior after 0.1s reflects this fact
(bottom right). The learnt latent force is fed through the state space
model, and the result shows that much of the variable behaviour was
captured (top right). PCA results are shown as a comparison, and
we can see that the variable damping rates have not been reproduced
(bottom left).

damping rates.

Because of this ability to capture variable behaviour across modes,

we expect our one-dimensional LFM to perform a more effective data

compression than other dimensionality reduction techniques that reduce

high-dimensional data down to a one-dimensional manifold. In Figure 5.5

we compare the resynthesised data with the LFM to the result when we

apply PCA to the amplitude data and then reproduce them using just

one principal component. The PCA approach cannot capture variable

behaviour between modes since every output is modelled as a scaled

version of the principal component. Table 5.1 shows the RMS error

comparison using this approach for 5 musical instrument notes.
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5.2. Real-Time Synthesis and Sound Morphing

RMS error
Audio recording LFM PCA
Clarinet 0.0325 0.0593
Oboe 0.0189 0.0156
Piano 0.0441 0.0520
Metal impact 0.0377 0.0609
Wooden impact 0.0139 0.0291

Table 5.1: Root-mean-square (RMS) error between modal amplitude
data and outputs of the latent force model (LFM) and principal compo-
nent analysis (PCA) with one principal component. The LFM outper-
forms PCA when disparate behaviour across dimensions is observed.

5.2 Real-Time Synthesis and Sound Morphing

After learning the parameters of the hybrid physical-statistical model

we can adapt the model beyond simple reconstruction of the original

amplitude envelopes. In the previous section ∆tk was fixed at the

analysis time step size, corresponding to frame-wise modelling. During

synthesis we can set the step size to be as large or small as required,

based on our desired sampling frequency, such that the model calculates

sample-rate data and runs in real time.

This modification allows us to handle audio-rate input, which may

be crucial for a synthesis model that requires expressive user control.

Synthesis of novel signals can be performed by sampling from the pos-

terior distribution over the latent excitation function and passing the

sample through the model. However, with the aim of user-controllable

synthesis in mind, and given that the excitation function is interpreted

as physical energy forcing the system, it is possible to replace the mean

of the latent distribution with a new function dependent on some user

input.

We implemented a system that controls the synthesis model with

user input data corresponding to the pressure applied to a MIDI CC

button or a force-sensing resistor, scaling the data appropriately such

that it has similar properties to the learnt latent input. Alternatively,

we provide the user with a modifiable plot of the excitation function,

which they can re-draw and modify to create new sounds1.

1The interactive model (which includes the ability to morph between sounds) can
be found at http://c4dm.eecs.qmul.ac.uk/audioengineering/latent-force-synthesis/
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5.3. A Generative Model for Natural Sounds

Sound morphing Our synthesis model has fixed stiffness and damp-

ing parameters corresponding to each mode. Adjusting these parameters

has an impact on perceptual characteristics relating to timbre such

as attack time, decay time and the modes’ amplitudes relative to one

another. Individual modification of these parameters is possible, but not

desirable if we wish to maintain coherence across dimensions. Instead,

we interpolate parameters between models to create new sound timbres

not present in the original recordings.

Prior to parameter interpolation we match the modes between models

by ranking them in order of frequency. We also normalise the magnitude

of the excitation functions, adjusting the stiffness parameters accordingly.

For sounds without definable harmonic structure, pairing the modes is

straightforward and simply based on their rank position. For harmonic

sounds we must be careful to match the dth harmonic in model A to

the dth harmonic in model B. If we fail to do so, interpolation of the

frequency value will compromise the harmonic structure of the sound.

Once the modes have been paired, we perform linear interpolation of

physical parameters Ud, Vd and the initial conditions, and logarithmic

interpolation of the frequency. Synthesis in this manner negates the

need for cumbersome time-domain modification (such as time-stretching)

usually associated with morphing (Caetano and Rodet, 2013).

Figure 5.6 shows an example of sound morphing between an oboe

and a clarinet. A manually-drawn excitation function is used for the

morphed signal. Observing the newly synthesised amplitude envelopes

(top row, middle column) we can see that the relative magnitudes of the

envelopes has been modified and that the damping rates correspond to

the mid-point between the highly-damped oboe and the lesser-damped

clarinet. Importantly, the new signal is not constrained in duration by

either of the recordings (note the different x-axis scales).

5.3 A Generative Model for Natural Sounds

In this section we look to build upon the methods laid out above, making

them applicable to a larger class of natural sounds. Instead of focusing on

controllable synthesis and physical interpretations, we look to extend the

model in a number of ways. First, we model the amplitude envelopes of

the outputs of a auditory filterbank, and synthesise the carrier envelopes

with a sinusoids-plus-noise approach. This enables us to analyse the
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Figure 5.6: Sound morphing between an oboe and a clarinet. The modes
of an oboe (left column) are matched with the modes of a clarinet
(right column) and colour-coded based on their pairings. Since the
modes represent harmonics, it is important to maintain the harmonic
structure, so the 2nd mode of the oboe does not have a match. Similarly,
the 6th mode of the clarinet is not matched. Stiffness and damping
parameters are interpolated, and a user-drawn excitation function of
arbitrary length is used to produce the morphed output (middle col-
umn).

behaviour of the entire signal, rather than just the most important

modes. We also allow the model to have multiple latent forces, greatly

increasing the level of detail that can be captured. Finally, we include

higher-order feedback and delay terms in the state space model, such

that behaviour at a given time step can be affected by energy in the

latent force and the outputs from multiple time steps in the past.

To obtain amplitude data in the desired form we pass an audio

signal through an equivalent rectangular bandwidth (ERB) filter bank.

We then use Gaussian process probabilistic amplitude demodulation
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5.3. A Generative Model for Natural Sounds

(GPPAD) (Turner and Sahani, 2011) to calculate the subband envelopes

and their corresponding carrier signals. GPPAD allows for control over

demodulation time-scales via GP lengthscale hyperparameters. We are

concerned with slowly varying behaviour correlated across the frequency

spectrum, in accordance with the observation that the human auditory

system summarises sound statistics over time (see section 2.2). Fast-

varying behaviour is relegated to the carrier signal and will be modelled

as independent filtered noise.

The number of channels in the filter bank and the demodulation

lengthscales must be set manually during this first analysis stage. We

set the number of filters to be 16 in order to prevent the state space

model from getting too large (since the Kalman filter methods scale

cubically in the state dimensionality). We choose the GP lengthscales

such that we capture amplitude behaviour occurring over durations of

10ms and slower.

Augmented latent force models for amplitude envelopes The

ODE model presented so far, Eq. (5.5) is, overly simplistic in that it

does not take into account variable decay behaviour due to internal

damping or feedback and other nonstationary effects which occur as a

sound is generated and propagates towards a listener.

To account for this complex behaviour, we extend our discrete model

such that predictions at the current time step tk can be influenced

explicitly by predictions from multiple time steps in the past. Our

final discrete model, which now allows for multiple forces fn(tk), can be

described as

ȧd(tk) = −Ûdaγdd (tk)+
P∑
p=1

Ẑd,pad(tk−p)+

Q∑
q=1

N∑
n=1

V̂d,n,qφ(fn(tk−q)). (5.9)

Parameters Ẑd,p are feedback coefficients which determine how the current

output is affected by output behaviour from p time steps in the past.

V̂d,n,q are discrete lag parameters which determine how sensitive the

current output is to input n from q time steps ago. Û is the discrete

version of the damping parameter.

The lag term is important since modes of vibration in a sounding

object tend to be activated at slightly different times due to deformations

in the object as it vibrates, and due to the interaction of multiple modes
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of vibration. It can also capture effects due to reverberation. The

feedback terms allow for long and varied decay behaviour that can’t be

described by simple exponential decay.

The challenge is to incorporate Eq. (5.9) into our inference procedure.

We do this by augmenting our state vector z̃(tk) and transition model

F(z̃(t)) with new rows corresponding to the delayed terms. After each

time step the current states {ad(tk)}Dd=1, {fn(tk)}Nn=1 are “passed down”

such that at the next time step they are in the locations corresponding to

feedback and lag terms. When performing the Kalman filter prediction

step, augmented states are included since they influence predictions for

the current state, however the predictions for these augmented entries

are simply exact copies from the previous time step.

Figure 5.7 shows the latent posterior for a metal impact sound with one

latent force, N = 1. The mean of the distribution (the minimum least

squares error estimate) is passed through the discrete model, Eq. (5.9),

to reconstruct the amplitude envelopes. Despite the single latent force,

we observe that some of the complex modulation behaviour has been

learnt. Additionally, the latent force is both smooth and sparse, and the

reconstructed envelopes have a slow decay despite this sparsity.

Generating novel instances of natural sounds A significant ben-

efit of generative probabilistic methods such as the LFM is that, as well

as providing us with uncertainty information about our predictions, they

provide the means to sample new latent functions from the learnt prior

distribution. That is, the model prior after the parameters have been

optimised. By passing these new functions through the model we can

generate novel amplitude envelopes. These envelopes modulate carrier

signals produced using a sinusoids-plus-noise approach based on analysis

of the original carriers. The subbands are then summed to create a

new synthetic audio signal distinct from the original but with similar

characteristics.

Sampling from the prior generates functions with appropriate smooth-

ness and magnitude, however the desired energy sparsity is not guar-

anteed. Latent functions are modelled independently, but in practice

they tend to co-occur and are activated in similar regions of the signal.

We use GPPAD again to demodulate our latent functions with a slowly

varying envelope, then fit a GP with a exponentiated quadratic covari-
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Figure 5.7: LFM applied to a metal impact sound, with mean and 95%
confidence of the latent posterior shown. The mean is passed through the
discrete model (Eq. (5.9)) to reconstruct the envelopes. Some complex
behaviour in the decay section of the amplitudes is maintained despite
using a single excitation force.

ance function to this envelope. We sample from this high-level process

and use it to modulate our newly generated latent functions; the result

of this product is latent behaviour with sparse energy, as demonstrated

in Figure 5.8.

Optimisation settings The full set of model parameters including

GP lengthscales `n, {Ûd, Ẑd,p, V̂d,n,q, γd, `n}, becomes large as P , Q and

N increase. To alleviate issues that occur when our parameter space
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Figure 5.8: LFM generative model with 3 latent forces applied to an
applause sound (a). The high-level modulator (black line in (b)) is
calculated by demodulating the latent forces. New latent functions are
sampled from the prior (c), and then multiplied by a newly sampled
modulator to ensure they co-occur and have the correct sparsity. The
resulting functions (d) are propagated through the state space model to
synthesise the output amplitudes (e).
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becomes large we sparsify the feedback and sensitivity parameters. For

example, if P = 10, we may manually fix Ẑd,p to zero for p ∈ [3, 4, 6, 7, 9]

such that only half the parameters are included in the optimisation

procedure.

Reliability of the optimisation procedure suffers as the number of

parameters increases, so in practice all D frequency channels are not

optimised together. We select the 6 envelopes contributing the most

energy and train the model on the observations from only these channels.

The remaining channels are then appended and optimised whilst keeping

the already-trained parameters fixed. This improves reliability but

prioritises envelopes of high energy. We also skip prediction steps for

periods of the signal that are of very low amplitude, which speeds up

the filtering step. Despite these adjustments, optimisation still takes up

to 36 hours for a 2 second sound sample due to the need to run the full

Kalman filter process multiple times in each iteration to estimate the

parameter gradients.

5.4 Evaluation of Latent Force Models for Natural Sound

To evaluate our method we collated a set of 20 audio recordings, selected

as being representative of everyday natural sounds2. Music and speech

sounds were not included, nor were sounds with significant frequency

modulation, since our model doesn’t capture this behaviour.

Objective evaluation: reconstruction error of original sound

We analyse our ability to reconstruct the original data by projecting

the latent representation back to the output space. For the LFM this

means passing the mean of the latent posterior through the state space

model. Figure 5.9 shows reconstruction RMS error and cosine distance

of the LFM compared to similar generative models based on temporal

NMF (tNMF, see section 2.2) and NMF for the 20 recordings. The

smoothness constraint enforced by placing a GP prior over the latent

functions negatively impacts the reconstruction. This is demonstrated

by the fact that tNMF performs poorly from an RMS error perspective.

Despite this, the LFM has much descriptive power, and is sometimes

capable of achieving a lower RMS error than the unconstrained NMF.

2From freesound.org and from the Natural Sound Stimulus set: mcdermottlab.mit.
edu/svnh/Natural-Sound/Stimuli.html
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Figure 5.9: Reconstruction error of LFM and tNMF plotted relative to
NMF. Crosses represent the median, error bars range from first to third
quartile.

Interestingly however, tNMF consistently outperforms the other two

models based on cosine distance.

Subjective evaluation: listening test for novel sounds Objec-

tive results suggest that smoothness constraints harm reconstruction of

the original signal. However, our aim is to learn realistic latent represen-

tations that will be the foundation of a generative model. To test their

suitability, we designed an experiment to compare generative models

based on LFM, NMF and tNMF. The approach outlined in section 5.3

was used for all model types. Since NMF is non-probabilistic, it does

not provide an immediate way in which to sample new data, therefore

GPs were fit to the latent functions after analysis.

Our experiment followed a multi-stimulus subjective quality rating

paradigm3: 24 participants were shown 20 pages (order randomised),

one per sound example, and asked to listen to the reference recording

and then rate 7 generated sounds (2 from each model plus an anchor,

presented in random order) based on their credibility as a new sound

of the same type as the reference. Ratings were on a scale of 0 to 1,

with a score of 1 representing a very realistic sound. Figure 5.10 shows

the mean realism ratings. Whilst variation was large between sound

examples, LFM was generally rated as more realistic than the other

methods.

We applied a generalised linear mixed effects model (GLMM), with

beta regression, in which sound example and participant were treated

3The test was run online and implemented with the Web Audio Evaluation Tool:
github.com/BrechtDeMan/WebAudioEvaluationTool
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Figure 5.10: Mean realism ratings obtained from the listening test.

LFM vs. NMF LFM vs. tNMF NMF vs. tNMF

All sounds
Estimate 0.3839 0.4987 0.1148

p-value <1e-04 <1e-04 0.3750

1 latent fn.
Estimate 0.8248 0.7976 -0.0272

p-value <1e-05 <1e-05 0.9980

2 latent fns.
Estimate 0.3140 0.5134 0.1994

p-value 0.0448 <0.001 0.3218

3 latent fns.
Estimate 0.2052 0.3243 0.1191

p-value 0.2867 0.0285 0.7154

Table 5.2: GLMM with three-way comparison applied to listening test
results. LFM received higher mean ratings, but confidence decreases
with number of latent forces, indicated by increasing p-values. Estimate
can be interpreted as the ratio increase in realism rating when choosing
model A over model B.

as random effects. Table 5.2 shows that the mean realism rating was

highest for LFM regardless of the number of latent functions. The

difference was significant at a 5% level except for LFM vs. NMF with 3

latent functions. This suggests that for sounds requiring many latent

functions to capture their behaviour, such as textural sounds, LFM

may not offer a significant gain over purely statistical approaches. For

example, the wind recording, a textural sound whose envelopes do not

exhibit clear exponential decay, was captured best with tNMF.
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5.5 Conclusion

In the first half of the chapter, section 5.1 and section 5.2, motivated by

physical observations about how sound behaves, and drawing explicit

links with existing physically-inspired sound synthesis methods, i.e.

modal synthesis, we incorporated exponential decay into a model for the

vibrational models of an audio signal. In the case of sound events that

we can safely assume have a single excitation force, such as an impact

sound, we see some clear benefits of the method as a dimensionality

reduction technique as well as a tool for synthesis and sound morphing.

For many example recordings we tested, the amount of information

captured in the model with a single input exceeded that captured by

PCA or NMF.

In the second half of the chapter, section 5.3 and section 5.4, we

extended these ideas to come up with a comprehensive generative model

for natural audio signals. Again we see from inspecting the synthesised

outputs that interesting behaviour is modelled; variable decay rates and

complex modulation patterns.

How then, do we reconcile this knowledge with the fact that for more

complex sound events that require multiple forces, the LFM does not

consistently outperform NMF from a reconstruction RMSE perspective?

The smoothness constraints over the latent forces certainly contribute

to this result. However, our approximate inference methods also come

at a cost in terms of speed and reliability. Numerically solving ODEs at

every time step, whilst also using sigma-point methods to approximate

the required integrals is not only slow, but also leads to numerical issues

particularly when the signal falls below the noise floor and correlation

structure is lost.

These issues mean that subjective evaluation was required to demon-

strate the benefits of the proposed statistical-physical model. Our

experiment showed that listeners consistently rated synthesis with the

LFM as more realistic than similar generative models that don’t exhibit

any temporal asymmetry in their envelope patterns. This suggests that

exponential decay is an important perceptual characteristic of natural

sound.

By demonstrating the benefits of physical assumptions in this manner,

we show that it is important to go beyond simplistic linear models for

spectrograms, but that more research is needed in developing efficient

92



5.5. Conclusion

and reliable inference methods in such a setting. Once achieved, the

LFM could be combined with probabilistic time-frequency analysis in a

manner similar to chapter 4, leading to a physically inspired generative

model acting directly on the waveform.
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Chapter 6

Deep Gaussian Processes as a

Nonlinear Model for Audio

Spectrograms

In this chapter we study the potential of nonlinear models for audio

spectrograms. Although the LFM in the previous chapter contained a

nonlinear mapping in order to enforce the latents to be positive, both

the LFM and NMF assume that the amplitude envelopes are produced

by a linear mixing of positive latent functions.

In general, the sound production mechanism is likely to be nonlinear

and nonstationary due to the complex, sometimes chaotic, interaction

between objects, materials or surfaces. This motivates the replacement

of the linear mapping from latents to outputs with a nonlinear function

characterised by another Gaussian process. This results in a two-layer

instantiation of a deep GP (Damianou and Lawrence, 2013), the name

used to describe the composition of multiple layers of GP functions.

We present a deep GP model for nonnegative temporal data, and

we also propose some modifications and constraints to the standard

approach based on empirical observations and our knowledge about how

natural sound behaves. Most notably we incorporate monotonicity infor-

mation into the multi-layer model. The validity of these modifications is

assessed through a missing data synthesis task applied to spectrograms

of both speech and sound texture recordings.
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6.1 Temporal Deep Gaussian Processes for Nonnegative

Data

Taking the model in Eq. (2.44) with just two layers, L = 2, and treating

time, t, as the input provides us with a nonlinear model for audio

amplitude data. Since the function that maps the latents to the outputs

is learnt from nonnegative observations, we may expect the GP to always

output positive predictions. In practice however, we found that when

sampling from the latent processes and passing them through the second

layer, negative values were often generated.

Another difficulty with expecting the GP to learn a positive mapping

is that it makes the choice of mean function non-trivial. A linear mean

function can encourage negative values, whilst a zero mean function is a

poor choice when the outputs are large, and doesn’t strongly discourage

values below zero.

These reasons motivate the use of a likelihood model that explicitly

describes the nonnegativity of the data. As in previous chapters, we

impose this property via the softplus mapping, φ(·), and we obtain our

proposed nonlinear model for audio spectrograms:

f(t) ∼ GP (µf (t), Cf (t, t
′)) , (6.1a)

g(t) ∼ GP (µg(f(t)), Cg(f(t), f(t′))) , (6.1b)

a1:D ∼
T∏
k=1

N(φ(g(tk)), σ
2
y), (6.1c)

for observed amplitude envelopes ad, d = 1, . . . , D. We have omitted

any noise between the layers since this can be folded into the kernel Cf .

In this model f : R→ RN and g : RN → RD are multi-output GPs.

As such, all N latent dimensions from the first layer share a single set

of hyperparameters (e.g. lengthscale and variance). This means that all

the detailed time-varying behaviour in the data must be described by

the nonlinear mapping g.

This contrasts with the LFM and tNMF models discussed previously,

whose latent dimensions were modelled with N separate one-dimensional

GPs, each with its own lengthscale. Therefore, in line with our motiva-

tion for the deep GP model as a nonlinear extension of these methods, in

which the mapping to the outputs is another GP, we also implement an

alternative version where the input to the second layer is a concatenation
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of the outputs of multiple GPs, fn : R→ R, giving

fn(t) ∼ GP (µfn(t), Cfn(t, t′)) , (6.2a)

f(t) = (f1(t), . . . , fN(t))> , (6.2b)

g(t) ∼ GP (µg(f(t)), Cg(f(t), f(t′))) , (6.2c)

a1:D ∼
T∏
k=1

N
(
φ(g(tk)), σ

2
y

)
. (6.2d)

This model requires optimisation of a larger number of hyperparameters

compared to Eq. (6.1), but enables us to capture multiple lengthscales

in the latent functions, which can lead to a more expressive model1.

From here on, we will call this model DGP-multi, reflecting the fact

that it has multiple independent latent GPs. It is possible that similar

expressiveness could be obtained by increasing the depth of the model

(L > 2), but for ease of comparison we restrict our analysis to the

two-layer case.

6.2 Approximate Inference in the Deep GP Model

The posterior distribution of interest, p(f , g | a1:D), is intractable, as is the

case with all deep GP models since they involve Gaussian distributions

being propagated through nonlinearities. Hence we must resort to

approximate inference.

We extend the doubly stochastic variational inference framework based

on inducing points for both proposed models (Salimbeni and Deisenroth,

2017), which assumes a factorisation between layers and leads to the

following joint distribution for the standard model,

p(a1:D, f, g) = p(f)p(g)p(uf )p(ug)
T∏
k=1

p(a1:D,t |φ(g(tk))), (6.3)

where uf and ug are the inducing points for f and g respectively. For

1Eq. (6.2) can now be seen as an extension of a latent variable model, say NMF.
The importance of the nonnegativity constraint on the latents in NMF motivated
us to experiment with imposing nonnegativity on the outputs of fn. However, we
found little benefit from doing so, and the inclusion of the sotfplus mapping in the
likelihood means that this is not required.
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the model with multiple independent latent GPs this is

p(a1:D, f , g) = p(f1) . . . p(fN)p(g)p(uf1) . . . p(ufN )p(ug)

×
T∏
k=1

p(a1:D,t |φ(g(tk))).
(6.4)

As is generally the case in the literature, a Gaussian approximation

is used for each set of inducing points, q(ui) = N(mi,Si), and mi, Si

are treated as parameters of the model to be optimised. Then the

approximate posterior has a simple factorised form given by

q(f , g | a1:D) = p(f1) . . . p(fN)p(g)q(uf1) . . . q(ufN )q(ug). (6.5)

Even given the above approximations, it is not possible to calculate

the marginal densities or the marginal likelihood analytically. Instead,

a nested Monte Carlo method is used for both quantities (hence the

term doubly stochastic). We omit the full details here, since we use the

approach described by Salimbeni and Deisenroth (2017), but we refer

the reader to Chapter 4 of Bui (2018) for a detailed discussion of the

method and a derivation of the variational lower bound on the marginal

likelihood.

The difference in our case is twofold. Firstly, for DGP-multi we must

construct the variational distributions for all the dimensions of f and

then draw samples from these processes individually, after which we

concatenate the results before propagating to the next layer.

Secondly, we must account for the softplus mapping, φ(g), which

makes the likelihood non-Gaussian in the latent process g. To do so,

we implement a Gaussian likelihood model which utilises a softplus link

function to propagate samples in the desired fashion. In this case, the

expectations required to calculate the marginal likelihood, which are

(see Bui (2018))

T∑
k=1

Eq(f ,g |a1:D,k) [log p(a1:D,k |φ(g(tk)))] , (6.6)

can no longer be derived in closed form, so a Gauss-Hermite quadrature

routine is employed (recall that q(f , g | a1:D,k) is Gaussian).
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Nonlinear? Uncertainty? Interpolation? example RMSE

NMF 8 8 8 0.0174
tNMF 8 3 3 0.0351
LFM 8 3 3 0.0234

GP-LVM 3 3 8 0.0016
DGP 3 3 3 0.0007

DGP-multi 3 3 3 0.0020

Table 6.1: A comparison of the proposed spectrogram models. Example
RMSE is the reconstruction error when the latents are passed through
the model for the glass breaking sound used in the case study. The deep
GP models are expressive enough to fit the data well, whilst also being
able to make predictions about unseen data and provide uncertainty
estimates.

6.3 A Case Study of Linear and Nonlinear Spectrogram

Models

In this section we elucidate the benefits of a nonlinear spectrogram

model via visualisations and a case study comparing it to the linear

models previously discussed. Throughout we will consider an example

sound recording of glass breaking – a signal which exhibits nonstationary

behaviour and multiple distinct events.

For ease of visualisation and comparison we use 16 frequency channels

(D=16) and smooth the envelopes with GPPAD as in chapter 5. The

methods we compare are NMF, tNMF, LFM, GP-LVM (Lawrence,

2005), DGP and DGP-multi. The GP-LVM is a nonlinear extension of

probabilistic PCA that places a GP prior over the mapping from latent

variables to observations.

Table 6.1 compares the methods’ respective attributes in terms of

whether they are linear / nonlinear, capable of quantifying uncertainty,

and whether they allow for interpolation in the latent space to make

predictions about unseen data points. We additionally demonstrate

their expressivity as a dimensionality reduction technique, i.e. their

ability to reconstruct the 16-dimensional glass-breaking signal from a

2-dimensional latent representation.

Figure 6.1 visualises the latent variables / functions for each of the

methods. The first three, NMF, tNMF and LFM, all have linear map-

pings from the latent space to the outputs, and constrain the latents

to be nonnegative. The last three, GP-LVM, DGP and DGP-multi, all

have nonlinear mappings (via GPs) and do not constrain the latents
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Figure 6.1: Comparison of latent variable models applied to the ampli-
tude envelopes of a glass breaking sound (top). Latent means shown.
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to be nonnegative. We can clearly see the effect of the GP prior over

the latents of tNMF and LFM, since they exhibit much smoother be-

haviour than NMF. This smoothness is prohibitive in getting a close fit

to the data, as demonstrated by their respective RMSE values shown in

Table 6.1.

These observations suggest that a smoothness prior over latents in

combination with a linear mapping does not result in model which is

expressive enough to capture the behaviour of an audio signal. The

GP-LVM is capable of fitting the data very well, since there are no

smoothness constraints on the latents, however this leads them to exhibit

discontinuities over time. Additionally, there is now no clear way to

sample from the latent distribution in order to interpolate or generate

data, since the prior over the latent variables are independent one-

dimensional Gaussians.

The DGP models address these issues by allowing for temporal smooth-

ness constraints and a nonlinear mapping, which means they can fit the

data well, and also allow for interpolation or extrapolation. We can also

see that the DGP-multi model now allows for the two latent dimensions

to have different lengthscales and variances, however we notice that this

doesn’t always lead to an improved RMSE.

Figure 6.2 shows an example of the nonlinear GP mappings from

the 2-dimensional latent space to a 16-dimensional output space for

the standard DGP model, evaluated on a grid. These contour plots

demonstrate clearly how expressive nonlinear behaviour is generated. It

is possible to consider each of the surfaces as representing a vibrational

mode of the sounding object. When a common force acts on these

surfaces (the red line representing the 2-dimensional latent function),

the vibrational modes are activated accordingly.

In observing Figure 6.2 we can see that the mapping is highly nonlin-

ear with significant variation in regions where we have not previously

observed data. We hypothesise that these drastic jumps can lead to

unpredictable and unreliable interpolation in this space, which motivates

a model which imposes additional constraints on the mapping in the

second GP layer.
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Figure 6.2: Deep GP contours - the predictive mean of 15 outputs
plotted on a grid. The red line is the sample path, shared among
outputs, which activates the modes of vibration of the sounding object.
The 16 envelopes plotted through time can be seen in Figure 6.1.
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6.4 Monotonic Deep Gaussian Processes

As a way of constraining the multi-layer GP in order to prevent undesir-

able behaviour, such as jumps in amplitude not observed in the data,

we propose a deep GP model which incorporates monotonicity informa-

tion. An additional motivation for such an approach is the pathological

behaviour typically exhibited in deep models due to the non-injective

mappings generated by unconstrained nonlinearities, as discussed in

Salimbeni and Deisenroth (2017) and Duvenaud et al. (2014).

It is also insightful to consider the modelling assumptions implied by

standard linear models such as NMF. The nonnegativity constraint on

the spectral mapping (in addition to the temporal mapping) leads to a

positively linear, and hence positively monotonic, function mapping from

the latents to the outputs. Noticing this fact allows us to consider that

positively monotonic nonlinear mappings could achieve a good middle

ground between the interpretability / reliability of linear models and

the expressivity of their nonlinear counterparts.

We follow Riihimäki and Vehtari (2010) by using virtual derivative

observations to impose monotonicity on g, extending their method to

the multi-layer case. The central idea is that Gaussian processes are

closed under linear operations and partial differentiation is a linear

operator. This implies that the joint distribution of a Gaussian process

and its partial derivatives is Gaussian distributed if the covariance

function of the GP is sufficiently smooth. Now let g
(j)
k denote the jth

partial derivative at some position f(tk) and let mk ∈ {−1, 1} denote

the desired monotonicity direction, then we can induce monotonicity at

input position f(tk) using the following likelihood

p(mk | g(j)
k ) = Φ

(
1

ν
mkg

(j)
k

)
, (6.7)

where Φ is the probit likelihood function and ν > 0 is a parameter

controlling the strictness of the monotonicity constraint. For mk = 1,

this likelihood ensures that the posterior distribution of g only contains

significant probability mass on functions where g
(j)
k ≥ 0 (See Riihimäki

and Vehtari (2010) for a more detailed explanation, and for the derivative

calculations for the exponentiated quadratic kernel). The likelihood for

the virtual derivative observation, p(mk | g(j)
k ), approaches an indicator

function for g
(j)
k > 0 as ν → 0.
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The joint model becomes, letting m = (m1, . . . ,mT )>,

a1:D | f, g ∼
T∏
k=1

N
(
g(f(tk)), σ

2
y

)
, (6.8a)

m | g(j)
k ∼

T∏
k=1

Φ

(
1

ν
mkg

(j)
k

)
, (6.8b)

g, g(1), . . . , g(J) ∼ GP(0, κg′), (6.8c)

f ∼ GP(0, κf ), (6.8d)

where κg′ is the joint covariance function for the function g and its

partial derivatives g(1), . . . , g(J) and {(f(tk),mk)}Tk=1 denotes the set of

virtual derivative locations and observations.

The derivative observations now contribute to the marginal likeli-

hood calculations, and therefore increasing the number of derivative

observations leads to not only a more dense set of locations at which to

encourage monotonicity, but also to a larger contribution in the marginal

likelihood. Hence choosing the number of observation points amounts to

another control over the monotonicity strictness. Note that no changes

to the monotonicity information model, Eq. (6.8b), are required to

additionally enforce monotonicity in the DGP-Multi model.

Implementation details Further details that required consideration

include the need to minibatch the derivative points during optimisation

(i.e. only consider a random subset of points during each iteration),

especially when using multiple latent dimensions where the size of the

latent space (and hence the number of points needed to cover the space)

grows exponentially with the dimensionality.

We found in practice that the derivative locations needed to be

spaced on a grid in the latent space, rather than on a temporal grid

and projected through the first GP layer, to prevent the GP learning

to project the points onto an already-monotonic region of the second

layer. We additionally included the derivative contribution from the

mean function, to extend the model capacity beyond the zero-mean

case. During implementation, we evaluated the monotonicity predictions

using finite difference methods.
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6.5 Missing Data Synthesis with Deep Gaussian Processes

In order to evaluate our proposed methods, in terms of their ability to

model the detailed behaviour that occurs in the magnitude spectrogram

of an audio signal, we ran a missing data synthesis experiment on

two datasets of natural sound: 20 recordings of human speech, and 20

recordings of sound textures.2 Each recording is approximately 2 seconds

in duration. We are interested in their ability to interpolate and generate

significant portions of audio, but we must keep the gaps small enough

such that ground truth comparisons are at least partially meaningful.

Hence we used missing data gaps of 50ms, which amounts to a few

frames of data in a typical time-frequency representation, depending on

the frame size.

We compare all four versions of the deep GP model (DGP, DGP-

multi and their monotonic counterparts mDGP, mDGP-multi) against

one another and against tNMF, which also has generative capabilities.

Table 6.2 shows the RMSE and SNR of these methods with respect to

the ground truth spectrogram. We observe that for the speech data

the DGP model estimates the missing data most effectively, but for the

sound textures dataset tNMF outperforms the nonlinear models.

However, since the missing data gap is potentially much larger than

the lengthscales of the signal, a simple RMSE or SNR metric with

respect to the ground truth is insufficient to compare performance.

Therefore we also use the perceptual statistics discussed in section 2.2 as

a performance metric. Table 6.3 shows the mean across all 10 perceptual

statistics proposed by McDermott et al. (2009) that relate to amplitude

envelopes. These statistics show that, perceptually, the data generated

in the gap by the nonlinear models far outperform those from tNMF.

Whilst the standard deep GP model generally outperforms the others,

in some situations it was beneficial to have multiple independent latent

functions. Our hypothesis that constraining the second layer mapping

would be of benefit turned out to be false in this experimental setting.

The expressivity trade-off is too large, and hence it is outperformed in

terms of ground truth comparison (Table 6.2) and perceptual measures

210 speech and 10 texture recordings were obtained from https://freesound.org/.
10 speech recordings were chosen at random from the TIMIT dataset, and 10 texture
recordings were chosen from the Sound Texture repository: http://mcdermottlab.mit.
edu/downloads.html.
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6.5. Missing Data Synthesis with Deep Gaussian Processes

DGP DGP-multi mDGP mDGP-multi tNMF

Textures
RMSE 0.104 0.109 0.137 0.137 0.068
SNR 4.287 4.130 3.114 2.446 8.394

Speech
RMSE 0.087 0.091 0.091 0.131 0.108
SNR 5.887 5.717 5.602 2.791 4.621

Table 6.2: Mean performance of spectrogram missing data synthesis
for each model type. mDGP is the DGP model with monotonicity
constraints.

DGP DGP-multi mDGP mDGP-multi tNMF

Textures SNR 16.463 15.320 11.113 9.761 6.260

Speech SNR 14.860 13.896 12.251 10.683 5.192

Table 6.3: Mean value of all texture statistic SNRs when performing
missing data synthesis. mDGP is the DGP model with monotonicity
constraints.

(Table 6.3). In addition to this, the monotonic model tended to learn

shorter lengthscales, since more detail had to be captured in the latent

functions rather than the constrained spectral mapping, which resulted in

higher uncertainty in the missing segments and hence poorer performance

relative to the ground truth.

Figure 6.3 shows a comparison of the individual texture statistics for

the two datasets. We see a consistent and significant benefit to the deep

GP models in terms of synthesising realistic spectrogram gaps. These

plots suggest that the monotonicity constraints act as a compromise

between the linear tNMF model and the nonlinear deep GP models,

trading-off linearity with expressivity, which could motivate their use in

other situations where unconstrained nonlinearity is not desirable.

Figure 6.4 demonstrates the application of the DGP model to missing

data synthesis for a sound texture example, a recording of rain falling

on a hard surface, and to female speech. The speech data is clearly

nonstationary but exhibits somewhat smooth variation over time (there

is low uncertainty in the missing regions), and the model is capable of

interpolating between the observed data. However the rain sound, whilst

stationary, is fast varying (higher uncertainty in the missing regions),

hence samples from the model can be interpreted as generating plausible

data in the gaps.
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Figure 6.3: Signal to noise ratio of the perceptual statistics of the
reconstructed signal vs. the true signal in a missing data synthesis task.
The envelope statistics are, from left to right, the histogram, mean,
variance, skew, kurtosis, autocorrelation, the modulation power, the
across-band correlation, within-band modulator correlation, and the
across-band modulator correlation.

6.6 Conclusion

In this chapter we investigated whether the data generating mechanism

for audio spectrograms can be learnt using multi-layer Gaussian processes.

Implementing such an approach involved modifications to the deep GP

model to enforce positivity of the outputs, and can be seen as a nonlinear

extension of classical methods such as temporal NMF.

Our examples and empirical analysis suggest that such an approach is

effective in a missing data synthesis task, capable of generating plausible

amplitude data as evaluated by the perceptual metrics discussed in

section 2.2. Drawing analogies with classical signal processing methods,

we proposed further modifications based on monotonicity and multiple
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Figure 6.4: Missing data synthesis applied to a sound texture recording
(rain, top half) and female speech (bottom half). The deep GP is
trained on the spectrogram with 50ms segments removed (dark blue
vertical bars), and is able to generate / interpolate authentic data in
the gaps. The speech signal is smooth but nonstationary, whereas the
texture signal is fast-varying but stationary, but the model is able to
make good predictions in both cases.
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lengthscale components, but these additions did not result in significant

or consistent gains in performance.

The success of the unconstrained version of the deep GP suggests

that a very powerful way to generate data and make predictions over

long time periods is to model smooth latent functions being mapped

through fast-varying (non-monotonic) spectral mappings.

However, drawing general conclusions from our experiments is chal-

lenging due to the significant number of moving parts involved. We

must select the number of frequency components, the number of layers,

the number of latent components, inducing points and derivative loca-

tions. Furthermore, the most effective way to perform inference in these

settings is still an open research question (state of the art work on deep

GPs has progressed since the completion of this work, see Havasi et al.

(2018) and Salimbeni et al. (2019)), and the variational inducing point

method utilised here is not a natural fit for time series.

These issues suggest that further research should focus first on de-

veloping scalable inference methods well suited to temporal data with

complex and nonstationary structure. However, the promising results

we present do motivate a return to these ideas when such methods are

available, since it is now clear that linear models for audio data are

insufficient, and improved performance in tasks such as missing data

synthesis is indeed possible.

Finally, our evaluation using perceptual statistics allows us to consider

the extent to which our Gaussian process models encode the important

characteristics of sound. Our results suggest that these models do not

fully capture the texture statistics proposed by McDermott et al. (2009),

particularly the across-band and within-band modulation correlation

metrics. This motivates two possible directions for future work: the

explicit incorporation of such statistics into a probabilistic model for

sound, or an increase in depth and scale of the models used. Whilst

the latter is certainly more in line with current trends in the machine

learning community, the former may lead to scalable methods with

stronger ties to traditional signal processing.
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Chapter 7

Conclusion

7.1 Summary and Discussion

This thesis can be viewed in two parts. In the first half, chapter 3

and chapter 4, we focus on inference in time series models that apply

to sound, and we offer a new perspective on Gaussian process models

for time-frequency analysis. We show how state of the art inference

techniques can be formulated in this problem domain, in a way that is

suited to long temporal data with complex structure. In doing so, we

advance the state of the art of GP regression on audio signals, whilst

also providing new insights into the links between probabilistic machine

learning and signal processing.

In the second half of the thesis, chapter 5 and chapter 6, we turn

our attention to modelling of audio spectrograms. We propose two

novel models, one based on physical assumptions about sound, the other

based on learning flexible nonlinear spectral mappings, both capable of

adapting to data. In each case we demonstrated how the approach can

lead to significant improvements on generative tasks. However, we also

came across issues in the scalability and reliability of inference in both

cases, and identified areas for improvement and future work that could

pave the way for real advances in the practicality of such methods.

Viewed as a whole, we have demonstrated the effectiveness of GP

models for audio, and implemented new and improved inference schemes

for these models, before going on to demonstrate how they can be applied

to signal processing tasks. Our results, and new insights on existing

models, motivate further research around probabilistic treatment of

audio, and bring us closer to the significant goal of being able to place a
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probability distribution over an audio signal in an effective and tractable

manner.

Our main conclusions can be summarised as follows:

• Spectral mixture Gaussian processes can be seen as a probabilistic

extension of filter banks, but allow for natural modification of

the assumptions embedded in the filter coefficients, allow us to

characterise uncertainty and to make predictions about unseen

data points.

• Joint NMF and time-frequency analysis can be formulated as

a nonstationary spectral mixture GP, and inference can (and

arguably must) be performed via state of the art methods in the

Kalman filter setting, which is a good fit to time series data.

• We show that expectation propagation can be performed in such

a setting.

• We show that GP regression can be constructed in a way that is

suited to audio signals, despite the poor temporal scaling usually

associated with GP methods. However further research in this

area is required.

• Physical assumptions about audio signals can be incorporated into

probabilistic models for audio spectrograms, and this allows for

effective dimensionality reduction and generative capabilities, as

demonstrated by listening tests with human participants.

• These listening tests suggest that exponential decay of amplitude

envelopes is an important component of auditory perception.

• Deep Gaussian processes can be seen as a nonlinear extension to

(temporal) matrix factorisation.

• Therefore it follows that deep GPs can be a useful model for audio

spectrograms, and improve performance on missing data synthesis

for a range of signal types, based on perceptual characteristics.

• Monotonicity information can be incorporated into deep GP mod-

els, and provide a means by which to trade off interpretability

with expressivity, but do not improve performance on missing data

synthesis.
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7.2 Future Work

Throughout this thesis we have identified some keys areas for improve-

ment required to aid the application of Gaussian processes to signal

processing tasks.

Whilst recent advances in scalable inference are encouraging, it is

possible that batch processing of the entire data will always remain

problematic in an application domain where we typically acquire new

data at a rate of many thousands of samples per second, for a possibly

unbounded duration. For this reason, a key area for future work should

be in improving and formalising online learning methods, which adapt

over time and don’t require permanent storage of large covariance

matrices that grow with the length of the signal.

In addition, the inducing points method used in chapter 6 is not a good

conceptual fit for time series, where the data grows in an unbounded

fashion. However, as we demonstrated, deep models can provide great

benefits, and so an exciting area for investigation is in adapting the

state space SDE approach to deep models. The application of these

models directly in the waveform domain would likely be beneficial, albeit

computationally challenging.

As we discussed in chapter 4, nonstationary behaviour is an important

feature of real-world signals that should be captured during analysis. One

way to advance nonstationary models would be to extend and generalise

our proposed methods such that all the kernel hyperparameters can

be time-varying. Fully probabilistic inference in this setting is still an

unsolved problem, and parameter learning in existing approaches is

somewhat unstable. These issues must be addressed in order for such

methods to become practical and be applicable to real-world problems.

Another way to improve modelling flexibility is to learn the kernel,

or its spectral density, with another GP. This can be thought of as an

alternative to the deep models used in this thesis in which the kernel is

learnt in a nonparametric fashion rather than warping the inputs to a

parametric kernel. It remains to be seen which of these approaches will

prove most fruitful.
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