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Abstract

We study three aspects of tropical combinatorics and monomial modules. In the first,

we consider the tropical geometry specifically arising from convergent Puiseux series

in multiple indeterminates. One application is a new view on stable intersections of

tropical hypersurfaces. Another one is the study of families of ordinary convex polytopes

depending on more than one parameter through tropical geometry.

In the second, we consider matching fields and their connections to combinatorial ge-

ometry. We show that the Chow covectors of a linkage matching field define a bijection

of lattice points, resolving two open questions from Sturmfels & Zelevinsky. We use a

similar method to prove that, given a triangulation of a product of two simplices encoded

by a set of bipartite trees, the bijection from left to right degree vectors of the trees is

enough to recover the triangulation. As additional results, we show a cryptomorphic de-

scription of linkage matching fields and characterise the flip graph of a linkage matching

field in terms of its prodsimplicial flag complex.

In the third, we study commutative algebra arising from generalised Frobenius numbers.

We define generalised lattice modules, a class of monomial modules whose Castelnuovo–

Mumford regularity captures the k-th Frobenius number. We study the filtration of

generalised lattice modules providing an explicit characterisation of their minimal gen-

erators, and show that there are only finitely many isomorphism classes of generalised

lattice modules. As a consequence of our commutative algebraic approach, we prove

structural results on the sequence of generalised Frobenius numbers and also construct

an algorithm to compute them.
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Chapter 1

Introduction

Tropical geometry is a rapidly developing field in the intersection of combinatorics and

algebraic geometry, that has shed light on a number of problems in multiple areas of

mathematics. It first caught the attention of the wider community via the work of

Mikhalkin, who used tropical curve counting methods to solve multiple problems in

enumerative algebraic geometry [65]. It has since been used as a tool in many other geo-

metric contexts, such as toric geometry [68], mirror symmetry [47] and nonarchimedean

geometry [16].

The strength of tropical geometry comes from taking geometric problems and re-

framing them as combinatorial problems. This combinatorial framework lends itself to

applications outside of geometry, including several real world applications. The most

well known is its application to auction theory [17, 51]; in particular, the work of Klem-

perer on product-mix auctions, and its implementation by the Bank of England during

the 2007 global financial crash [58]. However, there are multiple other fields of applied

mathematics it has connections to, including machine learning [88], game theory [1] and

optimisation. It is this final connection that shall be a running theme throughout this

thesis.

Smale’s 9th problem is to find a strongly polynomial time algorithm for linear pro-
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Chapter 1. Introduction 12

gramming [83]. The solution to this problem may be tropical: Benchimol showed there

exists a strongly polynomial simplex algorithm if and only if its tropicalisation is poly-

nomial time [24]. Tropical methods have already been used to show certain classes of

linear programming algorithms are not strongly polynomial time [6]. Furthermore, many

pathological examples of linear programs have a tropical nature. One such example is the

Klee-Minty cube, a family of combinatorial cubes on which the simplex method performs

exponentially, for which the whole family can be encoded as a single tropical polytope

[55]. For these reasons, there is a great deal of research into tropical linear programming

and its insights into the complexity of ordinary linear programming. While not explicitly

the topic of research, this is a motivation for Chapters 3 and 4.

In the final chapter, we concern ourselves with another subject in the intersection of

combinatorics and algebra: combinatorial commutative algebra. The main focus of this

field is to compute algebraic and homological invariants of an object via combinatorial

methods. This has opened up a vast number of applications that can be tackled via

homological methods, some of which have evolved into fields in their own right [86]. We

use these algebraic and homological tools to tackle a problem from discrete optimisation:

the Frobenius coin problem.

It is worth remarking that tropical geometry and combinatorial commutative algebra

are not incomparable areas; both have the underlying goal of reducing problems from

algebraic geometry to combinatorial problems. There are very explicit connections be-

tween the two areas as well. Develin and Yu [30] showed that we can associate a tropical

polytope to a monomial ideal, and that the lifts of this tropical polytope determine a

free resolution of the monomial ideal. There have been multiple other examples of con-

structing free resolutions of ideals from tropical objects [32, 70]. More recently, Joswig

and Loho [54] considered monomial tropical cones, a specific class of tropical cone whose

behaviour is similar to that of a monomial ideal. In particular, they show monomial

tropical cones exhibit duality analogous to Alexander duality for monomial ideals. In an

upcoming paper, Loho and the author further explore the connection between monomial
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tropical cones and homological invariants of monomial ideals.

1.1 Matching fields and lattice points of simplices

Chapter 3 is concerned with the structure of matching fields. A matching field is a set

of perfect matchings on bipartite node sets σ t [d], one for each d-subset σ of an n-set

L. A natural example is the set of weight minimal matchings of size d in a complete

bipartite graph Kn,d with generic edge weights. Matching fields arising in this way are

coherent. Without any further requirements, the set of matchings can be arbitrarily

unstructured. Our main objects of study will be linkage matching fields. They fulfil the

additional property that each subset of matchings defined on a (d + 1)-subset of L is

coherent. Sturmfels & Zelevinsky introduced matching fields in [85] to study the Newton

polytope of the product of all maximal minors of an (n×d)-matrix of indeterminates X =

(xji). The linkage property occurs as a combinatorial description of the determinantal

identity [85, Equation 0.1]

∑
j∈τ

(−1)jxjiXτ\{j} = 0 for all i ∈ [d], τ ∈
(

[n]

d+ 1

)
,

where Xσ is the minor of the rows labelled by a d-subset σ ⊆ [n]. This is analogous to

the motivation of the exchange axiom of a matroid from the Plücker relations.

Linkage matching fields have already proven to be useful in several contexts. The

combination of the results in [25, 85] showed that the maximal minors of an (n×d)-matrix

of indeterminates form a universal Gröbner basis of the ideal generated by them. They

occur in tropical linear algebra, as tropical determinants are just minimal matchings in

a weighted bipartite graph, yielding a matching field in the generic case. This was used

in [77] to devise a tropical Cramer’s rule. Later, avoiding the genericity assumption,

a generalisation called ‘matching multifields’ was employed to examine the structure of

the image of the tropical Stiefel map in [38]. Another recent work uses matching fields

to find toric degenerations of Grassmannians [67].
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A notion of oriented matroid for tropical geometry was introduced in [11]. Similar

to the classical case, tropical oriented matroids have multiple cryptomorphisms with

other objects. It was shown in [50] that they are equivalent to the subdivisions of a

product of two simplices, and to certain unions of linkage matching fields from [72] in

the generic case. As linkage matching fields are the building blocks of tropical oriented

matroids, and the linkage axiom is analogous to the basis exchange axiom, we propose

to consider them as another matroid-like structure for tropical geometry. A variation of

tropical oriented matroids, namely ‘signed tropical matroids’, was recently proposed to

develop an abstraction of tropical linear programming [60] analogous to oriented matroid

programming. The algorithm in this paper relies on the interplay of the linkage covectors,

see Definition 3.2.6, of certain matching fields derived from a triangulation of a product

of two simplices.

A collection of certain graphs associated to a matching field was introduced in [85],

which we refer to as the Chow covectors of a matching field. They have a combinatorial

characterisation as the minimal transversals to a linkage matching field, as shown in [25],

and are a key combinatorial tool in the proof of the universal Gröbner basis result

mentioned earlier. They were initially introduced as ‘brackets’ to study the variety of

degenerate matrices in Cn×d. In particular, they give insight into the Chow form, a

polynomial invariant that determines the variety. Sturmfels & Zelevinsky showed that

‘extremal’ terms of the Chow form can be recovered from the Chow covectors by taking

their product as brackets. However, little was known about the structure of Chow

covectors and to what extent they determined the matching field. The tools developed

in this chapter allows us to answer both of these questions.

This is where Chapter 3 begins. The main tool for our considerations are topes,

which occur in the context of tropical oriented matroids [11]. We generalise the concept

of matching fields to tope fields. While matching fields comprise a set of matchings, tope

fields can be seen as sets of ordered partitions of a varying ground set. We transfer

the crucial linkage property from matching fields to tope fields derived from a linkage
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matching field. This allows us to associate maximal topes arising from a linkage matching

field to the lattice points in a dilated simplex.

Via tope fields we obtain an explicit construction of the Chow covectors. Our ap-

proach leads to a representation derived from the maximal topes of a linkage match-

ing field in Proposition 3.2.22. This yields Theorem 3.2.23, resolving Conjecture 6.10

from [85] which was only resolved for coherent matching fields in [25]. Each bipartite

graph induces a pair of lattice points, namely its left and right degree vector. The theo-

rem shows that the set of degree vector pairs for all Chow covectors gives rise to a bijec-

tion from (n−d+1)-subsets of [n] to lattice points in the dilated simplex (n−d+1)∆d−1.

Naturally, one can now ask if this bijection uniquely defines the matching field. This

question is a generalisation of [85, Conjecture 6.8 b)] for linkage matching fields. We

answer it positively in Theorem 3.2.29. These results allow us to give a cryptomorphic

description of linkage matching fields in the form of tope arrangements.

A similar claim for triangulations of ∆n−1×∆d−1 was made after [74, Theorem 12.9].

By describing a triangulation as a collection of trees in the sense of [10, Proposition 7.2],

one also obtains a set of pairs of lattice points. For a triangulation of ∆n−1 × ∆d−1,

this yields a subset of ∆Z(n, d − 1) × ∆Z(d, n − 1), which denotes the product of the

integer lattice points in the dilated simplices (d− 1)∆n−1 and (n− 1)∆d−1. With essen-

tially the same reasoning as in Theorem 3.2.29, we provide an explicit construction of

a triangulation from these lattice point pairs. At the same time, this result was proven

also for more general root polytopes in [42]. A comparison of their advances based on

trianguloids is sketched in Remark 3.2.33.

As additional results, we show how the topes of a linkage matching field are encoded

in its flip graph. This leads to a characterisation of its prodsimplicial flag complex

(see [59, Section 9.2.1]) as the ‘complex of topes’ in Theorem 3.2.39. Furthermore, we

initiate the study of a combinatorial Stiefel map, generalising the construction in [38]

and [49], motivated by the topes and trees arising from a linkage matching field.
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The overview of the chapter is as follows. We define tope fields and related concepts

in Section 3.1. In particular, we introduce the relation with triangulations of products

of two simplices and further requirements on the topes.

Section 3.2 is dedicated to our results on linkage matching fields. Our fundamental

construction for linkage matching fields is presented in Theorem 3.2.16. It leads to the

resolution of two conjectures concerning Chow covectors in Theorem 3.2.23 and Theo-

rem 3.2.29. The cryptomorphism between linkage matching fields and tope arrangements

in Theorem 3.2.32 as well as the description of the flip graph of a linkage matching field

in Theorem 3.2.39 are further consequences.

In Section 3.3, we deduce the reconstructability of a triangulation from a lattice point

bijection in Theorem 3.3.2, analogously to the statement for Chow covectors. We finish

with the relation to sets of transversal matroids through a combinatorial Stiefel map in

Section 3.4. These last two sections contain several questions for further work.

1.2 Tropical geometry of higher rank

Tropical geometry connects algebraic geometry over some valued field K with polyhedral

geometry over the semifield T = (R,min,+). Often it is less important which field K is

chosen, and a common choice is the field C{{t}} of formal Puiseux series with complex

coefficients. By taking the convergence of series in C{{t}} into account, we obtain a

transfer principle from T to C by first pulling back the valuation map val : C{{t}}! T

and then substituting t by some complex number. Diagrammatically this can be written

as

T C{{t}} C .
val

(1.1)

Notice that the substitution, which is represented by the dashed arrow, depends on

the choice of the complex number substituted. This number must lie within the radius

of convergence, and so the dashed arrow is not a map defined for all Puiseux series.

Nonetheless, this opens up a road for transferring metric information from tropical ge-
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ometry over T via algebraic geometry over C{{t}} to metric information over C. This idea

has been exploited recently to obtain new and surprising complexity results for ordinary

linear optimisation [5, 6]. The main motivation of this chapter is to explore generalisa-

tions of this transfer principle to tropical geometry of higher rank and its applications.

Tropical geometry of higher rank was pioneered in articles by Aroca [12, 13] and

Aroca, Garay and Toghani [14]. Their work is motivated by research on algebraic ways

of solving systems of differential equations. This gives a natural notion of a tropical

hypersurface of higher rank, and allows for a higher rank version [13, Theorem 8.1] of

Kapranov’s fundamental theorem of tropical geometry [63, Theorem 3.2.5]. Banerjee [18]

and Foster and Ranganathan [40, 41] explored this further by enriching the structure of

higher rank tropical hypersurfaces, using methods from algebraic and analytical geometry

respectively.

One approach to tropical geometry is the process of tropicalising classical algebraic

varieties. Here we consider a variety V over some valued field K, and the tropicalisation

of V is obtained by applying the valuation map to each point of V coordinatewise. The

fundamental theorem of tropical geometry states that this agrees with the description

of a tropical variety as the set of solutions to certain tropical polynomials [63, Theorem

3.2.5]. While typically K is assumed to be algebraically closed, it is worthwhile to

consider other fields. One can consider real-closed fields, as working over an ordered

field has the advantage that the cancellation of terms, which is the source of many

technical challenges in tropical geometry, can be controlled via keeping track of the signs.

This leads to Alessandrini’s work on the tropicalisation of semialgebraic sets [2] and is

essential for applications to optimisation as in [5–7]. Another example is [5, Theorem 4.3],

concerning the complexity of the simplex method, that hinges on employing convergent

real Puiseux series of higher rank. Despite the fact that the basic idea is simple, the

algebraic, topological and analytic properties are somewhat subtle.

This is our point of departure for Chapter 4, and in Section 4.1 we begin with a general

description of fields of convergent Puiseux series in more than one indeterminate. To a
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large extent our exposition follows the fundamental work of van den Dries and Speissegger

[87]. However, for what we have in mind we also need to prove some minor extensions to

their theory, and this may be of independent interest. An example is Proposition 4.1.5

on partial evaluations of convergent Puiseux series of higher rank, and this gives rise to

a higher rank analogue (4.7) of the transfer principle (1.1).

With this we are prepared for the main part of Chapter 4, on tropical hypersurfaces

of higher rank, which is Section 4.2. For conciseness, we restrict our attention to rank

two; yet all statements admit straightforward generalisations to arbitrarily high rank.

Our first contributions are Theorem 4.2.13 and its Corollary 4.2.14 which describe the

closure in the Euclidean topology of an arbitrary rank two tropical hypersurface in terms

of ordinary polyhedra. These results require us to study sets defined by finitely many

linear inequalities with respect to the lexicographic ordering on the rank two tropical

semiring, which we call lex-polyhedra. A key ingredient in the analysis is the diagram

(4.15) which is a consequence of the higher rank transfer principle (4.7).

A fundamental fact of tropical geometry is that intersections of tropical varieties do

not need to be tropical varieties, in general. This fact gives rise to technical challenges

in proofs in tropical geometry, and the concept of stable intersection frequently offers a

path towards a solution [63, §3.6]. This is the topic of Section 4.3. Theorem 4.3.6, which

is a consequence of our main result, allows us to view stable intersection as an instance

of the “symbolic perturbation” paradigm from computational geometry [33, 36]. This

should be compared with [5, §3.2] and [8, §5], where a similar idea has been applied

to obtain perturbations of rank one tropical linear programs; or with the approach to

“genericity by deformation” of monomial ideals [66, §6.3].

In Section 4.4 we follow a completely different strand of tropical geometry: tropi-

cal convexity. Tropical cones are precisely (min,+)-semimodules and so this has close

ties to (min,+)-linear algebra, a well studied field with numerous applications in opti-

misation, discrete event systems and other areas [15, 26]. Working over real Puiseux

series which are convergent allows us to relate three kinds of objects: ordinary cones



Chapter 1. Introduction 19

over real Puiseux series, tropical cones and ordinary cones over the reals, as expressed

by the transfer principle (1.1). The core of this section are Theorems 4.4.9 and 4.4.11.

The former gives a decomposition for rank two tropical cones analogous to the covector

decomposition for rank one tropical cones [53]; the latter is a tropical convexity analogue

to our Theorem 4.2.13 on rank two tropical hypersurfaces. In the rest of the section we

study a classical construction of Goldfarb and Sit [45] as an example. They constructed

a two parameter family of ordinary d-dimensional combinatorial cubes Gd(t, u) which

provide difficult input for certain variants of the simplex method. The entire two pa-

rameter family of polytopes can be viewed as one polytope over the field of convergent

Puiseux series in two indeterminates, and thus admits a rank two tropicalisation.

Section 4.5 ends this article with several concluding remarks. In particular, we hint

at generalising our results from rank two to arbitrary rank.

1.3 Commutative algebra of generalised Frobenius num-

bers

Consider a collection (a1, . . . , an) of natural numbers such that gcd(a1, . . . , an) = 1. The

Frobenius number F (a1, . . . , an) is the largest natural number that cannot be expressed

as a non-negative integral linear combination of a1, . . . , an. Note that this simple problem

is surprisingly hard to solve: for n > 2, there is no “closed form” expression for the

Frobenius number, and is NP-hard to compute [75]. It has been studied extensively

from several viewpoints including discrete geometry [57], analytic number theory [21]

and commutative algebra [78]. Furthermore, it is intimately connected to the integer

knapsack problem from integer linear programming, opening up many connections to

combinatorial optimisation. There is a vast literature on the Frobenius number, we refer

to Alfonśın’s book [76] for more information.

The Frobenius number can be rephrased in the language of lattices as follows [81].

We start by letting L(a1, . . . , an) be a sublattice of the dual lattice (Zn)? of points that
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evaluate to zero at (a1, . . . , an) ∈ Zn. The Frobenius number is precisely the largest

integer r such that there exists a point p ∈ (Zn)? that evaluates to r at (a1, . . . , an) and

p does not dominate any point in L(a1, . . . , an). Here the domination is according to

the partial order induced by the standard basis on (Zn)?.

This leads to the following commutative algebraic interpretation of the Frobenius

number. Let K be an arbitrary field and let S = K[x1, . . . , xn] be the polynomial ring in

n variables with coefficients in K. The lattice module ML is the S-module generated by

Laurent monomials xw over all w ∈ L. In this framework, the Frobenius number is an

invariant of the lattice module.

Theorem 1.3.1. [20], [78] The Frobenius number F (a1, . . . , an) is

reg(ML) + n− 1−
n∑
i=1

ai

where reg(ML) is the Castelnuovo–Mumford regularity of ML.

Recently, the following generalisation of the Frobenius number called the k-th Frobe-

nius number has been proposed [22]. Fix a natural number k and a collection (a1, . . . , an)

of natural numbers such that gcd(a1, . . . , an) is equal to 1. The k-th Frobenius number

Fk(a1, . . . , an) is the largest natural number that cannot be written as k distinct non-

negative integral linear combinations of a1, . . . , an. Hence, the first Frobenius number

F1(a1, . . . , an) is the Frobenius number of (a1, . . . , an).

Work on generalised Frobenius numbers has primarily used analytic methods and

methods from polyhedral geometry. The work of Beck and Robins [22] uses analytic

methods to derive an explicit formula for n = 2 and any k. Aliev, Fukshanksy and

Henk [4] give bounds for n > 2, generalising a theorem of Kannan for the first Frobenius

number. They relate the k-th Frobenius number to the k-covering radius of a simplex

with respect to the lattice (a1, . . . , an)⊥ ∩ Zn, giving bounds on the generalised Frobe-

nius number as a corollary. Recent work of Aliev, De Loera and Louveaux [3] takes a
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more algebraic approach by considered the semigroup of integers with at least k distinct

representations.

The goal of Chapter 5 is to develop commutative algebra arising from the k-th Frobe-

nius number. We start by generalising Theorem 1.3.1 to k-th Frobenius numbers. The

k-th Frobenius number has an analogous description in the language of lattices. Explic-

itly, it is the largest integer r such that there exists a point p ∈ (Zn)? that evaluates to

r at (a1, . . . , an) and p does not dominate k distinct points in L(a1, . . . , an). This leads

to the following generalisation of the lattice module ML:

Definition 1.3.2. The k-th lattice module M
(k)
L is the S-module generated by Laurent

monomials xw such that w dominates at least k lattice points.

Proposition 1.3.3. The k-th Frobenius number of (a1, . . . , an) is given by the formula:

reg(M
(k)
L ) + n− 1−

n∑
i=1

ai

where reg(M
(k)
L ) is the Castelnuovo–Mumford regularity of M

(k)
L .

While Proposition 1.3.3 provides a simple description of generalised Frobenius num-

bers in terms of M
(k)
L , we know very little about the structure of generalised lattice

modules. For instance, they are naturally related by the filtration:

M
(1)
L ⊇M (2)

L ⊇M (3)
L . . . (1.2)

which is not captured in Proposition 1.3.3. Furthermore, for k > 1 we have no description

of their minimal generating sets. With this in mind, we delve into a detailed study of

generalised lattice modules and their impact on Frobenius numbers.

Chapter 5 is organised as follows. Section 5.1 derives the formulas given in Theorem

1.3.1 and Proposition 1.3.3. Section 5.2 begins an in-depth investigation of generalised

lattice modules, in particular we give two structural theorems regarding their minimal
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generators. Theorem 5.2.8, the Neighbourhood Theorem, shows that all minimal gen-

erators occur within an explicit finite neighbourhood of 1K = x0, while Theorem 5.2.5

gives an inductive characterisation of the minimal generators of M
(k)
L in terms of the

first syzygies of M
(k−1)
L . These two results together give a method for computing the

minimal generators of M
(k)
L .

Given these characterisations of the minimal generators of M
(k)
L , a natural next ques-

tion is a characterisation of the syzygies of M
(k)
L . This is the subject of Section 5.3. As

a first result in this direction, Theorem 5.3.1 shows there are only finitely many distinct

Betti tables for generalised lattice modules of L. We use this to derive Corollary 5.3.9,

a structural result for k-th Frobenius numbers. Explicitly, it states there exist a finite

set of integers {b1, . . . , bt} derived from the Betti tables such that

Fk(a1, . . . , an) = mk + bj

for some bj , where mk is the smallest degree of an element in M
(k)
L .

With these structural results of M
(k)
L , in Section 5.4 we turn our attention to the

following question:

Problem 1.3.4. (Classification of Frobenius Number Sequences) Given a se-

quence of natural numbers {ck}∞k=1, does there exist a collection of naturals (a1, . . . , an)

whose sequence of generalised Frobenius numbers is equal to {ck}∞k=1?

To the best of our knowledge, this problem is wide open. As an application of

Theorem 5.3.1, we show that the sequence of Frobenius numbers (Fk)
∞
k=1 is a finite

difference progression, a sequence whose set of differences between consecutive terms is

finite. This provides a partial answer to Problem 1.3.4. Finally, as an application of

our results, we use the Neighbourhood Theorem to construct an algorithm that takes

the lattice in terms of a basis and a natural number k as input, and computes the k-th

lattice module and the k-th Frobenius number.



Chapter 2

Preliminaries

2.1 Tropical geometry

2.1.1 Polyhedral geometry

We begin by recalling the necessary concepts from polyhedral geometry. All of our

polyhedra throughout shall be convex. A halfspace H in Rd is the set of points satisfying

an affine inequality of the form

a1x1 + · · ·+ adxd ≤ b , ai, b ∈ R . (2.1)

The boundary of H is the set of points where (2.1) is tight.

Definition 2.1.1. A polyhedron P in Rd is the intersection of finitely many halfspaces.

A face of P is the intersection of P with any number of boundaries of the halfspaces. A

face of codimension one is a facet and a face of dimension zero is a vertex. A polyhedral

complex P = {Pj}j∈J is a finite collection of polyhedra such that:

• every face of a polyhedron in P also lies in P,

• the intersection of any two polyhedra in P also lies in P.

23
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The underlying set |P| of P is the set of points contained in P i.e. we forget the polyhedral

structure.

We can specialise these definitions to obtain specific classes of polyhedra. If all of the

defining inequalities (2.1) satisfy b = 0 then P is a cone. A polyhedral complex whose

polyhedra are all cones is a fan. If P is bounded, then it is a polytope. A polyhedral

complex whose polyhedra are all bounded is a polytopal complex.

Polytopes and cones have the additional property that they can be described exter-

nally as the intersection of halfspaces, or internally as a linear combination of generators.

Polytopes can be described as the convex hull of finitely many points, while cones can

be described as the positive hull of finitely many rays. The Minkowski-Weyl Theorem

states that any polyhedron can be written as the Minkowski sum of a polytope and a

cone, allowing arbitrary polyhedra to also be described internally in terms of generators.

Example 2.1.2 (Newton polytopes). The following is a key polyhedral construction

for tropical geometry. Let f =
∑
cax

a ∈ K[x±1 , . . . , x
±
d ] be a (Laurent) polynomial in

d variables, each monomial gives rise to a point a ∈ Zd via its exponent vector. The

Newton polytope of f is the convex hull of exponent vectors of monomials in f

Newt(f) = conv
{
a ∈ Zd

∣∣∣ ca 6= 0
}
⊂ Rd . (2.2)

As an example, Figure 2.1 shows the Newton polytope of the bivariate polynomial x2y +

3xy2 + xy − y2 + 2.

One can imbue a polytopal complex structure on a polytope via subdivision.

Definition 2.1.3. Let P = conv(A) be the convex hull of A, a configuration of points

in Rd. A (polyhedral) subdivision of P is the polytopal complex P such that |P| = |P |

and the vertices of P are precisely A.

There are multiple classes of subdivision; the following are two examples that will be

of most use to us.
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(0, 0)

(2, 1)

(1, 2)(0, 2)

(1, 1)

Figure 2.1: The Newton polytope of the polynomial x2y + 3xy2 + xy − y2 + 2.

Example 2.1.4 (Regular subdivisions). One can induce a subdivision of P = conv(A)

in the following way. Define a weight function w : A ! R that associates a weight to

each element of A and consider the polytope

P̂ = conv {(a1, . . . , ad, w(a)) | a ∈ A} ⊂ Rd+1 . (2.3)

Informally, “looking at P̂ from below” gives a copy of P that has been subdivided. For-

mally, we consider the facets of P̂ whose (outer) normal vector is negative in the last

coordinate, and project these to Rd by deleting the last coordinate. A subdivision that

can be induced this way is called regular. Note that not every subdivision is regular, see

Example 3.2.9.

Consider the Newton polytope P ⊂ R2 from Figure 2.1. We consider the weight

function w defined as follows:

w(0, 0) = 0 , w(1, 1) = 0 , w(2, 1) = 1 , w(0, 2) = 1 , w(1, 2) = 3 . (2.4)

The resulting polytope P̂ ⊂ R3 and the regular subdivision of P it induces are given in

Figure 2.2.
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(0, 0, 0)

(1, 1, 0) (2, 1, 1)

(0, 2, 1)

(1, 2, 3)

(0, 0)

(2, 1)

(1, 2)(0, 2)

(1, 1)

Figure 2.2: P̂ and the regular subdivision of P described in Example 2.1.4.

Note that if w is sufficiently generic, the resulting subdivision will be a triangulation

i.e., all cells are simplices. In this case, the subdivision cannot be subdivided any further

and so is called fine.

Example 2.1.5 (Mixed subdivisions). The natural addition operation for polyhedra is

Minkowski sum; given two polyhedra P,Q ⊂ Rd, their Minkowski sum is

P +Q = {p+ q | p ∈ P , q ∈ Q} ⊂ Rd . (2.5)

Let P =
∑n

i=1 Pi be the Minkowski sum of n polytopes Pi, we use the structure of

Minkowski sum to define the following subdivision of P . A Minkowski cell of P is a full

dimensional polytope C =
∑n

i=1Ci where each Ci is a polytope whose vertices are among

the vertices of Pi. A mixed subdivision is a collection of Minkowski cells C such that C

covers P and taking intersections of cells of C commutes with Minkowski sum:

C ∩D =

n∑
i=1

(Ci ∩Di) . (2.6)

A mixed subdivision is fine if it cannot be subdivided any further.

Our key example will be mixed subdivisions of the unit (d− 1)-simplex summed with
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1 1 1

1

2 2

2

2

3 3

3 3

+ +

+

123 + 1

23 + 12

3 + 123

1 2

3

2

3

1

+

Figure 2.3: A fine mixed subdivision of 2∆2, labelled with summations that make up its
maximal cells.

itself n times:

n∆d−1 = ∆d−1 + · · ·+ ∆d−1︸ ︷︷ ︸
n

. (2.7)

Figure 2.3 gives an example of a mixed subdivision of 2∆2, and the summations that

make up its maximal cells.

Mixed subdivisions of n∆d−1 are of interest for two reasons: their connection to

arrangements of tropical hyperplanes and their bijection with subdivisions of products of

simplices:

Theorem 2.1.6 (Cayley Trick). [28, Theorem 9.2.18] Mixed subdivisions of n∆d−1 are

in bijection with polyhedral subdivisions of the product of simplices ∆d−1 ×∆n−1.

Informally, this bijection is given by slicing ∆d−1×∆n−1 through its barycentre with a

(d− 1)-dimensional affine subspace. Figure 2.4 shows the polyhedral subdivision of ∆2×

∆1 corresponding to the mixed subdivision of 2∆2 from Figure 2.3. Mixed subdivisions of

n∆d−1 an subdivisions of products of simplices are considered in more depth in Example
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(1, 1) (2, 1)

(3, 1)

(1, 2) (2, 2)

(3, 2)

Figure 2.4: The polyhedral subdivision of ∆2×∆1 corresponding to the mixed subdivision
of 2∆2 from Figure 2.3.

2.1.14 and Chapter 3.

The final polyhedral construction we shall require for tropical geometry is the normal

fan of a polyhedron.

Definition 2.1.7. Let P ⊂ Rd be a polyhedron. The (inner) normal fan NP of P is the

fan in the dual space (Rd)? consisting of cones

NP (F ) =
{
w ∈ (Rd)?

∣∣∣ w is minimised at F
}

(2.8)

as F varies over all faces of P .

Another way to construct the normal fan is as follows. For each vertex v of P ,

consider the facets containing v and their inner normal vectors. These vectors generate

the maximal cone NP (v); ranging over all vertices gives the normal fan. Note that

although formally the normal fan lives in the dual space to Rd, we rarely make this

distinction.

2.1.2 Tropical hypersurfaces

Tropical hypersurfaces (and varieties) can be constructed from two different viewpoints:

an extrinsic way from algebraic hypersurfaces defined by ordinary polynomials, and
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an intrinsic way as solution sets of tropical polynomials. We shall see that these two

viewpoints are equivalent.

The intrinsic viewpoint is the following. The tropical semiring T = (R,⊕,�) is the

idempotent semifield with operations

a⊕ b = min(a, b) , a� b = a+ b . (2.9)

Often it is useful to adjoin T with a unique maximal element ∞ to give T an additive

identity. However, we remark that T does not have additive inverses as there does not

exist a−1 such that min(a, a−1) =∞ for any a ∈ T. For simplicity, we do not adjoin ∞

to T unless explicitly stated otherwise.

A tropical (Laurent) polynomial F ∈ T[x±1 , . . . , x
±
d ] is a (Laurent) polynomial with

operations ⊕,� and coefficients in T. It defines a piecewise linear function

F : Td −! T

(p1, . . . , pd) 7−!
⊕

a∈supp(F )

ca � p�a , ca ∈ T
(2.10)

where the support supp(F ) of F is a finite subset of Zd and p�a denotes a1p1 + · · ·+adpd.

We shall write tropical polynomials in uppercase, and ordinary polynomials in lowercase

to distinguish between the two.

For each p ∈ Td, we define the set

Dp(F ) =
{
a ∈ supp(F )

∣∣ F (p) = ca � p�a
}
, (2.11)

i.e, the set of monomials at which F (p) obtains its minimum. The tropical hypersurface

T (F ) defined by F is the non-linear locus of F in Td:

T (F ) =
{
p ∈ Td

∣∣∣ |Dp(F )| > 1
}

. (2.12)
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y = 0

x = 0

x = y

0

y

x

Figure 2.5: A tropical line in R2.

Note that Td is isomorphic to Rd as a set, therefore we often consider tropical objects in

Euclidean space. We shall encounter the topological considerations more in Chapter 4.

Example 2.1.8. Consider the bivariate tropical polynomial

F = x⊕ y ⊕ 0 = min{x, y, 0} . (2.13)

Its tropical hypersurface, the tropical line shown in Figure 2.5, is a one dimensional fan

in R2 consisting of three rays:

{x = y ≤ 0} ∪ {x = 0 ≤ y} ∪ {y = 0 ≤ x} , (2.14)

intersecting at the zero dimensional cell x = y = 0. It decomposes R2 into three regions,

each corresponding to a monomial of F that attains the minimum on that region.

The extrinsic viewpoint is the following. Let K be a field, a valuation on K is a map

val : K! R ∪ {∞} such that

1. val(a) =∞ ⇔ a = 0

2. val(ab) = val(a) + val(b)
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3. val(a+ b) ≥ min{val(a), val(b)} .

Example 2.1.9. The standard example of a valued field is the field C{{t}} of generalised

Puiseux series with coefficients in C. The elements of this field are formal power series

∑
α∈A

cαt
α , A ⊂ R , cα ∈ C \ {0} (2.15)

where A has a well defined smallest element α0 and no finite accumulation points. The

valuation maps a series to α0, its smallest exponent. C{{t}} is a particularly well-behaved

valued field as it is algebraic closed and the valuation map is surjective. This latter prop-

erty will be particularly important in Chapter 4 when considering higher rank generali-

sations of this field.

Given a Laurent polynomial f =
∑
cax

a ∈ K[x±1 , . . . , x
±
d ] with support supp(f), one

can construct its tropicalisation

trop(f) : Td −! T

(p1, . . . , pd) 7−!
⊕

a∈supp(f)

val(ca)� p�a
. (2.16)

This is a tropical polynomial and, providing our field K is “large enough”, every tropical

polynomial can by lifted to an ordinary polynomial in K[x±1 , . . . , x
±
d ]. One can construct

its corresponding tropical hypersurface T (trop(f)) as in (2.12).

There is a second construction of the tropical hypersurface associated to f . Let

V (f) ⊂ (K\{0})d be the algebraic hypersurface defined by f . The tropicalisation of this

hypersurface is the set

T (V (f)) = {(val(p1), . . . , val(pd)) | (p1, . . . , pd) ∈ V (f)} ⊂ Rd ,

the closure of the coordinatewise valuation of points of V (f) in the Euclidean topology.

Kapranov’s theorem states that these two constructions coincide:
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Theorem 2.1.10. (Kapranov’s Theorem, [63, Theorem 3.1.3]) Fix a Laurent polynomial

f ∈ K[x±1 , . . . , x
±
d ]. The following sets coincide:

1. T (trop(f)), the tropical hypersurface of the tropical polynomial trop(f).

2. T (V (f)), the closure of the coordinatewise valuation of points of V (f) in the Eu-

clidean topology.

As these two notions coincide, we are free to move between the two and refer to the

tropical hypersurface defined by f simply as T (f). As we shall see in Theorem 4.2.2,

Kapranov’s Theorem also holds for valuations of higher rank

Tropical hypersurfaces are highly structured sets. We can explicitly describe them in

the language of polyhedral subdivisions.

Definition 2.1.11. Let f =
∑
cax

a ∈ K[x±1 , . . . , x
±
d ] be a d-variate Laurent polynomial

with finite support. The Newton subdivision of f is the regular subdivision of Newt(f)

induced by the weights val(ca) on the lattice points a ∈ supp(f) of Newt(f).

Proposition 2.1.12. ([63, Proposition 3.1.6]) Let f ∈ K[x±1 , . . . , x
±
d ] be a Laurent poly-

nomial. Its tropical hypersurface T (f) is the support of a codimension one polyhedral

complex in Rd. Explicitly, it is the (d− 1)-skeleton of the polyhedral complex dual to the

Newton subdivision of f .

The dual complex is constructed in the following way. We consider each full dimen-

sional polytope in the subdivision and consider its normal fan. If two polytopes P1, P2

share a face F , then we “glue” the cones NP1(F ) and NP2(F ) together. Examples 2.1.13

and 2.1.14 demonstrate this construction.

Proposition 4.2.8 is generalisation of Proposition 2.1.12 to valuations of higher rank.

Note we do not state it in the language of Newton polytopes, rather in terms of support

sets.

Example 2.1.13. Consider the polynomial f = tx2y+ t3xy2 +(1+2t)xy+(t+ t2)y2 +1
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P1

P2

P3

P4

P4

P3

P2

P1

xy2

y2

x2y

xy
1

Figure 2.6: The tropical hypersurface T (f) from Example 2.1.13.

with coefficients in C{{t}}. Its Newton subdivision is the subdivided polytope from Figure

2.2. Figure 2.6 shows the corresponding tropical hypersurface T (f) and its duality with

the Newton subdivision. The full dimensional polytopes are mapped to zero dimensional

cells of the tropical hypersurface, and the regions of the tropical hypersurface are labelled

by the monomials that achieve the minimum on that region.

Example 2.1.14. Consider the linear form f = a0 + a1x1 + · · · + adxd where ai ∈ K.

Its Newton polytope Newt(f) is the unit d-simplex ∆d. As its only lattice points are the

vertices of the simplex, its regular subdivision is trivial. Therefore T (f) is a tropical

hyperplane, a translate of the (d− 1)-skeleton of the normal fan of the d-simplex, whose

apex is at the point (val(a0)−val(a1), . . . , val(a0)−val(an)). Example 2.1.8 demonstrates

this in R2.

Let f1, . . . , fn be linear forms. Let f =
∏n
i=1 fi, its Newton polytope is n∆d, the

unit d-simplex dilated by n. Its Newton subdivision is non-trivial: it is a regular mixed

subdivision of n∆d. The resulting tropical hypersurface T (f) is the union of the tropical

hyperplanes T (fi). Figure 2.7 gives an explicit example of this.

Arrangements of n tropical hyperplanes in Rd are in bijection with regular mixed

subdivisions of n∆d. We can relax this restriction to consider any mixed subdivision
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Figure 2.7: An arrangement of 4 tropical hyperplanes in R2, and its corresponding regular
mixed subdivision of 4∆2.

of n∆d, which are in bijection with tropical oriented matroids, the tropical analogue to

oriented matroids [50, 71]. These are again in bijection with subdivisions of ∆d×∆n−1,

and a summary of these bijections are given below. These bijections will be a key tool in

Chapter 3.

Tropical oriented matroids

(hyperplane arrangements)

(Regular) mixed

subdivisions of n∆d

(Regular) subdivisions

of ∆d ×∆n−1

Remark 2.1.15. We have not comprehensively covered all the structural properties of

tropical hypersurfaces. The maximal cells are all of the same dimensional and all cells

have rational slopes. Furthermore, maximal cells are attached with multiplicities that

satisfy a balancing condition. All this additional structure is implied by Proposition 2.1.12

and will not be required for the majority of the content. However, it is worth remarking

as some of these properties are not preserved when considering tropical hypersurfaces of

higher rank in Chapter 4.

One can formulate more general tropical varieties than tropical hypersurfaces. How-

ever, much more care is required when considering ideals rather than single polynomials.
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As we only consider tropical hypersurfaces in the following, we shall not explore this here.

However, it is worth remarking that many of the combinatorial and polyhedral properties

of tropical hypersurfaces are also held by tropical varieties: they are pure rational poly-

hedral complexes in Rd of the same dimension as the underlying algebraic variety that

satisfy a balancing condition.

2.1.3 Tropical polytopes

As discussed in the introduction, tropicalisation of semialgebraic sets is a worthwhile

endeavour. In particular, there is a rich theory of tropical convexity.

Definition 2.1.16. Let V = {v(1), . . . , v(n)} be a subset of points in Rd. A tropical

polytope generated by V is the tropical convex hull tconv(V ) of V , i.e., the set of all

points that can be realised as

λ1 � v(1) ⊕ · · · ⊕ λn � v(n) , λi ∈ T ,

n⊕
i=1

λi = 0 . (2.17)

The structure of tropical polytopes can be described in terms of tropical hyperplane

arrangements. Consider the max-tropical semiring, where addition is defined to be a ⊕

b = max(a, b). One can define max-tropical hyperplanes (and max-tropical varieties in

general) analogously to min-tropical case. Additionally, the identity max {ai | i ∈ I} =

−min {−ai | i ∈ I} implies they are simply min-tropical hyperplanes reflected in the

ordinary hyperplane (1, . . . , 1)⊥. As stated in Example 2.1.14, a tropical hyperplane

with apex a decomposes Rd into d + 1 sectors, one for each monomial in the defining

linear form. Over the max-tropical semiring, these sectors are defined by

Si(a) =

{
p ∈ Rd

∣∣∣∣ pi − ai = max
k∈[d]
{−a0 , pk − ak}

}
S0(a) =

{
p ∈ Rd

∣∣∣∣ − a0 = max
k∈[d]
{−a0 , pk − ak}

} . (2.18)

Given an arrangement of max-tropical hyperplanes, they induce a polyhedral cell de-

composition of Rd called a tropical complex, whose cells are intersections of sectors. An
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v
(1)

v
(2)

v
(3)

tconv(V )

Figure 2.8: An arrangement of three max-tropical hyperplanes, and the corresponding
tropical polytope they define.

example of such a tropical complex is given in Figure 2.8. Given a cell C in the tropical

complex, we can associate to it a bipartite graph with edges

(j, i) ∈ [n]× ([d] ∪ {0}) ⇐⇒ C ⊆ Si(v(j)) . (2.19)

This is the covector associated to C.

Theorem 2.1.17. [29, Theorem 15] Let V = {v(1), . . . , v(n)} ⊂ Rd. Consider the trop-

ical complex induced by the max-tropical hyperplanes with apices v1, . . . , vn. The min-

tropical polytope tconv(V ) is the union of the bounded cells of the tropical complex, or

equivalently, those cells whose covector has no isolated nodes.

Example 2.1.18. Figure 2.8 shows an arrangement of three max-tropical hyperplanes

in R2. The bounded cells of the induced tropical complex form the min-tropical polytope

given by the tropical convex hull of v(1), v(2), v(3). Note that unlike ordinary polytopes,

not all maximal cells are of the same dimension.

Figure 2.9 gives two examples of covectors arising from this tropical complex. The

left bipartite graph is the covector associated to the unique full-dimensional bounded cell,

while the right bipartite graph is the covector associated to the zero-dimensional cell v(1).

The reference hyperplane is included to fix the labelling on the sectors.
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Figure 2.9: The covectors corresponding cells of Figure 2.8. The left covector corresponds
to the unique bounded region while the right covector corresponds to v(1). The reference
hyperplane is included to fix the labelling on the sectors.

The term covector comes from the language of oriented matroids, where they combi-

natorialise the cells of an ordinary hyperplane arrangement. Unsurprisingly, we can also

associate covectors to tropical oriented matroids, and by extension mixed subdivisions of

n∆d and subdivisions of ∆d×∆n−1. Covectors will play a large role in the construction

of matching fields in Chapter 3.

Covectors encode more geometric data than when the cell is bounded. They encode

the dimension of the cell via the number of connected components minus one. Further-

more, a cell C is contained in a cell D if and only if its covector is a subgraph of the

covector of D. This encoding of geometric data will be exploited in Section 4.4 when

we introduce tropical polytopes of higher rank, where certain geometric notions are less

clearly defined.

Remark 2.1.19. While we restrict to Rd for simplicity, one can also formulate tropical

polytopes in (T∪{∞})d with little alteration. Furthermore, Joswig and Loho [53] showed

all the previous statements also hold in this more general setting.

2.2 Commutative algebra of monomial modules

Let K be a field and S = K[x1, . . . , xn] the polynomial ring in n variables. A monomial

module M is an S-submodule of the Laurent polynomial ring K[x±1 , . . . , x
±
n ] generated
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Figure 2.10: The staircase diagram of the monomial module M = 〈x6y−1, x2, y3, x−2y4〉.
The lattice points in the shaded region exactly encode the monomials in M .

by Laurent monomials

M = 〈xu | u ∈ U〉 , U ⊂ Zn . (2.20)

One can represent monomial modules diagrammatically via staircase diagrams. One

attaches a copy of the positive orthant to each lattice point u ∈ U , each lattice point in

this orthant represents a monomial that is hit by the S-action on xu. The union of these

orthants gives the set of lattice points whose corresponding monomials are contained in

M . An example is shown in Figure 2.10.

If U is finite, M is finitely generated and isomorphic to a monomial ideal of S. We

shall introduce the theory for finitely generated monomial modules then extend it to a

special class of infinitely generated modules later.

2.2.1 Finitely generated monomial modules

A graded ring R is the direct sum of abelian groups Ri such that RiRj ⊆ Ri+j . The

polynomial ring S is a graded ring with graded pieces Sj = K {xu ∈ S | deg(xu) = j}.

This grading extends to M , where Mi is the graded piece K {xu ∈M | deg(xu) = i}.
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We can define multiple gradings on S by defining the degree of a monomial:

• S has a Zn-grading by setting deg(xu) = (u1, . . . , un). This is also referred to as

the fine grading on S.

• S has a Z-grading by setting deg(xu) =
∑n

i=1 ui. This is also referred to as the

coarse grading on S.

Given S with a certain grading, we can “shift” the grading a certain number of steps.

The polynomial ring S(j) is the j-th twist of S, or S twisted by j. As a module it is

isomorphic to S, and its grading is defined by

S(j)i = Si+j . (2.21)

Twists of polynomial rings and modules are used frequently when constructing free

resolutions.

One way to analyse the structure of M is via the Hilbert series of M . The finely

graded Hilbert series is defined as

H(M ; t) =
∑
u∈Zn

dimK(Mu) · tu , t = (t1, . . . , tn) . (2.22)

where dimK(Mu) is the dimension of Mu as a K-vector space. Observe that this is

particularly simple for monomial modules, as the dimension of Mu is one if xu ∈M , and

zero otherwise. Setting ti = t yields the coarsely graded Hilbert series H(M ; t, . . . , t).

The Hilbert series encodes the dimension of all the graded pieces of M . This is an

infinite amount of data, and so at first appears rather intangible. However, the Hilbert

series can be expressed as the rational function

H(M ; t) =
K(M ; t)

(1− t1) . . . (1− tn)
(2.23)
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where

K(M ; t) =
∑
i≥0
u∈Zn

(−1)iβi,u · tu (2.24)

is the K-polynomial of M . The coefficients βi,u are the Betti numbers of the M . These

are key invariants of the module that measure “fluctuations” in the dimension of the

graded pieces of M . Note that the K-polynomial only determines the alternating sum

of the Betti numbers, we shall see more refined methods later that determines them

completely.

The Hilbert series has other invariants attached. Let M be coarsely graded, the

function encoding the coefficients of the Hilbert series

HM : Z −! Z≥0

s 7−! dimK(Ms)

(2.25)

is the Hilbert function of M . A surprising corollary of Hilbert’s Syzygy Theorem is that

for large enough s, this function is a polynomial. An invariant of interest to us is the

Castelnuovo–Mumford regularity, the value of s at which (under certain conditions) the

Hilbert function becomes polynomial. While this is an intuitive way to view regularity,

the more practical definition is in terms of Betti numbers.

Definition 2.2.1. Let M be a Z-graded S-module. M is r-regular if u − i ≤ r for all

u ∈ Z, i ≥ 0 such that βi,u(M) 6= 0. The Castelnuovo-Mumford regularity of M is

reg(M) = min {r | M is r-regular } . (2.26)

Note that Definition 2.2.1 is equivalent to reg(M) = max {u− i | βi,u(M) 6= 0}. It

can also be computed as the number of rows of the Betti table minus one, as the Betti

table indexes its rows by u− i beginning at zero. We refer to Eisenbud [35, Chapter 4]

for more information on this topic. The regularity will be a key invariant in deriving
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Frobenius numbers in Chapter 5.

One way to calculate the Betti numbers of M is via free resolutions of M . To define

free resolutions, we need the following notions. A free S-module of finite rank is a module

F ∼= S(−u1) ⊕ · · · ⊕ S(−ur) isomorphic to the direct sum of r copies of S twisted by

degree −ui. A complex F is a chain of maps between free S-modules

F : 0 F0 F1 . . . Fk 0
∂1 ∂2 ∂k

(2.27)

such that ∂i+1 ◦ ∂i = 0 for all i. A complex is exact if ker(∂i) = im(∂i+1) for all i.

Definition 2.2.2. A free resolution F of M is an exact complex of free S-modules such

that M ∼= F0/im(∂1). A free resolution is minimal if for any other free resolution F ′,

there exist maps πi such that the following diagram commutes:

F ′ : 0 F ′0 F ′1 · · · F ′k 0

F : 0 F0 F1 · · · Fk 0

π0

∂′1
π1

∂′2 ∂′k
πk

∂1 ∂2 ∂k

. (2.28)

The length of a free resolution is the largest k such that Fk 6= 0. The projective dimension

pdim(M) of M is the length of a minimal free resolution of M .

Free resolutions are not unique, but minimal free resolutions are unique up to isomor-

phism. Let F be a minimal free resolution of M , the Betti numbers of M are encoded in

F . Explicitly, Fi ∼=
⊕

u∈Zn S(−u)βi,u where βi,u is the i-th Betti number of M in degree

u.

Certain classes of monomial modules have methods for constructing minimal free

resolutions, however there is no general method that works for all monomial modules.

There are constructions that give non-minimal free resolutions for any monomial module,

but this only gives bounds on the Betti numbers. One can compute the Betti numbers

via other methods [43, 79], or alternatively one can use computer algebra software such

as Macaulay2 [46].
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Example 2.2.3 (Taylor resolution). Let M = 〈m1, . . . ,mr〉 be an S-module minimally

generated by monomials mi ∈ K[x±1 , . . . , x
±
n ]. The Taylor complex ∆M of M is an

(r−1)-dimensional simplex whose i-th vertex is labelled by the degree ui of mi. We label

the face σ ⊆ [r] by the degree uσ of lcm {mi | i ∈ σ}. The Taylor resolution of M is

the complex F∆M
supported on ∆M . Explicitly, this is the complex of free modules and

boundary maps

Fi =
⊕

σ|=i+1

S(−uσ) , ∂i(eσ) =
∑
τ⊂σ
|τ |=i

sgn(τ, σ)eτ

where eσ is the basis vector of S(−uσ) and sgn(τ, σ) is +1 if the orientation on τ and σ

agree, −1 otherwise. Note that for simplicial complexes, the orientation of σ is implicitly

given by the ordering on the vertices. However for more general complexes, we have to

pick this orientation. Note that any finitely generated monomial module can be resolved

by the Taylor complex, but it is usually far from minimal.

Example 2.2.4 (Hull resolution). Consider the unbounded convex polyhedron

Pt = conv {(tu1 , . . . , tun) | xu ∈M} ⊂ Rn , t > 0 .

Pt has nice properties: the vertices are precisely the set of minimal generators of M , and

the face poset is invariant for t > (n+1)!. We define the hull complex hull(M) to be the

polyhedral complex of bounded faces of Pt, labelled the same way as the Taylor complex.

The hull resolution Fhull(M) is the free resolution supported on hull(M).

As with the Taylor resolution, any finitely generated monomial module can be resolved

by the hull resolution, as well as some more general examples we shall see. Furthermore,

if M is generic then Fhull(M) is minimal. However, the trade off is that computing

hull(M) is much harder than computing ∆M .

Remark 2.2.5. Note that we can construct a hull resolution for any Laurent monomial

module, not just finitely generated ones. However, in general the hull complex will have
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infinitely many faces and therefore M will have infinitely many Betti numbers. We shall

consider a special class of modules in Section 2.2.2 that have infinite hull resolutions that

can be reduced to a finite resolution.

Our final remark on free resolutions are their connection to relations between gen-

erators of M . Given a minimal free resolution F , we can describe M ∼= F0/im(∂1).

F0 is the free module generated by the generators of M , whereas im(∂1) is the module

of relations, or syzygies, between those generators. This gives rise to the first syzygy

module Syz1(M) = im(∂1). Note that Syz1(M) is also an S-module and inherits the

same grading as M . Furthermore, we can extend this notion to the k-th syzygy module

Syzk(M) = im(∂k), which encodes higher notions of relations between the generators

and their syzygies.

2.2.2 Modules with lattice actions

Chapter 5 considers a class of monomial modules that are infinitely generated, but

whose generators are all in the orbit of certain lattice. The methods in the previous

section are not immediately amenable as there will be infinitely many Betti numbers in

infinitely many degrees. Bayer and Sturmfels [20] developed a framework to condense

these modules into a more manageable state, without sacrificing losing information about

the module.

Let L ⊂ Zn be a lattice such that L∩Zn≥0 = {0}. We consider the group polynomial

ring S[L] where

S[L] = K[ xuzv | u ∈ Zn≥0 , v ∈ L] . (2.29)

S[L] carries a Zn-grading via the degree map deg(xuzv) = u + v.

Consider a Zn-graded S-module M with an equivariant L-action i.e., it commutes

with the action of S. Then M is naturally an S[L]-module by extending the L-action to

S[L]. An equivalent statement is that the category of L-equivariant Zn-graded S-modules



Chapter 2. Preliminaries 44

is isomorphic to the category of Zn-graded S[L]-modules.

Example 2.2.6. Consider the S-module

ML = 〈xu | u ∈ L〉 ,

with lattice action v · xu = xu+v. As an S-module, ML is minimally generated by

infinitely many Laurent monomials. However these all sit in the same L-orbit and so

ML is generated by a single element as an S[L]-module. Furthermore, we can describe

it as the quotient of S[L]

ML
∼= S[L]/

〈
xu − xvzu−v

∣∣ u,v ∈ Zn≥0 , u− v ∈ L
〉
. (2.30)

We call ML a lattice module, and will return to it throughout this section and Chapter

5.

Many of the modules we shall consider are infinitely generated as S-modules but

finitely generated as S[L]-modules. We would like to keep the finite generation property

of the latter, yet continue to work with S-modules. To do this, we quotient out the

action of L by identifying xu with xuzv for all v ∈ L. We observe that for M = S[L],

this quotient is

S[L]/L ∼= S[L]/
〈
xu − xu−vzv

∣∣ u ∈ Zn≥0 , v ∈ L
〉

∼= S[L]/ 〈zv − 1K | v ∈ L〉

∼= S .

(2.31)

We remark that this construction affects the grading: xu and xuzv should have the same

degree after quotienting by L, but this is not true when the grading is Zn. To ensure

they have the same degree, we grade S[L]/L ∼= S by Zn/L.

In the case of an arbitrary S[L]-module M , this quotient is achieved by tensoring M
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with S[L]/L:

M/L ∼= M ⊗S[L] S[L]/L ∼= M ⊗S[L] S (2.32)

Informally, one can consider this as setting zv to 1K. As with the previous construction,

this is a Zn/L-graded module. One can consider this construction as a functor between

categories

π : {Zn-graded S[L]-modules}! {Zn/L-graded S-modules} . (2.33)

Example 2.2.7. Consider the lattice module ML from Example 2.2.6. Recall that we

can describe ML by

ML
∼= S[L]/

〈
xu − xvzu−v

∣∣ u,v ∈ Zn≥0 , u− v ∈ L
〉
. (2.34)

To compute ML/L ∼= ML⊗S[L]S, we replace S[L] with S and any occurrences of zv with

1K. This gives the cyclic Zn/L-graded S-module

ML ⊗S[L] S ∼= S/
〈
xu − xv

∣∣ u,v ∈ Zn≥0 , u− v ∈ L
〉

∼= S/IL ,

(2.35)

where IL is the lattice ideal generated by L. Lattice ideals are a well studied class of

ideal via toric geometry and commutative algebra; see [66, §2] for more details.

This functor does not just give us a construction for modules, it also allows us to

transfer homological data of the modules.

Theorem 2.2.8. ([20, Theorem 3.2]) The functor π sending M to M/L ∼= M ⊗S[L] S

is an equivalence of categories.

A corollary of Theorem 2.2.8 is that π is exact ; it preserves exact sequences. Therefore

for any (minimal) free resolution of a Zn-graded S[L]-modules M , we immediately get

a (minimal) free resolution of the Zn/L-graded S-module M/L. In particular, it allows
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us to construct Betti numbers for M/L that we can pull back to equivalence classes of

Betti numbers of M as an S-module.

Remark 2.2.5 states we can construct the hull resolution for any Laurent monomial

module; this includes M as an S-module. As it is not finitely generated, hull(M) will be

an infinite polyhedral complex. However, the hull resolution itself is L-equivariant: the

action of L onto M extends to the entire resolution. Therefore the hull resolution of M

induces a finite free resolution of S[L]-modules

Fhull(M) : 0 S[L]β0 S[L]β1 . . . S[L]βk 0
∂1 ∂2 ∂k

(2.36)

where βi =
∑

u∈Zn βi,u is the number of i-dimensional faces of hull(M) modulo the action

of L. Applying the functor π gives a Zn/L-graded free resolution of M/L

Fhull(M/L) : 0 Sβ0 Sβ1 . . . Sβk 0
∂1 ∂2 ∂k

. (2.37)

Furthermore, Fhull(M) is minimal if and only if Fhull(M/L) is by exactness of π.

Example 2.2.9. Consider the lattice L = (3, 5, 8)⊥ ∩ Z3. This is the lattice of integer

points whose inner product with (3, 5, 8) is zero. The hull complex of ML is the infinite

polyhedral complex pictured on the left of Figure 2.11. The vertices of hull(ML) are the

lattice points of L, while the remaining cells form a triangulation of the plane.

A “section” of hull(ML) is pictured on the right of Figure 2.11. Under the action of

L, this piece tiles the entire hull complex without overlap, and so its cells describe each

of the equivalence classes of cells of hull(ML). From this, we compute the free resolution:

Fhull(ML) : 0 S[L] S[L]3 S[L]2 0
∂1 ∂2

(2.38)

Furthermore, applying π yields a Zn/L-graded free resolution of S-modules for π(ML) ∼=
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(0, 0, 0)

(1, 1,−1)

(5,−3, 0)

(4,−4, 1)

Figure 2.11: The hull complex of ML from Example 2.2.9, pictured left, and its equiva-
lence classes of cells upto the action of L, pictured right.

S/IL.

0 S(−(0, 0, 0))

S(−(1, 1, 0))

⊕ S(−(5, 0, 0))

⊕ S(−(4, 0, 1))

S(−(5, 1, 0))

⊕ S(−(5, 0, 1))

0 (2.39)

We compute the twists of S by taking the max of the lattice points contained in each cell.

In this case, the free resolution for S/IL is minimal; note that this is not true in general.
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Matching fields and lattice points

of simplices

The following is based on the paper “Matching fields and lattice points of simplices” by

Georg Loho and the author [61].

3.1 Tope fields

Fix a pair (n, d) of positive integers where n ≥ d. We study bipartite graphs on two

node sets L and R, where |L| = n and |R| = d. Since they are defined on the same set

of nodes, we will often identify them with their set of edges written as pairs of nodes.

The elements of L are denoted by `1, . . . , `n, the elements of R by r1, . . . , rd. We refer

to nodes in L as left nodes and nodes in R as right nodes. The left degree vector is the

tuple of node degrees of `1, . . . , `n; we define the right degree vector analogously for the

elements in R.

For two finite sets A ⊆ B we denote the characteristic vector of A in B by eBA , where

we omit the reference set B if it is clear from the context.

Definition 3.1.1. Let (v1, . . . , vd) be a tuple of positive numbers with
∑d

i=1 vi = k ≤ n.

48
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For a k-element subset σ of L, we define a tope of type (v1, . . . , vd) to be a bipartite

graph whose right degree vector is its type and the left degree vector is eσ. An (n, d)-tope

field of type (v1, . . . , vd) is a set of topes M = (Mσ) with a unique tope Mσ for each

σ ∈
([n]
k

)
. The sum k =

∑d
i=1 vi is the thickness of the tope field. If the thickness is d,

the type is e[d] and the tope field is a matching field. If the thickness is n, the tope field

has a single tope with left degree vector e[n] that we call maximal.

Note that our definition of topes differs slightly from the original definition in [11] as

we insist that all right nodes must have positive degree. The recent work [42] refers to

them as semi-matchings and also allows topes to have isolated right nodes. We shall see

that these topes can be considered as lying ‘at the boundary’.

There is a natural arbitrariness in the role of L and R. The previous definition is for a

left tope field, a right tope field can be defined analogously for |L| ≤ |R|. This distinction

will become more necessary later. Note that a tope field can also be considered as a set

of surjective functions Mσ : σ ! R where
∣∣M−1

σ (ri)
∣∣ = vi.

A sub-tope field is a tope field which consists of the induced subgraphs on J t I for

subsets J ⊆ L and I ⊆ R. Note that in general the induced subgraphs on J t I do not

form a tope field.

Observe that tope fields generalise matching fields in the sense of [85] and each graph

is a tope in the sense of [11]. Examples of matching and tope fields are given in Figures 3.1

and 3.2.
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Figure 3.1: A (4, 2)-matching field.

Example 3.1.2. The most natural and well-behaved examples of matching fields are

obtained from a generic matrix A ∈ Rn×d. The minimal matchings in the complete
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Figure 3.2: A (4, 2)-tope field of type (2, 1) with thickness 3.

bipartite graph Kn,d weighted by the entries of A give rise to a matching field. Such a

matching field is called coherent, c.f. [85]. If A is not generic, one can slightly perturb

the matrix to obtain a unique matching on each d-subset of [n]. Alternatively, one could

just pick one minimal matching for each d-subset. However, the resulting matching field

may be arbitrarily unstructured as one sees if A is just the zero matrix.

This idea can be extended to obtain coherent tope fields in a similar fashion. Fix a

vector (v1, . . . , vd) ∈ Zd>0 with
∑d

i=1 vi = k ≤ n and a generic matrix A ∈ Rn×d. We

construct the matrix A ∈ Rn×k by replacing the column indexed by i in A with vi copies

of itself. Such a matrix gives rise to a complete bipartite graph Kn,k with weights A. The

coherent matching field arising from A naturally yields a tope field of type (v1, . . . , vd)

by setting M−1
σ (ri) to the set of nodes in σ adjacent to a copy of ri in the matching on

Kn,k.

The process of duplicating the columns in the definition of a coherent tope field

motivates the next construction.

Example 3.1.3. An (n, d)-tope field M = (Mσ) of type (v1, . . . , vd) gives rise to an

(n, k)-matching field N where k =
∑d

i=1 vi. For each node ri ∈ R we introduce vi nodes

r
(1)
i , . . . , r

(vi)
i . Let j(1) < . . . < j(vi) be the increasing list of indices denoting the elements

in M−1
σ (ri). By setting Nσ(`j(t)) = r

(t)
i for each t ∈ [vi] and all i ∈ [d], we obtain a

matching field N = (Nσ). We call this matching field the increasing splitting of the tope

field.

Observe that one could also consider partial splitting from a coarser to a finer tope
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field. Furthermore, note that the splitting depends on the ordering of the split copies of the

nodes in R. This construction can be seen as a ‘refinement’ of the tope field, analogous

to a refinement of a polyhedral subdivision in [28, Definition 2.3.8]. In particular, the

linkage covectors, see Definition 3.2.6, of the increasing splitting can be seen as full

dimensional cells in a staircase triangulation of ∆n−1 ×∆d−1.

3.1.1 An important example

For the polyhedral background we refer to [28].

The construction in [72] connecting matching fields and triangulations of a product

of two simplices motivates us to investigate matching fields and their connection to

polyhedral constructions further.

Recall that the maximal simplices in a triangulation of ∆n−1 ×∆d−1 are given by a

set of spanning trees on the bipartite node set LtR with |L| = n, |R| = d, which fulfil the

axioms given by Ardila & Billey [10]. A simplex with vertices (ej1 , ei1), . . . , (ejk , eik) ∈

∆n−1 ×∆d−1 corresponds to the bipartite graph with edges (`j1 , ri1), . . . , (`jk , rik).

Proposition 3.1.4 ([10, Proposition 7.2]). A set of trees encodes the maximal simplices

of a triangulation of ∆n−1 ×∆d−1 if and only if:

1. Each tree is spanning.

2. For each tree G and each edge e of G, either G − e has an isolated node or there

is another tree H containing G− e.

3. If two trees G and H contain perfect matchings on J t I for J ⊆ L and I ⊆ R with

|J | = |I| then the matchings agree.

We wish to study the connection to triangulations of ∆n−1 × ∆d−1, therefore all

trees we refer to will be spanning trees of the complete bipartite graph on LtR, unless

otherwise stated.
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Most of our arguments are independent of the embedding of the product of simplices.

For the next proposition we choose the canonical embedding

∆n−1 ×∆d−1 = conv{(ej , ei) | j ∈ [n], i ∈ [d]} ⊆ Rn+d .

Oh & Yoo introduced in [72] the ‘extraction method’ which collects the set of all partial

matchings occurring in the trees encoding the triangulation. The fact that we obtain a

matching field by taking all matchings of size d occurring in the trees can be deduced

from the following polyhedral construction.

Proposition 3.1.5. Let Σ be a triangulation of ∆d−1 ×∆d−1. Then the bipartite graph

G corresponding to the minimal cell (with respect to inclusion) containing the barycentre

g = (1
d , . . . ,

1
d) of ∆d−1 ×∆d−1 is a perfect matching on [d] t [d].

Proof. By the first condition of Proposition 3.1.4, the bipartite graph G is a subgraph

of a tree, and therefore is a forest. Each point in the cell corresponding to G is a unique

convex combination of its vertices, in particular g. Define λ to be the weight function

which assigns to each edge of G its coefficient in the representation of g. By minimality,

λ 6= 0 for all the edges. G contains a node of degree 1 as it is a forest. The weight of the

incident edge e has to be 1
d as it determines the coordinate corresponding to the node of

degree 1. Therefore, the other node incident with e has degree 1 as well. By induction,

this implies the claim.

Iterating the construction of Proposition 3.1.5 over all faces of ∆n−1 ×∆d−1 of the

form

conv{ej | j ∈ σ} ×∆d−1 for σ ∈
(

[n]

d

)
gives a perfect matching on each σ t [d], producing a matching field.
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3.1.2 Compatibility, trees and topes

Arbitrary matching fields have very little structure, hence we shall study properties

of matching fields which occur in connection to polyhedral constructions. The third

condition in Proposition 3.1.4 motivates the following notion which was coined in the

context of tropical oriented matroids [11].

Definition 3.1.6. Two forests F1 and F2 on the same node set LtR are incompatible

if there exist subsets J ⊆ L and I ⊆ R such that F1 and F2 contain different perfect

matchings on J t I. Otherwise, F1 and F2 are compatible.

Note that we mainly apply this definition to matchings, topes and trees. The next

lemma already occurs in [72] but we give a proof to clarify our terminology.

Lemma 3.1.7 ([72, Lemma 3.7]). Let T1 and T2 be distinct topes defined on L t R. If

they have the same left and right degree vector, then they are incompatible.

Proof. Consider the symmetric sum of the edges of T1 and T2. Direct the edges of T1

from L to R and of T2 conversely. In the resulting graph, the indegree and the outdegree

of each node are equal. Hence, the graph contains a directed cycle. This consists of two

different partial matchings on the same node set in T1 and T2.

There is an analogous statement for trees.

Lemma 3.1.8 ([74, Lemma 12.8]). Let T1 and T2 be two different spanning trees on

LtR. If they have the same left degree vector or the same right degree vector then they

are incompatible.

Proposition 3.1.9. Let G be a spanning tree on L t R with right degree vector v =

(v1, . . . , vd). For each rk ∈ R, there is a unique maximal tope with right degree vector

v − e[d]\{k} contained in G.

Proof. For each path from rk to another node in R remove the last edge in that path.
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Figure 3.3: Two compatible trees with right degree vectors (3, 2) and (2, 3) respectively.
The common (red) edges form a tope with right degree vector (2, 2).

The resulting graph is the desired tope. To show uniqueness, suppose there is another

tope with right degree vector v−e[d]\{k} contained in G. By Lemma 3.1.7, the two topes

are incompatible. This gives a contradiction as the union of the topes contains a cycle

and G does not.

Corollary 3.1.10. Let T1 and T2 be two compatible spanning trees where the first has

right degree vector v and the second v + ep − eq. Then their intersection contains a

maximal tope with right degree vector v− e[d]\{p}. Furthermore, if `s has degree 1 in both

T1 and T2 then the trees agree on the edge adjacent to `s.

Proof. Proposition 3.1.9 ensures that both trees contain a tope with right degree vector

v− e[d]\{p}. Those topes agree as a consequence of Lemma 3.1.7 because of the compat-

ibility of T1 and T2. If `s has degree 1 in both trees, the edge adjacent to it must be

contained in the unique tope in their intersection.

Proposition 3.1.9 and Corollary 3.1.10 emphasise the structural relationship between

topes and trees, in particular how to recover one from the other. Figure 3.3 shows an

example of recovering topes from intersections of trees. However, as we shall later see,

we can take unions of topes to recover trees.

We can build on these results to find even stronger local conditions on compatible

trees. The following lemma captures a combinatorial analogue of certain geometric

properties explained in Example 3.1.12.
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Lemma 3.1.11. Let T1 and T2 be two compatible spanning trees on L t R with right

degree vectors v and v + ep − eq respectively. If (`s, rp) is an edge in T1 then it is also

an edge in T2. Furthermore, the degree δ1 of `s in T1 is bigger or equal to its degree δ2

in T2.

Proof. By Corollary 3.1.10, the intersection T1 ∩ T2 contains a tope with right degree

vector v − e[d]\{p}. The first claim follows directly from this, as if (`s, rp) is an edge in

T1, it is contained in this tope, and therefore T2.

For the second claim, we define an auxiliary graph H as follows. We take the union of

the graphs T1∪T2 and make the following alterations. We direct the edges of T1\T2 from

R to L and direct the edges of T2 \ T1 from L to R. Finally we contract the remaining

undirected edges, those in the intersection of T1 and T2. Note that these undirected

edges form a spanning forest on L t R. The resulting graph is our auxiliary graph H,

whose nodes correspond to connected components of T1∩T2. We label each node by the

subset of nodes of L t R in the connected component that has been contracted to that

node.

As the node ri ∈ R \ {rp, rq} has the same degree in T1, T2, every node V such that

rp, rq /∈ V has in-degree equal to out-degree. This implies for every node V such that

rp /∈ V , we have an outgoing arc. Assume that δ2 > δ1. Then an edge in T2 incident

with `s gives rise to an out-going arc from the node containing rp in H. Hence, each

node in H has an out-going arc which implies the existence of a cycle in this auxiliary

graph. This however contradicts the compatibility of T1 and T2.

Example 3.1.12. The intuition behind Lemma 3.1.11 can be seen via arrangements

of tropical hyperplanes. A tropical hyperplane H is a translation of the normal fan of

∆d−1, decomposing Rd−1 into d sectors S(1), . . . , S(d) labelled by the vertices of ∆d−1.

Develin and Sturmfels [29] showed that the covectors (‘types’ in their terminology) la-
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Figure 3.4: An arrangement of two tropical hyperplanes in R2 and their corresponding
trees. T1, T2 correspond to the apexes of the hyperplanes, while T3 is the tree corre-
sponding to their intersection.

belling the cells of a tropical hyperplane arrangement also describe a regular subdivision

of ∆n−1 × ∆d−1. In a generic arrangement, this yields a set of trees encoding the ar-

rangement. They can be extracted from the arrangement via the zero dimensional cells:

the corresponding tree contains the edge (`j , ri) if the cell is contained in S
(i)
j , sector i of

hyperplane j.

Consider the example depicted in Figure 3.4. The trees T1 and T2 are the covectors of

the apexes of the corresponding hyperplanes H1 and H2. The edge (`1, r1) in T1 implies

that the corresponding cell is in the sector S
(1)
1 . As r1 has a larger degree in T2, walking

to the apex of H2 requires us to move further in the ‘1-direction’, and therefore we do not

leave S
(1)
1 . Lemma 3.1.11 is a purely combinatorial description of this behaviour that also

covers the non-regular case. This will later motivate our definition of a combinatorial

analogue of tropical hyperplane sectors.

3.2 Linkage matching fields

Recall from [85] the definition of the linkage property of a matching field.

Definition 3.2.1. Let M = (Mσ) be an (n, d)-matching field where n ≥ d. We say M

is linkage if the following linkage axiom holds: for every ri ∈ R and (d+1)-subset τ ⊆ L

there exist two distinct `j , `j′ ∈ τ such that the matchings Mτ\{`j} and Mτ\{`j′} agree

everywhere other than on ri.



Chapter 3. Matching fields and lattice points of simplices 57

Remark 3.2.2. When considering a matching field as a set of bipartite graphs, it will

be useful to differentiate between left linkage and right linkage. The previous definition

is for left linkage as it describes how matchings on varying subsets of L are linked. Right

linkage is defined analogously for matchings of right matching fields, where |R| ≥ |L| and

one ranges over all (|L|+ 1)-subsets of R.

Reformulating the conditions from [85, Theorem 2.4(3)] and [85, Corollary 2.12] yields

the following.

Lemma 3.2.3. The linkage axiom is equivalent to the following condition: let τ be a

(d + 1)-element subset of L. Then the union of all matchings on τ t R is a tree where

all right nodes have degree 2.

Note that the formerly described trees can also be characterised in terms of ‘support

sets’ in the sense of [38, Proposition 2.6]. This yields another description of matching

linkage covectors, see Definition 3.2.6, based on degree conditions.

The linkage axiom can be formulated in even more ways, the following of which we

take advantage of:

Lemma 3.2.4. [25, Theorem 2b] The linkage axiom is equivalent to the following prop-

erty: for every two distinct d-subsets σ, σ′ ⊂ L there exists `j′ ∈ σ′\σ such that if (`j′ , ri)

is an edge of Mσ′ and (`j , ri) is an edge of Mσ then the matchings Mσ and Mσ\{`j}∪{`j′}

agree everywhere other than on ri.

The linkage property implies the compatibility of the occurring matchings as the next

statement shows.

Proposition 3.2.5 (Weak compatibility). Let M be a linkage matching field of type

(n, d) with n ≥ d and let σ, σ′ be two d-element subsets of L. If there are subsets

P ⊆ σ ∩ σ′ and Q ⊆ R with |P | = |Q| such that Mσ|PtQ and Mσ′ |PtQ are perfect

matchings then those matchings agree.
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Figure 3.5: A (4, 3)-matching field whose matchings are compatible. Note that the
matching on {`1, `3, `4} does not agree with any other matching on two edges, and
therefore the matching field does not satisfy the linkage property. Equivalently, the
union of the matchings contains a cycle and, hence, it is not a tree.

Proof. The claim follows by induction on the size of the intersection σ ∩ σ′. For σ = σ′

the claim is just the fact that there is exactly one matching per d-element subset in

the matching field. Otherwise, by Lemma 3.2.4, there is an `j′ ∈ σ′ \ σ with certain

properties. Since `j′ 6∈ P , the node ri adjacent to `j′ in Mσ′ is not an element of Q.

Hence, the node `j adjacent to ri in Mσ is not in P . By Lemma 3.2.4, the matching

on σ′′ = σ \ `j ∪ {`j′} is uniquely defined and also contains Mσ|PtQ. Furthermore,

|σ′′∩σ′| = |
(
σ \ `j ∪ {`j′}

)
∩σ′| = |σ∩σ′|+1. This concludes the proof by induction.

Observe that compatibility is a weaker condition than linkage. Figure 3.5 shows an

example of a matching field whose matchings are pairwise compatible but do not satisfy

linkage.

We have now gathered the necessary tools to construct a linkage tope field from a

linkage matching field.

3.2.1 Tope fields from matching fields

Definition 3.2.6. We say that an (n, d)-tope field of type (v1, . . . , vd) with thickness k

is linkage if for all (k + 1)-subsets τ of L, the union of the topes on τ is a tree. Such a

tree is a (tope) linkage covector. In particular, an (n, d)-matching field is linkage if for

all (d+ 1)-subsets τ of L, the union of the matchings on τ is a tree. We call this tree a

(matching) linkage covector.

Remark 3.2.7. The linkage covectors of a matching field are essentially the same as
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linkage trees defined in [85]. One can transform a matching linkage tree to a linkage

covector by replacing the edge (j, j′) with label i by the edges (`j , ri), (`j′ , ri). Linkage

trees will play a role in results on the flip graph of a matching field in Section 3.2.4.

Example 3.2.8. Consider the matching field and tope field given in Figures 3.1 and 3.2.

Both of these are linkage with the corresponding linkage covectors given in Figure 3.6.
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Figure 3.6: The four matching linkage covectors from the (4, 2)-matching field and the
one tope linkage covector from the (4, 2)-tope field.

Example 3.2.9. We continue to highlight the relationship to triangulations of the poly-

tope ∆n−1 × ∆d−1 started in Subsection 3.1.1. Let τ ⊆ L be a (d + 1)-subset. The

triangulation induced on the product

conv{ej | `j ∈ τ} ×∆d−1 ,

which is a face of ∆n−1×∆d−1, contains a unique maximal simplex whose corresponding

tree has right degree vector 2 · e[d] by [74, Theorem 12.9]. This is the linkage covector

of the matching field on τ as can be seen from Proposition 3.1.9. This follows as it

contains all the matchings on the d-subsets of τ and, hence, their union is just this tree.

Hence, the matching field derived from a triangulation is linkage, as also stated in [72].

Restricting to regular subdivisions, this implies that coherent matching fields are linkage,

see Example 3.1.2 and [85].

A matching field derived from a non-regular triangulation is depicted in Figure 3.7.

The picture on the left shows the non-regular fine mixed subdivision which corresponds

to a non-regular triangulation of ∆5×∆2 by the Cayley trick, both of which can be found

in [28]. Every cell contains an ‘upward’ unit simplex, in particular cells who do not share
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Figure 3.7: The maximal linkage covectors of a matching field extracted from the interior
cells of a non-regular subdivision of 6∆2 (example from [28, Figure 9.53]). Each cell
contains a unique grey simplex, the interior one being in bijection with the lattice points
of the simplex 2∆2.

a facet with the boundary have their upward simplices coloured grey. The right side shows

the bipartite graphs describing the maximal simplices corresponding to the grey upward

simplices on the left. They are in bijection with the lattice points given by the right degree

vectors of the trees on the right. Inner cells that do not share a facet with the boundary

correspond to those trees whose right degree vector does not contain a 1 entry.

The next lemma together with Lemma 3.2.3 shows that Definition 3.2.6 agrees with

Definition 3.2.1 for matching fields.

Fix a linkage (n, d)-tope field M of type v and thickness k. Consider a linkage

covector C on τ tR with |τ | = k + 1.

Lemma 3.2.10. For each ri ∈ R, there are exactly vi + 1 nodes adjacent to ri in C.

Furthermore, for each `j ∈ τ , C contains the unique tope of the tope field with right

degree vector v such that `j is isolated.

Proof. Fix a node ri ∈ R and consider two different topes which have only isolated nodes

in L\τ . Choose the second such that a neighbour of ri is isolated in the first. This shows

that ri is adjacent to at least vi + 1 nodes. Furthermore, summing up degrees across all
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nodes shows ri must have exactly vi + 1 neighbours, else C is not a tree.

For the second claim, the containment of such a tope is guaranteed by the definition

of a linkage covector. Now, suppose the tope is not unique; then Lemma 3.1.7 implies

that C contains a cycle.

Our next construction starts to connect tope fields of different types.

Lemma 3.2.11. For each ri ∈ R, the tope linkage covector C contains a unique tope

with right degree vector v + ei. It is obtained as the union of topes of Lemma 3.2.10.

Proof. Proposition 3.1.9 gives the first claim. For the second claim, consider `j , `j′

adjacent to ri. Removing either of these nodes yields a tope of type v contained in the

tope of type v + ei. By Lemma 3.2.10 these topes are unique, therefore we can realise

the tope of type v + ei as the union of them.

For every (k + 1)-subset τ ⊆ L, there is a corresponding linkage covector Cτ . Fix

some ri ∈ R. By Lemma 3.2.11, there exists a unique tope Gτ of type v + ei contained

in Cτ .

Definition 3.2.12. The set of the graphs Gτ is the i-amalgamation of the tope field M.

This is a tope field of type v + ei.

Example 3.2.13. The (4, 2)-tope field of type (2, 1) in Figure 3.2 can be induced from

the (4, 2)-matching field in Figure 3.1 with the construction from Proposition 3.1.9. The

topes are obtained from each of the linkage covectors by taking the 1-amalgamation, as

we demonstrate in Figure 3.8.

In the following, we fix a (k + 2)-subset σ ⊆ L and denote the tope Gσ\`s by Gs.

Lemma 3.2.14. Let Gj and Gj′ be two topes in the i-amalgamation of the (n, d)-tope

field M. Then the neighbourhood of ri differs by at most one element in Gj and Gj′.
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Figure 3.8: The (4, 2)-tope field in Figure 3.2 arising as the 1-amalgamation of the
(4, 2)-matching field in Figure 3.1.

Proof. The two topes are subgraphs of the linkage covectors Cj := Cσ\`j and Cj′ := Cσ\`j′

respectively. The two linkage covectors Cj and Cj′ have a tope in common, namely the

tope on σ \ {`j , `j′} t R with right degree vector v, which is unique by Lemma 3.2.10.

As Gj contains all edges of Cj incident with ri ∈ R, in particular those in the common

tope, the neighbourhood of ri differs by at most one element in Gj and Gj′ .

Now we can prove the crucial observation that the linkage property is preserved under

amalgamation.

Proposition 3.2.15. The i-amalgamation of a linkage tope field of type v is a linkage

tope field of type v + ei.

Proof. Let σ ⊆ L be a (k + 2)-subset and define G as the union of the topes Gτ in the

i-amalgamation where τ ⊂ σ ranges over the (k + 1)-subsets. We claim that G is a

spanning tree with right degree vector v+e[d] +ei. Without loss of generality, we assume

σ = {`1, . . . , `k+2} and i = 1. At first, we want to show that the degree of r1 is v1 + 2.

Assume `1 is adjacent to r1 in G. The tope G1 has v1 + 1 nodes adjacent to r1,

assume these are {`2, . . . , `v1+2}. Hence r1 has at least degree v1 + 2 in G.



Chapter 3. Matching fields and lattice points of simplices 63

Let Gs be a tope containing the edge (`1, r1). By Lemma 3.2.14, all other neighbours

of r1 in Gs form a v1-subset of {`2, . . . , `v1+2}. Define `t to be the unique node such that

{`1, `2, . . . , `v1+2} \ {`t} is the neighbourhood of r1 in Gs. Consider a tope Gj for j ∈

[v1+2]\{t}. Comparing it with G1 and Gs, Lemma 3.2.14 shows that the neighbourhood

of r1 in Gj is {`1, `2, . . . , `v1+2} \ {`j}. Comparing Gt with such a Gj and G1, the

same argument yields that the neighbourhood of r1 in Gt is {`1, `2, . . . , `v1+2} \ {`t}.

Analogously, by comparing with G1 and G2, we obtain that the neighbourhood of r1 in

Gj for j > v1 + 2 is a subset of {`1, `2, . . . , `v1+2}. Therefore r1 has degree v1 + 2 in G.

Lemma 3.2.10 implies that G1, . . . , Gv1+2 must agree on σ \{`1, . . . , `v1+2}tR\{r1}.

Explicitly, for any two topes Gs, Gt, removing the edges (`t, r1) and (`s, r1) from each

graph gives two topes of type v on σ \ {`s, `t}. These topes are equal, as they are the

common tope between Cs and Ct.

Fix a node ri ∈ R \{r1}, we want to show that it has degree vi+ 1. Assume that this

is not the case, let `j1 , . . . , `jvi ∈ σ be the nodes adjacent to ri in Gm for all m ∈ [v1 + 2].

Then there are nodes `jp , `jq ∈ σ \ {`j1 , . . . , `jvi} and `p, `q ∈ σ such that `jp is adjacent

with ri in Gp and `jq is adjacent with ri in Gq.

By Lemma 3.2.14, Gp and Gq agree on at least v1 edges adjacent to r1, assume

without loss of generality they are (`1, r1), . . . , (`v1 , r1). Then Gv1+1, Gp and Gq all

contain these edges. Remove the edge (`1, r1) from each graph, the resulting graphs are

all topes of type v contained in the linkage covector C1. This implies that ri is adjacent

to `j1 , . . . , `jvi , `jp , `jq in C1, contradicting the property that ri has degree vi + 1 in C1.

Finally, we prove that G is a tree. Assuming the opposite, the degree conditions

imply that it is not connected. Then there are disjoint decompositions σ = J ∪ J and

R = I ∪ I such that r1 ∈ I and there are no edges between J and I as well as between I

and J . For each `j ∈ σ, G contains a tope with right degree vector v+ e1 such that `j is

isolated, therefore we obtain |J | ≥ 2 +
∑

ri∈I vi and |J | ≥ 1 +
∑

ri∈I vi. This contradicts

|J |+ |J | = k + 2 =
∑

ri∈I vi +
∑

ri∈I vi + 2.
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This allows us to apply sequences of i-amalgamations to obtain a maximal tope from

a linkage (n, d)-matching field for any right degree vector (v1, . . . , vd) such that
∑
vi = n.

We refer to this construction as iterated amalgamation.

Theorem 3.2.16 (Iterated amalgamation). From a linkage matching field, we can con-

struct maximal topes for all positive right degree vectors with sum n. Each one is the

unique tope with a given right degree vector that is compatible with the matching field.

Proof. We can apply Proposition 3.2.15 to obtain linkage tope fields with increasing

thickness. By applying an i-amalgamation vi − 1 times iteratively for i from 1 to d, we

construct a linkage tope field of type (v1, . . . , vd). Note that a tope field with
∑d

i=1 vi = n

contains only a single tope.

Moreover, there is exactly one tope with right degree vector (v1, . . . , vd) which is com-

patible with the original linkage matching field. Assume, on the contrary, that there are

two such topes T1 and T2. As a result of Lemma 3.2.11, all the matchings in these topes

are matchings of the matching field or submatchings of those. By Lemma 3.1.7, these

topes differ in a matching. This implies that the contained matchings are not weakly

compatible which contradicts Proposition 3.2.5. Finally, this implies the uniqueness and

compatibility.

Remark 3.2.17. The tope linkage covectors arising from iterated amalgamation do not

have to be compatible, see Example 3.2.18. Note, however, that the tope linkage covector

is the only tree of that right degree vector which is possibly compatible with the matching

field. This follows from Proposition 3.1.9 since it is uniquely determined by the contained

maximal topes. In particular, if that tope linkage covector is not compatible with the

matching field then there does not exist a tree with the same right degree vector that is.

Note that such matching fields cannot be realised by a fine mixed subdivision of n∆d−1.

Example 3.2.18. Consider the (6, 4)-linkage matching field M given by the linkage

covectors of matchings in Figure 3.9. Note that there are multiple pairs of trees that are
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not compatible. In particular, the fourth tree contains a matching on {`5, `6} t {r1, r2}

which is incompatible with the matching of M on {`3, `4, `5, `6} that is contained in the

fifth and sixth trees. Incompatibility does not affect the amalgamation process and so

there is still a unique maximal tope for each (v1, . . . , vd) such that
∑
vi = 6 and vi ≥ 1.

These are given in Figure 3.10 by their bijection to the lattice points of 2∆3.

Figure 3.11 shows the tope linkage covectors that the maximal topes are derived from.

They too have a natural lattice point bijection given by their right degree vectors as

there is one for each (v1, . . . , vd) such that
∑
vi = 9 and vi ≥ 2. However, we note

that multiple covectors have the same left degree vectors. By [74, Theorem 12.9], these

covectors cannot encode the maximal cells of a triangulation of ∆5 × ∆3, and so this

matching field is not realisable by a fine mixed subdivision of 6∆3.

The bijections between various graphs and lattice points will be explored further in

Section 3.2.2.
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Figure 3.9: The linkage covectors of the linkage matching field discussed in Exam-
ple 3.2.18.

3.2.2 Chow covectors

The graphs in the next definition were first introduced in [85] in the guise of brackets.

They were used to explicitly describe extremal terms of the Chow form of the variety

of complex degenerate (n× d)-matrices, as well as to describe a universal Gröbner basis

of the ideal generated by the maximal minors of a matrix of indeterminates. We shall

define and consider them in purely combinatorial terms as bipartite graphs.

Definition 3.2.19. Let M = (Mσ) be a matching field. For every (n − d + 1)-subset
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Figure 3.10: The (6, 4)-tope arrangement of maximal topes derived from the matching
field in Example 3.2.18. There is a natural bijection with the lattice points of 2∆3 via
their right degree vector minus e[d].

Figure 3.11: The tope linkage covectors that the maximal topes in Figure 3.10 are derived
from. There is a natural bijection with the lattice points of ∆3 via their right degree
vector minus e[d].

ρ ⊂ L we define the Chow covector as the graph of the mapping Ωρ : ρ! R with

Ωρ(j) = Mρ̄∪{j}(j)
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where ρ̄ = L \ ρ.

Remark 3.2.20. The Chow covectors have a combinatorial characterisation that we

shall exploit later. A graph G on LtR is transversal to a matching field M if G∩M 6=

∅ for all M ∈ M. Bernstein and Zelevinsky [25, Theorem 1] showed that the Chow

covectors are the minimal transversals to a matching field.

Figure 3.12: The topes and Chow covectors corresponding to the (6, 3)-matching field
from Figure 3.7, presented via their bijection to ∆Z(d, n − d) and ∆Z(d, n − d + 1)
respectively. The topes are coloured red and the Chow covectors are coloured blue.

Again, fix a linkage (n, d)-matching field M. We will derive the Chow covectors

of a linkage matching field from its topes. To do this we need a statement similar to

Lemma 3.1.11.

Lemma 3.2.21. Let T1 and T2 be two compatible topes with right degree vectors v and

v + ep − eq (where vq ≥ 2). The edges incident with rq in T2 are all contained in T1.

Proof. We define an auxiliary directed graph H on L t R. The set of arcs is given by
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the edges of T1 \ T2 directed from L to R and of T2 \ T1 directed from R to L. Observe

the following degree properties of H. Every node in L has in-degree equal to out-degree

equal to either 1 or 0. Every node in R \ {rp, rq} has in-degree equal to out-degree.

Now, assume that the claim does not hold, which means that rq has in-degree bigger

or equal to 2. As the out-degree of rq is just 1 less than the in-degree, it has out-degree

at least 1. Consequently, since the sum of the right degree of T1 and T2 are the same,

the out-degree of rp has to be bigger or equal to 2. Hence, all non-isolated nodes have

out-degree at least 1 which means that H contains a directed cycle. This is necessarily

alternating between edges of T1 and T2. However, this contradicts the compatibility of

T1 and T2, concluding the claim.

Proposition 3.2.22. Given a linkage matching fieldM, there is a unique Chow covector

with right degree vector v associated to M. It can be constructed from the intersection

of the maximal topes of M with right degree vector v + e[d]\{i} for i ∈ [d].

Proof. Let v be a vector of non-negative integers with coordinate sum n − d + 1. We

fix a node ri ∈ R and consider the graph obtained by intersecting the topes with right

degree vectors v+ e[d]\{i}. If vi = 0, there is no tope with right degree vector v+ e[d]\{i}.

Instead, we delete any edge adjacent to ri from the graph. Denote this graph by G.

By Lemma 3.2.21, the topes which we intersect agree on the edges of the tope where a

given node has degree vi. For an example, see the red graphs surrounding a blue graph

in Figure 3.12. Hence, G has n− d+ 1 edges, each node ri ∈ R has degree vi and there

are n− d+ 1 nodes in L with degree 1, all others having degree 0.

Let ρ ⊂ L be the set of left nodes with degree 1 in G. We claim that G is the

Chow covector Ωρ. Fix an `j ∈ ρ adjacent to the node ri. The maximal tope with right

degree vector v + e[d]\{i} exists, and contains a matching on (L \ ρ) ∪ {`j}. Explicitly,

it is precisely the union of the edges not contained in G with (`j , ri). This has to be a

matching of the matching field by Lemma 3.2.11. Hence, Ωρ is a subgraph of G and,

hence, equal because of the given degrees of G.
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Consider the dilated simplex n∆d−1 with its canonical embedding into Rd. We denote

the set of integer lattice points of n∆d−1 by ∆Z(d, n). Observe that Theorem 3.2.16 gives

a bijection between the set of maximal topes of a matching field and ∆Z(d, n − d) by

mapping a tope with right degree vector v to the lattice point v − e[d]. Sturmfels and

Zelevinsky [85, Conjecture 6.10] conjectured a similar bijection for Chow covectors. The

construction in Proposition 3.2.22 allows us to complete the proof of this conjecture.

Theorem 3.2.23. The map from the Chow covectors of a linkage (n, d)-matching field

to the lattice points of (n− d+ 1)∆d−1 is a bijection.

Proof. For each element of ∆Z(d, n − d + 1), Proposition 3.2.22 gives us an explicit

construction of the Chow covector with that right degree vector, therefore this map is

surjective. Furthermore, the set of Chow covectors and ∆Z(d, n − d + 1) both have

cardinality
(

n
n−d+1

)
, therefore this map is a bijection.

Observe that the construction in Proposition 3.2.22 can be inverted.

Corollary 3.2.24. A linkage matching field is uniquely determined by its set of Chow

covectors.

Proof. Given the set of Chow covectors of a linkage matching field, we can recover the

tope with right degree vector v by taking the union of the Chow covectors with right

degree vector v − e[d]\{i}. By the last part of the construction in Proposition 3.2.22,

we know that the topes contain a matching on all d-subsets of L. As the topes are all

compatible this implies that those matchings form exactly the matching field.

Example 3.2.25. Figure 3.12 shows the topes, coloured red, corresponding to the (6, 3)-

matching field derived from the non-regular triangulation illustrated in Figure 3.7 (see

Subsection 3.1.1). As there is a unique tope for every possible right degree vector, these

form a bijection with ∆Z(3, 3), the lattice points of the simplex 3∆2. The Chow covectors,

coloured blue, of this matching field can be recovered from the topes via the procedure
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described in the proof of Proposition 3.2.22. There is precisely one for every lattice point

in ∆Z(3, 4) as encoded by their right degree vectors. The construction is closely related

to the mixed subdivision representation of a triangulation which is given by the Cayley

Trick [80].

As we will see in Section 3.3, the trees encoding a triangulation of ∆n−1 × ∆d−1

are completely determined by the pairs of lattice points given by their left and right

degree vectors. We show that this also holds for the bijection associated with the Chow

covectors. This is the generalisation of [85, Conjecture 6.8 b)] discussed below their

claim. For this, we need two lemmas.

Lemma 3.2.26. Given the set of Chow covectors of a linkage matching field on L tR,

the set {
Ω(j)
ρ

∣∣∣ Ω(j)
ρ restriction of Ωρ to (L \ {`j}) tR, `j ∈ ρ

}
is the set of Chow covectors of the induced submatching field on (L \ {`j}) tR.

Proof. A matching µ in the induced submatching field is a matching in the original

matching field that does not contain any edges adjacent to `j . By transversality from [25],

µ∩Ωρ is non-empty. As µ has no edges adjacent to `j this implies µ∩Ω
(j)
ρ is non-empty as

well and, hence, Ω
(j)
ρ is a transversal on the set ρ\{`j}. As it contains the same number of

edges as a Chow covector, by minimality it must be equal to the Chow covector Ωρ\{`j}.

Iterating over all ρ, we obtain all Chow covectors on (L \ {`j}) tR.

Finally, we need an analogous lemma to Lemmas 3.2.21 and 3.1.11.

Lemma 3.2.27. Let T1 and T2 be two Chow covectors with right degree vectors v and

v + ep − eq (where vq ≥ 1) constructed from the same linkage matching field. The edges

incident with rq in T2 are all contained in T1. Furthermore, if `s has degree 1 in both

covectors, T1 and T2 agree on the edge adjacent to `s.

Proof. The first claim follows from Lemma 3.2.21 with the construction in Proposi-
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tion 3.2.22. For the second, consider the tope with right degree vector v + e[d]\p. By

Proposition 3.2.22, both Chow covectors are contained in this tope and so agree with it

on the edge adjacent to `s.

LetM be a linkage matching field. Define ϕM :
( [n]
n−d+1

)
! ∆Z(d, n−d+1) to be the

bijection mapping ρ ∈
( [n]
n−d+1

)
to the right degree vector of Ωρ. We present a proof of

Conjecture 6.8 b) of [85] that this map uniquely determines the linkage matching field.

To do so, we introduce a combinatorial analogue to sectors of tropical hyperplanes, as

discussed in Example 3.1.12.

Definition 3.2.28. Let G be a collection of compatible bipartite graphs on LtR with a

bijective map G ! ∆Z(d, k) determined by right degree vectors for some k. The (open)

combinatorial sector S(i)
j is defined as follows:

S(i)
j = {G ∈ G | (`j , ri) ∈ G, `j has degree 1}

We have seen multiple classes of bipartite graphs with a bijection to lattice points

of dilated simplices, namely trees, topes and Chow covectors, and so we can define

combinatorial sectors for any of them. Furthermore, all have similar local properties

(see Lemmas 3.1.11, 3.2.21 and 3.2.27) that give a lot of structure to the combinatorial

sectors.

In particular, let G =
{

Ωρ

∣∣∣ ρ ∈ ( [n]
n−d+1

)}
where k = n − d + 1 and consider the

combinatorial sectors of the set of Chow covectors.

Theorem 3.2.29. A linkage matching field can be uniquely determined by its map ϕ.

Proof. We claim that we can reconstruct the Chow covectors from their left and right

degree vector pairs. As ϕM is given by these degree vectors, the theorem follows from

this claim and Corollary 3.2.24. We proceed by induction on n ≥ d. For n = d, the

matching field consists of one matching and the n Chow covectors are just the edges of
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the matching. The degree vector pair of an edge uniquely determines it, which implies

the claim for this case.

Assume that the claim is true for all linkage (k, d)-matching fields with d ≤ k < n and

let U be the set of degree vector pairs of the Chow covectors for a linkage (n, d)-matching

field. We get a non-disjoint decomposition

⋃
j∈[n]

Lj = U for Lj = {(u, v) | uj = 1} .

Now fix a j ∈ [n]. There is a partition of Lj in the sets

L(i)
j = {(u, v) | (`j , ri) ∈ Ωρ, Ωρ has degree vector (u, v) with uj = 1} .

Note that L(i)
j is the image of S(i)

j under the map that sends a Chow covector to its

degree vector pair.

From L(i)
j we can construct the set L(i)

j by removing the jth entry of the first com-

ponent and decreasing the ith entry of the second component for all the pairs in L(i)
j .

This corresponds to removing the edge (`j , ri). The resulting set

Lj =
⋃
i∈[d]

L(i)
j

is the set of degree pairs of the Chow covectors of the submatching field on (L \ {`j})tR,

by Lemma 3.2.26.

Here, we can apply induction and deduce that Lj uniquely defines the Chow covectors

with the contained degree vectors. From the partition into the L(i)
j we can recover to

which node `j is incident in the original Chow covector. Therefore, we can construct all

Chow covectors for which `j has degree 1. Ranging over all j ∈ [n], we get all the Chow

covectors.

It remains to show how to construct the set L(i)
j for each ri ∈ R, which we now
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demonstrate. Assume without loss of generality that i = 1 and apply Algorithm 1.

Algorithm 1 Construct the degree pairs of a combinatorial sector of Chow covectors

1: if uj = 1 for (u, v) with v1 = n− d+ 1 then
2: Kj  {(u, v)}
3: else
4: terminate
5: end if
6: h n− d
7: while h ≥ 0 do
8: for all (u, v) ∈ Lj with v1 = h do
9: if ∃k ∈ [d] : vk > 1: ∃w(k) : (w(k), v + e1 − ek) ∈ Kj then

10: Kj  Kj ∪ (u, v)
11: end if
12: h h− 1
13: end for
14: end while

Claim: Kj = L(1)
j .

Proof by induction There is a unique Chow covector Ωρ0 with the right degree

vector (n − d + 1)e1. If uj = 1 then `j is adjacent to r1 because of the structure of the

right degree vector. Line 2 in the algorithm guarantees that Ωρ0 is in Kj . Furthermore,

the edge (`j , r1) shows that it is also contained in L(1)
j .

Now, assume that Kj and L(1)
j agree in all elements whose first entry of the second

component is h+ 1 ≤ n− d+ 1.

Let (u, v) ∈ Lj such that v1 = h and (w, v + e1 − ek) ∈ Kj an element fulfilling the

condition in Line 9. These two vectors are the right degree vectors of two Chow covectors

Ωρ1 and Ωρ2 . Note that Kj ⊆ Lj . As, by the induction hypothesis, (`j , r1) is an edge of

Ωρ2 we can deduce with Lemma 3.2.27 that this is also an edge of Ωρ1 . Hence, (u, v) is

an element of L(1)
j .

Conversely, let (u, v) ∈ L(1)
j be with v1 = h. Also by Lemma 3.2.27, there is a k ∈ [d]

and a w = eρ for some ρ such that in the Chow covector with degree pair (w, v+e1−ek)

the node `j is a leaf and it is adjacent to r1. The induction hypothesis implies that
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Figure 3.13: Decomposition of the Chow covectors from Example 3.2.25 depending on
the neighbouring vertex of `1; it is either adjacent to r3, isolated or adjacent to r1. The

grey regions are the combinatorial sectors S
(1)
1 and S

(3)
1 . Note that S

(2)
1 is empty as the

edge (`1, r2) appears in no Chow covector.

(w, v + e1 − ek) ∈ Kj . Now, Line 9 shows that also (u, v) is an element of Kj .

3.2.3 A cryptomorphic description

In Section 3.2.1, we saw how one can construct a set of compatible topes in bijection

with ∆Z(d, n − d) from a linkage (n, d)-matching field. A slight generalisation of the

proof of Proposition 3.2.22 and Corollary 3.2.24 leads to a cryptomorphic description of

linkage matching fields in terms of topes.

Definition 3.2.30. An (n, d)-tope arrangement is a set of compatible topes in bijection

with ∆Z(d, n− d) via the map that sends a tope with right degree vector v to v − e[d].

Example 3.2.31. Figure 3.10 shows a (6, 4)-tope arrangement which cannot arise from

a triangulation of ∆5 ×∆3.

For the construction of the Chow covectors, one only needs Lemma 3.2.21. Analo-

gously to Corollary 3.2.24 we get a matching for each d-subset. Combining this with

Theorem 3.2.16 yields the following.
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Theorem 3.2.32. Linkage (n, d)-matching fields and (n, d)-tope arrangements are cryp-

tomorphic.

Proof. As tope arrangements satisfy the conditions of Lemma 3.2.21 and are in bijection

with ∆Z(d, n − d), we can construct the graphs Ωρ for all ρ ∈
( [n]
n−d+1

)
via Proposition

3.2.22. The Chow covector with left degree vector ρ gives rise to the matchings on

[n] \ ρ ∪ {j} for all j ∈ ρ. As the topes are compatible, each ρ occurs exactly once.

These graphs have the same properties as Chow covectors, in particular that they

yield the existence of a perfect matching for every d-subset σ ⊂ L contained in some tope

in the tope arrangement in the same way as the construction at the end of the proof of

Proposition 3.2.22. Note that these matchings are unique as the topes are compatible,

therefore the tope arrangement induces a matching field. It remains to show that the

matching field is linkage.

Let σ, σ′ ⊂ L be distinct d-subsets and `j′ ∈ σ′ \ σ. Consider a tope T that contains

the matching on σ and consider the node ri adjacent to `j′ . There exists some node

`j ∈ σ adjacent to ri in the matching on σ, therefore the matching on σ \ {`j} ∪ {`j′}

agrees with the matching on σ outside of ri. This is equivalent to the linkage axiom by

Lemma 3.2.4.

Remark 3.2.33. Tope arrangements have similar structural properties to trianguloids,

which were introduced very recently in [42]. The trianguloid axioms (T1) and (T2)

essentially state that the graph associated to every lattice point in ∆Z(d, n− d) is a tope.

Furthermore, axiom (T3) comprises the combinatorial sector condition which we exhibit

for general linkage matching fields in Lemma 3.2.21. However, for trianguloids there

is no global compatibility assumption, rather there is the Hexagon axiom (T4). This

replaces the need for pairwise compatibility with a more manageable local condition. It

may be possible to replace the need for compatibility in the definition of tope arrangement

with a similar local condition.
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Note that while structurally similar, tope arrangements are a more general class of

objects than trianguloids. This is immediate from the fact that trianguloids are in bijec-

tion with triangulations of ∆n−1 ×∆d−1, while there are examples of linkage matching

fields that are not realisable as a fine mixed subdivision of n∆d−1, see Example 3.2.18.

The question of realisability of linkage matching fields is addressed further in Section 3.4.

Our notion of “matching field completion” leads to the notion of tope arrangement which

allows “boundary” topes. This would give a cryptomorphic description of trianguloids

and shed light on the problem of extendibility addressed in Section 3.4.

3.2.4 Matching field polytopes and the flip graph

The notion of a matching field polytope first occurs in [67]. It is the convex hull of the

characteristic vectors of the matchings of an (n, d)-matching field in Rn×d.

This is a natural analogue of the matroid polytope, as in some sense matching fields

play the role of a matroid for tropical linear algebra. However, unlike matroid polytopes,

their vertex-edge graph is not the flip graph of the matchings as we demonstrate in

Example 3.2.34.

Here, the nodes of the flip graph are the matchings and two matchings are adjacent

if and only if they differ in one edge.

Example 3.2.34. We consider a (5, 3)-linkage matching field as shown in Figure 3.14.

The matchings are encoded by words of length three where the matching contains (`j , ri)

if j is in the ith position. Two matchings differ by a flip if the words differ in precisely

one position. We note that the flip graph can be decomposed into the linkage trees for

each 4-subset of the set [5], each one represented by a different colour.
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Figure 3.14: The flip graph of a (5, 3)-matching field. Each coloured subgraph is the
embedding of the linkage tree of the 4-subset. Each edge is labelled by the deviating
position.

0 : 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 : 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

2 : 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0

3 : 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

4 : 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

5 : 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

6 : 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

7 : 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

8 : 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

9 : 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

The convex hull of these vectors is the matching field polytope of the (5, 3)-matching
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field. It has 35 edges and f -vector (10, 35, 61, 59, 32, 9). The adjacencies of its vertex

edge graph are

0 : 1 2 3 6 7 8

1 : 0 2 3 4 5 6 7 8 9

2 : 0 1 5 6 8 9

3 : 0 1 4 5 6 7 8

4 : 1 3 5 6 7 8 9

5 : 1 2 3 4 6 8 9

6 : 0 1 2 3 4 5 8

7 : 0 1 3 4 8 9

8 : 0 1 2 3 4 5 6 7 9

9 : 1 2 4 5 7 8

.

This was computed with polymake [44]. In particular, the graph in Figure 3.14 is a

proper subgraph of the vertex-edge graph.

For a linkage matching field M, the flip graph has some nice properties.

Lemma 3.2.35. The flip graph of an (n, d)-linkage matching field has
(
n
d+1

)
· d edges.

Proof. The edges correspond to those topes whose right degree vector is a permutation

of the partition (21, 1d−1). By Theorem 3.2.16, there are exactly d such topes for each

linkage covector, each of which are distinct. Since there are
(
n
d+1

)
linkage covectors, the

claim follows.

More generally we obtain a characterisation of the topes in terms of subgraphs of the

flip graph.

Proposition 3.2.36. A tope with right degree vector v is the union of the v1 · · · vd

matchings on the sets N1×· · ·×Nd, where Ni are the nodes adjacent with ri in the tope.

Conversely, let U be a subset of the matchings such that the induced subgraph of the

flip graph on U is the vertex-edge graph of a product of simplices ∆v1−1 × · · · ×∆vd−1,
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Figure 3.15: Quadrangle of matchings from Lemma 3.2.37.

where vi ≥ 1 for all i ∈ [d]. Then the union of the matchings in U is a tope with right

degree vector (v1, . . . , vd).

Lemma 3.2.37. Let µ
(1)
1 , µ

(2)
1 , µ

(1)
2 , µ

(2)
2 be matchings such that the induced subgraph

on their corresponding vertices in the flip graph is a quadrangle. Then there exist two

distinct nodes rp, rq ∈ R such that µ
(1)
m , µ

(2)
m agree outside of rp and µ

(m)
1 , µ

(m)
2 agree

outside of rq for m = 1, 2.

Proof. By definition of the flip graph, each pair of adjacent matchings agree outside of a

single node. Let Figure 3.15 be the induced subgraph of the matchings where the edge

labels denote which node they differ in. We deduce that µ
(1)
1 , µ

(2)
2 must agree outside

of two nodes, specifically {rp, rq} and {rs, rt}, therefore these two sets must be equal.

Observe that any two adjacent edges in the flip graph must correspond to different right

nodes, else they form a 3-cycle between their vertices, contradicting the quadrangle as

our induced subgraph. Therefore rp = rs and rq = rt.

Proof. (Proposition 3.2.36) Given a tope on σ ⊆ L, the restriction of the linkage matching

field to σ is also linkage. The first part follows directly from Theorem 3.2.16 by applying

it to the linkage matching field restricted to σ.

We prove the second part by induction. If the induced subgraph on U is the vertex-

edge graph of a product of simplices with only one non-trivial factor, it is the vertex-edge

graph of a simplex and so all the matchings in U can only differ in the edges incident
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with the same node. Hence, their union is a tope.

Assume that the induced subgraph is the vertex-edge graph of a product of simplices

where k ≥ 2 factors are non-trivial. Without loss of generality let these be the first

k factors. Then U decomposes into vk disjoint sets U1, . . . , Uvk corresponding to faces

of the product such that the induced subgraph on Ui is isomorphic to the graph of∏
j∈[k−1] ∆vj−1 for all i ∈ [vk]. By induction the union of the matchings in Ui forms a tope

Ti whose right degree vector is a permutation of (v1, . . . , vk−1, 1, . . . , 1). In particular,

there is a (k − 1)-set σi, such that every matching contained in Ti agrees on R \ σi.

Note that Ti and Ui contain exactly the same matchings as subgraphs and as elements

respectively.

We claim that for all i, j ∈ [vk] the topes Ti, Tj differ in a single node of degree one.

As the induced subgraph of Ui ∪ Uj is isomorphic to (
∏
j∈[k−1] ∆vj−1) × ∆1, for any

matchings µ
(1)
i , µ

(2)
i ∈ Ui that differ by a flip, there exists µ

(1)
j , µ

(2)
j ∈ Uj such that the

induced subgraph on their corresponding vertices in the flip graph is a quadrangle. By

Lemma 3.2.37, we draw two conclusions: that µ
(1)
i , µ

(1)
j and µ

(2)
i , µ

(2)
j differ in the same

node and that µ
(1)
i , µ

(2)
i and µ

(1)
j , µ

(2)
j do also. Iterating this over all pairs of matchings

that differ by a flip, the first statement implies that Ti, Tj differ in one node, while the

second implies it must be a node of degree one. If this was not the case, a node of degree

two would form a 3-cycle with any pair of matchings in Ui that agree outside of that

node, breaking the quadrangle.

We obtain that the topes Ti all differ in a flip of an edge incident with the same node.

As each Ti has a different neighbour, the union of the Ti gives a tope with right degree

vector (v1, . . . , vd).

The occurrence of all the vertex-edge graphs of products of simplices in the flip graph

can be used to define an interesting cell complex.

Definition 3.2.38 ([59, Section 9.2.1]). Let G be an arbitrary graph. The prodsimplicial
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flag complex PF (G) of G is defined as follows: the graph G is taken to be the 1-skeleton

of PF (G), and the higher-dimensional cells are taken to be all those products of simplices

whose 1-dimensional skeleton is contained in the graph G.

The prodsimplicial complexes is an object from combinatorial algebraic topology that

allow for more flexibility that simplicial complexes but more structure than an arbitrary

cell complex. For example, they generalise both simplicial and cubical complexes. Fur-

thermore, the prodsimplicial flag complex can be viewed as a direct generalisation of the

clique complex of G.

Proposition 3.2.36 and Theorem 3.2.16 directly imply the next statement.

Theorem 3.2.39. The prodsimplicial flag complex of the flip graph of a linkage (n, d)-

matching field has the same face lattice as the set of topes derived from it. In particular,

the maximal cells of the prodsimplicial flag complex are in bijection with ∆Z(d, n− d).

3.3 Triangulations of ∆n−1×∆d−1 and pairs of lattice points

We denote the set of triangulations of ∆n−1×∆d−1 by T S(n, d). By [28, Theorem 6.2.13]

there are exactly K =
(
n+d−2
n−1

)
full-dimensional simplices in such a triangulation.

Given a set of trees encoding a triangulation of ∆n−1×∆d−1, consider the map that

sends a tree T to its left and right degree vector pair (u, v). By Lemma 3.1.8, this map

is injective. As each left and right degree vector can be identified with a lattice point in

∆Z(n, d− 1) and ∆Z(d, n− 1) by subtracting e[n] and e[d] respectively, this map can be

written as

φn,d : T 7! (u− e[n], v − e[d]) ∈ ∆Z(n, d− 1)×∆Z(d, n− 1) .

This induces the map

Φn,d : T S(n, d)!

(
∆Z(n, d− 1)×∆Z(d, n− 1)

K

)
, (3.1)
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Figure 3.16: The mixed subdivisions corresponding to two triangulations of ∆2 × ∆2.
Both have the same dual graph, and the same non-maximal matchings. However their
unique maximal matchings are different.

where each tree describing a full-dimensional simplex in the triangulation is mapped to

its left and right degree vector pair minus e[n] and e[d] respectively.

After [74, Theorem 12.9], Postnikov asked whether the map defined in (3.1) is injec-

tive. His question is posed for root polytopes in general. As discussed earlier, parallel

to our work, Galashin, Nenashev and Postnikov derived an affirmative answer to this

question in [42]. Whereas their approach is based on the newly introduced notion of

trianguloids, we present an independent proof for the case of the full product of two

simplices (but not root polytopes in general) by exploiting the same structure as for

Theorem 3.2.29.

A natural approach is to reconstruct the triangulation using the structure of the dual

graph. However, this does not determine the triangulation as we illustrate.

Example 3.3.1 (Triangulation not determined by dual graph). Figure 3.16 shows two

triangulations of ∆2×∆2 whose dual graphs are the same. Furthermore, the trees encod-

ing their triangulations contain all of the same non-maximal matchings. However, their

unique maximal matchings are not equal, and so the triangulations are not equal, even

up to symmetry.

Definition 3.2.28 introduces combinatorial sectors for a collection of compatible bi-

partite graphs G with a bijective map to lattice points of a simplex. The trees encoding

a triangulation are all compatible and have a natural bijection to both ∆Z(n, d− 1) and



Chapter 3. Matching fields and lattice points of simplices 83

Figure 3.17: The trees encoding a triangulation of ∆3 ×∆2 arranged by their bijection

to ∆Z(2, 4). The grey regions are the (open) combinatorial sectors S
(1)
4 , S

(2)
4 , S

(3)
4 .

∆Z(d, n−1) determined by their left and right degree vectors. When G is a triangulation

T , combinatorial sectors are a direct analogue to (open) sectors of tropical hyperplane

arrangements as described in Example 3.1.12, see Figure 3.17 for an example. We use

this notion alongside an iterative method, analogous to the proof of Theorem 3.2.29, to

construct the triangulation inductively from the triangulations of its faces.

Theorem 3.3.2. The map Φn,d is injective.

Proof. We proceed by induction on n + d. For n = d = 1 there is only one tree. Now

consider a triangulation T represented by a collection of trees for n+d > 2. Assume that

any triangulation of ∆j−1 × ∆i−1 is uniquely determined by the degree vector pairs of

its trees for j + i < n+ d. We show the case n ≥ d, the case n ≤ d is entirely analogous.

Each left degree vector contains an entry equal to 1 since

2 · (n− 1) + 1 = 2n− 2 + 1 = 2n− 1 ≥ n+ d− 1 .
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Hence, we get a non-disjoint decomposition

⋃
j∈[n]

Lj = Φn,d(T ) for Lj = {(u, v) | uj = 1} .

Now fix a j ∈ [n]. There is a partition of Lj in the sets

L(i)
j = {(u, v) | (`j , ri) ∈ G, G ∈ T has degree vector (u, v) with uj = 1}

where L(i)
j is the image of S(i)

j in Φn,d.

From L(i)
j we can construct a set L(i)

j by removing the jth entry of the first component

and decreasing the ith entry of the second component for all the pairs. This corresponds

to removing the leaf edge (`j , ri) of the trees. The resulting set

Lj =
⋃
i∈[d]

L(i)
j

is the set of degree vectors of the deletion of T with respect to j. Hence, we can

apply induction and deduce that Lj uniquely defines the trees with the contained degree

vectors. From the partition into the L(i)
j we can recover to which node `j is incident

in the original tree. Therefore, we can construct all trees for which `j has degree 1.

Ranging over all `j ∈ L, we get all trees of T .

It remains to show how to construct the set L(i)
j for each ri ∈ R, which we now

demonstrate. Assume without loss of generality that i = 1 and apply Algorithm 2.

Claim: Kj = L(1)
j .

Proof by induction There is a unique tree T0 with the right degree vector e[d] +

(n−1)e1. If uj = 1 then `j is a leaf and it is adjacent to r1 because of the structure of the

right degree vector. Line 2 in the algorithm guarantees that T0 is in Kj . Furthermore,

the edge (`j , r1) shows that it is also contained in L(1)
j .
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Algorithm 2 Construct the degree pairs of a combinatorial sector of trees

1: if uj = 1 for (u, v) with v1 = n then
2: Kj  {(u, v)}
3: else
4: terminate
5: end if
6: h n− 1
7: while h > 0 do
8: for all (u, v) ∈ Lj with v1 = h do
9: if ∃k ∈ [d] : vk > 1: ∃w(k) : (w(k), v + e1 − ek) ∈ Kj then

10: Kj  Kj ∪ (u, v)
11: end if
12: h h− 1
13: end for
14: end while

Now, assume that Kj and L(1)
j agree in all elements whose first entry of the second

component is h+ 1 ≤ n.

Let (u, v) ∈ Lj such that v1 = h and (w, v + e1 − ek) ∈ Kj an element fulfilling the

condition in Line 9. These two vectors are the right degree vectors of two compatible

trees T1 and T2. Note that Kj ⊆ Lj . As, by the induction hypothesis, (`j , r1) is an edge

of T2 we can deduce with Corollary 3.1.10 that this is also an edge of T1. Hence, (u, v)

is an element of L(1)
j .

Conversely, let (u, v) ∈ L(1)
j be with v1 = h. By Lemma 3.1.11, there is a k ∈ [d]

and a w ∈ ∆Z(n, d − 1) such that in the tree with degree pair (w + e[n], v + e1 − ek)

the node `j is a leaf and it is adjacent to r1. The induction hypothesis implies that

(w + e[n], v + e1 − ek) ∈ Kj . Now, Line 9 shows that also (u, v) is an element of Kj .

This map is far from surjective. By [74, Theorem 12.9], every possible lattice point

in ∆Z(n, d− 1) and ∆Z(d, n− 1) must appear precisely once, the only remaining choice

is how to pair them up. This gives the following immediate corollary.

Corollary 3.3.3. The number of all triangulations of ∆n−1 × ∆d−1 is bounded from

above by
(
n+d−2
d−1

)
!.
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Remark 3.3.4. Note that this bound is tight for n = 2 as by [28, Proposition 6.2.3]

triangulations of ∆1 ×∆d−1 are in bijection with permutations of [d]. Theorem 5.4 and

Corollary 5.5 in [80] give upper bounds for regular subdivisions but, to the knowledge of

the authors, this is the first upper bound on the number of all triangulations. Recall from

[28, Theorem 6.2.19] that non-regular triangulations of ∆n−1×∆d−1 exist if and only if

(n− 2)(d− 2) ≥ 4. Even if there are many non-regular triangulations, the bound might

be very coarse as we do not use the structure of the lattice points.

An eventual goal would be to give an axiom system for lattice point pairs, in a similar

vein to Proposition 3.1.4. We state some necessary conditions that lattice point pairs

must satisfy to induce a triangulation of ∆n−1 ×∆d−1.

We denote a lattice point pair of type (n, d) by p = (u, v) ∈ ∆Z(n, d−1)×∆Z(d, n−1).

We say two lattice point pairs p, p′ are adjacent if u, u′ and v, v′ differ by one in precisely

two coordinates and differ nowhere else. Note that every pair of trees that differ by a flip

induce adjacent lattice point pairs, but the converse is not true. By the second condition

of Proposition 3.1.4, the number of neighbours a tree has in the flip graph is equal to

the number of edges in the tree that are not leaves.

We defined the sets Lj = {(u, v) | uj = 1} in the proof of Theorem 3.3.2 for all

j ∈ [n]. We construct a deletion of this set Lj by removing the jth entry of the first

component and decreasing an entry in the second component of all lattice point pairs.

Note the distinction between left and right is arbitrary and we can analogously define

the set Li = {(u, v) | vi = 1} and its deletion Li. In the proof we construct a specific

deletion, but we just need to ensure a well behaved one exists. This, along with [74,

Theorem 12.9], gives the following necessary conditions on pairs of lattice points:

Corollary 3.3.5. Let P be a set of lattice point pairs that induces a triangulation of

∆n−1 ×∆d−1. Then P satisfies the following conditions:

• The projections from P onto ∆Z(n, d− 1) and ∆Z(d, n− 1) are bijections.
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• Each p ∈ P has at least n + d − 1 − l(p) adjacent lattice point pairs in P, where

l(p) is the number of coordinates in p whose entry is 1.

• For every Lk ⊂ P, there exists a deletion Lk satisfying the first two conditions.

Recall that triangulations of ∆n−1 × ∆1 are in bijection with the permutations in

Sn. By Theorem 3.3.2, such a triangulation is also determined by a certain collection of

lattice point pairs. Let µ be the permutation corresponding to the triangulation. Then

the lattice point pairs are given by

([k, n+ 1− k], [1µ(k)−1, 2, 1n−µ(k)]) for all k ∈ [n] .

The lattice point on the left corresponds to an element k ∈ [n], the lattice point on

the right corresponding to the element µ(k) that it is mapped to. This establishes the

bijection with Sn.

Theorem 3.3.2 allows us to generalise this construction. We fix orderings on ∆Z(n, d−

1) and ∆Z(d, n− 1) to establish a correspondence with [K], where K =
(
n+d−2
n−1

)
. Trian-

gulations of ∆n−1×∆d−1 now correspond to elements of the symmetric group SK , where

each lattice point pair determines an element of [K] and where it is mapped to. Note

that we have natural Sn and Sd actions given by changing the ordering on the lattice

points, therefore each triangulation gives rise to a subset of a conjugacy class of SK . It

would be interesting to study this link to the symmetric group in more detail.

3.4 Matching stacks and transversal matroids

In some sense, matching fields contain complementary information to transversal ma-

troids. While transversal matroids encode on which subsets of the nodes a graph contains

matchings, a matching field contains a matching for all d-subsets of R and one is inter-

ested in the interplay of the matchings.

Definition 3.4.1. A matching stack on LtR is a map which assigns to each pair (J, I)
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with J ⊆ L, I ⊆ R and |J | = |I| a perfect matching on J t I.

A matching stack is a matching ensemble if the matchings for all fixed J ⊆ L and

for all fixed I ⊆ R form linkage matching fields. Matching ensembles were first studied

in [72].

The main result in [72] is the equivalence of triangulations of ∆n−1 × ∆d−1 and

matching ensembles on LtR. We present an intermediate result to demonstrate further

research directions.

The tropical Stiefel map, extensively studied in [38], and more generally the polyhe-

dral construction in [49, Theorem 7] essentially do the following. Given a collection of

bipartite graphs G defined on the node set L t R, they map each graph G ∈ G to the

transversal matroid MG of G with ground set L. In the first reference, these graphs are

the bipartite graphs corresponding to the full-dimensional simplices of a regular subdivi-

sion of ∆n−1×∆d−1. The second reference starts with the bipartite graphs corresponding

to the full-dimensional simplices in a subdivision of ∆k−1×∆d−1 where k = n−d. They

augment the vertex set of the bipartite graphs by d dummy nodes. By connecting all

nodes in R of degree 1 in each graph G to the corresponding dummy node, they ensure

that the transversal matroid on L has no loops. This Stiefel map was recently used

in [82] to obtain new results for the coarsest non-trivial subdivisions of ∆n−d−1 ×∆d−1.

Definition 3.4.2. Let G be a collection of bipartite graphs on the same node set L tR.

The combinatorial Stiefel map associates to each graph in G its corresponding transversal

matroid.

With the construction for Theorem 3.2.16, we can start with a linkage matching field

and construct trees in a natural way for all degree vectors. Recall that the topes are

compatible with the matching field but the tope linkage covectors may not be. Taking

the combinatorial Stiefel map of the collection of the maximal tope linkage covectors

results in a collection of transversal matroids. Inspired by [38, Corollary 5.6] and [49,

Theorem 7] we conjecture the following.
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Conjecture 3.4.3. A linkage matching field is determined by the collection of transversal

matroids associated to the maximal tope linkage covectors by the combinatorial Stiefel

map.

Remark 3.4.4. As maximal topes arising from a linkage matching field play an impor-

tant role, one should keep in mind that the combinatorial Stiefel image of a tope is just

a partition matroid. However, in the tropical Stiefel map which gives rise to a matroid

subdivision of the hypersimplex, they do not correspond to maximal cells.

We motivate this conjecture by a result connecting matching fields, matching ensem-

bles and triangulations of ∆n−1 ×∆d−1.

Let S be a matching stack on L t R. We introduce d dummy nodes to get the left

node set L̂ = L ∪ {`n+i | i ∈ [d]}. To the matching µ on J t I in S we associate the

matching µ̂ defined as follows:

µ̂(`j) = µ(`j) for `j ∈ J and µ̂(`n+h) = rh for all rh ∈ R \ I .

This yields a matching field on L̂tR, which we call the matching field completion of S.

This is a pointed matching field in the sense of [85, Example 1.4].

Theorem 3.4.5. LetM be the matching field completion of the matching stack S. Then

M fulfils left linkage if and only if S fulfils left linkage.

Proof. Consider a linkage covector C of S on the node set J t I such that |J | = |I|+ 1.

We will construct the linkage covector D of M on the node set Ĵ t R where Ĵ =

J ∪ {`n+i | ri /∈ I}. The matching Mj on Ĵ \ {`j}, where `j ∈ J , is the union of the

matching in C obtained by isolating `j with the edges {(`n+i, ri) | ri /∈ I}. The matching

Mn+i on Ĵ \ {`n+i}, where ri /∈ I, is the union of the matching in S on the node set

J t (I ∪{ri}) with the edges {(`n+k, rk) | rk /∈ I ∪ {ri}}. Note that if the edge (`j , ri) is

in Mn+i, the submatching obtained by deleting it is contained in C. Therefore D is the

union of C and pairs of edges {(`j , ri), (`n+i, ri) | ri /∈ I, (`j , ri) ∈Mn+i}, so it is a tree
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with degree two on all right nodes. Any linkage covector in M can be constructed this

way and so it must satisfy the linkage property.

Conversely, consider a linkage covector of M on the node set Ĵ t R. Removing the

edges incident with the dummy nodes yields a tree on J t R in which nodes in I have

degree 2 and nodes in R \ I have degree 1. Deleting the edges adjacent to nodes in R \ I

gives the union of matchings on J t I arising in S. As we have only removed leaves from

a tree, this resulting graph is also a tree with all right nodes degree 2.

We say that a matching field M satisfies the compatible right submatching property

if and only if the following holds:

Let µ1, . . . , µr be submatchings of matchings in M on J t I1, . . . , J t Ir where I :=⋃
[r] Is ⊆ R with |J |+ 1 = |I|. Then T =

⋃
[r] µs is a forest on J t I and each matching

µ of size |J | in T is compatible with the matchings in M.

Question 3.4.6. We say a matching field M can be extended to a matching ensemble

if there exists a matching ensemble whose matchings of size d are the matchings in M.

When can this occur? By construction it has to be linkage but this is not enough.

Conjecture 3.4.7. The maximal tope linkage covectors of a left linkage matching field

are compatible if and only if it has the compatible right submatching property.

Example 3.4.8. Continuation from Example 3.2.18. The 2 × 2 matchings on {`5, `6}

given in Figure 3.18 are submatchings of matchings inM. Therefore, any matching stack

that extends M must contain them. However, the 2× 3 linkage covectors on {r1, r2, r3}

and {r2, r3, r4} contain cycles and so any matching stack extending M cannot satisfy

right linkage.
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Figure 3.18: The submatching field on {`5, `6} t {r1, . . . , r4} with all possible linkage
covectors of matchings. Two of the linkage covectors contain cycles and so are not right
linkage.



Chapter 4

Convergent Puiseux series and

tropical geometry of higher rank

The following is based on the paper “Convergent Puiseux series and tropical geometry

of higher rank” by Michael Joswig and the author [56].

4.1 Convergent generalised Puiseux series

Following van den Dries and Speissegger [87] we consider a tuple T = (t1, . . . , tm) of m

indeterminates and formal power series of the form

γ = γ(T ) =
∑
α

cαT
α , (4.1)

where the multi-index α = (α1, . . . , αm) lies in [0,∞)m, the coefficient cα is a real

number, and Tα is the formal monomial tα1
1 · · · tαm

m . We further assume that the support

supp(γ) = {α ∈ [0,∞)m | cα 6= 0} is contained in the Cartesian product A1 × · · · × Am,

where Ai ⊆ [0,∞) such that Ai ∩ [0, λ] is finite for all positive real numbers λ. The

coefficient-wise addition and the usual convolution product yield an algebra, which we

denote as R[[T ∗]]. More generally, given a ring R one can define R[[T ∗]] analogously, where

92
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cα is an element of R.

Here comes a big caveat: our series will have “good support” in the sense of [87, §4.1]

throughout; see also [87, §10.2]. That is, we use their notation with a slightly different

interpretation. We can afford this simplification in the presentation as we will not study

limits of series in R[[T ∗]]. Observe that, formally, m = 0 with T = () and R[[T ∗]] = R

makes sense; cf. Remark 4.1.9 below.

A vector r = (r1, . . . , rm) with positive real numbers ri is a polyradius. This gives

rise to the r-norm

‖γ‖r :=
∑
α

|cα|rα (4.2)

of γ ∈ R[[T ∗]], which is infinite if that series does not converge. The series with finite

r-norm form the normed subalgebra R{T ∗}r; cf. [87, §5.2]. Each series γ(T ) ∈ R{T ∗}r

yields a continuous function

ρ 7! γ(ρ) =
∑
α

cαρ
α (4.3)

which is defined on the set [0, r1] × · · · × [0, rm] and which is analytic on the interior

(0, r1)× · · · × (0, rm). The union

R{T ∗} :=
⋃
r

R{T ∗}r

is a local ring with maximal ideal {γ ∈ R{T ∗} | γ(0) = 0}; cf. [87, Corollary 5.6]. Its

field of fractions is the field of convergent generalised Puiseux series R{{T ∗}} (with real

coefficients). Note that “convergence” here means absolute convergence in view of (4.2).

Furthermore, the map which sends a series R{T ∗}r to the continuous function (4.3) is

injective; cf. [87, Lemma 6.4].

Here is where we deviate from [87] by equipping the set [0,∞)m with the lexicographic

ordering. As a consequence the support supp(γ) of γ is a countable well ordered set, and

the order

val(γ) := min supp(γ)
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of γ ∈ R{T ∗} is defined, unless γ = 0. The leading term lt(γ) is cαT
α, when α = val(γ),

and the leading coefficient lc(γ) is cα. For any nonzero δ ∈ R{{T ∗}} there exist nonzero

γ, γ′ ∈ R{T ∗} such that δ = γ/γ′. In this way the order map extends to R{{T ∗}} \ {0}

by letting

val(δ) := val(γ)− val(γ′) ,

and this is well defined. A nonzero convergent generalised Puiseux series is positive if

the signs of the leading coefficients lc(γ) and lc(γ′) agree. This definition turns R{{T ∗}}

into an ordered field.

Definition 4.1.1. We equip Rm with the lexicographic total ordering. We denote the

rank m tropical semifield by Tm := (Rm,min,+), where min is the minimum with respect

to the lexicographic ordering.

We use Rm when the underlying set is equipped with the Euclidean topology, and

Tm when the underlying set is equipped with the order topology. Note that Rm and

Tm agree as sets, however it will be useful throughout to differentiate between their

topologies.

Remark 4.1.2. Restricting the order map to convergent generalised Puiseux series which

are positive gives a homomorphism val : R{{T ∗}}>0 ! Tm of semirings, which reverses

the ordering; i.e., δ ≤ δ′ implies val(δ) ≥ val(δ′).

Remark 4.1.3. The valuation map on R{{T ∗}} is surjective, which will be crucial for

our definition of higher rank tropical hypersurfaces. Unlike the rank one case where one

can simply take topological closures, tropical geometry over non-surjective higher rank

valuations is delicate. Remark 4.2.16 highlights the issues that arise in this case.

Let us consider a second tuple U = (u1, . . . , un) of n indeterminates. The roles of

T1, . . . , Tm and of U1, . . . , Un are symmetric. Extending the above construction, we arrive

at the field of convergent generalised Puiseux series R{{(T,U)∗}} in m+n indeterminates,

and R{{T ∗}} as well as R{{U∗}} are subfields.



Chapter 4. Convergent Puiseux series and tropical geometry of higher rank 95

Lemma 4.1.4. Fix a polyradius (r, s). Each series γ(T,U) =
∑

α,β cα,βT
αUβ in the

normed algebra R{(T,U)∗}(r,s) can be written as
∑

α(
∑

β cα,βU
β)Tα, which is an element

of R{U∗}s{T ∗}r. Similarly, γ(T,U) can also be written as an element of R{T ∗}r{U∗}s.

Proof. By [87, Lemma 4.6] we have

γ(T,U) =
∑
α,β≥0

cα,βT
αUβ =

∑
α≥0

(∑
β≥0

cα,βU
β

︸ ︷︷ ︸
∗

)
Tα (4.4)

in the ring R[[(T,U)∗]]. That is, the claimed equality holds formally, without considering

aspects of convergence. This shows that R[[(T,U)∗]] is a subring of R[[U∗]][[T ∗]]. It follows

that γ(T,U) lies in R[[U∗]]s[[T
∗]]r, and due to absolute convergence within the polyradius

(r, s) we may reorder the terms arbitrarily. As a consequence, for any fixed α0 ≥ 0, we

get

rα0
∑
β≥0

|cα0,β|sβ =
∑
β≥0

|cα0,β|rα0sβ ≤
∑
α,β≥0

|cα,β|rαsβ < ∞ .

The term rα0 does not vanish, and hence
∑

β≥0|cα0,β|sβ is finite. In particular, each

starred coefficient in (4.4) is contained in the normed subalgebra R{U∗}s. The roles of

T and U can be exchanged.

The elements in R[[(T,U)∗]] are mixed series in the sense of [87, §4.15]. It should be

stressed that there are elements in R[[U∗]][[T ∗]] which do not arise via Lemma 4.1.4; in

loc. cit.
∑∞

k=1 T
1/k
1 Uk1 is given as one example. The T -support of γ ∈ R[[(T,U)∗]] is the

support of γ seen as a series in T with coefficients in R[[U∗]] as in the first statement of

Lemma 4.1.4; the U -support of γ is defined by interchanging the roles of T and U . The

subsequent observation should be compared with [87, Lemma 9.4].

Proposition 4.1.5. Let δ(T,U) ∈ R{{(T,U)∗}} be a generalised Puiseux series which

converges in the polyradius (r, s) = (r1, . . . , rm, s1, . . . , sn). Then the partial evaluations

of U = (u1, . . . , un) at constants σ = (σ1, . . . , σn) with σi ∈ (0, si] yields a convergent

generalised Puiseux series δ(T, σ) ∈ R{{T ∗}}. Moreover, its order val(δ(T, σ)) does not
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depend on σ, provided that σ is admissible.

A similar result holds for the partial evaluations of T = (t1, . . . , tm).

The precise definition of admissible will be given in the proof below; see also Re-

mark 4.1.6.

Proof. We can write δ = γ/γ′ with γ, γ′ ∈ R{(T,U)∗} and γ′ 6= 0. By assumption the

evaluation

δ(ρ1, . . . , ρm, σ1, . . . , σn) =
γ(ρ1, . . . , ρm, σ1, . . . , σn)

γ′(ρ1, . . . , ρm, σ1, . . . , σn)

is defined and finite for all 0 < ρi ≤ ri and 0 < σj ≤ sj . Lemma 4.1.4 gives the equality

γ(T,U) :=
∑
α,β≥0

cα,βT
αUβ =

∑
α≥0

(∑
β≥0

cα,βU
β

)
Tα (4.5)

in the algebra R{(T,U)∗}. A similar computation holds for the denominator γ′ =∑
c′α,βT

αUβ. Thus the partial evaluation at sufficiently small values is defined, and

it reads

δ(T, σ) =

∑
α≥0

(∑
β≥0 cα,βσ

β

)
Tα

∑
α≥0

(∑
β≥0 c

′
α,βσ

β

)
Tα

.

This yields

val(δ(T, σ)) = min

{
α

∣∣∣∣ ∑
β≥0

cα,βσ
β 6= 0

}
−min

{
α

∣∣∣∣ ∑
β≥0

c′α,βσ
β 6= 0

}
. (4.6)

Now the functions σ 7!
∑

β≥0 cα,βσ
β and σ 7!

∑
β≥0 c

′
α,βσ

β map the set (0, s1] × · · · ×

(0, sn] analytically to R. We call σ admissible if it is sent to zero by neither of these

two functions for any α in the union of the T -supports of γ and γ′. In this case the

expression (4.6) does not depend on σ.

As in Lemma 4.1.4 the roles of T and U can be exchanged.

Remark 4.1.6. Our notion of admissibility given in the proof above depends on the
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representation δ = γ/γ′. For example, we can multiply γ and γ′ by (1 − t1) without

changing δ, but this would exclude σ1 = 1 from the admissible values. So when we say

that σ is admissible for δ we mean that there exists some representation δ = γ/γ′ such

that σ is admissible with respect to γ and γ′.

Restricting the order maps from convergent generalised Puiseux series to the respec-

tive sub-semirings of positive series yields the following diagram of ordered semirings;

see also Remark 4.1.2.

R{{T ∗}}>0 R{{(T,U)∗}}>0 R{{T ∗}}>0

Tm Tm+n Tm

valm

ι

valm+n

πu

valm

ι∗ πu∗

(4.7)

A few remarks are in order. Whenever we wish to distinguish between the various

valuation maps we add the appropriate index to the symbol “val”. The embedding

ι : R{{T ∗}} ! R{{(T,U)∗}} is induced by the mapping ι∗ : Rm ! Rm+n which sends

the exponent α to (α, 0). The dashed arrow labelled πu in the diagram (4.7) is a subtle

point. We would like to define πu(δ(T,U)) as the partial evaluation δ(T, σ). The latter

expression depends on σ (and its admissibility), and so there is no way to extend such

a map to the entire field R{{(T,U)∗}}. However, by Proposition 4.1.5, for each δ ∈

R{{(T,U)∗}} there is a polyradius in which the partial evaluation at admissible values

is defined, and the order of the resulting series in R{{T ∗}} does not depend on that

polyradius or the specific choice of σ. The map πu∗ is the projection (α, α′) 7! α onto

the first coordinate. In this sense the diagram (4.7) commutes, despite the fact that πu

is not globally defined.

Example 4.1.7. Let us look at the series

γ(t, u) =
∑

α∈N, β∈N\{0}

tαuβ =
∑
α∈N

( ∑
β∈N\{0}

uβ
)
tα

=

(∑
α∈N

tα
)( ∑

β∈N\{0}

uβ
)

=

(∑
α∈N

tα
)(

u ·
∑
β∈N

uβ
)
,
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which is a positive element in the algebra R{(t, u)∗}, which we identify with a subalgebra

of R{u∗}{t∗}. That is, we are in the case m = n = 1 with T = (t1), t1 = t and U = (u1),

u1 = u. For the polyradius of convergence we may pick, e.g., (3
4 ,

3
4).

The partial evaluation u 7! 1
2 is defined, and we arrive at

πu7! 1
2
(γ(t, u)) = γ(t, 1

2) =
1

1− t
· 1

2

1

1− 1
2

=
1

1− t
,

which is an element in the quotient field R{{t∗}} of R{t∗}. Clearly, other partial evalua-

tions yield other results, such as, e.g.,

πu7! 1
3
(γ(t, u)) = γ(t, 1

3) =
1

1− t
· 1

3

1

1− 1
3

= 1
2

1

1− t
.

Yet val2(γ) = (0, 1) and

val
(
γ(t, 1

2)
)

= val
(
γ(t, 1

3)
)

= 0 = πu∗(val2(γ)) .

In this example all real numbers in the open interval (0, 1) are admissible.

In Lemma 4.1.4 and Proposition 4.1.5 the roles of the T -variables and the U -variables

are symmetric. Yet the definition of val2 breaks this symmetry. The following example

shows that T and U cannot be exchanged in (4.7). Nonetheless the notation “πt7!ρ” and

“πt∗” makes sense; the map πt∗ is the projection (α, α′) 7! α′ onto the second coordinate.

Example 4.1.8. For γ(t, u) = tu3 + t2u−1 in R{{(t, u)∗}} we have val2(γ) = (1, 3).

According to (4.7) we have the equality

val(πu!1(γ)) = val(t+ t2) = 1 = πu∗(1, 3) .

Yet, here the roles of t and u cannot be exchanged:

val(πt!1(γ)) = val(u−1 + u3) = −1 6= πt∗(1, 3) .
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Remark 4.1.9. It is worth noting that the case m = 0 and n = 1 does make sense in

(4.7). Then we have T = () and U = (u), leading to R{{T ∗}} ∼= R and T0 = {0}; the

map ι sends c ∈ R>0 to the constant Puiseux series c · u0 ∈ R{{u∗}}, and val0 is the

trivial valuation on the positive reals. The right half of the diagram now degenerates to

the transfer principle from (1.1) as:

R{{u∗}}>0 R>0

T

val

πu

(4.8)

In fact, this can be exploited to pull back metric information from the semimodule Tk

and project it to (the positive orthant of) the real vector space Rk, for arbitrary k. This

is a key idea behind [6], where this approach was used to show that standard versions of

the interior point method cannot solve ordinary linear programs in strongly polynomial

time.

For a single indeterminate T = (t1), t1 = t, van den Dries and Speissegger prove that

R{{t∗}} is a real closed field; cf. [87, Corollary 9.2]. This does not hold for more than

one indeterminate. Instead we have the following.

Proposition 4.1.10. The field R{{u∗}}{{t∗}} is real closed, and its algebraic closure is

C{{u∗}}{{t∗}}.

Proof. We mimic the proofs of [87, Lemma 9.1] and [87, Corollary 9.2] with R{{u∗}}

instead of R. Consider a univariate polynomial

f(t, u, w) = wn +
(∑
α

(
∑
β

cn−1
α,β u

β)tα
)
wn−1 + · · ·+

(∑
α

(
∑
β

c0
α,βu

β)tα
)

in R{{u∗}}{t∗}[w] with f(0, 0, 0) = 0 and (∂f/∂w)(0, 0, 0) 6= 0. That is, the coefficients of

f lie in the local ring R{{u∗}}{t∗} of convergent series with coefficients in the real closed

field R{{u∗}}. We need to show that there is a series γ(t, u) ∈ R{{u∗}}{t∗} with γ(0, 0) =

0 and f(t, u, γ(t, u)) = 0. We may view f(t, u, w) as an element of R{{u∗}}{t∗, w}.
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Applying the Weierstrass Preparation [87, 5.10] with respect to the real closed field

A = R{{u∗}} yields a unit g ∈ R{{u∗}}{t∗, w} and some γ(t, u) ∈ R{{u∗}}{t∗} with

f(t, u, w) = g(t, u, w)(w − γ(t, u)). It follows that this γ is as required, i.e., we have

γ(0, 0) = 0 and f(t, u, γ(t, u)) = 0. We infer that the local ring R{{u∗}}{t∗} is Henselian.

As in [87, Corollary 9.2] this entails that the field of fractions R{{u∗}}{{t∗}} is real closed;

cf. [37, Theorem 4.3.7]. The claim on the algebraic closure is a direct consequence.

Note that we cannot invoke standard model theory arguments, e.g., Tarski’s principle,

in the previous proof as [87, Lemma 9.1] is not a first order statement over the reals.

This is because, in general, a convergent series in R{u∗} has infinitely many nonzero

coefficients. The “replacement” is the more technical Weierstrass Preparation [87, 5.10],

which is sufficiently general.

Remark 4.1.11. The argument in the proof of Proposition 4.1.10 can be iterated to

show that the tower R{{t∗1}}· · ·{{t∗m}} of convergent generalised Puiseux series is also real

closed. However, we prefer to stick to rank two from now on in order to minimise the

technical overhead.

The rank two valuation map val2 : R{{(t, u)∗}}! T2 admits an extension to the real

closed field R{{u∗}}{{t∗}} as follows. A typical nonzero element is of the form γ(t, u) =∑
α(
∑

β cα,βu
β)tα. As a convergent series in t this has a leading term (i.e., a term of

lowest order), say, (
∑

β cα0,βu
β)tα0 . The leading coefficient is a nonzero convergent series

in u. This again has a leading term, say, cα0,β0u
β0 . Now we have

val2(γ(t, u)) = (α0, β0) . (4.9)

In the abstract field R{{(t, u)∗}} the role of the two indeterminates, t and u, is symmet-

ric. Yet the valuation map that we chose, val2, prefers t before u. So, while the field

R{{t∗}}{{u∗}}, obtained from interchanging the roles of t and u, is abstractly isomor-

phic to R{{u∗}}{{t∗}}, our valuation map val2 defined on R{{(t, u)∗}} only extends to

R{{u∗}}{{t∗}}.
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4.2 Rank two tropical hypersurfaces

As in Example 4.1.7, in the sequel we will be investigating the special case where m =

n = 1. That is, we consider the field R{{(t, u)∗}} of convergent generalised Puiseux series

in two indeterminates, t and u. This contains the subfields R{{t∗}} and R{{u∗}}, and we

have R{{(t, u)∗}} ⊂ R{{u∗}}{{t∗}} by Lemma 4.1.4. All these fields are ordered. From

Proposition 4.1.10 we know that R{{u∗}}{{t∗}} is real closed and the rank two valuation

map from R{{(t, u)∗}} extends; cf. (4.9). Formally, in the sequel we could also replace

the field R{{u∗}}{{t∗}} by the real closure of R{{(t, u)∗}}, which is smaller. However, we

prefer to work with a “somewhat reasonable” field and hope that this adds improved

readability.

Since we now want to look at hypersurfaces, it is natural to pass to algebraically

closed fields. Picking an imaginary unit i =
√
−1 we obtain

C{{(t, u)∗}} = R{{(t, u)∗}}+ iR{{(t, u)∗}} ⊆ C{{u∗}}{{t∗}} ,

and the latter field, which we abbreviate as L, is algebraically closed due to Proposi-

tion 4.1.10. Both, C{{(t, u)∗}} and L = C{{u∗}}{{t∗}} are equipped with the rank two

valuation map val2. Note that evaluating a series in C{{(t, u)∗}}, within its polyradius

of convergence, is only defined for admissible positive real values, despite that the coeffi-

cients are allowed to be complex numbers. This yields a real-analytic function, which is

not holomorphic, in general. We will come back to convergent Puiseux series with real

coefficients in Section 4.4 below.

The following is based on [12] and [13]. Given a Laurent polynomial f =
∑
γsx

s ∈

L[x±1 , . . . , x
±
d ], the rank two tropicalisation of f is the tropical polynomial obtained from

f by applying val2 to each coefficient and replacing addition and multiplication with
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their tropical counterparts. This induces the tropical polynomial map

trop2(f) : (T2)d −! T2

p 7−! min {val2(γs) + 〈s, p〉 | s ∈ supp(f)} ,

where 〈s, p〉 is the pairing

〈−,−〉 : Zd × (T2)d −! T2(
(s1, . . . , sd), (p1, . . . , pd)

)
7−!

d∑
i=1

(sip1i, sip2i) .
(4.10)

For every p ∈ (T2)d there exists at least one term of the polynomial where trop2(f)

attains its minimum, and hence the set

Dp(f) =
{
s ∈ Zd

∣∣∣ trop2(f)(p) = val2(γs) + 〈s, p〉
}

is not empty.

Definition 4.2.1. The rank two tropical hypersurface of f is the set

T2(f) =
{
p ∈ (T2)d

∣∣∣ |Dp(f)| > 1
}

.

As with rank one tropical hypersurfaces, this construction commutes with taking the

coordinatewise valuation of the zero set of f . Here it is essential that L is algebraically

closed and that the valuation map is surjective onto T2.

Theorem 4.2.2 ([13, Theorem 8.1]). Let f ∈ L[x±1 , . . . , x
±
d ]. The rank two tropical

hypersurface of f is the set of pointwise valuations of the zero set of f , i.e.,

T2(f) =
{(

val2(p1), . . . , val2(pd)
) ∣∣∣ p ∈ Ld, f(p) = 0

}
.
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As rank one tropical hypersurfaces are ordinary polyhedral complexes, we would like

an analogous structure for rank two tropical hypersurfaces. As sets T2 and R2 are equal,

but the order topology (on T2) is strictly finer than the Euclidean topology (on R2);

recall that the open intervals form a basis of the order topology. Similarly (T2)d and

(R2)d are equal as sets but the respective product topologies are distinct. In particular,

(R2)d is homeomorphic with R2d, and we use the latter notation for readability. However,

we shall write point coordinates as (p11, p21; . . . ; p1d, p2d) to emphasise that points are

d-tuples of elements of R2 or T2.

Example 4.2.3. For the bivariate linear polynomial f = x1 + tx2 + t2u ∈ L[x1, x2] its

rank two tropical hypersurface is the following subset of (T2)2.

T2(f) = {(p11, p21; p12, p22) | (0, 0) + (p11, p21) = (2, 1) ≤ (1, 0) + (p12, p22)}

∪ {(p11, p21; p12, p22) | (1, 0) + (p12, p22) = (2, 1) ≤ (0, 0) + (p11, p21)}

∪ {(p11, p21; p12, p22) | (0, 0) + (p11, p21) = (1, 0) + (p12, p22) ≤ (2, 1)}

= {(2, 1; 1, 1) + (0, 0;λ1, λ2) | (λ1, λ2) ≥ (0, 0)}

∪ {(2, 1; 1, 1) + (λ1, λ2; 0, 0) | (λ1, λ2) ≥ (0, 0)}

∪ {(2, 1; 1, 1) + (−λ1,−λ2;−λ1,−λ2) | (λ1, λ2) ≥ (0, 0)}

Recall that “≤” and “≥” refers to the lexicographic ordering. Due to this ordering, T2(f)

is not closed in the Euclidean topology. For example, consider the sequence of points

(2, 1; 1 + ck, 0) where ck ! 0 is a sequence of positive reals converging to zero. Each of

these points are contained in T2(f) but its limit (2, 1; 1, 0) is not.

Example 4.2.3 highlights that rank two tropical hypersurfaces are not closed in the

Euclidean topology, therefore they do not have the structure of a polyhedral complex as

rank one tropical hypersurfaces do. However, we can consider polyhedral-like structures

with respect to the lex-order topology on T2.

We recall the following notions from [40, 41]. There is a natural pairing (4.10) which
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arises from considering the abelian group T2 as a Z-module. A lex-halfspace in (T2)d is

a set of the form

Hs,q =
{
p ∈ (T2)d

∣∣∣ 〈s, p〉 ≤ q}
for some fixed slope s ∈ Zd and affine constraint q ∈ R2. Its boundary is

{
p ∈ (T2)d

∣∣∣ 〈s, p〉 = q
}

= Hs,q ∩H−s,q . (4.11)

Note that the slopes are integral vectors as we are considering Laurent polynomials

(whose exponents lie in Zd) with coefficients in L, which is equipped with a rank two

valuation that is not discrete. Thus Zd arises as a factor of the domain of the pairing

map (4.10).

Definition 4.2.4. A lex-polyhedron P in (T2)d is any intersection of finitely many

lex-halfspaces

P = Hs1,q1 ∩ · · · ∩Hsr,qr . (4.12)

A face of P is the intersection with any number of boundaries of the lex-halfspaces defin-

ing P. Its relative interior int(P) is the set of points contained in P but in no face of

P. A lex-polyhedral complex in (T2)d is a finite collection {Pj}j∈J of lex-polyhedra in

(T2)d such that every face of Pj also lies in the collection and the intersection of any

two lex-polyhedra also lies in the collection.

Note that [40, 41] simply refer to these as “polyhedra”. As we are also working

with ordinary and tropical polyhedra, we use the prefix “lex” to stress the underlying

lexicographical ordering, and use a bold typeface to differentiate it. By (4.11), boundaries

of lex-halfspaces and thus faces are lex-polyhedra. It is worth keeping in mind that the

notions defined above depend on the choice of the representation (4.12); cf. Question 4.5.2

below. Lex-polyhedra are necessarily closed in the order topology.
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Given some subset S ⊆ supp(f), we define the support cell

PS(f) =
{
p ∈ (T2)d

∣∣∣ S ⊆ Dp(f)
}
, for S ⊆ supp(f) . (4.13)

By definition, PS = PS(f) is cut out by lex-halfspaces defined by the inequalities of the

form

val2(γs) + 〈s, p〉 ≤ val2(γ′s) + 〈s′, p〉, for s ∈ S , s′ ∈ supp(f) (4.14)

and so has the structure of a lex-polyhedron.

Note that for a non-generic polynomial f , there may exist S such that trop2(f) does

not obtain its minimum at precisely S when evaluated at any point in PS . Equivalently,

there may exist S, T such that S 6= T but their support cells are equal as sets, i.e.,

PS = PT . Any point in the support cells satisfies S, T ⊆ Dp(f) and so they are equal to

PS ∪PT as a set. This implies any support cell can be labelled by a unique maximal set,

which we call the support set i.e., S is a support set of f if PS(f) = PT (f) implies T ⊆ S.

Note that the rank one analogue of support cells in Td are ordinary polyhedra; see [63,

Proposition 3.1.6] and Question 4.5.1 below. Support cells have some nice combinatorial

properties:

Lemma 4.2.5. Let S, T be support sets.

1. PS ∩PT = PS∪T .

2. S ⊂ T if and only if PT is a face of PS.

Proof. Denote inequalities of the form (4.14) by αs,s′ . Consider the intersection PS∩PT ,

it is cut out by the union of inequalities defining PS and PT . These are precisely the

inequalities αs,s′ for s ∈ S ∪T , and is therefore equal to PS∪T . Furthermore, as S, T are

support sets, their union also is.

Any face of PS is defined by setting certain inequalities of (4.14) to equalities, or

equivalently by adding the inequality αs′,s. If T ⊃ S is the set of elements of supp(f)
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contained in an equality, then αs,s′ holds for all s ∈ T and s′ ∈ supp(f). Therefore T is

a support set and PT is the corresponding face of PS .

Remark 4.2.6. Lemma 4.2.5 has two important consequences. The first is that by

associating support cells with their unique support set, each support cell has a canonical

halfspace description via (4.14). Furthermore, as faces of support cells are themselves

support cells, this extends to a canonical inequality description of each face. The second

consequence is that as the faces of PS are the points p such that S ( Dp(f), the relative

interior of PS is the set

int(PS) =
{
p ∈ (T2)d

∣∣∣ S = Dp(f)
}

.

Note that this is not true if S is not a support set.

Remark 4.2.7. In topology the term “cell” is typically used for subsets of R2d which

are homeomorphic with some closed Euclidean ball. Here we deviate slightly based on the

topology that we are using. When working with R2d and the Euclidean topology, our cells

will be convex polyhedra, whereas when working with (T2)d and the order topology, our

cells will be lex-polyhedra. Note that in both cases, cells may be unbounded.

[41, Theorem 2.5.2] and [69, Proposition 1.2] show T2(f) carries the structure of a

lex-polyhedral complex. The following shows that this lex-polyhedral complex is labelled

by subsets of monomials of f .

Proposition 4.2.8. The rank two tropical hypersurface T2(f) is a lex-polyhedral complex

whose cells are of the form PS, where S is a support set of cardinality greater than one.

Proof. Define the collection of lex-polyhedra

Σ = {PS | S support set , |S| > 1} .

By definition Σ and T2(f) are equal as sets; it remains to show Σ is a lex-polyhedral



Chapter 4. Convergent Puiseux series and tropical geometry of higher rank 107

complex. By Lemma 4.2.5, Σ is closed under taking intersections and restricting to faces,

therefore it is a lex-polyhedral complex.

Example 4.2.9. We return to the polynomial f = x1 + tx2 + t2u from Example 4.2.3.

Its support is supp(f) = {(0, 0), (1, 0), (0, 1)}, and so T2(f) is a lex-polyhedral complex

in (T2)2 with three maximal lex-polyhedral cells:

P{(0,0),(1,0)} = {(2, 1; 1, 1) + (0, 0;λ1, λ2) | (λ1, λ2) ≥ (0, 0)}

P{(0,0),(0,1)} = {(2, 1; 1, 1) + (λ1, λ2; 0, 0) | (λ1, λ2) ≥ (0, 0)}

P{(1,0),(0,1)} = {(2, 1; 1, 1) + (−λ1,−λ2;−λ1,−λ2) | (λ1, λ2) ≥ (0, 0)} .

Their intersection is the common face P{(0,0),(1,0),(0,1)} = {(2, 1; 1, 1)}.

While Proposition 4.2.8 gives a concrete description of rank two tropical hypersur-

faces, the structure of lex-polyhedra is not as well understood as ordinary polyhedra; cf.

Question 4.5.2. Furthermore, as we shall show later, the projections πu∗ and πt∗ map

T2(f) to ordinary polyhedral complexes. Theorem 4.2.13 and Corollary 4.2.14 exploit

this structure to give an explicit description of T2(f) in terms of ordinary polyhedra. To

do so, we introduce the following notation.

The higher rank transfer principle (4.7) naturally extends to the following commuta-

tive diagram of Laurent polynomial (semi-)rings.

C{{t∗}}[x±] C{{(t, u)∗}}[x±] C{{t∗}}[x±]

T[x±] T2[x±] T[x±]

trop

ι

trop2

πu

trop

ι∗ πu∗

(4.15)

Here x± is shorthand for x±1 , . . . , x
±
d . Furthermore, ι, ι∗, πu, πu∗ are the same as in (4.7),

applied coefficientwise. As before, π, the partial evaluation at admissible and sufficiently

small real constants, is not globally defined. Again we also use πt and πt∗ despite the

fact that the roles of t and u are not interchangeable in (4.15); cf. Example 4.1.8. Note
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that these partial evaluations for a given polynomial must be admissible simultaneously

for all its coefficients.

Remark 4.2.10. Let f ∈ C{{(t, u)∗}}[x±1 , . . . , x
±
d ] be a rank two polynomial with partial

evaluation πu7!σ(f) at an admissible value σ > 0. Then supp(f) = supp(πu7!σ(f)) as

subsets of Zd. This is immediate from the definition of admissibility. From now on we

assume that all choices of σ and ρ are admissible real values.

Example 4.2.11. Consider the rank two bivariate polynomial f = x1 + tx2 + t2u in

C{{(t, u)∗}}[x1, x2] from Example 4.2.3. Its coefficients converge to nonzero values for

any positive evaluation. For instance, this gives the rank one polynomials

πu7!1(f) = x1 + tx2 + t2 ∈ C{{t∗}}[x1, x2] and

πt7!1(f) = x1 + x2 + u ∈ C{{u∗}}[x1, x2] ,

obtained from evaluating at u = 1 and t = 1. Their rank one tropical hypersurfaces both

are tropical lines in R2.

For clarity, we use T rather than T2 to denote tropical hypersurfaces where the under-

lying field has rank one valuation. As πu7!σ(f) and πt7!ρ(f) are polynomials over an alge-

braically closed field with a rank one valuation, their tropical hypersurfaces T (πu7!σ(f))

and T (πt7!ρ(f)) are ordinary polyhedral complexes. However, the underlying fields are

different and so these tropical hypersurfaces sit in different ambient spaces that we de-

note by Rdt and Rdu respectively. Using Theorem 4.2.2 and the commutative diagram

(4.15), we may view the entire space

R2d = πu∗(R2d) + πt∗(R2d) = Rdt + Rdu

as their Cartesian product, or as the Minkowski sum of orthogonal spaces.

As noted previously, T2(f) is not closed in the Euclidean topology and so is not a

polyhedral complex. However, we can still use the additional structure of T (πu7!σ(f))
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and T (πt7!ρ(f)) to describe T2(f).

Definition 4.2.12. The (relative) interior of an ordinary polyhedron P is the set of

points int(P ) contained in P but no face of P . Equivalently, it is the set cut out by the

defining equalities and inequalities of P , where any proper inequalities are changed to

strict inequalities.

By removing its boundary, the interior of a polyhedron is not closed in the Euclidean

topology, and so this is what we shall use to describe T2(f). Note that the interior of a

polyhedron is open if and only if it is full dimensional.

Let f =
∑
γsx

s. For S ⊆ supp(f), we denote the restriction of f to the monomials

labelled by S by fS =
∑

s∈S γsx
s.

Theorem 4.2.13. Let f ∈ C{{(t, u)∗}}[x±1 , . . . , x
±
d ] be a d-variate Laurent polynomial

with admissible partial evaluations t 7! ρ and u 7! σ. The rank two tropical hypersurface

T2(f) is the finite disjoint union

T2(f) =
⊔
S

⊔
T⊇S

(
int(QT ) + int(RS))

)

of interiors of polyhedra in R2d, where T, S are support sets of πu7!σ(f) and πt7!ρ(fT ) re-

spectively, and QT , RS are support cells of their rank one tropical hypersurfaces T (πu7!σ(f))

in Rdt and T (πt7!ρ(fT )) in Rdu respectively.

Proof. By Proposition 4.2.8, T2(f) is a lex-polyhedral complex of support cells PS as S

runs over all support sets of f of cardinality greater than one. In particular, this becomes

a disjoint union if we restrict to the relative interiors of PS ; by Remark 4.2.6 these are the

points p such that trop2(f)(p) attains its minimum at precisely the monomials labelled

by S. We claim that int(PS) =
⊔
T⊇S (int(QT ) + int(RS)).

The point p is contained in int(PS) if and only if trop2(f)(p) attains its minimum at
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precisely the monomials labelled by S i.e.,

val2(γs) + 〈s, p〉 ≤ val2(γs′) + 〈s′, p〉 , for all s ∈ S and s′ ∈ supp(f)

with equality if and only if s′ ∈ S. Considering the lexicographical ordering on T2 and

its coordinates separately, this is equivalent to the following two conditions:

πu∗(val2(γs)) + πu∗(〈s, p〉) ≤ πu∗(val2(γs′)) + πu∗(〈s′, p〉)

⇔ val(πu7!σ(γs)) +

d∑
i=1

sip1i ≤ val(πu7!σ(γs′)) +

d∑
i=1

s′ip1i , for s ∈ T
(4.16)

for some T ⊇ S, with equality if and only if s′ ∈ T .

πt∗(val2(γs)) + πt∗(〈s, p〉) ≤ πt∗(val2(γs′)) + πt∗(〈s′, p〉)

⇔ val(πt7!ρ(γs)) +

d∑
i=1

sip2i ≤ val(πt7!ρ(γs′)) +

d∑
i=1

s′ip2i , for s ∈ S, s′ ∈ T
(4.17)

with equality if and only if s′ ∈ S. Condition (4.16) is equivalent to πu∗(p) being

contained in the interior of the support cell QT of T (πu7!σ(f)). Condition (4.17) is

equivalent to πt∗(p) being contained in the interior of the support cell RS of T (πt7!ρ(fT )).

It remains to show each part of the disjoint union is the interior of a polyhedron,

or explicitly that int(QT + RS) = int(QT ) + int(RS). As QT and RS are in orthogonal

ambient spaces, the union of their defining equalities and inequalities cut out QT +RS .

Changing the inequalities to strict inequalities gives the desired result.

Since the order topology is finer than the Euclidean topology, the Euclidean closure

becomes larger.

Corollary 4.2.14. With the notation of Theorem 4.2.13: the closure of T2(f) in the
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Euclidean topology is the finite union

T2(f) =
⋃
S

⋃
T⊇S

(
QT +RS

)

of polyhedra in R2d.

Proof. As QT + RS = int(QT ) + int(RS), the result follows from Theorem 4.2.13 using

the fact that the closure of a finite union of sets equals the union of their closures.

Remark 4.2.15. Building on Theorem 4.2.13 and Corollary 4.2.14, one can give a

slightly different characterisation of T2(f) and its closure. Letting T range over support

sets of πu7!σ(f) and S over support sets of πt7!ρ(fT ), we get

T2(f) =
⊔
S

⊔
T⊇S

(
int(QT ) + int(RS))

)
=
⊔
T

(
int(QT ) +

⊔
S⊆T

int(RS)
)

=
⊔
T

(
int(QT ) + T (πt7!ρ(fT ))

)
.

Taking the closure in the Euclidean topology gives the expression T2(f) =
⋃
T

(
QT +

T (πt7!ρ(fT ))
)
. These alternative characterisations will be of use for Section 4.3.

Remark 4.2.16. Foster and Ranganathan [41] and Banerjee [18] both study notions

of higher rank tropical geometry; in both cases the group of values is Tm (or a discrete

subgroup). Banerjee considers the tropicalisation of subvarieties of the torus over m-

dimensional local fields with discrete valuation, while Foster and Ranganathan consider

a generalisation of Berkovich analytification. We note that our tropicalisation is not

comparable to Banerjee’s as C{{(t, u)∗}} is not a higher dimensional local field in the

sense of [18, Definition 3.1]. However, both are special cases of the tropicalisation of

Foster and Ranganathan. In particular, for m = 2 our T2(f) from Definition 4.2.1 is

covered in [41].
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There is also a conceptual difference between the approach of Foster and Ranganathan

and Banerjee’s approach. Banerjee begins with small fields and discrete valuations and

then takes algebraic and topological closures to “fill in gaps”, while Foster and Ran-

ganathan begin with larger fields, via Hahn analytification, to avoid taking topological

closures. Our approach via generalised Puiseux series is in the same spirit as Foster

and Ranganathan’s. While either approach behaves well for m = 1, the following shows

that topological closure operations go awry when m > 1 and thus need to be dealt with

carefully.

To see this, first let us very briefly describe the setup of [18]. Any m-dimensional

local field K, in the sense of [18, Definition 3.1], admits a valuation νK : K× ! ΓK

where ΓK ∼= Zm with the lexicographical ordering. For any finite field extension L of K,

this valuation extends to a valuation νL : L× ! ΓL. This allows us to extend νK to the

algebraic closure of K, becoming the surjective map ν : (Kal)× ! ΓQ ∼= Qm where ΓQ

is the direct limit of all groups ΓL taken over all finite field extensions L of K. Finally,

we let ΓR := ΓQ ⊗Q R ∼= Rm and extend the codomain of ν to ΓR. One then considers

subvarieties of the d-dimensional algebraic torus over K and their images in ν.

Banerjee’s notion of a tropical hypersurface is the same as Aroca’s [12], and this

agrees with Definition 4.2.1. Now [18, Theorem 5.3] claims that Tm(f) is equal to

{ν(p) | p ∈ Xf} ,

where Xf is the hypersurface in the algebraic torus defined by f . Unfortunately, in which

topology the closure is taken in is not specified. The discussion in [41, Section 2.3] erro-

neously assumes it is the Euclidean topology. However, the resulting set contains Tm(f)

but is too large and contains points where tropm(f) is linear. Note that Banerjee’s defini-

tion of a polyhedron [18, Notation 4.1.(v)] generalises our definition of a lex-polyhedron

slightly by replacing Zm by any totally order group Γ. Furthermore, [18, Example 5.11]

is a computation of a rank two tropical hypersurface, similar to our Example 4.2.3, and
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is not closed in the Euclidean topology.

However, it is worth noting that taking the order topology does not fix the claim

made in [18, Theorem 5.3]. The image of the valuation ν is isomorphic to Qm with the

lexicographical ordering. In the order topology, Qm is not dense in Rm, as its closure

does not contain any elements of the form (a1, . . . , am) where a1 is irrational. Therefore

the closure in the order topology is contained in Tm(f) but is too small.

To close this section, we give two examples to demonstrate that rank two tropical

hypersurfaces are quite different from their rank one counterparts, even when taking their

closure in the Euclidean topology. Example 4.2.17 demonstrates the closure of a rank

two tropical hypersurface is not a polyhedral complex, as polyhedra may not intersect at

their faces. Example 4.2.18 shows the closure of a rank two tropical hypersurfaces do not

satisfy a purity condition, as the polyhedra that are maximal with respect to inclusion

may not be of the same dimension.

Example 4.2.17. We return to the rank two tropical hypersurface of the polynomial f =

x1 + tx2 + t2u from Examples 4.2.3, 4.2.9 and 4.2.11. As its coefficients are monomials

in t and u, the partial evaluations of f are defined at the admissible values ρ = σ = 1.

Let T = {(0, 0), (0, 1)}, and consider the support cell

QT = {(2 + λ1, 1) | λ1 ≥ 0}

of the tropical line T (πu7!1(f)) in R2
t . The polynomial πt7!1(fT ) = x2 + u defines a rank

1 tropical hypersurface with a single support cell

RS = {(λ2, 1) | λ2 ∈ R} ,

in R2
u, where S = {(0, 0), (0, 1)}. By Corollary 4.2.14, the sum of these two polyhedra

QT +RS = {(2, 1; 1, 1) + (λ1, λ2; 0, 0) | λ1 ≥ 0, λ2 ∈ R} ⊂ R4
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is a polyhedron in T2(f). Ranging over all support sets S and T , the closure of T2(f) in

the Euclidean topology is the union

T2(f) = {(2, 1; 1, 1) + (λ1, λ2; 0, 0) | λ1 ≥ 0, λ2 ∈ R}

∪ {(2, 1; 1, 1) + (0, 0;λ1, λ2) | λ1 ≥ 0, λ2 ∈ R}

∪ {(2, 1; 1, 1) + (λ1, λ2;λ1, λ2) | λ1 ≤ 0, λ2 ∈ R}

of three ordinary halfplanes in R4. Note that this is not an ordinary polyhedral complex

as the polyhedra do not intersect at faces. The joint intersection of the three ordinary

halfplanes is the point (2, 1; 1, 1), but this is not a (zero-dimensional) face of any of them.

Example 4.2.18. Consider the polynomial f = ux1x2 + x1 + x2 + 1, whose vanishing

locus is a conic. The closure of its rank two tropical hypersurface is the union of ordinary

polyhedra:

T2(f) = {(λ1, λ2; 0, 0) | λ1 ≥ 0, λ2 ∈ R}

∪ {(0, 0;λ1, λ2) | λ1 ≥ 0, λ2 ∈ R}

∪ {(0, λ; 0, λ) | λ ∈ [−1, 0]}

∪ {(λ1, λ2; 0,−1) | λ1 ≤ 0, λ2 ∈ R}

∪ {(0,−1, λ1, λ2) | λ1 ≤ 0, λ2 ∈ R} .

We say a finite union of polyhedra is pure if all its maximal polyhedra (with respect

to inclusion) have the same dimension. This generalises a notion commonly used for

polyhedral complexes; in fact, it is the same if applied to the polyhedral complex obtained

by taking the common refinement of the finitely many given polyhedra. Observe that

T2(f) is not pure, as the maximal polyhedra are all two-dimensional, except for the line

segment {(0, λ; 0, λ) | λ ∈ [−1, 0]}. This can be decomposed as the direct sum of support

cells

QT +RS = {(0, 0)}+ {(λ, λ) | λ ∈ R}

where T = {(0, 0), (1, 0), (0, 1), (1, 1)} and S = {(1, 0), (0, 1)}. In particular, S ⊂ T



Chapter 4. Convergent Puiseux series and tropical geometry of higher rank 115

implies dim(QT ) < dim(RS). However, the pairs of support cells in the decomposition of

the other maximal polyhedra have equal support sets, and therefore the same dimension.a

4.3 Stable intersection

In this section, we use the higher rank machinery developed so far to obtain a new de-

scription of the stable intersection of rank one tropical hypersurfaces. To do so, we must

first consider the structure of rank two tropical hypersurfaces determined by polynomials

with coefficients in C{{t∗}}.

We recall the following polyhedral definition. Fix some polyhedral complex Σ and

let P be a cell in Σ. The star of P is the fan spanned by the cells of Σ containing P ;

more precisely,

star(P ) =
⋃

Q∈Σ, Q⊇P
{λ(q − p) | λ ≥ 0, p ∈ P, q ∈ Q} . (4.18)

Let f be a Laurent polynomial in C{{t∗}}[x±1 , . . . , x
±
d ]. Under the embedding ι, we

can also consider f as a polynomial in C{{(t, u)∗}}[x±1 , . . . , x
±
d ] with an associated rank

two tropical hypersurface. We arrive at another consequence of Theorem 4.2.13.

Corollary 4.3.1. Let f ∈ C{{t∗}}[x±1 , . . . , x
±
d ] be a d-variate Laurent polynomial. The

rank two tropical hypersurface T2(f) is the disjoint finite union

T2(f) =
⊔
S

(
int(PS) + star(PS)

)

in R2d, where PS is a support cell of T (f) in Rdt and star(PS) is embedded in Rdu.

Proof. Clearly, this is a special case of Remark 4.2.15 where f agrees with πu7!σ(f). We

infer that T2(f) is the disjoint union int(PS)+T (πt7!ρ(fS)). Since πt7!ρ(fS) has constant

coefficients its tropical hypersurface is a fan. By [63, Theorem 3.5.6] this is the recession

fan of T (fS), and in this case it agrees with star(PS).
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Corollary 4.3.2. The closure of T2(f) in the Euclidean topology is the finite union

T2(f) =
⋃
S

(
PS + LS

)

of polyhedra in R2d, where PS is a maximal support cell of T (πu7!σ(f)) in Rdt and LS is

the linear space equal to the affine span of PS translated to the origin in Rdu.

Proof. Remark 4.2.15 and Corollary 4.3.1 imply that T2(f) equals the union
⋃(
PS +

star(PS)
)
. Each cell of star(PS) is labelled by some T ⊆ S corresponding to PT ⊇ PS .

Note that if PS is a maximal support cell of T (πu7!σ(f)), star(PS) is simply the linear

space LS . Furthermore, if PS is not a maximal support cell of T (πu7!σ(f)), then the

maximal cell of star(PS) labelled by T ⊂ S is contained in LT . Therefore we can restrict

the union to just the maximal support cells, giving the desired result.

Example 4.3.3. Consider the degree three polynomial

f = 1 + t(x+ y) + t3xy + t5(x2 + y2) + t9(x2y + xy2) + t15(x3 + y3)

in C{{t∗}}[x, y]. It describes an elliptic curve, whose rank one tropicalisation is shown

in Figure 4.1. When we view f as a polynomial with coefficients in C{{(t, u)∗}}, Corol-

lary 4.3.1 describes the resulting rank two tropical curve. The partial evaluation πu7!σ(f)

equals f , and πt7!ρ(f) has constant coefficients, for any ρ and σ. For instance, let us look

at the cell marked “PS” in Figure 4.1 where S = {(0, 1), (1, 1)}, we get fS = ty + t3xy.

It follows that LS = T (fS) is the y-axis, and this is also the only cell in that tropical

hypersurface.

To develop a new description of stable intersection, we introduce the following notion

of perturbation on the level of Puiseux series.

Definition 4.3.4. Let β > 0 be a fixed transcendental number. The u-perturbation of

f by β is the polynomial fu ∈ C{{(t, u)∗}}[x±1 , . . . , x
±
d ] obtained from f by the d linear
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Figure 4.1: Tropical elliptic curve with the one-dimensional cell PS marked; cf. Exam-
ple 4.3.3. Each region is labelled with its supporting monomial.

substitutions xk 7! uβ
k
xk.

We are interested in the effect of the u-perturbation to the tropicalisation of f . As

val(u) < val(t), the variable u can be considered an infinitesimal perturbation to the

coefficients of f . Explicitly, the u-perturbation of the term γsx
s, which is a d-variate

Laurent monomial whose single coefficient γs lies in C{{t∗}}, equals

γsu
s1β+s2β2+···+sdβd

xs .

Its rank two tropicalisation is

(
val(γs),

∑
siβ

i
)

+ s1x1 + · · ·+ sdxd .

Since β is transcendental, the expression
∑
siβ

i does not vanish, unless s1 = · · · = sd =

0. In particular, we have us1β+s2β2+···+sdβd 6= 1, and it follows that no nonconstant

term of fu has a coefficient which lies in the subfield C{{t∗}}. Yet the partial evaluation
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πu7!σ(f) is defined for all σ > 0. Moreover, supp(fu) = supp(f).

The following lemma describes the u-perturbation as a translation at the level of rank

two tropical hypersurfaces.

Lemma 4.3.5. Let f ∈ C{{t∗}}[x±1 , . . . , x
±
d ] be a d-variate Laurent polynomial. Then

T2(f) = T2(fu) + (0, . . . , 0;β, . . . , βd) .

Moreover, the same holds for the closures in the Euclidean topology, i.e.,

T2(f) = T2(fu) + (0, . . . , 0;β, . . . , βd) .

Proof. Let p = (p11, p21; . . . ; p1d, p2d) ∈ T2(f). Then there exist distinct s and s′ in

supp(f) with val2(γs) + 〈s, p〉 = val2(γs′) + 〈s′, p〉, where val2(γs) = (val(γs), 0) and

val2(γs′) = (val(γs′), 0). Hence

(
val(γs),

∑
siβ

i
)

+ s1(p11, p21 − β) + · · ·+ sd(p1d, p2d − βd)

= val2(γs) + 〈s, p〉 = val2(γs′) + 〈s′, p〉

=
(
val(γs′),

∑
siβ

i
)

+ s′1(p11, p21 − β) + · · ·+ s′d(p1d, p2d − βd) .

(4.19)

In other words, as supp(fu) = supp(f), the point p− (0, . . . , 0;β, . . . , βd) lies in T2(fu),

and this proves one inclusion. The argument can be reversed, and the claim on T2(f)

follows.

The explicit computation in (4.19) carries over to the topological closure by continuity

of the arithmetic operations.

We recall the following concepts from [63, §3.6]. Let f and g be Laurent polynomials

in C{{t∗}}[x±1 , . . . , x
±
d ]. The (polyhedral) stable intersection of their tropical hypersur-
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faces is the polyhedral complex

T (f) ∩st T (g) =
⋃

dim(P+Q)=d

(P ∩Q) (4.20)

where P and Q are cells of T (f) and T (g), respectively. This is a coarser notion than

stable intersection of tropical varieties as it does not remember the multiplicities of the

varieties. Unless explicitly stated, we restrict purely to polyhedral stable intersection

from now on.

Theorem 4.3.6. Let f, g ∈ C{{t∗}}[x±1 , . . . , x
±
d ]. The stable intersection of T (f) and

T (g) is given by projecting the set theoretic intersection of (the closures of) the rank two

tropical hypersurfaces T2(f) and T2(gu); more precisely,

T (f) ∩st T (g) = πu∗
(
T2(f) ∩ T2(gu)

)
.

Proof. Let p1 ∈ T (f)∩st T (g) ⊂ Rdt . Then there are maximal support cells PS and PT of

T (f) and T (g), respectively, containing p1 with dim(PS +PT ) = d. Corollary 4.3.2 says

that PS + LS and PT + LT are maximal polyhedra in T2(f) and T2(g), respectively. We

have T2(g) = T2(gu) + (0, . . . , 0;β, . . . , βd) by Lemma 4.3.5. From dim(PS +PT ) = d, we

infer LS + LT = Rdu. Thus there are qS ∈ LS and qT ∈ LT with qT − qS = (β, . . . , βd).

Hence, setting p2 := qS = qT − (β, . . . , βd) and p := p1 + p2, yields

p ∈ (PS + LS) ∩ (PT + (LT − (β, . . . , βd))) ,

which is contained in T2(f) ∩ T2(gu), and πu∗(p) = p1.

Conversely let p ∈ T2(f) ∩ T2(gu) ⊂ R2d. Then there are maximal support cells

PS and PT of T (f) and T (g), respectively, such that πu∗(p) ∈ PS ∩ PT and πt∗(p) ∈

LS ∩ (LT − (β, . . . , βd)). We need to show that dim(PS + PT ) = d. As PS and PT are

both maximal, we have dimPS = dimLS = dimLT = dimPT = d − 1. Suppose that

dim(PS + PT ) < d. Then dim(PS + PT ) = d − 1, and the linear subspaces LS = LT
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must be equal. As a consequence the linear subspace LS and the parallel affine subspace

LT−(β, . . . , βd) are disjoint. Yet this contradicts that πt∗(p) lies in their intersection. We

conclude that dim(PS + PT ) = d, and πu∗(p) is contained in the stable intersection.

The stable intersection of T (f) and T (g) can also be obtained by perturbing T (g)

generically and taking the limit of its intersection with T (f) [63, Proposition 3.6.12],

i.e.,

T (f) ∩st T (g) = lim
ε!0

(
T (f) ∩ (T (g) + εv)

)
(4.21)

for any generic v ∈ Rd. In this way, Theorem 4.3.6 can be seen as a version of (4.21)

based on the “symbolic perturbation” paradigm common in computational geometry;

e.g., see [33] and [36].

Example 4.3.7. Consider the two bivariate polynomials

f = xy + x+ y + 1 and g = x+ ty + t

with coefficients in C{{t∗}}. Their corresponding tropical hypersurfaces are shown in

Figure 4.2. The intersection of their corresponding rank one tropical hypersurfaces is a

ray and a point

T (f) ∩ T (g) = {(λ+ 1, 0) | λ ≥ 0} ∪ {(0,−1)} .

That is, the intersection at the origin is not transverse in the sense of [63, Definition

3.4.9].

We consider f and g as polynomials with coefficients in C{{(t, u)∗}}. The u-perturbation

of g is

gu = uβx+ tuβ
2
y + t .
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T (f)

T (g)

(0,−1)

(1, 0)

Figure 4.2: The tropical hypersurfaces T (f), T (g) from Example 4.3.7. The red points
correspond to their stable intersection, while the solid ray only appears in their set-
theoretic intersection.

The closure of their rank two tropical hypersurfaces in R4 read as follows:

T2(f) = {(λ1, λ2; 0, 0) | λ1 ≥ 0, λ2 ∈ R}

∪ {(λ1, λ2; 0, 0) | λ1 ≤ 0, λ2 ∈ R}

∪ {(0, 0;λ1, λ2) | λ1 ≥ 0, λ2 ∈ R}

∪ {(0, 0;λ1, λ2) | λ1 ≤ 0, λ2 ∈ R}

T2(gu) =
{

(1 + λ1, λ2; 0,−β2)
∣∣ λ1 ≥ 0, λ2 ∈ R

}
∪ {(1,−β;λ1, λ2) | λ1 ≥ 0, λ2 ∈ R}

∪
{

(1− λ1,−β + λ2;−λ1,−β2 + λ2)
∣∣ λ1 ≥ 0, λ2 ∈ R

}
.

Their intersection is the three points (1,−β; 0, 0), (1, β2 − β; 0, 0) and (0, 0;−1, β − β2).

Projecting them via πu∗ yields (1, 0) and (0,−1) in R2. These two points form the stable

intersection of T (f) and T (g).

4.4 Rank two tropical convexity

Now we switch back to Puiseux series with real coefficients. We start out with a closer

look at the ordering on R{{(t, u)∗}}, which is induced by the lexicographic ordering of
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the exponents. The map

val2 : R{{(t, u)∗}} \ {0} −! T2

is a rank two valuation. It sends a convergent generalised Puiseux series γ(t, u) to

its smallest exponent vector. The restriction to positive series is an order reversing

homomorphism of ordered semirings onto T2, which is equipped with the lexicographic

ordering; cf. (4.7). For instance, we have the following strict inequalities

t9 < t2 < tu1000 < tu

of positive monomials, and these are equivalent to the reverse inequalities

(9, 0) > (2, 0) > (1, 1000) > (1, 1)

of the exponents. An example involving more general series, which are not necessarily

positive, is

val2(t9 − 3t10) = (9, 0) > val2(−t2 + 5t4u2 + t17) = (2, 0)

> val2(tu1000) = (1, 1000) > val2(tu) = (1, 1) .

It is useful to extend T2 by the additional element ∞ which is neutral with respect to the

tropical addition min, absorbing with respect to the tropical multiplication + and larger

than any element in T2. By letting val2(0) = ∞ this yields an extension of the rank

two valuation map. This is continuous with respect to the respective order topologies.

Recall that the order topology on T2, which agrees with R2 as a set, is finer than the

Euclidean topology.

In the subfield R{{t∗}} we have the inequalities 0 < u < c for any real number c, and
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we write this as 0 < u� 1. By the same token we have

0 < t � u � 1 (4.22)

in R{{(t, u)∗}}; cf. Figure 4.3. Since our valuation prefers terms of minimal order we say

that the indeterminate t dominates u.

0 t uu
2 1u

3
t
2

t
3

Figure 4.3: The relation between infinitesimals t� u.

The purpose of this section is to study the interplay between three notions of convex-

ity: ordinary convexity with respect to the ordered field R{{(t, u)∗}}d, rank two tropical

convexity with respect to tropical semifield T2, and lex-convexity with respect to the

lexicographic ordering on T2.

An (ordinary) cone in R{{(t, u)∗}}d is a nonempty subset K which satisfies λp+µq ∈

K for all p, q ∈ K and λ, µ ≥ 0. It is polyhedral if it is finitely generated. By definition

a cone in R{{(t, u)∗}}d is exactly the same as a submodule with respect to the semiring

R{{(t, u)∗}}≥0 of nonnegative elements. We now make use of the notation ‘⊕’ instead

of ‘min’ and ‘�’ instead of ‘+’ to stress the connection between tropical and ordinary

linear algebra .

Definition 4.4.1. A rank two tropical cone in (T2 ∪ {∞})d is a nonempty subset M

which satisfies

(λ� p)⊕ (µ� q) = min(λ+ p, µ+ q) ∈M

for all p, q ∈ M and λ, µ ∈ T2 ∪ {∞}. A rank two tropical cone is polyhedral if it is

finitely generated.

The following is a rank two analogue of a result by Develin and Yu [30, Proposition

2.1].

Proposition 4.4.2. Let K be an ordinary cone in R{{(t, u)∗}}d≥0. Then val2(K) is a
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rank two tropical cone in (T2∪{∞})d, and conversely each rank two tropical cone arises

in this way. Furthermore, if K is polyhedral then val2(K) is also, and conversely each

rank two tropical polyhedral cone is the image of a polyhedral cone in the valuation map.

Proof. As val2 is a homomorphism of semirings if restricted to positive convergent

Puiseux series it follows that val2(K) is a rank two tropical cone. Another consequence

of this is that if K is polyhedral then val2(K) is also.

It remains to show that, for a rank two tropical cone M in (T2 ∪ {∞})d, there is a

cone K in R{{(t, u)∗}}d≥0 with val2(K) = M . We set

K := {(tp11up21 , . . . , tp1dup2d) | (p11, p21; . . . ; p1d, p2d) ∈M} ,

where we use the convention taub = 0 for (a, b) = ∞. The fact that M is a rank two

tropical cone implies that K is a cone, again because val2 : R{{(t, u)∗}}≥0 ! T2 ∪ {∞}

is a homomorphism of semirings. As a further consequence, if M is polyhedral then K

must be also.

A subset K of R{{(t, u)∗}}d is (ordinary) convex if λp+ µq ∈ K for all p, q ∈ K and

λ, µ ≥ 0 with λ+ µ = 1. It is an (ordinary) polytope if it is finitely generated.

Definition 4.4.3. A subset M of (T2∪{∞})d is rank two tropically convex if (λ�p)⊕

(µ� q) ∈M for all p, q ∈M and λ, µ ∈ T2 ∪ {∞} with λ⊕ µ = (0, 0). It is a rank two

tropical polytope if it is finitely generated.

Corollary 4.4.4. Let K be a convex set in the positive orthant R{{(t, u)∗}}d≥0. Then

val2(K) is a rank two tropically convex set in (T2∪{∞})d, and conversely each rank two

tropically convex set arises in this way. Furthermore, if K is an ordinary polytope then

val2(K) is a rank two tropical polytope, and conversely every rank two tropical polytope

is the image of a polytope in the valuation map.

Proof. All the claims follow from Proposition 4.4.2 by homogenisation. Indeed, consider



Chapter 4. Convergent Puiseux series and tropical geometry of higher rank 125

the cone K ′ generated by the vectors (1, p) ∈ R{{(t, u)∗}}d+1
≥0 for p ∈ K. Then val2(K ′)

is a rank two tropical cone. The set M of points q ∈ (T2 ∪ {∞})d such that ((0, 0), q) ∈

val2(K ′) is rank two tropically convex and val2(K) = M .

None of the above is a special property of fields of (convergent) Puiseux series with

real coefficients. In fact, this generalises to any ordered field K with a valuation map

which is surjective onto some totally ordered abelian group G. Yet, combining the higher

rank transfer principle (4.7) with Proposition 4.4.2 we get a third diagram, this time of

modules over semirings, i.e., cones. As before πu is not globally defined. This makes

sense for convergent Puiseux series only.

R{{t∗}}d≥0 R{{(t, u)∗}}d≥0 R{{t∗}}d≥0

(T ∪ {∞})d (T2 ∪ {∞})d (T ∪ {∞})d
val

ι

val2

πu

val

ι∗ πu∗

(4.23)

As the tropicalisation of any ordinary cone or polytope in R{{(t, u)∗}}d≥0 is a rank

two tropical cone or polytope, any results on the latter objects hold also for the former.

Additionally, any results for rank two tropical cones give analogous results for rank two

tropical polytopes by homogenisation. Therefore for simplicity, we shall work only with

rank two tropical cones for the remainder of the section.

Rank one tropical cones have an explicit description as a polyhedral complex in

terms of their covector decomposition; cf. [63, §5.2] and [53]. As with rank two tropical

hypersurfaces, rank two tropical cones are not closed in the Euclidean topology; cf.

Figure 4.4, therefore they do not have a polyhedral decomposition in the ordinary sense.

However, we can construct an analogous decomposition in terms of lex-polyhedra by

building on the corresponding notions in rank one.
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(2; 1)

(−2; 0)

Figure 4.4: The tropicalisation of the ordinary interval [t2u, t−2] in R{{(t, u)∗}} as a
subset of T2. It is a tropically convex set generated by {(−2, 0), (2, 1)}. Note that it
is not closed under the Euclidean topology as the dotted boundary is not part of the
interval.

Given a point u ∈ (T2 ∪ {∞})d with ui 6= ∞, we define its ith sector

Zi(u) =
⋂

k∈[d],uk 6=∞

{
p ∈ Td2

∣∣∣ pk − pi ≤ uk − ui}
=

⋂
k∈[d],uk 6=∞

Hek−ei,uk−ui

where e1, . . . , ed ∈ Zd are the standard unit vectors. Observe that by definition each

sector is a lex-polyhedron.

Remark 4.4.5. As the two operations behave isomorphically, one can choose tropical

addition to be min or max. The rank m tropical max-plus semiring Tmax
m = (Rm,max,+)

is appended with the additive identity element −∞, the smallest element under the lex-

icographical ordering. This allows us to give some geometric intuition to the sectors

Zi(u).

Given a point u ∈ (T2 ∪ {∞})d, consider the max-tropical linear form

Fu = max {xi − ui | i ∈ [d] , ui 6= ∞} . (4.24)
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Its support is the set of standard unit vectors supp(Fu) = {ei | i ∈ [d] , ui 6= ∞}. As

with min-tropical hypersurfaces, its max-tropical hypersurface T2(Fu) is the locus of points

at which Fu is non-linear. The results of Section 4.2 hold for T2(Fu), in particular it

induces a decomposition of Td2 in terms of support cells. Comparing definitions implies

the sector Zi(u) is the precisely the set of points in the support cell Pei induced by

T2(Fu). Furthermore, these sectors can be considered translated lex-cones, where a lex-

cone is the intersections of linear lex-halfspaces. Therefore the lex-polyhedral cell complex

T2(Fu) induced is a translated lex-polyhedral fan (i.e., it consists of translated lex-cones)

whose apex is the point u.

In the sequel let K be a rank two tropical cone, equipped with a fixed system of

(labelled) generators V = (v(1), . . . , v(n)), where v(j) ∈ (T2 ∪ {∞})d.

Lemma 4.4.6. A point p ∈ (T2)d is contained in K if and only if for each i ∈ [d], there

exists some j ∈ [n] such that p ∈ Zi(v
(j)).

Proof. The proof of [53, Lemma 27] generalises directly.

As in [63, §5.2] and [53] Lemma 4.4.6 inspires the following combinatorial data. Given

a point p ∈ (T2)d, we define its covector Sp = Sp(V ) to be the bipartite graph on the

node set [d] t [n] where (i, j) ∈ Sp if and only if p ∈ Zi(v
(j)). We say a covector is

bounded if no node in [d] is isolated. With this, we can restate Lemma 4.4.6 as p ∈ K if

and only if Sp is bounded.

By definition, the points with a given covector S satisfy the inequalities

pk − pi ≤ v
(j)
k − v

(j)
i for all k ∈ supp(v(j)) where (i, j) ∈ S . (4.25)

Note that these are also satisfied by any point whose covector contains S. We define the

covector cell

CS(V ) =
{
p ∈ (T2)d

∣∣∣ S ⊆ Sp} ,
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and immediately note that CS = CS(V ) is a lex-polyhedron, as it is cut out by lex-

halfspaces defined by the family of inequalities (4.25). We can define CS(V ) for any

bipartite graph S on [d] t [n] with no node isolated in [n]. As with support cells, there

may be bipartite graphs S, T such that CS = CT , but the maximal bipartite graph

defining the cell is the smallest covector containing S and T . Note that covectors can be

defined analogously in Td, where CS are ordinary polyhedra; cf. [53].

Lemma 4.4.7. The covector cell CS is rank two tropically convex.

Proof. Let p and q be points in CS(V ). It suffices to show that for µ ∈ T2 with µ ≥ (0, 0)

we have p⊕ (µ� q) ∈ CS(V ). This follows from

(pk ⊕ (µ� qk))− (pi ⊕ (µ� qi) = min(pk, µ+ qk)−min(pi, µ+ qi)

= min(pk − pi, pk − µ− qi, µ+ qk − pi, qk − qi)

≤ min(pk − pi, qk − qi) ≤ v
(j)
k − v

(j)
i for all k ∈ supp(v(j)) .

This means that the covector cells CS are both lex-polyhedra and rank two tropically

convex; i.e., they form rank two analogues of the polytropes in [52]. Covector cells CS

have some further nice combinatorial properties, analogous to support cells:

Lemma 4.4.8. Let S, T be bipartite graphs on [d]t[n] such that no node of [n] is isolated.

1. CS ∩CT = CS∪T .

2. S ⊆ T if and only if CT is a face of CS.

Proof. Both claims are immediate generalisations of existing results. The first is [29,

Corollary 11], and the second is [29, Corollary 13]. Note that [29] only addresses rank

one tropical convexity in Td, i.e., without ∞ as a coordinate.

The second statement of Lemma 4.4.8 implies that given a covector cell CS , its
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relative interior, denoted int(CS), is the set of points whose covector is precisely S. We

recall that as CS is a lex-polyhedron, int(CS) is open in the order topology but not in

the Euclidean topology.

The following generalises the covector decomposition of rank one tropical cones from

[53, §3.2]; the latter generalises the earlier result [29, Theorem 15] for tropical cones in

Td; see also [63, §5.2].

Theorem 4.4.9. The intersection K ∩ (T2)d decomposes as a lex-polyhedral complex

whose cells are of the form CS where S is a bounded covector with respect to the gener-

ating system V .

Proof. Lemma 4.4.6 shows that the collection of lex-polyhedra

Σ = {CS | S bounded covector}

covers K ∩ (T2)d. Lemma 4.4.8 shows that Σ is closed under intersections and taking

faces, and therefore is a lex-polyhedral complex.

Remark 4.4.10. Recall from Remark 4.4.5 that the the rank two max-tropical hyper-

plane T2(Fu) induces a decomposition of Td2 into a lex-polyhedral fan. Furthermore, the

maximal lex-cones are the sectors Zi(u) equal to the support cell Pei. Given the gener-

ating set V = {v(1), . . . , v(n)}, the covector cell CS is equal to the finite intersection

CS =
⋂

(i,j)∈S

Zi(v
(j)) .

Therefore the covector decomposition is precisely the common refinement of the lexico-

graphical fan structures induced by the max-tropical hyperplanes T2(Fv(j)). Moreover,

taking the product of the max-tropical linear forms gives the rank two max-tropical mul-

tilinear form FV =
⊙
Fv(j). The support sets of FV are precisely the covectors induced

by V , implying covectors are a special case of support sets. This generalises the known
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connection of the fundamental theorem of tropical geometry [63, Theorem 3.2.5] with the

mentioned result by Develin and Yu [30, Proposition 2.1] in rank one; cf. [53, Remark

32] and [51, §4].

For a rank two tropical cone K generated by V = {v(1), . . . , v(n)} and a covector T ,

we let KT denote the rank two tropical cone generated by VT = {v(1)
T , . . . , v

(n)
T } where

(v
(j)
T )i =


v

(j)
i if (i, j) ∈ T

∞ otherwise .

The following results give decompositions for rank two tropical cones in terms of

the interiors of polyhedra and ordinary polyhedra, analogous to Theorem 4.2.13 and

Corollary 4.2.14.

Theorem 4.4.11. Let K be a rank two tropical cone generated by V = {v(1), . . . , v(n)} ⊂

(T2 ∪ {∞})d. The intersection K ∩ (T2)d is the finite disjoint union

K ∩ Td2 =
⊔
S

⊔
T⊇S

(
int(AT ) + int(BS)

)

of interiors of polyhedra in R2d, where AT and BS are covector cells of the rank one

tropical cones πu∗(K) in Rdt and πt∗(KT ) in Rdu respectively.

Proof. By Theorem 4.4.9, K ∩ Td2 is the union of lex-polyhedral cells CS as S runs

over all covectors. Furthermore, the second statement of Lemma 4.4.8 implies this union

becomes disjoint if we restrict to the interiors of CS . Note that each int(CS) is a lex-open

polyhedron. We claim that int(CS) =
⊔
T⊇S

(
int(AT ) + int(BS)

)
.

The point p is contained in int(CS) if and only if for each v(j):

pk − v
(j)
k ≤ pi − v

(j)
i for all k ∈ supp(v(j)) where (i, j) ∈ S .
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with equality if and only if (k, j) ∈ S. Considering the lexicographical ordering on T2

and its coordinates separately, this is equivalent to the following two conditions:

πu∗(pk)− πu∗(v
(j)
k ) ≤ πu∗(pi)− πu∗(v(j)

i ) , (4.26)

for all k ∈ supp(v(j)) and (i, j) ∈ T for some T ⊇ S, with equality if and only if (k, j) ∈ T .

πt∗(pk)− πt∗((v
(j)
T )k) ≤ πt∗(pi)− πu∗((v

(j)
T )i) , (4.27)

for all k ∈ supp(v
(j)
T ) and (i, j) ∈ S, with equality if and only if (k, j) ∈ S. Condition

(4.26) is equivalent to πu∗(p) being contained in the relative interior of the covector cell

AT of πu∗(K). Condition (4.27) is equivalent to πt∗(p) being contained in the relative

interior of the covector cell BS of πt∗(KT ).

It remains to show each part of the disjoint union is the interior of a polyhedron.

The proof is identical to the end of the proof of Theorem 4.2.13.

Corollary 4.4.12. With the notation of Theorem 4.4.11: the closure of K ∩ Td2 in the

Euclidean topology is the finite union

K ∩ Td2 =
⋃
S

⋃
T⊇S

(
AT +BS

)

of polyhedra in R2d.

Proof. As AT + BS = int(AT ) + int(BS), the result follows from Theorem 4.4.11 and

that the closure of a finite union of sets equals the union of their closures.

Recall that Diagram (4.23) says πu∗ and πu7!σ (and πt∗ and πt7!ρ) commute with the

valuation map. Therefore if K = val2(K) for some ordinary cone K ⊂ R{{(t, u)∗}}, we

can obtain an analogous result to Theorem 4.4.11 in terms of the covector decompositions

of val(πu7!σ(K)) and val(πt7!ρ(K)).



Chapter 4. Convergent Puiseux series and tropical geometry of higher rank 132

As with Corollary 4.4.4, we can obtain an analogous statement to Theorem 4.4.11

and Corollary 4.4.12 for tropical polytopes by dehomogenisation. Explicitly, given some

generating set V ⊂ (T2 ∪ {∞})d for a convex polytope K, we can consider the cone

K′ ⊂ (T2 ∪ {∞})d+1 generated by

{
((0, 0), v(j))

∣∣∣ v(j) ∈ V
}

.

Then K inherits the structure of K′ intersected with the hyperplane {x0 = (0, 0)}. Note

that Diagram (4.23) implies we can do this dehomogenisation in R{{(t, u)∗}}d+1
≥0 .

Example 4.4.13. The following is a construction of Goldfarb and Sit [45] in the version

of [55, Example 2]. For d ≥ 2 consider the polyhedron Gd(t, u) given by the 2d linear

inequalities

0 ≤ x1 , x1 ≤ td−1

xj−1 ≤ uxj , xj−1 ≤ td−ju for 2 ≤ j ≤ d
(4.28)

in R{{(t, u)∗}}d. It has 2d vertices which are obtained by solving systems of linear equa-

tions arising from picking one of each of the d pairs of linear inequalities in (4.28), taken

as equalities. Thus Gd(t, u) is a bounded polytope which is combinatorially equivalent to

the d-dimensional cube. As each feasible point x satisfies 0 ≤ x1 ≤ ux2 ≤ u2x3 ≤ · · · ≤

ud−1xd, the polyhedron Gd(t, u) is contained in the positive orthant. Hence, by Propo-

sition 4.4.2, its rank two tropicalisation val2(Gd(t, u)) is given by the rank two tropical

linear inequalities

∞ ≥ x1 , x1 ≥ (d− 1, 0)

xj−1 ≥ (0, 1) + xj , xj−1 ≥ (d− j, 1) for 2 ≤ j ≤ d .
(4.29)

The inequalities (4.29) are dehomogenised versions of the inequalities in (4.25). We infer

that val2(Gd(t, u)) is a lex-polyhedron and thus a rank two polytrope.

The partial substitution Gd(t, 1
2) obtained from u 7! 1

2 is a polyhedron over R{{t∗}}
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defined by

0 ≤ x1 , x1 ≤ td−1

2xj−1 ≤ xj , 2xj−1 ≤ td−j for 2 ≤ j ≤ d .
(4.30)

Its (rank one) tropicalisation val(Gd(t, 1
2)) is given by the tropical linear inequalities

∞ ≥ x1 , x1 ≥ d− 1

xj−1 ≥ xj , xj−1 ≥ d− j for 2 ≤ j ≤ d .
(4.31)

Since the rank one tropical linear inequalities in (4.31) happen to be ordinary linear

inequalities over R, too, the rank one tropical polytope val(Gd(t, 1
2)) is convex in the

ordinary sense; i.e., it is a polytrope in the sense of [52]. Substituting t in Gd(t, 1
2)

for a sufficiently small value, e.g., t 7! 1
8 gives the combinatorial d-cube Gd(1

8 ,
1
2) in

Rd of Goldfarb and Sit [45]. The interest in this construction stems from the fact that

the simplex method with the “steepest edge” pivoting strategy (for a suitable objective

function and starting at the origin) visits all the 2d vertices; cf. [55, Example 2].

4.5 Concluding remarks and open questions

The proof of the crucial Proposition 4.1.10 can be iterated to show that R{{t∗1}}· · ·{{t∗m}}

is real closed for arbitrary m ≥ 1; cf. Remark 4.1.11. This opens up a path to study

tropical hypersurfaces and tropical cones of arbitrarily high finite rank. To avoid cum-

bersome notation in this article, which is technical already, we decided to restrict our

exposition to the rank two case. Yet the characterisations of rank two tropical hypersur-

faces and cones can be generalised to arbitrary finite rank by recursively exploiting the

structure of tropical hypersurfaces and cones of corank one. This entails a generalisation

of Theorem 4.3.6 to the simultaneous stable intersection of any finite number of tropical

hypersurfaces. We leave the details to the reader.

A rank one tropical hypersurface, given by a tropical polynomial F , is dual to the

regular subdivision of the point configuration given by the monomials of F , where the

coefficients yield the height function; cf. [63, Proposition 3.1.6].
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Question 4.5.1. How does this generalise to higher rank?

This should be related to the regular refinement of subdivisions in the sense of [27,

Definition 2.3.17].

In Sections 4.2 and 4.4, we gave several descriptions of rank two tropical hypersurfaces

and cones. Each of these have their benefits and flaws, which motivates our next question.

Proposition 4.2.8 and Theorem 4.4.9 describe rank two objects as a lex-polyhedral

complex, and moreover gives a canonical inequality description for each. Lex-polyhedra

do not have a canonical inequality description in general, and Definition 4.2.4 formally

depends on the representation (4.12). It would be interesting to find out if this is

unavoidable. Furthermore, we can extend this question by considering the dimension of

a lex-polyhedron. One can formulate a combinatorial notion of dimension, by considering

flags of faces in the face poset, and compare it to a more geometric notion of dimension

on (T2)d.

Question 4.5.2. Does the face poset of a lex-polyhedron depend on the representation?

Is there a coherent notion of dimension for lex-polyhedra?

It is worth noting that the proofs in [5], [8] and [6] circumvent answering the same

question for rank one tropical polyhedra by working with fixed exterior descriptions.

Finally, our current setup for rank two tropical hypersurfaces is purely polyhedral,

and so this does not capture any arithmetic properties.

Question 4.5.3. What is the proper notion of multiplicity for tropical hypersurfaces of

higher rank?

In this context it could be interesting to investigate the recent work of Gwoździewicz

and Hejmej on the factorisation of formal power series of higher rank [48].



Chapter 5

Commutative algebra of

generalised Frobenius numbers

The following is based on the paper “Commutative algebra of generalised Frobenius num-

bers” by Madhusudan Manjunath and the author [64]. We acknowledge the computer

algebra system Macaulay2 [46] for both investigation and preparation of examples.

5.1 A homological formula for Fk(a1, . . . , an)

Definition 5.1.1. Let (a1, . . . , an) be a collection of natural numbers with no common

divisor. The Frobenius number F (a1, . . . , an) is the largest natural number that cannot

be expressed as a non-negative integral linear combination of a1, . . . , an.

Example 5.1.2. When n = 2, we have a closed formula for the Frobenius number, due

to Sylvester:

F (a1, a2) = a1a2 − a1 − a2 . (5.1)

For n > 2, no such closed form expression exists.

Example 5.1.3. Consider the collection of naturals (3, 5, 8), their Frobenius number is

135
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F (3, 5, 8) = 7. We note that as 8 can be expressed as a non-negative integral combination

of 3 and 5, one can compute this via

F (3, 5, 8) = F (3, 5) = 3 · 5− 3− 5 = 7

The finiteness of the Frobenius number follows from Equation (5.1) and that F (a1, . . . , an)

is upper bounded by F (ai, aj), the Frobenius number of any pair of integers. Note that

this does not hold if gcd(a1, . . . , an) > 1, as any non-negative integral combination will

necessarily be a multiple of gcd(a1, . . . , an).

The Frobenius number can be rephrased in the language of lattices as follows [81].

We define

L = L(a1, . . . , an) =

{
v ∈ Zn

∣∣∣∣∣
n∑
i=1

aivi = 0

}

= (a1, . . . , an)⊥ ∩ Zn
(5.2)

to be the sublattice of Zn of points whose inner product with (a1, . . . , an) is zero. Fix

some integer r, and suppose there exists a point p ∈ Zn such that
∑n

i=1 aipi = r and

p dominates a lattice point v ∈ L. This gives a condition on r being representable, as

p− v ∈ Zn≥0 and

(a1, . . . , an) · (p− v) =
n∑
i=1

ai(pi − vi) = r . (5.3)

In this framework, the Frobenius number is precisely the largest integer r such that

there exists a point p ∈ Zn whose inner product with (a1, . . . , an) is r, and p does not

dominate any point in L. Here the domination is according to the partial order induced

by the standard basis on Zn.

Note that one can also view L as the sublattice of the dual lattice (Zn)? of points

that evaluate to zero at (a1, . . . , an) ∈ Zn. As there is a standard isomorphism between

(Zn)? and Zn, these two viewpoints are equivalent.
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This leads to a commutative algebraic interpretation of the Frobenius number. Let

K be an arbitrary field and S = K[x1, . . . , xn] be the polynomial ring in n variables with

coefficients in K.

Definition 5.1.4. [20] Let L be a lattice such that L ∩ Zn≥0 = {0}. The lattice module

ML = 〈xu | u ∈ L〉 (5.4)

is the Zn-graded S-submodule of the Laurent polynomial ring T = K[x±1 , . . . , x
±
n ] gener-

ated by {xu | u ∈ L}.

Recall from Section 2.2.2 that as an S-module ML is not finitely generated. Example

2.2.6 shows that we can view ML as an S[L]-module, and it is finitely generated in this

setting.

The functor π defined in Equations (2.32) and (2.33) is an equivalence of categories

from Zn-graded S[L]-modules to Zn/L-graded S-modules. The Zn/L-grading has a

notable interpretation in our setting. The kernel of the map that sends p ∈ Zn to
∑
aipi

is precisely L, and so

Zn/L −! Z

p + L 7−!
n∑
i=1

aipi

(5.5)

is an isomorphism. Therefore we consider the degree of a monomial under the Zn/L-

grading as

deg(xu) =

n∑
i=1

aiui . (5.6)

We also refer to this grading as the (a1, . . . , an)-weighted grading or simply the weighted

grading. Note that we can consider ML with the weighted grading, although π(ML) is

more amenable to computation as every graded part of ML is infinite dimensional.

A Laurent monomial xu is contained in ML if and only if there exists a lattice point
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ML

(0, 0)

(−a1, a2)

(−2a1, 2a2)

(a1,−a2)

Figure 5.1: The staircase diagram of the lattice module induced by the lattice L(a1, a2).
The Frobenius number F (a1, a2) equals the degree of the monomials corresponding to
the red points, which are the blue corner points translated by (−1, . . . ,−1).

v ∈ L such that u ≥ v. Therefore, the Frobenius number is an invariant of ML:

F (a1, . . . , an) = max {r ∈ Z | deg(xu) = r , xu /∈ML} . (5.7)

Theorem 5.1.5. [20], [78] The Frobenius number F (a1, . . . , an) is

reg(ML) + n− 1−
n∑
i=1

ai

where L := L(a1, . . . , an) and reg(ML) is the Castelnuovo–Mumford regularity of ML

with respect to its (a1, . . . , an)-weighted grading.

We will later prove a generalisation of this result, Proposition 5.1.13, but we can give

some intuition for it via staircase diagrams. The Frobenius number is largest degree of

an element not contained in ML. This should be represented by one of the red points

in Figure 5.1, an integer point not in ML but increasing any of its coordinates puts it

inside ML. These are obtained by finding a blue “corner point” and then translating by

the vector (−1, . . . ,−1). Homologically, these blue corner points correspond to maximal
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syzygies of ML, and translating by (−1, . . . ,−1) corresponds to subtracting
∑
ai when

graded. The final step will be to show the maximal degree of a syzygy is given by the

regularity of ML plus n− 1.

Recall that for a sublattice L of Zn, the lattice ideal IL is the ideal generated by all

binomials xu−xv such that u−v ∈ L and u, v ∈ Zn≥0. Example 2.2.7 shows that under

the functor π, ML becomes

π(ML) = ML/L ∼= S/IL . (5.8)

As a cyclic S-module, S/IL is easier to work with than ML in general, especially from a

computational point of view.

Example 5.1.6. Consider the lattice L = (3, 5, 8)⊥ ∩ Z3. Via Macaulay2 [46], we

calculate its corresponding lattice ideal IL =
〈
x3 − x1x2, x

3
2 − x5

1

〉
and its Betti numbers.

The Betti table corresponding to the minimal free resolution of S/IL has 22 rows and 3

columns, hence reg(S/IL) = 21 and F (3, 5, 8) = 21 + 2− 16 = 7.

5.1.1 Generalised Frobenius numbers

Definition 5.1.7. [22] Let (a1, . . . , an) be a collection of natural numbers with no com-

mon divisor. For a natural number k, the k-th Frobenius number Fk(a1, . . . , an) is the

largest natural number that cannot be written as k distinct non-negative integral linear

combinations of a1, . . . , an.

Note that the first Frobenius number F1(a1, . . . , an) is the Frobenius number of

(a1, . . . , an).

Example 5.1.8. As with the Frobenius number, Fk(a1, a2) has a closed form expression

[22]

Fk(a1, a2) = ka1a2 − a1 − a2 . (5.9)

Again, no such closed formula exists for n > 2.
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x1

x2

x3

Figure 5.2: The staircase diagram corresponding to the 3rd lattice module M
(3)
L(3,4,11).

The polynomial ring S = K[x1, x2, x3] has the (3, 4, 11)-weighted grading. The blue
dots correspond to minimal generators of degree 15, red dots correspond to minimal
generators of degree 20.

Example 5.1.9. Consider the collection of naturals (3, 5, 8). Unlike Example 5.1.3,

Fk(3, 5, 8) 6= Fk(3, 5) for k > 1. A brute force calculation reveals F2(3, 5, 8) = 12, as 12

can only be represented by 4 · 3 + 0 · 5 + 0 · 8.

The finiteness of Fk(a1, . . . , an) for all natural numbers k follows by an argument

similar to the one for F (a1, . . . , an).

We would like a homological formula for Fk(a1, . . . , an) in the vein of Theorem 5.1.5.

We first rephrase the k-th Frobenius number in the language of lattices. In this frame-

work, the k-th Frobenius number is the largest integer r such that there exists a point

p ∈ Zn whose inner product with (a1, . . . , an) is r and p does not dominate k distinct

lattice points of L. This leads to the following generalisation of lattice modules.

Definition 5.1.10. The k-th lattice module M
(k)
L is the S-module generated by Laurent

monomials xw where w is an element in Zn that dominates at least k points in L.

Formally,

M
(k)
L = 〈xw | w ∈ Zn dominates at least k points in L〉 (5.10)
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Figure 5.2 shows the staircase diagram corresponding to the 3rd lattice module M
(3)
L

of the lattice L(3, 4, 11). By construction, the first lattice module M
(1)
L is the lattice

module ML.

The module M
(k)
L can also be viewed as a Zn-graded S[L]-module. Furthermore, while

it is not finitely generated as an S-module, it is finitely generated as an S[L]-module.

Proposition 5.1.11. For any natural number k, the k-th lattice module M
(k)
L is a finitely

generated S[L]-module.

Proof. By the action of S[L] on M
(k)
L , it suffices to consider orbit representatives of the

L-action on M
(k)
L that dominate the origin. These representatives are monomials in S

(rather than Laurent monomials) and define a monomial ideal in the polynomial ring

S. By the Gordan–Dickson Lemma, this monomial ideal is finitely generated and hence

M
(k)
L is finitely generated as an S[L]-module.

The proof of Proposition 5.1.11 is based on an argument in [3]. Note that it is not

constructive in the sense that it gives little indication how to characterise a minimal

generating set of M
(k)
L or even bounds on the degrees. The methods in Sections 5.2 and

5.3 address both of these points.

Remark 5.1.12. A recent work of Aliev, De Loera and Louveaux [3] considers the

semigroup

Sg≥k((a1, . . . , an)) = {b : ∃ x1, . . . ,xk ∈ Zn≥0 such that (a1, . . . , an) · xi = b}

where x1, . . . ,xk are distinct. In this framework, the k-th Frobenius number is the largest

non-negative integer b /∈ Sg≥k((a1, . . . , an)). They study this semigroup by considering

the monomial ideal I(k)((a1, . . . , an)) of monomials whose (a1, . . . , an)-weighted degrees

are contained in Sg≥k((a1, . . . , an)) [3, Theorem 1]. This monomial ideal I(k)((a1, . . . , an))

is the ideal used in the proof of Proposition 5.1.13, and the intersection of M
(k)
L with the
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polynomial ring S. We note that this ideal I(k)((a1, . . . , an)) does not carry an L-action

and this seems to make it less amenable to study compared to M
(k)
L .

M
(k)
L is a Zn-graded S[L]-module, therefore we can apply the exact functor π to

obtain an equivalent Zn/L-graded S-module. This allows us to extend our weighted

grading to M
(k)
L , giving the following commutative algebraic characterisation of gener-

alised Frobenius numbers in terms of the generalised lattice modules.

Proposition 5.1.13. The k-th Frobenius number of (a1, . . . , an) is given by the formula:

reg(M
(k)
L ) + n− 1−

n∑
i=1

ai

where L := L(a1, . . . , an) and reg(M
(k)
L ) is the Castelnuovo–Mumford regularity of the

S[L]-module M
(k)
L with respect to its (a1, . . . , an)-weighted grading.

To prove this, we must introduce some notions from commutative algebra.

Definition 5.1.14. Given an S-module M , we can write its (a1, . . . , an)-graded Hilbert

series as

H(M ; ta1 , . . . , tan) =
P (t)

(1− t)d
, P (1) 6= 0 , (5.11)

for some polynomial P (t). The exponent d in (5.11) is the Krull dimension dim(M) of

M . The Krull dimension and projective dimension are related by the inequality

dim(M) + pdim(M) ≥ n . (5.12)

A module is Cohen–Macaulay if and only if this inequality is tight.

We remark that these are non-standard definitions, however they suffice for technical

simplicity. The definition of Krull dimension given follows from [34, Exercise 10.13c].

Equation (5.12) and the definition of Cohen–Macaulay given follows from the Auslander–

Buchsbaum formula [35, Theorem A2.15] and the fact that depth is upper bounded by
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dimension.

Proof. The proof is split into two: we first show that Fk is equal to the highest degree

of the Betti numbers of π(M
(k)
L ) minus

∑
ai. We then show that the highest degree of

the Betti numbers is precisely reg(M
(k)
L ) + n− 1.

Consider the (a1, . . . , an)-graded Hilbert function of π(M
(k)
L ). By [66, Lemma 8.19],

it can be written in terms of the Hilbert functions of the free modules in its minimal free

resolution. We compute the Hilbert series of π(M
(k)
L ) to be

K(t)∏
i(1− tai)

, K(t) =
∑
i≥0

u∈Z≥0

(−1)iβi,ut
u . (5.13)

Alternatively, as the dimension of each graded piece can only be zero or one, the Hilbert

series of π(M
(k)
L ) is the sum of monomials tm where m has at least k distinct non-negative

integral combinations of a1, . . . , an. Define θk(t) =
∑
tm as the finite sum of monomials

whose exponents m ∈ Z≥0 do not have k distinct non-negative integral combinations of

a1, . . . , an. Note that by definition, the k-th Frobenius number is the degree of θk. We

can rewrite the Hilbert series of π(M
(k)
L ) as

n∏
i=1

1

(1− tai)
− θk(t) , (5.14)

the Hilbert series of S minus θk, the monomials whose exponents are not representable.

Equating expressions (5.13) and (5.14) and rearranging, we find

Fk = deg(θk) = deg(K)−
∑
i

ai . (5.15)

If π(M
(k)
L ) is Cohen–Macaulay, there are two implications. First, it is a (rather weak)

corollary of Boij–Soderberg theory [39] that deg(K) = maxi {u ∈ Z | βi,u 6= 0}. Fur-

thermore, by [35, Exercise 4.5] the regularity equals maxi {u ∈ Z | βi,u 6= 0} minus the

projective dimension. It remains to show π(M
(k)
L ) is Cohen-Macaulay and its projective
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dimension is n− 1.

We first prove the Krull dimension of π(M
(k)
L ) is one via a Hilbert series computation.

For k = 1, π(M
(1)
L ) = S/IL has Krull dimension one as L is a codimension one lattice

[66, Proposition 7.5]. For general k, we note that M
(k)
L differs from M

(1)
L in finitely many

graded pieces up to the action to the lattice. Therefore the Hilbert series of π(M
(k)
L ) is

the Hilbert series of π(M
(1)
L ) minus finitely many terms. As we can write π(M

(1)
L ) as a

rational function P (t)/(1− t), we can also do so for π(M
(k)
L ).

Equation (5.12) implies the projective dimension is lower bounded by n − 1. The

hull complex is a polyhedral complex of dimension n− 1, making the length of the hull

resolution n−1. Therefore this lower bound is tight, and the module is Cohen–Macaulay.

The final remark is that the regularity of π(M
(k)
L ) carries over to M

(k)
L by exactness of

π.

Remark 5.1.15. One can extend the definition of generalised lattice module to any finite

index sublattice H of L(a1, . . . , an). This is the level of generality that all of our structural

results hold at. However, it is worth noting that the Zn/H-grading is not isomorphic to

the (a1, . . . , an)-weighted grading as H is not a saturated lattice. As elements of Zn/H

are not integers, we have to coarsen to the weighted grading to associate a Frobenius

number to H.

5.2 Minimal generators of generalised lattice modules

In this section, we describe the minimal generators of generalised lattice modules in

detail. For k = 1, M
(1)
L is a cyclic S[L]-module with a single minimal generator 1K. For

k ≥ 2, the lattice modules M
(k)
L are in general not cyclic S[L]-modules, furthermore we

have no simple characterisation for their minimal generators.

For k = 2, we give a simple description of a minimal generating set of M
(2)
L in terms

of the first syzygies of M
(1)
L (Theorem 5.2.2). For k ≥ 3, a generalisation of this result is
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more involved and is the content of Theorem 5.2.5. One source of complication is that

for k ≥ 2, the lattice modules M
(k)
L have exceptional generators i.e., those that dominate

strictly greater than k points in L, whereas M
(1)
L does not have exceptional generators.

Another complication is that for k ≥ 3, we may get minimal generators of M
(k)
L that do

not arise as a syzygy between two minimal generators of M
(k−1)
L , rather as a “syzygy

between a minimal generator and a lattice point”. This will motivate us to consider the

syzygies of a modification of M
(k)
L .

5.2.1 Inductive characterisation of M
(2)
L

We start with a description of the minimal generators of the simplest generalised lattice

module M
(2)
L . For each minimal generator xu of M

(1)
L , let Syz1

xu(M
(1)
L ) be the K-vector

space generated by syzygies of the form:

m · (0, . . . , 0, lcm(xu,xv)/xu︸ ︷︷ ︸
xu

, . . . ,− lcm(xu,xv)/xv︸ ︷︷ ︸
xv

, 0, . . . , 0) (5.16)

where xv 6= xu is a minimal generator of M
(1)
L and m is a monomial in S. Note that

multiplication by m is the standard multiplication on S.

We define a map φ
(1)
S on this basis of Syz1

xu(M
(1)
L ) and extend it K-linearly. The

map φ
(1)
S :

⊕
u∈L Syz1

xu(M
(1)
L )!M

(2)
L takes the element s of the form (5.16) to xdegZn (s)

where degZn(s) is the Zn-graded degree of s. In fact, degZn(s) = max(u,v) · degZn(m)

where max is the coordinate-wise maximum. Furthermore, xdegZn (s) ∈ M
(2)
L since the

point max(u,v) dominates at least two lattice points, namely u and v. In the following,

we note that the map φ
(1)
S is surjective.

Proposition 5.2.1. The map φ
(1)
S is surjective.

Proof. It suffices to prove that every Laurent monomial in M
(2)
L can be realised as the

image of an element in Syz1
xu(M

(1)
L ) for some minimal generator xu of M

(1)
L . To see

this, consider a Laurent monomial xw in M
(2)
L . By the definition of M

(2)
L , the point w
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dominates at least two points in L. Consider any two points u1 and u2 in L that w

dominates and consider the Laurent monomial lcm (xu1 ,xu2). This is contained in M
(2)
L

and is the image of (lcm(xu1 ,xu2)/xu1 ,−lcm(xu1 ,xu2)/xu2) ∈ Syz1
xu1 (M

(1)
L ) under φ

(1)
S .

Hence, by multiplying this syzygy by the monomial xw/lcm(xu1 ,xu2) we conclude that

xw is also in the image of φ
(1)
S .

Proposition 5.2.1 is not directly amenable for computational purposes since M
(2)
L is

not finitely generated as an S-module. However, M
(2)
L is finitely generated as an S[L]-

module. Note that there is a natural L-action on ⊕u∈LSyz1
xu(M

(1)
L ) and a surjective map

between the first syzygy module of M
(1)
L as an S[L]-module and the piece Syz1

x0(M
(1)
L ).

Composing this with φ
(1)
S gives a surjective map φ

(1)
S[L] between the first syzygy module

of M
(1)
L and M

(2)
L as S[L]-modules.

To explicitly describe the map φ
(1)
S[L], we first note that the first syzygy module of

M
(1)
L as an S[L]-module has a K-vector space basis of the form:

xu − xvzu−v (5.17)

where u,v ∈ Zn≥0 and u− v ∈ L. The map φ
(1)
S[L] takes xu − xvzu−v to xu ∈ M

(2)
L .

As the functor π takes M
(1)
L to S/IL and Syz1(S/IL) = IL (along with the categorical

equivalence between Zn-graded S[L]-modules and Zn/L-graded S-modules), this induces

a map from any binomial minimal generating set of IL to M
(2)
L , which we also refer to

as φ
(1)
S[L]. We obtain the following.

Theorem 5.2.2. The lattice module M
(2)
L as an S[L]-module is generated by the image

of φ
(1)
S[L] on a binomial minimal generating set of the lattice ideal IL.

Example 5.2.3. Consider the lattice (3, 5, 8)⊥∩Z3 from Example 5.1.6 with correspond-

ing lattice ideal IL =
〈
x3 − x1x2, x

3
2 − x5

1

〉
. The minimal first syzygies of M

(1)
L , up to

the action of L, are of the form (lcm(xu, 1K)/1K,−lcm(xu, 1K)/xu) where u are lattice

points of L “sufficiently close” to 0 ∈ L. The precise notion of sufficiently close will be
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addressed in Section 5.2.3. In this case it suffices to take the lattice points

{±(1, 1,−1),±(5,−3, 0)} ⊂ L .

The map φ
(1)
S sends the minimal first syzygies to {x3, x1x2, x

3
2, x

5
1}, precisely the mono-

mials in each minimal binomial of IL. Note that x3, x1x2 and x3
2, x

5
1 are in the same

L-orbit. This gives us an explicit description of M
(2)
L =

〈
x3, x

3
2

〉
as an S[L]-module and

a minimal generating set.

5.2.2 Inductive characterisation of M
(k)
L

We generalise Proposition 5.2.1 to generalised lattice modules to obtain an induction

characterisation of M
(k)
L . As mentioned at the beginning of the section, certain minimal

generators of M
(k)
L arise as a “syzygy between a minimal generator and a lattice point”,

motivating the following definition.

The modification M
(k)
L,mod of M

(k)
L is the S-module generated by every element of M

(k)
L

and the element 1K. Formally,

M
(k)
L,mod =

〈
1K,m

∣∣∣ m ∈M (k)
L

〉
S
. (5.18)

Note that for k = 1, the modification process has no effect i.e., M
(1)
L,mod = ML. Note that

for k > 1, M
(k)
L,mod is naturally an S-module but not an S[L]-module i.e. M

(k)
L,mod does

not inherit the natural L-action. By the construction of M
(k)
L,mod, we have the following

characterisation of its minimal generators.

Proposition 5.2.4. The (Laurent) monomial minimal generating set of M
(k)
L,mod consists

of precisely 1K and every (Laurent) monomial minimal generator of M
(k)
L that is not

divisible by 1K (in other words, whose exponent does not dominate the origin).

Our construction proceeds similarly to the characterisation of M
(2)
L . For each minimal

generator g1 of M
(k)
L,mod, let Syz1

g1(M
(k)
L,mod) be the K-vector space generated by syzygies



Chapter 5. Commutative algebra of generalised Frobenius numbers 148

of the form:

m · (0, . . . , 0, lcm(g1, g2)/g1︸ ︷︷ ︸
g1

, 0, . . . , 0,−lcm(g1, g2)/g2︸ ︷︷ ︸
g2

, 0, . . . , 0) (5.19)

where g2 6= g1 is a minimal generator of M
(k)
L,mod and m is a monomial in S. We define a

map φ
(k)
S from ⊕gSyz1

g(M
(k)
L,mod) to M

(k+1)
L by first defining the map from the canonical

basis of each piece Syz1
g(M

(k)
L,mod) as follows:

φ
(k)
S (s) = xdegZn (s) (5.20)

where degZn(·) is the Zn-graded degree of s. We extend this map K-linearly to define

φ
(k)
S .

Note that the image of φ
(k)
S is an element of M

(k+1)
L . This is because s is of the

form m · (lcm(g1, g2)/g2,−lcm(g1, g2)/g1) for two distinct minimal generators of M
(k)
L,mod.

By construction, φ
(k)
S (s) = m · lcm(g1, g2). By Proposition 5.2.4, we have the following

two cases: either both g1 and g2 are minimal generators of M
(k)
L or one of them, say

g1, is equal to 1K and g2 is a minimal generator of M
(k)
L that is not divisible by 1K. In

both cases, the support of lcm(g1, g2) contains at least (k + 1) points in L (by support

of Laurent monomial, we mean the set of points in L that its exponent dominates). It

contains (potentially among others) the unions of the supports of g1 and g2. Hence, the

image of φ
(k)
S is in M

(k+1)
L . Theorem 5.2.5 is the converse to this.

Suppose that xw ∈ M (k+1)
L is a minimal generator and let U = {u1, . . . ,ur} be the

set of points in L that w dominates. For a subset T ⊂ L of size k, let `T be the least

common multiple of the Laurent monomials associated to points in T .

Theorem 5.2.5. Up to the action of L, any minimal generator xw of M
(k+1)
L is either

in the image of φ
(k)
S or is an exceptional generator of M

(k)
L . Furthermore, we have the

following classification of minimal generators of M
(k+1)
L .
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1. If `T is the same for every subset T of U of size k, then xw is an exceptional

generator of M
(k)
L .

2. If there exist subsets T1 and T2 of U of size k such that their least common multiples

do not divide each other, then xw is the image of a syzygy between two minimal

generators of M
(k)
L in φ

(k)
S .

3. Otherwise, xw is the image of a syzygy between a minimal generator of M
(k)
L and

1K in φ
(k)
S .

Proof. By definition, w dominates at least (k+ 1) points in L. Consider the
(
r
k

)
subsets

of U of size k and note that
(
r
k

)
≥ 2. For each subset T of size k, let `T be the least

common multiple of the set of points in T . If the least common multiple `T is the same

for all subsets T of size k, then we claim that xw is an exceptional generator of M
(k)
L .

To see this, note that xw ∈ M (k)
L and any minimal generator ` of M

(k)
L that divides xw

dominates every point in some subset of U of size k and ` is the least common multiple

of the Laurent monomials corresponding to points in U . However, this least common

multiple is xw. Hence, ` = xw and is an exceptional generator of M
(k)
L .

Otherwise, consider two subsets T1 and T2 of U of size k such that their least common

multiples `T1 and `T2 respectively, are different. There are two cases:

Either `T1 and `T2 do not divide each other. Then both `T1 and `T2 are not equal to

xw but divide it. Their supports (the set of lattice points that their exponents dominate)

are precisely T1 and T2 respectively (otherwise, this would contradict xw being a minimal

generator of M
(k+1)
L ). Hence, `T1 and `T2 are minimal generators of M

(k)
L as any Laurent

monomial that divides either `T1 or `T2 must have strictly smaller support. The map φ
(k)
S

takes their syzygy to a monomial m that divides xw. Furthermore, since this monomial

m is in M
(k+1)
L and xw is a minimal generator of M

(k+1)
L , we conclude that m = xw.

Finally, note that by Proposition 5.2.4 there is a lattice point q ∈ L such that `T1 · x−q

and `T2 ·x−q are minimal generators of M
(k)
L,mod. Their syzygy maps to an element in the
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same orbit as xw under the action of L.

Suppose that for every pair `T1 and `T2 one divides the other. Assume that `T1 is a

proper divisor of `T2 and `T1 dominates exactly k points in L. Then `T2 along with the

least common multiple of any other subset of size k other than T1 is precisely xw (this

is because xw is a minimal generator for M
(k+1)
L ). Hence, the least common multiple of

the set of Laurent monomials with exponents in T1 ∪ {q} is xw for any q ∈ T2 \ T1. The

map φ
(k)
S takes the syzygy between the minimal generators `T1 · x−q and 1K of M

(k)
L,mod

to an element in the same orbit of xw under the action of the lattice L.

Remark 5.2.6. Note that the proof of Theorem 5.2.5 also shows that any element in

the image of φ
(k)
S satisfies Case 3 in Theorem 5.2.5 i.e. it is also in its image under a

syzygy between a minimal generator of M
(k)
L and 1K. However, those that satisfy Case 2

also carry an L-action and hence, we have included this as a separate item in Theorem

5.2.5.

Example 5.2.7. Consider the lattice L = (3, 4, 11)⊥ ∩ Z3. Theorem 5.2.5 gives us the

basis for an algorithm to compute its lattice modules (we discuss this more in Section

5.4.2). We compute its 4th lattice module M
(4)
L ; as an S[L]-module it is minimally

generated by

〈x2
3 , x

−1
1 x2x

2
3 , x

3
1x2x3〉 .

The minimal generator x−1
1 x2x

2
3 dominates the lattice points

{(−1,−2, 1), (−2,−4, 2), (−6,−1, 2), (−5, 1, 1)} .

Note that there exists two 3-subsets whose least common multiples are distinct and proper

divisors of x−1
1 x2x

2
3. We observe that these subsets consist of the first three and last three
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lattice points, and give the following minimal generators of M
(3)
L,mod:

x−1
1 x−1

2 x2
3 = lcm(x−1

1 x−2
2 x3, x

−2
1 x−4

2 x2
3, x
−6
1 x−1

2 x2
3)

x−2
1 x2x

2
3 = lcm(x−2

1 x−4
2 x2

3, x
−6
1 x−1

2 x2
3, x
−5
1 x2x3)

Therefore x−1
1 x2x

2
3 equals φ

(3)
S ((x−1

1 x−1
2 x2

3, x
−2
1 x2x

2
3)) and so is realised as the image of a

syzygy between two minimal generators of M
(3)
L , see Figure 5.3.

The minimal generator x2
3 cannot be constructed in this way. It dominates the lattice

points {(0, 0, 0), (−1,−2, 1), (−2,−4, 2), (−6,−1, 2)} where only the least common mul-

tiple of the last three lattice points gives a proper divisor of x2
3, specifically x−1

1 x−1
2 x2

3.

This is a minimal generator of M
(3)
L,mod and so x2

3 equals φ
(3)
S ((x−1

1 x−1
2 x2

3, 1K)), a syzygy

between a minimal generator of M
(3)
L and 1K, as shown in Figure 5.4.

For an example of an exceptional generator, we look at the lattice L = (2, 5, 10)⊥ ∩

Z3. The corresponding lattice ideal is IL =
〈
x3 − x5

1, x3 − x2
2

〉
, therefore as an S[L]-

module M
(2)
L has generators x5

1, x3, x
2
2. These all lie in the same L-orbit and so M

(2)
L

is minimally generated by a single element x3. However x3 dominates 3 lattice points

{(0, 0, 0), (−5, 0, 1), (0,−2, 1)}. Therefore, x3 is an exceptional generator of M
(2)
L , as

shown in Figure 5.5. Indeed, note that the least common multiple of Laurent monomials

corresponding to every pair of lattice points is also x3.

(−1;−2; 1)

2;−4; 2)

2)(

Figure 5.3: Minimal generator of M
(4)
L realised as a syzygy between two minimal gener-

ators of M
(3)
L .
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−2;−4; 2)

( 6; 1; 2)

(−1;−2; 1)

(0; 0; 0)

Figure 5.4: Minimal generator of M
(4)
L realised as a syzygy between a minimal generator

of M
(3)
L and 1K.

(0; 0; 0) (0;−2; 1)

(−5; 0; 1)

Figure 5.5: Exceptional generator of M
(2)
L(2,5,10).

Note that M
(k)
L,mod is not finitely generated as an S-module and is also not an S[L]-

module. This makes Theorem 5.2.5 somewhat unwieldy to compute M
(k)
L . In the follow-

ing, we use Theorem 5.2.5 to prove the Neighbourhood Theorem that is computationally

more amenable.

5.2.3 Neighbourhood Theorem

We associate a graph GL to a lattice L as follows. Fix a binomial minimal generating

set B of IL. There is an edge between points w1 and w2 in L if there exists a minimal

generator xu − xv ∈ B such that u−v = w1−w2. Let dGL
be the metric on L induced

by the graph GL. For a point w ∈ L, we define N (k)(w) to be the set of all points in L

in the ball of radius k with respect to the metric dGL
and with w as its center.
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Theorem 5.2.8. (Neighbourhood Theorem) Any minimal generator of M
(k)
L as an

S[L]-module is the least common multiple of Laurent monomials corresponding to k lattice

points in N (k−1)(0), one of which is the origin. Equivalently, for any minimal generator

of M
(k)
L as an S-module, there is a point q ∈ L such that this minimal generator is

the least common multiple of Laurent monomials corresponding to k lattice points in

N (k−1)(q), one of which is q.

Theorem 5.2.8 makes computing generalised lattice modules amenable. Explicitly, to

compute M
(k)
L we only need to consider points in the finite neighbourhood N (k−1)(0).

This is the notion of “sufficiently close” that we were lacking in Example 5.2.3.

In order to prove the theorem, we study certain “local pieces” of GL called the fiber

graph.

Definition 5.2.9. ([84]) Let A = (a1, . . . , an). For each non-negative integer b we define

the set Fb = {u ∈ Zn≥0 : A · u = b} to be the fiber of A over b.

For any lattice point u ∈ L, we can express it uniquely as the difference of positive

and negative parts u+ − u−, where the i-th coordinate of u+ equals ui if ui > 0 and

equals 0 otherwise. Since L is contained in (a1, . . . , an)⊥, we have u+ ∈ Fb if and only

if u− ∈ Fb.

We induce a natural graph on the fiber, denoted the fiber graph Gb. Fix a binomial

minimal generating set B of IL. The vertices of the graph are the elements of the fiber

Fb with an edge between w1 and w2 if there exists a minimal generator xu − xv ∈ B

such that u − v = w1 −w2. We note that Gb is a finite graph that can be embedded

into GL. The following lemma generalises the statement [84, Theorem 5.3] that if IL is

a prime ideal (equivalently, if L is a saturated lattice) then Fb is connected.

Lemma 5.2.10. Let u,v ∈ Fb. The difference u− v is a lattice point in L if and only

if u,v are in the same connected component of Gb.
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Proof. Suppose u − v ∈ L, then by definition xu − xv ∈ IL and so can be represented

as an S-linear combination of the minimal generators:

xu − xv =
N∑
i=1

xwi · (xg+
i − xg−i ) (5.21)

We will show by induction on N there exists a path in Gb between u and v. For N = 1,

expression (5.21) is equivalent to saying that u− v = gi and so they must be connected

by an edge.

Assume the induction hypothesis holds for all N < N ′, consider expression (5.21)

for N = N ′. We have xu = xwi · xg+
i for some i, so without loss of generality we say

that u = w1 + g+
1 , implying u and w1 + g−1 are connected by an edge. Subtracting

xw1 · (xg+
1 − xg−1 ) from (5.21) gives us an expression of length N ′ − 1 for xw1+g−1 − xv.

By the induction hypothesis, these exponents are connected and so u and v must also

be connected.

Conversely, assume that u,v are in the same connected component of Gb. Then there

exists some path u = v(0), v(1), . . . , v(N) = v in Gb. We can write the binomial

xu − xv =
N∑
i=1

xv
(i−1) − xv

(i)

where each binomial xv
(i−1) −xv

(i)
is an element of IL, as v(i−1), v(i) are connected by an

edge. Therefore, xu − xv ∈ IL and so u− v ∈ L.

Lemma 5.2.11. Let v be a lattice point with v+,v− ∈ F ⊆ Fb, where F is a subset

of the fiber Fb consisting of all elements in the same connected component of Gb. The

exponent of the least common multiple lcm(xv, 1K) dominates precisely |F | lattice points,

specifically those of the form v+ − u where u ∈ F .

Proof. We first observe that lcm(xv, 1K) = xv+
. Let u ∈ F , then by Lemma 5.2.10 we

deduce that v+ − u ∈ L. As u ∈ Zn≥0, we see v+ ≥ v+ − u. This holds for every u ∈ F
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and so the exponent of lcm(xv, 1K) dominates at least |F | lattice points. Conversely,

suppose that for some p ∈ L, v+ ≥ p. Let u = v+ − p ∈ Zn≥0. Then v+ − u ∈ L, hence

by Lemma 5.2.10 u ∈ F .

Lemma 5.2.12. Let u,v ∈ L, dGL
(u,v) = k. There exists a path of length at least k in

GL from u to v such that the exponent of lcm(xu,xv) dominates every lattice point on

the path.

Proof. As GL is invariant under translation by L, it suffices to prove the case where

u = 0. Suppose that v+,v− ∈ Fb, by Lemma 5.2.10 they lie in the same connected

component of Gb and so there exists a path in Gb given by v+ = v(0), v(1), . . . , v(n) = v−.

We can embed this path into GL by the embedding v+− v(i). This gives us a path from

0 to v in GL and by Lemma 5.2.11 the exponent of lcm(1K,x
v) dominates each of the

lattice points on this path. As dGL
(0,v) = k, this path must be at least length k.

Proof. (Proof of Theorem 5.2.8) We proceed by induction on k. For the base case of

k = 1, the lattice module M
(1)
L = ML has a single generator 1K corresponding to the

single lattice point in N (0)(0). Assume the statement is true for all k ≤ k0. Let xu be a

minimal generator of M
(k0+1)
L , then by Theorem 5.2.5 this is either in the image of the

map φ
(k0)
S or is an exceptional generator of M

(k0)
L .

Suppose that it is an exceptional generator of M
(k0)
L , then by the inductive hypothesis

xu can be expressed as the least common multiple of Laurent monomials corresponding

to a set of precisely k0 lattice points, which we denote as Pu. Note that Pu is a proper

subset of the support of xu. By lattice translation, we assume that Pu is contained in

N (k0−1)(0) and contains 0. It suffices to show that u dominates another lattice point in

N (k0)(0).

As an exceptional generator xu must dominate at least k0+1 lattice points, so consider

a lattice point p /∈ Pu that is dominated by u. If p ∈ N (k0)(0), we are done. Suppose

p ∈ N (r)(0), r > k0. By Lemma 5.2.12 there exists a path from p to 0 in GL such that
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every lattice point in the path is dominated by the exponent of lcm(xp, 1K). Therefore

there exists some lattice point q in this path with dGL
(0,q) = k0 that is dominated by

the exponent of lcm(xp, 1K). Furthermore as Pu is contained in N (k0−1)(0), q /∈ Pu. As

lcm(xp, 1K) divides xu, it must also dominate all lattice points along this path. Therefore

xu can be written as the least common multiple of the Laurent monomials corresponding

to the lattice points Pu ∪ {q} whose cardinality is k0 + 1.

Suppose that xu is in the image of φk0S . According to Remark 5.2.6, xu is the image

of a syzygy between one minimal generator of M
(k0)
L as an S-module and 1K. This

minimal generator is in the same L-orbit as xv, a minimal generator of M
(k0)
L satisfying

the induction hypothesis. More precisely, there exists a set Pv of k0 lattice points whose

least common multiple of Laurent monomials equals xv that is contained in N (k0−1)(0)

and contains 0. Hence, xu is in the same L-orbit as lcm(xv,xp) for some lattice point

p. It suffices to show that lcm(xv,xp) satisfies the statement of the theorem.

Let p ∈ N (r)(0), if r ≤ k0 then we are done. Suppose r > k0, by Lemma 5.2.12 there

exists a path from 0 to p in GL such that every lattice point in the path is dominated by

the exponent of lcm(1K,x
p). By the same argument as the previous case, there exists a

lattice point q on this path with dGL
(0,q) = k0, that is necessarily dominated by u and

not contained in Pv. Therefore lcm(xv,xq) is the least common multiple of the Laurent

monomials corresponding to k0 + 1 lattice points Pv ∪ {q}. The monomial lcm(xv,xq)

divides lcm(xv,xp), and so is equal to it by the minimality of lcm(xv,xp). Therefore

lcm(xv,xp) is the least common multiple of k0 + 1 Laurent monomials corresponding to

Pv ∪ {q} contained in N (k0)(0).

5.3 Finiteness results

In this section, we show that after suitable twists there are only finitely many isomor-

phism classes of generalised lattice modules. More precisely, we show the following:
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6

3

5

4

7

0 1 2

Figure 5.6: The structure poset of L(3, 5, 8).

Theorem 5.3.1. Let L be a lattice of the form (a1, . . . , an)⊥ ∩ Zn. For each k ∈ N, let

xuk be any element M
(k)
L of the smallest (a1, . . . , an)-weighted degree. There are finitely

many classes among the generalised lattice modules {ML
(k)(uk)}k∈N up to isomorphism

of both Zn-graded S[L]-modules and Zn-graded S-modules.

The main ingredient of the proof of Theorem 5.3.1 is the structure poset of L.

Definition 5.3.2. The structure poset of L is the poset on the elements of Zn/L of

(a1, . . . , an)-weighted degree in the range [0, F1] where F1 is the first Frobenius number

of L. The partial order in this poset is defined as follows: for elements [a], [b] we say

that [a] ≥ [b] if for every representative a ∈ Zn of [a] there exists a representative b of

[b] such that a ≥ b.

We note that [a] ≥ [b] if and only if [a−b] ≥ [0]. Hence, the structure poset of L can

be constructed from the set of all elements [a] ≥ [0] in Zn/L whose (a1, . . . , an)-weighted

degree is in the range [0, F1]. This observation is useful to compute the structure poset.

Example 5.3.3. Let (a1, a2, a3) = (3, 5, 8) and hence, L(3, 5, 8) = (3, 5, 8)⊥ ∩ Z3. The

first Frobenius number is 7. Hence, the structure poset of L consists of eight elements

labelled 0 to 7. The poset relations can be determined from the set of all elements that

dominate 0, in this case they are 3, 5, 6. The Hasse diagram of the structure poset is

shown in Figure 5.6.

Let mk be the minimum (a1, . . . , an)-weighted degree of any element of M
(k)
L . A key
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observation is that M
(k)
L is determined (up to isomorphism of Zn-graded S[L]-modules)

by the elements in Zn/L of weighted degree [mk,mk+F1] that dominate at least k points

in L. We can see this by considering the submodule xu ·ML of M
(k)
L where xu ∈M (k)

L has

weighted degree mk. Any element of weighted degree greater than mk + F1 dominates

an element with weighted degree mk in xu ·ML and so also dominates k lattice points.

Using this observation, we can associate a structure poset to M
(k)
L that is a subposet of

the structure poset of L.

Definition 5.3.4. The structure poset of M
(k)
L is the poset on the elements of

{
r ∈ Zn/L

∣∣∣ there exists xu ∈M (k)
L such that deg(xu) = r

}

of (a1, . . . , an)-weighted degree in the range [mk,mk +F1]. The partial order is the same

as on the structure poset of L.

By mapping mk+ i to i, the structure poset of M
(k)
L is a subposet of L. Note that the

minimal generators of M
(k)
L correspond to the minimal elements of its structure poset.

Proof. (Proof of Theorem 5.3.1) Note that for any k, the (a1, . . . , an)-weighted degree

of the minimal generators of M
(k)
L are in the range [mk,mk + F1]. Furthermore, the

structure poset of M
(k)
L as a subposet of the structure poset of L determines M

(k)
L (uk)

up to isomorphism of Zn-graded S[L]-modules (and Zn-graded S-modules). More pre-

cisely, if M
(k1)
L and M

(k2)
L have the same structure poset, then multiplying M

(k1)
L (uk1) by

the Laurent monomial xu2/xu1 is an isomorphism between M
(k1)
L (uk1) and M

(k2)
L (uk2)

(as both Zn-graded S[L]-modules and Zn-graded S-modules). In particular, this map

induces a bijection between the (monomial) minimal generating set of M
(k1)
L (uk1) and

the (monomial) minimal generating set of M
(k2)
L (uk2) and preserves degrees. Since the

structure poset of L is finite, it has only finitely many subposets. Hence, there are only

finitely many Zn-graded isomorphism classes of the twisted generalised lattice modules

{M (k)
L (uk)}k∈N.
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Theorem 5.3.1 and its proof also generalises to finite index sublattices of L(a1, . . . , an).

The only additional subtlety is that the structure poset of M
(k)
L will have precisely as

many embeddings into the structure poset of L as the number of elements of weighted

degree mk in M
(k)
L . If M

(k1)
L and M

(k2)
L have the same embedding into the structure

poset of L, then we have exactly the same isomorphism as in the proof of Theorem 5.3.1.

There are still only finitely many subposets of the structure poset of L.

Remark 5.3.5. It is worth noting that not all subposets of the structure poset of L can be

realised as the structure poset of some M
(k)
L . If an element is contained in the structure

poset of some M
(k)
L , all elements greater than it according to the partial order must also

be contained in it. Therefore the poset is completely determined by its set of minimal

elements, which form an antichain of the structure poset of L. As a result, the number of

subposets realisable as the structure poset of some M
(k)
L is upper bounded by the number

of antichains of the structure poset of L. For counting the number of antichains, tools

such as Dilworth’s theorem [31] are useful.

Remark 5.3.6. The data of the structure poset of M
(k)
L where L = L(a1, . . . , an) is

encoded in the Hilbert series of the polynomial ring S with the (a1, . . . , an)-weighted

grading. The elements of M
(k)
L are those j such that the Hilbert coefficient hj is at least

k. This Hilbert series is also referred to as the restricted partition function in [23, Page

6] and is a useful tool for explicitly computing the structure poset. Note that for a finite

index sublattice L of (a1, . . . , an)⊥ ∩ Zn, this data is encoded in the Hilbert series of S

with the Zn/L-grading.

Example 5.3.7. In the following we compute the structure poset of M
(k)
L where L =

L(3, 5, 8) for k from 1 to 6. The Hilbert series of the polynomial ring with the (a1, . . . , an)-

weighted grading is given by the rational function

H(S; ta1 , . . . , tan) =

n∏
i=1

1

(1− t)ai
. (5.22)

Using this information, we determine m1, . . . ,m6 to be 0, 8, 16, 21, 24, 29. The other
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elements of the structure poset of M
(k)
L are the integers i in the interval [0, 7] such that

hmk+i ≥ k. The corresponding structure posets are shown in Figure 5.7.

6

3
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6

3

5

0
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k = 2
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0 2

k = 4

6
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0 2

k = 5

6
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4

7

0 21
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Figure 5.7: The structure posets of M
(k)
L(3,5,8) for k from 1 to 6.

Based on the same ideas as in Theorem 5.3.1, we obtain the following upper bounds
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on generalised Frobenius numbers and the number of minimal generators of M
(k)
L .

Proposition 5.3.8. The k-th Frobenius number Fk is upper bounded by mk + F1. The

number β1(M
(k)
L ) of minimal generators of M

(k)
L as an S[L]-module is upper bounded by

the maximum length of an antichain in the structure poset of L.

Furthermore, we have the following corollary to Theorem 5.3.1.

Corollary 5.3.9. There exists a finite set of integers {b1, . . . , bt} ⊂ Z≥0 ∪ {−1} such

that for every k there exists a natural number j such that the k-th Frobenius number can

be written as:

Fk = mk + bj

where mk is the minimum (a1, . . . , an)-weighted degree of an element in M
(k)
L . This finite

set {b1, . . . , bt} is the precisely the set of integers that can be realised as reg(M
(k)
L (uk)) +

n− 1−
∑n

i=1 ai.

5.4 Applications

5.4.1 The sequence of generalised Frobenius numbers

We prove that the sequence of generalised Frobenius numbers form a finite difference

progression.

Definition 5.4.1. A sequence (ck)
∞
k=1 is called a finite difference progression if there

exists a finite set of differences such that for every k ∈ N the difference ck+1 − ck is

contained in this set. The rank of the progression is defined to be the cardinality of this

set.

Theorem 5.4.2. For any finite index sublattice L of (a1, . . . , an)⊥∩Zn, the sequence of

generalised Frobenius numbers (Fk)
∞
k=1 is a finite difference progression.

We note that this follows immediately from Corollary 5.3.9 once we show that the
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sequence (mk)
∞
k=1 is also a finite difference progression.

Lemma 5.4.3. For any finite index sublattice L of (a1, . . . , an)⊥ ∩ Zn, the sequence

(mk)
∞
k=1 is a finite difference progression.

Proof. We show the difference of successive terms is bounded by 0 ≤ mk+1 −mk ≤ m2,

and therefore the set of successive differences is finite. The inequality mk+1 −mk ≥ 0

follows by construction.

To prove the other bound, we construct an element of degree at most mk + m2 in

M
(k+1)
L and hence, conclude that mk+1 − mk ≤ m2. Consider a minimal generator of

M
(2)
L of weighted degree m2 that dominates the origin and another lattice point p. Note

that this minimal generator is xp+
.

Consider a minimal generator xq of M
(k)
L of weighted degree mk, such that the origin

is in its support and p is not in its support. Note that such a generator exists by

the following lattice translation argument. Take any minimal generator xq′ of M
(k)
L of

weighted degree mk and maximise the linear functional p · x over its support. Suppose

that r is a point in the support at which this functional is maximised, multiply the

minimal generator by x−r. The resulting minimal generator contains the origin but

does not contain the point p in its support. This is because the origin maximises the

functional p · x over the support of xq′ · x−r and the inner product of p with the origin

is zero whereas its inner product with itself is strictly positive.

The monomial lcm(xp+
,xq) is contained in M

(k+1)
L as its support contains the union

of supports of xq and xp, and has weighted degree at most m2 +mk. As an element of

M
(k+1)
L it must have weighted degree at least mk+1 and therefore mk+1 −mk ≤ m2.

The sequence (mk)
∞
k=1 inherits much of the structure of M

(k)
L given by its inductive

characterisation (Theorem 5.2.5). This additional structure makes it more natural to

derive bounds on successive differences rather than (Fk)
∞
k=1 directly.
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Recall that the rank of the finite difference progression is defined as the cardinality of

its set of successive differences. Note that the rank is equal to one when the sequence is

an arithmetic progression. Given the sequence of k-th Frobenius numbers (Fk)
∞
k=1 with

associated {b1, . . . , bt} such that bt > bt−1 > · · · > b1 (as defined in Corollary 5.3.9), we

derive two upper bounds on its rank from Lemma 5.4.3 and Corollary 5.3.9.

Proposition 5.4.4. The rank of the finite difference progression (Fk)
∞
k=1 is upper bounded

by:

rank((Fk)
∞
k=1) ≤ m2 + bt − b1 + 1 (5.23)

rank((Fk)
∞
k=1) ≤

((
t

2

)
+ 1

)
(m2 + 1) (5.24)

Proof. Bound (5.23) is derived from the fact that the largest possible difference between

successive terms is m2 +bt−b1. This is possible when Fk = mk+b1 and Fk+1 = mk+1 +bt

where mk+1 −mk = m2, the largest possible difference as shown in the proof of Lemma

5.4.3. All possible differences are in the interval [0,m2 + bt− b1] and so the rank is upper

bounded by its cardinality.

Bound (5.24) is derived as follows. By Corollary 5.3.9, we can express the difference

Fk+1 − Fk = (mk+1 −mk) + (bj − bi) for some bi, bj ∈ {b1, . . . , bt}. Recall from Lemma

5.4.3 that the set of differences {mk+1 −mk}k∈N is a subset of [0,m2]. We consider the

following two cases:

Case 1 (bj > bi): There are
(
t
2

)
choices of bi, bj that satisfy bj > bi and so the number of

differences {bj−bi}i<j is upper bounded by
(
t
2

)
. Therefore the number of differences

{Fk+1 − Fk} is upper bounded by
(
t
2

)
(m2 + 1).

Case 2 (bj ≤ bi): Here 0 ≤ Fk+1 − Fk ≤ mk+1 −mk, therefore the set of differences is a

subset of [0,m2].

Summing up the upper bounds over both cases, we get the bound rank((Fk)
∞
k=1) ≤

(
(
t
2

)
+ 1)(m2 + 1)
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Corollary 5.4.5. A geometric progression with common ratio strictly greater than one

cannot occur as a sequence of generalised Frobenius numbers of any finite index sublattice

of (a1, . . . , an)⊥ ∩ Zn.

Proof. By Theorem 5.4.2, a sequence of generalised Frobenius numbers (Fk)
∞
k=1 is a finite

difference progression. Hence, the difference Fk+1−Fk is uniformly upper bounded. On

the other hand, since the common ratio of the geometric progression is greater than one,

the difference between successive terms goes to infinity with k. Hence, such a geometric

progression cannot occur as a sequence of generalised Frobenius numbers.

Remark 5.4.6. Another reason to expect Corollary 5.4.5 is that the sequence of gener-

alised Frobenius numbers of lattices of dimension at least two usually contains plenty of

repetitions. However, Theorem 5.4.2 implies a stronger statement that even after remov-

ing the repetitions the resulting sequence cannot be a geometric progression of common

ratio strictly greater than one.

5.4.2 Algorithms for generalised Frobenius numbers

We use the Neighbourhood Theorem (Theorem 5.2.8) to give an algorithmic construction

of generalised lattice modules and via Proposition 5.1.13 compute generalised Frobenius

numbers.

Remark 5.4.7. A method for computing the lattice ideal given a basis for that lattice

is presented in [66]. One method to compute the Castelnuovo–Mumford regularity of

π(M
(k)
L ) is to construct a free presentation of π(M

(k)
L ), for instance via the hull complex

of M
(k)
L . We can use this as the input to the algorithm presented in [19] to compute the

Castelnuovo–Mumford regularity.

Example 5.4.8. In the following example, we illustrate our algorithm with the inputs

L = L(3, 4, 11) = (3, 4, 11)⊥ ∩ Z3 and k = 3. Figure 5.2 shows the monomial staircase

for this lattice module.
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Algorithm 3 Generalised Lattice Modules

Input: A basis of a finite index sublattice L of (a1, . . . , an)⊥∩Zn where (a1, . . . , an) ∈ Nn
and a natural number k ∈ N.
Output: A minimal generating set of M

(k)
L as an S[L]-module and the k-th Frobenius

number Fk of L.

1: Compute the lattice ideal IL.
2: Compute all lattice points in N (k−1)(0).
3: For each k-subset P ⊆ N (k−1)(0) containing 0, calculate the least common multiple
`P = lcm(xpi | pi ∈ P ).

4: Construct M
(k)
L =

〈
`P | P ⊆ N (k−1)(0) , |P | = k, 0 ∈ P

〉
S[L]

.

5: Pick a representative that is minimal under divisibility for each L-orbit and declare

the resulting set to be a minimal generating set of M
(k)
L .

6: Compute the Zn/L-graded S-module π(M
(k)
L ) := M

(k)
L ⊗S[L] S and its Castelnuovo–

Mumford regularity reg(π(M
(k)
L )).

7: Set the k-th Frobenius number Fk to reg(π(M
(k)
L )) + n− 1−

∑n
i=1 ai.

The set {(1, 2,−1), (4,−3, 0)} is a basis for L. The binomials corresponding to this

basis generate the ideal J =
〈
x1x

2
2 − x3, x

4
1 − x3

2

〉
. The lattice ideal IL is given by the

saturation of J with respect to the product of all the variables, and so

IL = 〈J : 〈x1x2x3〉∞〉 =
〈
x1x

2
2 − x3, x

4
1 − x3

2

〉
.

In this case, the lattice ideal does not have any new binomials.

The lattice points (1, 2,−1), (4,−3, 0) along with their negative and the origin 0, give

the first neighbourhood N (1)(0). Next, we compute N (k−1)(0) by taking all k-subsets of

N (1)(0) and taking their sum. This computation gives us

N (2)(0) ={(0, 0, 0), (1, 2,−1), (4,−3, 0), (−1,−2, 1), (−4, 3, 0), (8,−6, 0), (3,−5, 1),

(5,−1,−1), (−2,−4, 2), (2, 4,−2), (−5, 1, 1), (−3, 5,−1), (−8, 6, 0)}.

For each 3-subset of N (2)(0), we take the least common multiple of the corresponding

monomials and denote the S[L]-module generated by these monomials as Mcon. By the

Neighbourhood Theorem, Mcon is equal to M
(3)
L . Note that this requires computing

(
12
2

)
=

66 monomials.
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To calculate a minimal generating set of M
(3)
L , we choose the monomials from this set

that do not dominate any other monomial in M
(3)
L . In our case, this gives the following

list of generators

M
(3)
L =

〈
x5

1, x
4
1x

2
2, x1x

3
2, x

3
1x3, x

5
2, x2x3

〉
S[L]

.

All minimal generators with the same Zn/L-degree must be in the same L-orbit. Hence,

we pick representatives for each degree to give a minimal generating set of M
(3)
L . All

minimal generators are in degree 15 or 20, and so M
(3)
L =

〈
x5

1, x
4
1x

2
2

〉
S[L]

. We compute

the Castelnuovo–Mumford regularity of π(M
(3)
L ) = 33. Therefore, we calculate F3 to be

33 + 2− 3− 4− 11 = 17

5.5 Future directions

We organise potential future directions into three items with the first two closely related.

• Classification of Sequences of Generalised Frobenius Numbers: We have

shown that the sequence of generalised Frobenius numbers form a finite difference

progression, however there is still information that we have not fully utilised. For

instance, we have not used the filtration of the generalised lattice modules and

the inductive characterisation provided by Theorem 5.2.8. Can this information

be used to study sequences of generalised Frobenius numbers? For instance, by

studying the sequence of Castelnuovo–Mumford regularity of modules in a filtra-

tion.

• Syzygies of Generalised Lattice Modules: Our finiteness result shows that

for any finite index sublattice of (a1, . . . , an)⊥ ∩ Zn there are only finitely many

isomorphism classes of generalised lattice modules. What are the possible Betti

tables that can occur as Betti tables of generalised lattice modules? How are

they related? Note that this is closely related to the previous item since the

Castelnuovo–Mumford regularity of M
(k)
L is the number of rows of its Betti table



minus one and this is essentially the k-th Frobenius number (Proposition 5.1.13).

This problem is also closely related to the problem of classifying structure posets

of generalised lattice modules (see Section 5.3 for more details).

Peeva and Sturmfels [73] define a notion of lattice ideals associated to generic

lattices and show that the Scarf complex minimally resolves lattice ideals associated

to generic lattices. For any fixed k and a generic lattice L, is there a generalisation

of the Scarf complex to a complex that minimally resolves M
(k)
L as an S[L]-module?

• Generalised Frobenius Numbers of Laplacian Lattices: Let G be a labelled

graph. Recall that the Laplacian matrix Q(G) is the matrix D−A where D is the

diagonal matrix diag(val(v1), . . . , val(vn)) where val(vi) is the valency of the vertex

vi and A is the vertex-vertex adjacency matrix. The Laplacian lattice LG of G is

the lattice generated by the rows of the Laplacian matrix. This is a finite index

sublattice of the root lattice An−1 = (1, . . . , 1)⊥ ∩Zn of index equal to the number

of spanning trees of G. We know from [9] that the first Frobenius number of LG is

equal to the genus of the graph. The genus of the graph is its first Betti number

as a simplicial complex of dimension one and is equal to m− n+ 1 where m is the

number of edges. Is this there a generalisation of this interpretation to generalised

Frobenius numbers?

Arithmetical graphs are generalisations of graphs motivated by applications from

arithmetic geometry, see Lorenzini [62]. Lorenzini associated a Laplacian lattice

to an arithmetical graph and defines its genus as the first Frobenius number of

its Laplacian lattice. He studies it in the context of the Riemann–Roch theorem.

The generalised Frobenius numbers of Laplacian lattices associated to arithmetical

graphs seems another fruitful future direction.
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[7] Xavier Allamigeon, Stéphane Gaubert, and Mateusz Skomra. Tropical spectrahe-

dra, 2016. arXiv:1610.06746.

[8] Xavier Allamigeon and Ricardo D. Katz. Tropicalization of facets of polytopes.

Linear Algebra Appl., 523:79–101, 2017.

[9] Omid Amini and Madhusudan Manjunath. Riemann-Roch for sub-lattices of the

168



root lattice An. Electr. J. Comb., 17(1), 2010.

[10] Federico Ardila and Sara Billey. Flag arrangements and triangulations of products

of simplices. Adv. Math., 214(2):495–524, 2007.

[11] Federico Ardila and Mike Develin. Tropical hyperplane arrangements and oriented

matroids. Mathematische Zeitschrift, 262(4):795–816, 2009.

[12] Fuensanta Aroca. Krull-tropical hypersurfaces. Ann. Fac. Sci. Toulouse Math.

(6), 19(3-4):525–538, 2010.

[13] Fuensanta Aroca. Tropical geometry for fields with a Krull valuation: first defini-

tions and a small result. Bol. Soc. Mat. Mexicana (3), 16(1):9–14, 2010.

[14] Fuensanta Aroca, Cristhian Garay, and Zeinab Toghani. The fundamental theorem

of tropical differential algebraic geometry. Pacific J. Math., 283(2):257–270, 2016.

[15] François Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat.

Synchronization and linearity: An algebra for discrete event systems. Wiley Series in

Probability and Mathematical Statistics: Probability and Mathematical Statistics.

John Wiley & Sons Ltd., 1992.

[16] Matthew Baker and Sam Payne, editors. Nonarchimedean and tropical geometry.

Simons Symposia. Springer, 2016. Papers based on two Simons Symposia held in

St. John, April 2013 and in Puerto Rico, February 2015.

[17] Elizabeth Baldwin and Paul Klemperer. Understanding preferences: “demand

types”, and the existence of equilibrium with indivisibilities, 2015.

[18] Soumya D. Banerjee. Tropical geometry over higher dimensional local fields. J.

Reine Angew. Math., 698:71–87, 2015.

[19] Dave Bayer and Mike Stillman. Computation of Hilbert functions. J. Symbolic

Comput., 14(1):31–50, 1992.

[20] Dave Bayer and Bernd Sturmfels. Cellular resolutions of monomial modules. J.

Reine Angew. Math., 502:123–140, 1998.

[21] Matthias Beck, Ricardo Diaz, and Sinai Robins. The Frobenius problem, rational

polytopes, and Fourier-Dedekind sums. J. Number Theory, 96(1):1–21, 2002.

[22] Matthias Beck and Sinai Robins. A formula related to the Frobenius problem in

two dimensions. In Number theory (New York, 2003), pages 17–23. Springer, New

169



York, 2004.

[23] Matthias Beck and Sinai Robins. Computing the continuous discretely. Integer-

point enumeration in polyhedra. Undergraduate Texts in Mathematics. Springer,

New York, second edition, 2015.

[24] Pascal Benchimol. Tropical aspects of linear programming. PhD thesis, Ecole

Polytechnique, 2014.

[25] David Bernstein and Andrei Zelevinsky. Combinatorics of maximal minors. J.

Algebraic Combin., 2(2):111–121, 1993.
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