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Abstract— This paper studies the impact of hardware mis-
match (HM) between the base station (BS) and the user e-
quipment (UE) in the downlink (DL) of large-scale antenna
systems. Analytical expressions to predict the achievable rates are
derived for different precoding methods, i.e., matched filter (MF)
and regularized zero-forcing (RZF), using large system analysis
techniques. Furthermore, the upper bounds on achievable rates
of MF and RZF with HM are investigated, which are related to
the statistics of the circuit gains of the mismatched hardware.
Moreover, we present a study of HM calibration, where we
take zero-forcing (ZF) precoding as an example to compare two
HM calibration schemes, i.e., Pre-precoding Calibration (Pre-
Cal) and Post-precoding Calibration (Post-Cal). The analysis
shows that Pre-Cal outperforms Post-Cal schemes. Monte-Carlo
simulations are carried out, and numerical results demonstrate
the correctness of the analysis.

Index Terms—Large-scale antenna systems, Massive MIMO,
hardware mismatch (HM), channel calibration, channel reci-
procity.

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) technique plays a
key role in modern communications systems to increase the
data rates and link reliability [1]. Large system analysis have
long been employed to analyze the performance of MIMO
systems, e.g., [2]–[5], but the idea of ‘Massive MIMO sys-
tems’ or ‘large-scale antenna systems’ with a large number
of antennas deployed at the base station (BS) begins to draw
more and more research interest recently [6]–[8]. Operating
in time-division duplexing (TDD) mode, large-scale antenna
systems utilize the channel reciprocity in the uplink (UL) and
the downlink (DL), and obtain the channel state information
(CSI) through UL pilot training. With an increasing number
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of antennas, large-scale antenna systems can exploit excess
degrees of freedom. As the degree of orthogonality between
channels of different users improves, inter-user interference
can be suppressed by simple processing [9]. Large-scale
antenna systems exhibits advantages in many aspects, such
as data rates, symbol error rates, computational complexity of
signal processing and energy efficiency [7], [10], [11].

In frequency-division duplexing (FDD) systems, the DL
channel coefficients are estimated at the user equipment (UE)
and then sent back to the BS. So it brings heavy training
overhead when the number of transmit and receive antennas
is large. Although several papers have tried to address this
problem, e.g., [12] and references therein, it remains a big
challenge for FDD systems with a large number of BS an-
tennas. Therefore, the benefits brought by large-scale antenna
systems should be based on channel reciprocity in TDD mode,
which considers the channel coefficients to remain the same
in the UL and the DL within the channel coherent time. This
is generally true for wireless propagation [13], [14], but not
exactly when considering the hardware employed in the front-
ends of both the BS and the UEs. Some research points
out that the I/Q imbalance of the front-end analog processing
has negative effect on the channel reciprocity [15]. In fact,
many approaches have been proposed to compensate such
I/Q imbalance in the digital field, e.g. [16] and references
therein. Besides I/Q imbalance, the most important impact
comes from the ‘hardware mismatch’ (HM) between the UL
and the DL, i.e., the base station (BS) and the UEs employ
different devices (e.g., antennas, filters and amplifiers), and
consequently the equivalent channel coefficients that take into
account the analog circuit gains differ in the UL and the DL.
Although HM generally does not affect the performance in the
UL (the channel estimation is carried out in the UL), it results
in an essential constraint of the DL performance [11].

HM generates ‘uncertainty’ in the DL. One possible way
to deal with this uncertainty is through robust design [17] at
the cost of extra implementation complexity. However, further
research have advocated estimation and calibration of these
HM parameters [14], [18]–[25]. The estimation methods of
HM parameters can be divided into two categories, according
to whether the users are involved or not. When the HM
estimation is carried out at the BS without involving a user,
the circuit gains of all the BS antennas are adjusted to a
reference antenna by either resorting to additional circuitry
in the transceivers [18], or by treating an antenna as the
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reference and exchanging pilot signals between the reference
antenna and all the other antennas at the BS [21], [22], [24].
This scheme is usually termed as ‘self calibration’ [14], or
’relative calibration’ [21]. In this way, the circuit gains of all
the antennas at the BS are calibrated to a constant value and
will not affect the the channel reciprocity. The self calibration
scheme can also be used to users with multiple antennas, but
the performance degrades due to the low cost amplifiers used
in users [26]. Another approach to obtain the HM parameters
demands the assistance from the users and is often termed as
’over-the-air calibration’ because pilot signals are transmitted
between the BS and the users through the air interface [14],
[19], [20], [23], [25]. The main limitations of this approach
are the occupation of system resources and the selection of
supporting users [20].

Once the HM parameters are reliably obtained, channel
calibration is carried out to retrieve reciprocity between the
UL and the DL. Some works proposed to only calibrate the
HM parameters at the BS (we refer to these schemes as
‘partial calibration’), because they have the dominant impact
on the level of inter-user interference in the DL [18], [20]–
[22]. However, the quality of service (QoS) of each user is
difficult to guarantee without knowledge of the user’s HM
parameters. This problem can be handled either by employing
additional filters at the users [18], or by HM calibration [14],
[19], [23], [25]. We refer to these calibration approaches as
‘full calibration’.

As most research work on HM calibration, to the best of
the authors’ knowledge, there are few results of the HM’s
impact on the DL performance except for [26], in which the
problem of different HM calibration schemes is studied for
Block-Diagonalization (BD) and Zero-Forcing (ZF) precoding.
However, few analytical results can be found and the impact
of HM on DL performance remains unclear for large-scale
antenna systems.

In this paper, the impact of HM on different DL precod-
ing methods, i.e., matched filter (MF) and regularized zero-
forcing (RZF) is investigated. MF is a potential technique
for DL transmission in large-scale antenna systems due to
its simplicity, low complexity and scalability [6], [7], [21].
In contrast, RZF has higher computational complexity and
inferior scalability, but it offers much higher data rates. We
give the analytical expression of the achievable rates for both
MF and RZF. Prior related works on large system analysis of
MIMO systems, e.g., [2]–[5] and references therein, always
assume the same antenna correlation profile for all the users.
Therefore, the combined DL channel matrix of all the users
can be represented by a matrix with independent entries mul-
tiplied by two correlation matrices on both sides. In this work,
however, we model the channel in a more generalized way in
which different users can have different channel correlation
matrices, as in [27], [28]. Unlike [27], [28], which analyze
the DL performance of MF and RZF in large-scale antenna
systems without considering HM between the UL and the DL,
in this work we take HM into consideration, and the problem
becomes very different especially for RZF. The correlated
wireless channel matrix is further corrupted by two diagonal
matrices comprising the HM parameters of the system, which

makes the problem more complicated. By utilizing random
matrix theory and some useful lemmas, we derive analytical
expressions for the achievable rates of MF and RZF with HM
in the UL and the DL for large-scale antenna systems.

We also present a study of HM calibration using the same
downlink scenario. As briefly described in [22], the HM
calibration can be carried out either before or after the pre-
coding. These two scenarios are referred to as Pre-precoding
Calibration (Pre-Cal) and Post-precoding Calibration (Post-
Cal). Because zero-forcing (ZF) precoding has a simpler
expression than RZF and shows more insights on HM’s impact
than MF, in this work we take ZF as an example to compare
the performance of Pre-Cal and Post-Cal under both partial
calibration and full calibration.

The main contributions of this paper are summarized as
follows:

a) Analytical expressions for the achievable rates per user
are given for RZF and extended to MF with consideration
of UL and DL HM, through the evaluation of expectations
and asymptotic deterministic equivalents (ADE) of a
series of random variables;

b) We prove that there are upper bounds for achievable rates
of MF and RZF in the high signal to noise (SNR) region
for a special case. The upper bounds are only related to
the statistics of the HM parameters and the ratio of the
number of users and the number of transmit antennas.

c) We also develop a study of HM calibration and show that
the Pre-Cal schemes outperform the Post-Cal schemes.

The rest of the paper is organized as follows. The system
model is described in section II. In section III, the set of
achievable rates for both RZF is derived and then extended to
MF. The study of different HM calibration schemes is carried
out in section IV. The simulations and numerical results are
shown in section V, and conclusions are drawn in section VI.

Notation: (·)∗ is the complex conjugate operation; (·)T and
(·)H denotes the transpose and Hermitian transpose of a vector
or a matrix , respectively; E{·} denotes the expectation opera-
tion; [vnk]N×K denotes an N by K matrix with the (n, k)-th
element being vnk; IN denotes an N by N identity matrix;
CN (θ,Σ) denotes circularly symmetric complex Gaussian
distribution with mean θ and covariance Σ; diag{a1, . . . , aN}
denotes an N by N diagonal matrix with diagonal entries
given by a1, . . . , aN .

II. SYSTEM MODEL

Consider the DL of a single cell multi-user large-scale
antenna system with N transmit antennas at BS and K single
antenna users, where N is very large (tens or hundreds). The
system operates in TDD mode, so that the channel reciprocity
in the UL and the DL can be exploited. An illustration of the
system is given in Fig. 1.

Let hk = [h1k, . . . , hNk]
T, h′

k = [h′
1k, . . . , h

′
Nk]

T be the
UL and DL channel vectors of user k, respectively, where
hnk is the channel gain from user k to the n-th antenna at BS
in the UL, and h′

nk is that in the DL. As shown in Fig. 2, hnk

and its DL counterpart h′
nk are modeled, respectively, as [21],
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Fig. 2. Hardware Mismatch of UL and DL transmissions

[22]
hnk = rnvnk t̃k,

h′
nk = tnv

′
nkr̃k,

(1)

where vnk and v′nk are the corresponding UL and DL wireless
channel gains, respectively; rn, tn are the equivalent receive
and transmit circuit gains of the n-th antenna at BS, and r̃k,t̃k
are the equivalent receive and transmit circuit gains of user k,
respectively.

In fact, hk and h′
k are not exactly the same due to HM be-

tween UL and DL. In TDD mode, because the electromagnetic
waves in UL and DL undergo the same physical propagation
environment , i.e., reflections, refractions, scatterers, etc [14],
the wireless channel gains in UL and DL transmission are
considered to be unchanged within a channel coherent period,
i.e., vnk = v′nk. However, the circuit gains are related to the
hardware configurations, e.g., transmit and receive filters and
amplifiers. Because the BS and the UEs usually have different
hardware implementation in the UL and DL, so that in general
ri ̸= ti, r̃i ̸= t̃i, ri ̸= r̃i and ti ̸= t̃i. These circuit gains may
change with the working conditions, e.g., temperature [14].
But they vary slowly compared with the wireless channel, so
it is reasonable to treat them as known constants during the
data transmission interval concerned.

In the DL, the received signal yk at user k is given by

yk = x
√
PWh′

k + nk, ∀k = 1, . . . ,K, (2)

where x = [x1, . . . , xK ] is the transmit signal vector con-
sisting of independent, zero mean and unit energy symbols
for respective users, so that E{xHx} = IK ; P is the power
loading matrix, P = diag{p1, . . . , pK} with pk being the
power loading factor for user k; W ∈ CK×N is the transmit
precoding matrix; nk is the Gaussian noise at the receiver of
user k, i.e., nk ∼ CN (0, σ2

n).
Let the UL combined channel matrix of all users be

H = [h1, . . . ,hK ], and H = RV T̃ , in which R =

diag(r1, . . . , rN ) is the receive circuit gain matrix of BS,
T̃ = diag(t̃1, . . . , t̃K) is the transmit circuit gain matrix of
all the users, and V = [vnk]N×K is the wireless channel
coefficient matrix. Denote the k-th column of V as vk, and
vk’s are independent complex Gaussian vectors with correlated
entries, i.e., vk ∼ CN (0, 1

NΦk) , ∀k = 1, . . . ,K. Note that
the channel gain is normalized to 1

N for analysis convenience.
The DL channel matrix H̃ = [h′

1, . . . ,h
′
K ] can be repre-

sented as H̃ = TV R̃, where T = diag(t1, . . . , tN ) is the
transmit circuit gain matrix of BS, and R̃ = diag(r̃1, . . . , r̃K)
is the receive circuit gain matrix of all the users.

Let y = [y1, . . . , yK ] , n = [n1, . . . , nK ] , and (2) can be
reformulated as

y = x
√
PWH̃ + n. (3)

Remark: The wireless channel covariance matrix of user
k is 1

NΦk. This model is very general and encompasses a
wide range of scenarios. For example, when Φk = IN , it
means no correlation among the transmit antennas and the
path loss of user k reduces to 1. When distributed antennas
are considered at BS, the covariance matrix of user k would be
of form Φk = diag{a1, a2, . . . , aN}, where an represents the
path loss from user k to the n-th distributed transmit antenna.

III. ACHIEVABLE RATES OF LINEAR PRECODING
SCHEMES WITH HM

In this section, we first give an introduction to a set of
achievable rates which are upper bounded by the capacity and
are very useful for performance analysis [28], [29]. Then we
study the effect of HM on DL performance in terms of these
achievable rates, and derive analytical expressions for both MF
and RZF.

A. The Set of Achievable Rates

Similar to [2]–[5], [28], [29], in order to study the per-
formance of large-scale antenna systems with HM, we first
introduce a set of achievable rates as shown in Lemma 1.

Lemma 1: Consider a point-to-point communication link,
the signal model of which is given by

yk = gk,k
√
pkxk +

K∑
i=1,i ̸=k

gk,i
√
pixi + nk

= E{gk,k}
√
pkxk + (gk,k − E{gk,k})

√
pkxk

+

K∑
i=1,i ̸=k

gk,i
√
pixi + nk,

(4)

where k = 1, . . . ,K, x = [x1, . . . , xK ] and nk are as
described in (2); gk,i is the equivalent channel gain, and gk,i’s
are correlated. Then the following set of rates is achievable

Rk = log2 (1 + γk) , ∀k = 1, . . . ,K, (5)

where

γk =
pk|E {gk,k}|2

σ2
n + pk var {gk,k}+

K∑
i=1,i ̸=k

piE
{
|gk,i|2

} . (6)
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Proof: See Theorem 1 in [29].
By assuming that the users only have the mathematical

expectations of the equivalent channel gains, and treating the
variations of signals and all the correlated interferences as
independent noise, this set of achievable rates for each user are
actually upper bounded by the capacity, and thus achievable.
For more study on this set of achievable rates, please see [29].

In order to derive the closed-form expressions of the achiev-
able rates of MF and RZF, we first formulate the signal model
as in (4), and then evaluate the mathematical expectations
involved in (6).

B. Achievable Rates of Linear Precoding Schemes

In this subsection, we derive the achievable rates for RZF
and MF. Since RZF has a generalized expression and MF can
be treated as special cases of it, the achievable rates of RZF
is first derived and then the results are extended to MF, which
has a much simpler expression. Because the expression of
achievable rates of ZF is similar to that of RZF and it can
not be simplified, we omitted it here.

Using RZF for DL transmission, the precoding matrix is
given by WRZF =

√
λRZF[H

HH + ρIK ]−1HH, where ρ =
Kσ2

n

PT
for the minimum mean square error (MMSE) design [30],

and

λRZF =
PT

ETr
{
P [HHH + ρIK ]

−1
HHH[HHH + ρIK ]

−1
} .

(7)
where PT is the total transmit power.

The received signal vector y ∈ C1×K for the K users is

y =
√
λRZFx

√
P [HHH + ρIK ]−1HHH̃ + n

=
√
λRZFx

√
PHH[HHH + ρIN ]−1H̃ + n

=
√
λRZFx

√
P T̃ HV HRHQTV R̃+ n,

(8)

where Q = [RV T̃ T̃ HV HRH + ρIN ]−1.
By simple algebraic manipulation, the received signal for

user k is given by

yk =
√
λRZFr̃k

K∑
i=1

√
pixit̃

∗
i v

H
i R

HQTvk + nk

= gk,k
√
pkxk +

K∑
i=1,i ̸=k

gk,i
√
pixi + nk,

(9)

where gk,i =
√
λRZFr̃k t̃

∗
i v

H
i R

HQTvk. The achievable rates
with RZF are obtained using Lemma 1.

To deal with the mathematical expectations in (6), we derive
asymptotic deterministic equivalents (ADE) of random vari-
ables therein. When N and K are large, the random variables
in (6) will converge to their ADEs, so the expectations can be
approximated by their corresponding ADEs. For example, if
a random variable x → x0 and x0 is deterministic, then x0 is
the ADE of x. So we can easily prove that E{x} → x0 and
var{x} → 0.

1) ADE of gk,k and gk,i for i ̸= k:
The following proposition gives the ADE of gk,k and gk,i

for i ̸= k.
Proposition 1: When N → ∞, gk,k → g◦k,k and |gk,i|2 →

g◦2k,i, which are given by

g◦k,k =

√
λRZFr̃k t̃

∗
kµ

◦
2

1 +
∣∣t̃k∣∣2µ◦

1

,

g◦2k,i = λRZF|r̃k|2|t̃i|2

×

µ◦
3 −

∣∣t̃k∣∣22Re(µ◦
2µ

◦
5)

1 +
∣∣t̃k∣∣2µ◦

1

+

∣∣t̃k∣∣4µ◦
4|µ◦

2|2

(1 +
∣∣t̃k∣∣2µ◦

1)
2

 , i ̸= k,

(12)

in which

µ◦
1 =

1

N
Tr

(
RΦkR

HSk(ρ)
)
,

µ◦
2 =

1

N
Tr

(
TΦkR

HSk(ρ)
)
,

µ◦
3 =

1

N

1
N Tr

{
TΦkT

HS′
ki(ρ)

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2 ,

µ◦
4 =

1

N

1
N Tr

{
RΦkR

HS′
ki(ρ)

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2 ,

µ◦
5 =

1

N

1
N Tr

{
RΦkT

HS′
ki(ρ)

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2 ,

(13)

where Sk(ρ) is given by, respectively

Sk(ρ) =

[
1

N

∑
i∈Ψk

{∣∣t̃i∣∣2RΦiR
H

1 + ei(ρ)

}
+ ρIN

]−1

, (14)

in which Ψk = {1, . . . ,K}\{k} and ei(ρ) is the unique set
of solutions to K − 1 equations given by (10) in the top
of the next page; Ski(ρ) is similar to Sk(ρ) with Ψki =
{1, . . . ,K}\{k, i}, and S′

ki(ρ) is calculated according to (A.1)
with B = RΦiR

H.
Proof: See Appendix B.

Note that µ◦
3, µ◦

4 and µ◦
5 are all O(N−1), and so is |gk,i|2.

However, the interference term, i.e., the summation of pi|gk,i|2
may not be O(N−1) when K is of the same order as N ,
especially in the high SNR region when ρ is small and the
interference term dominates over the receiving noise. In the
low SNR region, however, this interference term is much
smaller than the noise and thus can be omitted. We just leave
this term here in order to derive the achievable rates of MF
from RZF.

2) Derivation of λRZF:
λRZF is a function of the combined channel matrix H =

RV T̃ . The wireless channel matrix V therein has independent
columns, while the entries in each column are correlated. We
will derive the ADE of λRZF.

Proposition 2: When N → ∞, λRZF → λ◦
RZF, which is

given by

λ◦
RZF = PT

[
K∑

k=1

1
N pk|t̃k|2Tr{RΦkR

HS′
k(ρ)}(

1 + 1
N |t̃k|2Tr{RΦkRHSk(ρ)}

)2
]−1

,

(15)
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ei(ρ) =
1

N
Tr

∣∣t̃i∣∣2RΦiR
H

 1

N

∑
j∈Ψ1

{∣∣t̃j∣∣2RΦjR
H

1 + ej(ρ)

}
+ ρIN

−1
 , i ∈ Ψ1. (10)

γMF,k →
pk
∣∣r̃k t̃k∣∣2∣∣ 1

N Tr
{
TΦkR

H
}∣∣2

σ2
n

PT

K∑
i=1

pi
∣∣t̃i∣∣2 1

N Tr {RΦiRH}+ 1
N

K∑
i=1,i̸=k

pi
∣∣r̃k t̃i∣∣2 1

N Tr {TΦkT HRΦiRH}
. (11)

in which S′
k(ρ) is calculated according to (A.1) with B = IN

and Sk(ρ) given by (14).
Proof: See Appendix C.

Until this point, we have obtained all the ingredients re-
quired to derive the achievable rates of RZF. Combining the
results of (12) and (15), we give the following theorem.

Theorem 1: When N → ∞, the set of achievable rates with
RZF is given by

RRZF,k = log2 (1 + γRZF,k) , ∀k = 1, . . . ,K, (16)

where

γRZF,k →
pk

∣∣∣g◦k,k∣∣∣2
σ2
n +

K∑
i=1,i ̸=k

pig◦2k,i

. (17)

Remark: MF and ZF can be treated as special cases of RZF.
By setting ρ → 0 in (17), one can obtain the achievable rates
of ZF. However, the expression is quite similar to that of RZF
and can not be simplified. Therefore, we omit the derivation for
ZF, and only give the analysis of MF in the next subsection.

3) Achievable Rates of MF:
When MF is used for DL transmission and assuming perfect

CSI at BS, the precoding matrix is given by

WMF =
√

λMFH
H, (18)

in which
λMF =

PT

ETr {PHHH}
. (19)

The achievable rates of MF is obtained by setting ρ → ∞
in Theorem 1, and is summarized in Corollary 1.

Corollary 1: When N → ∞, the set of achievable rates
with MF is RMF,k = log2 (1 + γMF,k), ∀k = 1, . . . ,K, where
γMF,k is given by (11) in the top of this page.

Proof: This corollary is proved by setting ρ → ∞ in
Theorem 1. Since lim

ρ→∞
Sk(ρ) =

1
ρIN , lim

ρ→∞
S′
k(ρ) =

1
ρ2 IN ,

lim
ρ→∞

Ski(ρ) =
1
ρIN , and lim

ρ→∞
S′
ki(ρ) =

1
ρ2RΦiR

H, we have

λMF = lim
ρ→∞

λRZF =
PT

ρ2

[
K∑

k=1

pk|t̃k|2
1

N
Tr{RΦkR

H}

]−1

,

lim
ρ→∞

g◦k,k = λMF|r̃k t̃k|2
1

ρ2

∣∣∣∣ 1N Tr{TΦkR
H}

∣∣∣∣2 ,
lim
ρ→∞

g◦2k,i = λMF|r̃k t̃i|2
1

ρ2
1

N2
Tr{TΦkT

HRΦiR
H}.

(20)
Substituting (20) into (17) gives (11).

Although the achievable rates of RZF and MF can be
calculated according to (17) and (11), it is not easy to get
some insights on how HM affects the DL. Therefore, we
will consider a simple scenario and show that there are
performance bounds for MF and RZF in the high SNR region.

4) Performance Bound in the High SNR Region:
Assuming the HM parameters at BS as random variables

while those at UEs remain as known constants and are well
compensated, i.e., t̃i = r̃i = 1, ∀i = 1, . . . ,K. In this way,
we concentrate on how the number of antennas and the HM
parameters at BS affect the DL. The following corollary shows
there are performance bounds for both MF and RZF in the high
SNR region.

Corollary 2: Assume that the HM parameters at BS ri’s are
i.i.d., ti’s are i.i.d., ri’s and ti’s are independent. Furthermore,
we assume Φk = IN , ∀i = 1, . . . ,K and equal power
allocation is used, i.e., P = IK . Then for a communication
system modeled as (3), when PT → ∞, as N,K → ∞ and
K
N = β, the received SINR of user k under MF γMF,k and
RZF γMF,k, ∀k = 1, . . . ,K is given by, respectively

γMF,k → |E {r∗i ti}|
2

βE{|ti|2}E{|ri|2}
, (21)

γRZF,k → c25
β3c6c21 − 2c1β2Re{c5c8}+ βc7|c5|2

, (22)

where c1, c5, c6, c7 and c8 are constants related to β and the
statistics of the HM parameters. They are defined in (D.4) and
(D.9) in Appendix D.

Proof: See Appendix D.
It can be seen from (21) and (22) that in the high SNR

region, performance upper bounds exist for both MF and RZF.
The performance loss due to HM are related to β and the
statistics of the circuit gains at BS. In general, the performance
loss of RZF is larger than that of MF. Because there is also
a performance upper bound for MF (which is given by 1

β
[10]) as a result of inter-user interference when no HM exists.
From (21), we can see that the data rates loss due to HM is
limited when the second order statistics of the HM parameters
are small. In contrast, RZF converges to ZF when SNR is
high, and the achievable rates without HM will grow almost
linearly with respect to SNR. When HM exists, however,
the achievable rates of RZF is upper bounded, as shown in
Corollary 2.

IV. STUDY OF HM CALIBRATION SCHEMES

In this section, we carry out a study of HM calibration in
the scenario outlined in Section II. With HM, the channels in
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the UL and DL cannot be reciprocal. So the DL performance
will be degraded due to the inaccurate precoding matrix
calculated based on UL channel estimation. As analyzed in the
previous section, HM significantly affects the DL performance.
Therefore a channel calibration process is usually preferred.
In this section, we first take ZF as an example to show the
effects of HM. Then we compare two sorts of HM calibration
schemes. The choice of ZF is based on the fact that ZF has
a simpler expression than RZF and shows more insights on
the HM’s influence than MF, which will become clear in the
following analysis.

When ZF is used for downlink transmission, and assuming
perfect CSI at the BS, the precoding matrix is given by

WZF =
√
λZF

(
HHH

)−1
HH, (23)

where

λZF =
PT

ETr
{
(HHH)

−1
HHPH(HHH)

−1
}

= lim
ρ→0

λ◦
RZF.

(24)

Substituting (23) into (3) results in

y =
√

λZFx
√
P [HHH]−1HHH̃ + n. (25)

Equation (25) can be expanded as

y =
√

λZFx
√
P [HHH]−1HHH̃ + n

=
√

λZFx
√
P [T̃ HV HRHRV T̃ ]−1T̃ HV HRHTV R̃+ n

=
√

λZFx
√
P T̃−1[V HRHRV ]−1V HRHTV R̃+ n.

(26)
As can be seen from (26), if T̃−1[V HRHRV ]−1V HRHTV R̃
is not diagonal, inter-user interference cannot be completely
eliminated by ZF. This is caused by differences between R
and T and the resulting biased beam directions in the DL.
Hence a calibration scheme can be introduced to adapt ZF to
HM.

A. Introduction to Partial and Full Calibration Schemes

In this subsection, we give an introduction of partial calibra-
tion and full calibration, and describe the two different ways
to implement such calibration schemes.

1) Partial Calibration:
Partial calibration is used to eliminate HM’s impact on DL

beam directions without considering the HM parameters at the
users. It adjusts the relative circuit gains of all the antennas
at BS to a reference antenna. Approaches of such partial
calibration can be found in [18], [20], [21].

When the HM parameters of the BS are obtained, there
are basically two ways to carry out the HM calibration as
mentioned briefly in [22]. One is to calibrate the DL channel
after precoding, namely ‘Post-precoding Calibration’ (Post-
Cal); the other one is to calibrate the estimated UL channel and
use it for precoding, namely ‘Pre-precoding Calibration’ (Pre-
Cal). For partial calibration, we refer to the two methods as
Partial Post-Cal (P-Post-Cal) and Partial Pre-Cal (P-Pre-Cal),
respectively.

For P-Post-Cal, let us suppose linear calibration is used as

WP-Post =
√
λP-Post[H

HH]−1HHA, (27)

where the calibration matrix A ∈ CN×N is invertible. For P-
Pre-Cal methods, let us suppose A−1H is used for precoding,
and

WP-Pre =
√
λP-Pre[H

H(A−1)HA−1H]−1HH(A−1)H. (28)

The reason for introducing A−1 in (28) is to unify the expres-
sion of sufficient conditions for nulling inter-user interference
in (27) and (28).

One sufficient condition for zero downlink inter-user in-
terference is given by A = RT−1 [21], [22]. Substituting
A = RT−1 and (27) into (3) gives

y =
√
λP-Postx

√
P T̃−1R̃+ n, (29)

The same holds for the P-Pre-Cal case. By choosing such A,
both P-Post-Cal and P-Pre-Cal methods are able to eliminate
inter-user interference in the DL.

2) Full Calibration:
It can be seen from (29) that the HM parameters at the

users will change the average received signal power. Although
the entries in T̃−1R̃ can be estimated at each user as part
of the DL channel as pointed out in [24], it affects the
stability of the DL performance. The received signal power
of each user is unpredictable at the BS without knowledge
of each user’s HM parameters, and the resulting achievable
rates will vary in a wide range. Another consideration would
be that the the partial calibration algorithm in [21] is not
suitable for RZF and some non-linear precoding schemes
which needs accurate information of the gains of each user’s
sub-channels. Therefore, full calibration becomes necessary,
which exchanges pilot signals between the BS and the users
through the air interface and estimates the HM parameters of
both the BS and the users.

Many different versions of full calibration can be found in
previous works, e.g., [14] and [25], and detailed discussion
of these schemes are beyond the scope of this paper. Here for
convenience, an demonstration of such calibration is described
as follows.

For the Post-Cal methods, an additional calibration matrix
B = R̃−1T̃ is introduced to (29). The uplink channel from
the j-th user to a reference antenna at BS is represented as
h1j = r1v1j t̃j , and its downlink counterpart is h′

1j = t1v1j r̃j .
h1j can be obtained at BS using uplink pilots, while h′

1j must
be reported to BS by user j. Then we have

h1j

h′
1j

=
r1v1j t̃j
t1v1j r̃j

=
r1t̃j
t1r̃j

⇒ t̃j
r̃j

=
h1j

h′
1j

t1
r1

, h1j

h′
1j

µ. (30)

Thus the calibration matrix B is constructed as B =
diag {µh11/h

′
11, . . . , µh1K/h′

1K}.
Once A and B are acquired, the Post-Cal scheme is carried

out as
WF-Post =

√
λF-PostB[HHH]−1HHA, (31)

and then the received signal vector at K users is given by

y =
√

λF-PostxBT̃−1R̃+ n

=
√

λF-Postx+ n.
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which indicates no inter-user interference due to HM exists
in the system. Therefore, by using calibration matrices A and
B, all the impact of HM in the DL is compensated for ZF.
We refer to the calibration scheme based on (31) as Full Post
Calibration (F-Post-Cal).

For the Pre-Cal scheme, with the same A and B as F-Post-
cal, we have

A−1HB−1 = TR−1V T̃−1R̃

= TV R̃ = H̃.

Thus the accurate values of DL channel coefficients are
obtained by multiplying A−1 and B−1 to the UL channel
matrix H . Any precoding scheme can be carried out based
on the calibrated UL channel matrix A−1HB−1. We call
this method Full Pre-Cal (F-Pre-Cal). After calibration, the
equivalent ZF precoding matrix for F-Pre-Cal becomes

WF-Pre =
√
λF-Pre[H̃

HH̃]−1H̃H.

Remarks: 1) When comparing partial and full calibration
approaches, there is a tradeoff between complexity and perfor-
mance. It is apparent that full calibration demands assistance
from the users and thus will cost more system resources. 2)
In general full calibration has superior performance and the
F-Pre-cal scheme is able to suit any precoding scheme.

B. Comparison between Post-Cal and Pre-Cal Schemes

After partial calibration, the equivalent ZF Precoding ma-
trices for P-Post-Cal and P-Pre-Cal become, respectively

WP-Post =
√
λP-Post[H

HH]−1HHA

=
√
λP-PostT̃

−1[V HRHRV ]−1V HRHRT−1,

WP-Pre =
√
λP-Pre[H

H(A−1)HA−1H]−1HH(A−1)H

=
√
λP-PreT̃

−1[V HTHTV ]−1V HTH.

From the above equations, it can be seen that the only
difference between WP-Post and WP-Pre is the additional term
A = RT−1 in WP-Post if R and T have the same distributions.
However, the performance is not the same because of λP-Post
and λP-Pre. Actually when a transmit power constraint exists,
the performance of P-Pre-Cal methods is better than the P-
Post-Cal schemes, which is shown in the following proposi-
tion.

Proposition 3: Provided that the magnitude of the HM
parameters of both the BS and the users are independently
and identically distributed, then we have λP-Pre ≥ λP-Post.

Proof: See Appendix E.
For full calibration, the equivalent ZF precoding matrices

for F-Post-Cal and F-Pre-Cal become, respectively

WF-Post =
√
λF-PostB[HHH]−1HHA,

WF-Pre =
√
λF-Pre[H̃

HH̃]−1H̃H.

Note that the difference between the F-Pre-Cal and F-Post-Cal
methods for ZF precoding lies in the equivalent channel used
for data transmission. F-Post-Cal calibrates the DL channel
according to the UL channel. The equivalent channel used for
data transmission is actually the UL one. However, the F-Pre-
Cal use the UL channel to predict the real DL channel and

TABLE I
PARAMETERS USED IN THE SIMULATIONS

noise power spectrum density -174 dBm/Hz
bandwidth 20 MHz

τk U(0, 1)

path loss exponent α 3.5
dk(m) U(30, 80)

therefore the equivalent channel is the DL channel. Similar to
the partial calibration schemes, F-Pre-Cal outperforms F-Post-
Cal as stated in the following Proposition.

Proposition 4: Provided that the magnitude of the HM
parameters of both the BS and the users are independently
and identically distributed, we have λ F-Pre ≥ λF-Post.

Proof: The proof is similar to that of Proposition 3 and
thus omitted.

The additional term A introduced in WP-Post generates a s-
maller power factor and thus degrades the overall performance.
The main reason is that when the diagonal entries of A has a
mean value greater than 1, it causes a relatively larger power
consumption. When a power constraint exists, the power factor
used to normalize the transmit power becomes smaller, and the
average received SNR decreases consequently. For the same
reason that the diagonal entries of B and A have a mean value
greater than 1, we have λF-Pre > λF-Post.

Remark: The results of Proposition 3 and Proposition 4
can be extended to RZF. The proofs and discussions follow a
similar procedure as ZF and are thus omitted here. For MF,
however, Pre-Cal and Post-Cal methods have the same power
normalization factor, and therefore have the same performance.

V. NUMERICAL RESULTS

Similar to [22], the simulations are carried out by assum-
ing that the magnitudes of ti, ri, t̃i, r̃i are identically and
uniformly distributed in the range of (1− 0.5δ, 1+0.5δ), i.e.,
U(1−0.5δ, 1+0.5δ). For simplicity, we assume that the phase
of the HM parameters are well compensated in the simulations.
The larger δ is, the more severer HM is. The correlation matrix
of each user’s channel, i.e., Φk, k = 1, . . . ,K, is modeled as

Φk,ij =

{
PLkτ

j−i
k i ≤ j

PLk(τ
j−i
k )∗ i > j

where |τk| ≤ 1, and the path loss of the k-th user, PLk(dB) =
−38.46−α10 log10(dk), in which α is the path loss exponent
and dk is the distance between the BS and user k. The
parameters used in the simulations are summarized in Table
I. All the simulation results are averaged over randomly
generated HM parameters and channel realizations.

A. Performance Loss due to HM

In this subsection, the performance loss due to HM is
evaluated through simulations. The transmit power is equally
allocated among all the users. The loss caused by HM in terms
of achievable rates is illustrated in Fig. 3 for both MF and
RZF, and the bit error rate (BER) of QPSK is shown in Fig.
4, when N = 100, 10, δ = 0.4. In all the figures, ’Perfect’
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means perfect UL/DL hardware with no mismatch and ’HM’
stands for scenarios with HM. It is worth mentioning that
the simulation results of N = 10 are better than those of
N = 100, because the channel gain is normalized to 1

N (please
see description of vk in Section II), and 10 times more users
are served when N = 100 with the same β = K

N .
As can be seen in Fig. 3 and Fig. 4, the performance of RZF

is much better than MF in terms of achievable rates and BER.
A significant performance loss is observed for RZF in the high
SNR region, while MF performs almost the same. In terms of
achievable rates, when HM exists there are upper bounds for
both RZF and MF in the high SNR region, as is predicted
in Corollary 2. For BER results of QPSK modulation, MF
undergoes an error floor around 10−1 in the high SNR region,
and RZF experiences a performance loss of 5 dB due to HM.

From the simulation results, we can conclude that the
performance of MF with and without HM is comparable,
while there is significant performance loss in the high SNR
region for RZF when HM exists. This is due to the fact
that the performance of MF is limited by the severe inter-
user interference, so it is less sensitive to HM as compared
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Fig. 6. Upper Bounds of MF, RZF when N = 100, δ = 0.4.

with RZF. In order to improve the performance of MF, a
smaller value of β is required. While for RZF, taking HM
into consideration can lead to remarkably better downlink
performance.

B. Achievable rates of RZF and MF with HM

Fig. 5 illustrates the analysis and Monte-Carlo simulation
results on achievable rates of RZF and MF, where δ = 0.2,
N = 100, β = 0.2, 0.4. The analytical achievable rates
with RZF and MF are given by Theorem 1 and Corollary
1, respectively. In order to show the accuracy of the analysis
under different power allocation schemes, the transmit power
for each user is randomly allocated in the simulation, i.e.,
pk ∼ U(0, 2). It can be seen from Fig. 5 that as the transmit
power PT increases, the achievable rates of both RZF and
MF increase, and the higher achievable rates per user can be
obtained for smaller value of β. The analysis results of MF
and RZF match well with the simulation results.

In Fig. 6, we consider a special case when Φk = IN and
T̃ = R̃ = IK . The SNR therein is defined as PT

σ2 . The upper
bounds for MF and RZF which are given in Corollary 2 are
very tight, especially when K is larger. When HM exists, the
achievable rates of RZF do not grow linearly with respect to
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SNR. When N = 100, as SNR approaches 30 dB, the data
rates saturate. So it is not beneficial to increase the transmit
power any more.

C. Calibration for HM

In order to compare the performance of the four calibration
schemes discussed in Section IV, i.e., P-Pre-Cal, P-Post-Cal,
F-Pre-Cal and F-Post-Cal, we show simulation results in terms
of the empirical PDF of the achievable rates per user in severe
HM (δ = 1.0), which is useful to show the overall calibration
performance.

As illustrated in Fig. 7, the PDF curves of the full calibration
schemes (F-Post-Cal and F-Pre-Cal) is shaper than those
of the partial calibration approaches (F-Post-Cal and F-Pre-
Cal). Therefore, the full calibration provides a much more
stable performance. Moreover, it can be seen that there is
performance loss with post-precoding calibration schemes (F-
Post-Cal and P-Post-Cal) compared with the pre-precoding
counterparts. As described in Proposition 3 and Proposition
4, the loss comes from the additional terms A and B in-
troduced in the precoding matrix, which decreases the value

of the power normalizaiton factor λZF, and the received SNR
degrades consequently.

Fig. 8 illustrates how the value of δ affects the power
normalization factor of different calibration schemes. As δ
becomes larger, the power normalization factors of all the four
schemes decrease. As can be seen from the plots, Pre-Cal
schemes outperform Post-Cal schemes, especially for large δ.
Although P-Pre-Cal has almost the same power normalization
factor as F-Pre-Cal, the achievable rates performance of F-Pre-
Cal is more stable, as is shown in Fig. 7.

VI. CONCLUSION

In this paper, the problem of HM in large-scale anten-
na systems has been studied. By handling expectations and
asymptotic deterministic equivalents of a series of random
variables, we have derived analytical expressions that provide
sets of achievable rates for both MF and RZF. In addition,
the upper bounds on achievable rates of MF and RZF been
investigated. The results show that when N and K are
large, the downlink SINR of each user is upper bounded
for a given β, and is related to the statistics of random
HM parameters. Moreover, we have compared different HM
calibration schemes and shown that Pre-Cal outperforms Post-
Cal schemes. The analytical results are verified by simulations.

APPENDIX A
USEFUL LEMMAS

Lemma 2 (Matrix Inversion Lemma): Let A be Hermitian
invertible. Then for any vector x,y ∈ CN and any scalar
ρ ∈ C , such that A+ ρxyH is invertible, and

(A+ xyH)−1 = A−1 − A−1xyHA−1

1 + yHA−1x

= A−1

(
I − xyHA−1

1 + yHA−1x

)
=

(
I − A−1xyH

1 + yHA−1x

)
A−1,

and

yH(A+ ρxyH)−1 =
yHA−1

1 + ρyHA−1x
,

(A+ ρxyH)−1x =
A−1x

1 + ρyHA−1x
.

Proof: The proof of the first part can be found in [31],
and the second part is obtained accordingly.

Lemma 3 (Lemma 4 in [28]): Let A ∈ CN×N and x ∼
CN (0, 1

NΦx), y ∼ CN (0, 1
NΦy). Assume that A has uni-

formly bounded spectral norm (with respect to N ) and that x
and y are mutually independent and independent of A. Then
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for all p ≥ 1,

a) E
{∣∣∣∣xHAx− 1

N
Tr (AΦx)

∣∣∣∣p} = O
(
N− p

2

)
,

b) xHAx− 1

N
Tr (AΦx) → 0,

c) xHAy → 0,

d) E

{∣∣∣∣∣(xHAx
)2 − (

1

N
Tr (AΦx)

)2
∣∣∣∣∣
}

→ 0.

Lemma 4 ( [28], see also [27]): Let V ∈ CN×K ,
V = [v1, . . . ,vK ] with independent columns and
vi ∼ CN (0, 1

NΦi). Assume that A ∈ CN×N and matrices
Φk, k − 1 . . . ,K have uniformly bounded spectral norms
(with respect to N ). Then when N → ∞, K → ∞ with fixed
ratio, ∀ρ > 0

1

N
Tr

{
A
[
V V H + ρIN

]−1
}
→ 1

N
Tr {AS(ρ)} ,

where

S(ρ) =

[
1

N

K∑
i=1

{
Φi

1 + ei(ρ)

}
+ ρIN

]−1

,

in which ∀i = 1, . . . ,K,

ei(ρ)

=
1

N
Tr

Φi

 1

N

K∑
j=1

{
Φi

1 + ej(ρ)

}
+ ρIN

−1
 ,

Moreover, let B ∈ CN×N be hermitian nonnegative definite
with uniformly bounded spectral norm (with respect to N ). We
have

1

N
Tr

{
A

[
V V H + ρIN

]−1
B

[
V V H + ρIN

]−1
}

→ 1

N
Tr {AS′(ρ)} ,

where

S′(ρ) = S(ρ)BS(ρ)+S(ρ)
1

N

K∑
k=1

Φke
′
k(ρ)

[1 + ek(ρ)]2
S(ρ), (A.1)

and e′(ρ) = [e′1(ρ), . . . , e
′
K ]T is calculated as

e′(ρ) = [IK − J(ρ)]−1u(ρ), (A.2)

where J(ρ) ∈ CK×K and u(ρ) ∈ CK are defined as

[J(ρ)]kl =
1
N Tr[ΦkS(ρ)ΦlS(ρ)]

N [1 + el(ρ)]2
, 1 ≤ k, l ≤ K,

[u(ρ)]k =
1

N
Tr[ΦkS(ρ)BS(ρ)], 1 ≤ k ≤ K.

(A.3)

APPENDIX B
PROOF OF PROPOSITION 1

Let us start from the ADE of gk,k.
Expand Q as

Q =
[
RV−kT̃−kT̃

H
−kV

H
−kR

H +
∣∣t̃k∣∣2Rvkv

H
kR

H + ρIN

]−1

,

(B.1)
in which

V−k = [v1, . . . ,vk−1,vk+1, . . . ,vK ] ,

T̃−k = diag
{
t̃1, . . . , t̃k−1, t̃k+1, . . . , t̃K

}
.

Let Q−k = [RV−kT̃−kT̃
H
−kV

H
−kR

H + ρI]−1 and using
Lemma 2 in Appendix A, we get

gk,k =

√
λRZFr̃k t̃

∗
kµ2

1 +
∣∣t̃k∣∣2µ1

. (B.2)

where
µ1 = vH

kR
HQ−kRvk,

µ2 = vH
kR

HQ−kTvk.
(B.3)

According to Lemma 3,

µ1 → 1

N
Tr

(
RHQ−kRΦk

)
,

µ2 → 1

N
Tr

(
RHQ−kTΦk

)
.

(B.4)

Because Q−k is still random, using Lemma 4 gives,

µ1 → 1

N
Tr

(
RΦkR

HSk(ρ)
)
, µ◦

1,

µ2 → 1

N
Tr

(
TΦkR

HSk(ρ)
)
, µ◦

2,
(B.5)

where S(ρ) is given by (14).
Substituting (B.5) and (B.4) into (B.2), we have

gk,k →
√
λRZFr̃k t̃

∗
kµ

◦
2

1 +
∣∣t̃k∣∣2 1

N µ◦
1

, g◦k,k. (B.6)

Now let us handle the ADE of |gk,i|2. Since gk,i =√
λRZFt̃

∗
iv

H
i R

HQTvkr̃k, we have∑
i ̸=k

|gk,i|2 = λRZF|r̃k t̃i|2vH
k T

HQRviv
H
i R

HQTvk. (B.7)

Applying Lemma 2 to Q yields

Q = Q−k −
∣∣t̃k∣∣2Q−kRvkv

H
k R

HQ−k

1 +
∣∣t̃k∣∣2vH

k R
HQ−kRvk

. (B.8)

Substituting (B.8) into (B.7) gives

|gk,i|2 = λRZF|r̃k|2|t̃i|2

×

µ3 −
∣∣t̃k∣∣22Re(µ2µ5)

1 +
∣∣t̃k∣∣2µ1

+

∣∣t̃k∣∣4µ4|µ2|2

(1 +
∣∣t̃k∣∣2µ1)

2

 ,
(B.9)

where

µ3 = vH
k T

HQ−kRviv
H
i R

HQ−kTvk,

µ4 = vH
k R

HQ−kRviv
H
i R

HQ−kRvk,

µ5 = vH
k T

HQ−kRviv
H
i R

HQ−kRvk,

(B.10)
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Now the remaining work is to derive the ADEs of µ3, µ4

and µ5. From (B.10), we have

µ3 = vH
k T

HQ−kRviv
H
i R

HQ−kTvk

(a)→ 1

N
Tr

{
TΦkT

HQ−kRviv
H
i V

H
−kR

HQ−k

}
=

1

N
Tr

{
TΦkT

HQ−kRviv
H
i R

HQ−k

}
(b)
=

1

N

Tr
{
TΦkT

HQ−kiRviv
H
i R

HQ−ki

}
(1 +

∣∣t̃i∣∣2 vH
i R

HQ−kiRvi)
2 ,

(B.11)

in which (a) follows Lemma 3 and (b) is achieved using
Lemma 2. Using Lemma 3 and Lemma 4, we get

µ3 → 1

N

1
N Tr

{
TΦkT

HQ−kiRΦiR
HQ−ki

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2

→ 1

N

1
N Tr

{
TΦkT

HS′
ki(ρ)

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2

, µ◦
3.

(B.12)

where Q−ki is similar to Q−k by removing vi and t̃i from
V−k and T̃−k, respectively; Ski(ρ) is similar to Sk(ρ) with
Ψki = {1, . . . ,K}\{k, i}, S′

ki(ρ) is calculated according to
(A.1) with B = RΦiR

H.
Similarly, we have

µ4 → 1

N

1
N Tr

{
RΦkR

HS′
ki(ρ)

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2 , µ◦

4,

µ5 → 1

N

1
N Tr

{
RΦkT

HS′
ki(ρ)

}(
1 + 1

N

∣∣t̃i∣∣2 Tr {RΦiRHSki(ρ)}
)2 , µ◦

5.

(B.13)

Substituting (B.5), (B.12) and (B.13) into (B.9) yields (12).

APPENDIX C
PROOF OF PROPOSITION 2

In order to derive λRZF in (7), we need to handle the ADE
of Tr

{
P [HHH + ρIK ]

−1
HHH[HHH + ρIK ]

−1
}

.
From (7), we have

Tr
{
P [HHH + ρIK ]

−1
HHH[HHH + ρIK ]

−1
}

= Tr{QHPHHQ}

=

K∑
k=1

Tr
{
pkQhkh

H
kQ

}
(a)
=

K∑
k=1

pk|t̃k|2Tr{Q−kRvkv
H
kR

HQ−k}(
1 + |t̃k|2vH

kR
HQkRvk

)2 ,

where (a) follows Lemma 2. Applying Lemma 3 and Lemma

4 to the above equation gives

Tr
{
P [HHH + ρIK ]

−1
HHH[HHH + ρIK ]

−1
}

→
K∑

k=1

1
N pk|t̃k|2Tr{RΦkR

HQ2
−k}(

1 + 1
N |t̃k|2Tr{RΦkRHQ−k}

)2
→

K∑
k=1

1
N pk|t̃k|2Tr{RΦkR

HS′
k(ρ)}(

1 + 1
N |t̃k|2Tr{RΦkRHSk(ρ)}

)2 ,
(C.1)

in which S′
k(ρ) is calculated according to (A.1) with B = IN

and Sk(ρ) given by (14).

APPENDIX D
PROOF OF COROLLARY 2

The proof for MF is by direct application of Law of Large
Numbers (LLN) to (11). As N and K → ∞

1
N Tr

{
RHT

}
→ E {r∗i ti} ,

1
N Tr

{
RRH} → E{|ri|2},

1
N Tr

{
RHTT HR

}
→ E{|ri|2}E{|ti|2},

1

K − 1

K∑
i=1,i ̸=k

∣∣t̃∗i r̃k∣∣2 → 1.

(D.1)

Substituting (D.1) into (11) results in (21).
The proof for RZF is more complicated. W first focus on

the expressions of Sk(ρ) and S′
k(ρ). Note that both Sk(ρ) and

S′
k(ρ) are diagonal under the assumption made in Corollary

2.
From (10), we get e1(ρ) = e2(ρ) = . . . = eK(ρ) , e0(ρ).

According to LLN, when N → ∞

e0(ρ) =
1

N
Tr{RRHSk(ρ)} → E{|ri|2sk,i(ρ)}, (D.2)

where sk,i(ρ) is the i-th diagonal element of Sk(ρ) in (14),
and is given by

sk,i(ρ) →
1

β|ri|2[1 + e0(ρ)]
−1

+ ρ
. (D.3)

Substituting (D.3) into (D.2) and by simple algebraic ma-
nipulation, when ρ → 0 we have

E
{

|ri|2

|ri|2 + c1

}
= β, (D.4)

in which c1 = e0(ρ)ρ/β, is a constant related to β and the
statistics of ri. Once c1 is obtained by solving (D.4), e0(ρ) is
achieved directly as e0(ρ) = c1β/ρ. Consequently, we get

sk,i(ρ) →
1

β|ri|2[1 + e0(ρ)]
−1

+ ρ

→ ρ−1

|ri|2/c1 + 1
.

(D.5)

The derivation for S′
k(ρ) is similar. According to LLN

1

N
Tr[S(ρ)S(ρ)] → ρ−2E

{
1

(|ri|2/c1 + 1)
2

}
, ρ−2c2,

1

N
Tr[S(ρ)BS(ρ)] → ρ−2E

{
|ri|2

(|ri|2/c1 + 1)
2

}
, ρ−2c3,
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and thus we have
[J(ρ)]kl → c2

c21βK
, 1 ≤ k, l ≤ K,

[u(ρ)]k → ρ−2c3, 1 ≤ k ≤ K.
(D.6)

Substituting (D.6) into (A.2) yields

e′i(ρ) → ρ−2 c3

1− c2(c21β)
−1 , ρ−2c4. (D.7)

and consequently

s′i(ρ) = s2i (ρ)|ri|2 + s2i (ρ)
1

N

K∑
k=1

ρ−2c4

[1 + c1β/ρ]
2

→ ρ−2 |ri|2 + c4c
−2
1 β−1

(|ri|2/c1 + 1)
2 .

(D.8)

Substituting (D.8) and (D.5) into (13) gives

µ◦
1 → e0(ρ) = c1βρ

−1,

µ◦
2 → ρ−1E

{
tir

∗
i

|ri|2/c1 + 1

}
, ρ−1c5,

µ◦
3 → 1

N
(c1βρ

−1)−2E
{
ρ−2|ti|2

|ri|2 + c4c
−2
1 β−1

(|ri|2/c1 + 1)2

}
, c6

N
,

µ◦
4 → 1

N
(c1βρ

−1)−2E
{
ρ−2|ri|2

|ri|2 + c4c
−2
1 β−1

(|ri|2/c1 + 1)2

}
, c7

N
,

µ◦
5 → 1

N
(c1βρ

−1)−2E
{
ρ−2rit

∗
i

|ri|2 + c4c
−2
1 β−1

(|ri|2/c1 + 1)2

}
, c8

N
,

(D.9)

when N → ∞ and ρ → 0. By simple algebraic manipulation,
we get

λRZF → PT

βc7
, g◦k,k →

√
λRZF

c5
c1β

,

g◦2k,i →
1

N
λRZF

[
c6 −

2Re{c5c8}
c1β

+
c7|c5|2

c21β
2

]
.

(D.10)

and thus

γRZF,k → c25
β3c6c21 − 2c1β2Re{c5c8}+ βc7|c5|2

. (D.11)

APPENDIX E
PROOF OF PROPOSITION 3

Before the proof of this proposition, a useful lemma is
introduced first.

Lemma 5 (Lemma 11, [32] ): For any semi-positive defi-
nite matrices A and E with dimension N ×N , the following
inequality holds

Tr(AE) ≥
N∑
i=1

λi(A)λN−i+1(E),

where λ1(A) ≥ λ2(A) ≥ . . . ≥ λN (A) are the ordered
eigenvalues of A.

Now we are able to prove the proposition. Rewrite the two
P-Precoding matrices for P-Pre-Cal and P-Post-Cal as follows

WP-Post =
√
λP-PostT̃

−1[V HRHRV ]−1V HRHRT−1,

WP-Pre =
√
λP-PreT̃

−1[V HTHTV ]−1V HTH.
(E.1)

Denote GP-Post = T̃−1[V HRHRV ]−1V HRH and GP-Pre =
T̃−1[V HTHTV ]−1V HTH. Therefore according to (24), we
have

λP-Post =
P

ETr{AHGH
P-PostPGP-PostA}

,

λP-Pre =
P

ETr{GH
P-PrePGP-Pre}

.

(E.2)

Note that if we replace T with R in GP-Pre, GP-Pre
will be exactly the same as GP-Post. Because T and R
have the same distribution, we have ETr{GH

P-PrePGP-Pre} =
ETr{GH

P-PostPGP-Post}. Therefore, comparing λP-Post and λP-Pre
is equivalent to comparing ETr{AHGH

P-PostPGP-PostA} and
ETr{GH

P-PostPGP-Post}.
Using Lemma 5, we achieve

ETr{AHGH
P-PostPGP-PostA}

≥ E

{
N∑
i=1

a2N−i+1λi(G
H
P-PostPGP-Post)

}
,

where aj =
|rj |
|tj | is the magnitude of the j-th diagonal entry

of A. Note that when N → ∞,K → ∞, the empirical distri-
bution of the eigenvalues of GH

P-PostPGP-Post will converge to
a deterministic distribution. Therefore

ETr{AHGH
P-PostPGP-PostA}

≥
N∑
i=1

E{a2N−i+1}E{λi(G
H
P-PostPGP-Post)}

= E{a2j}ETr{GH
P-PostPGP-Post}.

(E.3)

According to Jensen’s inequality, we have E{ 1
|rj |} ≥ 1

E{|rj |} .
Thus E{a2j} ≥ 1. Substituting this into (E.3) finally gives

ETr{AHGH
P-PostPGP-PostA}

≥ ETr{GH
P-PostPGP-Post}.

and therefore λP-Pre ≥ λP-Post.
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