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Efficient Resource Allocation for Mobile-Edge
Computing Networks with NOMA: Completion

Time and Energy Minimization
Zhaohui Yang, Cunhua Pan, Jiancao Hou, and Mohammad Shikh-Bahaei

Abstract—This paper investigates an uplink non-orthogonal
multiple access (NOMA)-based mobile-edge computing (MEC)
network. Our objective is to minimize a linear combination of
the completion time of all users’ tasks and the total energy
consumption of all users including transmission energy and local
computation energy subject to computation latency, uploading
data rate, time sharing and edge cloud capacity constraints. This
work can significantly improve the energy efficiency and end-to-
end delay of the applications in future wireless networks. For
the general minimization problem, it is first transformed into
an equivalent form. Then, an iterative algorithm is accordingly
proposed, where closed-form solution is obtained in each step.
For the special case with only minimizing the completion time,
we propose a bisection-based algorithm to obtain the optimal
solution. Also for the special case with infinite cloud capacity, we
show that the original minimization problem can be transformed
into an equivalent convex one. Numerical results show the supe-
riority of the proposed algorithms compared with conventional
algorithms in terms of completion time and energy consumption.

Index Terms—Non-orthogonal multiple access, mobile-edge
computing, resource allocation.

I. INTRODUCTION

Mobile-edge computing (MEC) has been deemed as a
promising technology for future communications due to the
fact that it can improve the computation capacity of users in
applications, such as, augmented reality (AR) [1], [2]. With
MEC, users can offload the tasks to the MEC servers located
at the edge of the network. Since the MEC servers can be
deployed near to the users, a network with MEC can provide
users with low latency and low energy consumption [3].

The basic idea of MEC is to utilize the powerful computing
facilities within the radio access network, such as the MEC
server integrated into the base station (BS). Users can benefit
from offloading the computationally intensive tasks to the
MEC server [4], [5]. There are two operation modes for
MEC, i.e., partial and binary computation offloading. In partial
computation offloading, the computation tasks can be divided
into two parts, where one part is locally executed and the other
is offloaded to the MEC server [6]–[12]. In binary computation
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offloading, the computation tasks are either locally executed
or completely offloaded to the MEC server [13]–[17].

Due to limited radio resources of the wireless links and
computation resources at the edge cloud, it is of importance
to investigate resource allocation for MEC networks. Two
common resource allocation problems have been considered
for MEC: completion time minimization [6], [13] and total
energy minimization [7], [14]–[19]. Two joint resource all-
coation algorithms were developed in [6] for minimizing the
tasks’ completion time including the time for data transmission
and computing in time division multiple access (TDMA)
and frequency division multiple access (FDMA) schemes. To
minimize the total energy of all users, joint time allocation
and power control was optimized for a TDMA-based MEC
network in [7].

Recently, non-orthogonal multiple access (NOMA) has been
recognized as a potential technology for the next genera-
tion wireless mobile communication networks to tackle the
explosive growth of data traffic [20]–[29]. Due to superpo-
sition coding at the transmitter and successive interference
cancelation (SIC) at the receiver, NOMA can achieve higher
spectral efficiency than conventional orthogonal multiple ac-
cess (OMA), such as TDMA and FDMA. Many previous
contributions [3], [6]–[12] only considered OMA. Motivated
by the benefits of NOMA over OMA, a NOMA-based MEC
network was investigated in [30], where users simultaneously
offload their computation tasks to the BS and the BS uses
SIC for information decoding. Besides, both NOMA uplink
and downlink transmissions were applied to MEC [31], where
analytic results were developed to show that the latency and
energy consumption can be reduced by applying NOMA-based
MEC offloading. Completion time minimization and energy
minimization were respectively optimized in [32] and [33]
for NOMA-based MEC networks with different computation
deadline requirements for different users. However, the authors
in [30]–[33] only considered one group of users forming
NOMA and ignored the time allocation among different groups
of users forming NOMA. Since each resource is recommended
to be multiplexed by a small number of users (for example, two
users) due to decoding complexity and error propagation [34],
it is of importance to investigate resource allocation among
different groups of users forming NOMA.

In this paper, we investigate the resource allocation for an
uplink NOMA-based MEC network. To our best knowledge,
this is the first work that investigates the resource allocation for
NOMA-based MEC network by considering multiple groups
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Fig. 1. Multi-user MEC network with NOMA.

with multiple users in each group. The main contributions of
this paper are summarized as follows:

1) A linear combination of the completion time and the
total energy consumption is minimized for an uplink
NOMA-based MEC network. Different from [30]–[33],
time allocation for different groups is investigated in this
paper, where multiple users are clustered in each group
to perform NOMA. Different from our conference paper
[35], this paper considers multiple users in different
groups to share the radio resource in NOMA as in [28],
[29].

2) To solve the minimization problem, an iterative al-
gorithm with low complexity is proposed, where the
closed-form solution is obtained in each step.

3) For the special case with only minimizing the com-
pletion time, a bisection-based algorithm is accordingly
proposed to obtain the optimal solution, which requires
to solve the feasibility problem in each iteration. For
the special case with infinite edge cloud capacity, the
original minimization problem is shown to be equivalent
to a convex one. It is also proved that transmitting with
maximal time is always energy efficient.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and formulate the optimiza-
tion problem. Section III solves the energy efficient resource
allocation problem. Numerical results are shown in Section IV
and conclusions are finally drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a NOMA-enabled MEC network with M users
and one BS that is the gateway of an edge cloud, as shown
in Fig. 1. All M users are classified into N groups with Mi

users in group i1, i.e., M =
∑N
i Mi. Let N = {1, 2, · · · , N}

denote the set of all groups and Ji = {1, 2, · · · ,Mi} denote
Mi users in group i. The users in each group simultaneously

1In this paper, we assume that the user grouping is given, which can be
obtained by the matching theory [36] or according to the order of channel
gains [37]. Note that it is also possible to apply any grouping schemes and
the system performance is highly dependent on the grouping method. Since
the main novelty of this paper is the optimization of data offloading, time
allocation and power control, the optimization of user grouping is beyond the
scope of this paper.

transmit data to the BS at the same frequency by using NOMA
[34]. We consider TDMA scheme for users in different groups.

The BS schedules the users to partially or completely
offload tasks. The users with partial or complete offloading
respectively offload a fraction of or all input data to the
BS, while the users with partial or no offloading respectively
compute a fraction of or all input data using local central
processing unit (CPU). ther are some examples about partial
computation offloading, such as the terrorist detection and
find-missing-children in [38]. In the terrorist detection or find-
missing-children application, the users have many photos to
be computed (i.e., the face matching computation), which can
take a lot of time if all the photos are computed locally. In
this case, each user can send part of the photos to the BS and
the BS performs face matching to compare the terrorist’s or
missing-child’s photo with the photos taken by users. After
finishing the computation at the BS, the BS transmits the
computation results (whether the terrorist or missing-child
is found or not) to the users. Due to the small sizes of
computation results, the time of downloading from the BS is
negligible compared to the time of offloading and computing
[12].

The BS is assumed to have the perfect information of
uplink channels, local computation capabilities, power limits
and input data sizes of all users [7]. All channels are assumed
to be frequently flat. Using this information, the BS deter-
mines the offloaded data, time sharing factor, time allocation,
computation capacity allocation, and transmission power of all
users.

A. Local Computing Model

The local computing model is described as follows. Denote
Rij (bits) as the total input data of user j in group i. Since
only dij bits are offloaded to the BS, the remaining Rij − dij
bits are needed to be computed locally at user j in group i.
Based on the local computing model in [12], the total energy
consumption for local computation at user j in group i is

ELoc
ij = CijQij(Rij − dij), ∀i ∈ N , j ∈ Ji, (1)

where Cij (cycles/bit) is the number of CPU cycles required
for computing 1-bit input data at user j in group i, and Qij
(J/cycle) stands for the energy consumption per cycle for local
computing at this user.

Let Fij denote the computation capacity of user j in group
i, which is measured by the number of CPU cycles per second.
The processing time of the local job at user j in group i is

T Loc
ij =

Cij(Rij − dij)
Fij

, ∀i ∈ N , j ∈ Ji. (2)

B. Transmission Scheme

Denote the bandwidth of the network by B, and the power
spectral density of the additive white Gaussian noise by σ2.
Let hij denote the channel gain between user j in group i
and the BS. Without loss of generality, the uplink channels
between users in group i and the BS are sorted as hi1 ≥
hi2 ≥ · · · ≥ hiMi , ∀i ∈ N . Denote pij as the transmission
power of user j in group i.
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Fig. 2. A special example of the TDMA scheme with t1 < t2 < · · · < tN .

The TDMA scheme is adopted for different groups as shown
in Fig. 2, i.e., users in each group will be assigned with a
fraction of time to use the whole bandwidth. Let xi denote
the fraction of time allocated to users in group i. In Fig. 2,
Ts is the duration of each time slot. In each time slot, users
in group i transmit with time duration xiTs. To ensure time
sharing among N groups, we have

N∑
i=1

xi = 1. (3)

Thus, according to [6], the data rate of user j in group i can
be expressed as

rij = xir̄ij , ∀i ∈ N , j ∈ Ji, (4)

where

r̄ij = B log2

(
1 +

pijhij

σ2B +
∑Mi

l=j+1 pilhil

)
, ∀i ∈ N , j ∈ Ji

(5)
is the Shannon channel capacity of user j in group i.

Note that the BS detects the messages of Mi users via
NOMA technique, i.e., to detect the message of user j, the
BS first detects the message of strong user l ≤ j and then
detects the message of weak user l > j with SIC [39]–[41].
As a result the Shannon channel capacity of user j in group
i can be presented as (5).

C. Offloading Model

The data transmission time for users in group i is denoted
by ti. To meet the uploaded data demand, we have

dij = tirij , ∀i ∈ N , j ∈ Ji, (6)

where rij is data rate of user j in group i defined in (4).
According to Fig. 2, the time for user j in group i to transmit
with power pij is xiti. To offload dij bits in time duration ti
with time sharing fraction xi, the energy consumption at user
j in group i is

EOff
ij = pijxiti, ∀i ∈ N , j ∈ Ji. (7)

In the offloading process, the execution time contains the
data transmission time and processing time at the cloud. Let F
in CPU cycles per second denote the computation capacity of
the edge cloud. The total computation capacity is split among
users, and the computation capacity at the edge cloud allocated
for the offloaded job of user j in group i is denoted by fij .
Due to limited computation capacity at the edge, we can obtain

N∑
i=1

Mi∑
j=1

fij ≤ F. (8)

With transmission time ti, the offloading time for user j in
group i is

TOff
ij = ti +

Cijdij
fij

, ∀i ∈ N ,∀j ∈ Ji. (9)

D. Problem Formulation

Denote T as the completion time of all users. Now, we
are ready to formulate the energy efficient resource allocation
problem for the NOMA-enabled MEC network as:

min
ddd,xxx,ttt,fff,ppp,T

ωT + (1− ω)

N∑
i=1

Mi∑
j=1

pijxiti

+ (1− ω)

N∑
i=1

Mi∑
j=1

CijQij(Rij − dij) (10a)

s.t.
Cij(Rij − dij)

Fij
≤ T, ∀i ∈ N , j ∈ Ji (10b)

ti +
Cijdij
fij

≤ T, ∀i ∈ N , j ∈ Ji (10c)

Bxiti log2

(
1+

pijhij

σ2B+
∑Mi

l=j+1 pilhil

)
=dij ,

∀i ∈ N , j ∈ Ji (10d)
N∑
i=1

xi = 1 (10e)

N∑
i=1

Mi∑
j=1

fij ≤ F (10f)

0 ≤ pij ≤ Pij , ∀i ∈ N , j ∈ Ji (10g)
0 ≤ dij ≤ Rij , ∀i ∈ N , j ∈ Ji (10h)
xi, ti, fij ≥ 0, ∀i ∈ N , j ∈ Ji, (10i)

where ddd = [d11, · · · , d1M1
, · · · , dNMN

], xxx = [x1, · · · , xN ],
ttt = [t1, · · · , tN ], fff = [f11, · · · , f1M1

, · · · , fNMN
], ppp =

[p11, · · · , p1M1
, · · · , pNMN

], ω ∈ [0, 1] is a constant parameter
and Pij is the maximal transmission power of user j in group
i. In the objective function (10a), ω is used to characterize the
tradeoff of the completion time T and total energy consump-
tion,

∑N
i=1

∑Mi

j=1(pijxiti+CijQij(Rij−dij)), including both
offloading energy and local computing energy. Constraints
(10b) reflect that the execution time of the local tasks for all
users should not exceed the prescribed completion time, while
constraints (10c) mean that the execution time of the offloaded
tasks (including the transmission time) for all users should not
exceed the completion time. The offloaded data demand should
be satisfied as stated in constraints (10d). The time division
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constraint is shown in (10e), and the edge cloud capacity
sharing constraint is given in (10f). Constraints (10g) and
constraints (10h) respectively represent the maximal power
and offloading data limits of all users. Due to the nonconvex
objective function (10a) and constraints (10c)-(10d), Problem
(10) is nonconvex, which is hard to obtain the globally optimal
solution.

III. ENERGY EFFICIENT RESOURCE ALLOCATION

In this section, we first transform Problem (10) into an
equivalent problem, which can be solved via an iterative
algorithm with low complexity. Next, we also provide an
effective algorithm to obtain the optimal solution of Problem
(10) with ω = 1. We then show that the optimal solution of
Problem (10) can be obtained by solving an equivalent convex
problem for the case with infinite cloud capacity. Finally,
the algorithm analysis is provided. The proposed process for
solving Problem (10) is summarized in Fig. 3.

A. Iterative Algorithm

To simplify Problem (10), we provide the following lemma.
Lemma 1: Problem (10) is equivalent to the following

problem:

min
ddd,xxx,τττ,fff,ppp,T

ωT + (1− ω)

N∑
i=1

Mi∑
j=1

pijτi

+ (1− ω)

N∑
i=1

Mi∑
j=1

(CijQij(Rij − dij) (11a)

s.t.
Cij(Rij − dij)

Fij
≤ T, ∀i ∈ N , j ∈ Ji (11b)

τi
xi

+
Cijdij
fij

≤ T, ∀i ∈ N , j ∈ Ji (11c)

Bτi log2

(
1 +

∑Mi

l=j pilhil

σ2B

)
≥

Mi∑
l=j

dil,

∀i ∈ N , j ∈ Ji (11d)
(10e)− (10h), xi, τi, fij ≥ 0, ∀i ∈ N , j ∈ Ji,

(11e)

where τττ = [τ1, · · · , τN ].
Proof: Refer to Appendix A. �
Compared with Problem (10), the equivalent Problem (11)

is simplified since constraints (11d) are convex with respect to
(w.r.t.) power ppp now. Due to the nonconvex objective function
(11a) and constraints (11c) and (11d), it is generally hard to
obtain the globally optimal solution of nonconvex Problem

(11). To obtain a suboptimal solution of Problem (11), we
present an iterative algorithm.

Before solving Problem (11), several properties are provided
as follows.

Lemma 2: With fixed time allocation, computation capacity
allocation and completion time (τττ ,fff, T ), Problem (11) is
convex w.r.t. (ddd,xxx,ppp). With given offloaded data, time sharing
factor and power control (ddd,xxx,ppp), Problem (11) is convex w.r.t.
(τττ ,fff, T ).

Since Lemma 2 can be easily proved according to the fact
that log(x) is concave and 1

x is convex, the proof is omitted.
Lemma 2 shows that problem (11) is a convex problem with
fixed (τττ ,fff, T ) or (ddd,xxx,ppp), which can be solved by using the
iterative algorithm.

Lemma 3: Constraints (11c) hold with equality at the
optimal solution for Problem (11):

τ∗i
x∗i

+
Cijd

∗
ij

f∗ij
= T ∗, ∀i ∈ N , j ∈ Ji, (12)

where d∗ij , x
∗
i , τ
∗
i , f

∗
ij and T ∗ denote the optimal solution.

Proof: Refer to Appendix B. �
Lemma 3 shows that utilizing the total completion time

is optimal. This is because the edge computation capacity
is limited and long execution time at the edge is always
computation capacity saving.

To solve nonconvex Problem (11), we propose an iterative
algorithm via optimizing (τττ ,fff, T ) with fixed (ddd,xxx,ppp) and
solving (ddd,xxx,ppp) with fixed (τττ ,fff, T ).

With fixed offloaded data, time sharing factor and power
control (ddd,xxx,ppp), Problem (11) becomes the following convex
problem:

min
τττ,fff,T

ωT + (1− ω)

N∑
i=1

Mi∑
j=1

pijτi (13a)

s.t.
τi
xi

+
Cijdij
fij

≤ T, ∀i ∈ N , j ∈ Ji (13b)

N∑
i=1

Mi∑
j=1

fij ≤ F (13c)

τi ≥ Ti, fij ≥ 0, T ≥ T̄ , ∀i ∈ N , j ∈ Ji, (13d)

where

Ti = max
j∈Ji

∑Mi

l=j dil

B log2

(
1 +

∑Mi
l=j pilhil

σ2B

) , ∀i ∈ N , (14)

and
T̄ = max

i∈N ,j∈Ji

Cij(Rij − dij)
Fij

. (15)

Lemma 4: The optimal solution of Problem (13) is

τ∗i = Ti, f
∗
ij =

Cijdijxi
T ∗xi − Ti

, T ∗ = max{T̄ , T̃}, (16)

for all i ∈ N , j ∈ J , where T̃ is the solution to

N∑
i=1

Mi∑
j=1

Cijdijxi

T̃ xi − Ti
= F. (17)
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Proof: Refer to Appendix C. �
With fixed time allocation, computation capacity allocation

and completion time (τττ ,fff, T ), the total energy minimization
Problem (11) is simplified as:

min
ddd,xxx,ppp

N∑
i=1

Mi∑
j=1

(pijτi + CijQij(Rij − dij)) (18a)

s.t.
τi
xi

+
Cijdij
fij

≤ T, ∀i ∈ N , j ∈ Ji (18b)

Bτi log2

(
1 +

∑Mi

l=j pilhil

σ2B

)
≥

Mi∑
l=j

dil,

∀i ∈ N , j ∈ Ji (18c)
N∑
i=1

xi = 1 (18d)

0 ≤ pij ≤ Pij , ∀i ∈ N , j ∈ Ji (18e)
Dij ≤ dij ≤ Rij , xi ≥ 0, ∀i ∈ N , j ∈ Ji, (18f)

where Dij = max
{
CijRij−TFij

Cij
, 0
}

. Due to the convexity,
Problem (18) can be effectively solved by the dual method,
i.e., iteratively optimizing primal variables with fixed Lagrange
multipliers and solving Lagrange multipliers with optimized
primal variables. The details of solving Problem (18) with the
dual method can be found in Appendix D.

Algorithm 1 : Iterative Algorithm
1: Initialize a feasible solution

(ddd(0),xxx(0), τττ (0), fff (0), ppp(0), T (0)) of Problem (10) and
set l = 0.

2: repeat
3: With given offloading data, time sharing factor and

power control (ddd(l),xxx(l), ppp(l)), obtain the optimal
(τττ (l+1), fff (l+1), T (l+1)) of Problem (13).

4: With given time allocation, computation capacity al-
location and completion time (τττ (l+1), fff (l+1), T (l+1)),
obtain the optimal (ddd(l+1),xxx(l+1), ppp(l+1)) of Problem
(18).

5: Set l = l + 1.
6: until Convergence
7: Output ddd∗ = ddd(l), xxx∗ = xxx(l), fff∗ = fff (l), ppp∗ = ppp(l), T ∗ =

T (l), t∗i =
τ
(l)
i

x
(l)
i

, ∀i ∈ N .

By iteratively solving Problem (13) and Problem (18), the
algorithm that solves Problem (10) is given in Algorithm 1.
Since the optimal solution of Problem (13) or (18) is obtained
in each step, the objective value of Problem (10) is nonincreas-
ing in each step. Moreover, the objective value of Problem (10)
is lower bounded by zero. Thus, Algorithm 1 must converge.

B. Completion Time Minimization with ω = 1

In this section, we consider the completion time minimiza-
tion Problem (10) with ω = 1, i.e., the objective function is
T . To solve Problem (10) with ω = 1, we have the following
lemma.

Lemma 5: For the optimal solution (ddd∗,xxx∗, ttt∗, fff∗, ppp∗, T ∗)
of Problem (10) with ω = 1, Problem (10) with ω = 1 and
T < T ∗ does not have a feasible solution (i.e., it is infeasible),
and Problem (10) with ω = 1 and T > T ∗ always has a
feasible solution (i.e., it is feasible).

Proof: Assume that Problem (10) with ω = 1 and T̄ <
T ∗ is feasible, and the feasible solution is (d̄dd, x̄xx, t̄tt, f̄ff). Then,
the solution (d̄dd, x̄xx, t̄tt, f̄ff , T̄ ) is feasible with lower value of the
objective function than solution (ddd∗,xxx∗, ttt∗, fff∗, ppp∗, T ∗), which
contradicts the fact that (ddd∗,xxx∗, ttt∗, fff∗, ppp∗, T ∗) is the optimal
solution.

For Problem (10) with ω = 1 and T̄ > T ∗, we can always
construct a feasible solution (ddd∗,xxx∗, ttt∗, fff∗, ppp∗, T̄ ) to Problem
(10) with ω = 1 by checking constraints (10b)-(10i). �

According to Lemma 5, we can utilize the bisection method
to solve Problem (10) with ω = 1. Denote Tmin = 0, Tmax =
maxi∈N ,j∈Ji

CijRij

Fij
. If T > Tmax, Problem (10) with ω = 1

is always feasible by setting dij = xi = ti = fij = pij = 0.
As a result, the optimal T ∗ of Problem (10) with ω = 1 must
lie in the interval (Tmin, Tmax). At each step the bisection
method divides the interval in two by computing the midpoint
Tmid = (Tmin+Tmax)/2. There are now only two possibilities:
1) if Problem (10) with ω = 1 and T = Tmid is feasible,
we have T ∗ ∈ (Tmin, Tmid], 2) if Problem (10) with ω = 1
and T = Tmid is infeasible, we have T ∗ ∈ (Tmid, Tmax). The
bisection method selects the subinterval that is guaranteed to
be a bracket as the new interval to be used in the next step. In
this way an interval that contains the optimal T ∗ is reduced
in width by 50% at each step. The process is continued until
the interval is sufficiently small.

For each given T , we solve a feasibility problem with
constraints (10b)-(10i). According to constraints (10b), we
have

dij ≥ Dij = max

{
CijRij − TFij

Cij
, 0

}
, ∀i ∈ N , j ∈ Ji.

(19)
Based on constraints (10c)-(10d) about dij , we find that it is
optimal to offload the smallest data to minimize the completion
time, i.e., dij = Dij . Substituting dij = Dij into Problem (10)
with objective function T , the feasibility set becomes

find xxx, ttt, fff,ppp (20a)

s.t. ti +
CijDij

fij
≤ T, ∀i ∈ N , j ∈ Ji (20b)

Bxiti log2

(
1 +

pijhij

σ2B +
∑Mi

l=j+1 pilhil

)
= Dij ,

∀i ∈ N , j ∈ Ji (20c)
N∑
i=1

xi = 1 (20d)

N∑
i=1

Mi∑
j=1

fij ≤ F (20e)

0 ≤ pij ≤ Pij , ∀i ∈ N , j ∈ Ji (20f)
xi, ti, fij ≥ 0, ∀i ∈ N , j ∈ Ji. (20g)
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Since constraints (20c) are nonconvex, set (20) is noncon-
vex. To concur the nonconvexity of (20), we treat time vector
ttt and power vector ppp as intermediate variables and obtain the
following theorem.

Theorem 1: Feasibility set (20) is equivalent to the following
convex set:

find xxx,fff (21a)

s.t.
T̄i
xi

+
CijDij

fij
≤ T, ∀i ∈ N , j ∈ Ji (21b)

N∑
i=1

xi = 1 (21c)

N∑
i=1

2∑
j=1

fij ≤ F (21d)

xi, fij ≥ 0, ∀i ∈ N , j ∈ Ji, (21e)

where

T̄i = max
j∈Ji

Tij , ∀i ∈ N , (22)

and Tij is the solution to the following equation

Pij =
1

hij

(
2

Dij
BTij − 1

) Mi∑
l=j+1

2

∑l−1
k=j+1

Dik

BTij

(
2

Dil
BTij − 1

)
σ2B

+
1

hij

(
2

Dij
BTij − 1

)
σ2B. (23)

Proof: Refer to Appendix E. �
Lemma 6: The necessary and sufficient conditions for that

set (21) is non-empty are

N∑
i=1

T̄i ≤ T, (24)

and(∑N
i=1

√
T̄i
∑Mi

j=1 CijDij

)2

T
(
T −

∑N
i=1 T̄i

) +

N∑
i=1

Mi∑
j=1

CijDij

T
≤ F. (25)

Proof: Refer to Appendix F. �

Algorithm 2 : Minimal Completion Time

1: Initialize Tmin = 0, Tmax = maxi∈N ,j∈Ji

CijRij

Fij
, and the

tolerance ε.
2: Set T = Tmin+Tmax

2 , and calculate Dij and T̄i according
to (19) and (22), respectively.

3: Check the feasibility conditions (24) and (25). If (21) has a
feasible solution, set Tmax = T . Otherwise, set T = Tmin.

4: If (Tmax − Tmin)/Tmax ≤ ε, terminate. Otherwise, go to
step 2.

Based on Lemma 6, the algorithm for obtaining the minimal
completion time is summarized in Algorithm 2.

C. Energy Efficient Optimization with Infinite Cloud Capacity

In this section, we consider the case that the computation
capacity at the BS is infinite, i.e., F is so large that the
computation time at the BS is neglected. To solve Problem
(11), we can show that it can be transformed into an equivalent
convex one, which is stated by the following theorem.

Theorem 2: For infinite cloud capacity, Problem (11) is
equivalent to the following convex problem:

min
ddd,τττ,qqq,T

ωT + (1− ω)

 N∑
i=1

Mi∑
j=1

(qij + CijQij(Rij − dij))


(26a)

s.t. Bτi log2

(
1 +

∑Mi

l=j qilhil

σ2Bτi

)
≥

Mi∑
l=j

dil,

∀i ∈ N , j ∈ Ji (26b)
N∑
i=1

τi ≤ T (26c)

qij ≤ Pijτi, ∀i ∈ N , j ∈ Ji (26d)
Dij ≤ dij ≤ Rij , ∀i ∈ N , j ∈ Ji (26e)
τi, qij ≥ 0, ∀i ∈ N , j ∈ Ji, (26f)

where qqq = [q11, · · · , q1M1
, · · · , qNMN

], and we set

Bτi log2

(
1 +

∑Mi
l=j qilhil

σ2Bτi

)
= 0 for the case τi = 0.

Proof: Refer to Appendix G. �
Theorem 2 indicates that the energy efficient resource

allocation problem with infinite cloud capacity is equivalent
to a convex problem, of which the globally optimal solution
can be effectively obtained [42].

Lemma 7: For Problem (26), it is optimal to transmit with
maximal time, i.e.,

∑N
i=1 τ

∗
i = T ∗.

Proof: Refer to Appendix H. �
According to Lemma 7, transmitting with maximal time is

always energy efficient. The reason is that, as the transmission
time increases, the required power decreases and then the
product of time and power, which can be viewed as the
consumed energy, also decreases.

D. Algorithm Analysis

To solve the general energy efficient resource allocation
Problem (10) by using Algorithm 1, the major complexity in
each step lies in solving the offloaded data, time sharing factor
and power control of Problem (18). From Appendix D, the
complexity of solving Problem (18) with the dual method is
O(Ldm1M) [43], where Ldm1 is the number of iterations of the
dual method. As a result, the total complexity of the proposed
Algorithm 1 is O(LitLdm1N), where Lit is the number of
iterations for iteratively optimizing (τττ ,fff, T ) and (ddd,xxx,ppp).

For the spacial case with ω = 1, the optimal solution of
Problem (10) is obtained by using Algorithm 2. According to
Algorithm 2, the main complexity in each step lies in checking
the feasibility conditions (24) and (25), which involves com-
plexity O(M). As a result, the total complexity of Algorithm
2 is O(M log 2(1/ε)), where O(log 2(1/ε)) is the complexity
of the bisection method with accuracy ε.
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For the special case with infinite cloud complexity, Problem
(10) is equivalent to a convex Problem (26) according to
Theorem 2, which can be effectively solved via the dual
method as in Appendix D. Due to the fact that the dimension
of the variables in Problem (26) is O(M), the complexity of
solving Problem (26) is O(Ldm2M) [43], where Ldm2 is the
number of iterations of the dual method.

As a result, it is observed that the complexity of the
proposed algorithms grows linearly with the number of all
users M . Besides, the proposed algorithms are all centralized
ones and the BS needs to collect the information from all
users. To implement the proposed algorithms, all the users
first transmit the pilot sequence to the BS, and the BS obtains
the uplink channel conditions of all users, which involves
overhead M . Then, all users need to upload the information
about the local computation capabilities, power limits and
input data sizes to the BS, which involves overhead 3M . Thus,
the total overhead at the BS is 4M , which grows linearly with
the number of all users.

If users enter or exit the system, the BS can re-group users
according to the channel gains and run the proposed algorithms
to obtain the offloaded data, the time sharing factor, time
allocation, computation capacity allocation, and transmission
power. Then, the BS transmits the information about the
offloaded data ddd, time sharing factor xxx, time allocation ttt,
transmission power ppp and re-group information to all M users,
which involves overhead 5M .

IV. NUMERICAL RESULTS

In this section, numerical results are presented to evaluate
the performance of the proposed algorithm. The NOMA-
enabled MEC network consists of M = 30 users. The path
loss model is 128.1 + 37.6 log10 d (d is in km), the standard
deviation of shadow fading is 4 dB and the small-scale channel
gain is exponentially distributed with parameter 1 [44]. In
addition, the bandwidth of the network is B = 10 MHz, and
the noise power density is σ2 = −169 dBm/Hz. For MEC
parameters, the required number of CPU cycles per bit is set
to follow equal distribution Cij ∈ [500, 1500] cycles/bit. The
CPU computation of each user is set as the same Fij = 1 GHz
and the local computation energy per cycle for each user is
also set as equal Qij = 10−10 J/cycle for all i ∈ N , j ∈ Ji.
We consider equal data size and equal maximal transmission
power for all users, i.e., dij = D and Pij = P , for all i ∈ N ,
j ∈ Ji. Unless specified otherwise, the system parameters are
set as maximal transmission power P = 1 dBm, offloaded
data D = 100 Kbits, and edge cloud capacity F = 2 × 1010

cycles/s.
We compare the proposed NOMA scheme with the TDMA

and FDMA schemes in [6], where all users are respectively
allocated with different time slots and frequency bands, the
exhaustive search method to obtain a near globally optimal
solution of Problem (10) (labelled as ‘NOMA-EXH’), which
refers to the proposed Algorithm 1 with 1000 initial starting
points, and the exhaustive search method with equal time
sharing factor (labelled as ‘NOMA-ET’), which refers to the
proposed Algorithm 1 with 1000 initial starting points and
fixed time sharing factor x1 = · · · = xN = 1

N .
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Fig. 4. Tradeoff between total energy consumption and completion time with
different user pairing methods.

Due to the decoding complexity and SIC error propagation,
we consider the multi-group case, where each group contains
two paired users. For comparison, we also consider the case
that there is only one big group with M users (labelled as
‘NOMA, OG’). To study the influence of user pairing, we
apply three different user-pairing methods in [37]. For strong-
strong (SS) pair selection, the user with the strongest channel
condition is paired with the one with the second strongest,
and the user with the third strongest is paired with the one
with the fourth strongest, and so on. For strong-weak (SW)
pair selection, the user with the strongest channel condition is
paired with the user with the weakest, and so on. For strong-
middle (SM) pair selection, the user with the strongest channel
condition is paired with the user with the middle strongest user,
and so on.

In Fig. 4, we present the tradeoff between total energy
consumption and completion time with different user pairing
methods. Note that Fig. 4 is obtained by changing the values
of parameter ω in (10a). From Fig. 4, we find that the total
energy consumption decreases with the completion time. The
reason is that transmitting with long time is energy efficient
according to Lemma 3. It is found that NOMA with one big
group achieves the best performance. This is because all the
users can form NOMA and the transmission time for all the
users in NOMA with one big group is longer than that in
NOMA with multiple small groups. As a result, the energy
consumption of NOMA with one big group is lower than that
in NOMA with multiple small groups. However, the decoding
complexity is high for NOMA with many users in practical. It
is also observed that SS achieves the best performance among
three user pairing methods. This is due to the fact that users
with small difference in channel gains require similar time to
offload the same data size, which consequently leads to small
completion time and energy consumption. From Fig. 4, it is
energy efficient to pair users with similar channel gains. Due to
the performance superiority, the SS pairing method is adopted
for NOMA in the following numerical results.

The total energy consumption versus edge cloud capacity
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Fig. 5. Total energy consumption versus edge cloud capacity with ω = 0.9.

with ω = 0.9 is illustrated in Fig. 5. It is observed that the total
energy consumption of all schemes decreases with edge cloud
capacity since higher edge cloud capacity allows users to of-
fload more data to the BS, resulting lower energy consumption
at users. Besides, the total energy consumption of the proposed
NOMA scheme outperforms the conventional TDMA and
FDMA schemes, especially when the edge cloud capacity is
high. This is because users in NOMA can simultaneously
transmit data by occupying the whole bandwidth, while users
in TDMA/FDMA only occupy a fraction of time/frequency
resource. Moreover, the NOMA-EXH algorithm yields the best
performance at the cost of high computation complexity. The
gap between the proposed algorithm for NOMA and NOMA-
EXH is small especially for low edge cloud capacity, which
indicates that the proposed algorithm approaches the near
globally optimal solution. According to Fig. 5, the proposed
NOMA outperforms NOMA-ET especially for high edge
cloud capacity, which shows the superiority of time allocation.
This is because the data rate between users and the BS is
high due to time sharing factor optimization in the proposed
NOMA, which allows more bits to be uploaded to the BS and
decreases the energy consumption at users.

Fig. 6 depicts the completion time versus edge cloud
capacity with ω = 1. It is found that the completion time
decreases with the increase of edge cloud capacity. This is
because high edge cloud capacity leads to low task processing
time at the BS. According to Fig. 6, FDMA achieves lower
completion time than TDMA. The reason is that the noise
power in TDMA is higher than that in FDMA since users
utilize frequency division in FDMA. From this figure, we
also find that NOMA outperforms TDMA and FDMA in
terms of completion time, especially for large edge cloud
capacity. This is because NOMA enables users in each group
to simultaneously transmit data to the BS, which is time saving
compared to TDMA. Compared to FDMA, users in NOMA
can utilize the whole bandwidth, which is more spectrum
efficient and consequently results in lower completion time.

In Fig. 7, the completion time versus maximal transmission
power with ω = 1 is presented. It is observed that for all
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Fig. 6. Completion time versus edge cloud capacity with ω = 1.
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Fig. 7. Completion time versus maximal transmission power with ω = 1.

schemes the completion time decreases with the increase of
maximal transmission power and the decrease speed is fast
for low maximal transmission power region. The reason is
that high maximal transmission power allows users to transmit
with high data rate, which reduces the transmission time
when offloading data to the BS. From this figures, it is also
found that NOMA outperforms TDMA and FDMA in terms
of completion time especially for low maximal transmission
power. The reason is that NOMA can ensure users in the
same group to transmit data to the BS with the same time and
frequency resource, which can increase the data rate especially
when the transmission power of the user is low.

Fig. 8 shows the total energy consumption versus maximal
transmission power with infinite edge cloud capacity and ω =
0.9. From this figure, we find that the total energy consumption
decreases with the increase of maximal transmission power for
all schemes. This is because high maximal transmission power
allows more users to offload data to the BS, which effectively
reduces the local computation energy consumption.

The tradeoff between total energy consumption and com-
pletion time with infinite edge cloud capacity is shown in
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infinite edge cloud capacity.

Fig. 9. It is found that NOMA outperforms TDMA and
FDMA in terms of total energy consumption especially for
low completion time. This is because NOMA enables users
in each group to simultaneously transmit data to the BS and
the transmission time in NOMA is larger than that in TDMA,
which results in energy saving compared to TDMA. For the
same completion time, users in NOMA can upload more bits
to the BS than FDMA, which reduces the local computation
energy. Compared with TDMA and FDMA, NOMA reduces
the total energy consumption of all users at the cost of adding
computing complexity at the BS due to SIC.

V. CONCLUSION

In this paper, we have investigated an energy efficient
optimization problem to minimize a linear combination of the
completion time and the total energy for an uplink NOMA-
based MEC network. For the general minimization problem, it
was first transformed into an equivalent problem, which can be
effectively solved by an iterative algorithm with low complex-

ity. For the special case with only minimizing completion time,
we obtained the optimal solution via the bisection method. For
the special case with infinite cloud capacity, we successfully
showed that it can be equivalent to a convex problem according
to some variable transformations. Numerical results showed
that NOMA outperforms TDMA and FDMA in terms of
completion time and total energy consumption, especially for
large edge cloud capacity and small maximal transmission
power. Besides, transmitting with long completion time was
presented to be energy efficient. The optimization of user
grouping for NOMA-enabled MEC network is left for our
future work.

APPENDIX A
PROOF OF LEMMA 1

Setting new variable τi = xiti to replace time ti, ∀i ∈ N ,
constraints (10c) become (11c). Moreover, constraints (10d)
are equivalent to the following constraints:

Bτi log2

(
1 +

∑Mi

l=j pilhil

σ2B

)
=

Mi∑
l=j

dil, ∀i ∈ N , j ∈ Ji,

(A.1)
which can be obtained via summing equality constraints (10d).
As a result, Problem (10) is equivalent to Problem (11). Note
that the offloaded data demand constraints (11d) are set with
inequality.

The reason is that for the optimal solution to Problem (11),
constraints (11d) must hold with equality. This can be proved
by the contradiction method. Assume that the optimal solution
of Problem (11) is (ddd∗,xxx∗, τττ∗, fff∗, ppp∗, T ∗) and there exists i ∈
M and j such that (11d) holds with inequality for (i, j). In this
case, we can slightly decrease p∗ij to p′ij = p∗ij−ε, where ε is a
small positive constant to satisfy constraint (11d) for (i, j). If
j = 1, we can claim that the objective function will be further
decreased with all constraints satisfied, which contradicts the
fact that the solution is optimal. If j > 1, to ensure constraints
(11d) hold for all l ∈ Ji, we set2 p′i(j−1) = p∗i(j−1) +

hij

hi(j−1)
ε.

Owing to the fact that hi(j−1) ≥ hij , we have p′ij +p′i(j−1) ≤
p∗ij + p∗i(j−1). With new power p′ij and p′i(j−1), the objective
function will be further decreased with all constraints satisfied,
which contradicts the fact that the solution is optimal.

APPENDIX B
PROOF OF LEMMA 3

For any optimal solution (ddd∗,xxx∗, τττ∗, fff∗, ppp∗, T ∗) to Problem
(11) with τ∗

x∗ +
Cijd

∗
ij

f∗
ij

< T , we can always construct a new

solution f̄ij with τ∗

x∗ +
Cijd

∗
ij

f̄ij
= T ∗. We can claim that new

solution (ddd∗,xxx∗, τττ∗, f̄ff = [f∗11, · · · , f̄ij , · · · , f∗NMN
], ppp∗, T ∗)

is feasible with the same objective value of solution
(ddd∗,xxx∗, τττ∗, fff∗, ppp∗, T ∗). Lemma 3 is proved.

2It is assumed that the maximal transmit power of each user is large enough
such that the power of user j − 1 can be increased
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APPENDIX C
PROOF OF LEMMA 4

According to Lemma 3, for the optimal solution to Problem
(13), constraints (13b) hold with equality, i.e., τ

∗

x∗ +
Cijdij
f̄ij

=

T ∗, which yields

f∗ij =
Cijdijxi
T ∗xi − τ∗i

, ∀i ∈ N , j ∈ Ji. (C.1)

Considering that fij ≥ 0 from (13d), we have τ∗i ≤ T ∗xi,
∀i ∈ N . Applying (C.1), Problem (13) becomes:

min
τττ,T

ωT + (1− ω)

N∑
i=1

Mi∑
j=1

pijτi (C.2a)

s.t.
N∑
i=1

Mi∑
j=1

Cijdijxi
Txi − τi

≤ F (C.2b)

Ti ≤ τi ≤ Txi, T ≥ T̄ , ∀i ∈ N , (C.2c)

which can be verified to be a convex problem. Observing that
both objective function (C.2a) and the left term of constraint
(C.2b) decreases with τi, the optimal solution to Problem (C.2)
is

τ∗i = Ti, ∀i ∈ N . (C.3)

Combining (C.1) and (C.2b), we have T ≥ T̃ , where T̃ is the
solution to (17). As a result, the optimal solution of Problem
(13) is given by (16).

APPENDIX D
DUAL METHOD TO SOLVE PROBLEM (18)

The Lagrange function of Problem (18) can be given by

L1 =

N∑
i=1

Mi∑
j=1

(τipij − CijQijdij)

+

N∑
i=1

Mi∑
j=1

βij

(
τi
xi

+
Cijdij
fij

− T

)
+

+

N∑
i=1

Mi∑
j=1

λij

Mi∑
l=j

dil −Bτi log2

(
1 +

∑Mi

l=j pilhil

σ2B

)
+µ

(
N∑
i=1

xi − 1

)
−

N∑
i=1

Mi∑
j=1

ζijpij

+

N∑
i=1

Mi∑
j=1

ηij(pij − Pij) +

N∑
i=1

Mi∑
j=1

θij(Dij − dij)

+

N∑
i=1

Mi∑
j=1

νij(d
2
ij −R2

ij)−
N∑
i=1

ρixi,

where βij , λij , ζij , ηij , θij , νij , ρi ≥ 0 and µ are Lagrange
multipliers associated with the corresponding constraints of
Problem (18). Note that dij ≤ Dij in (18g) is replaced by the
equivalent form d2

ij ≤ D2
ij . With this replacement, the first-

derivative of dij is not constant, which enables us to obtain
a closed-form solution of dij . To satisfy maximal completion

time constraints (18b), we must have xi > 0. Consequently,
according to the complementary condition, we can obtain

ρi = 0, ∀i ∈ N . (D.1)

Based on [42], the optimal solution should satisfy the follow-
ing Karush-Kuhn-Tucker conditions of Problem (18):

∂L1

∂dij
= −CijQij +

βijCij
fij

+

j∑
l=1

λil − θij + 2νijdij = 0

(D.2a)

∂L1

∂xi
= −

∑Mi

j=1 βijτi

x2
i

+ µ = 0 (D.2b)

∂L1

∂pij
= τi −

j∑
l=1

Bτiλilhij

(ln 2)(σ2B +
∑Mi

m=l pimhim)
− ζij

+ ηij = 0. (D.2c)

To solve the convex optimization Problem (18), we use the
dual method by iteratively updating the Lagrange multipliers
and primary variables. In the (n+1)-th iteration, we can calcu-
late the primary variables with given the Lagrange multipliers
βij(n), λij(n), ζij(n), ηij(n), θij(n), νij(n), and µ(n). If
νij(n) > 0, we can obtain dij(n+ 1) based on (D.2a):

dij(n+1)=

fijCijQij−βij(n)Cij−fij
j∑
l=1

λil(n)+fijθij(n)

2fijνij(n)
.

(D.3)
If νij(n) = 0, according to (D.2a) and (18d), we can obtain

dij(n+ 1) =

{
Dij if ∂L1

∂dij(n) > 0

Rij else
. (D.4)

Applying (D.2b), we have

xi(n+ 1) =

√∑Mi

j=1 βij(n)τi

µ(n)
, ∀i ∈ N . (D.5)

Combining (10e) and (D.5) yields

µ(n) =

 N∑
i=1

√√√√Mi∑
j=1

βij(n)τi

2

, (D.6)

which shows that Lagrange multiplier µ can be determined
by βij . For the optimal solution to Problem (18), constraints
(18c) hold with equality, as otherwise the objective function
can be further improved with all constraints satisfied. Based
on the complementary condition, we can have λij(n) > 0.
Solving (D.2c), we can obtain pij(n) by using the recursion
method.

To update the Lagrange multipliers with the primal variables
obtained from (D.3)-(D.5) and (D.2c), the gradient based
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method [45] is adopted. The new values of the Lagrange
multipliers are updated by

βij(n+ 1)=

[
βij(t)+δ(n)

(
τi

xi(n)
+
Cijdij(n)

fij
− T
)]+

(D.7)

λij(n+ 1)=

[
λij(n)+δ(n)

(
Mi∑
l=j

dil(n)

−Bτi log2

(
1 +

∑Mi

l=j pil(n)hil

σ2B

))]+

(D.8)

ζij(n+ 1) = [ζij(n)− δ(n)pij(n)]
+ (D.9)

ηij(n+ 1) = [ηij(n) + δ(n)(pij(n)− Pij)]+ (D.10)

θij(n+ 1) = [θij(n) + δ(n)(Dij − dij(n))]
+ (D.11)

νij(n+ 1) =
[
νij(n) + δ(n)(d2

ij(n)−R2
ij)
]+
, (D.12)

where δ(t) is a dynamically chosen stepsize and [x]+ denotes
max{x, 0}. The value of µ(n + 1) is updated according to
(D.6).

APPENDIX E
PROOF OF THEOREM 1

According to constraints (20c), power pij can be obtained
as a function of xiti. To obtain the expression of pij , we set

aij =

Mi∑
l=j

pilhil, ∀k ∈ K. (E.1)

Substituting (E.1) into (20c), we can obtain:

Bxiti log2

(
aij + σ2B

ai(j+1) + σ2B

)
= Dij . (E.2)

According to (E.2), we have:

aij = 2
Dij

Bxiti ai(j+1) +

(
2

Dij
Bxiti − 1

)
σ2B. (E.3)

Using the recursive formulation (E.3) and ai(Mi+1) =∑Mi

l=Mi+1 pilhil = 0, we have:

aij =

Mi∑
l=j

2

∑l−1
k=j

Dik

Bxiti

(
2

Dil
Bxiti − 1

)
σ2B, (E.4)

where we set
∑j−1
k=j Dik = 0. Based on (E.1), we have:

pij =
aij − ai(j+1)

hij
, ∀i ∈ N , j ∈ Ji. (E.5)

Combining (E.4) and (E.5) yields

pij =
1

hij

(
2

Dij
Bxiti − 1

) Mi∑
l=j+1

2

∑l−1
k=j+1

Dik

Bxiti

(
2

Dil
Bxiti − 1

)
σ2B

+
1

hij

(
2

Dij
Bxiti − 1

)
σ2B, (E.6)

which monotonically decreases with xiti. Considering the
maximum uplink transmission power constraints (20f), we can
obtain that

xiti ≥ Tij , ∀i ∈ N , j ∈ Ji. (E.7)

where Tij is the solution to equation (23). With the definition
of T̄i in (22), (E.7) can be further simplified as

ti ≥
T̄i
xi
, ∀i ∈ N . (E.8)

According to constraints (20b) and (E.8), we can claim that
constraints (E.8) hold with equality for the optimal solution,
i.e., ti = T̄i

xi
,∀i ∈ N . Applying (E.8) with equality, set (20)

becomes (21). Due to the fact that constraints (21c)-(21e) are
linear and 1/x is a convex function, the set (21) is convex. As
a result, Theorem 1 is proved.

APPENDIX F
PROOF OF LEMMA 5

First, we prove the necessary condition. Combining (21b)
and (21e), we have

xi ≥
T̄i
T
, fij ≥

CijDijxi
Txi − T̄i

, ∀i ∈ N , j ∈ Ji. (F.1)

Based on (21c)-(21e) and (F.1), we find that set (21) is feasible
if

N∑
i=1

Mi∑
j=1

fij ≤ F (F.2)

is satisfied under constraints (F.1) and (21c). To show this, we
can formulate the following minimization problem:

min
xxx

N∑
i=1

Mi∑
j=1

CijDijxi
Txi − T̄i

(F.3a)

s.t.
N∑
i=1

xi = 1 (F.3b)

xi ≥
T̄i
T
, ∀i ∈ N . (F.3c)

With the help of Problem (F.3), we only need to check whether
the optimal objective value (F.3a) is less than F or not. To
ensure that Problem (F.3) is feasible, we must have

N∑
i=1

T̄i
T
≤ 1. (F.4)

Due to the fact that

∂2CijDijxi

Txi−T̄i

∂x2
i

=
2CijDijT T̄i
(Txi − T̄i)3

≥ 0, ∀xi ≥
T̄i
T
, (F.5)

Problem (F.3) is a convex problem. The Lagrange function of
Problem (F.3) is given by

L2 =

N∑
i=1

Mi∑
j=1

CijDijxi
Txi − T̄i

+ α

(
N∑
i=1

xi − 1

)
, (F.6)

where α is the Lagrange multiplier associated with constraint
(F.3b). The first-order derivative of L2 can be formulated as

∂L2

∂xi
=
−T̄i

∑Mi

j=1 CijDij

(Txi − T̄i)2
+ α. (F.7)
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Setting ∂L2

∂xi
= 0 yields

xi =
T̄i +

√
T̄i

∑Mi
j=1 CijDij

α

T
. (F.8)

Based on (F.3b) and (F.8), we have

α =

∑N
i=1

√
T̄i
∑Mi

j=1 CijDij

T −
∑N
i=1 T̄i

2

. (F.9)

Combining (F.8) and (F.9), we can calculate the optimal
objective value (F.3a) as

N∑
i=1

Mi∑
j=1

CijDijxi
Txi − T̄i

=

(∑N
i=1

√
T̄i
∑Mi

j=1 CijDij

)2

T
(
T −

∑N
i=1 T̄i

)
+

N∑
i=1

Mi∑
j=1

CijDij

T
. (F.10)

Based on (F.4) and (F.10), the feasibility conditions of Problem
(21) are given by (24) and (25).

Next, we prove the sufficient condition. If conditions (24)
and (25) are satisfied, we can construct xxx defined in (F.8)
and (F.9), and fff defined in (F.1) with equality. Checking
constraints (21b)-(21e), we can claim that the constructed
solution is feasible, i.e., set (21) is non-empty.

APPENDIX G
PROOF OF THEOREM 2

We first show the equivalence of Problems (11) and (26).
When F = +∞, the computation time at the edge Cijdij

fij
is

neglected, i.e., constraints (11c) can be replaced by

τi ≤ Txi, ∀i ∈ N . (G.1)

Combining (G.1) and (10e), the equivalent constraint (26c)
is obtained. Introducing new variable qij = τipij to replace
power pij , ∀i ∈ N , j ∈ Ji, Problem (11) is equivalent to
Problem (26).

Then, we prove that Problem (26) is convex. Obviously,
the objective function (26a) and constraints (26c)-(26f) are all
linear. It remains to check the convexity of constraints (26b).
Based on [42, Page 89], the perspective of u(xxx) is the function
v(xxx, y) defined by

v(xxx, y) = yu(xxx/y),dom v = {(xxx, y)|xxx/y ∈ dom u, y > 0}.
(G.2)

If u(xxx) is a concave function, then so is its perspective function
v(xxx, y) [42, Page 89]. Define function

uij(qij , · · · , qiMi) = B log2

(
1 +

∑Mi

l=j qilhil

σ2B

)
, (G.3)

for all i ∈ N , j ∈ Ji. Since function uij(qij , · · · , qiMi
) is

concave w.r.t. (qij , · · · , qiMi
), the perspective function

τiuij

(
qij
τi
, · · · , qiMi

τi

)
= Bτi log2

(
1 +

∑Mi

l=j qilhil

σ2Bτi

)
(G.4)

is concave w.r.t. (qij , · · · , qiMi , τi). As a result, constraints
(26b) are convex.

APPENDIX H
PROOF OF LEMMA 7

We first define function y = x ln
(
1 + 1

x

)
, x > 0. Then, we

have

y′ = ln

(
1 +

1

x

)
− 1

x+ 1
, y′′ = − 1

x(x+ 1)2
< 0. (H.1)

According to (H.1), y′ is a decreasing function. Combining
limti→+∞ y′ = 0 from (H.1) and y′ is a decreasing function,
we can obtain that y′ > 0 for all 0 < x < +∞. As a result,
y is an increasing function.

We then prove that
∑N
i=1 t

∗
i = T for the optimal solution to

problem (11) by using the contradiction method. Suppose that
the optimal solution (ddd∗, τττ∗, qqq∗, T ∗) to Problem (26) satisfies∑N
i=1 τ

∗
i < T ∗. We can increase τ∗1 to τ̄1 = τ∗1 +κ1 (κ1 > 0)

such that τ̄1+
∑N
i=2 τ

∗
i = T ∗. Since function y is an increasing

function, we can slightly decreases q∗11 to q̄11 = q∗11 − κ2

(κ2 > 0) such that

Bτ̄1 log2

(
1 +

q̄11h11 +
∑M1

l=2 q̄
∗
1lh1l

σ2Bτ̄1

)

= Bτ∗1 log2

(
1 +

∑M1

l=1 q̄
∗
1lh1l

σ2Bτ∗1

)
≥

M1∑
l=1

d∗1l. (H.2a)

With new solution (ddd∗, τ̄ττ = [τ̄1, τ
∗
2 , · · · , τ∗N ], q̄qq =

[q̄11, q
∗
12, · · · , q∗NMN

], T ∗), we can claim that the new
solution is feasible with lower objective value, which
contradicts that (ddd∗, τττ∗, qqq∗, T ∗) is the optimal solution to
Problem (26).

As a result, for the optimal solution to Problem (26), we
have

∑N
i=1 τ

∗
i = T ∗.
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