
1

A Caching Strategy Towards Maximal D2D
Assisted Offloading Gain

Yijin Pan, Cunhua Pan, Zhaohui Yang, Ming Chen, and Jiangzhou Wang, Fellow, IEEE

Abstract—Device-to-Device (D2D) communications incorporated with content caching have been regarded as a promising way to
offload the cellular traffic data. In this paper, the caching strategy is investigated to maximize the D2D offloading gain with the
comprehensive consideration of user collaborative characteristics as well as the physical transmission conditions. Specifically, for a
given content, the number of interested users in different groups is different, and users always ask the most trustworthy user in
proximity for D2D transmissions. An analytical expression of the D2D success probability is first derived, which represents the
probability that the received signal to interference ratio is no less than a given threshold. As the formulated problem is non-convex, the
optimal caching strategy for the special unbiased case is derived in a closed form, and a numerical searching algorithm is proposed to
obtain the globally optimal solution for the general case. To reduce the computational complexity, an iterative algorithm based on the
asymptotic approximation of the D2D success probability is proposed to obtain the solution that satisfies the Karush-Kuhn-Tucker
conditions. The simulation results verify the effectiveness of the analytical results and show that the proposed algorithm outperforms
the existing schemes in terms of offloading gain.

Index Terms—D2D, content cache, traffic offloading, social characteristics, social trust.
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1 INTRODUCTION

THe current wireless network infrastructure is expected
to provide explosively increasing data traffic in the

near future [1]. Although some crucial technologies, such as
multiple input multiple output (MIMO) [2], [3], are promis-
ing to increase spectral efficiency, “offloading” is another
important technology to increase network capacity. Device-
to-Device (D2D) communications have shown great poten-
tial to offload traffic from the network backbone [4], [5].
Through D2D communications, mobile devices can directly
connect with other devices in proximity. When a mobile
device requests a content, if the nearby devices happened
to have the content in local storages, the content can be
delivered via the D2D communications without incurring
the cost of cellular bandwidth. Moreover, by reducing the
distance between contents and requesters, the download
delay and network traffic load can be effectively reduced.

The offloading benefits are achievable only when the
nearby users happened to have the requested content in
their local storage. Thus, in order to reap the offloading
gain, the content caching strategy should be carefully de-
signed and investigated. For instance, the D2D caching
strategy in [6] was designed to satisfy both outage prob-
ability requirement and per-user throughput requirement.
An optimal D2D collaboration distance to maximize the
D2D link number was investigated in [7]. However, these
results were obtained based on the simplistic grid network
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model. An emerging alternative is to model the location-
s of users and base stations (BSs) as the Poisson point
process (PPP), which gives a tractable expression of the
received signal-to-interference-ratio (SIR). By adopting the
PPP model, a probabilistic caching strategy was optimized
in [8] to maximize the successful receptions of contents. An
optimal caching and transmit time scheduling to maximize
successful offloading probability was investigated in [9].
These approaches mainly focus on the D2D assisted content
delivery process, where the caching strategy is optimized
with the constraints of SIR requirements, delay, and storage
size.

As D2D communications heavily rely on the collabora-
tive interactions of mobile users, an increasing number of
contributions start to exploit the human characteristics and
social information of the mobile device holders to enhance
the network performance. It has been widely recognized
that the content preferences of the different individuals have
a significant influence on D2D assisted content delivery pro-
cess. The content preference reflects the different interests
of human users for the same content [10]. For instance, in
[11], users were categorized into different groups according
to the content request distributions, and the caching strat-
egy was designed for each user group. The homogeneous
marked PPP distribution was employed in [12] to model
the spatial and social relations of D2D devices, where the
Zipf based thinning is applied to obtain the distributions of
users with different preferences. When the user preferences
are unknown, a learning approach was proposed in [13] to
estimate the preference for the design of caching strategy.

Except for the preference, another big challenge is under-
standing the impact of trustworthiness information on the
user cooperation behavior. In the practical implementation,
there may be malicious users that can corrupt and manip-
ulate the content, however, which are expected to forward
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to other users. If these untrustworthy factors are ignored,
the manipulation and fraud of the contents are very likely
to outweigh the benefits of user cooperations. Actually, the
D2D users can be aware of the trustworthiness information
of their D2D partner from various ways [14], [15]. More-
over, the BS can act as the centralized trust authority since
the data corruption and disobedience can be identified by
checking the timeout [16], [17], [18]. Consequently, to cope
with the threats from malicious users and block the insecure
links, the rational users will always ask the most trustwor-
thy nodes in proximity for the reliable content transmission
[17].

Furthermore, apart from the impacts of user preference
and trustworthiness, the successful D2D transmissions also
depend on the physical communication conditions. Un-
fortunately, existing contributions mainly considered social
characteristics in D2D caching, while ignoring the physical
transmission conditions such as path loss, channel fading
and underlaid cellular interference [19], [20], [21], [22].
For instance, the authors in [23] investigated content hit
probability, which only considered the user distance, and
the cache management scheme in [24] was only based on
the content popularity. Recently, there have been some ap-
proaches starting to jointly explore the impacts of the phys-
ical communication conditions and the social characteristics
on the D2D assisted offloading performance, such as [25],
[26]. In [25], the potential of each UE in D2D offloading was
modeled by a empirical-based function, which decreases
with the power cost and increases with the users’ social
influence. Although this simplified model of user’s social
characteristics can make the formulated problem tractable,
the impacts of the aforementioned preference and trustwor-
thiness constraints on the offloading performance is still
unclear. The social relationship among users was assumed
to be a decreasing function of their physical distance in
[26], however, this model is not applicable to the scenarios
where strangers are geographically adjacent, such as gyms
and shopping malls. Therefore, how to design efficient user
caching strategy with the presence of the different user
interests and their trustworthiness as well as the physical
transmission constraints is still an unsolved problem.

In this paper, the user caching strategy to maximize
the offloading gain is investigated by considering the user
preference, different levels of trustworthiness, and the phys-
ical transmission conditions. In the considered model, the
number of interested users for a given reference content is
different for different user groups, and users are rational so
that they always incline to ask the most trustworthy user
in proximity for D2D transmission. To conduct a successful
D2D transmission, the received SIR from the users who
have cached contents should be no less than a given thresh-
old. Then, the offloading gain is evaluated by the average
successful receptions of contents transmitted via D2D links.
With the target to maximize the offloading gain, the caching
density in each user group is then optimized by solving the
formulated non-convex optimization problem.

The main contributions are summarized as follows:

• The D2D success probability is analytically derived,
which is expressed as a function of the interested
user density, the trustworthiness of users and physi-

cal transmission conditions. In the work, users with
different preferences can be geographically adjacent,
and the user providing D2D offloading is selected
according to the biased received power, so that only
the user with the sufficient short transmission dis-
tance and the sufficient large trustworthiness can be
selected.

• With the target to maximize the offloading gain,
the optimal caching strategy is first developed for a
special case where the trust bias of each group is the
same. Then, a numerical searching algorithm based
on the gradient projection and two-dimensional
searching is proposed to obtain the globally optimal
solution for the general case.

• To reduce the computational complexity, an asymp-
totic approximation of the D2D success probability
is proposed by relaxing the D2D range restriction.
Based on the obtained asymptotic approximation, an
iterative algorithm is proposed to obtain the solution
that satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions.

• The simulation results validate the effectiveness of
the derived D2D successful transmission probability
and the corresponding asymptotic approximation.
Then, it is shown that our proposed caching scheme
achieves a larger offloading gain than the existing
caching strategies.

The rest of this paper is organized as follows. The
system model is described in Section II, and the derived
performance metric and optimization problem is present-
ed in Section III. The optimization of caching strategy is
addressed in Section IV. Finally, we present the simulation
results in Section V, and conclude our work in Section VI.

Notations: Capital and lower-case bold letters denote
matrices and vectors, respectively. The superscripts [X]−1

and [X]T denote inversion and transpose, respectively. IM
represents an M ×M identity matrix. 1M denotes an M ×1
vector of ones. ‘s.t.’ is short for ‘subject to’. E{x}{y} means
the expectation of y over x.

2 SYSTEM MODEL

Consider a network where the mobile users are equipped
with caches to store their interested contents. The cache-
enabled users can share the cached content with others via
D2D communications. When BS needs to deliver a content
(here referred as the reference content 1) to the interested
users, cellular traffic can be effectively offloaded by D2D
links. Specifically, a subset of users store the reference con-
tent in their local cache, and then the other interested users
can get this content via D2D communications, instead of
downloading from the BS.

To identify the impact of social characteristics, the users
are classified into groups based on the user profile and
social similarity. The user profile contains the key features
that can reflect the users’ preferences and trustworthiness
for cooperation, such as the personal data (name, age ...),

1. The proposed scheme focuses on the scenario of delivering a cer-
tain piece of content, and mobile users’ caching capacities are sufficient
for the reference content.



3

interests and preferences (searching keywords, language,
habits ...), system logs (browsing history, historical success
cooperations... ). Based on the user profile, the emerging
convolutional neural network (CNN) [27] is employed for
user classification. First, some typical users belonging to
the particular types are selected as the training data set.
According to the social characteristics, assume that users can
be classified intoM disjoint groups. The set of group indices
is denoted byM = {1, 2, · · · ,M}. Then, the coefficients of
CNN is trained and optimized by employing the profile data
of these typical users, which imply the implicit features to
distinguish user. With the trained CNN, the left users are
filtered and classified into the corresponding groups.

It is worth pointing out that the classification of users is
based on the behavior similarity rather than the proximity
of geographical location information. The reason is that the
users with different preferences are not strictly separated
geographically. Instead, users of different social types can
be adjacent, e.g., in a stadium or large shopping mall.
Consequently, for the reference content, the locations of
interested users in group m are deployed according to the
PPP distribution denoted by Φm with density λm. In other
words, the interested user density λm also reflects the user
preference of different groups. Under this assumption, it
is possible for a user to have users from other groups in
proximity.

We use “UTs” to denote the users who caches the
reference content. According to the thinning property of
PPP [28], the locations of UTs in group m also follow the
PPP distribution, and the corresponding density is denoted
by cm, where cm ∈ [0, λm]. It is worth pointing out that
the caching density can be interpreted as the product of
the user density λm and a caching probability qm, i.e.,
cm = λmqm, where the caching probability qm represents
the probability that each user in the group m caches the
given reference content. To practically implement a given
caching strategy cm, each user in the group m generates a
uniformly distributed random number within the range of
[0, 1]. Then, if the generated random number is less than or
equal to the caching probability qm, this user should cache
the content. Otherwise, i.e., the generated random number
is larger than the caching probability qm, this user does not
cache the content. In this way, a thinned user group with
density cm is readily obtained.

In addition, there are some users who did not cache
the reference content, but they are also interested in it.
Consequently, they will request the reference content from
the nearby UTs, and this kind of users are named as “URs”.
The density of URs in group m is λm − cm. According to
the Slivnyak’s theorem [28], the properties observed by a
typical point of the PPP, φ, is the same as those observed
by the point at origin in the process φ ∪ {0}. As a result,
we consider a typical UR located in the origin as a reference
UR.

As the BS can be a centralized authority of the levels
of users’ trustworthiness, D2D users can be aware of the
trustworthiness information of their D2D partner. To cope
with the threats from malicious users, URs are inclined
to ask the most trustworthy UTs in proximity for content
transmission. Consequently, the serving UT may not be the
nearest UT. As shown in Fig. 1, for the reference UR, there

BS
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Fig. 1. D2D communications between users from different groups in a
typical cell. The upper plot shows the BSs (red triangles) in the adjacent
cells, and the locations of BS locations follow the PPP distribution.

are two UTs in proximity, i.e., UT 1 and UT 2 are from group
1 and group 2, respectively. Due to the fact that group 2
is more trustworthy than group 1, the UR will request the
content from UT 2, though UT 1 is closer than UT 2.

To reflect the URs’ behavior of selecting the serving
UT based on trustworthiness, the trust bias is introduced
to show how trustworthy the users in group m can be.
Let Bm denote the trust bias value of group m, and the
value of Bm is in the range of [0, 1] [29], [30]. A larger Bm
corresponds to higher trust for the UTs in group m, where
“1” indicates complete trust and “0” means totally distrust.
To evaluate the trust bias Bm of group m, we consider
that the trustworthiness depends mainly on the historical
success transmissions [30]. Within a detection time window,
the BS counts the average number of the correctly verified
contents sent by each user in group m, and denote it as Nm.
Then, the trust bias can be obtained by normalizing the Nm
for all the M groups, i.e.

Bm =
Nm∑M
m=1 Nm

. (1)

Moreover, we also have
∑M
m=1Bm = 1.

Meanwhile, the successful D2D cooperation not only
depends on the user social characteristics but also depends
on the physical communication conditions. To jointly incor-
porate this trust-driven user behavior and the transmission
distance constraints together, we define the biased-received-
power (BRP). Specifically, the BRP for the UTs in group m is
defined as

Pm = ptBmd
−α
m , (2)

where pt is the D2D transmit power, dm is the distance from
the nearest UT in group m to the reference UR, α is the
path-loss exponent.

Then, the D2D links are selected according to averaged
maximum biased-received-power (BRP), i.e., UTs with max-
imum BRP will serve the D2D transmission. According to
the maximum BRP criteria, faraway UTs or the UTs with low
trustworthiness will not be selected by the UR for requesting
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content. In this way, the physical transmission constraints
and the trustworthy constraints are jointly considered. Ob-
viously, when Bm = Bk,∀m, k ∈ M, it reduces to the no
biasing case, and the UR is served by the UT with strongest
average received power. 2

Similar to [33], [34], [35], we assume that the D2D com-
munications are underlaid with cellular downlinks, where
the locations of BSs also follow a PPP distribution denoted
by ΦB with density λB and λB � λm. To reduce the system
interference, we assume that UTs in each group reuse the
same frequency, while the UTs in different groups adopt
orthogonal frequencies [36], [37], [38]. The assumption is jus-
tified when all UTs in each group are uniformly generated in
the network. By allocating UTs from different groups with
orthogonal frequencies, the distances between UTs with the
same channel can be efficiently enlarged, and the received
interference in URs can be notably reduced. We consider the
interference limited scenario where the thermal noise can be
ignored. When the serving UT is from groupm, the received
SIR of the reference UR is

SIRm =
pt|hm|2d−αm∑

i∈Φ′m\{Tm0 }
pt|hi|2d−αi +

∑
j∈ΦB

pB |hj |2d−αj
,

(3)
where hm represents the channel fading from serving UT
to UR, and the channel gain |hm|2 is exponentially dis-
tributed with united mean value, i.e., |hm|2 ∼ exp(1). Ter-
m
∑
i∈Φ′m\{Tm0 }

pt|hi|2d−αi represents the interference from
other active UTs in group m except the serving UT denoted
by Tm0 , where “active UTs” refers to the UTs that are paired
up with URs conducting D2D transmissions. Φ′m denotes
the set of the interfering UTs in group m and Φ′m ⊆ Φm.
The distance from the interfering UT i to UR is denoted
by di. Term

∑
j∈ΦB

pB |hj |2d−αj represents the interference
from underlaid BSs. The distance from the interfering BS j
to UR is denoted by dj . |hi|2 and |hj |2 are exponentially
distributed channel gains with unit mean.

3 PERFORMANCE METRICS AND PROBLEM FOR-
MULATION

The URs in each group are those who do not have the
reference content in their cache so that the density of URs in
group m is λm − cm. For a UR from one of the M groups,
its serving UT can come from any of the M groups. Since
different types of users can be geographically adjacent, the
D2D success probability for any URs should depend on the
cache densities in all the M groups. Let Pthm [SIRm > γth]
denoted the D2D success probability in the m-th group,
where γth is the required received SIR threshold.

Then, based on the law of total probability, the D2D
success probability of a UR is calculated as

Ps =
M∑
m=1

PmPthm [SIRm > γth], (4)

where Pm represents the probability that the serving UT is
from group m.

2. Selecting the nearest UR to be the serving UR may not be the op-
timal but is commonly adopted in current works due to its tractability
[31], [32].

To measure the offloading performance for the D2D
assisted offloading network, we are interested in the aver-
age number of contents successfully transmitted via D2D
links, namely D2D-aided offloading gain. Specifically, the
offloading gain of the m-th group is

Um = Ps(λm − cm), (5)

and the total offloading gain is

U =
M∑
i=1

(λi − ci)Ps. (6)

To obtain the expression of U , we derive the expressions
for Pm and Pthm in the following propositions.

Proposition 1. The probability that the serving UT is from group
m is

Pm =
Bm

2
α cm∑M

i=1Bi
2
α ci

(
1− exp

(
−πBm−

2
α

M∑
i=1

ciB
2
α
i R

2

))
,

(7)
where R is the maximum D2D transmission distance.

Proof. According to the definition of BRP, we have

Pm = Edm

[
Pm(dm) > max

i6=m
Pi(di)

]
(8)

=

∫ R

0

M∏
i=1,i6=m

P

[
di >

(
Bi
Bm

) 1
α

r

]
fdm(r)dr, (9)

where R is the maximum D2D transmission distance. Ac-
cording to the null probability of the 2D Poisson process
[28],

P

[
di >

(
Bi
Bm

) 1
α

r

]
= exp

(
−πci

(
Bi
Bm

) 2
α

r2

)
. (10)

Similarly, the probability density function (PDF) of dm
denoted by fdm(r) is

fdm(r) =
d(1− P[dm > r])

dr
= 2πcmr exp(−πcmr2). (11)

Substituting (10) and (11) into (9), we have

Pm=

∫ R

0
2πcmr exp

(
−π

M∑
i=1

ci

(
Bi
Bm

) 2
α

r2

)
dr (12)

=
Bm

2
α cm∑M

i=1Bi
2
α ci

(
1−exp

(
−πBm−

2
α

M∑
i=1

ciB
2
α
i R

2

))
.(13)

According to Pm given in Proposition 1, we have
limBm→0 Pm = 0, limdm→∞ Pm = 0. In other words, the
faraway UTs or the UTs with low trustworthiness will not be
selected by UR for requiring D2D transmission. Therefore,
to obtain the expression of Pthm , we first need to characterize
the ratio of active UTs in each group. Let Φ′i,∀i ∈ M
denote the set of active users in group i conducting D2D
transmissions, and ρi represents the ratio of active users in
group i. Since only the UT will conduct a D2D link, the
distribution of Φ′i,∀i ∈ M is a PPP with density ρici. Note
that ρi is also a function of cm for each group, and it can be
approximated in the following proposition.
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Proposition 2. The ratio of active users in group m is

ρm = 1−
(

1 +
Pm

∑M
m=1(λm − cm)

3.5cm

)−3.5

Γ(3.5, (
∑M
m=1(λm − cm) + 3.5cm

Pm )πR2)

Γ(3.5, 3.5cm
Pm πR2)

, (14)

where Γ(a, b) =
∫ b
0 t

a−1e−tdt.

Proof. A UT will be active when it is associated with at least
one UR via D2D links. According the definition of being
active, it will be easy to calculate ρi via its complementary
event. We denote the ρ̄m as the probability that a UT in
group m is not active, i.e., the UT does not transmit to any
UR. Similar as [39], [40], [41], the coverage region of a UT is
modelled as the Poisson Voronoi cell. According to [42], the
probability density function (PDF) of a typical Voronoi cell
area S in a Poisson random tessellation is given by

fS(s) =
3.53.5

Γ(3.5,∞)
Ŝ−3.5s2.5 exp

(
−3.5

s

Ŝ

)
, (15)

where Γ(a, b) =
∫ b
0 t

a−1e−tdt and Ŝ is the mean value of
random variable S. According to the Remark 2 in [40], the
probability Pm can be viewed as the average fraction of the
total area covered by the association regions of UTs in group
m by using the ergodicity of the PPP. We assume the total
area is Stot, and the average total number of UTs is cmStot.
Similar to [41], the mean association region of a typical UT
in group m is approximated by

Ŝm =
PmStot
Stotcm

=
Pm
cm

. (16)

Then, ρ̃m is calculated by

ρ̃m = P(no UR within S|S ≤ πR2) (17)

=

∫ πR2

0 exp(−s
∑M
m=1(λm − cm))fS(s)dx∫ πR2

0 fS(s)ds
(18)

=

(
1 +
Pm

∑M
m=1(λm − cm)

3.5cm

)−3.5

Γ(3.5, (
∑M
m=1(λm − cm) + 3.5cm

Pm )πR2)

Γ(3.5, 3.5cm
Pm πR2)

. (19)

Consequently, the ratio of active users in group m is ob-
tained as

ρm = 1− ρ̃m. (20)

Given the ratio of active users in each group, the user
density of Φ′m denoted by ρmcm can be obtained according-
ly.

Proposition 3. If the serving “UT” is from group m, the
probability that the received SIR is beyond the threshold is

Pthm [SIRm > γth] =
πR2cm
Pmϕm

(1− exp(−ϕm)), (21)

where

ϕm = πR2

(
M∑
i=1

ci

(
Bi
Bm

)2
α

+ λBθB + cmρmθI

)
,

θI = γth
2
α

∫ ∞
γ
− 2
α

th

1

1 + u
α
2

du, θB =

(
γth

pB
pt

) 2
α
∫ ∞

0

1

1 + u
α
2

du.

Proof. For simplicity, we define Im =
∑
i∈Φ′m\{Tm0 }

|hi|2d−αi
and Q =

∑
j∈ΦB

|hj |2d−αj . To avoid confusion with Ap-
pendix A, when the serving UT is from group m, we
denote Rm as the distance between the serving UT and the
reference UR. Then, we have

Pthm [SIRm > γth]

= Pthm

[
|hm|2 > γthR

α
m

(
Im +

pB
pt
Q

)]
(a)
=

∫ R

0
EIm [exp (−γthxαIm)]

EQ
[
exp

(
−pB
pt
γthx

αQ

)]
fRm(x)dx

=

∫ R

0
LIm(γthx

α)LQ
(
pB
pt
γthx

α

)
fRm(x)dx. (22)

Step (a) follows that |hm|2 ∼ exp(1), and fRm(x) is the
PDF of distance Rm. LIm(s) is the Laplace transformation
of random variable Im evaluated at s conditioned on the
distance Rm = x. According to [43], we have

LIm(γthx
α)

= EΦ′i

 ∏
i∈Φ′m

Ehi
[
exp

(
−γthxα|hi|2d−αi

)]
(b)
= exp

(
−2πcmρm

∫ ∞
x

(1− (23)

Ehi [exp(−γthxα|hi|2v−α)])vdv
)

(c)
= exp

(
−2πcmρm

∫ ∞
x

γth
γth + ( vx )α

vdv

)
(d)
= exp

(
−πcmρmx2θI

)
. (24)

Step (b) follows from the probability generating functional
(PGFL) of the PPP. Step (c) is due to the distribution of
channel gain, i.e. |hj |2 ∼ exp(1). Step (d) is obtained by

employing the change of variable u =

(
v

xγ
1/α
th

)2

, and

θI = γ
2
α

th

∫∞
γ
− 2
α

th

1

1+u
α
2

du.

Similarly, we can obtain

LQ
(
pB
pt
γthx

α

)
= exp

(
−πλBx2θB

)
, (25)

where θB =
(
γth

pB
pt

) 2
α ∫∞

0
1

1+u
α
2

du.
To obtain the final expression, we still need to derive the

PDF of fRm(x). We first derive the probability of Rm > x as

P[Rm > x]

=
1

Pm
P[Rm > x,Pm(Rm) > max

i 6=m
Pi(di)]

=
1

Pm

∫ ∞
x

M∏
i 6=m

P

[
di >

(
Bi
Bm

) 1
α

r

]
fdm(r)dr

(f)
=

1

Pm

∫ ∞
x

2πcmr exp

(
−π

M∑
i=1

ci

(
Bi
Bm

) 2
α

r2

)
dr, (26)
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where fdm(r) is given in (11), and step (f) follows from (10).
Then, the pdf fRm(x) is

fRm(x) =
∂(1− P[Rm > x])

∂x

=
1

Pm
2πcmx exp

(
−π

M∑
i=1

ci

(
Bi
Bm

) 2
α

x2

)
.(27)

Applying (24), (25) and (27) into (22) yields

Pthm [SIRm > γth]

=
1

Pm

∫ R

0
2πcmx exp

(
−π(λBθB + ρmcmθI)x

2

−π
M∑
i=1

ci

(
Bi
Bm

)2
α

x2

)
dx

=
cm
Pmϕm

(1− exp(−πR2ϕm)), (28)

where ϕm =
∑M
i=1 ci

(
Bi
Bm

)2
α

+ λBθB + cmρmθI .

Substituting (7) and (21) into (4), we have

Ps = πR2
M∑
m=1

cmf(ϕm), (29)

where

f(t) =
1− e−t

t
. (30)

Based on the above results, we now formulate the
following optimization problem to maximize the D2D-
aided offloading gain by optimizing the caching strategy
c = [c1, c2, · · · , cM ]T .

P1 : max
c

U =

(
λ0 −

M∑
i=1

ci

)
Ps (31a)

s.t. 0 ≤ cm ≤ λm, for all m ∈M. (31b)

where λ0 =
∑M
i=1 λi, and (31b) are the probability con-

straints.

4 OPTIMIZATION OF CACHING STRATEGY

In this section, we first consider the unbiased case, where
the optimal caching strategy and offloading gain is obtained.
However, Problem P1 is not convex in general due to the so-
phisticated expression of D2D success probability Pthm given
in Proposition 2. For the general case, we first propose a nu-
merical searching algorithm to obtain the globally optimal
solution. To deal with the high computational complexity,
we adopt an asymptotic approximation of Pthm for the large
D2D distance region. Then, an iterative algorithm with low
complexity is proposed to obtain the asymptotic caching
strategy.

4.1 Unbiased Case
In the unbiased case, there is no trust bias for association,
i.e., Bm = Bk,∀m, k ∈ M. In this case, we define x =∑M
i=1 ci. Then Problem P1 is transformed into

P2 : max
x,c

U(x, c) = (λ0 − x)Ps(c, x) (32a)

s.t. x =
M∑
i=1

ci, (32b)

0 ≤ x ≤ λ0, (32c)
0 ≤ cm ≤ λm, for all m ∈M. (32d)

Problem P2 is still non-convex, however, we can obtain the
optimal solution for this case by the following procedures.
First, Problem P2 is decomposed into the following two
subproblems. For given x = x̄, we can find the optimal
cm for each group by solving the following subproblem.

P2.1 : max
c

F(c|x = x̄) =
M∑
m=1

cmf(ϕm) (33a)

s.t. x̄ =
M∑
i=1

ci, (33b)

0 ≤ cm ≤ λm, for all m ∈M. (33c)

where function f(x) is defined in (30). Note that the active
ratios of different groups are identical in this case, i.e. ρm =
ρ for all m ∈M and

ρ = 1−
(

1 +
λ0 − x̄
3.5x̄

E(x̄)

)−3.5 Γ
(

3.5,
(
λ0 − x̄+ 3.5x̄

E(x̄)

)
πR2

)
Γ
(

3.5, 3.5x̄
E(x̄)πR

2
) ,

(34)
where E(x̄) = 1 − exp(−πR2x̄). Consequently, ϕm in this
case is simplified to ϕm = πR2(x̄+ λBθB + cmρθI).

Then, we need to find the optimal caching summation x
from the following subproblem

P2.2 : max
x

(λ0 − x)F∗(c∗|x) (35a)

s.t. 0 ≤ x ≤ λ0. (35b)

Each value of x̄ ∈ [0, λ0] corresponds to a maximal objec-
tive value of Problem P2.1, which is denoted as F∗(c∗|x̄). If
we can determine the optimal x∗, the optimal solution to the
original Problem P2 is readily obtained. Then the optimal x̄
is given by

x∗ = arg max
x̄∈[0,λ0]

F∗(c∗|x̄) (36)

Given the fact that Problem P2 is nonconvex, one-
dimension exhaustive search is conducted in the interval
[0, λ0] to find x∗. With a small enough searching step size,
the global optimal solution x∗ can be obtained. Hence, in
the rest of this section, we focus on solving Problem P2.1.

We first prove that Problem P2.1 is a convex optimiza-
tion problem. Since the constraints of Problem P2.1 are
linear, we only need to show that the objective function (33a)
is concave. The Hessian matrix of function F(c|x = x̄) is
denoted by H. Let hm,n represents the (m,n)th element of
H, and we have

hm,n =

{
θIρπR

2(2f ′(ϕm) + cmθIρπR
2f ′′(ϕm)) if m = n,

0 else.
(37)
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For function f(t) defined in (30), we have

f ′(t) =
e−t(t− et + 1)

t2
, f ′′(t) =

e−t(−2 + 2et − 2t− t2)

t3
.

(38)
Note that et = 1+t+ 1

2 t
2+· · · and e−t = 1−t+ 1

2 t
2−· · · , so

f ′(t) < 0 and f ′′(t) > 0 hold. Moreover, cmθIρπR2 < ϕm
holds due to the definition of ϕm. Then we have

2f ′(ϕm) + cmθIρπR
2f ′′(ϕm) ≤ 2f ′(ϕm) + ϕmf

′′(ϕm)

=
−e−ϕmϕm2

ϕm3
< 0. (39)

Consequently, the Hessian matrix H is negative definite.
Since Problem P2.1 is convex, we can obtain the glob-

ally optimal solution by solving the KKT conditions. The
Lagrangian of problem P2.1 is

L0(c, η) = −
M∑
m=1

cmf(ϕm) + η(
M∑
i=1

ci − x̄), (40)

where η is the dual variable associated with constraint (33b).
Then, we have the following KKT conditions as

∂L
∂cm

= −f(ϕm)− θIρπR2cmf
′(ϕm) + η = 0,∀m ∈M(41)

η(
M∑
i=1

ci − x̄) = 0. (42)

Define function g(cm) as

g(cm) = f(ϕm(cm)) + θIρπR
2cmf

′(ϕm(cm)). (43)

According to (38), we have θIρπR2cmf
′(ϕm) ≥ ϕmf ′(ϕm).

Consequently, we have

g(cm) ≥ f(ϕm(cm)) + ϕmf
′(ϕm(cm)) = eϕm > 0. (44)

Then, it is inferred that η > 0. In addition, g(cm) is
a monotonically decreasing function with respect to cm
according to (39). As a result, −g(x) + η = 0 has one root,
which is denoted by C0(η). The optimal solution is given by

c∗m = [C0(η)]λm0 , (45)

where [x]ba = max{a,min{x, b}}.
However, we still need to obtain the value of C0(η).

Since −g(x) + η = 0 is a transcendental equation, it is
hard to directly obtain C0(η) as an explicit function of η.
However, we can still determine the value of C0(η) by
substituting (45) into (42). Without loss of generality, the
groups are sorted according to the increasing order of λm,
i.e. λ1 ≤ λ2 ≤ · · ·λM . Then, we have

C0(η) =

{
x̄
M if x̄

M ≤ λ1,
x̄−

∑n
i=1 λi

M−n ifλn <
x̄−

∑n
i=1 λi

M−n ≤ λn+1,
(46)

where n = 1, · · · ,M − 1.
We can see that C0(η) is highly dependent on x̄ and the

interested user density λm in each group. When there is no
social trust bias, (46) shows that the reference content should
be cached as evenly as possible across user groups. With c∗

for given x̄, the optimal x∗ can be found by a one-dimension
search over interval [0, λ0].

In this case, the computational complexity is dominated
by the one-dimensional search for finding the optimal x∗.

Therefore, the total computational complexity of finding
optimal solutions is O

(⌊
λ0

δx

⌋)
, where δx is the searching

stepsize and b·c represents rounding down.

4.2 General Case

In the general case, due to the sophisticated Ps given in
(29), the objective function U of Problem P1 is not concave.
For the simplicity of presentation, vm is in introduced to
represent Bm

2
α , i.e., vm = Bm

2
α , which is the weight of cm.

Problem P1 is nonconvex in general, but we can still obtain
its globally optimal solution by the following procedure.

To transform the original Problem P1 into a convex
form, we first define

x =
M∑
m=1

cm, y =
M∑
m=1

vmcm,

where x and y represent the summation of UTs’ density
in each group and the weighted sum of the UTs’ density,
respectively.

For given x = x̄ and y = ȳ, Problem P1 is simplified to

P3 : max
c

F(c|x̄, ȳ) =
M∑
i=1

cmf(ϕm(cm)) (47a)

M∑
m=1

cm = x̄, (47b)

M∑
m=1

vmcm = ȳ, (47c)

0 ≤ cm ≤ λm, for all m ∈M. (47d)

In this case, with given x̄ and ȳ, the active ratio ρm has
been determined as

ρm = 1−
(

1 +
vm(λ0 − x̄)

3.5ȳ
Em(ȳ)

)−3.5

Γ
(

3.5,
(
λ0 − x̄+ 3.5ȳ

vmEm(ȳ)

)
πR2

)
Γ
(

3.5, 3.5ȳ
vmEm(ȳ)πR

2
) , (48)

where Em(ȳ) = 1− exp
(
−πR2 ȳ

vm

)
.

Consequently, we have

ϕm(cm) = πR2

(
ȳ

vm
+ λBθB + ρmcmθI

)
(49)

It is easy to know that the Hessian matrix of objective
function (47a) is negative definite, which is similar to (37)
and omitted here. Consequently, objective function (47a) is
concave and Problem P3 is a convex problem.

The optimal solution c∗ = [c∗1, · · · , c∗M ]T to Problem P3
can be found by the gradient projection method [44]. Define
v = [v1, · · · , vM ]T , and we rewrite the equality constraints
(47b) and (47c) as

Nc = b, (50)

where N is the 2 × M coefficient matrix of the equality
constraints, i.e., N = [1M ,v]T , and b = [x̄, ȳ]T . Then, the
gradient projection update direction of c in t-th step is

p(t) = [IM −NT (NNT )−1N ]g(t), (51)
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where g(t) is the M × 1 gradient vector, and the m-th
element of g(t) is g(c

(t)
m ) given in (43). The step length s(t) in

the direction p(t) is determined by the following searching
problem.

max
s(t)

F(c+ s(t)p(t)|x̄, ȳ) (52a)

0 ≤ c+ s(t)p(t) ≤ λ, (52b)

s(t) ≥ 0, (52c)

where λ = [λ1, · · · , λM ], and the optimal value of s(t)

can be found by the bisection method since the objective
function is increasing with respect to s(t).

For any given (x̄, ȳ), the optimal caching density and a
corresponding optimal objective can be obtained by solving
Problem P3. Then, the optimal (x̄∗, ȳ∗) is given by

(x∗, y∗) = arg max
{x̄,ȳ}

F∗(c∗|x̄, ȳ) (53)

However, the optimal value of (x∗, y∗) cannot be analytical-
ly derived, so that the two-dimensional search is conducted.
With a small enough searching step size, the global optimal
solution (x∗, y∗) can be obtained. To reduce searching com-
plexity, for given x = x̄, the searching interval [ymin, ymax]
of y can be determined as

yd(x̄) = min{vm}x̄, (54)
yu(x̄) = min {max{vm}x̄, Λ} , (55)

where Λ =
∑M
m=1 vmλm.

Algorithm 1 Algorithm to obtain the global optimum to
Problem P1
Input: Searching stepsizes δx and δy , and convergence

condition δc.
1: for x̄ = 0, δx, 2δx, · · · ,

⌊
λ0

δx

⌋
δx do

2: for ȳ = yd(x̄), δy, 2δy, · · · ,
⌊
yu(x̄)−yd(x̄)

δy

⌋
δy do

3: Initialize t = 0, and c(0) satisfying constraints (47b)
and (47c);

4: repeat
5: Update the direction p(t) and step length s(t)

according to (51) and (52), respectively;
6: Update c(t+1) = c(t) + s(t)p(t);
7: Update F(c(t+1)|x̄, ȳ);
8: t = t+ 1;
9: until F(c(t)|x̄, ȳ)−F(c(t−1)|x̄, ȳ) ≤ δc;

10: Update U(x̄, ȳ) = (λ0 − x̄)F(c(t)|x̄, ȳ);
11: end for
12: end for
Output: max(x̄,ȳ)∈Z U(x̄, ȳ)

The above analysis is summarized in the following Al-
gorithm 1.

The computational complexity of Algorithm 1 mainly
involves two parts: the gradient projection method and
the two-dimensional search for optimal (x∗, y∗). For one
execution of the gradient projection method, the complexity
is dominated by the update of direction p(t) in (51) in step 5,
which needs about 2

323 +8M22 +8M23 +2M2 = O(3M2 +
192M) flops (floating-point operations). In addition, accord-
ing to [44], to get within an ε-neighborhood of the optimal

objective value, the iteration number of the gradient projec-
tion method is O(1/ε). Meanwhile, for the two-dimensional
search, the iteration number is O

(⌊
λ0

δx

⌋ ⌊
Λ
δy

⌋)
with step

sizes δx and δy for x and y, respectively. Then, the total com-
plexity of Algorithm 1 is O

(
(3M2 + 192M) 1

ε

⌊
λ0

δx

⌋ ⌊
Λ
δy

⌋)
.

Although the global optimum can be found by Algo-
rithm 1, note that Algorithm 1 has a high computational
complexity. Therefore, in the following, we consider an
asymptotic approximation to obtain a low-complexity so-
lution.

4.3 Asymptotic Case
Since the effect of transmission distance dependent path-
loss has already been included in the D2D success proba-
bility, we consider the asymptotic D2D success probability
with the relaxation of D2D cooperative distance limitation,
i.e., R → ∞. The simulation results have verified this
approximation by checking the gaps between the derived
D2D success probability and the asymptotic case.

The asymptotic D2D success probability denoted as P∞s
is given by

P∞s =
M∑
m=1

cmvm∑M
i=1 civi + λBθBvm + cmρ∞mθIvm

. (56)

Similarly, we define x =
∑M
m=1 cm. However, in this

case, for given x = x̄, the active ratio ρ∞m is given by

ρ∞m = 1−
(

1 +
vm(λ0 − x̄)

3.5
∑M
i=1 vici

)−3.5

, m ∈M. (57)

Considering this sophisticated expression given in (57)
makes P∞s intractable, we introduce the following upper
bound for the active ratio ρm in each group as

ρm = 1−
(

1 +
vm(λ0 − x)

3.5ymin

)−3.5

, (58)

where ymin is the optimal objective value of the following
Problem (59).

min
c

y =
M∑
i=1

vici (59a)

s.t.
M∑
m=1

cm = x̄, (59b)

0 ≤ cm ≤ λm, for all m ∈M. (59c)

It is easy to see that Problem (59) is a linear programming,
which can be solved by the standard linear programming
method, such as the simplex method [45]. Since P∞s decreas-
es as ρ∞m increases, substituting ρm into (56) yields a lower
bound of P∞s as

P∞s =
M∑
m=1

cmvm∑M
i=1 civi + λBθBvm + cmρmθIvm

. (60)

Consequently, Problem P1 in this case is simplified into

P4 : max
c

U∞ =

(
λ0 −

M∑
i=1

ci

)
P∞s (61a)

s.t. 0 ≤ cm ≤ λm, for all m ∈M. (61b)
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The performance gap between Ps in (29) and P∞s , and the
gap between the optimal offloading gain of Problem P1
and the optimal U∞ of Problem P4 will be studied by
simulations.

By fixing x = x̄, Problem P4 is simplified to the follow-
ing Problem P4.1 and the optimal value of x can be found
by one-dimension search over interval [0, λ0].

P4.1 : max
c

M∑
m=1

cmvm
φm(c)

(62a)

s.t. x̄ =
M∑
i=1

ci, (62b)

0 ≤ cm ≤ λm, for all m ∈M, (62c)

where φm(c) =
∑M
i=1 civi + λBθBvm + ρmcmθIvm.

The objective of P4.1 is to maximize the summation
of fractional functions, so that Problem P4.1 is the non-
convex sum-of-ratios optimization [46], [47]. Dinkelbach
method is used to solve the optimization problem with
single fractional function, and it cannot be directly applied
here [48]. We first transform the Problem P4.1 into the
following equivalent form as

max
c,β

M∑
m=1

βm (63a)

s.t.
cmvm
φm(c)

≥ βm for all m ∈M, (63b)

x̄ =
M∑
i=1

ci, (63c)

0 ≤ cm ≤ λm, for all m ∈M. (63d)

Then, we have the following proposition.

Proposition 4. If (c∗,β∗) is the solution to Problem (63)
that satisfies the KKT conditions, then there exists u∗ =
[u∗1, · · · , u∗M ] such that c∗ is the optimal solution to following
problem for β = β∗ and u = u∗.

max
c

G(c) =
M∑
m=1

um(cmvm − βmφm(c)) (64a)

s.t. x̄ =
M∑
i=1

ci, (64b)

0 ≤ cm ≤ λm, for all m ∈M, (64c)

where β = [β1, · · · , βM ]. c∗ also satisfies the following equations
for β = β∗ and u = u∗.

um =
1

φm(c)
, cmvm − βmφm(c) = 0, ∀m = 1, · · · ,M.

(65)

Proof. Since φm(c) > 0, the constraint (63b) is equivalent to

cmvm − βmφm(c) ≥ 0. (66)

The Lagrangian for Problem (63) is

L(c,β,u, η) =
M∑
m=1

βm−

M∑
m=1

um(βmφm(c)− cmvm)− ζ(
M∑
i=1

ci − x̄), (67)

where {um} and ζ are the non-negative Lagrangian multi-
plexers associated with constraint (66) and (64b), respective-
ly.

Based on KKT optimality conditions, if (c∗,β∗) is the
optimal solution of Problem (63), then there exists u∗ and
ζ∗ such that

−
M∑
i=1

β∗i u
∗
i vi − u∗mβ∗mvmθI + u∗mvm − ζ∗ = 0, ∀m ∈M (68)

∂L
∂βm

= 1− u∗mφm(c∗) = 0, ∀m ∈M (69)

u∗m(β∗mφm(c∗)− c∗mvm) = 0, ∀m ∈M (70)
M∑
i=1

c∗i − x̄ = 0, (71)

c∗mvm − β∗mφm(c∗) ≤ 0, ∀m ∈M (72)
0 ≤ c∗m ≤ λm, ∀m ∈M (73)

u∗m ≥ 0,∀m ∈M. (74)

First of all, according to (69), u∗m > 0 for all m ∈ M due
to the fact that φm(c) > 0 for all m ∈ M. As a result, from
(69), (70) and (72), we have

u∗m =
1

φm(c∗)
, c∗mvm − β∗mφm(c∗) = 0. (75)

Equation (65) in Proposition 4 is then validated.
Furthermore, given β = β∗ and u = u∗, it can be

seen that (68), (71), (74) and (74) are the KKT conditions for
Problem (64). For um > 0, βm > 0,∀m ∈ M, Problem (64)
is a linear programming, which is convex. Consequently,
the KKT conditions are also sufficient conditions of the
optimal solution. In other words, c∗ is the optimal solution
to Problem (64) with β = β∗ and u = u∗.

According to Proposition 4, Problem (63) can be con-
verted to Problem (64) with parameters u and β. Problem
(64) is a linear programming with respect to c, which can
be solved by standard linear programming methods. There-
fore, we propose the following alternative algorithm to solve
Problem (63). Specifically, Algorithm 2 consists of two key
steps: The first step is to obtain c∗ = arg max

c
G(c) for given

u and β. The second step is to update the parameters u
and β according to the modified Newton method until the
convergence conditions are satisfied. Since Problem P4.1
is the sum-of-ratios optimization, the proposed Algorithm
2 converges to the solution satisfying KKT conditions as
proved in [49]. The detailed steps are summarized in Al-
gorithm 2, where

χm(um) = −1 + umφm(c), κm(βm) = βmφm(c)− cmvm.
(83)

In summary, with given x̄, the caching strategy c∗ can be
obtained by Algorithm 2. Then the one-dimension search
is adopted to find the optimal x∗ in the interval [0, λ0].
Consequently, a asymptotic caching strategy to Problem P1
can be obtained.

The complexity of Algorithm 2 is mainly dependent on
step 5, and all the other steps provide explicit expressions.
For simplicity, we also adopt gradient projection method to
solve the linear programming Problem (64), and the itera-
tion number required for step 5 to obtain an ε-neighborhood
of the optimal objective value is O(1/ε).
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Algorithm 2 Iterative Algorithm to solve Problem P4.1

1: Initialize c(0) such that it satisfies the constraints (64b),
(64c).

2: Set t = 0, ζ ∈ (0, 1) and ε ∈ (0, 1).
3: Initialize β(0),u(0) as

u(0)
m =

1

φm(c(0))
, (76)

β(0)
m =

c
(0)
m vm

φm(c(0))
, ∀m ∈M; (77)

4: repeat
5: Update c∗(t+1) = arg max

c
G(c|u(t),β(t));

6: Update u(t+1)
m and β(t+1)

m as

u(t+1)
m = u(t)

m − ζi
(t+1) χm(u

(t)
m )

φm(c∗(t+1))
,∀m ∈M,(78)

β(t+1)
m = β(t)

m − ζi
(t+1) κm(β

(t)
m )

φm(c∗(t+1))
,∀m ∈M;(79)

where i(t+1) is the smallest integer among i ∈
{1, 2, 3, · · · }satisfying

M∑
m=1

∣∣∣∣∣χm
(
u(t)
m − ζi

χm(u
(t)
m )

φm(c∗(t+1))

)∣∣∣∣∣
2

+
M∑
m=1

∣∣∣∣∣κm
(
β(t)
m − ζi

κm(β
(t)
m )

φm(c∗(t+1))

)∣∣∣∣∣
2

≤
(
1− εζi

)2( M∑
m=1

∣∣∣χm(u(t)
m )
∣∣∣2 +

M∑
m=1

∣∣∣κm(β(t)
m )
∣∣∣2) ;

(80)

7: Update t = t+ 1;
8: until the following condition are satisfied.

−1 + u(t)
m φm(c(t)) = 0, (81)

β(t)
m φm(c(t))− c(t)m vm = 0,∀m ∈M; (82)

Output: c∗(t), β(t), and u(t).

5 NUMERICAL RESULTS

In this section, we first validate the analytical results derived
in Section III by simulations. Then we study the perfor-
mance of Algorithm 2 and the impacts of different system
parameters on the offloading gain and caching strategy.
Unless specified otherwise, the following simulation param-
eters are used. The transmit power of users and BSs are set
to 15 dBm and 20 dBm, respectively. The density of BSs is
set to λB = 10−4 per m2. The offloading gain is evaluated
over a 100× 100 m2 area.

5.1 D2D Success Probability
In this subsection, we validate the accuracy of the derived
D2D success probability and its asymptotic approximation.
The impacts of the system parameters are also presented.

Fig. 2 compares the analytical expression of D2D success
probability Ps in (29) with the simulated ones, which are
averaged over 2000 random realizations. In Fig. 2, M = 3,
λm = 0.1,∀m ∈ M, B1 = 0.1, B2 = 0.3, B3 = 0.6, and
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Fig. 3. D2D success probability performance.

c = [0.05, 0.09, 0.08]. It is shown that the analytical result
Ps is very close to the simulated ones for all considered
cases, which validates the accuracy of Proposition 3. As
expected, the D2D success probability decreases with the
increasing SIR threshold and increases with the path-loss
exponent α. The reason can be explained as follows. Given
the caching density, it is more difficult to satisfy the more
strict SIR requirement when γth increases, and the received
interference at D2D receiver decreases when the path-loss
exponent α increases.

Fig. 3 illustrates the analytical results Ps and the sim-
ulated ones versus different user densities, where the user
densities of different groups are set to be identical as shown
in horizontal axis. As expected, the analytical results are
very close to the simulated results. In addition, a large D2D
transmission distance limit can notably improve the D2D
success probability when the user density is small, while
this benefit becomes inapparent with the large user density.
Moreover, although a high user density can obtain a high
D2D success probability, the D2D success probability in-
creases slowly for the high user density region. This implies
that a cost-effective caching strategy should be carefully
designed to obtain a large offloading gain.
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Fig. 4 illustrates the performance gap between D2D
success probability Ps in (29), and its asymptotic approx-
imation P∞s given in (56). The simulation parameters are
set to be the same as that of Fig. 2. As expected, the
performance gap between Ps and P∞s decreases with the
maximal D2D transmission distance R, since the asymptotic
approximation is obtained in the case of R→∞. When the
path-loss component α increases, the performance gap also
decreases due to the fact that the impact of transmission
distance decreases. This validates the feasibility of adopting
the asymptotic approximation P∞s given in (56). In addition,
it is shown that the performance gap between Ps and P∞s
also shrinks with the SIR threshold. The reason is that the
D2D success probability is mainly limited by the high SIR
requirement when α is large.

Fig. 5 illustrates the performance gap between Ps and
P∞s with respect to the user density, where the user densities
of different groups are set to be identical as shown in
horizontal axis. The other simulation parameters are set
to be the same as Fig. 3. Obviously, the performance gap
between Ps and P∞s vanishes when the maximal D2D trans-
mission distance R increases. Moreover, with given D2D
distance, increasing the user density can also decrease the
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Fig. 6. Convergence behavior of Algorithm 2.
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Fig. 7. The performance gap between optimal offloading gain U obtained
by Algorithm 1 and U∞ obtained by Algorithm 2.

performance gap. The reason is that the caching density also
increases with the user density, since the caching density is
set to cm = 0.5λm for all m ∈ M. Consequently, the D2D
success probability Ps keeps increasing with the caching
density and the impact of D2D transmission distance on Ps
is reduced. As the caching density increases, Ps converges
to P∞s , which also validates the accuracy of the asymptotic
approximation.

5.2 Offloading Gain

In this subsection, we investigate the offloading gain
achieved by proposed algorithms.

Fig. 6 shows the convergence behaviors of Algorithm
2 with a given caching summation x̄ = 0.02. In Fig.
6, for M = 2, the simulation parameters are set to be
λ1 = λ2 = 0.02, B1 = 0.1, B2 = 0.9, and for M = 3, λ1 =
λ2 = λ3 = 0.02, B1 = 0.1, B2 = 0.4, B3 = 0.5. The
optimal solution to Problem P4 for comparison is obtained
by brute force search, the path-loss exponent is set to α = 3,
and the SIR requirement is γth = 3 dB. As the formulated
problem is nonconvex, different initializations may lead to
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different local maximums, so that the impacts of initializa-
tion methods are also presented. In uniform initialization,
the caching strategy is initialized by the optimal caching
strategy achieved in unbiased case regardless of the trust
bias. In random initialization I and II, the initial caching
densities are randomly generated with

∑M
i=1 ci = 0.02.

Numerical results illustrate that Algorithm 2 always gen-
erates a nondecreasing sequence and converges to a fixed
point. Although different initializations slightly affect the
performance and the convergence speed, it is shown that
the proposed algorithm always converges to the optimal
value within limited number of iterations for all considered
cases. In the following simulations, we adopt the uniform
initialization method due to its stable convergence behavior.

Fig. 7 elaborates the performance gap between the of-
floading asymptotic gain U∞ obtained by Algorithm 2 and
the optimal offloading gain U obtained by Algorithm 1. In
Fig. 7, M = 2, and the simulation parameters are set to
be the same as that of Fig. 6. As expected, the performance
gap decreases with the maximal D2D transmission distance
R. It is observed that the offloading gain increases with user
density as more users are interested in the reference content.
In addition, when path-loss component α increases, the
offloading gain also increases due to a larger D2D success
probability as shown in Fig. 2. Moreover, the performance
gap between U∞ and U also increases as α increases. The
reason is that the performance gap is introduced by the
impact of R, which can be magnified by a larger path-
loss component α. Overall, the feasibility of adopting the
asymptotic case to approximate the original case has been
verified. Then, in the following simulation, the maximal
D2D distance is R = 15m due to its tiny gap with the
asymptotic approximation.

For the D2D offloading networks, the problem of maxi-
mizing the density of successful receptions (i.e., offloading
gain) is investigated in [8] without considering the user
preference and trust. The heterogeneous user preference is
incorporated in the caching strategy in [11] but using the hit
probability as an objective function. However, for the D2D
offloading system with the constraints of user preference
and trust, as stated in Section I, the considered caching
optimization problem to maximize the offloading gain has
not been studied. Therefore, to evaluate the performance of
the proposed algorithm, the following caching policies are
simulated for comparison:

• “OneUT”: This is a deterministic caching policy is
given in [8] for the one content case. Resulting from
the fact that impacts of social characteristics are ig-
nored, the approach in [8] suggests that the density of
”UT” approaches to zero and only one UT is enough
for a user group. Then, the caching density of each
group is set to be cm = δ, where δ is the searching
stepsize of the optimal user density in Algorithm 1.

• “Uniform”: This is the caching policy developed
in the unbiased case, and it can be viewed as an
extension of the caching approach in [11] consider-
ing multiple user groups with different interests, of
which the approach is adjusted for a fair comparison
by using the offloading gain as the objective function.

0.02 0.025 0.03 0.035 0.04

User density of group 1, 1

120

140

160

180

200

D
2D

 o
ffl

oa
d 

ga
in

 

Algorithm 1
Algorithm 2
Uniform
OneUT

Fig. 8. The impact of user density on the offloading gain, M=2.
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Fig. 9. The impact of trust bias on the offloading gain, M=2.

Fig. 8 illustrates the impact of user density on the of-
floading gains achieved by different algorithms. In Fig. 8,
M = 2, the user density of group 2 is 0.02 user per m2, the
maximal D2D distance isR = 15m, and the other simulation
parameters are same as those of Fig. 7. The offloading gain
increases with the user density λ1, as increasing numbers
of users are interested in the content. It is observed that the
asymptotic offloading gain achieved by Algorithm 2 well
matches the optimal offloading gain obtained by Algorithm
1. Also, the offloading gains achieved by the proposed
algorithms outperform the other algorithms, resulting from
the fact that social characteristics including the different
interests and trust biases are considered in the proposed
caching strategy. Moreover, the offloading gain achieved by
“Uniform” algorithm is larger than that of the “OneUT”
algorithm, since the different user interests are considered in
the “Uniform” algorithm. It is worth pointing out that the
performance gap increases with the user density λ1. This
implies that the proposed algorithm can well adapt to the
changes in system parameters and fully utilize the caching
resources to achieve a larger offloading gain.

In Fig. 9, the trust bias of group 1 denoted by B1 is
displayed on the x-axis, the trust bias of group 2 equals
1 − B1, λ1 = 0.04, λ1 = 0.02, and the other simulation
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Fig. 10. The impact of SIR threshold on the offloading gain, M=2.

parameters are same as those of Fig. 8. At the two ends of
the x-axis, the difference between the trust bias of group 1
and the trust bias of group 2 is the largest. It is observed
that the offloading gain is notably affected by the different
levels of trustworthiness among users, i.e., different bias
values. As the trustworthiness is neglected in the “Uniform”
caching policy and “OneUT” caching policy, the impact of
trustworthiness on the obtained offloading gain is obvious.
Moreover, when the difference of the trustworthiness be-
tween user groups increases, the offloading gains achieved
by these two algorithms degrade significantly. The optimal
offloading gain obtained by proposed Algorithm 1 matches
the asymptotic offloading gain achieved by Algorithm 2,
and they achieve larger offloading gains than the other two
caching strategies. However, the proposed algorithms can
well adapt to the changes in trust bias, and the degradation
of offloading gain is largely alleviated. This is due to the
fact that the social characteristics are fully exploited in the
design of the proposed caching strategy.

Fig. 10 shows the impact of SIR threshold on the offload-
ing performance. In Fig. 10, the simulation parameters are
set to be λ1 = 0.03, λ2 = 0.01, B1 = 0.1, B2 = 0.9, α = 3.
It can be seen that the D2D offloading gain decreases when
the SIR threshold γth increases, due to the decreasing D2D
success probability. As expected, the proposed algorithms
outperforms the other two caching strategies for all the
considered configurations. Moreover, we can see that the
performance gap decreases as the SIR threshold γth in-
creases. This is because as γth increases, the D2D success
probability decreases as shown in Fig. 2.

Fig. 11 shows the impact of path-loss component on
the offloading performance. In Fig. 11, γth = 3dB, and
the other simulation parameters are same as Fig. 10. When
the path-loss component α increases, the offloading gain
increases due to a increasing D2D success probability as
shown in Fig. 2. It is observed that the performance gaps
between the proposed Algorithm Moreover, it is interesting
to see that the performance gap keeps invariant in Fig. 11,
when the path-loss component changes. This implies that
the performance gap is mainly determined by the social
characteristics and the SIR threshold γth.
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Fig. 11. The impact of path-loss component on the offloading gain, M=2.
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Fig. 12. The impact of user density and trust bias on the caching density,
where M = 2, α = 3, λ2 = 0.1 and γth = 3 dB.

5.3 Caching Strategy

We investigate the impacts of user density and trust bias
on the caching density achieved by Algorithm 2 in Fig. 12.
For the impact of user density, it is observed that the caching
probability of group 1 increases with the density ratio λ1/λ2,
while the caching probability of group 2 decreases with the
density ratio λ1/λ2. This is due to that the relative density
of interested user in group 1 increases and the the relative
density of interested user in group 2 decreases, which shows
a positive correlation between the caching density and user
density. For the impact of association bias, the caching
probability of group 1 decreases with the bias ratio B1/B2,
while the caching probability of group 2 increases the bias
ratio B1/B2. Moreover, the caching density of group 1 is
larger than that of group 2 due to that B1 < B2, which
implies that the caching density is inversely proportional to
the bias value. Since URs always prefer to associate with
the group 2 due to its high association bias, a larger caching
density of group 2 will introduce more severer interference
than that of group 1. Accordingly, more contents should
be deployed to the groups with low trust bias values, to
increase the D2D success probabilities contributed by these
groups.

Fig 13 shows the impacts of the SIR threshold γth and
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Fig. 13. The impact of SIR threshold and path-loss component on the
caching density, where M = 2, λ1 = λ2 = 0.05 and B1/B2 = 10.

path-loss component α on the caching density. It is observed
that caching density of group 1 increases as γth and α
increases, while the caching density of group 2 decreases as
γth and α increases. The reason can be explained as follows.
Since B1 > B2 in Fig 13, the caching density of group 2
is larger than that of group 1, which also leads to larger
interference in group 2 than that in group 1. Since a larger
γth requires a larger received SIR, the caching density of
group 2 should decrease and that of group 1 should increase.
Besides, a larger α will reduce the impact of bias ratio
B1/B2 according to Proposition 3, so that the difference of
caching densities of differen groups reduces.

6 CONCLUSION

In this work, we considered the joint impact of social
characteristics and physical transmission conditions on the
D2D assisted content offloading performance. The caching
strategy was optimized to maximize the offloading gain,
which was defined as the offloaded traffic via D2D com-
munications. The D2D success probability was first derived,
of which the complicated expression made the formulated
problem nonconvex and difficult to solve. We first investi-
gated the optimal caching strategy for the unbiased case,
and then proposed a numerical algorithm to obtain the
global optimal caching strategy for the general case. To re-
duce complexity, a low-complexity iterative algorithm was
then proposed to obtain the asymptotic caching strategy.
Finally, by simulations, the derived D2D successful trans-
mission probability and its asymptotic approximation were
validated. Our proposed algorithm outperforms the existing
caching strategies in terms of offloading gain, and it can
well adapt to the changes of system parameters and wisely
utilize the caching resources. The obtained caching strategy
is jointly determined by the social characteristics and physi-
cal transmission conditions. A positive correlation is shown
between the caching density and the user density, but the
caching density is inversely proportional to the association
bias. When the dynamic nature of users is considered, D2D
offloading networks are facing new challenges. In addition,
the offloading gain can be improved by optimizing D2D

user association. These issues will be investigated in our
future work.
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