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Abstract—We jointly select the fronthaul links and optimize the
transmit precoding matrices for maximizing the energy efficiency
of a multiuser multiple-input multiple-output aided distributed
antenna system . The fronthaul link’s power consumption is taken
into consideration, which is assumed to be proportional to the
number of active fronthaul links quantified by using indicator
functions. Both the rate requirements and the power constraints
of the remote access units are considered. Under realistic power
constraints some of the users cannot be admitted. Hence, we
formulate a two-stage optimization problem. In Stage I, a novel
user selection method is proposed for determining the maximum
number of admitted users. In Stage II, we deal with the energy
efficiency optimization problem. First, the indicator function
is approximated by a smooth concave logarithmic function.
Then, a triple-layer iterative algorithm is proposed for solving
the approximated energy efficiency optimization problem, which
is proved to converge to the Karush-Kuhn-Tucker conditions
of the smoothened energy efficiency optimization problem. To
further reduce the complexity, a single-layer iterative algorithm is
conceived, which guarantees convergence. Our simulation results
show that the proposed user selection algorithm approaches
the performance of the exhaustive search method. Finally, the
proposed algorithms is capable of achieving an order of magni-
tude higher energy efficiency than its conventional counterpart
operating without considering link selection.

Index Terms—Distributed antenna system, fronthaul link se-
lection, user selection, MIMO, energy efficiency.

I. INTRODUCTION

Distributed antenna systems (DASs) are capable of en-
hancing the bandwidth efficiency, whilst improving the link
reliability [1], [2]. In a DAS, the remote access units (RAUs)
are spatially distributed in a cell and each RAU is connected to
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the central processing unit (CPU) through high-speed optical
fibers. The links between the CPU and the RAUs are usually
termed as fronthaul links. Through this distributed deployment,
the average distance between the users and the RAUs can be
significantly reduced, which leads to reduced transmit power.
At the same time, large-scale multiple-input multiple-output
(MIMO) systems have received extensive interests, since they
can mitigate the hostile channel effects, such as fast fading
[3]. However, deploying a large number of densely-packed
antennas results in correlated signals, which will significantly
limit the attainable system performance [4]. Hence, placing
the antennas sufficiently far apart is important for eliminating
their correlations.

The energy efficiency (EE) of wireless systems has attracted
substantial research attention [5] due to energy shortage and
greenhouse effects, and it is one of the key performance
metrics in next-generation mobile networks [6]. The EE is
usually defined as the ratio of the total power consumption to
the total capacity or in a reciprocal for us as the number of
successfully transmitted bits per Joule of energy consumption.
Recently, the EE of DASs has also been extensively studied.
But most of the existing literature has been predominantly
focused on power allocation for single-antenna aided DASs
[7]–[13]. Nevertheless, there are a few papers studying the
EE optimization problem of multiple-antenna assisted DASs
as well, which aimed for designing beamforming for the users
[14]–[16]. More specifically, Kim et al. [14] presented joint
beamforming and power allocation optimization for a single-
user multiple-input single-output (MISO) DAS, in which they
proved that - as expected - the optimal beam-directions should
be matched to the channel state information (CSI) and the
globally optimal power allocation was obtained by satisfying
the Karush-Kuhn-Tucker (KKT) conditions of the problem.
We then extended the solutions in [10] to the scenario, where
both the RAUs and the users are equipped with multiple
antennas for spatial multiplexing by additionally considering
rate constraints and RAU selection [15]. The EE optimization
problem of a multicast MISO DAS was studied by Ren et al. in
[16], where an iterative algorithm was proposed by alternately
optimizing the power allocation and beam-directions. Howev-
er, the authors of [14]–[16] focused their attention on single-
user or single-group scenarios, and the benefits of multiple
antennas have not been fully exploited, since multi-antenna
systems can simultaneously support multiple users for improv-
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ing the bandwidth efficiency. Recently, Yoon et al. [17] studied
the EE optimization problem for a dynamic time division
duplex (TDD) multiuser MISO DAS, where the downlink and
uplink beamforming weights are alternatively optimized. Yoon
et al. [17] directly applied the classic fractional programming
method to the EE function, although the denominator of the
EE function is non-convex. Hence, the convergence of this
algorithm cannot be guaranteed. Furthermore, Yoon et al.
[17] only considered the case, where each user is equipped
with a single antenna, which can be solved by the iterative
beamforming algorithm of Venturino et al. [18]. Unfortunately,
their iterative algorithm cannot be readily extended to the
scenario, where the users have multiple antennas.

Against this background, in this paper, we consider the EE
maximization problem of a multiuser MIMO DAS, where both
the RAUs and the users are equipped with multiple antennas.
In contrast to the centralized antenna systems (CAS), in a
DAS each user can adaptively select its serving RAUs for ad-
ditionally reducing the power consumption. More specifically,
if all RAUs are transmitting data for each user, the power
consumption of the fronthaul links may become excessive.
Additionally, the RAUs that are far away from the user
may contribute little to the user’s received power due to
the large path loss, yet they incur significant data delivery
power consumption on the fronthaul links. Thus, fronthaul
link selection constitutes an important issue to consider in the
EE maximization problem of a multiuser MIMO DAS. To the
best of our knowledge, the problem of fronthaul link selection
has not been considered in the EE maximization of a DAS,
although, it has been considered in papers that aim for mini-
mizing the network’s power consumption supported by a DAS
[19]–[22]. In these papers, the minimum power consumption
of the network is achieved when the users’ optimal rates are
equal to their minimum rate requirements, which simplifies
the analysis. Unfortunately, when maximizing the EE, the
optimal rates derived for the users are not necessarily equal
to their minimum rate requirements, which complicates the
analysis and needs further investigation. Moveover, the authors
of [19]–[22] assumed that each user is equipped with a single
antenna and the techniques developed in these papers cannot
be directly applied to the multi-antenna user case. The reason
is that in the single-antenna user case, the rate expression
can be transformed into a second-order cone programming
(SOCP) problem, which is a convex problem. By contrast,
the rate expression of the multi-antenna user scenario is more
complicated and hence cannot be transformed into an SOCP
problem. New techniques have to be developed to deal with
the multiple-antenna user case. Thus, we believe that this
is the first paper that considers fronthaul link selection in
maximizing the EE of a multiuser MIMO DAS.

The other avenue to improve the EE of the DAS is to
control the operating status of RAUs by switching off some
RAUs having a low traffic load. Some related contributions
can be found in [23]–[25]. Jiang et al. considered the EE
maximization problem of a simple MIMO point-to-point sys-
tem. Only a single data stream is transmitted with the aid
of simple maximal ratio transmission (MRT), while maximal
ratio combining (MRC) is applied at the transmitter and

receiver. Both an exhaustive search method and an antenna
ordering algorithm were proposed for maximizing the EE.
The total network power consumption minimization problem
was considered in [24] for a MISO multi-user C-RAN, and
EE maximizition was carried out in [25] for MISO single-
cell multiple-user networks, where both RAU selection and
antenna selection were considered. However, the RAU/antenna
selection method is different from our fronthaul link selection,
because when a RAU is swithed off, all the links supported
by this RAU will be disconnected. Hence, the beamforming
vectors at this RAU for all users will become zero vectors.
Hence, the RAU selection or antenna selection problems of
[24], [25] can be reformulated as a group sparsity technique
known from compression sensing in order to transform the
original integer optimization problem into a more readily
solvable problem. However, in this paper, when the link
spanning from a user to a RAU is switched off, the other users
can still be connected to this RAU. Hence, our optimization
problem cannot be formulated as a group sparsity structure
and thus the methods of [24], [25] cannot be adopted. In this
paper, we do not consider the RAU selection issue, since it
is impractical to switch off the RAUs and to wake up them
in a very short time [22]. The decision of the “on/off” status
of RAUs should be made on a longer time scale than that
considered in this paper. On the other hand, the data routing
or RAU-user association can be promptly changed, which is
considered in this paper. However, the algorithm proposed in
this paper is sufficiently general to incorporate the sleep mode
capability of RAUs, similarly to [20].

A. Other Related Works

Although the EE maximization problem has been exten-
sively studied for multiple-antenna systems other than the
DASs, the methods developed cannot be directly applied to
the problem studied in this paper. More specifically, the EE
optimization problem of MIMO broadcast channels (BCs) was
studied in [26], where the duality between the BC and the
multiple access channels (MAC) was exploited for transform-
ing the original optimization problem into a more tractable
problem. Unfortunately, due to the power constraints imposed
on the RAUs in DAS, the duality method cannot be readily
extended to the MIMO multiuser DAS scenario. He et al. [27]
studied the EE optimization problem of the multicell MISO
systems, and proposed a two-layer optimization scheme to
solve it. Then, they extended [27] to heterogeneous multicell
systems in [28] by incorporating the user-rate constraints.
However, the fronthaul link selection was not considered in
[28], and each user was assumed to be equipped with only a
single antenna. Furthermore, even though naturally the power
constraints and rate requirements are in conflict with each
other, the feasibility issues were not analyzed in [28], rather
it was always assumed that the original problem is feasible.
Transmit precoder matrices were optimized for maximizing the
EE of the family of MIMO interference channels in [29] under
rate constraints, where an iterative algorithm was proposed
for maximizing the lower bound of the EE. However, link
selection did not have to be considered in [29], since each user
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is served by a dedicated transmitter. Furthermore, the power
constraints at each transmitter were not considered. To check
the feasibility of the problem, a heuristic method based on the
interference alignment technique was proposed in [29] under
the assumption of having infinite transmit power, which is not
realistic. References [30] and [31] adopted the interference
alignment technique and the zero-forcing method to eliminate
the multiuser interference, respectively. Then, the original
beam-vector optimization problems were transformed into a
more tractable scalar power allocation optimization problem.
Since the beam directions in [30] and [31] are heuristically
chosen and not jointly optimized with the power allocation,
the algorithms developed in [30] and [31] will suffer from a
substantial EE loss. Furthermore, neither the feasibility nor the
link selection issues were addressed in [30] and [31].

B. Main Contributions

Again, we consider the EE maximization problem of a
multiuser MIMO DAS by jointly selecting fronthaul links and
optimizing the precoding matrices, subject to the users’ data
rate requirements and per-RAU power constraints. Due to the
power constraints, not all users’ rate requirements may be
satisfied. Hence, some users should be removed or rescheduled
for the next transmission time slots. We solve this optimization
problem by decomposing it into a two-stage optimization
problem: in Stage I, the user selection is optimized, by finding
the largest subset of users that can be admitted into the net-
work. This deals with the feasibility issue of the optimization
problem, which was not considered in [7]–[17]; in Stage II, the
EE optimization problem is dealt with by jointly optimizing
the link selection and the transmit precoding (TPC) matrices
for the users selected in Stage I, where each user is equipped
with multiple antennas. To the best of our knowledge, there
is no contribution in the open literature, dealing with the EE
maximization problem, not even for a single-antenna aided
user scenario in conjunction with fronthaul link selection.
The main reason is that the associated optimization problem
cannot be transformed into an SOCP problem for solving
the power minimization problem. Specifically, for the power
minimization problem, the optimal rate of each user is equal
to its specific rate requirement, which can be transformed
to an SOCP problem. By contrast, for the EE maximization
problem, the optimal rate is generally not equal to the rate
requirement, which hence cannot be transformed into an SOCP
problem. Actually, the EE maximization may be deemed to be
reminiscent of the rate maximization problem, which has been
proved to be NP-hard [32].

The main contributions of this paper are summarized as
follows:

1) In Stage I, a beneficial user selection algorithm is
proposed for determining the maximum number of users
that can be supported. In each iteration of the algorithm,
we solve an alternative problem with the aid of several
additional auxiliary variables. This alternative problem
is always feasible and the auxiliary variables can be
regarded as the admission indicators of the users. By
replacing the rate expression with its lower bound, an

iterative so-called block descent algorithm is proposed
for solving this alternative problem. In each iteration of
the algorithm, the optimal auxiliary variables and pre-
coder matrices are obtained in closed form by employing
the Lagrangian dual method. The algorithm is formally
shown to converge.

2) In Stage II, we first approximate the indicator function
by a smooth concave logarithmic function, and then con-
ceive a pair of algorithms for solving the approximated
EE optimization problem, namely, a triple-layer and a
reduced-complexity single-layer iterative algorithm. We
will show that these two algorithms have almost the
same performance, and they have a significantly higher
EE than the existing rate maximization method, the
power minimization method and the EE maximization
method operating without link selection. Specifically, in
some cases the proposed algorithms achieve an order of
magnitude higher EE than the existing methods.

The remainder of this paper is organized as follows. Section
II introduces the system model, including the user selection
problem of Stage I and the EE maximization problem of Stage
II. Section III considers the user selection algorithm, while
Section IV develops the iterative triple-layer and single-layer
algorithms to solve the EE maximization problem. Our simu-
lation results are provided in Section V and our conclusions
are drawn in Section VI.

II. SYSTEM MODEL

A. System model

Consider the downlink of a single-cell distributed antenna
system (DAS) relying on I RAUs jointly serving K users,
where each RAU has M antennas and each user has N
antennas. Let us denote the set of RAUs and users as I =
{1 · · · , I} and U = {1, · · · ,K}, respectively. As shown in
Fig. 1, we assume that all the RAUs are connected to the
central processing unit (CPU) through a high speed fiber-optic
fronthaul and all the user data and channel state information
(CSI) are available at the CPU.

Let S =
{
u1, · · · , u|S|

}
⊆ U represent the subset of users

that are selected for transmission in the DAS. The number of
data streams transmitted to each user k ∈ S , is denoted by d,
where d satisfies d≤min {MI,N}. Let Vi,k ∈ CM×d denote
the TPC matrix used by the ith RAU to transmit the data vector
sk ∈ Cd×1 to user k, with E

[
sks

H
k

]
= Id. Then we introduce

a network-wide TPC matrix Vk=
[
VH

1,k,V
H
2,k, · · · ,VH

I,k

]H
∈

CMt×d for each user k ∈ S, where Mt = MI .
Upon using the linear TPC matrices at all the RAUs, the

signal received by user k, denoted as yk ∈ CN×1, is given by

yk = HkVksk +
∑

j∈S,j ̸=k

HkVjsj + nk, (1)

where Hk ∈ CN×Mt the CSI matrix representing the links
between all the RAUs and user k, nk denotes the noise at
user k, which is an additive Gaussian noise vector subject
to CN

(
0, σ2

kIN
)
. We assume that the different users have

independent data and receiver noise processes.
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Fig. 1. Example of DAS with six RAUs and four users. Each user only
selects its nearby RAUs for transmission, which is named link selection. In
this example, user 1 selects link 1 and link 4, user 2 selects link 2 and link
5, user 3 selects link 2 and link 3, user 4 selects link 3, link 5 and link 6.

Assuming single-user detection at each user, the achievable
rate of user k (nat/s/Hz) can be written as [33]

Rk(V) = log
∣∣I+HkVkV

H
k HH

k J−1
k

∣∣ , (2)

where Jk =
∑

j ̸=k,j∈S HkVjV
H
j HH

k + σ2
kI is the

interference-plus-noise covariance matrix of user k, and V =[
VH

1 ,VH
2 , · · · ,VH

K

]H ∈ CMtK×d. Each user k, k =
1, · · · ,K, should satisfy its rate requirement Rk,min, which
is formulated as:

Rk(V) ≥ Rk,min, ∀k ∈ S. (3)

To solve our EE optimization problem, the total power
consumption of the DAS should be considered, which mainly
includes the transmit power consumption of the RAUs, the
fronthaul link power required for transmitting data to the users
and the signal processing power consumption of the CPU.
Hence, the total power consumption is modeled as

Ptotal(V) = PTr(V) + PC + PF(V), (4)

where PTr(V) denotes the total transmit power of RAUs given
by PTr (V) =

∑
i∈I
∑

k∈S ∥Vi,k∥2F , where ∥·∥F represents
the Frobenius norm, PC denotes the total fixed power con-
sumption of the DAS system that includes both the circuit
power consumption at the RAUs and the signal processing
power consumption at the CPU. Finally, PF (V) denotes the
fronthaul power consumption, which is proportional to the
number of active links [19] and it is given by

PF (V) =
∑
i∈I

∑
k∈S

ε
(
∥Vi,k∥2F

)
Pfh, (5)

with Pfh being the fronthaul power required for forwarding
data to each user at each fronthaul link and ε(·) is the link-
selection indicator function defined as

ε (x) =

{
1, if x > 0,
0, otherwise.

(6)

B. Problem formulation

In practical systems, each RAU has its own power constrain-
t. Due to this kind of constraints, the DAS may not always be
able to support all the users’ transmission. As a result, some
users should be removed or rescheduled for transmission on

the other orthogonal slots. Thus, we propose to solve a two-
stage optimization problem. The first stage finds the largest
subset of users that can be supported by the DAS. The second
stage optimizes the TPC matrices for maximizing the energy
efficiency of the DAS for the users selected during the first
stage.

Specifically, the optimization problem in Stage I can be
formulated as

max
V,S⊆U

|S| (7a)

s.t. Rk(V) ≥ Rk,min, ∀k ∈ S, (7b)∑
k∈S

∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (7c)

where Pi,max is the power limit of the ith RAU.
In the second stage, we aim for jointly selecting the active

links for the users selected during Stage I and optimize
the TPC matrices for maximizing the energy efficiency of
the DAS system, which is defined as the ratio of the sum
rate to the total power consumption, while guaranteeing all
RAUs’ power constraints and all the selected users’ minimum
rate requirements. The optimization problem of Stage II is
formulated as follows:

max
V

∑
k∈S⋆ Rk(V)

Ptotal (V)
(8a)

s.t. Rk(V) ≥ Rk,min, ∀k ∈ S⋆, (8b)∑
k∈S⋆

∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (8c)

where S⋆ is the optimal solution found during Stage I.
The user selection problem may be viewed as a combinato-

rial optimization problem, which is NP-hard. Additionally, the
non-smooth link-selection indicator functions in the objective
function (OF) of the optimization problem in Stage II makes
the problem also NP-hard. In the following two sections, we
propose a pair of efficient algorithms for solving the above
two optimization problems.

III. STAGE I: USER SELECTION ALGORITHM

In this section, we propose a novel user selection algorithm
for maximizing the number of admitted users. Inspired by
Matskani et al. [34], we construct the following optimization
problem for a given subset of users S:

min
{αk}k∈S ,V

∑
k∈S

(αk − 1)
2 (9a)

s.t. Rk(V) ≥ α2
kRk,min, ∀k ∈ S, (9b)∑

k∈S
∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (9c)

where {αk}k∈S represent the introduced auxiliary variables.
Note that the problem in (9) is always feasible. It can be seen
that the optimal αk cannot be larger than one. This can be
readily proved by the method of contradiction. On the other
hand, user k can only be admitted if the optimal αk is equal
to one. By setting as many αk values to ones as possible, the
number of admitted users is maximized. It is worth noting that
if all the αk’s are equal to ones, then all the users in S can
be admitted to the DAS.
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Based on the above analysis, we formally state our user
selection procedure in Algorithm 1 to solve the problem in (9).
The main core of the user selection algorithm is an iterative
procedure, where in each iteration the user associated with the
least αk < 1 will be removed until all the optimal αks become
equal to ones. The intuition behind removing the user having
the lowest αk is that this user has the largest discrepancy with
respect to its target rate and more resources will be required
for satisfying this user’s rate requirement. Recall that there
is a total of K users. For the worst case scenario, when no
user can be supported, Problem (9) will be solved K times.
Hence, the number of times we have to solve Problem (9)
increases linearly with K. By contrast, for the exhaustive
search method that searches all feasible sets of users and
selects the largest one, the total number of solving Problem
(9) increases exponentially with K, which has a much higher
complexity than Algorithm 1. However, we will demonstrate
by simulations that the performance gain of the exhaustive
search method over the proposed algorithm is marginal.

Algorithm 1 User Selection Algorithm
1: Initializing the set of selected users S = {1, . . . ,K};
2: With the user candidate set S, solve Problem (9) by using

the block descent algorithm of Subsection III-A to obtain
{αk}k∈S and V.

3: If αk = 1,∀k ∈ S , generate the output V and set S∗=S
for the initialization of Stage II, then terminate; Otherwise,
find k∗=argmink∈S αk, remove user k∗ by updating S =
S\k∗ and go to step 2.

A. Algorithm to solve Problem (9)

Without loss of generality, it is assumed that S is given by
S= {1, · · · , S}, where S denotes the number of selected users.
To solve Problem (9), we first employ the weighted minimum
mean square error (WMMSE) method [35] to transform the
rate expression into a more tractable form. Then, the Lagrange
method [36] is invoked for obtaining the closed-form of the
TPC matrices.

More specifically, the linear receiver filter Uk ∈ CN×d is
invoked for decoding the received signal vector of user k,
which yields

ŝk = UH
k yk,∀k ∈ S. (10)

By using the assumption that the signal vectors sk and noise
vectors nk are independent, the mean square error (MSE)
matrix at the kth user can be calculated as

Ek =Es,n

[
(̂sk − sk) (̂sk − sk)

H
]

=
(
UH

k HkVk − Id
) (

UH
k HkVk − Id

)H
+

∑
j ̸=k,j∈S

UH
k HkVjV

H
j HH

k Uk + σ2
kU

H
k Uk. (11)

By introducing a set of auxiliary matrices {Wk ≽ 0}, we
define the following functions

hk (V,Uk,Wk)=log |Wk|−Tr (WkEk)+d,∀k ∈ S. (12)

Based on the above definitions, we provide the following
lemma, whose proof can be found in [35].

Lemma 1: We have the following results:

1) Given any two matrices of V, Uk and Wk,
hk (V,Uk,Wk) is a concave function of the remaining
matrix.

2) When the TPC matrices V are fixed, the data rate
Rk(V) in (2) is lower-bounded by hk (V,Uk,Wk), for
any Uk,Wk. i.e., we have:

Rk(V) ≥ hk (V,Uk,Wk) , ∀Uk,Wk ≽ 0;

3) Given V, consider the following problem

max
Uk,Wk≽0

hk (V,Uk,Wk) ; (13)

The optimal Uk and Wk that solves the maximization
problem in (13) are given by

U⋆
k =

 K∑
j=1

HkVjV
H
j HH

k + σ2
kI

−1

HkVk, (14)

W⋆
k = E⋆−1

k , ∀k ∈ S, (15)

where E⋆
k is obtained by inserting U⋆

k into user k’s MSE
in (11), yielding

E⋆
k=Id−VH

k HH
k

 K∑
j=1

HkVjV
H
j HH

k +σ2
kI

−1

HkVk.

(16)
Furthermore, we have

hk(V,U⋆
k,W

⋆
k) = Rk(V). (17)

�
By adopting Lemma 1, the non-convex rate constraints in

(9b) of the original Problem (9) can be effectively handled.
Specifically, by replacing the rate expression in (9b) with its
lower-bound hk (V,Uk,Wk), we have the following opti-
mization problem

min
{αk}k∈S ,V,U,W

∑
k∈S

(αk − 1)
2 (18a)

s.t. hk (V,Uk,Wk) ≥ α2
kRk,min, ∀k ∈ S, (18b)∑

k∈S
∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (18c)

where U and W are the collection of matrices Uk, ∀k ∈ S
and Wk, ∀k ∈ S, respectively.

By combining the first conclusion of Lemma 1 and the fact
that α2

kRk,min,∀k is a convex function of αk, ∀k, the con-
straints (18b) are convex when fixing U and W. Hence, given
U and W, Problem (18) is a convex optimization problem
constructed for the TPC V, since the OF in (18) is a convex
function and the feasible set is a convex set. Then, given the
TPC V, the auxiliary matrices U and W can be updated
by using (14) and (15). The above observations motivate the
application of the block coordinate descent method for solving
Problem (18).
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Given U and W, Problem (18) becomes

min
{αk}k∈S ,V

∑
k∈S

(αk − 1)
2 (19a)

s.t.
∑
j∈S

Tr
(
VH

j HH
k UkWkU

H
k HkVj

)
−

Tr
(
WkU

H
k HkVk

)
− Tr

(
VH

k HH
k UkWk

)
+ α2

kRk,min ≤ tk, ∀k ∈ S, (19b)∑
k∈S

Tr
(
VH

i,kVi,k

)
≤ Pi,max, ∀i ∈ I, (19c)

where the MSE expression in (11) is substituted into the first
set of constraints in Problem (18), tk = log |Wk| + d −
Tr (Wk)− σ2

kTr
(
UH

k UkWk

)
.

As argued above, Problem (19) is a convex optimization
problem. Additionally, since the power constraints of all RAUs
are positive, i.e, we have Pi,max > 0, ∀i ∈ I, Slater’s
condition [36] is satisfied for Problem (19). Hence, the gap
between Problem (19) and its dual problem is zero [36]. In
the following, we derive the closed-form solution of Problem
(19) by using the Lagrange dual method. Specifically, by
appropriately rearranging the terms, the Lagrangian function of
Problem (19) is given by (20) at the top of the next page. where
λ = {λ1, · · · , λS} and µ = {µ1, · · · , µI} are the Lagrangian
multipliers associated with the first and second constraint sets
of problem (19), respectively, and G is given by

G =
∑
j∈S

λjH
H
j UjWjU

H
j Hj +

∑
i∈I

µiBi,

with Bi formulated as

Bi = diag

0, · · · , 0,︸ ︷︷ ︸
(i−1)M

1, · · · , 1,︸ ︷︷ ︸
M

0, · · · , 0︸ ︷︷ ︸
(I−i)M

 . (21)

Then the dual function of Problem (19) is given by

g(λ,µ) = min
V,α
L (V,α,λ,µ) , (22)

where α = {α1, α2, ..., αS}, and L (V,α,λ,µ) is given
in (20). Naturally, each constraint in (19b) must be met
with equality at the optimum point. Then, according to the
complementary slackness condition, the optimal λ must be
positive. As a result, the globally optimal solution to Problem
(22) can be calculated as:

αk =
1

1 + λkRk,min
,Vk = λkG

−1HH
k UkWk, ∀k ∈ S.

(23)
Substituting it into Problem (22) yields

g(λ,µ) =
∑
k∈S

λkRk,min

1 + λkRk,min
−
∑
k∈S

λkck −
∑
i∈I

µiPi,max

−
∑
k∈S

λ2
kTr

(
WH

kU
H
k HkG

−1HH
k UkWk

)
. (24)

The optimal λ and µ can be obtained by solving the dual
problem of (19), which is given by

max
{λk>0,∀k∈S},{µi≥0,∀i∈I}

g(λ,µ). (25)

Fortunately, the OF of Problem (25) is differentiable, hence
classical descent algorithms such as the gradient descent
method [36], [37] can be applied for solving it of a low
computational complexity. The details are however omitted
for simplicity.

Based on the above analysis, the block descent algorithm
conceived for solving Problem (18) is given in Algorithm 2.
Its convergence is guaranteed in the following theorem.

Theorem 1: The block descent algorithm is guaranteed to
converge.

Proof: The main philosophy of the proof is to prove that in
each iteration of the algorithm, the OF value is non-increasing.
For more details, please see Appendix A. �

Algorithm 2 Block Descent Algorithm
1: Initialize iterative number n = 1, the maximum number

of iterations nmax, any feasible precoding matrices V(0).
With fixed V(0), compute U(0) and W(0) by using (14)
and (14);

2: With U(n−1) and W(n−1), update {α(n)
k }k∈S and V(n)

by using the Lagrange dual method;
3: Update U(n) and W(n) as in (14) and (15) with V(n);
4: If n < nmax, set n = n+ 1 and go to step 2; Otherwise,

output V(n) and {α(n)
k }k∈S , terminate;

B. Complexity analysis

In this section, we provide our complexity analysis of the
block descent technique of Algorithm 1. In each iteration of
Algorithm 2, the complexity is dominated by the computation
of precoding matrices V(n) by using the Lagrange dual
method. In each iteration of the Lagrange dual method, the
complexity is dominated by the computation of V(n)

k in (23).
Let us denote the number of remaining users as S, when
executing Algorithm 2. For any two matrices X ∈ Cm×n,Y ∈
Cn×p, the calculation of XY involves a complexity on the
order of O (mnp) [36]. Generally, the number of data streams
is much smaller than the product of the number of RAUs and
the number of transmit antennas at each RAU, i.e., we have
d≪MI . Hence, the computational complexity of matrix G is
on the order of O

(
SM2I2d

)
. According to [36], the inversion

of a (l × l)-element matrix has a complexity on the order of
O
(
l3
)
. Hence, the complexity of computing V

(n)
k in (23) is

on the order of O
(
M3I3

)
. Since V

(n)
k should be calculated

for S users, the overall complexity of each iteration of the
Lagrange dual method is on the order of O

(
SM3I3

)
. Given

a total of (S + I) dual variables, the number of iterations
required for ellipsoid methods to converge is on the order of
O
(
(S + I)

2
)

[38]. Hence, the total complexity of Algorithm

2 is on the order of TAlg2 = O
(
tAlg2(S + I)

2
SM3I3

)
, where

tAlg2 denotes the average number of iterations required by
Algorithm 2. It will be shown in the Simulation Section that
Algorithm 2 always converges within 10 iterations for any
simulation setups.

To provide a clear view of the main mathematical manipu-
lations, we also post the associated flow chart in Fig. 2, which
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L (V,α,λ,µ) =
∑
k∈S

[
Tr
(
VH

k GVk

)
−Tr

(
λkWkU

H
k HkVk

)
−Tr

(
λkV

H
k HH

k UkWk

)]
+
∑
k∈S

(αk − 1)
2
+
∑
k∈S

λkα
2
kRk,min −

∑
k∈S

λktk −
∑
i∈I

µiPi,max, (20)

Stage I

(User Selection)

Stage II

(EE Maximization)

Step 1: Construct Problem (9)

Step 2: Deal with rate expressions by using WMMSE

Step 3: Solve TPC by using the Lagrange dual method

Step 1: Approximate the indicator function as a   

            concave exponential function

Step 3: Deal with the fractional OF by using

            Dinkelbachd s method

Step 2: Deal with the rate expression by using WMMSE

Step 4: Solve TPC by using the Lagrange dual method

Fig. 2. The main steps and methodologies involved in Stage I and Stage II.

shows the three main techniques of Stage I and the four steps
of Stage II.

IV. STAGE II: ALGORITHMS TO SOLVE PROBLEM (8)
In this section, we first propose a triple-layer iterative algo-

rithm to solve Problem (8) for the set of users S⋆ selected in
Stage I. Then, to further reduce the complexity, we propose a
single-layer iterative algorithm, which guarantees convergence.
For notational simplicity, the superscript in S⋆ is omitted and
the selected users are given by S= {1, · · · , S}.

A. Triple-layer Iterative Algorithm

In this subsection, we propose a triple-layer iterative algo-
rithm to solve Problem (8), where the first layer deals with the
nonsmooth nature of the link selection indicator function, the
second layer deals with the nonconvex rate expression, while
the third layer deals with the fractional form of the OF.

The non-smooth indicator function in the OF of Problem (8)
makes the optimization problem a challenging one to solve. A
potential solution is to invoke the exhaustive search method,
where one checks all possible combination of selected links
and opts for the specific set of links yielding the maximum
EE. However, the total number of links is IK, thus the
computational complexity is on the order of O

(
2IK

)
, which

is unaffordable for practical applications. In the following, we
propose a low-complexity algorithm to handle our non-smooth
indicator function by approximating it as a concave continuous
smooth function, denoted by f(x). In particular, we consider
the following four commonly used smooth concave functions
[39], [40]:

fδ(x) =


x

x+δ , fractional− function
2
πarctan

(
x
δ

)
, arctan−function

1− exp
(
−x

δ

)
, exp−function

log(x/δ+1)
log(1/δ+1) , log−function.

The evolution of the different functions is shown in Fig. 3.
It is seen from this figure that the first three functions have

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

x

f
(x
)

logfunc

expfunc

arctanfunc

fracfunc

Fig. 3. Approximating the indicator function by smooth functions, where
we set δ = 10−4.

better approximation accuracy than the log-function. However,
the log-function is much more smooth than the other three
functions.

If we choose a sufficiently small δ and replace the indicator
functions in the OF of Problem (8) with function fδ(x), the
original EE optimization Problem (8) can be approximated as

max
V

ẼE (V) =

∑
k∈S Rk(V)

P̃total (V)
(26a)

s.t. Rk(V) ≥ Rk,min, ∀k ∈ S, (26b)∑
k∈S
∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (26c)

where P̃total (V) is given by

P̃total (V)=
∑
k∈S

Tr(VkV
H
k )+Pfh

∑
k∈S

∑
i∈I

fδ

(
∥Vi,k∥2F

)
+PC .

(27)

However, the denominator of (26a) is still concave. In order
to support the application of fractional programming, we
should replace these concave functions with their first-order
approximations. More specifically, given an arbitrary point{
V̄i,k, ∀i, k

}
, due to the concavity of the function fδ (x), we

have

fδ

(
∥Vi,k∥2F

)
≤fδ

(∥∥V̄i,k

∥∥2
F

)
+

fδ
′
(∥∥V̄i,k

∥∥2
F

)(
∥Vi,k∥2F −

∥∥V̄i,k

∥∥2
F

)
, (28)

where fδ
′
(∥∥V̄i,k

∥∥2
F

)
denotes the first derivative of fδ (x) at

x =
∥∥V̄i,k

∥∥2
F

.
Then we substitute the right hand side of (28) for the

function fδ (x) in the denominator of the OF in (26), and
consequently Problem (8) can be successively approximated
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by solving a series of the following optimization problems

max
V

EE(V|V̄) =

∑
k∈S Rk(V)

P̄total

(
V|V̄

) (29a)

s.t. Rk(V) ≥ Rk,min, ∀k ∈ S, (29b)∑
k∈S
∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (29c)

where P̄total

(
V|V̄

)
is given by

P̄total

(
V|V̄

)
=
∑
k∈S

Tr(VkV
H
k ) +

∑
k∈S

∑
i∈I

ω̄i,k ∥Vi,k∥2F + γ̄

with

ω̄i,k = Pfhfδ
′
(∥∥V̄i,k

∥∥2
F

)
,

γ̄=Pfh

∑
k∈S

∑
i∈I

(
fδ

(∥∥V̄i,k

∥∥2
F

)
−fδ ′

(∥∥V̄i,k

∥∥2
F

)∥∥V̄i,k

∥∥2
F

)
+PC .

(30)
Note that P̄total(V̄|V̄) = P̃total

(
V̄
)
.

However, Problem (29) still remains nonconvex due to
the nonconvex rate expression. To handle this challenge, the
relationships between the WMMSE and the rate expression
given in Lemma 1 is applied again. Based on Lemma 1, we
introduce the following optimization problem

max
V,U,W

∑
k∈S hk (V,Uk,Wk)

P̄total(V|V̄)
(31a)

s.t. hk (V,Uk,Wk) ≥ Rk,min, ∀k ∈ S, (31b)∑
k∈S

∥Vi,k∥2F ≤ Pi,max, ∀i ∈ I, (31c)

where hk (V,Uk,Wk) is defined in (12).
The following theorem establishes the equivalence between

Problem (29) and Problem (31).
Theorem 2: Problem (29) is equivalent to Problem (31) in

the following sense:
1) Denote the solution of Problem (31) as (U⋆,V⋆,W⋆)

and let λ⋆ =
{
λ⋆
u1
, · · · , λ⋆

uS

}
,µ⋆ = {µ⋆

1, · · · , µ⋆
I} be

the corresponding optimal non-negative Lagrange multipliers
associated with the user-rate and per-RAU power constraints,
respectively. Then the optimal (U⋆,W⋆) must be given in (14)
and (15). In addition, V⋆ satisfies the Karush-Kuhn-Tucker
(KKT) of Problem (29) with the Lagrange multipliers given
by λ⋆ and µ⋆.

2) Let V⋆ be the solution of Problem (29) and λ⋆ ={
λ⋆
u1
, · · · , λ⋆

uS

}
,µ⋆ = {µ⋆

1, · · · , µ⋆
I} be the corresponding

non-negative optimal Lagrange multipliers associated with the
rate and power constraints, respectively. Define (U⋆,W⋆) as in
(14) and (15), then (U⋆,V⋆,W⋆) satisfies the KKT conditions
of Problem (31) with the Lagrange multipliers given by λ⋆ and
µ⋆.

Proof: Please see Appendix B. �
The fact that Problems (29) and (31) are equivalent, as stated

in Theorem 2, means that the solution of Problem (29) can be
obtained by solving Problem (31). If the solution of Problem
(31) is unique, the solution is also the globally optimal solution
of Problem (29). In the following, we focus our attention on
the more tractable Problem (31).

Similarly to Stage I, the block coordinate decsent method of
[37] is applied to solve Problem (31). Given the TPC matrices

V, the optimal solution of U and W are given by (14) and
(15). Given U and W, the numerator and denominator in
the OF of Problem (31) are concave and convex with respect
to (w.r.t.) V respectively, and the available power region is
convex w.r.t. V. Hence, it is a standard fractional programming
problem, for which the globally optimal solution can be
obtained through the following lemma. The corresponding
proof is given in [41].

Lemma 2: Let us define the function G(η) as 1

G(η)
∆
= max

V∈W

∑
k∈S

hk (V)− ηP̄total(V|V̄), (32)

where we have:

W

=

{
V|hk (V)≥Rk,min, ∀k∈S,

∑
k∈S

∥Vi,k∥2F≤Pi,max, ∀i∈I

}
.

(33)

For a fixed η, the solution of Problem (32) is denoted as
V⋆(η). Then, solving Problem (31) with the aid of the given
U and W is equivalent to finding the root of the equation

G(η⋆)
∆
=
∑

k∈S
hk (V

⋆(η⋆))−η⋆P̄total

(
V⋆(η⋆)|V̄

)
= 0 (34)

and V⋆(η⋆) is the optimal solution of Problem (31), when U
and W are given. �

Lemma 2 gives us insights into solving Problem (31) for a
given U and W. We should firstly solve Problem (32) with a
given η, and then adopt Dinkelbach’s method [41] to update
η as follows:

η(m) =

∑
k∈S hk

(
V(m)

)
P̄total(V(m)|V̄)

, (35)

where m is the iteration index. Problem (32) associated with
a given η constitutes a convex optimization problem, and the
globally optimal solution can again be found by the Lagrange
dual method [36] as in Stage I, the details of which are omitted
owing to space-economy.

Based on the above analysis, the triple-layer iterative al-
gorithm is summarized in Table I, where the initial V̄ is
set as a feasible

{
V

(0)
i,k , ∀i, k

}
output of Stage I and then

it is updated by the previous iteration’s solution. Next, we
show that each layer in the triple-layer algorithm is guaranteed
to converge. For the third layer, since the numerator and
the denominator of the OF of Problem (31)2 are concave
and convex functions, respectively, Dinkelbach’s method is
guaranteed to converge to the globally optimal solution [41].
According to Theorem 2, the second layer is guaranteed to
converge to the KKT conditions of Problem (29). In the
following theorem, we prove the convergence of the first
layer’s iterative process, hence equivalently the triple-layer
iterative algorithm is guaranteed to converge.

Theorem 3: The triple-layer iterative algorithm is guaran-
teed to converge to the KKT conditions of Problem (26).

Proof: Please see Appendix C. �
1Since we focus our atttention on the solution of V with given U and W,

we omit the dependency of hk (U,V,W) on U and W, and hk (V) is
short for hk (U,V,W).

2Both U and W are given.
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TABLE I
A TRIPLE-LAYER ITERATIVE ALGORITHM TO SOLVE PROBLEM (8)

First Layer Initializations:
Initialize a small δ, error tolerance ε1, feasible {V(0)

i,k ,∀i, k} output

from Stage I, calculate ω̄
(0)
i,k , γ̄

(0) as in (30) and the OF of Problem
(26), i.e., ẼE

(
V(0)

)
.

First Layer Iterations: n1 = 1, 2, · · ·
1) Second Layer Initializations:

Set V(n1−1,0) = V(n1−1), error tolerance ε2, calculate the
objective value of Problem (29),i.e., EE(V(n1−1,0)|V(n1−1)),
calculate U(n1−1,0) and W(n1−1,0) by using (14) and (15).
Second Layer Iterations: n2 = 1, 2, · · ·

1-1) Third layer Initializations:
Set V(n1−1,n2−1,0) = V(n1−1,n2−1), error tolerance ε3,
calculate η(n1−1,n2−1,0) by using (35).
Third Layer Iterations: n3 = 1, 2, · · ·

1-1-1) Compute the optimal solution V⋆(η(n1−1,n2−1,n3))

to Problem (32) with η = η(n1−1,n2−1,n3−1);
1-1-2) Update η(n1−1,n2−1,n3) according to (35) with

V⋆(η(n1−1,n2−1,n3)).

1-1-3) If

∣∣∣η(n1−1,n2−1,n3)−η(n1−1,n2−1,n3−1)
∣∣∣

η(n1−1,n2−1,n3−1) ≤ ε3,

let V(n1−1,n2) = V⋆
(
η(n1−1,n2−1,n3)

)
and

stop, otherwise, go to step 1-1-1);
1-2) Update U(n1−1,n2) and W(n1−1,n2) by using (14) and

(15) with V(n1−1,n2).
1-3) If∣∣∣EE(V(n1−1,n2)|V(n1−1))−EE(V(n1−1,n2−1)|V(n1−1))

∣∣∣
EE(V(n1−1,n2−1)|V(n1−1))

≤ ε2,

let V(n1) = V(n1−1,n2) and stop, otherwise, go to step 1-1).
2) Update {ω̄(n1)

i,k , ∀i, k}, γ̄(n1) as in (30) with {V(n1)
i,k , ∀i, k}.

3) If
∣∣∣ẼE

(
V(n1)

)
− ẼE

(
V(n1−1)

)∣∣∣/ẼE
(
V(n1−1)

)
≤ ε1, stop,

otherwise, go to step 1).

B. Single-layer Iterative Algorithm

Although the triple-layer iterative algorithm is guaranteed
to converge to the KKT conditions of Problem (26), the
computational complexity may become excessive due to the
three layers of iterations. To reduce its complexity, we propose
a single-layer iterative algorithm by combining the three
layers of optimization into a single-layer iterative procedure.
To guarantee its convergence, the parameter η is updated
according to the following equation instead of (35) 3:

η(n) =

∑
k∈S Rk(V

(n))

P̃total

(
V(n)

) . (36)

where n is the iteration index. The detailed procedure is
formulated in Algorithm 3. Note that the value of γ̄ is not
required in this algorithm, since η is updated in (36), rather
than in (35).

Theorem 4: The single-layer algorithm is guaranteed to
converge.

Proof: Please see Appendix D. �

C. Complexity Analysis

By using a similar complexity analysis to that of the block
descent technique of Algorithm 1, the total complexity of the

3The update in (36) will be used in the proof of Theorem 4.

Algorithm 3 Single-layer algorithm to solve Problem (26)
1: Initialize iteration index n = 1, a small δ, error tolerance

ε, initialize the feasible V(0) output from Stage I, calculate
ω̄
(0)
i,k as in (30), U(0) and W(0) by using (14) and (15),

η(0) according to (36);
2: Given η(n−1), ω̄(n−1)

i,k , U(n−1) and W(n−1), solve Prob-
lem (32) by using the Lagrange dual method to obtain the
optimal solution of V(n);

3: Given V(n), update U(n) and W(n) by using (14) and
(15);

4: Given V(n), update ω̄
(n)
i,k as in (30);

5: Given V(n), update η(n) according to (36);
6: If

∣∣η(n) − η(n−1)
∣∣ /η(n−1) ≤ ε, terminate. Otherwise, set

n← n+ 1, go to step 2.

triple-layer iterative algorithm and of the single-layer one are
respectively given by

TTri = O
[
tlayer1tlayer2tlayer3(S + I)

2
SM3I3

]
(37)

and
TSingle = O

[
tsinlayer(S + I)

2
SM3I3

]
, (38)

where tlayer1, tlayer2 and tlayer3 are the average number of
iterations required for the first, second and third layers of
the triple-layer iterative algorithm, respectively, and tsinlayer
denotes the average number of iterations in the single-layer
algorithm. It is seen from the simulations that the total number
of solving Problem (32), i.e. tlayer1tlayer2tlayer3, is roughly
100, while that for the single-layer algorithm, i.e. tlayer3 is
about 20. Despite its five-fold complexity, the performance
gain of the triple-layer iterative algorithm over the single-
layer algorithm is not so significant. Hence, in large networks,
the single-layer iterative algorithm may be deemed a more
suitable approach. To additionally reduce the complexity, some
clustering methods can be adopted, such as the user-centric
method, which will be considered in our future work.

The main mathematical techniques involved in Stage II are
illustrated in Fig.2.

V. SIMULATION RESULTS

In this section, simulation results are presented for e-
valuating the performance of the proposed algorithms. Al-
l the K users are assumed to be independently and u-
niformly distributed in a circular cell centered at (0, 0)
with a radius of R. The locations of the RAUs are
the same as in [42] and [43]: if the number of RAUs
I is less than six, the j-th RAU’s polar coordinate is
(r cos[2π(j − 1)/I], r sin[2π(j − 1)/I]) for j = 1, · · · , I ,
r = 2R sin(π/I)/(3π/I). Otherwise, the first RAU is located
at the cell center (0, 0), and the other (I − 1) RAUs are lo-
cated at (r cos[2π(j − 2)/(I − 1)], r sin[2π(j − 2)/(I − 1)])
with j = 2, · · · , I . The channel model consists of 1) the
long term evolution (LTE) standard path loss model: PLi,k =
148.1+37.6log10di,k (dB), where di,k (in km) is the distance
between the ith RAU and the kth user; 2) the log-normal
shadowing with zero mean and 8 dB standard deviation; 3) the
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Fig. 4. Convergence behaviour of the block descent algorithm when K = 6
for different number of RAUs.

small-scale Rayleigh fading with zero mean and unit variance.
For simplicity, we assume that each user has the same rate
requirement and each RAU has the same power limit, i.e., we
have Rmin = Rk,min, ∀k and Pmax = Pi,max,∀i. The number
of data streams d is set to d = min {MI,N}. The small
parameter δ in the triple-layer algorithm and the single-layer
algorithm is set to δ = 10−5. Unless otherwise stated, the
other main system parameters are given as follows: system
bandwidth 20 MHz, cell radius R = 1000 m, number of
receiver antennas N = 2 4, number of transmit antennas M =
2, noise power spectral density is -174 dBm/Hz, fronthaul
power consumption Pfh = 0.5 W , signal processing power
of CPU PC = 5 W , error tolerance ε = 10−4. The following
results are obtained by averaging over 50 independent channel
generations.

A. Properties of the User Selection Algorithm

Fig. 4 shows the convergence behaviour of the block descent
procedure in Algorithm 2 for different numbers of RAUs.
The number of users is K = 6 and the rate target is
Rmin = 3 nats/s/Hz. It can be observed from this figure that
the OF value of Problem (18) is monotonically decreasing
during the iterative procedure and converges rapidly for the
all the configurations considered. It is interesting to note that
for the case of I = 6, only one iteration is enough for
the algorithm to converge, while for the cases of I = 2, 4,
nearly ten iterations are required. The reason is that when
I = 6, more degrees of freedom are available and the OF
will decrease to the optimal zero value after a single iteration
(i.e. all six users can be supported in this case). However, for
the cases of I = 2, 4, the system is not able to support all the
users and the algorithm will need several iterations to converge
to a fixed non-zero value. In the following simulations, the
maximum number of iterations for the block descent algorithm
is set to ten.

To study the efficiency of our proposed user selection
algorithm (denoated as ‘USC alg.’), we compare it to two
existing user selection methods in Fig. 5: the exhaustive
search method (denoted as ‘Exhaus alg.’) and the random

4In fact, the long term evolution -Advanced (LTE-A) standards can support
UEs with up to four receive antennas [44], and some field trials have been
demonstrated to verify the feasibility of using four antennas at the UEs [44].
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Fig. 5. Average number of admitted users versus the data requirements for
our proposed user selection algorithm, for the exhaustive search method and
for random user deletion algorithm with K = 8.
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for our proposed user selection method and the SOCP-based algorithm of [34]
with N = 1 and K = 8.

user deletion algorithm (denoted as ‘Rand alg.’). Note that
the complexity of the exhaustive search method is on the
order of 2K , which is unaffordable for a dense network
supporting a large number of users. However, it can serve as
the performance benchmark for our proposed algorithm. For
the random user deletion algorithm, one should solve Problem
(9) in each iteration. If αk = 1,∀k ∈ S , terminate. Otherwise,
a user is randomly removed from S without considering the
optimal values of αk, ∀k ∈ S . We can find from Fig. 5
that the proposed USC algorithm achieves almost the same
performance as the exhaustive search method, especially for
low rate requirements. In the high rate regime, the exhaustive
search method performs slightly better than the proposed
user selection algorithm, which confirms the efficiency of the
proposed algorithm. As expected, the number of admitted
users decreases upon increasing of the rate requirements. It
is also observed that the random user deletion algorithm has a
much worse performance than our proposed algorithm, which
confirms the efficiency of removing the user having the lowest
value of αk.

In Fig. 6, we compare the performance of our proposed
user selection method to that of the SOCP-based algorithm of
[34], when each user is equipped with a single antenna. It is
seen from Fig. 6 that both algorithms achieve almost the same
performance for most of the rate requirement range, and only
a slight performance gain is attained for the SOCP algorithm
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Fig. 7. Convergence behaviour of the various indicator approximation
functions for both the triple-layer iteration algorithm (upper subplot) and the
single-layer iteration algorithm (lower subplot).

over our proposed algorithm in the high rate requirement
region. However, the SOCP is restricted to the single-antenna
aided user scenario, while our algorithm is also applicable to
multiple-antenna aided users.

B. Properties of the EE Maximization Algorithms

In this subsection, we study the properties of the proposed
EE maximization algorithms: the triple-layer algorithm and the
single-layer algorithm.

In Fig. 7, we first investigate the convergence behaviours
of the two algorithms when using different indicator ap-
proximation functions, where δ = 10−5. For the triple-layer
algorithm, we only simulate the convergence behaviour of the
first layer, where the second and third layer are converged
for each iteration of the first layer. It is observed from Fig. 7
that the algorithms converge promptly for all the indicator
approximation functions considered. It is interesting to observe
that although the algorithm using the exponential function,
arctangent function and the fractional function exhibits a
slightly faster convergence than the logarithmic function, the
EE achieved by the algorithm using these three functions is
much lower than that using the logarithmic function. This
indicates that the more accurate approximation function may
not guarantee a better performance, and the more smooth
function may be a good option. Hence, in the following
investigations, the logarithmic function is adopted. Note that
the triple-layer algorithm and the single-layer algorithm have
a similar performance, when using the same function. This
phenomenon will be studied in detail in the following.

Fig. 8 and Fig. 9 compare the EE performance and the
corresponding number of iterations required for the triple-layer
algorithm and the single-layer algorithm under 30 randomly
generated channel realizations, respectively. The number of
users is set as K = 5. Since the triple-layer algorithm is
only guaranteed to converge to the KKT-optimal solution,
there is no guarantee that it always outperforms the single-
layer algorithm owing to the nonconvex nature of Problem
(26). However, it can be observed from Fig. 8 that the
triple-layer algorithm performs sightly better than the single-
layer algorithm in most cases. Fig.9 shows that the marginal
performance gain of the triple-layer algorithm over the single-
layer algorithm comes at the cost of a higher computational
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Fig. 8. Energy efficiency achieved by the triple-layer algorithm and the
single-layer algorithm.
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Fig. 9. Total number of iterations required by the triple-layer algorithm and
the single-layer algorithm.

complexity, i.e., the single-layer algorithm requires about 20
iterations, while the triple-layer algorithm requires about a
total of 100 inner iterations.

In this following, we compare the performance of the
proposed triple-layer algorithm and the single-layer algorithm
with the following algorithms, where the number of users is
set as K = 6. For all algorithms, we adopt the same output
from Stage I as the input for the initializations for all Stage
II algorithms.

• Rate maximization method (denoted as ‘Ratemaxi’): This
method aims for maximizing the sum-rate of the users
selected during Stage I under the rate constraints and the
per-RAU power constraints;

• Power minimization method (denoted as ‘Powermin’):
This method aims for minimizing the total transmit power
of the users selected during Stage I under the two sets of
constraints;

• EE maximization without link selection (denoted as ‘EE-
nolinksel’): In this method, the link selection is not
considered. The triple-layer algorithm can be adapted for
solving this problem by removing the first layer.

• Exhaustive search (denoted as ‘Exhaustive’): This method
searches through all possible sets of active links and
selects the feasible set of links that has the maximum
EE. This method can find the globally optimal solution,
but incurs an exponentially increasing complexity that
is not affordable for practical use. Due to its excessive
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Fig. 10. Average EE and the number of active links versus the fronthaul
power consumption Pfh. The maximum power constraint is set as Pmax =
2W, the number of users is K = 6, the number of RAUs is I = 4, and the
rate requirement is set as Rmin = 1 nats/s/Hz.

complexity, we only report its performance for small-
scale systems.

1) Impact of fronthaul power consumption: Figs. 10 (a)
and (b) illustrate the EE performance and the corresponding
number of active links versus the fronthaul power consumption
Pfh, respectively. As expected, the EE achieved by all the algo-
rithms is reduced upon increasing Pfh. It is observed agian that
the performance of the triple-layer algorithm is close to that of
the single-layer algorithm. Interestingly, the proposed triple-
layer algorithms’ performance is comparable to the optimal EE
achieved by the exhaustive search method. More specifically,
the triple-layer algorithm achieves at least 94% of the optimal
EE in this example. By jointly selecting the active links and
optimizing the TPCs, the proposed algorithms significantly
outperform ‘EE-nolinksel’. The performance gain is increased
upon increasing Pfh, which highlights the importance of link
selection. It is interesting to observe that with the increase of
Pfh, the EE performance of ‘Ratemaxi’ is close to that of ‘EE-
nolinksel’. This is due to the fact that with the increase of Pfh,
a higher data rate is required for improving the EE as proved in
[45], and ‘EE-nolinksel’ reduces to ‘Ratemaxi’. From Fig. 10
(b), we see that the number of active links supported by our
proposed algorithms decreases with the increase of Pfh in
order to save power, while the number of active links for
the other algorithms (except the exhaustive search method)
remains almost the same.

2) Impact of the number of RAUs: Figs. 11 (a) and (b) show
the EE and the corresponding number of active links versus
the number of RAUs I , respectively. Again, the performance
of the proposed algorithms is nearly the same as that of the
exhaustive search method, which verifies the efficiency of the
proposed algorithms. When the number of RAUs increases
from 2 to 6, the EE achieved by the proposed algorithms
remains almost the same. The reason for this trend is that
with a small increase of I , more users can be admitted and
the sum rate will increase. However, to support more users,
more transmit power and fronthaul power is required. On the
other hand, when the number of RAUs continue to increase
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Fig. 11. Average EE and the number of active links versus the number of
RAUs I . The maximum power constraint is set as Pmax = 5W, the number
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the rate requirement is set as Rmin = 2 nats/s/Hz.
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Fig. 12. Average EE and the number of active links versus the number of
users. The maximum power constraint is set as Pmax = 5W, the number of
RAUs is I = 6, the fronthaul power consumption is Pfh = 0.5W, and the
rate requirement is set as Rmin = 2 nats/s/Hz.

from 6 to 10, there is a significant EE increase for our proposed
algorithms. This is mainly due to the fact that when there is
a large number of RAUs, all the six users can be supported
and the RAU selection diversity gain can be obtained with
more RAUs. It is observed that our proposed algorithms
significantly outperform the other algorithms (except for the
exhaustive search method), and that the performance gain is
more prominent, when the number of RAUs is large. The
reason is that these algorithms do not take into consideration
the link selection and all the links are active, which consumes
a large amount of power.

3) Impact of the number of users: Finally, let us quantify
the impact of the number of users on the performance of
the various algorithms. Figs. 12 (a) and (b) show the EE
performance and the corresponding number of active links
versus the number of users, respectively. It is shown in Fig. 12
(a) that when the number of users increases from 2 to 4, the EE
achieved by our proposed algorithms is slightly increased. The
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reason for this is that a small number of users can be admitted
without requiring much transmit power and the increase of the
sum rate can compensate for the increase of the total power
consumption. However, when the number of users increases
from 4 to 10, our proposed algorithms suffer from a significant
EE performance reduction. This is mainly due to the fact
that our two-stage procedure tries to maximize the number of
admitted users, which comes at the expense of much increased
power consumption. In this case, nearly all transmit power
will be consumed and all links will be active in an effort to
support more users. As a result, the performance gap between
our proposed algorithms and the other algorithms will decrease
upon increasing the number of users.

VI. CONCLUSIONS

This paper studied the EE maximization problem of a mul-
tiuser MIMO DAS through jointly selecting the fronthaul links
and optimizing the TPC matrices. This problem was solved
in two stages. In Stage I, a novel user selection algorithm
was proposed for maximizing the number of admitted users.
In Stage II, our triple-layer iterative algorithm and single-
layer iterative algorithm were proposed for optimizing the
TPC matrices to maximize the EE for the users selected
during Stage II. Simulation results show that the proposed user
selection algorithm achieves almost the same performance as
the exhaustive search method at a much reduced complexity.
Furthermore, the single-layer iterative algorithm was observed
to converge much faster than the triple-layer iterative algo-
rithm, while its performance is comparable to the latter. This
means that the single-layer iterative algorithm is more suitable
for practical implementations. By appropriately selecting the
fronthaul links, the proposed algorithms significantly outper-
form the existing methods in terms of their EE performance.

APPENDIX A
PROOF OF THEOREM 1

Denote the OF of Problem (18) in the nth iteration as

Obj(n) =
∑
k∈S

(
α
(n)
k − 1

)2
.

In Step 2 of the nth iteration, the optimal {α(n)
k }Kk=1 and V(n)

can be obtained by solving Problem (19) with given U(n−1)

and W(n−1). Hence, we

hk

(
V(n),U

(n−1)
k ,W

(n−1)
k

)
≥
(
α
(n)
k

)2
Rk,min, ∀k ∈ S.

In Step 3 of the nth iteration, U(n) and W(n) are updated
in (14) and (15) with V(n). Based on Lemma 1, the following
inequality holds

R
(
V(n)

)
= hk

(
V(n),U

(n)
k ,W

(n)
k

)
≥ hk

(
V(n),U

(n−1)
k ,W

(n−1)
k

)
. (A.1)

Hence, we have

hk

(
V(n),U

(n)
k ,W

(n)
k

)
≥ α(n)2Rk,min. (A.2)

In Step 2 of the (n + 1)th iteration, α(n+1) and V(n+1) are
obtained with given U(n) and W(n) by solving Problem (19).
Then we have Obj(n+1) ≤ Obj(n) due to the fact that α

(n)
k

and V(n) is a feasible solution of Problem (19) with given
U(n) and W(n) according to (A.2). Hence, the OF of Problem
(18) is monotonically increasing. In addition, the OF value is
lower-bounded by zero. Hence, the block descent algorithm
must converge.

APPENDIX B
PROOF OF THEOREM 2

We first prove the first part. Introducing non-negative La-
grange multipliers λ = {λu1 , · · · , λuS

} associated with the
rate constrains and µ = {µ1, · · · , µI} associated with the
power constraints, the Lagrange function of Problem (31) is

L (U,V,W,λ,µ) =

∑
k∈S hk (U,V,W)

P̄total

(
V|V̄

)
+
∑
k∈S

λk (hk (U,V,W)−Rk,min)

+
∑
i∈I

µi

(
Pi,max−

∑
k∈S

∥Vi,k∥2F

)
. (B.1)

Since (U⋆,V⋆,W⋆) is the solution of problem (31), there exist
λ⋆ and µ⋆ values, so that (U⋆,V⋆,W⋆) satisfies the KKT
conditions [ [46],Prop. 4.7.2] of Problem (31), shown at the
top of the next page, (B.2)-(B.8).

Since we have P̄total

(
V⋆|V̄

)
> 0 and {λ⋆

k ≥ 0, ∀k}, we
can solve U⋆

k, ∀k and W⋆
k, ∀k from (B.2) and (B.3) as in (14)

and (15). Then, we have the following chain of inequalities

∇V∗
k
hk (U

⋆,V⋆,W⋆) =− Tr
(
W⋆

k∇V∗
k
E⋆

k

)
(B.9)

=− Tr
(
E⋆−1

k ∇V∗
k
E⋆

k

)
(B.10)

=∇V∗
k
log
∣∣E⋆−1

k

∣∣ (B.11)

=∇V∗
k
Rk(V

⋆). (B.12)

where (B.9) follows from the chain rule, and the final equality
follows from the Woodbury matrix identity [47] to applied
(16). With the aid of similar methods, we can readily prove
that hk (U

⋆,V⋆,W⋆) = Rk(V
⋆). Hence, equation (B.4) is

equivalent to the following equation

P̄total(V⋆|V̄)
∑
k∈S

∇V∗
k
Rk(V

⋆)−∇V∗
k
P̄total(V⋆|V̄)

∑
k∈S

Rk(V
⋆)

P̃total(V⋆|V̄)
2 +∑

k∈S
λ⋆
k∇V∗

k
Rk(V

⋆)−
∑
i∈I

µ⋆
i∇V∗

k

(∑
k∈S

∥∥∥V⋆
i,k

∥∥∥2
F

)
= 0, ∀k.

(B.13)
Additionally, (B.5) and (B.7) are equivalent to the following
equations:

λ⋆
k (Rk(V

⋆)−Rk,min) = 0, ∀k, (B.14)
Rk(V

⋆) ≥ Rk,min, ∀k. (B.15)

As a result, the system equations (B.13), (B.6), (B.8),
(B.14) and (B.15) reprensent the KKT conditions of Problem
(29). Therefore, the first conclusion holds. By using a similar
procedure, it may be readily shown that the second conclusion
also holds.
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∇U∗
k
L =

∑
k∈S ∇U∗

k
hk (U
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P̄total
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k∈S

λ⋆
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k
hk (U

⋆,V⋆,W⋆) = 0, ∀k, (B.2)
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k
hk (U

⋆,V⋆,W⋆)

P̄total
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) +
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k∈S
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k
hk (U

⋆,V⋆,W⋆) =0, ∀k, (B.3)
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k∈S
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P̄total
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hk (U
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k
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k∈S
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F
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= 0, ∀k, (B.4)

λ⋆
k (hk (U

⋆,V⋆,W⋆)−Rk,min) = 0, ∀k, (B.5)

µ⋆
i

(
Pi,max −

∑
k∈S

∥∥V⋆
i,k

∥∥2
F

)
= 0, ∀i, (B.6)

hk (U
⋆,V⋆,W⋆) ≥ Rk,min, ∀k, (B.7)∑

k∈S

∥∥V⋆
i,k

∥∥2
F
≤ Pi,max, ∀i. (B.8)

APPENDIX C
PROOF OF THEOREM 3

We first show that given the initial point gleaned from Stage
I, the triple-layer algorithm will converge to a unique point 5.

As mentioned before, Dinkelbach’s method [41] is guaran-
teed to converge to the globally optimal solution [41]. Hence,
given the initial point from the second layer, the third layer
is guaranteed to converge to a unique point. Additionally,
U(n1−1,n2) and W(n1−1,n2) are uniquely determined by (14)
and (15), given V(n1−1,n2). Hence, the second layer will also
converge to a unique point, when the initial points output
by the first layer are given. In Step 2) of the first layer,
{ω̄(n1)

i,k , ∀i, k}, γ̄(n1) are uniquely determined according to (30)
with {V(n1)

i,k , ∀i, k}. As a result, if the first layer can be shown
to converge, then the three-layer algorithm is guaranteed to
converge to a unique point with the initial point gleaned from
Stage I.

The convergence of the first layer can be guaranteed by
the set of inequalities, shown at the top of next page. where
(C.1) follows due to (28), and (C.2) is guaranteed by the
monotonically increasing property of the second layer. It is
plausible that the OF value of Problem (26) is upper-bounded.
Thus, the triple-layer algorithm is guaranteed to converge to
a unique solution.

Let us denote the unique solution as V⋆. In the following,
we prove that this solution satisfies the KKT condition of Prob-
lem (26). According to Theorem 2, the converged solution V⋆

satisfies the KKT condition of Problem (29). The Lagrangian

5It is emphasized here that since Problem (26) is a nonconvex optimization
problem, the converged solution depends on the initialization point from Stage
I.

of Problem (29) can be written as

L (V,λ,µ)=

∑
k∈S Rk(V)

P̄total (V|V⋆)
+
∑
k∈S

λk (Rk(V)−Rk,min)+

∑
i∈I

µi

(
Pi,max −

∑
k∈S

∥Vi,k∥2F

)
. (C.10)

The converged solution V⋆ satisfies the KKT conditions of
(C.4)-(C.8) at the top of the next page:

where {λ⋆
k, µ

⋆
i ,∀i, k} are the corresponding optimal La-

grange dual multipliers.
It can be readily verified that the following two equations

hold:

P̄total (V
⋆|V⋆) = P̃total (V

⋆) (C.11)

∇V∗
i,k
P̄total (V

⋆|V⋆) = V⋆
i,k + Pfhfδ

′
(∥∥V⋆

i,k

∥∥2
F

)
V⋆

i,k

= ∇V∗
i,k
P̃total (V

⋆) . (C.12)

By substituting (C.11) and (C.12) into (C.4), we have (C.9) at
the top of next page.

Combining (C.9) with (C.5), (C.5), (C.6), (C.7) and (C.8),
we can find that the converged solution V⋆ again with
{λ⋆,µ⋆} satisfies the KKT conditions of Problem (26).

APPENDIX D
PROOF OF THEOREM 4

To prove the convergence, we first define some functions as
follows:

f1 (V,U,W, ω̄, η) =
∑
k∈S

hk (V,Uk,Wk)

− η
∑
i∈I

∑
k∈S

[
(1 + ω̄i,k) ∥Vi,k∥2F

]
(D.1)

f2 (V, ω̄, η)=
∑
k∈S

Rk(V)−η
∑
i∈I

∑
k∈S

[
(1+ω̄i,k) ∥Vi,k∥2F

]
(D.2)
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⋆|V⋆)

P̄total(V⋆|V⋆)
2

+
∑
k∈S

λ⋆
k∇V∗

i,k
Rk(V

⋆)−
∑
i∈I

∑
k∈S

µ⋆
iV

⋆
i,k = 0, ∀i, k (C.4)

λ⋆
k (Rk(V

⋆)−Rk,min) = 0, ∀k (C.5)

µ⋆
i

(
Pi,max −

∑
k∈S

∥∥V⋆
i,k

∥∥2
F

)
= 0, ∀i (C.6)

Rk(V
⋆) ≥ Rk,min, ∀k (C.7)∑

k∈S

∥∥V⋆
i,k

∥∥2
F
≤ Pi,max,∀i, (C.8)

∇V∗
i,k
L (V, λ, µ) =

P̃total (V
⋆)
∑

k∈S ∇V∗
i,k
Rk(V

⋆)−
∑

k∈S Rk(V
⋆)∇V∗

i,k
P̃total (V

⋆)

P̃total(V⋆)
2

+
∑
k∈S

λ⋆
k∇V∗

i,k
Rk(V

⋆)−
∑
i∈I

∑
k∈S

µ⋆
iV

⋆
i,k = 0, ∀i, k. (C.9)

f3 (V, η) =
∑
k∈S

Rk(V)

− η
∑
i∈I

∑
k∈S

[
∥Vi,k∥2F + Pfhfδ

(
∥Vi,k∥2F

)]
, (D.3)

where ω̄ denotes the collection of ω̄i,k, ∀i, k with ω̄i,k given
in (30).

Consider Step 2 of the first iteration (i.e., n = 1) of the
single-layer iterative algorithm. Since V(1) is the optimal
solution of Problem (32) with given ω̄(0), U(0) and W(0),
we have

f1

(
V(1),U(0),W(0), ω̄(0), η(0)

)
≥f1

(
V(0),U(0),W(0), ω̄(0), η(0)

)
=f2

(
V(0), ω̄(0), η(0)

)
, (D.4)

where (D.4) follows by using Lemma 1.
In Step 3 of the single-layer iterative algorithm, U(1) and

W(1) are updated by using (14) and (15) with fixed V(1).
Then, by Lemma 1, we have∑

k∈S

Rk(V
(1)) =

∑
k∈S

hk

(
V(1),U

(1)
k ,W

(1)
k

)
≥
∑
k∈S

hk

(
V(1),U

(0)
k ,W

(0)
k

)
. (D.5)

Then, by combining (D.4) and (D.5), we have

f2

(
V(1), ω̄(0), η(0)

)
=
∑
k∈S

Rk

(
V(1)

)
− η(0)

∑
i∈I

∑
k∈S

((
1 + ω̄(0)

)∥∥∥V(1)
i,k

∥∥∥2
F

)
(D.6)

≥
∑
k∈S

hk

(
V(1),U

(0)
k ,W

(0)
k

)
− η(0)

∑
i∈I

∑
k∈S

((
1+ω̄(0)

)∥∥∥V(1)
i,k

∥∥∥2
F

)
(D.7)

= f1

(
V(1),U(0),W(0), ω̄(0), η(0)

)
(D.8)

≥ f2

(
V(0), ω̄(0), η(0)

)
. (D.9)

Based on above equalities, we have the following chain
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inequalities

f3

(
V(1), η(0)

)
≥
∑
k∈S

Rk

(
V(1)

)
− η(0)

(∑
i∈I

∑
k∈S

(
1 + ω̄

(0)
i,k

)∥∥∥V(1)
i,k

∥∥∥2
F
+ C

(0)
i,k

)
(D.10)

≥
∑
k∈S

Rk

(
V(0)

)
−

η(0)

(∑
i∈I

∑
k∈S

(
1 + ω̄

(0)
i,k

)∥∥∥V(0)
i,k

∥∥∥2
F
+ C

(0)
i,k

)
(D.11)

= f3

(
V(0), η(0)

)
, (D.12)

where (D.10) follows by using (28), (D.11) follows by using
(D.9), and C

(0)
i,k is given by

C
(0)
i,k=Pfh

[
fδ

(∥∥∥V(0)
i,k

∥∥∥2
F

)
−fδ ′

(∥∥∥V(0)
i,k

∥∥∥2
F

)∥∥∥V(0)
i,k

∥∥∥2
F

]
. (D.13)

Hence, we have

f3

(
V(1), η(0)

)
≥ f3

(
V(0), η(0)

)
. (D.14)

Subtracting for both sides of (D.14) with η(0)PC yields∑
k∈S

Rk(V
(1))− η(0)P̃total(V

(1))

≥
∑
k∈S

Rk(V
(0))− η(0)P̃total(V

(0)) = 0, (D.15)

where the last equality holds, since η(0) is updated according
to (36). Then we have

η(1) =

∑
k∈S

Rk(V
(1))

P̃total(V(1))
≥ η(0). (D.16)

By using a similar method, we can show that

η(0) ≤ η(1) ≤ η(2) ≤ · · · . (D.17)

Due to the limited power, the sum rate is also limited. Hence,
the EE value is upper-bounded. As a result, the single-layer
iterative algorithm is guaranteed to converge.
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