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Model-Based Control and Stability Analysis of
Discrete-Time Polynomial Fuzzy Systems With
Time Delay and Positivity Constraints

Xiaomiao Li

Abstract—This paper proposes a novel Lyapunov stabilization
analysis of discrete-time polynomial-fuzzy-model-based control
systems with time delay under positivity constraint. The polyno-
mial fuzzy model is constructed to describe the dynamics of a non-
linear discrete-time system with time delay. A model-based poly-
nomial fuzzy controller is designed using nonparallel distributed
compensation technique to stabilize the system while driving the
system states to positive using the positivity constraints. The Lya-
punov stability and positivity conditions are formulated as sum-of
squares. To relax the conservativeness of the obtained stability
results, two main methods are proposed in this paper: first, the
piecewise linear membership functions (PLMFs) are used to in-
troduce the approximate error between piecewise and the original
membership functions into the stability analysis; and second, in-
troduce the boundary information of the premise variables into the
stability analysis since the premise variables hold rich nonlinear-
ity information. A numerical example is given to demonstrate the
effectiveness of the proposed approach.

Index Terms—Discrete-time polynomial fuzzy-model-based
(PFMB) control systems with time delay, positive systems, piece-
wise linear membership functions (PLMFs), premise variables, sta-
bility analysis, SOS.

I. INTRODUCTION

SPECIAL class of physical systems in the real world in-
A volve quantities that have an intrinsically constant sign,
such as absolute temperatures, the concentration of substances
in the chemical process, level of liquids in tanks, and so on
[1]-[5]. This means their states are always nonnegative if the
initial conditions are nonnegative. There can be found real-life
examples of positive systems in biology, economics, etc., and a
noticeable amount of work has been done to control and stabilize
the positive systems [1]-[10].
The response of real-world systems to external signals is al-
ways associated with time delays, which can trigger complex
behavior and result in poor performance and instability. The
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stability of positive discrete-time systems with time delay has
been an increasingly important topic of study [11]-[13]. Pow-
erful stability analysis methods such as traditional Lyapunov—
Krasovskii functional method [14], [15] can be applied to posi-
tive discrete-time systems with a time delay as a special case of
discrete-time systems with time delay. The disadvantage of this
general method is that it neglects the innate features of positiv-
ity, leading to conservativeness stability conditions. Therefore,
linear copositive function is proposed and widely employed to
consider the innate features of positivity for the stability and
positivity analyses of positive systems [16]—[19]. The stability
conditions based on linear copositive function is independent
of the time delay and its value. Using universal approxima-
tion capability, T-S fuzzy model is able to accurately represent
nonlinear positive discrete-time systems with time delay [16],
[19]-[21]. Moreover, the technique of weighted sum of certain
local linear subsystems can provide a useful tool for the stabil-
ity analysis and control synthesis of this type of systems[16],
[19], [21]-[26]. The traditional parallel distributed compensa-
tion (PDC) technique can also be used to synthesize the fuzzy
controller based on discrete-time T-S fuzzy-model with time
delay [16], [19], [24]-[26], and to formulate the stability and
positivity conditions as linear matrix inequalities (LMIs) [16],
[22], [27].

Polynomial fuzzy models have been proposed to improve the
approximation capability of a T-S fuzzy model and represent
nonlinear positive continuous systems with time delay [28]—
[30]. This modeling approach essentially replaces the T-S local
linear subsystems by polynomial ones. The feedback gains of
fuzzy polynomial controllers are then defined in the polyno-
mial form. The polynomial representation enhances the model-
ing and feedback compensation [29]-[38] since the nonlinear
system is represented more accurately due to the introduction
of nonlinear polynomial terms, and the stability analysis be-
comes more inclusive as the polynomial fuzzy model is a global
model when compared to the original T-S fuzzy model. More-
over, the nonlinear polynomial terms are no longer necessary
to be represented using membership functions resulting in the
reduction of the number of fuzzy rules. The feasible solutions
to a polynomial Lyapunov stability and positivity formulation
can be found using third party MATLAB toolbox SOSTOOLS
[39], [40] where LMI fails. The advantages of polynomial fuzzy
models and lack of existing literature on representing nonlinear
positive discrete-time system with time delay using polynomial
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models, motivates us to represent the dynamics of nonlinear
positive discrete-time system with time delay with polynomial
fuzzy model and develop the stability analysis and control syn-
thesis based on discrete-time PFMB control systems with time
delay.

After the original paper of Tanaka ef al. [41], the PDC tech-
nique has been used extensively as an effective technique to
design fuzzy model-based controllers. In the PDC design con-
cept, the conservativeness of stability conditions can be relaxed
to some extent by considering the matched premise membership
functions. However, this technique requires the number of rules
and shape of membership functions of a fuzzy model to match
with those of a fuzzy controller. This constraint limits the design
flexibility of a fuzzy controller. Non-PDC technique is proposed
to remove such constraint when designing fuzzy rules for the
controller [29]-[31]. Membership functions and premise vari-
ables play important roles for relaxing the stability conditions
[31]-[34], [42], [43]. To relax the stability conditions for pos-
itive continuous fuzzy-model-based control systems with time
delay, a few attempts have been made to introduce the informa-
tion of membership functions in the stability analysis [29], [30].
Both methods achieved the relaxed conditions by introducing
the information of membership function in stability analysis us-
ing PLMFs [29] or symbolic variables [30]. However, there is
no existing literature on extending the novel methods to posi-
tive discrete-time fuzzy-model-based control systems with time
delay. The premise variables, besides membership functions,
contain information of the system nonlinearity which can be
exerted to relax the stability conditions if introduced in the sta-
bility formulations. Therefore, there is a strong motivation for
this body of work to use the information of premise variables for
discrete-time positive fuzzy-model-based control systems with
time delay.

The contribution of this paper can be listed as follows.

1) Representing positive discrete-time systems with time de-

lay using a polynomial fuzzy model.

2) Non-PDC design concept is used to design the controller
for polynomial fuzzy model-based systems with time de-
lay, and investigate the stability and positivity analysis,
leading to an increase to the design flexibility by choosing
the number of rules and shape of membership functions
of the fuzzy controller freely.

3) As the nonlinearity information is embedded in the mem-
bership functions and premise variables, piecewise linear
membership functions are used to approximate original
membership functions, and the information of member-
ship functions, i.e., approximation error between the ap-
proximate (piecewise linear) membership functions and
the original membership functions is introduced to the
stability analysis. In this way, the conservativeness of the
stability conditions will be relaxed. The traditional lin-
ear copositive function [16]-[19] ignores the membership
functions in the derivation process of the Lyapunov func-
tion candidate, leading to inability in introducing the ap-
proximation error. The Lyapunov function candidate is
updated where the order of fuzzy model number rules for
delay matrix of the later part is designed, independent of
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the order of fuzzy model number rules for the system and
delay matrix of the previous part. This allows us to intro-
duce the information of membership functions further in
the process.

4) To introduce more nonlinear information into the stabil-
ity analysis, we consider the boundary information of the
premise variables in addition to the information of piece-
wise linear membership functions to further relax the sta-
bility conditions.

The rest of the paper is organized as follows. in section II, the
details of discrete-time polynomial fuzzy model and controller
with time delay are described. In Section III, the SOS Lyapunov
stability and positivity conditions are derived based on the non-
PDC concept. In Section IV, a numerical example is discussed
to show the validity of the proposed methods, and finally in
Section V, a conclusion will be drawn.

II. NOTATIONS AND PRELIMINARIES
A. Notation

Throughout this paper, the following notations are adopted.
A monomial in x(¢) = [ (t), 22(t), ..., x,(t)] is a function of
the form z{" (¢), 23 (), ..., % (t), where d;,i € {1,2,...,n}
is a nonnegative integer. The degree of a monomial is defined
asd =Y, d;. p(x(t)), which is a polynomial if expressed as
a finite linear combination of monomials with real coefficients.
The equation p(x(t)) = 37", q;(x(t))* is an SOS fulfilling
the condition p(x(t)) > 0, where q; (x()) is a polynomial and
m is a nonzero positive integer.

B. Discrete-Time Polynomial Fuzzy Models With Time Delay

The dynamics of nonlinear discrete-time systems with time
delay is represented by p fuzzy rules of discrete-time polynomial
fuzzy systems with time delay, in which the ith rule is presented
as follows:

Rulei: IF fi(x(k))is M AND...AND fy (x(k)) is M,

d
+ Z Ayx(k —m) + Bi(x(k))u(k)
=1

k= [_Tmaxa O]

€))

x(k) = ¢(k), 2

where M, | ={1,2,..., ¥} is the fuzzy set of i correspond-
ing to premise variable f;(x(k)), with [ ={1,2,...,¥}; ¥
is a positive integer; ¢(k) is the vector valued initial func-
tion; Ajo(x(k)) € R, Ay € 7" and B; (x(k)) € R"*™
are polynomial system, time delay, and input matrices, respec-
tively, withi € p = {1,2,...,p}, p is the number of [F-THEN
rules; x(k) € R" andu(k) € R™ are state vector and control in-
put vector, respectively; 77,1 € d = {1,2,...,d} is the constant
time delay and 7,,x = max(7;).

1Z-0,Z % 0,Z <0, and Z < 0 mean that all the elements of the matrix
Z are positive, semipositive, negative, and seminegative, respectively.
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The dynamics of nonlinear systems is given as follows:

(ke +1) ZwL ) (A x)x(8)

d
+) Aux(k—7)+B; (x(k))u(k)) 3)

=1

where
> wix(k) =1 &)
D% gy (fi(x(R))) .

w;(x(k)) = : i 5
eli)) p:1 qu;l Kty (fi(x(k))) 2 ©
wi(x(k)) >0 i€p (6)

where w; (x(k)) is the normalized grade of membership and
par; (fi(x(k))) is the grade of membership corresponding to
the fuzzy term M; .

Definition 1 ([16], [19]): System (3) is said to be positive
if the initial condition ¢(-) %= 0 holds and the corresponding
trajectory x(k) »= 0 for all k.

Lemma 1 ([16], [19]): System (3) is said to be positive if
the system and time delay matrices satisfy the conditions that
Ajo(x(k)) =0and A; = 0 when u(k) = 0.

Assumption 1: A;; = 0 is satisfied by the polynomial fuzzy
model (3), otherwise, the system is not a positive system or
cannot be controlled positive.

C. Discrete-Time Polynomial Fuzzy Controller
Under non-PDC design concept, the jth rule of the polyno-

mial fuzzy controller is given as follows:

Rule j : IF gy (x(k)) is N/ AND--- AND gq (x(k)) is N},

THEN u(k) = G, (x(k))x(k) @)
where N, lj is the fuzzy set of j corresponding to the premise

variable g; (x(k)), with I € {1,2,...,}, and Q is a positive in-
teger; G;(x(k) € R™*" is the polynomial feedback gain with

jec=1{1,2,...,c}, cisthenumber of [IF-THEN rules. There-
fore, the discrete-time polynomial fuzzy controller is given by
=D my (x(k) Gy (x(k))x (k) ®)
j=1
where
> my(x(k)) =1 ©
j=1
T sy (gu(x(R)))
m; (x(k)) = ! jec (10)

22:1 H?:l KN (91(x(k)))

m(x(k) >0 jec (an
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m;(x(k)) is the normalized grade of membership and 1 i (g1

(x(k))) is the grade of membership corresponding to the fuzzy
term N .

Remark 1 ([44], [45]): Under non-PDC design concept, the
membership function m;(x(k)) of the polynomial fuzzy con-
troller can be chosen m; (x(k)) # w;(x(k)) for any j allowed.

III. STABILITY AND POSITIVITY ANALYSES

In this section, the Lyapunov stability and positivity condi-
tions for discrete-time polynomial fuzzy systems with time delay
are formulated. First, the formulation of closed-loop discrete-
time PFMB control systems with time delay is presented. Then
by considering the information of membership functions and
premise variables in stability analysis, SOS-based conditions
are obtained to guarantee the system stability as well as deter-
mine the discrete-time fuzzy controller gains. The closed-loop
discrete-time PFMB control system with time delay is described
based on the model (3) and the controller (8)

x(k +1) Z Z wi (x (x(k)) (Ao (x(k))
d
+B;(x(k))G; (x(k)x(k) + > Aux(k — 7))
=1

12)

Lemma 2 ([16], [19]): The control system (12) is said to be
controlled positive if A;(x(k)) + B;(x(k))G,(x(k)) = and
Ay = 0.

Remark 2: We transfer system (12) to a system called dual
system [19]. Such transfer is valid as it results in equivalent
stability terms. If we keep the original system (12), we cannot
obtain a unit expression and eliminate the time delay elements
using the Lyapunov stability analysis. Therefore, we need the
transfer under duality to ease the stability analysis.

The dual system of (12) is described as follows:

m; (x(k)) (Ao (x(k))

d
)+ Alx(k—m))
=1

13)

A. Positivity Analysis

Prior to stability analysis, the first control objective is to make
the closed loop discrete-time PFMB control systems with time
delay positive, i.e., trajectory x(k) 5= 0 if the initial condition
¢é(+) = 0. The positivity conditions (cf., Lemma 2) are formu-
lated by the following theorem.

Theorem 1: The discrete-time PFMB control system with
time delay (12) or dual system (13) with the initial condition
@(-) = 0 is guaranteed to be positive if there exist A € " and
v;.(x(k)) € R™ for j € ¢ and k € n such that the following



LI AND MEHRAN: MODEL-BASED CONTROL AND STABILITY ANALY SIS OF DISCRETE-TIME POLYNOMIAL FUZZY SYSTEMS

SOS-based conditions are satisfied:

a’® (x(k))rs + b (x(k))y? (x(k)) is SOS,

s s

ieEpjEGT#S (14)

al isSOS, iep;r#£sled (15)

where A = [A, A9, ..., 4|7 = 0,a% (x(k)) and a!; are the (r,

(
s)th element of the matrices A;o(x(k)) and A, respecti-
vely; Bi(x(k)) = [b; (X(k))TvP% (X(k))JT, by (x(R)TT
i€ msem G(x(k)) = [HER) G0 | vh e,

4 4 I R v R y
where y? (x(k)), y3(x(k)), ..., ¥} (x(k)) € R™ for j € c are
to be determined.

B. Basic Stability Analysis

The second control objective is to make the closed-loop
PFMB control systems with time delay asymptotically stable,
i.e., trajectory x(k) — 0 as k — oc.

Based on Assumption 1, the choice of polynomial Lyapunov
function used to investigate the stability of (12) is given by

p d
Vix(k) =x"(r+ 3 33 (x(k - q)TAmlx). (16)

m=11[=1 q=1
From (16) and (13), we have
AV (x(k)) = V(x(k+1)) = V(x(k))

= 33 )y (1) 7 ) ()

i=1j=1

=1

d
+Bi(x(k))Gj (x(k)) + x" (k= 7) Y Au] A

C S (50 A Xl A )

p d
+ Z ZXT(k‘ — Tl)Aﬂ)\, — XTUC))»
i=11=1
p d
D03 (x0T At = x(k = 7) A )
m=1[=1
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where

(18)

Remark 3: Since the stability analysis of (12) and its dual
system (13) are equivalent, the PFMB control system with
time delay (12) is guaranteed to be asymptotically stable, if the
fuzzy polynomial controller satisfies the conditions V (k) > 0
and AV (x(k)) <0 (excluding x(k) = 0) according to ba-
sic Lyapunov stability conditions. This can be achieved by
Q;;(x(k)) < 0forall ¢ and j. The resulting stability conditions
however are very conservative as the information of membership
functions and premise variables is not considered.

Remark 4: The control system (12) is guaranteed to be
asymptotically positive and stable if the stability and positive
conditions in Theorem 1 and Remark 3 are satisfied.

C. Membership Functions Dependent Stability Analysis

In the next step, to relax the stability analysis, we use a fa-
vorable form called piecewise linear membership functions to
approximate the original membership function and introduce
the information of membership functions into the stability anal-
ysis. The concept of piecewise linear membership functions is
shown in Fig. 1. The original membership function f(x(k)) is
distributed in overall system state space ¢. A certain number
of sample points based on our requirement are used to divide
the state space with D connected subspaces. The /th subspace
is denoted as ¢;, L € D = {1,2,..., D}. The piecewise linear
membership function f,, (x(k)) of every subspace ¢; is ob-
tained based on the linear relationship with boundary sample
points of ¢; (see Fig. 1). The shape of piecewise linear member-
ship functions depend on the corresponding subspaces as shown
in Fig. 1.

Let us define h;j(x(k)) = w;(x(k))m; (x(k)), and h;;(x
(k)) denotes as the piecewise linear membership functions to
approximate h; ; (x(k)). Hence, the expression of 7, ; (x(k)) is
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Fig. 1.  Original membership functions (solid lines) and PLMFs (dotted lines).

represented as follows:

D
:Z(Sl x(k
=1

21:1

2 n
> e @) higiy iy (x(k) - (19)
i=1r=1

is a scalar index of subspaces, satisfy-
ing §(x(k)) =1, x(k) € ¢, l € D={1,2,...,D}, other-
wise 0;(x(k)) =0. prii(x(k)) is the membership function
corresponding to hmm i, 1, satisfying 0 < p,; 1(x(k)) <1
and p,;,;(x(k)) + priyi(x(k)) = 1. The membership function
pri,1(z(k)) is obtained as p,1;(z, (k)) = %
Tr2l Tril
piz(x) =1 = pru(zr (k).

To relax the stability conditions, the piecewise linear member-
ship functions (19) are employed for stability analysis by consid-
ering the boundary information of approximation error §;; < w;
(x(k))m; (x(k)) — hi;(x(k)) < 8;;, where lower bounds &, ;
and upper bounds §; ;j are constants to be determined. Mean-
while, slack polynomial matrices 0 < Y, (x(k)) = [y} (x(k)),
vyl (x(K)), ...,y (x(k))]" € R" are used with the confining
condition of Y;;(x(k)) > Q;;(x(k)). Therefore, (17) can be
written as follows:

where §;(x(k )
)

and
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(20)

It can be seen from (20) that AV (x(k)) < 0 is achieved
i35 1 D25 (haj (x(k)) + 0;5) Qi (x(k)) + 3271 3251 (6
—0;;)Yij(x(k)) < Oforalliand j. The stability analysis result
is summarized in the following theorem.

Theorem 2: The discrete-time PFMB control system with
time delay (12) is positive and asymptotically stable if there
exist € R" and yj (x(k)) € R for j € ¢, k € n such that
Theorem 1 and the following SOS-based conditions are
satisfied:

A —e118SOS, 7 €n 21
(ZZ k) +d,;)q (x(k))
i=1j=1
£33 G 8 (x(R) + e <x<k>>)
i=1j5=1
isSOS, i€p, jEc, TEN 22)
y/ (x(k))isSOS, i€p, jec ren (23)
yid (x(k)) — ¢ (x(k))is SOS, i€p, j€c, ren  (24)

where £; > 0 is a predefined scalar and £5(x(k)) > 0 is pre-
defined scalar polynomial, ¢’ (x(k)) is defined in (18), and
the feedback gains and the other variables are defined in
Theorem 1. The decision variable XA is obtained by the SOS
formulation satisfying Theorems 1 and 2. In order to impose the
constraint x; > 0, the technique of variable transformation is
employed which simply turns z, to 27, k € n.

Remark 5: The positivity and stability conditions based on
Theorem 2 are only membership functions dependent positivity
and stability conditions. This means the positivity and stabil-
ity analyses merely consider the information of membership
functions, not the information of premise variables.

D. Membership Functions and Premise Variables Dependent
Stability Analysis

To further relax the SOS stability conditions based on non-
PDC design concept (cf., Theorem 2), we must consider the
upper and lower boundaries of premise variables. In this way,
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the information of operating domain is incorporated in the
stability conditions, resulting in more relaxed conditions. In
this paper, we investigate the stability analysis based on a cer-
tain operating domain defined as x(k) € [x; (k), x2(k)], where
x1 (k) and x5 (k) are lower and upper bounds of the domain. We
can then have the following constraint:

n

D (@ (k) = wa (k) (wea (k) — e (k))Sc (x(k)) = 0 (25)

e=1

where 0 < S, (x(k)) € R" is a polynomial expression.
From (25) and (20), we have

1>

i=1 j=1

AV (x(k) k) +6i;)Quj (x(k))

c

+ 35N "0 — 845) Y (x(k))

i=1j=1

S

+ =z (k) (zr2(k) — 2, (K))Se (X(k))> :

(26)

Therefore the stability condition AV/(x(k)) <0 is achieved

500 305 (g (x(R)) + ;) Qi (x(k)) + 3201 3251 (8

%w<uwamm>uwmdwmw
Sc(x(k)) < 0forall i and j, and we now propose the following
theorem.

Theorem 3: The discrete-time PFMB control system with
time delay (12) is positive and asymptotically stable if there
exist L € R" and yj (x(k)) € R for j € ¢, k € n such that
Theorem 1 and the following SOS-based conditions are satis-
fied:

A —e1i8SOS, 7 €n (27
LZP;Z; i (x(k)) + 8;;),” (x(k))
+;; i = 0ip)yy? (x(k))
+Z = et (k) (@e2 (k) — 2e (k) sy (x(K)) + &2 (X(k))>

isSOS,i€p,jEce,ren (28)
y/ (x(k))is SOS,i € p,j Ec,r €n (29)
v (x(k)) — q (x(k))is SOS,i € p,j €Ec,k €n (30)
st(x(k))is SOS,e,r €n 31

where £ > 0 is a predefined scalar and e5(x(k)) > 0 is pre-
defined scalar polynomial, ¢’ (x(k)) is defined in (18), and
the feedback gains and the other variables are defined in
Theorem 1. The decision variable A is obtained by the SOS
conditions in Theorems 1 and 3.
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Remark 6: With introducing premise variables, the informa-
tion of membership functions and premise variables are both
considered in positivity and stability analyses in Theorem 3.

Remark 7: The positivity and stability conditions in
Theorems 2 and 3 are independent from time delay. It means
the positivity and stability are guaranteed without the values of
time delays.

IV. SIMULATION EXAMPLE

In this section, a simulation example is provided to validate
the proposed SOS-based stability and positivity conditions in
Theorems 1-3 and check effectiveness of the proposed methods
in relaxing the stability conditions. A discrete-time nonlinear
plant with time delay and with system state matrix of x(k) =
[21(k) zo(k)]T is considered with the following polynomial
subsystems and input matrices under three fuzzy rules:

Ao (z1(k))

~ [0.02b 4 0.4 + 0.015z, (k) — 0.001z; (k)2 0.2
- 0.2 0.3

) = [ 0401 001 9]

Ao (a1 (k) = [0.24 +Od(.)0?)1x1 (k) 0.06 + 0'%6103”“ (k)* }
Bi(z1(k)) = :(),1 Egbogl?ﬂj(ky |
wmm{&ﬂ%ﬂ%_

B;(x1(k)) = 011—&-_000881@31:1(1({3]2; ]

A=Ay =A3 = [O'(())1 8}

Ay = Agy = Agy = {O.(())l 8} .

The parameters a and b are constant parameters chosen in the
range of 0.37 < a < 8.21 and —0.14 < b < 3.5 at the interval
of 0.97 and 0.28, respectively.

The membership functions of polynomial fuzzy model are
chosen as: wy (z1(k)) = pap (21 (k) =1 —
(@1 (k) = parz (21 () = 1 — wy (21 (K))
(k) =ty (21 (k) = 1oy -

Under the non-PDC design concept, the positivity and sta-
bility of the system is guaranteed based on a two-rule fuzzy
controller. The membership functions of the fuzzy controller
are chosen as follows:

1
Tre G o> W2

—wz(z1(k)), w3 (a1

1 for 21 (k) < 3
mi (1(k)) = pys (21(k)) = § =B for 3 < oy (k) < 17
0 for xy (k) > 17
and

ma(z1(k)) = pyz (21(k)) =1 —ma(z1(k)).
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TABLE I TABLE II
COMPARISON OF DIFFERENT INTERVALS OF SAMPLE POINTS AND DEGREES OF POLYNOMIAL Fuzzy CONTROLLER OBTAINED IN FIG. 2
POLYNOMIAL CONTROLLER
Degrees of c Theorem 2
: ase
Case  Interval yi (x(k)) Sample points a,b Polynomial fuzzy controller
1 5 4 z1(k) ={0,5,...,15,20} G (21) = [0.4879 x 1054 — 000012}
2 5 5 21 (k) ={0,5,...,15,20} A 154
3 3 1 w(k) =1{0,2,...,18,20] 135, +0.0004z7 + 0.01542; + 0.0580,
4 2 5 2 (k) = 1{0,2,...,18,20} Dol g | 08732 1070 +0.1961 x 10~ "2
—0.0007z2 + 0.0072z; + 0.0320]

To compare the positivity and stability regions for the Ga(z1) = [0.4248 x 10~ — 0.0001a}
discrete-time PFMB control system with time delay obtained +0.000422 + 0.0077z; + 0.0180,
from Theorems 2 to 3, piecew%se linear membership functiops —0.2684 x 10*6:1:{1 04916 x 10,53713
(19) are employed to approximate the original membership )
functions and introduce the approximate error in the stability —0.0008z; + 0.00342; + 0.1587]
conditions. Table I compares the intervals of sample points of G1(z1) =[0.1022 x 10792 + 0.7770x
piecewise linear membership functions with the degrees of poly- 10-524 — 0.000123 + 0.5028 x 10~ 422+
nomial fuzzy controller, which influence the stability regions. 0.37 ! ! 9 15

For the cases 1 and 2 with the interval of 5 for piecewise 2 26 | 0.0189z; +0.0844, —0.2501 x 107"z
linear membership functions, the predefined constant scalars 0.14 | 4+0.1377 x 10~%2} + 0.4017 x 10~ %2
which represent the lower and upper boundaries of approximate —0.000722 + 0.007521 + 0.0319]
error are obtained as follows: Ga(21) — [-0.4126 x 1071%15 1 0.6398x

_ ~1 _ -2 .
dyp = —1.9452 <107, §;5 = —6.2662 x 10 10521 — 0.0001 x 10~323 + 0.0002z2+
0oy = —9.2035 X 1072, §y9 = —9.2035 x 1072 0.01192; 4 0.0303,0.4323 x 101027
8y = —6.2662 x 1072, 8y, = —1.9452 x 10! +0.1500 x 10~ %z 4 0.5329 x 10~z
- - —0.001222 + 0.00281; + 0.0475
51 = 1.7759 x 107, 510 = 2.1816 x 102 a - ]
_ 1 _ 1 Theorem 3
021 = 1.9796 x 10", 029 = 1.9796 x 10~ Case -

a,b Polynomial fuzzy controller

5 _ -2 < -1
531 = 2.1816 x 10 s (532 = 1.7759 x 107" G1(351) _ [01542 « 10,5.%{1 04718 %

In terms of cases 3 and 4 with the interval of 2 for pieCCWiSC 1074$f + 00023I12 _ 00239.T1 + 0.0839
linear membership functions, the predefined constant scalars 1 3.31, 09371 x 10~62% — 0.1062 x 10~£2
which represent the lower and upper boundaries of approximate 0.42 ' x S x !
error are obtained as follow: +0.000322 — 0.00202; + 0.0423]

) — 5.4
éll — —4.9655 x 1072’ é12 — —3.1457 x 1072 Gz(ll) = [01499 x 10 Ty — 0.4325x%
10~%27 + 0.002022 — 0.02687; + 0.1202,
5y = —2.1857 x 1072, 8,y = —2.1857 x 1072 ! ! P
0.2564 x 10~%z — 0.4784 x 10~°z}
- -2 _ -2
J31 = —3.1457T x 1077, 4§35 = —4.2655 x 10 —0.0008z2 + 0.00312; + 0.1600]
011 = 5.2626 x 1072, 512 = 1.9458 x 1072 G1(z1) = [0.1359 x 10~1227 + 0.3540x
091 = 4.2932 x 1072, 099 = 4.2932 x 1072 10~%z — 0.000127 4+ 0.0025 x 10~ 422 —
_ _ 31 _ —12,.5
53 = 1.9458 x 102, 5ap = 5.2626 x 1072 5 [ 331 | 0.0181z; +0.0769, —0.1425 x 10~ 1%z
0.14 0.6530 x 10~%z{ + 0.3390 x 10~ %2}

Initially, the positivity and stability conditions without + ) et o
the information of membership functions and premise vari- +0.0009z — 0.00291 + 0.0419)]
ables are used to design the feedback gains of polynomial Ga(z1) = [0.1431 x 107 1z] + 0.3615x
fl,.IZ.Z}/ cor?trol.lers and check the syst.e.m. positivity zfn.d sta- 1052 — 0.000127 + 0.0018z2—
bility. This simply results in no positivity and stability re- 1o s
gions. Then, we take into account the information of mem- 0.0138z1 + 0.0940,0.1017 x 107 z;
bership functions via the SOS stability conditions in Theorem +0.3170 x 10~ %z + 0.4415 x 10~°}
2. We set €1 = e3(x(k)) = 0.0010, and Y (x(k)) as polyno- —0.0007z2 + 0.0017; + 0.1390)]

mial of degree 0 to 5 in z1(k). The resulting stability re-
gions are shown in Fig. 2 where the stability region for case 1
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TABLE III

POLYNOMIAL Fuzzy CONTROLLER OBTAINED IN FIG. 3

Case

Theorem 2

a,b

Polynomial fuzzy controller

8.21,
0.14

Gi(w1) = [0.7717 x 10~°z — 0.0001z;
+0.0002z2 + 0.0022z; — 0.0060),
0.6986 x 10752 + 0.3046 x 10~ *z;
—0.0001z2 + 0.0050z; — 0.0597]

Go(w1) = [0.6193 x 10~z — 0.0001 x
10~ %23 + 0.000227 + 0.00502; — 0.0125,
0.9563 x 1075z + 0.4941 x 10~z
—0.0005z7 4 0.0019z; — 0.0265]

8.21,
0.14

G (71) = [0.3087 x 10~ 132) + 0.9795x
10=%z¢ — 0.00012{ — 0.00027
+0.00212; + 0.0053,0.3728 x 10~ 13z)
+0.7289 x 1075z + 0.2182 x 104z}
—0.0001z7 + 0.0064z; — 0.0692]

Go(w1) = [0.4493 x 10~ 122) + 0.8219%
1072z — 0.0001z — 0.000422+
0.0058z; + 0.0062, —0.8196 x 10~ 3z
+0.4387 x 1070z +0.2894 x 10~ 1z}
—0.000427 + 0.00557; — 0.0532]

Case

Theorem 3

a,b

Polynomial fuzzy controller

8.21,
~0.14

Gi(z1) = [0.8927 x 10~ 5z¢ — 0.0002z;
+0.0027z2 — 0.01082; — 0.0035,
0.4196 x 10~52{ — 0.2605 x 10~ 42}
+0.0005z2 + 0.00712; — 0.0880]

Go(r1) = [0.8763 x 10~z — 0.0002x
10423 4 0.0017z2 — 0.00342; — 0.0078,
0.2069 x 1075z 4 0.3297 x 10~°z}
—0.8361 x 10~z + 0.0072x; — 0.0709]

8.21,
—0.14

Gi(71) = [-0.1314 x 10~z + 0.8927x
10~z — 0.0002z + 0.002722
—0.0108z; — 0.0035, —0.7436 x 10~ 25}
+0.4196 x 1075z + 0.2605 x 10~*z
+0.000522 4+ 0.00712; — 0.0880]

Go(z1) = [-0.2630 x 10~ 2 4 0.8763 %
105z — 0.0002z + 0.001722—
0.0034z; — 0.0078, —0.1770 x 10~ 1z
—0.2069 x 107z 4+ 0.3297 x 107 %23
—0.8361 x 10~*zZ + 0.0072z; — 0.0709]
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Fig. 2.  Stability regions given by Theorem 2 indicated by “+” for case 1,
“x” for case 2, given by Theorem 3 indicated by “[J” for case 1, “o” for
case 2.
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Fig. 3. Stability regions given by Theorem 2 indicated by “+” for case 3,
“x” for case 4, given by Theorem 3 indicated by “[J” for case 3, “o” for
case 4.

is shown with “+,” and for case 2 is shown with “ x .’ In the next
step, using Theorem 3, we consider both membership functions
and premise variables for the controller design and stability anal-
ysis. We set the boundary of premise variable as x(k) € [0, 20],
g1 = e2(x(k)) = 0.0010, Y (x(k)) as a polynomial of degree
0to 5 in xy, and S.(x(k)) as a polynomial of degree 0 to 3 in
21 (k). The resulting stability regions are shown in Fig. 2, where
the stability region for case 1 is shown by “[J” and for case 2 is
shown by “o0.”

Using the same aforementioned setting, we apply Theorem 2
for cases 3 and 4 (the stability regions are shown in Fig. 3
with “+” sign for case 3, and “ x ” sign for case 4), and then
Theorem 3 for the same cases (the stability regions are shown
in Fig. 3 with “[J” sign for case 3 and “[J” sign for case 4).

As noticed in the positivity and stability regions in Figs. 2
and 3, we can achieve smaller interval of sample points of
membership functions and higher degrees of polynomial fuzzy
controllers leading to larger stabilization region. The smaller
interval of the sampled points make the lower limit §,; and the

upper limit ¢; ; of the approximation error smaller. This proves
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02 46 8101214161820
z1(k)

02 46 8101214161820
z1(k)

02 4 6 8101214161820
z1(k)

0246 8101214161820
(k)

Fig.4. Topleftphaseplotsarea = 1.35;b = 0.42 (stability regions indicated
by the symbols “+” for case 1), the top right phase plots are a = 0.37;b = 0.14
(stability region indicated by the symbols *“ x ” for case 2). The bottom left phase
plots are @ = 3.31;b = 0.42 (stability regions indicated by the symbols “[1”
for case 1), the bottom right phase plots are ¢ = 3.31; b = 0.14 (stability region
indicated by the symbols “o” for case 2) all with referring to Fig. 2 and time
delay 71 = 50,72 = 100.

0246 8101214161820
x1(k)

0246 8101214161820
(k)

o (k)

0246 8101214161820
z1(k)

02 46 8101214161820
z1(k)

Fig.5. Topleft phase plots are a = 1.35; b = 0.42 (stability regions indicated
by the symbols “+” for case 1), the top right phase plotsare a = 0.37;b = 0.14
(stability region indicated by the symbols ““ x ” for case 2). The bottom left phase
plots are a = 3.31;b = 0.42 (stability regions indicated by the symbols “[J”
for case 1), the bottom right phase plots are a = 3.31; b = 0.14 (stability region
indicated by the symbols “o” for case 2) all with referring to Fig. 2 and time
delay 7 = 100, 7 = 200.

the fact that more information of the membership functions
is introduced in the stability conditions, and the flexibility of
polynomial fuzzy controllers is enhanced by adopting higher
degrees of polynomial fuzzy controllers, which all results in
larger stability region.

It is visible in Figs. 2 and 3 that the stability regions ob-
tained by Theorem 3 are larger than what are obtained in
Theorem 2 which only takes into account the information of
membership functions. Piecewise linear membership functions
are only able to carry limited information of membership func-
tions in Theorem 2. Boundary information of premise variables
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02 46 8101214161820
z1(k)

0246 8101214161820
zy (k)

.1‘2(]6)

02 46 8101214161820
(k)

0246 8101214161820
z1(k)

Fig.6. Topleftphase plotsarea = 8.21;b = 0.14 (stability regions indicated
by the symbols “+” for case 3), the top right phase plots are a = 8.21;b = 0.14
(stability region indicated by the symbols *“ x ” for case 4). The bottom left phase
plots are @ = 8.21; b = —0.14 (stability regions indicated by the symbols “[1”
for case 3), the bottom right phase plots are a = 8.21;b = —0.14 (stability
region indicated by the symbols “o” for case 4) all with referring to Fig. 3 and

time delay 71 = 50,79 = 100.

02 46 8101214161820
(k)

0246 8101214161820
z1(k)

0246 8101214161820
1 (k)

0246 8101214161820
(k)

Fig.7. Topleftphaseplotsare a = 8.21;b = (.14 (stability regions indicated
by the symbols “+” for case 3), the top right phase plotsare a = 8.21;b = 0.14
(stability region indicated by the symbols ““ x ” for case 4). The bottom left phase
plots are a = 8.21; b = —0.14 (stability regions indicated by the symbols “[1”
for case 3), the bottom right phase plots are a = 8.21;b = —0.14 (stability

region indicated by the symbols “o” for case 4) all with referring to Fig. 3 and

time delay 71 = 100, 72 = 200.

contain rich nonlinearity information of the positivity and sta-
bility. Therefore, we must consider premise variables in addition
to the membership functions to obtain more relaxed positivity
stability conditions.

To verify the obtained positivity and stability regions, the
phase plots corresponding to each situation is shown in Figs. 2
and 3. The stability results are shown in Figs. 4-7. The cor-
responding polynomial fuzzy controllers are listed in Tables II
and III. To ensure the validity of results, the phase plots of z1 (k)
and xo (k) are simulated with eight different initial conditions
indicated by “o.” These results as noticed from Figs. 4 to 7
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prove that the polynomial fuzzy controller is able to drive all
the system states to equilibrium (origin) while always hold them
positive based on different initial conditions. When we change
the values of time delays 7, = 50 to 73 = 100 (cf., Figs. 4 and
6), and 72 = 100 to 7 = 200 (cf., Figs. 5 and 7), the system
become stable regardless of the values of time delays. This is
mainly because the stability conditions in Theorems 2-3 are
independent of delay period.

V. CONCLUSION

This paper proposed a novel Lyapunov approach to reduce the
conservativeness of positivity and stability conditions, which are
used for the stability analysis and controller design of discrete-
time PFMB control systems with time delay. To automate the
whole analysis as a feasibility problem, all the Lyapunov stabil-
ity conditions and the non-PDC design of controller gains are
formulated as SOS conditions. With the new approach, valuable
nonlinearity information which exists in membership functions
and premise variables can be incorporated into the stability anal-
ysis. In this respect, a piecewise linear membership function
framework is proposed to approximate the original membership
functions and introduce the resulting approximation error in the
stability analysis where the boundary information of premise
variables are additionally introduced in the form of slack ma-
trices. The prowess of the proposed theorems in relaxing the
stability conditions have been presented via a case study where
all the stability regions are extended and the controller can make
the system stable regardless of the system time delay.

In the future, by considering the property of membership
functions, e.g., Y ', w;(x(k)) =1, 0 < w;(x(k)) <1, and
the boundary of membership functions in the proposed stability
Theorems, we can further relax the stability conditions. More-
over, to further reduce the conservativeness of the proposed
stability conditions, the Lyapunov function candidate with the
polynomial form of A should be explored. The proposed mem-
bership and premise variable-dependent stability analysis can be
used as the base for developing output-feedback and observer-
based feedback controller, where the direct measurement of
system states is practically difficult.
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