
Group-sequential response-adaptive designs for

censored survival outcomes

Wenyu Liua and D. Stephen Coadb

a
Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences,

University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

b
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road,

London E1 4NS, U.K.

Abstract

Previous work on two-treatment comparisons for immediate responses

has shown that the use of optimal response-adaptive randomisation

with group sequential analysis can allocate more patients to the better-

performing treatment while preserving the error rates. In this pa-

per, the application of the combined approach to censored survival

responses is investigated and different optimal response-adaptive ran-

domised procedures are compared. For a maximum duration trial,

the information level at the final look is usually unpredictable. An

approximate information time is defined. Group sequential tests and

optimal allocations for two measures of treatment difference are given.

Operating characteristics of the combined approach are investigated

by simulation, including cases of exponential and Weibull survival re-

sponses and redesign of a clinical trial. The results reveal that the ex-

isting boundaries for standard group sequential designs derived based

on the error-spending approach can be applied as approximate tests to

control the overall type I error rate. Compared to the group sequential

complete randomisation design, the combined approach is found to re-

tain ethical advantages as in previous work on immediate responses

while the power is not adversely affected.
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1 Introduction

Periodic group sequential designs, in which a number of interim analyses

are conducted after groups of observations, can require fewer patients than

a fixed-sample design to achieve the same error probabilities (Jennison and

Turnbull, 2000). Since early termination of trials is allowed, patients can be

prevented from being exposed to inferior or unsafe treatments. In addition,

response-adaptive randomisation, which skews the allocation proportion of

the sample sizes towards the more promising treatments based on the cumu-

lative responses, can further reduce the numbers of participants allocated to

the inferior treatments compared to complete randomisation (Atkinson and

Biswas, 2014). The use of the combined approach of group sequential anal-

ysis and response-adaptive randomisation can achieve both individual and

collective ethics.

Few studies of the application of the combined approach to two-armed trials

with immediate responses have been investigated. Jennison and Turnbull

(2001) derived theory to support that the combined approach still maintains

the overall error rates for two-armed normal trials with known variances. The

authors proved that the joint distribution of the test statistics has a standard

form similar to that for a group-sequential non-adaptive design, but with the

additional feature that the information level can depend on previous test

statistics. A reduction in the inferior treatment number can be achieved at a

cost of a slight increase in the expected total sample size. In addition, Morgan

(2003a) proposed two inferential methods for the treatment mean difference

following such a group-sequential response-adaptive design: an approximate

confidence interval using a pivotal method and a bias-adjusted maximum

likelihood estimator.

Morgan (2003b) investigated the combined approach for normal responses

2



with unknown variances. As inaccurate estimates of the variances of the

responses can influence the power considerably, she suggested using sam-

ple size re-estimation based on the new estimates of the variances updated

by the observed responses. For two-armed binary trials, Morgan and Coad

(2007) compared several adaptive allocation rules in a group sequential set-

ting, including urn-model type designs and the doubly-adaptive biased coin

design (DBCD) (Eisele and Woodroofe, 1995). Among the designs they in-

vestigated, the drop-the-loser rule (Ivanova, 2003) is found to be the most

efficient method for achieving the competing objectives of reducing the ex-

pected number of failures and the expected total sample size.

For normal and binary responses, Zhu and Hu (2010) considered monitor-

ing the DBCD at continuous information time utilising critical boundaries

derived by the error-spending approach (Lan and DeMets, 1983). They con-

sidered the α-spending function, which spends the type I error rate as a

function of the information time. Their simulation results revealed that the

use of the combined approach can preserve the advantages of both group

sequential analysis and optimal response-adaptive randomisation.

In this paper, the combined approach generalised to censored survival re-

sponses is explored, which allows staggered entry and right-censoring. We

initially assume an exponential survival model in which the arrival and cen-

soring times are both uniformly distributed. Since such a model may be

misclassified in practice, some of these assumptions are later relaxed and a

more robust approach considered.

For survival responses, the information levels usually cannot be attained

accurately, since they depend on the realised pattern of events and cen-

soring (Jennison and Turnbull, 2000). There are maximum duration trials

and maximum information trials. The former are more feasible in practice,

since the maximum length of the trials is fixed, whereas the latter consider

a pre-determined maximum information level. In practice, the trial may

not achieve the required information level at the end of the study, or the
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information level may be attained soon after the trial begins. We consider

maximum duration trials that use an approximate information time. The op-

timal response-adaptive randomisation procedures are used to target different

optimal allocations derived based on some optimality criteria, for instance,

minimising the total sample size or the expected number of failure events.

In addition to the DBCD, we also consider the efficient randomised-adaptive

design (ERADE) (Hu, Zhang and He, 2009).

The structure of the remaining sections is as follows. In Section 2, the para-

metric model for the responses, which characterises the staggered entry, the

right-censoring and the survival time, is introduced. An approximate infor-

mation time based on the model assumptions is defined. Group sequential

tests for two measures of treatment difference, the simple difference and the

log hazard ratio, are given in Section 3. In Section 4, the optimal allocations

derived based on different optimality criteria for the two measures of treat-

ment difference are shown. Then optimal response-adaptive randomisation

procedures, which aim to target the pre-specified optimal allocations, are

described. Simulation results comparing the designs are presented in Section

5, including the error probabilities, the expected number of patients, the

expected number of failures and the average allocation proportion with its

variability. In addition, the redesign of a clinical trial is investigated. Con-

clusions and further work are in Section 6. Supplementary material provides

the derivation of the probability of an event for the model-based approach,

comparison with a nonparametric approach based on the logrank test and a

simulation study of model misspecification.

2 The model

2.1 Information time

Suppose that N is the planned number of patients for a trial with K group

sequential analyses. The information level for survival responses at look k,

Ik, is proportional to the number of events. For maximum duration trials,
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the number of events at the final look is not known until the trial reaches

the end of the study. Hence, a predicted value for the final information level

evaluated at interim analysis k, Î(k)K , is needed. Then the information time

at group sequential test k can be expressed as

tk =
Ik
Î(k)K

=
ek

ê
(k)
K

, k = 1, ..., K, (1)

where ek is the observed number of events at look k and ê
(k)
K is the expected

total number of events evaluated at that look (Jennison and Turnbull, 2000).

Kim, Boucher and Tsiatis (1995) considered

tk =


ek

ê
(k)
K

if k < K and ek ≤ ê
(k)
K ,

1 otherwise.

They explained that the total expected number of events can be estimated

based on the assumed survival model. However, there are two candidates for

the estimate of eK . One is under the null hypothesis of no treatment differ-

ence and the other is based on the specified alternative hypothesis, which re-

sult in two information time scales. Kim, Boucher and Tsiatis (1995) showed

that the overall type I error rate can be preserved by using either information

time scale for a logrank test. The power depends on the actual information

level obtained.

For parametric tests, (1) can be approximated by

tk =

∑2
j=1mj,kε̂j,k∑2
j=1mj,K ε̂j,K

, k = 1, ..., K,

where mj,k is the cumulative sample size for treatment j at look k and ε̂j,k is

the probability of an event for treatment j evaluated at look k, which depends

on the assumed model. For uniformly distributed arrival and censoring times,

and exponentially distributed survival time with mean θj, the probability of
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an event is

εj,k = 1− θj
D

{
1 + exp

(
−Dtk

θj

)}
− θj
Dtk

(
1− 2θj

D

){
1− exp

(
−Dtk

θj

)}
,

(2)

where D is the maximum duration of the trial. Details of the derivation

are in Supplementary Material 1. The probability of an event increases as

the length of the trial is increased. Also, for group sequential designs, εj,k

is larger at later looks than at early ones. However, εj,k decreases when the

mean survival time for treatment j is increased. Since εj,k is a function of

an unknown parameter, initial estimates from a previous study or obtained

in the learning phase of the trial can be used. The parameter estimates are

then updated based on the cumulative responses.

The type I error rate can be guaranteed using either information time scale

(Kim, Boucher and Tsiatis, 1995). For simplicity, we consider the informa-

tion time scale under the null hypothesis where θ1 = θ2. Then the subscript j

for εj,k denoting treatment can be suppressed. The approximate information

time at look k becomes

tk =

∑2
j=1mj,kε̂k∑2
j=1mj,K ε̂K

=
nk ε̂k
Nε̂K

∈ (0, 1], k = 1, ..., K, (3)

where nk =
∑2

j=1mj,k is the cumulative sample size at look k and nK = N .

Now suppose that we wish to conduct the first interim analysis when about

one third of the expected total number of events is obtained. Then it is

planned at t1 = 1/3, and, from (3), n1 = dt1Nε̂K/ε̂1e is the approximate

number of patients needed at the first look, where dxe denotes the smallest

integer greater than or equal to x.

2.2 Model assumptions

Let D be the length of the maximum duration trial. The information times

t0 = 0 and tK = 1 refer to the commencement and the end of the trial,
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respectively. Suppose that group sequential tests take place at information

time tk ∈ (0, 1], k = 1, ..., K. Then the calendar time at which the kth

interim analysis occurs can be expressed as Dtk. Assume that patient arrival

time is uniformly distributed. The arrival time for patient i who arrived

before or at the kth look is Ai ∼ U(0, Dtk). Also, assume that the survival

time for patient i on treatment j, Si,j, follows an exponential distribution

with mean θj > 0. Then the density function of Si,j is

f(si,j; θj) =
1

θj
exp

(
−si,j
θj

)
for si,j > 0. The survival function is P (Si,j > si,j) = exp(−si,j/θj) and the

hazard rate for treatment j is θ−1
j . In addition, the censoring time for pa-

tient i, Ci, is assumed to be uniformly distributed from zero to D. Here, the

treatment groups are assumed to have the same arrival and censoring time

distributions. Patients’ arrival, survival and censoring times are assumed to

be independent of each other.

Under the above model assumptions, the observed survival outcome for pa-

tient i, i = 1, ...,mj,k, on treatment j, j = 1, 2, at group sequential test

k, k = 1, ..., K, can be expressed as Yi,j,k = min(Si,j, Ci, Dtk − Ai). Note

that the duration of the trial, D, and the arrival time of patient i, Ai, start

from the beginning of the study, while the survival time Si,j and the censoring

time Ci commence from the arrival of that patient. For example, suppose

that the number of group sequential tests is K = 3. At the first interim

analysis, we have Yi,j,1 = min(Si,j, Ci, Dt1 − Ai), where Ai ∼ U(0, Dt1).

If Yi,j,1 = Si,j, then the patient’s outcome is an event. If Yi,j,1 = Ci,

then the patient’s outcome is right-censored due to loss to follow up. If

Yi,j,1 = Dt1−Ai, then the outcome is right-censored because the patient has

not yet responded. The patient’s outcome will then be followed up at later

looks. Let Ei,j = min(Si,j, Ci). Then, if the outcome occurs between the first

and the second looks, then Dt1 < Ai +Ei,j ≤ Dt2, and we have Yi,j,2 = Ei,j.

An example is shown in Figure 1, where Ei,j = Si,j and Yi,j,2 = Si,j.
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Figure 1: An example of a patient’s arrival, survival and censoring times.

If Dt2 < Ai + Ei,j ≤ Dt3, then we have Yi,j,2 = Dt2 − Ai and Yi,j,3 = Ei,j. If

the patient has not responded by the end of the trial, then Ai + Ei,j > Dt3,

Yi,j,2 = Dt2−Ai and Yi,j,3 = Dt3−Ai. Similarly, at the second interim test, we

have Yi,j,2 = min(Si,j, Ci, Dt2−Ai), where Ai ∼ U(0, Dt2). If Yi,j,2 = Dt2−Ai,
then we follow up the outcome at the next look. If Dt2 < Ai + Ei,j ≤ Dt3,

then Yi,j,3 = Ei,j. Otherwise, Yi,j,3 = Dt3 − Ai. For the final look, however,

no outcome will be followed up.

2.3 Sequential maximum likelihood estimation

Suppose that two independent random samples {yi,j,k, δi,j,k, i = 1, . . . ,mj,k}
for treatment j, j = 1, 2, are obtained. Here, δi,j,k = 1 if the outcome of

patient i on arm j at look k is an event and δi,j,k = 0 if the outcome is

censored. Under the above model, the likelihood function for treatment j

based on the outcomes obtained so far can be expressed as

Lk(θj) =

mj,k∏
i=1

{
1

θj
exp

(
−yi,j,k

θj

)}δi,j,k {
exp

(
−yi,j,k

θj

)}1−δi,j,k
, (4)
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where the first part of the product in (4) refers to the survival times and the

second part represents the censoring times. The log-likelihood function is

lk(θj) = logLk(θj) = −rj,k log(θj)−
∑mj,k

i=1 yi,j,k
θj

,

where rj,k =
∑mj,k

i=1 δi,j,k is the cumulative number of events at look k. Thus,

we have
dlk(θj)

dθj
= −rj,kθ−1

j +

(
mj,k∑
i=1

yi,j,k

)
θ−2
j = 0

for a maximum. Hence, we obtain the maximum likelihood estimate of the

mean survival time θj to be θ̂j,k =
∑mj,k

i=1 yi,j,k/rj,k, which is the sum of the

observed survival times divided by the number of events obtained so far.

The Fisher information for θj is

Ik(θj) = −E
{
d2lk(θj)

dθ2j

}
= −E(rj,k)θ

−2
j + 2E

(
mj,k∑
i=1

Yi,j,k

)
θ−3
j .

Here, if there were no censored data,
∑mj,k

i=1 Yi,j,k ∼ Γ(mj,k, θ
−1
j ). However, if

there is censoring, then
∑mj,k

i=1 Yi,j,k ∼ Γ(rj,k, θ
−1
j ) and E(

∑mj,k

i=1 Yi,j,k) can be

approximated by θjE(rj,k) (Cox and Oakes, 1984). So the Fisher information

for θj is approximately

Ik(θj) = −E(rj,k)θ
−2
j + 2θjE(rj,k)θ

−3
j = E(rj,k)θ

−2
j .

Consequently, we have var(θ̂j,k) = Ik(θj)
−1 = θ2j/E(rj,k) as the approximate

variance of θ̂j,k.

3 Group sequential analysis

3.1 Form of tests

Suppose that the parameter of interest is φ. The null hypothesis is H0 : φ = 0

versus the alternative hypothesis Ha : φ 6= 0. Let φ̂k be the parameter
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estimate at look k and let v̂ar(φ̂k) be its estimated variance. Then the test

statistic is

Zk =
φ̂k√

v̂ar(φ̂k)
, k = 1, ..., K, (5)

which is approximately normal for large sample sizes.

3.1.1 Simple difference

If the parameter of interest is the difference in the two mean survival times,

we have φ = θ1−θ2. Then φ̂k = θ̂1,k−θ̂2,k is the maximum likelihood estimate

of φ at look k and

var(φ̂k) = var(θ̂1,k − θ̂2,k) = Ik(θ1)
−1 + Ik(θ2)

−1 =
θ21

E(r1,k)
+

θ22
E(r2,k)

. (6)

Based on the assumed model, E(rj,k) can be approximated by mj,kεj,k.

3.1.2 Log hazard ratio

If the parameter of interest is the log hazard ratio, we have φ = log(θ1/θ2).

Then φ̂k = log(θ̂1,k/θ̂2,k) is the maximum likelihood estimate of φ at look k,

and, by the δ-method,

var(φ̂k) = var{log(θ̂1,k/θ̂2,k)} ≈
1

E(r1,k)
+

1

E(r2,k)
. (7)

In practice, the observed number of events on arm j at look k, rj,k, is used

in (6) and (7). In addition, it is required that there is at least one event on

both treatment arms, so that the denominator rj,k > 0 for j = 1, 2.

3.2 Joint distribution of test statistics

As the number of interim analyses increases, the probability of falsely reject-

ing H0 is increased. Critical boundaries that control the overall type I error

rate are required. Derivation of the critical boundaries relies on the joint

distribution of the sequential test statistics.
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For a group-sequential non-adaptive randomised design, a common form of

the joint distribution of {Z1, ..., ZK} has been derived by Jennison and Turn-

bull (2000), which is called the canonical joint distribution. This form ap-

plies exactly for normal responses with known variances and approximately

for other types of endpoints.

Jennison and Turnbull (2001) showed that the combined approach of group

sequential analysis with response-adaptive randomisation still maintained the

overall error rates by proving that the joint distribution of the test statistics

has a standard form similar to that for a group-sequential non-adaptive de-

sign, but with the additional feature that the information level can depend

on previous test statistics. In the study of Morgan and Coad (2007), where

several response-adaptive designs for two-armed binary trials were compared,

it was shown that the error rates were preserved for all of the designs. By

considering monitoring a response-adaptive design at a continuous informa-

tion time, Zhu and Hu (2010) also proved that the sequence of test statistics

converges in distribution to a Brownian motion and asymptotically satisfies

the canonical joint distribution. Hence, the required error probabilities for

the combined approach can be achieved approximately using the same criti-

cal boundaries for standard group sequential designs.

To see why the joint distribution of {Z1, . . . , ZK} in (5) is approximately the

canonical form, let Ik(φ) be the Fisher information for φ at look k. Then,

again by the δ-method,

E(Zk) ≈
E(φ̂k)√
var(φ̂k)

≈
√
Ik(φ)φ,

and, for k1 ≤ k2,

cov(Zk1 , Zk2) ≈
cov(φ̂k1 , φ̂k2)√

var(φ̂k1)var(φ̂k2)
≈

√
Ik1(φ)

Ik2(φ)
.
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The section below describes the derivation of the critical boundaries based

on the asymptotic joint distribution. The use of the critical boundaries as an

approximate test for the combined approach with censored survival responses

will be investigated by simulation.

3.3 Critical boundaries

The α-spending approach controls the overall type I error rate and allows

interim analyses to be taken at any continuous information time. An α-

spending function, α(tk), represents how much of the cumulative type I error

rate is to be spent at information time tk. It is a continuous and monotoni-

cally non-decreasing function with α(0) = 0 and α(1) = α. For the O’Brien

and Fleming boundaries (O’Brien and Fleming, 1979), we have

αO−F (tk) = 2{1− Φ(zα/2/
√
tk)},

where zα/2 = Φ−1(1 − α/2) and Φ denotes the standard normal distribu-

tion function. The O’Brien and Fleming boundaries spend little type I error

probability during the early stages of a trial, and, if the last look is reached,

the type I error rate will be close to that of a fixed-sample design.

Based on the joint distribution of the sequence of test statistics, the crit-

ical boundaries {c1, ..., ck} can be calculated recursively using the equation

Pφ=0(|Z1| < c1, ..., |Zk−1| < ck−1, |Zk| ≥ ck) = α(tk)− α(tk−1).

For k = 1, the type I error probability to be spent is Pφ=0(|Z1| ≥ c1) = α(t1).

The critical boundary c1 can be easily obtained by inverting the standard

normal distribution function. For computing ck, k ≥ 2, integration of a mul-

tivariate normal distribution is required. The error-spending approach does

not require the number of group sequential analyses, K, to be pre-specified.

For k = 1, ..., K − 1, we stop the trial and reject the null hypothesis if

|Zk| ≥ ck; otherwise, we continue to the next interim analysis. For k = K,
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we reject H0 if |Zk| ≥ ck, and accept H0 otherwise.

4 Optimal response-adaptive randomisation

4.1 Optimal allocations

Optimal response-adaptive randomised designs aim to target the pre-specified

optimal allocation derived based on some optimality criterion. These opti-

mal allocations were derived using a fixed-sample design with one analysis

conducted at the end of the trial, which is the case K = 1. However, they are

updated sequentially. Here, some optimal allocations for censored survival

responses are introduced.

Minimising the total sample size (Neyman allocation)

Let Mj be the sample size for treatment j, j = 1, 2, at the end of the trial

and N = M1 + M2 be the total sample size. The allocation proportion

for treatment j,Mj/N , is random for response-adaptive randomised designs,

as Mj is not pre-determined. Neyman allocation is found by minimising

the total sample size M1 + (N −M1) with respect to M1 under a variance

constraint. For the simple difference test statistic, the constraint is

V =
θ21

E(r1)
+

θ22
E(r2)

=
θ21
M1ε1

+
θ22

(N −M1)ε2
= C,

where C > 0 is a constant. The solution is

ρ1 =
θ1
√
ε2

θ1
√
ε2 + θ2

√
ε1

and ρ2 = 1− ρ1.

For the log hazard ratio test statistic, the constraint is

V =
1

E(r1)
+

1

E(r2)
=

1

M1ε1
+

1

(N −M1)ε2
= C.

The solution is

ρ1 =

√
ε2√

ε2 +
√
ε1

and ρ2 = 1− ρ1.
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Minimising the total expected hazard

Optimal allocation for survival responses aims to minimise the total expected

hazard M1θ
−1
1 + (N −M1)θ

−1
2 with respect to M1 under the above variance

constraints. The solution for the simple difference test statistic is now

ρ1 =

√
θ31ε2√

θ31ε2 +
√
θ32ε1

and ρ2 = 1− ρ1

and that for the log hazard ratio becomes

ρ1 =

√
θ1ε2√

θ1ε2 +
√
θ2ε1

and ρ2 = 1− ρ1.

Here, ρj, j = 1, 2, is a function of the unknown parameters. In addition, the

probability of an event on treatment j, εj, which depends on the assumed

model, is also a function of the unknown parameters, as shown in (2). In

practice, the current parameter estimates based on the responses available

are used.

4.2 Randomisation procedures

Response-adaptive randomisation assigns patients according to previous treat-

ment allocations and outcomes. Permuted-block randomisation can be used

early on to obtain initial parameter estimates. For a two-treatment compar-

ison, varying block sizes of {2, 4, 6, ...} can be chosen. This method balances

the sample sizes across the treatment groups. Then the two optimal response-

adaptive randomisation procedures below can be implemented.

Doubly-adaptive biased coin design (DBCD)

Suppose that m
(i)
j is the cumulative sample size on treatment j after i pa-

tients, i = 1, ..., N . Let m
(i)
j /i and ρ̂

(i)
j be the current and optimal allocation

proportions for arm j, j = 1, 2, evaluated based on the outcomes available.
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The probability that the (i+ 1)th patient will be assigned to arm 1 is

g1 =



ρ̂
(i)
1

{
ρ̂
(i)
1

m
(i)
1 /i

}γ

ρ̂
(i)
1

{
ρ̂
(i)
1

m
(i)
1 /i

}γ

+ ρ̂
(i)
2

{
ρ̂
(i)
2

m
(i)
2 /i

}γ if 0 < m
(i)
j /i < 1,

1−m(i)
1 /i if m

(i)
1 /i = 0, 1,

where 0 ≤ γ ≤ ∞ is a constant that determines the degree of randomness of

the allocation procedure. The procedure is the most random when γ = 0 and

is the most deterministic when γ →∞. In the study of Hu and Rosenberger

(2003) for binary responses, γ = 2 is recommended, which can achieve a high

power while allowing a reasonable degree of randomness. Hu, Rosenberger

and Zhang (2006) derived an asymptotic Cramér-Rao lower bound for the

variance of the allocation proportions. The DBCD has been shown to at-

tain the lower bound only when γ → ∞. It has been applied to censored

survival outcomes in a fixed-sample design by Zhang and Rosenberger (2007).

Efficient randomised-adaptive design (ERADE)

Similar to the DBCD function, the allocation probability function for the

ERADE depends on both the current and the estimated target allocation

proportions. However, the ERADE function is discontinuous. The probabil-

ity that the next patient will be assigned to treatment 1 is

g1 =


γ

′
ρ̂
(i)
1 if m

(i)
1 /i > ρ̂

(i)
1 ,

ρ̂
(i)
1 if m

(i)
1 /i = ρ̂

(i)
1 ,

1− γ′{1− ρ̂(i)1 } if m
(i)
1 /i < ρ̂

(i)
1 ,

where 0 ≤ γ
′
< 1 is a constant that controls the degree of randomisation.

The ERADE allocation procedure becomes more deterministic when γ
′ → 0.

A value of γ
′
between 0.4 and 0.7 is recommended, and the ERADE has been

proved to always attain the Cramér-Rao lower bound for the variance of the

15



allocation proportions (Hu, Zhang and He, 2009).

The allocation probability for treatment 1, g1, is updated sequentially after

each outcome observed. Although survival outcomes are usually not immedi-

ately available, the optimal response-adaptive randomisation procedures can

be used as long as some outcomes have been obtained. It is shown that a

moderate delay in censored survival responses has only a modest effect on

the asymptotic properties of the DBCD (Zhang and Rosenberger, 2007) and

similarly for the ERADE (Hu, Zhang and He, 2009).

5 Simulation study

5.1 Exponential survival times

Consider comparing the mean survival time for the two treatment groups.

Similar parameters were used as in Zhang and Rosenberger (2007). However,

our simulation study extends this to investigate different response-adaptive

randomisation methods incorporated with group sequential designs using the

simple difference and log hazard ratio test statistics. The designs are com-

pared in terms of the error probabilities, the expected number of patients

(ENP), the expected number of failures (ENF) calculated when the trial

stops, the average allocation proportion for treatment 1 (ρ̃1) and the corre-

sponding variability. The operating characteristics for complete randomisa-

tion (CR) were provided to compare with the response-adaptive randomisa-

tion procedures and the results for the fixed-sample designs were displayed to

compare with the group sequential designs. The simulation study was based

on 10,000 replicates.

At subject level, a random sample of arrival times for nk patients recruited at

look k was drawn using U ∼ U(Dtk−1, Dtk), where t0 = 0 and tK = 1. The

arrival times were then sorted and we obtained the arrival time for patient i,

Ai. For each patient, a survival time Si,j for those allocated to treatment j

was simulated together with a competing censoring time Ci, where Si,j and
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Ci both began at time Ai. The observed survival time for patient i allocated

to treatment j at look k is the minimum of Si,j, Ci and the length of time

that the patient had been in the trial by group sequential test k, Dtk − Ai.
The form of the tests is in Section 3.1. To achieve around 80% power to

detect a hazard ratio of 4 using the log hazard ratio test statistic for the

group sequential designs, we considered the mean survival times θ1 = 1.4

and θ2 = 1 for the two treatments and the maximum number of patients

N = 800. As in Zhang and Rosenberger (2007), the duration of the trial

D = 1.5936 and an overall type I error rate of 5% were set.

Two unequally-spaced information times (0.2, 0.5, 1) and (0.5, 0.8, 1) are

planned for the group sequential designs with K = 3 analyses. The former

conducts early interim looks, whereas the latter has interim analyses after

reaching one half of the maximum information level. For the simple difference

and log hazard ratio test statistics Zk, k = 1, 2, 3, the O’Brien and Fleming

boundaries derived by the error-spending approach, which were originally

derived based on a non-adaptive randomisation setting, were utilised as ap-

proximate tests. The boundaries for the tests taken at the two information

sequences are (4.877, 2.963, 1.969) and (2.963, 2.266, 2.028), respectively.

For the response-adaptive randomisation procedures, treatment allocation

also depends on the parameter estimates. In our simulation study, permuted

block randomisation, which ensured balanced allocation, was used for the first

10% of patients to obtain initial parameter estimates. Then the response-

adaptive randomisation procedures were applied with the aim of targeting

the optimal allocations that minimise the total expected hazard. The tuning

parameters for the DBCD and the ERADE were γ = 2 and γ
′
= 0.5, respec-

tively, which were set to achieve a high power while allowing a reasonable

degree of randomness.
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5.1.1 Simple difference

In Table 1, a slightly conservative type I error rate was obtained for CR.

Compared with CR, the response-adaptive randomised designs had a slightly

higher α̃, which was within the range of three standard errors from α = 0.05,

that is, (0.043, 0.057). This shows that the critical boundaries can be used

approximately for the combined approach with censored survival responses.

Under H0, the ENP and the ENF were similar across all of the designs. How-

ever, the use of the response-adaptive designs increased the variability in the

allocation proportion compared to CR.

Under Ha, from Table 2, the use of the response-adaptive randomised de-

signs was more ethical. For instance, for (t1, t2, t3)=(0.5, 0.8, 1), compared

to CR, the use of optimal response-adaptive randomisation on average re-

quired 15 fewer patients and there were 18 fewer failures without a loss of

power. Compared with the fixed-sample designs, the ENP and the ENF

were both significantly decreased in the group sequential designs. In the case

of (t1, t2, t3)=(0.5, 0.8, 1), a 12% reduction in the ENP for the response-

adaptive designs was attained. For CR, there was a 10% reduction in the

ENP. The standard deviation of the ENP for the group sequential designs was

large, since there were only three possible values for the number of patients.

For instance, for the case (t1, t2, t3)=(0.2, 0.5, 1), the number of patients

was n1 = 442, n2 = 561 or n3 = 800 when the trial terminated at the first,

the second or the final stage, respectively. For the case (t1, t2, t3)=(0.5,

0.8, 1), the number of patients could be n1 = 561, n2 = 698 or n3 = 800.

The case (t1, t2, t3)=(0.5, 0.8, 1) had the least ENP, and hence the ENF

due to the fact that there was more early stopping in this case. The optimal

allocation proportion for treatment 1, ρ1, was well targeted for both of the

response-adaptive randomised designs, with the ERADE consistently having

a lower variability in the allocation proportion.
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Table 1: Simulated type I error rate for two-armed censored survival trials
with optimal allocation in group sequential and fixed-sample designs using
tests of the simple difference, θ1 = θ2 = 1 and N = 800.

(t1, t2, t3)=(0.2, 0.5, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.041 799.7 (8.6) 338.7 (14.8) 0.500 (0.017)

DBCD 0.055 798.5 (18.6) 338.1 (17.8) 0.500 (0.059)

ERADE 0.054 799.0 (15.5) 338.4 (16.5) 0.500 (0.051)

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.045 797.6 (16.9) 338.6 (16.6) 0.500 (0.017)

DBCD 0.052 796.7 (22.0) 337.9 (18.6) 0.500 (0.057)

ERADE 0.056 796.6 (21.5) 338.1 (18.3) 0.501 (0.052)

Fixed-sample designs

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.044 800 (0) 338.9 (13.7) 0.500 (0.017)

DBCD 0.054 800 (0) 338.9 (13.7) 0.501 (0.053)

ERADE 0.050 800 (0) 338.9 (13.7) 0.501 (0.050)

Table 2: Simulated power for two-armed censored survival trials with optimal
allocation in group sequential and fixed-sample designs using tests of the
simple difference, θ1 = 1.4, θ2 = 1 and N = 800.

(t1, t2, t3)=(0.2, 0.5, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.) T1 T2

CR 0.830 767.6 (81.8) 285.9 (47.4) 0.500 (0.017) 0 1,356

DBCD 0.825 750.6 (96.8) 266.9 (56.7) 0.657 (0.067) 0 2,069

ERADE 0.821 751.7 (96.0) 267.9 (56.0) 0.654 (0.061) 0 2,023

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.) T1 T2

CR 0.810 718.2 (76.5) 263.1 (43.8) 0.500 (0.018) 1,283 5,012

DBCD 0.826 703.3 (86.6) 245.4 (51.8) 0.658 (0.064) 2,133 4,483

ERADE 0.823 704.5 (87.2) 245.7 (52.1) 0.661 (0.061) 2,135 4,363

Fixed-sample designs

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.) T1 T2

CR 0.828 800 (0) 303.9 (13.5) 0.500 (0.017) - -

DBCD 0.836 800 (0) 293.2 (14.0) 0.653 (0.053) - -

ERADE 0.833 800 (0) 293.3 (14.0) 0.653 (0.050) - -

Here, the optimal allocation for treatment 1, ρ1, is 0.652 for the DBCD and the ERADE.
T1 and T2 denote the numbers of trials terminated early at information times t1 and t2,
respectively, based on 10,000 replicates.
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5.1.2 Log hazard ratio

From Table 3, the type I error rate was within two standard errors of 0.05 for

all designs. Similar conclusions to those for the simple difference case were

obtained. However, the standard deviations of ρ̃1 for the DBCD and the

ERADE are significantly reduced using the log hazard ratio test. Under Ha,

from Table 4, the optimal allocation for the response-adaptive randomised

designs was closer to equal allocation compared to the simple difference case.

Hence, the results for the DBCD and the ERADE were similar to those for CR

and the reduction in the number of failures by using the response-adaptive

randomisation procedures was less compared to Table 2.

Table 3: Simulated type I error rate for two-armed censored survival trials
with optimal allocation in group sequential and fixed-sample designs using
tests of the log hazard ratio, θ1 = θ2 = 1 and N = 800.

(t1, t2, t3)=(0.2, 0.5, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.046 799.3 (12.6) 338.6 (15.6) 0.500 (0.017)

DBCD 0.047 799.1 (14.3) 338.5 (16.3) 0.500 (0.028)

ERADE 0.052 799.0 (15.6) 338.3 (16.8) 0.500 (0.023)

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.042 797.6 (16.8) 338.3 (16.4) 0.500 (0.017)

DBCD 0.048 797.1 (20.1) 338.4 (17.9) 0.500 (0.027)

ERADE 0.046 797.4 (18.9) 338.3 (17.5) 0.500 (0.024)

Fixed-sample designs

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.047 800 (0) 338.9 (13.7) 0.500 (0.017)

DBCD 0.051 800 (0) 338.9 (13.7) 0.500 (0.025)

ERADE 0.049 800 (0) 338.9 (13.7) 0.500 (0.023)
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Table 4: Simulated power for two-armed censored survival trials with optimal
allocation in group sequential and fixed-sample designs using tests of the log
hazard ratio, θ1 = 1.4, θ2 = 1 and N = 800.

(t1, t2, t3)=(0.2, 0.5, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.) T1 T2

CR 0.832 749.1 (97.9) 275.7 (56.4) 0.500 (0.017) 0 2,130

DBCD 0.828 750.5 (96.9) 271.6 (56.4) 0.577 (0.036) 1 2,070

ERADE 0.832 749.8 (97.4) 271.2 (56.5) 0.577 (0.031) 3 2,096

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.) T1 T2

CR 0.825 705.2 (85.4) 255.4 (49.6) 0.500 (0.018) 2,017 4,566

DBCD 0.826 703.2 (86.1) 249.9 (50.8) 0.577 (0.033) 2,110 4,543

ERADE 0.827 702.2 (86.5) 249.2 (51.0) 0.579 (0.031) 2,159 4,533

Fixed-sample designs

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.) T1 T2

CR 0.838 800 (0) 303.9 (13.5) 0.500 (0.017) - -

DBCD 0.839 800 (0) 298.9 (13.6) 0.572 (0.026) - -

ERADE 0.839 800 (0) 298.9 (13.6) 0.572 (0.024) - -

Here, the optimal allocation for treatment 1, ρ1, is 0.572 for the DBCD and the ERADE.
T1 and T2 denote the numbers of trials terminated early at information times t1 and t2,
respectively, based on 10,000 replicates.

5.2 Redesigning a clinical trial

Jones et al . (2005) is a study of a phase III survival trial in breast cancer

comparing docetaxel and paclitaxel using a fixed-sample equal allocation de-

sign. The total sample size is 449 and the duration of the trial is 102 months.

Zhang and Rosenberger (2007) investigated the redesign of the trial using the

DBCD in a fixed-sample design. Based on the area under the Kaplan-Meier

plot of survival in Jones et al . (2005), they used the mean overall survival

times for docetaxel and paclitaxel as θ1=16.1 and θ2=12.7 months, respec-

tively. They obtained ρ̃1 = 0.59 and suggested that 265 patients would be

randomised to the better treatment docetaxel using the fixed-sample DBCD

design compared to 225 patients in the original equal allocation design. In

this section, we investigate the redesign of the trial in a group sequential

setting with (t1, t2, t3)=(0.2, 0.5, 1), since the events were obtained quickly

in this case. The other parameters used are the same as in Section 5.1.
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Compared to CR, the combined approach reduced the expected numbers

of patients and failures while not adversely affecting the error rates: see Ta-

bles 5 and 6. The inflated type I error rate for the DBCD and the ERADE,

which was due to the use of critical boundaries for standard group sequen-

tial designs approximately, was within the range of three standard errors of

0.05. The average allocation proportion for the docetaxel arm of ρ̃1 = 0.60

was obtained for the combined approach, and hence 258 out of the 430 ex-

pected number of patients would be allocated to the better treatment if the

combined approach was used.

Table 5: Simulated type I error rate for the redesign of a clinical trial with
optimal allocation in a group sequential design using tests of the simple
difference, θ1 = θ2 = 12.7 and N = 449.

(t1, t2, t3)=(0.2, 0.5, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.046 448.7 (7.0) 356.5 (10.4) 0.500 (0.023)

DBCD 0.056 447.7 (16.1) 355.6 (16.3) 0.500 (0.050)

ERADE 0.057 447.6 (16.7) 355.4 (16.8) 0.500 (0.046)

Table 6: Simulated power for the redesign of a clinical trial with optimal
allocation in a group sequential design using tests of the simple difference,
θ1 = 16.1, θ2 = 12.7 and N = 449.

(t1, t2, t3)=(0.2, 0.5, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.586 437.3 (46.3) 336.5 (40.4) 0.500 (0.023)

DBCD 0.611 430.1 (57.7) 328.3 (50.4) 0.602 (0.056)

ERADE 0.615 429.3 (58.7) 327.6 (51.5) 0.603 (0.052)

For the DBCD and the ERADE, the target optimal allocation for treatment 1, ρ1, is
0.596 for the simple difference test.

5.3 Weibull survival times

Exponential survival responses have a constant hazard rate which may be un-

realistic in practice. Other distributions of survival times, such as the Weibull
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distribution, can be used when the hazard rate is changing over time. In this

section, the application of the group-sequential response-adaptive design to

Weibull survival responses is demonstrated.

Let Si,j be the survival time for patient i on treatment j that follows a

Weibull distribution. Then log(Si,j) has an extreme value distribution with

two parameters µj and bj determining its scale and shape. As shown in Sec-

tion 2.2, the observed survival response for patient i on treatment j at group

sequential test k is Ti,j,k = min(Si,j, Ci, Dtk − Ai). Let Yi,j,k = log(Ti,j,k).

We have two independent random samples {yi,j,k, δi,j,k, i = 1, . . . ,mj,k} for

j = 1, 2, where δi,j,k = 1 indicates an event and δi,j,k = 0 refers to right-

censoring. Then the likelihood function is given by

Lk(µj, bj) =

mj,k∏
i=1

[
1

bj
exp

(
yi,j,k − µj

bj

)
exp

{
− exp

(
yi,j,k − µj

bj

)}]δi,j,k
×
[
exp

{
− exp

(
yi,j,k − µj

bj

)}]1−δi,j,k
.

The log-likelihood function is

lk(µj, bj) = −rj,klog(bj) +

mj,k∑
i=1

{δi,j,kzi,j,k − exp(zi,j,k)},

where rj,k =
∑mj,k

i=1 δi,j,k is the cumulative number of events and zi,j,k =

(yi,j,k − µj)/bj. The maximum likelihood estimates of the two parameters

can be obtained numerically by solving

∂lk(µj, bj)

∂µj
= − 1

bj

mj,k∑
i=1

{δi,j,k − exp(zi,j,k)} = 0

and
∂lk(µj, bj)

∂bj
= −rj,k

bj
− 1

bj

mj,k∑
i=1

{δi,j,k − exp(zi,j,k)}zi,j,k = 0.
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The approximate variance of the maximum likelihood estimator µ̂j,k is var(µ̂j,k) =

b2jGj,k/mj,k, where

Gj,k =
εj,k + E{z2i,j,k exp(zi,j,k)}

ε2j,k + εj,kE{z2i,j,k exp(zi,j,k)} − E{zi,j,k exp(zi,j,k)}2
. (8)

Here, the probability of an event, εj,k, is a function of the unknown pa-

rameters. For simplicity, we considered the simple nonparametric estimate

ε̂j,k = rj,k/mj,k. The expectations in (8) are estimated similarly.

For response-adaptive randomisation, consider the average hazard as the

reciprocal of the expected mean survival time as for the exponential out-

comes case. Then the average hazard rate can be expressed as 1/E(Ti,j) =

exp(−µj)Γ−1(1 + bj), where Γ denotes the gamma function. The optimal

allocation is found by minimising

M1 exp(−µ1)Γ
−1(1 + b1) + (N −M1) exp(−µ2)Γ

−1(1 + b2)

under the variance constraint b21G1/M1 + b22G2/(N −M1) = C, where C > 0

is a constant. The solution is

ρ1 =
b1
√

exp(−µ2)Γ(1 + b1)G1

b1
√

exp(−µ2)Γ(1 + b1)G1 + b2
√

exp(−µ1)Γ(1 + b2)G2

and ρ2 = 1 − ρ1. Then the optimal response-adaptive randomisation pro-

cedures described in Section 4.2 can be used to target the optimal alloca-

tion. However, the asymptotic variance of the allocation proportions for the

Weibull case cannot be obtained, since there is no closed-form solution for

the maximum likelihood estimators.

We now revisit the clinical trial of Jones et al. (2005) and consider the

time to progression outcome. The summary results showed that the median

times to progress were 5.7 and 3.6 months for docetaxel and paclitaxel, re-

spectively. The hazard ratio was 1.64 with 95% confidence interval (1.33,

2.02) and p<0.0001. Assume that the shape parameter for the Weibull sur-
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vival time is the same for both treatments. Then the parameters of the two

Weibull survival times µ1 = 1.10 and µ2 = 0.64 and b1 = b2 = 0.93 were

obtained. In this case, the probability of an event was high throughout the

trial. From (3), we used the approximate information time

tk ≈
nk
N
∈ (0, 1], k = 1, ..., K,

since ε̂k ≈ ε̂K . Consider tests of the simple difference. We have φ̂k =

µ̂1,k − µ̂2,k and var(φ̂k) = b21G1,k/m1,k + b22G2,k/m2,k to construct the test

statistic in (5). The marginal distribution of the test statistic is approx-

imately normal for large sample sizes. The O’Brien and Fleming critical

boundaries derived based on group sequential non-adaptive designs using

normal responses are applied as approximate tests. Group sequential designs

with (t1, t2, t3)=(0.5, 0.8, 1) were considered, as the simple nonparametric

estimate of the probability of an event is more accurate for large sample sizes.

Tables 7 and 8 show that the standard critical boundaries can be used as an

approximate test for the combined approach with Weibull survival responses

to maintain the error rates. Due to the large effect size, a high power was

obtained. The operating characteristics were similar for the designs in this

case. As the difference in treatment effects was large, there was sufficient

evidence for early stopping. The ENP was 355 on average, which was much

lower than the maximum sample size.

Table 7: Simulated type I error rate for two-armed censored survival trials
with Weibull responses using tests of the simple difference test statistic, µ1 =
µ2 = 0.64, b1 = b2 = 0.93 and N = 449.

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.042 448.9 (3.6) 437.6 (4.8) 0.500 (0.022)

DBCD 0.042 448.8 (4.5) 437.5 (5.4) 0.500 (0.016)

ERADE 0.040 448.8 (3.9) 437.6 (5.0) 0.500 (0.012)
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Table 8: Simulated power for two-armed censored survival trials with Weibull
responses using tests of the simple difference test statistic, µ1 = 1.10, µ2 =
0.64, b1 = b2 = 0.93 and N = 449.

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure power ENP (s.d.) ENF (s.d.) ρ̃1 (s.d.)

CR 0.999 355.0 (43.1) 346.5 (41.7) 0.500 (0.025)

DBCD 0.999 355.6 (42.2) 346.7 (40.7) 0.558 (0.019)

ERADE 0.999 355.6 (42.2) 346.8 (40.8) 0.559 (0.014)

6 Discussion

6.1 Conclusions

A generalisation of the combined approach to censored survival responses us-

ing an approximate information time is investigated. Standard non-adaptive

group sequential critical boundaries derived using the error-spending ap-

proach can be applied to the designs. The inflated type I error rate for

the response-adaptive designs may be due to the use of the approximate

test. Alternatively, one may obtain the critical boundaries by simulation.

Incorporating adaptive sampling rules in group sequential designs preserves

the error rates while assigning more patients to the more promising treat-

ment. Moreover, both of the optimal response-adaptive randomisation pro-

cedures target the pre-specified optimal allocation well with reasonably small

variability. The ERADE consistently has a lower standard deviation for the

allocation proportion compared to the DBCD.

Compared with the group sequential logrank test based on a simple non-

parametric estimate of the probability of an event in Supplementary Mate-

rial 2, the proposed model-based combined approach has less early stopping

in the case (t1, t2, t3)=(0.2, 0.5, 1). In addition, for (t1, t2, t3)=(0.5, 0.8,

1), the model-based approach has lower ENP and ENF. In practice, since

there might be greater bias or variance in the simple empirical estimate of

the probability of an event when the sample size is small, one needs to make
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sure interim analyses are conducted when there is sufficient information.

An extension of the combined approach to Weibull survival times is achiev-

able. However, the derivation of the probability of an event is more difficult.

The simple nonparametric approach was used in Section 5.3. If the model

assumptions are wrong, then estimation might be biased and this could neg-

atively impact the design performance. A case of model misspecification,

which assumed an exponential survival model when the true survival time

had a Weibull distribution, was explored in Supplementary Material 3. The

simulation results show that the error rates are robust in this case. However,

more patients are allocated to the better treatment when an exponential

survival model is assumed instead of the true Weibull survival model.

6.2 Further work

The O’Brien and Fleming boundaries are used in this paper. Different critical

boundaries can also be considered. Simulation results for Pocock’s bound-

aries (Pocock, 1977), which use the same nominal type I error rate at each

group sequential analysis, lead to the same conclusions. However, Pocock’s

test is more likely to reject the null hypothesis at early looks than the O’Brien

and Fleming boundaries.

In this paper, the randomisation procedures depend on the previous treat-

ment allocations and responses, but they do not take into account the covari-

ates of the patients. Covariate-adjusted response-adaptive (CARA) designs

have been proposed for fixed-sample designs (Biswas, Bhattacharya and Park,

2016). Designs that combine group sequential monitoring with CARA de-

signs would be more complicated, yet may be of interest for future study.

Patients usually enter clinical trials sequentially, which may incur the risk

of chronological bias due to unobserved time trends. An appropriate ran-

domisation procedure should be chosen to minimise the risk of chronological

bias (Tamm and Hilgers, 2014). For permuted block randomisation, small to
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medium block sizes are sufficient to limit such bias. Exploring the issue for

adaptive randomisation could provide additional information on the feasibil-

ity of the use of adaptive randomisation in practice. For some recent work

in this direction, see Villar, Bowden and Wason (2018).

Throughout, we focus on the case of two-armed clinical trials. Several treat-

ments are often compared in a clinical trial nowadays. Some of the ideas

presented here can be generalised to more than two treatments, with all treat-

ments continuing to the end of the trial or with treatment selection. A gen-

eralisation of Fisher’s least significant difference method to group-sequential

response-adaptive designs has been explored. This method is considered to be

one of the most powerful multiple comparison approaches in fixed-sample de-

signs (Christensen, 2002). Details of the group-sequential response-adaptive

designs for multi-armed clinical trials will be reported separately.
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