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Abstract. The paper consists of two parts. In the first part we review
recent work on limit theorems for random walks in random environment
(RWRE) on a strip with jumps to the nearest layers. In the second part,
we prove the quenched Local Limit Theorem (LLT) for the position of
the walk in the transient diffusive regime. This fills an important gap in
the literature. We then obtain two corollaries of the quenched LLT. The
first one is the annealed version of the LLT on a strip. The second one
is the proof of the fact that the distribution of the environment viewed
from the particle (EVFP) has a limit for a. e. environment. In the
case of the random walk with jumps to nearest neighbours in dimension
one, the latter result is a theorem of Lally [19]. Since the strip model
incorporates the walks with bounded jumps on a one-dimensional lattice,
the second corollary also solves the long standing problem of extending
Lalley’s result to this case.

1. Introduction.

This paper is devoted to the local limiting behavior of a random walk in
random environment on a strip. The study of RWRE was initiated in [29].
The annealed limit theorems for one dimensional RWRE go back to [18] who
have analyzed the transient case. In the recurrent case, Sinai proved in [27]
a surprising fact: the correct scaling in the limit theorem is ln2 t.

Results describing the behavior of RWs in quenched (frozen) random en-
vironments are relatively recent. The quenched CLT for the simple transient
RWRE in the diffusive regime 1 was proved in [14] in 2007 for a wide class
of environments (including the iid case) and, independently, for iid environ-
ments in [20].

It should be emphasized that in the diffusive regime the CLT holds for
almost all environments and that there is a drastic difference between the
diffusive and subdiffusive regime. Namely, it has been realized in [21, 24]
that in the subdiffusive regime, for almost every environment, the simple
RW does not have a distributional limit. In fact, the quenched distribution
of the walk turns out to be quite non-trivial, see [7, 22, 23] for detailed
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discussion of this problem (related results were obtained independently in
[13]).

The papers [29, 18] as well as [27] relied heavily on the fact that the walk
is on a one-dimensional lattice and can jump only to the nearest neighbors
(the so called simple walk). Therefore, the natural question asked by Sinai
in [27] was how to extend the results about nearest neighbor RWRE on the
line to walks with bounded jumps. The key tools needed to achieve such a
generalization were developed in [2] which introduced a more general model,
namely the RWRE on a strip. This model includes the RWRE with bounded
jumps on a line as a special case. The results of [2] were instrumental for
proving limit theorems for RWRE on the strip which was done in [15] (tran-
sient diffusive walks), [3] (recurrent walks), and [8] (transient subdiffusive
walks).

The next step was to prove the local limit theorem in the diffusive regime.
In the case of the simple RWRE the quenched LLT was proved in [9]. We
would like to mention two corollaries of this result: it implies the annealed
LLT, and the LLT is the main ingredient in a new proof of a result of Lal-
ley stating the existence of the limit of the distribution of the environment
viewed from the particle (EVFP). Clearly, both the LLT and the EVFP
measure characterize the local limiting behaviour of a RW but the strong
connection between the two is a newly discovered phenomena. Similar re-
sults for recurrent diffusive walks were obtained in [10].

The aim of this paper is twofold. First, we review the recent results
about RWRE on the strip placing a particular emphasis on the LLT and on
mixing of the EVFP process. Secondly, we extend the main results from [9]
to the case of the strip. We prove that in the transient diffusive regime the
quenched LLT holds for almost every (a.e.) environment (Theorem 2.8). It
may be useful to emphasized that, unlike in the CLT, one has to have an
additional random factor ρn in front of the exponent which is due to the
randomness of the environment. As in [9], the quenched LLT implies the
annealed one (Theorem 2.9).

Finally we prove that in the diffusive regime the limit of the distribution
of the environment viewed from the particle exists for a. e. environment
(Theorem 2.13). Our proof of this result is completely different from the
one given in [19].

Since the study of random walks with bounded jumps in dimension one
can be reduced to those on a strip with jumps to nearest layers (see [2, 15]),
this solves the problem of extending the Lalley’s result to the walks on Z
with bounded jumps.

The layout of the paper is the following. Section 2 contains a review of
RWRE on the strip. We first introduce the main tools needed for analysis
of these walks and then describe the limit theorems in that setting. The
new results pertaining to diffusive transient walks are proved in Sections
3–7. Section 3 contains auxiliary facts needed in our analysis. In Section 4
we obtain bounds on moderate deviation of occupation times for diffusive
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walks. Occupation times play an important role in the analysis of transient
walks since traps which are behind several interesting phenomena related
to one dimensional RWRE can be conveniently described as sites with high
expected occupation times (see e.g. [8]). Section 5 contains the main ingre-
dient of our analysis–the LLT for the hitting times (Theorem 2.7) which is
a new result and an important fact in its own right. Following the approach
of [9] we deduce the LLT for the walker position in Section 6 and establish
mixing of EVFP process in Section 7.

Since our paper is devoted to the RW on a strip in i.i.d. random envi-
ronment (see (2.3)), several recent results on RWRE are not discussed here.
In particular we do not treat one dimensional RWRE in dependent environ-
ment. A review of this subject can be found in [6]. We just note that the
first LLT in the quasiperiodic setting is due to Sinai [28]. We also would like
to mention a significant progress in the study of LLT for multidimensional
RWRE, in both transient [1] and recurrent cases [4]. We note that while
there are similarities in the approaches of [1, 9] and the present paper, the
details in multidimensional and one dimensional cases are quite different. To
a large extent, this difference is due to the fact that in dimension one in the
ballistic regime the walker could spend much longer time at an individual
site than in similar conditions in higher dimensions.

2. RWRE on a strip: the model and review of results.

2.1. Definition of the model. The RWRE on a strip S def
= Z×{1, . . . ,m}

was introduced in [2]. We shall now recall its definition. The set Ln
def
=

{(n, j) : 1 ≤ j ≤ m} ⊂ S is called layer n of the strip (or just layer n). The
walker can jump from a site in Ln only to a site in Ln−1, Ln, or Ln+1. Let
ξt = (Xt, Yt) be the coordinate of the walk at time t, t = 0, 1, 2, ..., with
Xt ∈ Z, 1 ≤ Yt ≤ m. An environment ω on a strip is a sequence of triples of
m×m matrices ω = {(Pn, Qn, Rn)}n∈Z with non-negative matrix elements
and such that Pn +Qn +Rn is a stochastic matrix:

(2.1) (Pn +Qn +Rn)1 = 1,

where 1 is a vector whose all components are equal to 1. The transition
kernel of the walk is given by

(2.2) Pω(ξt+1 = z′|ξt = z) =


Pn(i, j) if z = (n, i), z′ = (n+ 1, j),

Qn(i, j) if z = (n, i), z′ = (n− 1, j),

Rn(i, j) if z = (n, i), z′ = (n, j)

Setting ξ(0) = z0 ∈ L0 completes the definition of the Markov chain. Let
us introduce the relevant probability spaces. Let (Ω,F ,P) be the space of
random environments, and (Xz,FXz ,Pω,z) be the space of the trajectories of
the walk starting from z ∈ S; Pz := P n Pω,z for the annealed probability
measure on (Ω× Xz,F × FXz). The expectations over Pω,z, P, and Pz will
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be denoted by Eω,z, E, and Ez respectively. We use concise notation Pω and
P in place of Pω,z0 and Pz0 when their meaning is obvious from the context.

The above model reduces to the simple RWRE on Z when m = 1. It also
incorporates the RWRE on Z with bounded jumps. The description of the
corresponding reduction can be found in [8] (see also [2], [15]) and will not
be repeated here.

In most cases we suppose that the following conditions are satisfied:

(2.3) {(Pn, Qn, Rn)}n∈Z is an i.i.d. sequence,

(2.4)
There is ε > 0 such that P-almost surely for all i, j ∈ [1,m]

‖Rn‖ < 1− ε, ((I −Rn)−1Pn)(i, j) > ε, ((I −Rn)−1Qn)(i, j) > ε,

(2.5)
There is a κ > 0 such that P-almost surely Rn(i, i) ≥ κ for all i ∈ [1,m].

2.2. Preparatory statements. A fundamental role in the study of RWRE
on a strip is played by the moment Lyapunov exponents r(α) which were first
introduced in [15]. In turn, defining r(α) requires introduction of sequences
of matrices ψn, ζn, and An which play a very important role in many aspects
of the analysis of RWREs on a strip.

Let ψa be an m×m stochastic matrix. For n > a define ψn,a recursively:

(2.6) ψn,a
def
= (I −Rn −Qnψn−1,a)

−1Pn

It is easy to see that all ψn,a, n ≥ a, are stochastic matrices ([2, Lemma 2]).

Theorem 2.1. ([2]) Suppose that condition (2.4) is satisfied. Then
(a) For every sequence ω there exists ζn = lim

a→−∞
ψn,a, where the conver-

gence is uniform in ψa and ζn does not depend on the choice of the sequence
ψa.

(b) The sequence ζn = ζn(ω), −∞ < n < ∞, of m ×m matrices is the
unique sequence of stochastic matrices which satisfies the following system
of equations

(2.7) ζn = (I −Qnζn−1 −Rn)−1Pn, n ∈ Z.

Set

(2.8) An
def
= (I −Qnζn−1 −Rn)−1Qn.

By the Multiplicative Ergodic Theorem the following limit exists a.e. and
is independent of ω

λ = lim
n→∞

ln ‖An−1 . . . A0‖
n

.

Theorem 2.2. (a) ξ is recurrent iff λ = 0;
(b) ξn → +∞ with probability one iff λ < 0;
(c) ξn → −∞ with probability one iff λ > 0.
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Lemma 2.3. ([15, Lemma 2]) Suppose that (2.3) and (2.4) are satisfied.
Then the following limit exists and is finite for all α ≥ 0

(2.9) r(α) = lim
n→∞

(E||An · · ·A1||α)
1
n .

The convergence in (2.9) is uniform in α ∈ [−α0, α0] for any α0 > 0.
Moreover

r(0) = 1, r′(0) = λ.

r(α) are called moment Lyapunov exponents.
Let (P,Q,R) satisfy (2.4). By the foregoing discussion there exists a

unique ζ = ζ(P,Q,R) such that ζ = (I − R − Qζ)−1P. Let λ(P,Q,R)
be the leading eigenvalue of (I − R − Qζ(P,Q,R))−1Q. We say that the
environment satisfies non-arithmeticity condition if the distribution of the
random variable lnλ(P0, Q0, R0) is non arithmetic.

Note that if m = 1 then ζn = 1, An = λ(pn, qn) =
qn
pn

, and r(α) =

E

((
q0

p0

)α)
.

2.3. Annealed Limit Theorems for RWRE on a strip. In Sections
2.3–2.4, we consider the transient walks. To fix our notation we assume
that ξn → +∞ with probability one, that is λ < 0.

For s ∈ (0, 2), let Ls denote the cumulative distribution function of the
sum

(2.10) t =

∞∑
n=1

Θn(Γn − εs)

where Θn is the Poisson process on R+ with the intensity
s

θs+1
, Γn are

i.i.d. exponential random variables with parameter 1, {Θn} and {Γn} are

independent, and εs =

{
0, s < 1

1, s ≥ 1.
It is not difficult to see (cf. [7]) that

t has stable distribution of index s. Let F be the cumulative distribution
function of the standard normal random variable.

Fix z ∈ L0. We assume from now on that, unless explicitly stated other-
wise, the random walk starts from z. Denote by Tn = T (n |ω, z) the hitting
time of layer n by the walk starting from z. Below we suppose that conditions
(2.3) and (2.4) are satisfied.

Let s denote the positive solution of r(s) = 1 where r is definied by (2.9).
Note that s can be equal to +∞ (e.g. if the walker has positive drift with
probability 1).

Theorem 2.4 (The annealed limit theorem).
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(a) If s < 1 and the non-arithmeticity condition holds then there is a
constant B such that

lim
N→∞

P

(
TN

BN1/s
≤ t
)

= Ls(t), lim
N→∞

P

(
XN

N s
≤ t
)

= 1− Ls

(
(Bt)−1/s

)
.

(b) If 1 < s < 2 and the non-arithmeticity condition holds then there are
constants B and v such that

lim
N→∞

P

(
TN −N/v
BN1/s

≤ t
)

= Ls(t), lim
N→∞

P

(
XN −Nv

N s
≤ t
)

= 1−Ls
(
−Btv1+(1/s)

)
.

(c) If s > 2 then there are constants B and v such that

lim
N→∞

P

(
TN −N/v
B
√
N

≤ t
)

= F(t), lim
N→∞

P

(
XN −Nv

N s
≤ t
)

= 1−F
(
−Btv3/2

)
.

For RWRE on Z, Theorem 2.4 was obtained in [18]. For the case of the
strip Theorem 2.4(c) was proven in [26]. In cases (a) and (b) the limit the-
orems for TN were obtained in [8]. The limit theorems for XN are simple
corollaries of the corresponding results for TN and the backtracking esti-
mates of Lemma 3.5, see [18].

2.4. Quenched limit theorems. Theorem 2.4(c) shows that the walk is
diffusive iff s > 2. Let

(2.11) bn = bn(ω) = min(k : Eω(Tk) ≥ n).

Theorem 2.5. If s > 2 then there exists D̄ > 0 such that for almost every
ω for all t ∈ R.

lim
N→∞

Pω
(
TN − EωTN√

ND̄
< t

)
= F(t), lim

N→∞
Pω
(
XN − bN (ω)√

Nv3/2D̄
< t

)
= F(t).

Theorem 2.5 was proved in [14] and independently in [20] for the simple
RWRE on Z. It was proved for RWRE on a strip in [15].

In contrast, for s < 2 the quenched limit theorem fails. To describe
the asymptotic behaviour of the walks in this case we need the following
notation. Let FΘ be the conditional distribution function of the sum (2.10)
where the sequence {Θn} is fixed while Γ are i.i.d. standard exponential
random variables.

Theorem 2.6. Suppose that s ∈ (0, 2)\{1}. Let Bs =

{
0 if s < 1

1/v if s > 1
where

v is the speed of the walk (see Theorem 2.4(b)).

Then the process t → Pω
(
TN −BsN
N1/s

≤ t
)

converges in distribution as

N → ∞ to the process t → FΘ(t) where {Θn} is the Poisson process on
[0,∞) with intensity s

θs+1 .

Theorem 2.6 was obtained independently in [7, 22, 13] for the simple
RWRE on Z and extended to RWRE on a strip in [8]. We note that one can
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also obtain a limit of the joint distributions of Tβ1N , Tβ2N , . . . , TβkN ([23]) by
considering a Poisson process (un,Θn) on [0,∞)× [0,∞) with the intensity
s

θs+1 and letting

tj =
∑

n:un≤βj

Θn(Γn − εs).

This allows one to describe the quenched distribution of the walker’s position
using the fact that Pω(XN ≤ x) ≈ Pω(Tx ≥ N), see [23] for details.

2.5. Local Limit theorems for a RWRE on a strip. Next we describe
local limit theorems for RWRE on a strip.

We begin with the quenched result. The LLT makes sense if the quenched
limit of the properly normalized hitting time exists. Thus we need to assume
that s > 2.

Theorem 2.7. Suppose that s > 2. Then P-almost surely there is a constant
D̄ > 0 such that

sup
k

∣∣∣∣D̄√2πnPω(T (n |ω, z) = k)− exp

(
−(k − Eω,zTn)2

2D̄2n

)∣∣∣∣→ 0 as n→∞.

Next we discuss quenched LLT for the walkers position. It turns out that
in this case an additional local factor is needed in the LLT. Denote

(2.12) ρ(k,i) = EωCard(n : ξn = (k, i)) and set a
def
= E

(
m∑
i=1

ρ(k,i)

)
.

Theorem 2.8. (Quenched LLT) Suppose that conditions (2.3), (2.4), (2.5),
are satisfied and r(2) < 1. Then there is a constant D > 0 such that P-
almost surely the following holds. For each ε,R > 0 there exists n0 = n0(ω)
such that for n ≥ n0 uniformly in k satisfying

(2.13) |k − bn(ω)| ≤ R
√
n

we have ∣∣∣∣∣
√

2πnDa

ρ(k,i)
exp

[
(k − bn)2

2D2n

]
Pω(ξn = (k, i))− 1

∣∣∣∣∣ < ε.

Theorem 2.9. (Annealed LLT) There is a D > 0 such that for each ε,R >
0 there exists n0 such that for n ≥ n0 uniformly for

(2.14) |k − nv| ≤ R
√
n

we have ∣∣∣∣√2πnD exp

[
(k − nv)2

2D2n

]
P(ξn = (k, i))− 1

∣∣∣∣ < ε.

For the simple RWRE on Z, Theorems 2.7, 2.8 and 2.9 are due to [9]. In
this paper we extend this result to the strip using the approach of [9].
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2.6. Recurrent case. In this section we review the results for recurrent
RWRE on the strip. Even though our paper does not contain new results
for recurrent walks, we believe it is useful to state them for the purpose of
comparison with the transient case.

For the simple RWRE on Z (that is with jumps to the nearest neigh-
bors) Sinai has proved [27] that the walk exhibits the following asymptotic
behaviour: there is a constant D > 0 such that

lim
N→∞

P

(
XN

D ln2N
≤ t
)

= H(t).

This is what is called the Sinai behavior. Here H is the Kesten-Sinai distri-
bution [17] whose density is given by

H′(t) =
2

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2

8
|t|
)
.

Theorem 2.10. Consider recurrent RWRE on a strip and suppose that
conditions (2.3) and (2.4) are satisfied. Then either

(a) the walk exhibits the Sinai behavior; or
(b) there is a constant K such that with probability 1 for all n

(2.15)
1

K
≤ ||An . . . A0|| ≤ K.

Moreover, if (2.15) holds, the environment is stationary and satisfies (2.4)
then there is a constant D such that

P

(
XN

D
√
N
≤ t
)

= F(t) and for a.e. ω, Pω
(

XN

D
√
N
≤ t
)

= F(t).

The fact that the walk exhibits the Sinai behavior unless (2.15) holds
is due to [3]. The CLT for stationary environments satisfying (2.15) was
proved in [10].

Theorem 2.11. ([12]) Suppose that (2.15) holds. Then P-almost surely
the following holds. For each ε,R > 0 there exists n0 = n0(ω) such that for
n ≥ n0 uniformly for |k| ≤ R

√
n we have∣∣∣∣∣

√
2πnDa

ρ(k,i)
exp

[
k2

2D2n

]
Pω(ξn = (k, i))− 1

∣∣∣∣∣ < ε.

2.7. Environment seen by the particle. Let T be the natural shift on
the space of environments. Consider the Markov chain (ω(N), YN ), where

ω(N) = T XNω. This Markov chain is called environment seen by the particle
(ESP) and it is an effective tool for studying RWRE.

Denote Ω̃ = Ω× {1, . . . ,m} the phase space of the Markov chain ESP.

Theorem 2.12. [11] (ω(N), YN ) admits an invariant measure Q which is
absolutely continuous with respect to P iff one of the following conditions is
satisfied
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either (a) the walk is transient and s > 1 (that is the walk has positive
speed);

or (b) (2.15) holds.

In case (a) we have that for every continuous function Φ : Ω̃→ R

Q(Φ) =
1

a
E

 m∑
y=1

Φ(ω, y)ρ(0,y)(ω)


where ρ is given by (2.12).

Theorem 2.13. (a) Suppose that either the walk is transient and s > 1 or
the walk is recurrent and (2.15) holds. Then for every continuous function

Φ : Ω̃→ R
lim
N→∞

E(Φ(ω(N), YN )) = Q(Φ).

(b) Suppose that either the walk is transient and s > 2 or the walk is re-
current and (2.15) holds. Then for a.e. ω and for every continuous function

Φ : Ω̃→ R
(2.16) lim

N→∞
Eω(Φ(ω(N), YN )) = Q(Φ).

For recurrent RWRE both statements are due to [12]. In the transient
case, the result was first proven for RWRE on Z in [16] (part (a)) and [19]
(part (b)). For the RWRE on the strip, part (a) is due to [26]. Part (b) is
new and will be proven in Section 7 following the approach of [9].

3. Preliminaries.

In the rest of the paper we give the proof of the local limit theorem for
transient diffusive RWRE. Therefore unless it is explicitly stated otherwise,
we suppose that the walk is transient to the right and that s > 2.

3.1. A Local limit theorem for independent summands. The follow-
ing result from [5] provides very general sufficient conditions under which
the Local Limit Theorem for sums of independent integer valued random
variables holds.

Theorem 3.1. ([5]) Let ηi, i ≥ 1, be independent integer valued random
variables and let di =

∑
j min[P (ηi = j), P (ηi = j + 1)], dn =

∑n
i=1 di.

Denote Ξn =
∑n

i=1 ηi. Suppose that there are numbers cn > 0, hn, n ≥ 1,
such that, as n → ∞, cn → ∞, lim sup c2n/dn < ∞, and (Ξn − hn)/cn is
asymptotically normal N (0, 1). Then

(3.1) sup
k

∣∣∣∣cnP (Ξn = k)− 1√
2π

exp

(
−(k − hn)2

2c2n

)∣∣∣∣→ 0 as n→∞.

Remark 3.2. The requirement dn →∞ implies that sufficiently many di’s
are positive. Had this not been the case, then it could happen that Ξn would
be taking, say, only even values as n becomes large. In our applications the
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role of Ξn is played by Tn and all the corresponding di’s are uniformly
separated from 0.

3.2. Occupation times. In the proofs of Theorems 2.8–2.13 we assume
that s <∞. Proofs become easier if s =∞ and we leave the corresponding
modifications to the reader.

Lemma 3.3. (a) There is a constant C such that for each (k, i) ∈ S
P
(
ρ(k,i) > t

)
≤ Ct−s.

(b) For any û > 1
s for almost every ω there is a constant C(ω) such that for

each (k, i) ∈ S
ρ(k,i) < C(ω)kû.

Remark 3.4. In the case s = ∞ the statements of Lemma 3.3 read as
follows. For any u, û > 0 we have that P(ρ(k,i) > t) ≤ Ct−u and ρ(k,i) <

C(ω)kû.

Proof. Part (a) follows from [8, Lemma 3.3]. Part (b) follows from part (a)
and the Borel-Cantelli Lemma. �

3.3. Backtracking.

Lemma 3.5. [8, Lemma 3.2] Suppose that the walk is transient to the right.
Then
(a) There exists C > 0 and θ < 1 such that

P(X visits k after k +m) ≤ Cθm.
(b) Accordingly, for almost every ω there is a constant K(ω) such that

Pω(∃k < n : X visits k after Tk+ln2 n) ≤ K(ω)n−100.

4. Occupation times of large segments.

Let T (n |ω, (k, j)) be the hitting time of layer n > k by the walk starting
from (k, j) ∈ Lk. Denote by ek,n the vector whose components are the
expectations of these hitting times:

(4.1) ek,n(j) = EωT (n |ω, (k, j))
As has been shown in [15, formula (4.28)]

(4.2) ek,n =
n−1∑
j=k

ζk . . . ζj

( ∞∑
i=0

H i
jUj−i1

)
.

Here Uj
def
= (I − Qjζj−1 − Rj)−1, 1 is a column vector whose components

are all equal to 1, we assume that ζk . . . ζk = I,

(4.3) H i
j

def
= Aj . . . Aj−i+1, with the convention that H0

j = I, H1
j = Aj

and the matrices An are defined by (2.8). Let yn be a sequence of m-
dimensional probability vectors such that yn = yn−1ζn for all n ∈ Z. There
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is a unique sequence satisfying these equations (Lemma 1 in [15]). The
probabilistic meaning of y0 = (y0(1), ..., y0(m)) is the distribution of the
starting point of the RW:

(4.4) Pω{X(0) = (0, i)} = y0(i)

(or, equivalently, the distribution of the points in L0 hit by the RW starting

at −∞). In particular Tn
def
= T (n |ω, (0, ·)) is the hitting time of Ln by the

walk starting from a random initial site in L0 with the distribution of this
site given by (4.4).

Let τj be the time the walk takes to reach Lj+1 after having reached Lj .
Then

(4.5) aj
def
= Eω(τj) = yj

( ∞∑
i=0

H i
jUj−i1

)
and we set a

def
= E(Eω(τ0)).

Remark 4.1. The first relation in (4.5) can be derived from the identity
τj = T (j + 1 |ω, z)− T (j |ω, z) and (4.2).

Remark 4.2. It is easy to see that E(Eω(τ0)) = E
(∑m

i=1 ρ(k,i)

)
and there-

fore the definitions of a given in (2.12) and (4.5) are consistent. It is natural
and convenient to use the two different interpretations of a in our analysis.

Lemma 4.3. There exists ε0 > 0 such that almost surely

lim
n→∞

1√
n

max
|l|≤n

1+ε0
2

|Eω(Tn+l − Tn − la)| = 0.

The following notations will be used in the rest of this section. If Y : Ω 7→
R is a random variable then ||Y||p = (E|Y|p)

1
p , where p = 2 + 2δ and δ > 0

is such that r(2+2δ) < 1. Throughout the proof δ is fixed and we write || · ||
for || · ||p whenever the difference between this norm and the matrix norm is
obvious from the context. Set

(4.6) H(n, ω) =

n−1∑
j=0

(aj − a), H∗(n, ω) = max
0≤s≤n−1

∣∣∣∣∣∣
s∑
j=0

(aj − a)

∣∣∣∣∣∣ .
The maximal inequality of Lemma 4.4(a) below is the main ingredient of
the proof. We also state another maximal inequality (Lemma 4.4(b)) whose
proof is quite similar and which will be useful in Section 7.

Let W (P,Q,R) be any Rm valued function of the triple of non-negative
matrices satisfying (2.1) and let wn = W (Pn, Qn, Rn). Let

(4.7) aj
def
= yj

( ∞∑
i=0

H i
j+iUjwj

)
and a

def
= lim

j→∞
E(aj).
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According to the analysis of [8][Section 3], there are constants C > 0, θ < 1
such that with probability at least 1− n−100∣∣∣∣∣aj −

m∑
k=1

ρ(n,k)wn(k)

∣∣∣∣∣ ≤ Cθn.
Set

H∗(n, ω) = max
0≤s≤n−1

∣∣∣∣∣∣
s∑
j=0

(aj − a)

∣∣∣∣∣∣ .
Lemma 4.4. For any ε > 0 there is a C such that the following relations
hold:

(a) ||H∗(n)|| ≤ Cn
1
2

+ε; (b) ||H∗(n)|| ≤ Cn
1
2

+ε.

Remark 4.5. The statements of this Lemma are similar to those of Lemma
4 in [14]. However, in the proof, an extra effort is needed in order to control
the dependence between aj ’s which in the case of a strip is much stronger
than in the case of a simple walk.

Once the maximal inequality of Lemma 4.4(a) is obtained, the proof of
Lemma 4.3 proceeds exactly as the derivation of Lemma 5 from Lemma 4
in [14].

Proof of Lemma 4.4. We can suppose without any loss of rigor that nε and
n1−ε are integer numbers. One can present H(n) as

H(n) =
nε−1∑
i=0

n1−ε−1∑
j=0

(ai+nεj − a).

As will be seen below, the members of the inner sum are asymptotically
independent random variables (as n→∞) and this property plays a crucial
role in the proof. We can estimate H∗(n) as

H∗(n) ≤
nε−1∑
i=0

max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

(ai+nεj − a)

∣∣∣∣∣∣ .
Hence

||H∗(n)|| ≤
nε−1∑
i=0

∥∥∥∥∥∥ max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

(ai+nεj − a)

∣∣∣∣∣∣
∥∥∥∥∥∥ = nε

∥∥∥∥∥∥ max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

(anεj − a)

∣∣∣∣∣∣
∥∥∥∥∥∥ ,

where the last equality is due to the fact the aj is a stationary sequence.

Let S(n, ε) = max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

(anεj − a)

∣∣∣∣∣∣ and present aj−a = B(j, k)+D(j, k),

where

(4.8) B(j, k)
def
= yj

(
k∑
i=0

H i
jUj−i1

)
−E

[
yj

(
k∑
i=0

H i
jUj−i1

)]
,
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D(j, k)
def
= yj

( ∞∑
i=k+1

H i
jUj−i1

)
−E

[
yj

( ∞∑
i=k+1

H i
jUj−i1

)]
,

and k is to be specified later, see (4.11). We then have

S(n, ε) = max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

(B(nεj, k) +D(nεj, k))

∣∣∣∣∣∣
≤ max

0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

B(nεj, k)

∣∣∣∣∣∣+

n1−ε−1∑
j=0

|D(nεj, k)| .

Therefore

(4.9)

||S(n, ε)|| ≤

∥∥∥∥∥∥ max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

B(nεj, k)

∣∣∣∣∣∣
∥∥∥∥∥∥+

n1−ε−1∑
j=0

||D(nεj, k)||

=

∥∥∥∥∥∥ max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

B(nεj, k)

∣∣∣∣∣∣
∥∥∥∥∥∥+ n1−ε||D(0, k)||,

where the last equality is again due to stationarity. Since by (2.9)

E(||H i
j ||2+2δ) ≤ Cr(2 + 2δ)i

we have for some constants C1, C2, C3:

||D(0, k)|| =

∥∥∥∥∥yj
( ∞∑
i=k+1

H i
jUj−i1

)
−E

[
yj

( ∞∑
i=k+1

H i
jUj−i1

)]∥∥∥∥∥
≤ C1

∞∑
i=k+1

∥∥∥∥H i
j

∥∥∥∥
p

+ E

[
yj

( ∞∑
i=k+1

H i
jUj−i1

)]
≤ C2

∞∑
i=k+1

r(2 + 2δ)
i

2+2δ = C3β
k,

where β
def
= r(2 + 2δ)

1
2+2δ < 1.

It remains to estimate I def
= max

0≤s≤n1−ε

∥∥∥∥∥∥
s∑
j=0

|B(nεj, k)|

∥∥∥∥∥∥. To this end we

shall introduce independent random variables B̃(nεj, k) such that for some
n0 the following holds: if n > n0 then

(4.10) ||B(nεj, k)− B̃(nεj, k)|| ≤ Constn−100.

This is done as follows.

For each 0 ≤ j ≤ n1−ε denote Ij
def
= [nεj, nε(j+1)−1] and define stochastic

matrices ψ
(j)
s with s ∈ Ij as follows: set ψ

(j)
nεj(i1, i2) = m−1 and compute

ψ
(j)
s for all s > jnε as in (2.6), namely ψ

(j)
s

def
= (I −Rj −Qjψ(j)

s−1)−1Ps.

Next, let y
(j)
j = (m−1, . . . ,m−1) and compute y

(j)
s = y

(j)
s−1ψ

(j)
s for s > nε.
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Now define Ãs
def
= (I − Qsψ(j)

s−1 − Rs)−1Qs, Ũs
def
= (I − Qsψ(j)

s−1 − Rs)−1,

and H̃ i
s

def
= Ãs . . . Ãs−i+1.

Finally B̃(j, k) is defined by (4.8) with the difference that the correspond-

ing A, U, H are replaced by the just defined Ã, Ũ , H̃.
From now on we suppose that

(4.11) k = K lnn

where K is a large enough constant. It follows from the above definitions
that for large n the random variables B̃(nεj, k), 0 ≤ j ≤ n1−ε, are indepen-
dent and identically distributed simply because they are (the same) functions
of the parts of the environment belonging to pairwise disjoint boxes of the
strip. Also, E(B̃(nεj, k)) = 0.

It follows from results obtained in [8, 15] (see appendix in each of these

papers) that there is a β̄ < 1 such that for s ∈ Ij
∣∣∣∣∣∣||ζs − ψ(j)

s ||
∣∣∣∣∣∣
p
≤ Cβ̄s−nεj .

The derivation of (4.10) follows from this estimate in a standard way.

We can now estimate Ŝ def
=
∥∥∥max0≤s≤n1−ε

∣∣∣∑s
j=0B(nεj, k)

∣∣∣ ∥∥∥. Obviously

Ŝ ≤

∥∥∥∥∥∥ max
0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

B̃(nεj, k)

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
s∑
j=0

|B(nεj, k)− B̃(nεj, k)|

∥∥∥∥∥∥
By the Doob inequality for martingales we now have that∥∥∥∥∥∥ max

0≤s≤n1−ε

∣∣∣∣∣∣
s∑
j=0

B̃(nεj, k)

∣∣∣∣∣∣
∥∥∥∥∥∥ ≤ 2 + 2δ

1 + 2δ

∥∥∥∥∥∥
n1−ε∑
j=0

B̃(nεj, k)

∥∥∥∥∥∥
and by the Marcinkiewicz-Zygmund inequality∥∥∥∥∥∥

n1−ε∑
j=0

B̃(nεj, k)

∥∥∥∥∥∥ ≤ Cn(1−ε)/2

Part (a) of Lemma 4.4 is thus proved.
The proof of part (b) is similar. Namely we approximate aj by

aj(k)
def
= yj

(
k∑
i=0

H i
j+iUjwj

)
and use weak dependence of aj1(k) and aj2(k) for |j1 − j2| > 2k similarly to
the argument of part (a). �

5. Proof of Theorem 2.7.

Proof of Theorem 2.7. We shall use the construction of the enlarged random
environment introduced in [15].

For a RW starting from z ∈ L0 present T (n |ω, z) as

(5.1) T (n |ω, z) = τ0 + τ1 + . . .+ τn−1,
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where τj is the time the walk takes to reach Lj+1 after having reached Lj .
The random variables τj are not independent. However, they are condi-

tionally independent, where the condition is that the walk hits the layers
L1, . . . , Ln−1 at a given sequence of points. We shall now briefly describe
how the measure Pω,z on Xz can be presented as an integral of the just
mentioned conditional measures over a measure on the set of sequences in
the strip. The construction of this conditional measure is similar to the one
used in [15].

Let J = { i = ((k, ik))0≤k<∞ : 1 ≤ ik ≤ m } be the set of all sequences
of points in the strip S which contain exactly one point from each layer and
Ji0 ⊂ J be all such sequences starting with (0, i0).

Let ζk ≡ ζk(ω) be matrices from Theorem 2.1(a). Note that due to (2.4)
there is ε > 0 such that the inequalities ζk(i, j) ≥ ε hold for all k, i, j.

From now on, i0 will be fixed and we shall define a Markov measure on
Ji0 in the usual way. Namely, for k ≥ 0 consider a cylinder set in Ji0 :

Ck(i0, . . . , ik)
def
= { i ∈ Ji0 : ij = (j, ij) for all j ∈ [0, k] },

where ij denotes the j-th coordinate of the sequence i. Set

(5.2) Λω,i0(Ck(i0, . . . , ik))
def
= ζ0(i0, i1)...ζk(ik−1, ik).

Λω,i0 defined by (5.2) is a Markov measure with transition probabilities
given by stochastic matrices ζn. As usual, this measure can be extended to
the Borel sigma-algebra generated by the cylinder sets. Let us denote this
sigma-algebra by Fi0 . We thus have a probability space (Ji0 ,Fi0 ,Λω,i0(di)).

We can now define a new probability space (Ω̃,S,P) where

Ω̃
def
= Ω× Ji0 = {w = (ω, i) : ω ∈ Ω, i ∈ Ji0 }

with a product sigma-algebra S
def
= F ⊗ Fi0 and P(dw)

def
= P(dω)Λω,i0(di)

on Ω̃.

Definition. A pair w = (ω, i) is called the enlarged random environment.

The set Ω̃ is the collection of enlarged environments with (Ω̃,S,P) being the
corresponding probability space.

Remark 5.1. The above construction depends on i0 but the asymptotic
behaviour of the walk doesn’t which is why in some of the notations above
i0 was dropped.

Next, for i ∈ Ji0 denote by Xi
i0

the space of trajectories of the walk which
start at (0, i0) and reach each layer Lj , j ≥ 1, for the first time at (j, ij). For

any n ≥ 0 and ξ ∈ Xi
i0

denote by z0, z1, ..., zTn the values of the trajectory
at times t = 0, 1, ..., Tn, where, as usual, Tn is the hitting time of layer n
(with ξ(0) = (0, i0), ξ(Tn) = (n, in)). The probability Vω,i on the set of
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trajectories from Xi
i0

is defined by
(5.3)

Vω,i (ξt = zt ∀ t ∈ [0, Tn])
def
=

1∏n−1
k=0 ζk(ik, ik+1)

Tn−1∏
t=0

Pω(ξt+1 = zt+1|ξt = zt).

It is known ([2], [15]) that if the RW is transient to the right then the
probabilistic meaning of matrices ζn is given by

ζn(i, j) = Pω (RW starting from (n, i) hits Ln+1 at (n+ 1, j)) .

Therefore Λω,i0(Ck(i0, . . . , ik)) is the probability that a RW staring from
(0, i0) proceeds to +∞ so that on its way it hits Lj at (j, ij) for all j ∈ [1, k].
We obtain that

(5.4) Pω,(0,i0)(dξ) =

∫
Ji0

Λω,i0(di)Vω,i(dξ).

Denote by T (n|ω, i) the sum in the right hand side of (5.1) conditioned on
the walk hitting each Lj , j ≥ 0, at (j, ij) ∈ i.

We shall now check that Theorem 3.1 implies that the LLT holds for
T (n|ω, i) for Λω,i0–a.e. i and deduce from here that the LLT holds for
T (n|ω, (0, i0)) by integrating over i using (5.4).

Indeed, Tn = T (n |ω, i) is a sum of independent random variables τj such
that the corresponding dn and cn (from Theorem 3.1) grow linearly and
cnd
−1
n < Const. Also, T (n|ω, i) satisfies the CLT by the following result

from [15].

Theorem 5.2. Suppose that conditions (2.3), (2.4), (2.5) are satisfied and
s > 2. Then for P-a.e. enlarged environment w = (ω, i)

(5.5) lim
n→∞

Vω,i

{
T (n |ω, i)− Eω,iT (n |ω, i)√

n
< x

}
=

1√
2πσ̂

∫ x

−∞
e−

u2

2σ̂2 du,

where Eω,i is the expectation with respect to the measure Vω,i. Here

(5.6) σ̂2 = lim
n→∞

n−1Varω,iT (n |ω, i)

and the convergence in (5.6) holds with P-probability 1.

Thus equation (3.1) in our context reads as follows:

(5.7)
√

2πnσ̂ Vω,i (Tn = k) = exp

(
−

(k − Eω,iTn)2

2nσ̂2

)
+ εn(k, ω, i)

where for a.e. (ω, i)
lim
n→∞

sup
k∈Z
|εn(k, ω, i)| = 0

and σ̂ is the same as in Theorem 5.2.
It remains to carry out the integration of all parts of (5.7) over Λω,i0(di).

Obviously, ∫
J(0,i0)

Vω,i (Tn = k) Λω,i0(di) = Pω,(0,i0) (Tn = k) .
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In order to control the RHS of (5.7), note that

exp

(
−

(k − Eω,iTn)2

2nσ̂2

)
= exp

(
−1

2

(
(k − Eω,(0,i0)Tn)n−

1
2 σ̂−1 − σ̂−1φn

)2
)

where φn = (Eω,iTn − Eω,(0,i0)Tn)n−
1
2 . By Theorem 7 in [15],

(5.8) φn has asymptotically normal distribution N (0, σ̃2),

where σ̃ is a function of the parameters of the model (see [15], formula
(3.5)). It may happen that σ̃ = 0 in which case φn → 0 as n→∞ and can
therefore be ignored. So, from now on we assume that σ̃ > 0 (which is the
only interesting case).

For a given ε > 0, the family of functions exp(−(a − c−1φ)2) with c ≥ ε
and arbitrary a is uniformly continuous in φ. Therefore the usual property
of convergence in distribution implies that
(5.9)

sup
k

∣∣∣∣∣
∫
J(0,i0)

exp

(
−1

2

(
(k − EωTn)√

nσ̂
− σ̂−1φn

)2
)

Λω,(0,i0)(di)− exp

(
− (k − EωTn)2

2n(σ̂2 + σ̃2)

)∣∣∣∣∣→ 0

as n→∞.
It remains to show that for P–almost every ω

(5.10)

∫
J(0,i0)

εn(k, ω, i)Λω,(0,i0)(di)→ 0

uniformly in k. To this end we note that due to (5.7)

|εn| ≤
√

2πnσ̂ Vω,i (Tn = k) + 1.

We claim that the first summand on the RHS is uniformly bounded. In-
deed, Tn conditioned on (ω, i) is a sum of independent random variables τj .
Moreover, due to (2.5) there exists ε > 0 such that for each i for each l the
probability

Vω,i(τj = l | i) ≤ 1− ε
(in fact, one can take ε = 1

1+κ where κ is from (2.5)). Now Theorem 3 from

[25, Part III, §2] implies that there is a constant C such that

(5.11)
√

2πnσ̂ Vω,i (Tn = k) ≤ C.
Therefore |εn| is bounded above and (5.10) follows from the dominated con-
vergence theorem.

Theorem 2.7 is proved (with D̄2 = σ̂2 + σ̃2) where σ̂ is from (5.7) and σ̃
is from (5.8). �

6. LLT for the walker’s position.

6.1. The quenched LLT.

Proof of Theorem 2.8. Take 1
s < u < 1

2 . Let ` = ln2 n, k̄ = k − `. We claim
that for P-almost all ω

(6.1) Pω(∃k ≤ n ∃m ∈ N : Xm = k and Tk̄ < m− nu) ≤ C̄(ω)

n100
.
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Indeed, if Xm = k and m > Tk̄ + nu then one of the following events takes
place:

A1 ={Xt ∈ [k − 2`, k + `] for all t ∈ [Tk̄, Tk̄ + nu]},
A2 ={∃t ∈ [Tk̄, Tk̄ + nu] such that Xt < k − 2`},
A3 ={∃t ∈ [Tk̄, Tk̄ + nu] s. t. Xt > k + ` and then X backtracks to k}.

Pω(A2) and Pω(A3) are O(n−100) by Lemma 3.5(b). Take 1
s < u′ < u′′ < u.

If A1 happens then there exists k∗ ∈ [k−2`, k+`] which is visited more than

nu
′′

times. However the number of visits to k∗ has geometric distribution
with mean ρk̄ < C(ω)nu

′
. Thus Pω(A1) ≤ n−100 proving (6.1).

Next we claim that given R we can take R̄ so large that if k satisfies (2.13)
then

(6.2) |n− EωTk̄| ≤ R̄
√
k̄.

Indeed

(6.3) n− EωTk̄ = (n− EωTbn) + (EωTbn − EωTk̄).
Observe that by definition EωTbn−1 < n ≤ EωTbn and by Lemma 4.3

Eω(Tbn − Tbn−1) = o(
√
n)

so that the first term in (6.3) is o(
√
n). Next, Lemma 4.3 also implies that

Eω(Tbn − Tk̄) = a(bn − k̄) + o(
√
n).

This implies (6.2) and shows moreover that

(6.4)
(n− EωTk̄)2

k
≈ a3(bn − k̄)2

n
.

Thus for j ∈ [0, nu] we have due to Theorem 2.7

Pω(Tk̄ = n− j) ≈ 1√
2πk̄D̄

exp−
(

(n− EωTk̄)2

2D̄2k̄

)
.

On the other hand for P–almost every ω and all sufficiently large n

nu∑
j=0

Pω(ξj = (k, i)|X0 = k̄) = ρ(k,i) +O
(
n−100ρ(k,i)

)
= ρ(k,i) +O

(
n−99

)
.

Thus

(6.5) Pω(ξn = (k, i)) ≈
ρ(k,i)√
2πk̄D̄

exp−
(

(n− EωTk̄)2

2D̄2k̄

)
.

Combining this with (6.4) we get

Pω(ξn = (k, i)) ≈
√
aρ(k,i)√
2πnD̄

exp−
(

(k − bn)2a3

2D̄2n

)
=

ρ(k,i)√
2πnDa

exp−
(

(k − bn)2

2D2n

)
,

where D = D̄/a3/2. �
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6.2. The annealed LLT. Given k denote k̄ = k − ln2 n, k̂ = k+k̄
2 .

Let ξ̃(n) be equal to ξ(n) if the walker does not backtrack to Lk̄ during the

time [Tk̂, n] and ξ̃(n) be the place of the first return to Lk̄ after Tk̂ otherwise.
In other words, we stop our walk if it returns to Lk̄ after Tk̂. By Lemma 3.5,

P (ξ̃(n) 6= ξ(n)) = O
(
n−100

)
and Theorem 2.8 remains true with ξ replaced

by ξ̃. We need the following estimate.

Lemma 6.1. The family of random variables{√
nPω(ξ̃(n) = z)

}
n∈N,z∈S

is uniformly integrable.

Proof. Let Ij = {l : l − Eω(Tk̄) ∈ [j
√
n, (j + 1)

√
n}. Then

Pω(ξ̃(n) = z) =
∑
l

Pω(Tk̄ = l)Pω(ξ̃(n) = z|Tk̄ = l)

≤
∑
j

max
l∈Ij

Pω(Tk = l) max
y∈{1...m}

(j+1)
√
n∑

t=j
√
n

P(ξ̃(t) = z|ξ̃(0) = (k̄, y))

(6.6) ≤
∑
j

max
l∈Ij

Pω(Tk = l)ρ̃(z)

where ρ̃(z) is the maximum over ẑ ∈ Lk̂ of the expected total number of

visits to site z by the walk ξ̃ started from ẑ.
Next we claim that there is a constant C such that for all ω ∈ Ω and all

l ∈ Ij(ω) we have

(6.7) Pω(ξ̃(n) = l) ≤ C Varω(Tk̄)

j2n3/2

Indeed, let T ′ = Tk̄/2, T
′′ = Tk̄ − Tk̄/2. Clearly

Pω(ξ̃(n) = l) ≤

Pω
(
ξ̃(n) = l, |T ′ − Eω(T ′)| ≥ j

√
n

2

)
+Pω

(
ξ̃(n) = l, |T ′′ − Eω(T ′′)| ≥ j

√
n

2

)
.

We will estimate the first term, the second one is similar.

Pω
(
ξ̃(n) = l, |T ′ − Eω(T ′)| ≥ j

√
n

2

)
≤

Pω
(
|T ′ − Eω(T ′)| ≥ j

√
n

2

)
Pω
(
ξ̃(n) = l

∣∣|T ′ − Eω(T ′)| ≥ j
√
n

2

)
.

The first factor is smaller than

4Varω(T ′)

j2n
≤ 4Varω(Tk̄)

j2n
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due to Chebyshev inequality. On the other hand the proof of (5.11) shows
that the second factor is smaller than C√

n
proving (6.7).

Rewriting (6.7) as

max
l∈Ij(ω)

Pω(Tk̄ = l) ≤ C Varω(Tk)

j2n3/2

and summing over j in (6.6) we obtain that

√
nPω(ξ̃(n) = z) ≤ C Varω(Tk̄)

n
ρ̃(z).

Now the uniform integrability of the LHS follows from the following facts:

(a)
Varω(Tk̄)

n
and ρ̃(z) are independent (since the first variable depends

only on environment to the left of k̄ the second variable depends only on
environment to the right of k̄);

(b)
Varω(Tk̄)

n
is uniformly integrable as follows easily from the explicit

expression for Varω(Tk̄) given in [15, Equation (4.28)];
(c) {ρ̃(z)}z∈S are uniformly integrable since ρ̃(z) ≤ Cρ(z) and {ρ̃(z)}z∈S

are uniformly integrable due to Lemma 3.3(a). �

Proof of Theorem 2.9. Once the uniform integrability of {
√
nPω(ξ̃(n) = z)}

is established, the derivation of Theorem 2.9 from Theorem 2.8 is similar to
derivation of Theorem 2.7 from the LLT in the enlarged environment which
is explained in Section 5 so we just sketch the argument leaving the details
to the reader. The proof consists of the following steps.

(I) We have

P(ξn = (k, i)) = E(Pω(ξn = (k, i))).

Theorem 2.8 and Lemma 6.1 allow us to replace the above expectation by

E

(
ρ(k,i)√
2πnDa

exp−
[

(k − bn(ω))2

2D2n

])
.

(II) Asymptotic independence of bn and ρk,i (which comes from the fact
that ρ(k,i) can be well approximated by a variable which depends only on the

environment to the right of n− ln2 n while bn can be well approximated by
a variable which depends only on the environment from the left of n− ln2 n)
allows us to replace the last expectation by the product

(6.8) E
(ρ(k,i)

a

)
E

(
1√

2πnD
exp−

[
(k − bn(ω))2

2D2n

])
.

(III) The first factor in (6.8) equals to 1 due to Remark 4.2.
(IV) Asymptotic normality of bn(ω) shows that the second factor in (6.8)

is asymptotic to

E

(
1√

2πnD
exp−

[
(k − bn(ω))2

2D2n

])
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where D2 = D2 + D̂2 and D̂ is the limiting variance of
bn(ω)√

n
(cf. the

derivation of (5.9) in Section 5). �

7. Mixing for environment seen by the particle.

Proof of Theorem 2.13(b). As has been explained in Section 2.7, the result
is known in the recurrent case, so it remains to consider the transient case.

Denote ωn
def
= (Pn, Qn, Rn). It suffices to prove (2.16) for a dense set

of functions, in particular, it is enough to consider the case when Φ(ω, k)
depends only on ωn for |n| ≤ M for some finite M. Below we shall give
the proof in the case M = 0. The case of arbitrary finite n requires routine
modifications which are left to the reader. Thus Φ = Φ(ω0, Y ). Let wn be
the vector with components wn(k) = Φ(ωn, k). We have

Eω
(

Φ
(
ω(N), YN

))
=

m∑
k=1

∞∑
n=−∞

Pω(XN = n, YN = k)wn(k).

By the quenched CLT for each ε there exists R such that for all sufficiently
large N, the sum over n such that |n − bN | ≥ R

√
N is less than ε where

bN (ω) is defined by (2.11).
Next, fix small constants δ1, δ2 and let

Nl = l2−δ1 , Ij,l =

[
Nl + jN

1
2
−δ2

l , Nl + (j + 1)N
1
2
−δ2

l

]
and let xl,j be the center of Il,j . Let

rl,j =
∑
n∈Il,j

m∑
k=1

ρn,kwn(k) =
∑
n∈Il,j

m∑
k=1

ρn,kwn(k) +O
(
θNl
)
.

Lemma 4.4 shows that

P

(∣∣∣∣∣ rl,j

N
1/2−δ2
l

− a

∣∣∣∣∣ > ε

)
≤ C 1

ε2+δN
(1/2−δ2)(1+δ/2)
l

=
C

ε2+δl(1/2−δ2)(1+δ/2)(2−δ1)
.

Thus if (
1

2
− δ2

)(
1 +

δ

2

)
(2− δ1)− 2(2− δ1)δ2 > 1

then
∞∑
l=1

∑
|j|<N2δ2

l

P

(∣∣∣∣∣ rl,j

N
1/2−δ2
l

− a

∣∣∣∣∣ > ε

)
<∞,

so Borel–Cantelli Lemma gives that

(7.1)
rl,j

N
1/2−δ2
l

→ a
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uniformly for |j| < N2δ2
l . Given N let l be such that Nl ≤ N < Nl+1. Now

the quenched LLT (Theorem 2.11) gives that

bN+R
√
N∑

n=bN−R
√
N

m∑
k=1

Pω (ξN = (n, k))wn(k) ≈
∑
j

exp

[
−

(xl,j − bN )2

2D2N

] ∑
n∈Il,j

m∑
k=1

ρ(n,k)√
2πNDa

wn(k)

where the first summation is over j such that Il,j∩
[
bN −R

√
N, bN +R

√
N
]
6=

∅ and ”≈” holds since exp
[
− (x−bN )2

2D2N

]
is approximately constant when x

varies over Il,j .

Next, (7.1) allows us to replace the sums over n and k by N
1/2−δ2
l a.

Performing summation over j we obtain the Riemann sum for

a

∫ R

−R

1√
2πD

e−x
2/2D2

dx.

Since R can be chosen arbitrarily large, (2.16) follows. �
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