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Robust Excitation Force Estimation and Prediction
for Wave Energy Converter M4 Based on Adaptive
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Abstract—The wave excitation force estimation and prediction
plays an important role in improving the performance of causal
and non-causal controllers for wave energy converters (WECs).
This paper proposes a robust adaptive sliding-mode observer
(ASMO) to estimate the wave excitation force subject to unknown
disturbances and parametric uncertainties for a multi-motion
multi-float WEC, called M4. Both the convergence time and
the estimation error can be explicitly bounded within expected
limits by tuning the ASMO parameters, which are essentially
beneficial for causal controllers to maintain the control perfor-
mance. A fixed-time convergent sliding variable is designed to
drive the estimation error into a small region within a fixed
time. Due to the adaptive law, the overall system is proven to
be finite-time stable, which allows explicit formulations of the
convergence time and the estimation error. Moreover, based on
the wave force estimation by the ASMO, an improved Auto-
Regressive (AR) model whose coefficients are updated by online
training is developed to predict the wave excitation force. The
prediction errors can also be explicitly estimated to achieve
guaranteed control performance for the non-causal controller
requiring future excitation force. From the comparison based
on a realistic sea wave gathered from Cornwall, UK, it can
be found that compared with the conventional Kalman Filter,
the ASMO achieves a smaller steady-state estimation error and
has satisfactory robustness performance against 30% model
mismatch.

Index Terms—Wave Excitation Force, Wave Energy Convert-
ers, M4, Robustness, Sliding Mode Observer

I. INTRODUCTION

Sea waves contain enormous untapped renewable energy.
Compared with other renewable energy sources such as wind
energy and solar energy, sea waves offer high energy density
and continuous power supply [1], [2].

To harness wave power, many types of wave energy con-
verters (WECs) have been developed, including oscillating
water column, overtopping, point absorber and attenuator.
Control plays a key role in improving their energy conversion
efficiency to reduce the unit cost of electricity. The information
of the wave excitation force is normally required for imple-
mentation of some recently developed advanced WEC control
strategies [3], and the accuracy of the wave excitation force
significantly affects the control performance. Furthermore,
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Fig. 1. Tank experiment of M4 in Manchester [9]

the wave excitation force prediction is also needed by non-
causal WEC controllers [4] which incorporate the future wave
information into the current control decision and the accuracy
of wave force prediction relies on the estimation at the current
time [5]. A direct measurement of wave excitation force by
pressure sensors placed on the WEC wet-surface is reported
in [6], while it is neither economically viable nor accurate in
many cases.

The Kalman Filter (KF) was employed for wave excita-
tion force estimation problem in recent years [7], [8] and
was proven to be effective to achieve real-time estimation-
s. While there is model mismatch between the state-space
model and the original hydrodynamic model, which is caused
by wave force approximations, unmodelled wave forces and
environmental uncertainties, etc. Since the excitation force
estimators are designed based on a state-space model subject
to parametric uncertainties and unknown disturbances, which
are significant in high sea states and degrade the control
performance to some extend, this paper proposes a novel
estimator based on the sliding mode technique that can cope
with the model uncertainty and is helpful to improve the
control performance. To be specific, with a better estimation
and prediction of the excitation force, the controller can be
designed based on a more accurate model, which enhances
the control performance of energy maximization. Furthermore,
the estimation error is also explicitly bounded by a prescribed
limit.

The sliding-mode variable structure method is a well-known
approach to cope with disturbances and modelling uncertain-
ties [10]–[12] and has been widely applied in many fields.
The sliding mode observer (SMO) ensures the robustness
of the system when the modelling uncertainty exists and
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a short convergence time can be achieved when combined
with a finite-time stabilization technique [13]. Since the SMO
has been successfully applied in aerospace engineering [14],
marine engineering [15] and permanent magnet synchronous
motor system [16], etc., it has the potential to be used
for the wave excitation force estimation subject to sea-state
environmental uncerttainties. Due to these motivations, this
paper proposes an adaptive sliding mode observer (ASMO)
to improve the estimation performance of wave excitation
forces. The sliding mode method and the adaptive method
are employed together to enhance the estimation accuracy and
the fixed-time stabilization method is adopted to ensure the
explicit formulation of the boundaries of the convergence time
and the estimation error.

The main contributions and novelties of the proposed AS-
MO are as follows:

• The convergence time of wave excitation force estima-
tion and the boundary of estimation error are explicitly
limited in prescribed boundaries, which are essentially
beneficial for a WEC controller to achieve its guaranteed
performance;

• The robustness of the ASMO can be guaranteed by
sliding mode method and adaptive method, which en-
hances the control performance subject to modelling
uncertainties;

• Based on the latest historical wave force estimation by the
ASMO, an improved AR model which can continuously
take into account the change of sea states is adopted to
predict the excitation force. The prediction errors at each
step can also be explicitly bounded, which can improve
the control performance of non-causal WEC controllers;

• The coefficients of the improved AR model are trained
online by solving a lease square (LS) problem, which is
computationally cheap.

To demonstrate the efficacy of the proposed wave excitation
force estimation method, we use an attenuator type WEC,
called M4, as a case study [17]. M4 is a multi-float multi-
motion WEC, which exhibits more complicated dynamics
than single float and single motion point absorbers. This is
essentially a raft-type attenuator device which absorbs energy
from the relative pitch motion of floats connected by beams
at a hinge. There are three rows of floats with a single
bow float attached to a mooring buoy; the floats increase
in size downwave and the device heads naturally into the
wave direction [18]. The point absorbers have been extensively
studied in WEC control community and are also mainly used
as benchmark problem for wave excitation force estimation.
The observer design of multi-float multi-motion WECs has not
been investigated to our knowledge probably because com-
plex dynamic models and complex observer design make the
controller design analytically and computationally prohibitive.
Since a much higher order model is needed to describe the
complicated dynamics of M4 compared to that of a point
absorber and the wave excitation forces in more than one
dimensions need to be estimated at the same time, the wave
excitation force estimator design becomes more challenging.
The simulations show the efficacy of the proposed ASMO in

reduced estimation errors. The 1/40th scaled model of M4
during a tank testing is shown in Fig. 1, with more details
introduced in Section II.

The rest of the paper is as follows. Section II introduces
the state space model of M4. The ASMO for wave excitation
force estimation is designed in Section III, where the ASMO
is proven to be finite-time stable. An improved AR model
is introduced and the boundary of the prediction error is
formulated in Section IV. Section V shows the results based
on realistic sea wave data gathered from Cornwall, UK, after
scaling by testing both the conventional KF method and the
proposed ASMO on the hydrodynamic model. Section VI
concludes this paper.

II. STATE SPACE MODEL OF M4

In this section, the detailed information of the device M4
is presented. The dynamical model of M4 is also given and
transferred to a state space model [19] for the observer design
purpose.

A. Introduction to M4

M4 is a multi-motion multi-float WEC with a complex
structure. With the bow and mid-float connected by a beam
to form one rigid body, the stern float connected by a beam
to hinge point as another rigid body, the device enables a
significant relative rotation about the hinge point when it is
aligned to the wave propagating direction. The power take-off
(PTO) unit above the hinge point is designed to react against
the body rotation in order to absorb kinetic energy. As shown
in Fig. 1, M4 is reconfigurable. Different reconfigurations can
be built up to adapt different wave conditions by changing the
number of mid and stern floats. The geometry of a laboratory
scale (1:40) three-float M4 is demonstrated in Fig. 2. From
left to right, the bow float, middle float, stern float, beam
connecting bow and middle float, beam connecting middle and
stern float, and the PTO unit are indexed by i = 1, 2, 3, 4, 5, 6
respectively. The 1-1-1 (numbers indicate the number of bow,
mid and stern float) format M4 is adopted here for the sake
of mathematical simplicity.

B. Dynamical model of M4

In a laboratory experiment of M4 [9], only single direction
wave (in surge direction) is considered. The device is moored
properly into the wave direction, and roll motion of the system
is prevented by outrigger buoys added to the stern float. Then
for simplicity and consistency, this paper only focuses on the
motion in x-o-z plane.

Define a state vector as

q =
[
qx0

qz0 qθ1 qθ2
]T

(1)

where qx0
is the surge position of the hinge O; qz0 is the heave

position of the hinge O; qθ1 is the pitch angle of i which is
on the left of the hinge O (i = 1, 2, 4) and qθ2 is the pitch
angle of i which is on the right of the hinge O (i = 3, 5, 6).

By Newton’s second law, the dynamic equation for M4 is

(ms +m∞)q̈ = fs + fr + fe + fu (2)
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Fig. 2. Diagram of laboratory scale three-float 1-1-1 M4 [9]

ms =


∑6
i=1mi 0 −m1v1 −m2v2 −m4v4 −m3v3 −m5v5 −m6v6

0
∑6
i=1mi m1h1 +m2h2 +m4h4 −m3h3 −m5h5 −m6h6

−m1v1 −m2v2 −m4v4 m1h1 +m2h2 +m4h4
∑
i=1,2,4(Ii +mi(h

2
i + v2i )) 0

−m3v3 −m5v5 −m6v6 −m3h3 −m5h5 −m6h6 0
∑
i=3,5,6(Ii +mi(h

2
i + v2i ))


(3)

where m∞ is the added mass when the frequency approaches
infinity, which is an invertible 4× 4 matrix calculated by the
hydrodynamic software WAMIT [20]; fs, fr, fe and fu are
4× 1 vectors denoting the restoring force, the radiation force,
the excitation force and the PTO force, respectively; ms is
the mass of the device, which is an invertible 4 × 4 matrix
expressed in (3), where hi and vi denote the horizontal and
vertical distances from center of gravity (COG) of i to hinge
O and mi represents the mass of the float indexed by i, with
i = 1, 2, 3, 4, 5, 6.

The restoring force fs can be calculated by

fs = Kq

K =


0 0 0 0

0
∑3
i=1 kzi kz1h1 + kz2h2 −kz3h3

0 kz1h1 + kz2h2
∑2
i=1 kri + kzih

2
i 0

0 −kz3h3 0 kr3 + kz3h
2
3


(4)

where kzi = −ρgπR2
i , kri = −ρgπR

4
i

4 are the restoring
coefficients for heave force and pitch moment of float i, ρ is the
water density, g = 9.807m/s2 is the gravitational acceleration
and Ri is the radius of the float i with i = 1, 2, 3, 4, 5, 6.

The radiation force fr can be calculated by the Cummins
equation [21] as follows

fr = −
∫ ∞
−∞

hr(τ)q̇(t− τ)dτ −m∞q̈ (5)

where hr is the impulse response function of the radiation
force which is a 4 × 4 matrix. For a state-space realization,
the convolution term Fr = −

∫∞
−∞ hr(τ)q̇(t − τ)dτ can be

considered as a linear system and be approximated by the
following state-space model [4]{

ṙ(t) = Arr +Br q̇

Fr(t) = Crr +Dr q̇
(6)

Here (Ar, Br, Cr, Dr) is calculated by Prony’s method [22],
and r is a state without physical meanings whose dimension
is nr × 1 with nr a positive integer.

The excitation force can be expressed as fe =

[f
(x0)
e , f

(z0)
e , f

(θ1)
e , f

(θ2)
e ]T, which is to be estimated in this

paper.
The PTO moment Mmech(t) is modelled linearly as

Mmech(t) = −Bmechθ̇r(t), where Bmech is a constant coef-
ficient and θ̇r := θ̇1− θ̇2 is the relative pitch rotation velocity.
The generalized PTO moment can be viewed as a manipulable
control input to the whole system at the controller design stage.

fu(t) =

[
0
0

−Mmech(t)
Mmech(t)

]
(7)

C. State-space model of M4

Combining (4), (5) and (6), we have the following state-
space model of M4

Mq̈ = −Kq + Crr +Dr q̇ + fe + fu

ṙ(t) = Arr +Br q̇

Ḟr(t) = Crr +Dr q̇

(8)

where M := ms +m∞ is an invertible 4× 4 matrix.
The system states are chosen as x1 := q, x2 := r and

x3 := q̇, and the control input is the PTO force, i.e. u := fu.
Substituting the system state x = [xT1 xT2 xT3 ]T =

[qT rT q̇T]T into (8), we have the following state-space model

ẋ = Ax+B(u+ fe) (9)

where

A =

 04×4 04×nr I4
04×4 Ar Br
−M−1K −M−1Cr −M−1Dr


B =

[
04×4 0nr×4 M−1

]T
where M−1 denotes the inverse matrix of M , 0z1×z2 denotes
the zero matrix with the size of z1 × z2, and Iz1 is an identity
with the size of z1. z1 and z2 are positive integers.

This paper aims to robustly estimate four components of
the unknown wave excitation force fe based on the state space
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Fig. 3. Block diagram of the proposed wave excitation force estimation
framework

model (9) and ensure the estimation error to be limited in a
small region within the convergence time that can be explicitly
specified.

III. ADAPTIVE SLIDING-MODE OBSERVER FOR WAVE
EXCITATION FORCE ESTIMATION

In this section, an adaptive sliding-mode observer (ASMO)
is proposed to achieve the real-time estimation of the wave
excitation force, as shown in Fig. 3. The states q and its
first derivative q̇ can be directly measured, and the state
corresponding to the radiation force r which does not have
physical meanings can be estimated by a KF [8]. By using
the control input, the state q, its derivative q̇ and the state r,
the proposed ASMO estimates wave excitation force in real-
time. A parameter tuning precedure of the proposed observer is
also provided. For non-causal controllers, an Auto-Regressive
model is adopted to predict the future excitation force, whose
details are shown in Section IV.

A. Wave Excitation Force Observer Design

In this subsection, a novel SMO is designed which ensures
a pre-defined convergence time and an explicit formulation of
the estimation error.

In the sequel, v(Q) denotes the Q-component of the vector
v with Q = x0, z0, θ1, θ2.

Hypothesis 1. The wave excitation force/moment of each
component and its first time derivative are bounded by known
constants, so that |f (Q)

e | ≤ F (Q)
e and |ḟ (Q)

e | ≤ β(Q) hold with
F

(Q)
e and β(Q) as known positive constants.

Define a sliding variable vector as s = q̇ − ζ. The 4 × 1
vector ζ is designed according to (9) as

Mζ =

∫
(fu + f̂e + µ0s

α + µ1sgn(s)−Kq −Dr q̇ − Crr)dt
(10)

where f̂e = [f̂
(x0)
e , f̂

(z0)
e , f̂

(θ1)
e , f̂

(θ2)
e ]T is a vector of the

estimated wave excitation force, µ0 > 0 and α > 1 are
constants and µ1 is designed as

µ1 = ‖f̂e‖+ Fe + k1 (11)

where Fe = max{F (Q)
e } and k1 > 0 is a constant.

The wave excitation force observer is proposed in the
following form{
f̂e = λ+Mq̇

λ =
∫

(Kq +Dr q̇ + Crr − fu − f̂e + (β̂ +Kµ)sgn(s))dt
(12)

where λ ∈ R4 is an intermediate variable whose dimension
is 4 and Kµ = µ2I4 is a constant matrix with µ2 > 0 a
constant. β̂ = diag{β̂(x0), β̂(z0), β̂(θ1), β̂(θ2)} is the matrix of
the boundary estimation of the wave excitation force variation.

The adaptive law for the Q-component is designed as

˙̂
β(Q) = −k2β̂(Q) + 2|f̂ (Q)

e |+ 2F (Q)
e (13)

where k2 > 0 is a constant and the initial value is β(Q)(t0) =
0.

The convergence process of the proposed ASMO consists of
two stages: At the first stage, the estimation error of the wave
excitation force is driven to approach the sliding manifold
s = 0 within a constant fixed time. At the second stage, the
estimation error keeps sliding on the sliding manifold until it
reaches the origin in a finite time. The convergence properties
of both of the first and second stages are proven in the next
two subsections respectively.

B. Fixed-time stabilization of the sliding variable

Fixed-time stabilization theory is a recently developed con-
trol theory [23], whose main advantage is that it can drive
the system state to the equilibrium point within a pre-defined
time which does not depend on initial states. This theory is
applied in this paper to explicitly formulate the convergence
time and the convergence boundary of the estimation error.
The difference between finite-time convergence and fixed-time
convergence is that fixed-time convergent theory ensures all
the possible convergence time to be bounded by a known
constant.

Lemma 1. (Lyapunov function of fixed-time stabilization)
[23]. Consider the system (2). Suppose that there exists a Lya-
punov function Va(x) defined on the neighborhood U ⊂ Rn
of the origin, and the condition

V̇a(x) ≤ −(γ1Va(x)p + γ2Va(x)g)k (14)

is satisfied, where γ1, γ2, p, k > 0, pk < 1 and gk > 1. Then
the origin of the system (2) is fixed-time stable, and any Va(x)
can reach Va(x) ≡ 0 in a fixed time of Ta, which is bounded
and independent on initial states:

Ta ≤ TaMAX =
1

γk1 (1− pk)
+

1

γk2 (gk − 1)
(15)

Theorem 1. For the system (9) and the sliding variable
defined in (10) satisfying Hypothesis 1, the sliding variable s is
steered to its origin where s = ṡ = 0 holds. The convergence
time of the first stage t1 − t0 is bounded by

t1 − t0 ≤ T1 =
1

k1
λ

1
2
max(M) +

1

µ0(α− 1)
λ
α+1
2

max(M) (16)

which is a constant with any initial state s(t0), where t0 is
the initial time, t1 is the time of end of the first stage and
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λmax(M) denotes the largest eigenvalue of the matrix M
which is a positive constant.

Proof: From (9) and (10), we have

Mṡ = f̃e − µ0s
α − µ1sgn(s) (17)

where f̃e = fe − f̂e is the estimation error of the wave
excitation force.

Select a Lyapunov candidate as

V1 = sTMs (18)

Its first derivative is

V̇1 = 2sTMṡ

= 2sT(f̃e − µ0s
α − µ1sgn(s))

≤ −2µ0‖s‖α+1 − 2µ1‖s‖+ 2sTf̃e

≤ −2µ0‖s‖α+1 − 2(µ1 − ‖f̃e‖)‖s‖
≤ −2(µ1 − ‖fe‖ − ‖f̂e‖)‖s‖ − 2µ0‖s‖α+1

(19)

Substituting (11) into (19) and considering Hypothesis 1,
we have

V̇1 ≤ −2k1‖s‖ − 2µ0‖s‖α+1

≤ −2k1λ
1
2
max(M)V

1
2
1 − 2µ0λ

−α+1
2

max (M)V
α+1
2

1

(20)

Based on Lemma 1, the boundary of the convergence time
can be calculated by (16).

Remark 1. Theorem 1 plays an important role in real scenar-
ios. The initial state of the sliding variable s(t0) changes with
respect to q̇(t0), which leads to different convergence time. To
ensure that the convergence time is available in advance, it
should be bounded by a known constant with any initial states.
Theorem 1 offers this upper boundary determined by (16) of
all the possible convergence time with every initial state s(t0)
and every initial state q̇(t0). More importantly, this boundary
is available once the constant parameters of the ASMO are
fixed, which can be calculated in advance.

C. Finite-time stabilization of the estimation error

This subsection is to prove that the estimation error f̃ (Q)
e

converges within a region of the origin, f̃ (Q)
e = 0, in a finite

time after the sliding variable reaches s = ṡ = 0.

Theorem 2. For the system (9) and the proposed observer
(12) satisfying Hypothesis 1, the estimation error of the wave
excitation force of the Q-component converges to the following
region

Ξ(Q) = {f̃ (Q)
e | |f̃ (Q)

e | ≤ k2 + 4k2(β(Q))2

8(1− k3)min{2µ2, k2/
√

2}
}

(21)
in a finite time

t2 − t0 ≤ T2 = T1 +
2(V

(Q)
2 )

1
2 (t1)

k3min{2µ2, k2/
√

2}
(22)

where k2 > 0 and 0 < k3 < 1 are constants, t2 > t0 + T1
denotes the time in stage 2 and V (Q)

2 is defined in (24).

Proof: From (12), the derivative of the estimation error
of the wave excitation force can be written as ˙̃

fe = ḟe− ˙̂
fe =

ḟe −Kq −Dr q̇ − Crr + fu + f̂e − (β̂ +Kµ)sgn(s)−Mq̈.
From the state space model (9), we have Mq̈ = −Kq −

Dr q̇ − Crr + fu + fe. Then, it follows that

˙̃
fe = ḟe − f̃e − (β̂ +Kµ)sgn(s) (23)

Design a Lyapunov candidate for the Q component as

V
(Q)
2 = (f̃ (Q)

e )2 + 0.5(β̃(Q))2 (24)

where β̃(Q) = β(Q) − β̂(Q) is the estimation error of the
boundary of the wave excitation force variation of the Q-
component.

Based on (23), the time derivative is

V̇
(Q)
2 =2f̃ (Q)

e
˙̃
f (Q)
e + β̃(Q) ˙̃

β(Q)

=2f̃ (Q)
e (ḟ (Q)

e − f̃ (Q)
e − (β̂(Q) + µ2)sgn(s(Q)))

+ β̃(Q) ˙̃
β(Q)

=2f̃ (Q)
e (ḟ (Q)

e − f̃ (Q)
e − (β̂(Q) + µ2)sgn(s(Q)))

+ β̂(Q) ˙̂
β(Q) − β(Q) ˙̂

β(Q)

=2f̃ (Q)
e ḟ (Q)

e − 2β̂(Q)f̃ (Q)
e sgn(s(Q))− 2(f̃ (Q)

e )2

− 2µ2f̃
(Q)
e sgn(s(Q))− β̃(Q) ˙̂

β(Q)

(25)

From (17), the estimation error f̃ (Q)
e is equivalent to the

term of µ1sgn(s(Q)) if s = ṡ = 0 holds based on the
equivalent output injection principle [24], [25].

From the adaptive law (13), (25) can be further written as

V̇
(Q)
2 ≤ −2µ2|f̃ (Q)

e |+ k2β̃
(Q)β̂(Q) (26)

Considering the inequality k2β̃
(Q)β̂(Q) = k2β̃

(Q)(β(Q) −
β̃(Q)) ≤ k2

2 ((β(Q))2 − (β̃(Q))2), we have

V̇
(Q)
2 ≤− 2µ2|f̃ (Q)

e | − k2
2

((β(Q))2 − (β̃(Q))2)

≤−min{2µ2,
k2√

2
}(V (Q)

2 )
1
2 +

k2
8

+
k2
2

(β(Q))2

− (1− k3)min{2µ2,
k2√

2
}(V (Q)

2 )
1
2

(27)

The Lyapunov candidate V (Q)
2 keeps decreasing when the

estimation errors are out of the region (21). Therefore, the
estimation errors of both the wave excitation force and the
boundary of its variation converge to the region of the origin
in a finite time (22).

Remark 2. Note that k3 is not a tuning coefficient of the
proposed observer (12) but an auxiliary parameter to describe
the convergence process, i.e. the relation between the boundary
of the convergence time and the boundary of the estimation
error. By decreasing k3, the estimation error f̃e is confined
within the region (21) which keeps shrinking as time elapses.
Therefore, given a specific expected boundary of the estimation
error, we can calculate the value of k3, and the corresponding
convergence time is bounded by (22), which can be pre-
calculated.
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Remark 3. The convergence time decreases with respect
to an increasing value of µ0; When λmax(M) < 1, the
convergence time is reduced with larger values of α and
k1; when λmax(M) ≥ 1, the convergence time is shortest
when α =

√
2λ(M) + 1; From Eqs. (21) and (22), it can be

found that with a large value of {2µ2,
k2√
2
}, the convergence

time is reduced while the convergence region is enlarged. In
contract, with a smaller convergence region, the convergence
time becomes longer. Therefore, one can tune these parameters
in difference scenarios according to practical demands.

IV. WAVE EXCITATION FORCE PREDICTION

In this section, the future information of the wave excitation
force is predicted by an improved Autoregressive (AR) model,
whose coefficients are updated by online training. Compared
with the conventional AR model, which has been adopted for
WEC wave excitation force prediction in [26], the improved
AR model enhances the prediction accuracy with different sea
states. Based on the improved AR model and the proposed
ASMO, the boundaries of the excitation force prediction error
at each future instant can also be explicitly formulated, which
can provide guaranteed control performance for the non-causal
controllers.

A. An improved AR model

The 1-step-ahead-prediction AR model of the Q-component
excitation force is given as follows:

f̄ (Q)
ek|k−1

=

p∑
i=1

(φif̂
(Q)
ek−i

) (28)

where f̄ (Q)
ek|k−1

is the predicted value of f (Q)
ek at instant tk−1

and p is the order of the AR prediction model, φi are the AR
coefficients with i = 1, 2, ..., p. The h-step-ahead prediction is
obtained by using an iterative combination of 1-step-ahead
predictions with h > 1 as a integer. The effectiveness of
the AR model to predict the wave excitation force has been
verified in [26], where the coefficients φi are identified by
an off-line training. An improved AR model is developed
whose coefficients are online trained by the latest data at
each v step. Therefore, the improved AR model can fully
account for the change of the sea states and thus improves
the prediction accuracy. Since the AR model is a first-order
linear model with p coefficients to be updated, the training
method is to solve a least square (LS) problem, which leads
to a low computational burden so that the prediction method
can be efficiently implemented online.

B. Boundary of the prediction error

Based on the past estimations of the wave excitation force
and the past boundaries of the estimation error, the prediction
errors of the wave excitation force at each future instant can
be explicitly determined.

From (21) and (22), the region of the estimation error at
instant tei = iT with i = dT1

T e, d
T1

T e+ 1, ..., dT1

T e+m− 1 is

|f̃ (Q)
e (i)| ≤ F̃ (Q)

e (i) (29)

where

F̃ (Q)
e (i) =

k2 + 4k2(β(Q))2

8(1− 2β(Q)+2F
(Q)
e

(iT−T1)min{2µ2,k2/
√
2} )min{2µ2, k2/

√
2}

with T > 0 as the sampling time, and m > 1 as the dimension
of the training data.

The 1-step-ahead prediction of wave excitation force at time
te = (dT1

T e+m)T is calculated at time te = (dT1

T e+m−1)T
by

f̄ (Q)
e (dT1

T
e+m|dT1

T
e+m−1) =

p∑
j=1

(Φj f̂
(Q)
e (dT1

T
e+m−j))

(30)
where p is the order of the AR prediction model, and the
coefficients Φi is trained by the estimation history of the wave
excitation force f̂ (Q)

e (tei), i = dT1

T e, d
T1

T e+1, ..., dT1

T e+m−1.
Note that f̂ (Q)

e (tei) is the estimated excitation force, based
on which the prediction introduces errors. To tackle this
problem, the proposed ASMO offers the boundary of the
estimation error at each past estimations which enables one
to calculate the boundary of the prediction error that can be
compensated in the non-causal controller design.

The 1-step-ahead prediction of wave excitation force based
on the actual wave excitation force can be represented by

f̄ (Q)∗
e (dT1

T
e+m|dT1

T
e+m−1) =

p∑
j=1

(Φjf
(Q)
e (dT1

T
e+m−j))

(31)
Combining (29), (30) and (31), we have the 1-step-ahead

prediction error f̃ (Q)
e (dT1

T e+m|dT1

T e+m− 1) satisfying

|f̃ (Q)
e (dT1

T
e+m|dT1

T
e+m−1)| =

p∑
j=1

(ΦjF̃
(Q)
e (dT1

T
e+m−j))

(32)
where

F̃ (Q)
e (dT1

T
e+m−j) =

k2 + 4k2(β(Q))2

8min{2µ2, k2/
√

2} − 16(β(Q)+F
(Q)
e )

(dT1T e+m−j)T−T1

The h-step-ahead prediction error can be obtained by using
an iterative combination of 1-step-ahead prediction errors.
The coefficients Φj are updated by training the latest m-
dimensional estimations of the wave excitation force.

V. SIMULATION RESULTS ON A REALISTIC SEA WAVE OF
CORNWALL, UK

The wave forces and the added mass of the M4 WEC
are calculated based on a scaled realistic sea wave heave
trajectory gathered from the coast of Cornwall, UK by WAMIT
[20]. The sea wave heave trajectory is shown in Fig. 4. The
corresponding wave excitation forces/moments are shown in
Fig. 5 which are used to be the reference to validate the
accuracy of the estimations.

In subsection V-A, for comparison purpose, four compo-
nents of the wave excitation force are estimated by both the
conventional KF and the proposed ASMO. First, we consider
the model mismatch between the state-space model that is
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Fig. 4. A realistic sea wave heave trajectory gathered from the coast of
Cornwall, UK
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Fig. 5. Real excitation force/moment of the wave shown in Fig. 4

used by the proposed ASMO and the original hydrodynamic
model that is the M4 plant. Therefore, the robustness of the
estimators is tested with this model mismatch caused by model
order reduction and linearization. Second, further considering
that the existence of unknown disturbances, such as unmodeled
high-order wave forces and environmental uncertainties, etc.,
we test a case where the model mismatch is set to be 30%
in order to fully demonstrate the robustness of the proposed
ASMO.

In subsection V-B, the wave excitation force prediction
based on the improved AR model is validated. The historical
data is composed of the estimations of the estimators, based on
which the predictions of the excitation force are generated by
AR model. By using the proposed ASMO, the prediction error
at each future step is verified to be within the pre-calculated
boundary, which provides guaranteed control performance for
the design of non-causal controllers.

A. Validation of Estimation Accuracy

1) Model mismatch caused by model order reduction and
linearization: The estimations using both the conventional KF
and the proposed ASMO are shown in Fig. 6.

The simulation results are summarized in Table I. The
performance indexes are the maximum error (ME) of the wave
excitation force estimation calculated by

ME = max{|fe(i)− f̂e(i)|}, i = 1, ..., N

the average error (AE) of estimation calculated by

AE = 1/N
N∑
i=1

|fe(i)− f̂e(i)|
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Fig. 6. Estimation errors of wave excitation forces

TABLE I
SIMULATION RESULT COMPARISON

Performance x0 z0 θ1 θ2
Index

KF ME 4.02 4.38 3.08 4.11
AE 2.08 1. 96 1.22 1.92
NMSE 84.28% 92.24% 85.85% 90.51%

ASMO ME 5.00 5.00 5.00 5.00
AE 1.32 1.26 0.87 1.19
NMSE 97.5% 98.82% 96.94% 98.46%

and the normalized mean square error (NMSE) calculated by

NMSE = (1−
N∑
i=1

(fe(i)− f̂e(i))2/
N∑
i=1

f2e (i))100%

Here N is the number of data. Compared with the conventional
KF, the proposed ASMO has a smaller steady-state estimation
error. Although the estimation error of the ASMO is larger
than that of the conventional KF at the very beginning, a
warming-up process can be operated in the real scenario to
initialize the device, so that the proposed ASMO can converge
to the steady state and estimates the wave excitation force with
small errors thereafter. Therefore, considering that the steady-
state performance of an observer is the most important index
to evaluate its effectiveness and superiority in application to
WECs, we conclude that the proposed ASMO outperforms the
conventional KF.

2) 30% Modelling mismatch: We consider a harsh situation
where the model mismatch of 30% from the original hydro-
dynamic model exists in order to investigate the robustness of
the proposed ASMO. The estimation errors of the conventional
KF and the ASMO are shown in Fig. 7. Simulation results are
concluded in Table II. Compared with the conventional KF,
the proposed ASMO has a smaller estimation error and faster
convergence speed when a large model mismatch presents. By
comparing with Table I, we can find that the model mismatch
has a bigger impact on the KF than the proposed ASMO.
Therefore, the robustness of the proposed ASMO is verified.

B. Validation of the wave excitation force prediction

In this section, the conventional AR model and the improved
AR model are used respectively to predict the wave excitation
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Fig. 7. Estimation errors of wave excitation force with 30% modelling
mismatch

TABLE II
SIMULATION RESULT COMPARISON (30% MODEL MISMATCH)

Performance x0 z0 θ1 θ2
Index

KF ME 9.79 12.66 9.83 13.51
AE 5.43 4.82 5.66 5.71
NMSE 74.17% 72.41% 69.85% 70.51%

ASMO ME 10.00 10.00 10.00 10.00
AE 2.05 3.01 2.97 2.19
NMSE 92.33% 94.28% 89.08% 94.16%

force, and sea waves consist of two sea states, as shown in
Fig. 8. The sea state changes from sea wave (A) to sea wave
(B) at t = 351.360 s.

The orders of the conventional and improved AR models
are both 25 according to the plot of the autocorrelation
function (ACF) and partial autocorrelation function (PACF),
and the dimensions of the training data of two AR models are
both 200. The coefficients of the conventional AR model are
obtained by offline training using the data during sea wave
(A). 535-step-ahead predictions made at t = 360.36 s by the
conventional and the improved AR models are shown in Fig.
8. It can be found that the prediction errors of the conventional
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Fig. 9. 60-step-ahead prediction error boundaries (blue circles: pre-calculated
upper boundaries of the prediction error; red circles: pre-calculated lower
boundaries of the prediction error; the blue line: the estimation error by the
proposed ASMO)

AR model are larger than those of the improved AR model.
Because the improved AR model can online account for the
change of the sea state. In the subsection V-A, the estimation
accuracy of ASMO has been validated by comparing it with
the conventional KF. Therefore, a more accurate prediction
by using the historical data estimated by the ASMO can be
expected when it is combined with the online adaptive AR
model, as shown in Fig. 8.

From Fig. 9, it can be found that the actual prediction errors
at each step are within the pre-calculated boundaries. Since the
upper and lower boundaries of the prediction errors resulted
from the proposed ASMO can be explicitly formulated and
pre-calculated, it allows the non-causal controller design to
achieve guaranteed control performance by explicitly taking
into account the wave force estimation error and AR prediction
error.

VI. CONCLUSIONS

An adaptive sliding-mode observer has been proposed to
estimate the wave excitation force for the wave energy con-
verter M4. A sliding variable was designed to steer the
estimation error into a pre-defined region within a pre-defined
convergence time that can be defined a priori. Based on the
proposed ASMO, the AR prediction error of excitation force
was proven to be explicitly bounded. The results based on
a realistic sea wave heave trajectory gathered from the coast
of Cornwall, UK showed the effectiveness of the proposed
ASMO. Future work will focus on the prediction method using
deep learning.
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