
PlayMapper: Illuminating Design Spaces of
Platform Games

Vivek R. Warriar1, Carmen Ugarte, John R. Woodward2 and Laurissa Tokarchuk3
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, UK

{v.r.warriar1, j.woodward2, laurissa.tokarchuk3}@qmul.ac.uk

Abstract—In this paper, we present PlayMapper, a novel
variant of the MAP-Elites algorithm that has been adapted to
map the level design space of the Super Mario Bros game. Our
approach uses player and level based features to create a map of
playable levels. We conduct an experiment to compare the effect
of different sets of input features on the range of levels generated
using this technique. In this work, we show that existing search-
based techniques for PCG can be improved to allow for more
control and creative freedom for designers. Current limitations
of the system and directions for future work are also discussed.

Index Terms—MAP-Elites, Procedural Content Generation,
Platform Games, Evolutionary Algorithms, Illumination Tech-
niques.

I. INTRODUCTION

Procedural Content Generation (PCG) refers to using al-
gorithms to create game content. Generating content is for-
malized as a search problem where the search space is all
possible content that can be generated. Evolutionary search-
based techniques attempt to find appropriate solutions, usually
measured by the playability of this content. There exists a
number of search-based strategies to find playable and diverse
content for platform games [1], [2]. These systems are limited
in terms of control. In grid-based puzzle games, a desired level
of control can be introduced using evolutionary techniques.
These can be used to arrange game levels ranging from easy to
difficult in terms of game-play [9]. Search-based PCG systems
can be used along with these approaches to generate content
across a spectrum of difficulty for players. However, this must
be conducted in addition to the search based PCG process
which can be computationally expensive. Interestingly, this is
a comparatively simple task for a human game designer. To
address this gap we present PlayMapper (PM), a PCG system
based on the MAP-Elites (ME) algorithm [3] built to generate
levels for platform games. This pilot work is implemented
in the Super Mario Bros. environment [4]. We refer to the
representation or encoding of the solution as in genotypic
space while the fitness of the solution is measured in-game
simulation or phenotypic space. The choice of representation
in the genotypic space and mapping between these 2 spaces
will impact the quality of content generated by the algorithm.

Fitness refers to what extent the level is playable. Following
related work [2], we use an A* agent to measure the playability
of generated levels.

The ME algorithm is an illumination technique [3] that aims
to return the highest performing solution for each point in
a designer-defined feature space. ME belongs to a broader
family of techniques known as Quality-Diversity algorithms.
As the name implies these techniques aim to return a set of
diverse solutions of high fitness [10]. In games, this technique
has been adapted for the bullet hell genre in the Talakat system
[5]. This variant of ME has been also used to generate level
segments of the Super Mario Bros. game [11]. PM is different
as it does not use the constraint ME variant from [5], [11].
Additionally, we explore different behaviour dimensions than
[11] and the level segments generated in their approach are
of fixed size. To the best of our knowledge, PM is the first
system that uses an illumination technique to generate platform
game levels with promising control over the size of the levels
generated.

In this paper, we describe the PM system in section II.
Section III describes the study we conducted to evaluate the
PM system. Results from the study are presented in Section
IV. Finally, the implications of these results, limitations, and
future work are discussed in section V. Initial results indicate
that PM can be used to generate a diverse set of game levels
across a number of designer-defined behavioural spaces. This
is beneficial to the domains of both PCG and AI-assisted
design for games.

II. PLAYMAPPER

Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) is an illumination algorithm that aims to find the
highest-performing solution for each point in a designer-
defined feature space [3]. The algorithm returns a map of
solutions along with a corresponding measure of fitness for
each. The different axes of this map correspond to designer-
defined features. For example, in this work, we explore the
effects of using different features on the set of levels generated
by the PM system (details provided in the next section). The
current implementation of the system creates 2D maps. This
can be extended to create maps of any dimension. This version
of PM does not use crossover operators and relies on mutation.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/237485118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The following subsections describe the main components of
the system.

A. Designer-defined Features

Human-centric studies that evaluate the player experience of
PCG systems indicate that there are 2 categories of features
to consider: player behaviour features (PBFs) and controllable
game features (CGFs) [6], [7]. PBFs refer to game metrics that
have been calculated from a simulation-based evaluation with
the A* agent or from gameplay data from people, while CGFs
refers to a property of the level itself (unrelated to the game-
playing agent). The PM system uses these features to return a
set of playable levels. This is ideal because these features are
of interest to designers when evaluating the player experience
of game content [6], [7]. Furthermore, it is interesting to note
that generating levels across a selected range of PBFs is not
a simple task for even human designers. In this paper, PBFs
are measured through A* agent gameplay. This is arguably a
naive approach and research into more human-like agents will
improve the PM system. The final diversity and playability
of the levels generated are dependent on the choice of input
features. An observation that has motivated this pilot study.

B. Mutation Operations

Mutation operations are important as they introduce genetic
diversity into the search process. Mutation operations prevent
the algorithm from converging onto a set of solutions of
weak diversity (that is, when all levels produced by the PCG
system are similar to each other). It is important to note that
the mutation operators depend on the content representation
or the genotype-to-phenotype mapping. Here, we follow the
encoding described in [2]. A level is encoded as a 2D matrix
of discrete symbols. Each symbol corresponds to an element in
the level (for example, ground, coins, enemies, etc). This is a
direct encoding as compared to other, more indirect ones such
as grammars [1]. We have implemented 3 mutation operations:

1) Changing Mutator: This operation loops through each
symbol within the encoding of a single level, and depend-
ing on a predefined probability, changes the symbol to
another symbol used in the encoding. We use a changing
mutation probability of 0.5%.

2) Growing Mutator: This operation loops through each
column of the level encoding, and depending on a defined
probability, creates a copy of the column and adds it to
the end of the level. The goal of the operation is to allow
for larger levels to be obtained from smaller levels. We
have constrained this operation, limiting the level size to
a specified range. We use a growing mutation probability
of 5% and the size of the levels have been constrained to
146-444 columns in length.

3) Shrinking Mutator: This operation is similar to the grow-
ing mutator. The main difference is that as it loops
through each column, there is a 5% probability that the
column will be deleted. Similar constraints to the size of
the level have been applied to this operation as well.

III. EXPERIMENTAL SETTINGS

As mentioned in the previous section, the quality and
diversity of the levels generated by the PM system are highly
dependent on the choice of designer-defined features. A related
heuristic to consider is the numerical range of the features
in the map. We have chosen the following features and
corresponding ranges in this study:

1) Size of the level, which is given by the number of columns
in the encoding. The size range is 146-444 columns in
length.

2) Time for the agent to complete level, which is normalized
and ranges between 0-1.

3) Speed of agent. This is the ratio between the distance
travelled and the time taken by the agent. This value is
normalized and ranges between 0-1.

4) Jump-entropy, which is the ratio between the number
of jumps and the total number of actions made by the
agent across the level. We use this feature as a way
of controlling the difficulty of the game (more jumps
is considered more difficult). This range has been set
between 0-0.1 (at 0.1 the Agent Jumps 10% of the time).

Speed, Time and Jump-entropy are PBFs while Size is a CGF.
The ranges reported have been selected based on initial trials.
The following subsections describe the experiment protocol
and the quality metrics we have followed.

A. Experimental Protocol

We compare the quality and diversity of levels generated
from different designer-defined feature maps. Since the en-
tropy of player input has been a feature of interest in a previous
MAP-Elites implementation for PCG in games [5], we keep
Jump-Entropy consistent across one of the dimensions of the
2D map in all the study conditions. We compare the following
3 conditions: Size vs. Jump-Entropy, Time vs. Jump-Entropy
and Speed vs. Jump-Entropy. These will be referred to as the
Size condition, Time condition and Speed condition respec-
tively. We initialize our algorithm with a starting population
of human-designed levels from the video game level corpus
[8]. The results reported are after 2000 iterations of a single
run of the ME algorithm. Another important heuristic is the
resolution of the map - we follow a 20× 20 resolution.

B. Quality Criteria

We have adapted a subset of quality metrics described in [3]
for this study. The following 2 metrics have been calculated:

1) Coverage: The ratio between the number of populated
(non-empty) cells and the total number of cells in the
map.

2) Reliability: The ratio between the number of cells pop-
ulated only by playable levels and the total number of
cells.

IV. RESULTS

This section presents results across the 3 conditions of this
study. Table I shows the scores for reliability and coverage at
the beginning and the end of the run. The Size condition had

TABLE I
COVERAGE AND RELIABILITY SCORES BEFORE AND AFTER RUN

Coverage Reliability
Before After Before After

Size Condition 0.045 0.213 0.017 0.123
Time Condition 0.035 0.510 0.012 0.068
Speed Condition 0.042 0.413 0.010 0.093

the least coverage and was most reliable. The Time condition
had the highest coverage and was least reliable. This can be
seen in the maps that have been visualized in Fig 1. The
evolution of these scores over 2000 iterations is seen in Fig 2.
A comprehensive visual inspection of the aesthetics of these
levels is still in progress. Fig 3 shows some example snippets
of levels that were generated. Initial inspection reveals that the
visual aesthetic of the levels is different between conditions.
We observe that none of them look human-designed. A number
of broken pipes and redundant placements are seen across all
3 conditions. An example of a redundant placement would
be placing a coin where there is no platform to collect it. In
the size condition, we observe the expected step-wise change
in level length while moving across the cells of the size
dimension of the map (albeit some cells remain empty in 2000
iterations).

V. DISCUSSION

For this pilot study, we have reported results after 2000
iterations because we are interested in validating this approach.
However, this has resulted in a large number of empty cells in
each map. Having more iterations will ensure better coverage
and reliability. These early results show that a promising
level of control can be introduced to existing search-based
PCG solutions. However, this is an early proof of concept
implementation with a number of limitations. These are: (1)
the visual aesthetic of the levels do not look human-designed
(2) it is unclear which are the best features to use to create
fun, diverse and controllable content (3) it is unclear how
computationally intensive it will be to populate an entire map
of playable levels.

The limitation of unsatisfying visual aesthetics is due to
the direct encoding and the related mutation operations used
in this study. We propose that a more indirect encoding (and
complementary mutations) such as grammars [1] will fix this
problem. Another interesting approach would be to match the
expected visual patterns from Mario levels using the Deep
Convolutional Generative Adversarial Network described in
[2]. These are directions for potential future work.

Before we can address the visual style of the levels, the
second and third limitations will need to be addressed with
follow-up studies. This will enable us to make meaningful
recommendations about what features to use and the number
of iterations. This paper has partially explored the potential
of using 4 features in the PM system. We are in the process
of conducting a comprehensive analysis with two aspects of
interest. First, we are interested to find a meaningful dimension

of the map in our generation process. We currently use 2D.
However, we are interested in exploring how 1D, 3D and 4D
maps would impact the level output of the PM system. The
second aspect of interest is, what constitutes the best sets of
feature inputs for the PM system. In this study, we use level
size and agent time, speed and jump-entropy (1 CGF and 3
PBFs) as features. In other work, we are also interested in how
we can computationally model player experience using PBFs
and CGFs [6]. With continued exploration in these directions,
we believe that PCG systems will be able to generate content
that maps to ideal player experiences across a multidimen-
sional range of features of interest to game designers.

VI. CONCLUSION

PlayMapper is the first known implementation of an illu-
mination technique for the platform game genre that controls
the size of the generated levels. Although considerable future
work must be conducted for it to be used commercially, initial
results show the promising level of control it brings to the
search-based PCG process. As AI techniques become more
popular in game technology, the problem of blackbox systems
will become more prevalent. We believe that PlayMapper and
similar techniques will reduce the mystery behind existing
blackbox PCG systems, making them more controllable and
potentially more explainable.

ACKNOWLEDGMENT

The authors would like to thank Oliver Withington for
insightful discussions. This work is supported by the EPSRC
and AHRC Centre for Doctoral Training in Media and Arts
Technology (EP/L01632X/1).

REFERENCES

[1] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius and M. O’Neill,
“Evolving levels for Super Mario Bros using grammatical evolution.”
2012 IEEE Conference on Computational Intelligence and Games (CIG),
Granada, 2012, pp. 304-311.

[2] Volz, Vanessa, et al. “Evolving mario levels in the latent space of a
deep convolutional generative adversarial network.” Proceedings of the
Genetic and Evolutionary Computation Conference. ACM, 2018, pp.
221-228.

[3] Mouret, Jean-Baptiste, and Jeff Clune. “Illuminating search spaces by
mapping elites.” arXiv preprint arXiv:1504.04909 (2015).

[4] Togelius, J., Shaker, N., Karakovskiy, S. and Yannakakis, G.N., 2013.
“The mario ai championship 2009-2012.” AI Magazine, 34(3), pp.89-92.

[5] Khalifa, Ahmed, et al. “Talakat: Bullet hell generation through con-
strained map-elites.” Proceedings of The Genetic and Evolutionary
Computation Conference. ACM, 2018, pp. 1047-1054.

[6] Vivek R. Warriar, John R. Woodward and Laurissa Tokarchuk “Mod-
elling Player Preferences in AR Mobile Games” accepted for publication
in IEEE Conference on Games (COG) 2019.

[7] Pedersen, Christopher, Julian Togelius, and Georgios N. Yannakakis.
“Modeling player experience for content creation.” IEEE Transactions
on Computational Intelligence and AI in Games 2.1, pp. 54–67, 2010.

[8] Summerville, Adam James, et al. “The vglc: The video game level
corpus.” arXiv preprint arXiv:1606.07487 (2016).

[9] Ashlock, Daniel, and E. J. Montgomery. ”Applying an adaptive genera-
tive representation to the investigation of affordances in puzzles.” 2019
IEEE Congress on Evolutionary Computation.

[10] Pugh, Justin K., Lisa B. Soros, and Kenneth O. Stanley. ”Quality
diversity: A new frontier for evolutionary computation.” Frontiers in
Robotics and AI 3 (2016): 40.

[11] Khalifa, Ahmed, Michael Cerny Green, Gabriella Barros, and Julian
Togelius. “Intentional Computational Level Design.” arXiv preprint
arXiv:1904.08972 (2019).

Fig. 1. The figures [a-c] show the visualized maps at the end of 2000 generations. The color of the cell indicates the fitness of the level contained within it.
A cell with 0 fitness is an empty cell. [a] shows the size condition, [b] Shows the time condition and [c] shows the speed condition respectively.

Fig. 2. The figures [a-c] show the visualized maps at the end of 2000 generations. [a] shows the size condition, [b] Shows the time condition and [c] Shows
the speed condition respectively.

Fig. 3. The figures [a-c] shows example levels visualized from each of the conditions. [a] shows the Size condition [b] shows the Time conditions and
[c]shows the Speed condition respectively. Note that only snippets of the levels are shown.

