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Abstract

The goal of tolerance analysis is to verify whether design tolerances enable a

mechanism to be functional. The current method consists in computing a prob-

ability of failure using Monte Carlo simulation combined with an optimization

scheme called at each iteration. This time consuming technique is not appropri-

ate for complex overconstrained systems. This paper proposes a transformation

of the current tolerance analysis problem formulation into a parallel system

probability assessment problem using the Lagrange dual form of the optimiza-

tion problem. The number of events being very large, a preliminary selective

search algorithm is used to identify the most contributing events to the proba-

bility of failure value. The First Order Reliability Method (FORM) for systems

is eventually applied to compute the probability of failure at low cost. The

proposed method is tested on an overconstrained mechanism modeled in three

dimensions. Results are consistent with those obtained with the Monte Carlo

simulation and the computing time is significantly reduced.
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1. Introduction1

Nomenclature

Pf Functional failure probability

yth Threshold value

X Geometrical deviation = Random variable

g Gap variable = optimization variable

Cf ≥ 0 Functional condition

Cf,dual ≥ 0 Functional condition in the dual form

C ≤ 0 Interface constraints

NC Number of interface constraints

Ns Number of possible situations

Nas ≤ Ns Number of admissible situations

Nds ≤ Nas Number of dominant admissible situations

A manufacturing process is not able to provide exactly the same workpieces;2

indeed, theoretical dimensions of a design product cannot be reached in a repet-3

itive manner (tool wear, operator variability,. . .). The mechanism behavior is4

disturbed by geometrical deviations as well as gaps between different parts of5

the mechanism. Design tolerances are therefore specified on different features6

of the mechanism to limit the deviations. Tolerance analysis aims at analyzing7

the impact of these admissible variations on the mechanism behavior. The main8

stake is to evaluate a quality level of the product during its design stage. The9

technique used consists of assessing a probability of failure Pf of the mechanism10

of magnitude around 10−6 for large series production. This value represents the11

probability that a functional condition, Cf = yth−Y ≥ 0, is not satisfied, where12

Y is a functional characteristic of the mechanism and yth is a threshold value13

to not be exceeded.14

Tolerance analysis methods must consider the geometrical deviations as ran-15

dom variables whose probabilistic distributions are chosen regarding the manu-16

facturing process [1, 2]. However, gaps between parts or contact points cannot17
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be modeled by aleatory uncertainty. Gaps belong to the parameter uncertainty18

category [3] of the epistemic uncertainty which makes difficult the mechanical19

behavior of this kind of mechanisms to be modeled. Indeed, analyzing iso-20

constrained or overconstrained mechanisms is different. An assembly which21

have only its six degrees of freedom fixed in three dimensions (three degrees of22

freedom in two dimensions) is considered to be an isoconstrained mechanism,23

usually without gaps. On the contrary, an assembly which have more than six24

degrees of freedom fixed is considered as an overconstrained mechanism. Gaps25

allows this kind of mechanism to be assembled although more than six degrees26

of freedom are fixed. Figure 1 shows a simple isoconstrained mechanism in one27

dimension where the functional characteristic Y must not exceed a specified28

threshold. On such a mechanism, the expression of this characteristic Y is a29

function only of the dimensions x1 and x2. This kind of problem is well-defined.30

In contrast, Figure 2 shows two configurations of an overconstrained mechanism.

Figure 1: Isostatic mechanism. The functional characteristic Y can be expressed as a function

of variables x1 and x2.

31

Now the functional characteristic Y is a function of the random variables and32

of the gap values. However, following the realization of the random variables,33

gap values are depending on the location of the contact point between part 134

and part 2. In this case the tolerance analysis problem is overconstrained due to35

the multiple possible configurations of gaps. Tolerance analysis methods must36

therefore take into account the worst configurations of gaps to compute the37

probability of failure. This operation is usually performed using an optimiza-38

tion scheme [1]. This particularity turns out to deal with a system probability39
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assessment, the transition from one worst configuration to another leading to40

an abrupt change of the limit-state surface.

Figure 2: Two worst configurations of gaps in a 1D mechanism. The goal is to

find the maximum value of Y . For two given sets of random variable realizations
{

x
(j)
i

, i = 1, . . . , 4; j = 1, 2
}

, the worst configuration of gaps changes: contact with the right

pin for j = 1 and contact with the left pin for j = 2.

41

For an isoconstrained mechanism, computing the probability of failure is42

simple because the functional condition is only expressed as a function of the43

random variables which describes the geometrical parameters. Classical relia-44

bility methods such as Monte Carlo simulation or variance reduction techniques45

like Importance Sampling [4] can be used to quickly compute the probability46

of functional failure. For complex non explicit applications, surrogate models47

replacing the true functional condition may also be used in simulations in or-48

der to save time. Numerous techniques used in computer experiments exist in49

the literature such as quadratic response surfaces [5, 6], Kriging [7, 8], support50

vector machines [9, 10, 11] and polynomial chaos [12, 13, 14]. Approximation51

methods like FORM [15, 16] can also be performed. All methods are efficient52

provided that the problem has a smooth limit-state surface which is the case53

for an isoconstrained mechanism tolerance analysis problem. For an overcon-54

strained mechanism, these techniques, except the Monte Carlo simulation, can55

no longer be used because of a piecewise limit-state function coming from the56

4



different configurations of gaps.57

This paper intends to propose an efficient method to compute the probability58

of failure of a tolerance analysis problem in the case of overconstrained mech-59

anisms. The technique is based on a transformation of the tolerance analysis60

problem formulation using the Lagrange duality property. This operation leads61

to an auxiliary problem which is free from the optimization step. The solution62

method includes a selective search algorithm so as to determine the dominant63

failure situations among the numerous possible ones. The probability of failure64

is eventually computed using the First Order Reliability Method (FORM) for65

systems [15, 16].66

The paper is organized as follows: section 2 shows the current tolerance anal-67

ysis problem formulation whose probability is estimated thanks to the Monte68

Carlo simulation. Section 3 describes the mathematical transformation of the69

optimization problem into its Lagrange dual. Section 4 is devoted to the com-70

parison of the proposed method with the Monte Carlo simulation on different71

applications: first, the different transformation steps of the proposed formula-72

tion are detailed on a simple academic example. Then the method is applied to73

an overconstrained industrial application modeled in three dimensions.74

2. Tolerance analysis of overconstrained mechanisms75

2.1. Problem formulation based on quantifiers76

The presence of gaps in overconstrained mechanisms makes the mechanical

behavior difficult to model. Gaps are considered as free variables, but they are

not free of constraints because interpenetration between two surfaces of two

parts of the mechanism cannot be allowed. A set of NC interface constraints

are therefore defined to prevent surfaces from penetrating into each other. Let

X = {X1, . . . , Xn} be the vector of random variables and g = {g1, . . . , gm} the

vector of gaps. Given a realization x of the random vector X, these constraints

are inequations written as follows:

{Ck(x,g) ≤ 0}k=1,...,NC
(1)
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The functional condition equation of the mechanism is expressed as follows:

Cf (x,g) = yth − Y ≥ 0 (2)

where Y = f(x,g) is the response of the system (a parameter such as a gap or a77

functional characteristic) modeled by a function f characterizing the influences78

of the deviations and gaps on the mechanism behavior [17].79

The universal quantifier “∀” (all) is used to translate the concept that the

functional condition must be must respected in all configuration of the mecha-

nism. The definition of the functionality of the mechanism is given by Qureshi

et al. [1]: “for all admissible gap configurations of the mechanism, the geometri-

cal behavior and the functional requirement are respected”. For any realization

x of the random vector describing the geometrical deviations, the mechanism is

functional if the following holds:

Cf (x,g) ≥ 0, ∀g ∈ R
m : Ck(x,g) ≤ 0, ∀k ∈ 1, . . . , NC (3)

The goal of tolerance analysis is to compute a probability of failure. From the

previous definition of the functionality, the definition of the non functionality can

be formulated as: “there exists at least one admissible configuration for which the

functional condition is not respected”. That is why the worst configurations of

gaps must be considered which is obtained when the minimum value of Cf (x,g)

is found whereas the interface constraints are satisfied. The expression of the

probability of failure is given in Eq. (4).

Pf = Prob (R(X) ≤ 0) (4)

where R(x) = min
g∈Rm

Cf (x,g) such that Ck(x,g) ≤ 0, ∀k ∈ 1, . . . , NC .80

2.2. First approach combining Monte Carlo simulation and optimization81

A straight forward approach to estimate the probability of failure is based on

the Monte Carlo simulation combined with an optimization algorithm. Let us

introduce the indicator function 1minCf≤0 being equal to one if ming Cf (x,g) ≤
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0 and zero otherwise. The probability of failure estimation is then expressed as

follows:

P̂fmc =
1

N

N∑

i=1

1minCf≤0

(
x(i)
)

(5)

where
{
x(1), . . . ,x(N)

}
is a set of samples from the random vector X. This esti-

mation technique, combined with the optimization scheme to evaluate 1minCf≤0

(
x(i)
)

for each (i), is easy to implement and able to provide an accurate estimate of

the probability provided that the coefficient of variation of the estimator, given

Eq. (6), is small enough (<10%).

C.O.V
P̂fmc

=

√
1− P̂fmc

NP̂fmc

(6)

Monte Carlo simulation is the reference method, which can cope with a piecewise82

continuous limit-state surface. For simple mechanisms, the optimization step83

is costless although repeated N times. However, for highly overconstrained84

systems, the optimization step makes the Monte Carlo simulation too much85

time consuming, especially for small target probabilities. A new method is86

therefore required in order to analyze complex systems faster.87

3. System reliability formulation based on Linear Programming88

As previously stated in the introduction, the full failure domain turns out89

to be a system combinations of several failure domains relative to the different90

configurations of gaps of the mechanism. Indeed, due to gaps and following the91

realization of the random variables, several worst configurations of gaps may92

exist in a mechanism when minimizing Cf (x,g) [18]. In practice, some config-93

urations often occur but some others may never happen. If several dominant94

configurations are identified, then several discontinuities appears in the limit-95

state surface. It represents a change of position of the mechanism parts from96

a configuration to another. A worst configuration leading to a non functional97

domain is called a failure situation. In [18], Beaucaire et al. propose a system98

reliability formulation which can be obtained by solving the KKT optimality99
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conditions of the optimization problem given in Eq. (4). However this formu-100

lation leads to define a probability formulation as the union of intersection of101

events and cannot be used for complex mechanism.102

Figure 3: Limit-state surface for a mechanism with two random variables and three failure

situations.

Figure 3 shows a limit-state surface for a mechanism with two random vari-103

ables and three failure situations. It appears clearly that the probability of104

failure matches the intersection of all failure domains of each situation. The105

goal of this paper is to demonstrate this assumption from the current tolerance106

analysis formulation and to propose a procedure to compute the probability of107

failure Pf based on a system formulation. Subsection 3.1 shows the proposed108

formulation of the tolerance analysis problem based on the Lagrange dual form109

of the optimization problem. Subsection 3.2 describes the FORM method for110

systems. Subsection 3.3 proposes a method in order to reduce the number of111

intersection events by selecting only dominant failure situations.112

3.1. Transformation of the optimization problem into the Lagrange dual form113

The tolerance analysis problem formulation is defined as a linear function of

gaps [1]. Indeed the functional condition is always defined as a linear combi-

nations of several gap components. Interface constraints are most of the time

also written as a linear functions of gaps [1]. However, cylinder type joints lead
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to define quadratic interface constraints. In this case, constraints have to be

linearized. This linearization of the behavior model has an impact on the prob-

ability of failure but this is not the purpose of the present paper. Given these

properties, the optimization problem belongs therefore to the linear program-

ming category. In addition, the objective function Cf is assumed differentiable.

Given a realization x = {x1, . . . , xn} of the random vector X, let us define the

Lagrange function:

L(x,g,λ) = Cf (x,g) +

NC∑

k=1

λkCk(x,g) (7)

where λ are the NC Lagrange multipliers [19].114

Proposition 3.1. In the present case, g∗ is an optimal solution of the opti-115

mization problem if and only if there exists λ∗ ≥ 0 such that (g∗,λ∗) is a saddle116

point of the Lagrange function in Eq. (7). In particular, the optimization prob-117

lem has a solution if and only if L has saddle points, and if it does, then its118

Lagrange dual problem has a solution whose optimal values are equal.119

Let us consider a Linear Programming problem, characterizing a tolerance anal-120

ysis problem, which is written in a matrix form as follows:121

min
g

Cf (x,g) = aTx+ bTg + c0

subject to Ck(x,g) = dT
k x− eTk g + ck ≤ 0

(8)

for k = 1, . . . , NC and for g ∈ R
m. The Lagrange function is given by:122

L(x,g,λ) = Cf (x,g) +

NC∑

k=1

λkCk(x,g)

=

[
b−

NC∑

k=1

λkek

]T
g +

NC∑

k=1

λk

(
dT
k x+ ck

)
+ aTx+ c0 (9)

Finally, the Lagrange dual problem reads:123

max
λ

Cf,dual(x,λ) =

NC∑

k=1

λk

(
dT
k x+ ck

)
+ aTx+ c0

subject to

NC∑

k=1

λkek = b;λ ≥ 0

(10)
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The expression of the dual form allows the objective function to be no more124

a function of gaps. In addition, according to the proposition 3.1, if an opti-125

mal solution exists, then both optimization problems in Eqs. (8) and (10) have126

the same solution. The optimization constraints are now m equality equations127

to be satisfied and the Lagrange multipliers must be positive. The number of128

interface constraints NC being greater than the dimension m, the dual opti-129

mization problem is under constraints: there are more Lagrange multipliers λ130

than equality constraints. In order to find the admissible Lagrange multipliers131

satisfying the constraints, all possible combinations must be tested. However,132

some combinations are impossible. Table 1 lists several impossible situations.

Table 1: List of impossible combinations of Lagrange multiplier values.

Impossible situation Physical interpretation

All λ equal to 0 because b 6= 0. This is equivalent to consider that

there is no contact between the

mechanism parts because no inter-

face constraints can be equal to zero.

All λ are different from 0 because

NC >> m.

This is equivalent to consider that

there are contacts in every possi-

ble points of the mechanism simul-

taneously because all interface con-

straints must be equal to zero.

133

In fact, the number of non zero Lagrange multipliers λsk = {λ
s
(1)
k

, . . . , λ
s
(m)
k

}

must be equal to the number of gaps to be found, where sk contains the indices

of the Lagrange multipliers different from zero of the kth situation. So, the

number of possible situations is equal to Ns =
(
NC

m

)
, but all situations may

not be admissible regarding the optimization constraints, given in Eq. (10). Let

Nas be the number of the admissible situations of Lagrange multipliers satisfying

the given constraints and C
(sk)
f,dual(x) = Cf,dual(x,λsk) be the expression of the

dual functional condition relative to the combination sk. There are then Nas
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admissible solutions to the maximization problem, in Eq. (10), which can now

be written as follows:

C∗
f,dual(x) = max

i={1,...,Nas}

({
C

(si)
f,dual(x)

})
(11)

In addition, according to the proposition 3.1, the optimal values of the primal

and dual optimization problem are equal, i.e. both expressions of the functional

condition are equal:

C∗
f (x) = C∗

f,dual(x) = max
i={1,...,Nas}

({
C

(si)
f (x)

})
(12)

Finally, the probability of failure is simply expressed as follows:134

Pf = Prob
(
max

i

({
C

(si)
f (X)

})
≤ 0
)

(13)

= Prob

(
Nas⋂

i=1

C
(si)
f (X) ≤ 0

)
(14)

= Prob
({

C
(s1)
f (X) ≤ 0

}
∩ . . . ∩

{
C

(sNas )
f (X) ≤ 0

})
(15)

The above transformation procedure is described in detail in a simple example135

in Subsection 4.1. This new formulation of the tolerance analysis problem as a136

simple intersection of events allows the efficient FORM method for systems to137

be applied to compute the probability of failure. This method is explained in138

the following Subsection.139

3.2. The FORM method for systems140

The goal is to compute the probability from the multivariate Gaussian prob-

ability density function φn, with the hypothesis of a first order approximation

on each situation [15, 16]. Given Nas admissible failure situations, the parallel

system failure probability, see Figure 4, is expressed as follows:

Pf = Prob

(
Nas⋂

k=1

C
(sk)
f (X) ≤ 0

)
(16)

The reliability indices βsk and direction cosines αsk , for k = 1, . . . , Nas, of each

situation can be computed using the Hasofer-Lind-Rackwitz-Fiessler algorithm
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Figure 4: The FORM method for systems in the standard space with three failure domains.

[20] or the improved version [21]. In addition the matrix [ρ] of the limit-state

correlation coefficients is gathered from the direction cosines:

ρsksj = αsk ·αsj (17)

The expression of the failure probability is given in Eq. (18).141

Pf = Prob

(
Nas⋂

k=1

C
(sk)
f (X) ≤ 0

)

= ΦNas
(−β; [ρ]) (18)

where ΦNas
is the multivariate Gaussian cumulative distribution function. The142

numerical value of this function can be evaluated using the method proposed143

by Genz [22]. In addition, a confidence interval on the result is provided with144

no extra numerical cost.145

3.3. Reduction of the number of intersections146

The admissible failure situations may be found by computing the Lagrange

multipliers in all possible cases. This operation can be achieved if a small

number of possibilities exist, e.g. Ns ≤ 10. However for complex systems, the

number of cases may exceed several thousands making this operation impossible.

In addition, some admissible situations may have no influence on the failure
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probability value. In both cases, finding and considering the Nas admissible

situations is not conceivable. A search algorithm is therefore required in order

to select only a number Nds of dominant failure situations. The probability of

failure is now expressed as follows:

Pf = ΦNds
(−β; [ρ]) (19)

Kim et al. [23] propose a simulation-based selective search algorithm which147

uses a genetic algorithm. It is specially developed to find dominant failure modes148

of a structure among a large number of possible modes. In the present paper,149

the failure modes correspond to the failure situations. Considering the standard150

space of the random variables, the dominant failure situations are located close151

to the origin. Kim et al. propose an outward search in the standard space, from152

points on a hypersphere near the origin to the points with a larger distance.153

For a given hypersphere radius, several search directions in the standard space154

are pseudo randomly defined. Points leading to a failure situation are saved155

as elite chromosomes and an evolutionary operation is performed in order to156

find additional failure situations in the same area (crossover) or in the opposite157

direction (mutation). The evolutionary operation is repeated several times until158

no new failure situations are found. The hypersphere radius is then increased in159

order to search further away in the standard space. Once the hypersphere radius160

is great enough or sufficient failure situations have been found, the algorithm161

stops. The full algorithm is well described in [23].162

4. Applications163

A simple academic example is proposed as a first illustration in Subsection164

4.1. In particular, the proposed formulation with the transformation steps into165

the Lagrange dual form is detailed. Subsection 4.2 shows the application of the166

method to an industrial application. Results are compared with the reference re-167

sults obtained with the Monte Carlo simulation combined with the optimization168

scheme.169
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4.1. Illustration on a simple academic example170

The optimization problem characterizing a pseudo behavior model in its

primal form is defined in Eq. (20). The functionality is ensured when Cf ≥ 0.

The goal is to compute the probability Pf = Prob(ming Cf (X1, X2,g) ≤ 0)

where the random variables X1 and X2 follow a normal distribution N (µX ,σX)

whose parameters are given in Table 2. Three different set of parameters are

used in order to change the order of magnitude of the probability failure.

min Cf (x,g) = x1 + x2 + 1 + g1 + 2g2

subject to C1(x,g) = x1 − 1− g1 ≤ 0

C2(x,g) = x2 + 2− g2 ≤ 0

C3(x,g) = x1 − x2 − 2g1 ≤ 0

C4(x,g) = 2x1 + x2 + g1 − 2g2 ≤ 0

(20)

Table 2: The three set of parameters of the normal random variables for the academic example.

µX σX

Set of parameters All 1 2 3

X1 0 1 0.5 0.4

X2 0 1 0.5 0.4

From the definition of the Lagrange dual problem given in Eq. (10), the dual

form of this optimization problem is written as follows:

max
λ

Cf,dual(x,λ) = λ1(x1 − 1) + λ2(x2 + 2) + λ3(x1 − x2)

+λ4(2x1 + x2) + x1 + x2 + 1

subject to λ1 + 2λ3 − λ4 = 1

λ2 + 2λ4 = 2

λ1, λ2, λ3, λ4 ≥ 0

(21)

The number of Lagrange multipliers λ is greater than the number of equality171

constraints so the different possibilities where two λ are different from zero (and172

the others are set to zero) must be tested, i.e. a number of possible situations173

14



Ns =
(
4
2

)
= 6. Lagrange multipliers values λ are computed solving the linear174

system of equality constraints. Table 3 lists these possible situations and shows175

if the result is admissible or not.176

Table 3: List of possible combinations to compute Lagrange multiplier values.

Situation hypothesis Result Expression of Cf

s1 :
λ3,4 6= 0 λ3 = 1

Cs1
f = 4x1 + x2 + 1

λ1,2 = 0 λ4 = 1

s2 :
λ2,4 6= 0 λ4 = −1 < 0

It is not an optimum
λ1,3 = 0 λ2 = 4

s3 :
λ2,3 6= 0 λ2 = 2

Cs3
f =

3x1 + 5x2

2
+ 5

λ1,4 = 0 λ3 = 1/2

s4 :
λ1,4 6= 0 λ1 = 2

Cs4
f = 5x1 + 2x2 − 1

λ2,3 = 0 λ4 = 1

s5 :
λ1,3 6= 0 Constraint of Eq. (21)

Impossible
λ2,4 = 0 ⇒ 2 = 0

s6 :
λ1,2 6= 0 λ1 = 1

Cs6
f = 2x1 + 3x2 + 4

λ3,4 = 0 λ2 = 2

The admissible failure situations are found in this case by computing the177

Lagrange multipliers in order to describe in detail why some configurations are178

not admissible. The selective search algorithm, see Subsection 3.3, can also179

be used. From Table 3, the number of admissible situations is Nas = 4. The180

optimization problem is now written as follows:181

C∗
f (x) = max

(
Cs1

f (x), Cs3
f (x), Cs4

f (x), Cs6
f (x)

)
(22)

= max

(
4x1 + x2 + 1,

3x1 + 5x2

2
+ 5, 5x1 + 2x2 − 1, 2x1 + 3x2 + 4

)

The associated probability of failure is only a function of random variables X1

15



and X2, as seen from the following expression:

Pf = Prob




{4X1 +X2 + 1 ≤ 0} ∩

{
3X1 + 5X2

2
+ 5 ≤ 0

}

∩{5X1 + 2X2 − 1 ≤ 0} ∩ {2X1 + 3X2 + 4 ≤ 0}


 (23)

The FORM method is applied on each failure situation of the previous formu-

lation. In this case of linear functions with normal random variables, the FORM

method provides exact results of each reliability index. Results obtained for the

first set of parameters are shown in Table 4. The correlation matrix associated

with this problem is given in Eq. (24).

Table 4: Reliability indices obtained for the first set of parameters for the academic example.

Failure situation s1 s3 s4 s6

β 0.24 1.71 -0.19 1.12

[ρ] =




1 0.707 0.998 0.796

0.707 1 0.739 0.991

0.998 0.739 1 0.824

0.796 0.991 0.824 1




(24)

Given these values, the probability of failure can be computed using the multi-

variate Gaussian cumulative distribution function in four dimensions:

Pf = Φ4 (−{βs1 , βs3 , βs4 , βs6} ; [ρ]) (25)

The comparison of the results obtained with the Monte Carlo simulation182

(for a C.O.V ≈ 5%) and the FORM method for systems are shown in Table 5183

for the three set of parameters. The probability of failure is expressed in parts184

per million (ppm). The smallest the probability, the longer the Monte Carlo185

simulation to be accurate enough. In contrast, using the proposed formulation186

and solution method, the computing time is small and stable. Results provided187

by the FORM method for systems are consistent with those obtained by the188

Monte Carlo simulation. In addition, the selective search algorithm appears189

useful because only two failure situations are selected as dominant situations,190
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which allows again to save time. Indeed, only the failure situations s1 and s3191

are required to compute the probability of failure. As shown in Figure 5, the192

failure domain is the intersection of two failure domains corresponding with the193

situations s1 and s3.194

Table 5: Comparison between Monte Carlo simulation and FORM method for systems results

for the academic example.

Monte Carlo FORM system

Pd (x10−6)

42300 41214

307 301

9.06 9.03

95% C.I. (x10−6)

8050

57

1.7

Computing time

4 s 0.7 s

11 min 0.7 s

6.2 h 0.6 s

Figure 5: Failure domain of the academic example. The failure domain is the intersection of

two failure domains of situations s1 and s3.
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4.2. Industrial application195

The application is based on a gear pump, see Figure 6, which has two parts196

positioned with two pins. The positioning of these two parts has an influence on197

the angle of both gear axes. The functionality of the pump can be reduced if the198

assembly precision of the parts is insufficient. Based on this pump, a simplified199

overconstrained mechanism is studied. Figure 7 shows the mechanism with200

amplified gaps between parts. The functional condition concerns the deviation201

of the point G of part (1) with respect to part (2). This point G can be seen as202

a functional point that is representative of one axis of the gear pump.

Figure 6: Full pump view.

Figure 7: Simplified mechanism in 3D.

203

Characteristics of the mathematical behavior model are listed below:204

• 38 random variables following a Gaussian distribution X ∼ N (µX ,σX).205

Values of all parameters are given in Appendix A.206

• 3 gap variables g which are the optimizations parameters.207

• 4 quadratic interface constraints which give NC = 160 interface constraints208

after applying a linearization procedure.209

• Ns =
(
160
3

)
= 669920 possible situations.210

In order to show the efficiency of the proposed formulation, different orders211

of magnitude of the probability of failure are intended to be reached. Proba-212

bilities of failure are expressed in parts per million (ppm). Table 6 shows the213
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numerical results obtained for three levels of probability. The maximum number214

of dominant failure situations, Nds, found by the selective search algorithm is215

set to 5, 100 and 200. A number of failure situations too small leads to a loss216

of accuracy of the probability of failure whereas a too large number leads to a217

waste of time in calculation because there is no need to increase the precision218

on the result. In cases with a large Nds, it can be seen that the FORM method219

for systems allows to get accurate results that are identical to the reference re-220

sults with the Monte Carlo simulation. The obtained values of the confidence221

interval are small enough to ensure an accurate result. In addition, reaching222

low probabilities with precision is also possible within an acceptable comput-223

ing time. Results are obtained in less than two minutes whereas the Monte224

Carlo simulation requires several hours. Indeed, low probabilities lead to define225

a large Monte Carlo population so as to yield an accurate estimation of the226

probability of failure, thus greatly increasing the computing time because of the227

optimization step.

Table 6: Comparison between Monte Carlo simulation and FORM method for systems results

for the industrial application.

Monte Carlo FORM system

Nds 5 100 200

Pd (x10−6)

17933 23889 18239 18289

155 282 156 154

9.4 16 9.3 9.1

95% C.I.

3065

28

1.7

Computing time

3 min 22 s 66 s 2.15 min

5.1 h 23 s 67 s 2.26 min

3.5 d 26 s 73 s 2.35 min

228
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5. Conclusion229

Considering that a mechanism behavior of a product is disturbed by admis-230

sible geometrical deviations and gaps between surfaces, it is natural to dispose231

of a tool able to evaluate the quality level of a designed mechanism. The toler-232

ance analysis method takes into account the specified design tolerances in order233

to determine whether they ensure a mechanism to be assembled and functional.234

Evaluating the quality level turns out to be an estimation of a probability of235

failure which must be done as fast and accurate as possible. The standard236

method, which combines Monte Carlo simulation and an optimization scheme,237

is not able to provide accurate result and small values of ppm in a reasonable238

computing time for complex overconstrained mechanism. This paper proposes239

a new procedure to deal with a functional tolerance analysis.240

The proposed procedure is based on a system formulation of the problem241

so that a system reliability method can be used. This formulation is obtained242

using the Lagrange dual form of the original optimization problem. The system243

formulation of the problem is defined as a simple intersection of events. A244

simulation-based selective search algorithm is used in order to find only the245

dominant events. The probability of failure is then quickly estimated using the246

FORM method for systems.247

An academic example is used to detail all the transformation procedure.248

Then the proposed method is applied on an industrial application modeled in249

three dimensions. Results show that the FORM method for systems provides250

accurate result much faster than with the Monte Carlo simulation. In addition,251

the procedure is able to handle problems where low probabilities are intended252

to be reached. The application remains simple enough to be able to perform a253

Monte Carlo simulation so as to compare results. The major advantage of the254

proposed method is for highly complex systems, a functional condition com-255

puted using a finite element modeling for instance, in this case Monte Carlo256

simulation cannot be applied anymore. The proposed procedure is developed to257

solve tolerance analysis problems, though it is conceivable that other research258
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fields may have problems written as the original formulation. In this case, the259

transformation of the formulation into a system formulation may also be applied.260

Acknowledgments261

The authors would like to acknowledge the support of ANR “AHTOLA”262

project (ANR-11- MONU-013).263

Appendix A. Parameters of the normal random variables of the in-264

dustrial application265

µX σX

Set of parameters All 1 2 3

yth 0.25 0.28 0.29

X1 20 0.06 0.03 0.02

X2 19.8 0.06 0.03 0.02

X3 20 0.06 0.03 0.02

X4 19.8 0.06 0.03 0.02

X5 0 0.01 0.01 0.01

X6 0 0.01 0.01 0.01

X7 0 0.01 0.01 0.01

X8 0 0.01 0.01 0.01

X9 0 0.01 0.01 0.01

X10 0 0.01 0.01 0.01

X11 0 0.01 0.01 0.01

X12 0 0.01 0.01 0.01

X13 0 0.01 0.01 0.01

X14 0 0.01 0.01 0.01

X15 0 0.01 0.01 0.01

X16 0 0.01 0.01 0.01

X17 0 0.01 0.01 0.01
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µX σX

Set of parameters All 1 2 3

X18 0 0.01 0.01 0.01

X19 0 0.01 0.01 0.01

X20 0 0.01 0.01 0.01

X21 0 0.01 0.01 0.01

X22 0 0.01 0.01 0.01

X23 0 0.01 0.01 0.01

X24 0 0.01 0.01 0.01

X25 0 0.01 0.01 0.01

X26 0 0.01 0.01 0.01

X27 0 0.001 0.001 0.001

X28 0 0.001 0.001 0.001

X29 0 0.001 0.001 0.001

X30 0 0.01 0.01 0.01

X31 0 0.01 0.01 0.01

X32 0 0.01 0.01 0.01

X33 0 0.001 0.001 0.001

X34 0 0.001 0.001 0.001

X35 0 0.001 0.001 0.001

X36 0 0.01 0.01 0.01

X37 0 0.01 0.01 0.01

X38 0 0.01 0.01 0.01
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