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Computational Investigation of
the Effective Mechanical
Behavior for 3D Pre-Buckled
Auxetic Lattices
Negative Poisson’s ratio materials, or auxetics, have drawn attention for the past 30 years.
The auxetic effect could lead to improved mechanical properties such as acoustic damping,
indentation resistance, or crashworthiness. In this work, two 3D auxetic lattices are intro-
duced. Auxeticity is achieved by design through pre-buckling of the lattice struts. The influ-
ence of geometrical parameters on the effective elastic properties is investigated using
computational homogenization method with periodic boundary conditions. Effective
Young’s modulus is 3D mapped to reveal anisotropy and identify spatial orientations of
interest. The effective Poisson ratio is computed for various geometric configurations to
characterize auxeticity. Finally, the influence of effective elastic properties on energy dissi-
pation under compression is explored for elastoplastic lattices with different loading direc-
tions, using finite element simulations. Results suggest that loading 3D auxetic lattices
along their stiffest direction maximizes their crashworthiness. [DOI: 10.1115/1.4044542]
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1 Introduction
Architectured materials are a rising class of advanced materials

that bring new possibilities in terms of functional properties,
filling the gaps and pushing the limits of Ashby’s materials perfor-
mance maps [1]. The term architectured materials encompasses any
material obtained through a design process aiming at fulfilling a
specific set of requirements, in terms of functionality, behavior, or
performance, induced by a particular morphology, i.e., the relative
topological arrangement between multiple phases, such that some
of its materials properties, e.g., yield strength/density, are improved
in comparison with those of its constituents due to structure and
composite effects [1–5].
Auxetics are a subclass of architectured materials exhibiting a

negative Poisson’s ratio, i.e., they become larger when stretched
and thinner when compressed, contrary to conventional materials
with a positive Poisson’s ratio. Material stability requires the
tensor of elastic moduli to be positive definite, resulting in positive
Young’s modulus, E, and Poisson’s ratio ν ranging from −1, for
unshearable materials, to 0.5, for incompressible or rubber-like
materials, in the case of three-dimensional isotropic elasticity.
Although most materials naturally exhibit a positive Poisson’s
ratio, auxetics [6] have been engineered since the 1980s [7–9].
These materials have been drawing attention since then [10–27],
and a number of potential applications were proposed [28–33].
Auxetic materials can also enhance acoustic damping [34], which
was shown experimentally in Refs. [35–38]. The use of auxetics as
building blocks for wave-guidingmetamaterials has also been inves-
tigated in Refs. [39–42]. Moreover, experiments on deterministic
and stochastic auxetic foams seem to provide evidence of improved
crashworthiness [43–46], as well as better indentation resistance
[22,47] in comparison with conventional cellular materials.
To exploit the possibilities offered by auxetics, effective mechan-

ical behavior models are needed for such materials to be used in

industrial structural applications, i.e., to be considered from an
equivalent continuum viewpoint in structural calculations. To do
so, analytical strategies are usually favored due to their efficiency
and easy implementation. Nevertheless, they rely on strong hypoth-
eses that can be limiting in terms of applicability to complex cell
topologies, as well as nonlinear constitutive behavior. To study
the elastoplastic response of metallic auxetics as it has been done
numerically [21,48] and experimentally [49], it appears that full-
field finite element analysis combined with computational homoge-
nization is a powerful approach [50–56].
The present work introduces two novel three-dimensional peri-

odic auxetic structures. Auxetic behavior is achieved by design,
considering unit cells with pre-buckled struts. Computational
homogenization using periodic boundary conditions is considered
here in the case of periodic architectured materials to determine
the effective elastic properties of the two proposed auxetic cells
with varying geometrical parameters.
First, a parametric geometrical description of the unit cells is

given. After introducing the computational strategy, the influence
of parameters on the effective elastic properties is examined
based on computational homogenization. An extension to elasto-
plasticity is explored to evaluate the interest of the pre-buckled
auxetic designs on plastic work and crashworthiness. Results are
then discussed and put into perspective with the available literature
on auxetics. Finally, conclusions are drawn, and perspectives on
further extensions of the present work are made.
Throughout this work, the following notation is used: x for

scalars, x for vectors, x∼ for second-order tensors, x
≈
for fourth-

order tensors, · for dot product, and : for doubly contracted dot
product.

2 Auxetic Lattices
Among architectured materials, lattices are a combination of

material and space. They are structures composed of a connected
network of struts, which may be organized periodically in space.
They are generally used in cases where there is a need for high spe-
cific stiffness or high specific strength [57–69].
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In 1864, J. C. Maxwell gave the first general method for the static
analysis of truss frameworks [70], based on the thermodynamical
considerations of energy conservation, and Clapeyron’s theorem,
i.e., the elastic energy of a strut being equal to the sum of the
mechanical works of external forces. Following Maxwell and the
generalization of his criterion for self-stressed truss frameworks
by Refs. [58,71] showed that depending on the network connectiv-
ity, lattice structures can be broken down into two separate groups:
stretch-dominated and bending-dominated structures. Such that, for
3D lattices, it yields Eq. (1):

M = b − 3j + 6 = s − m (1)

where b is the number of struts in a cell, j is the number of friction-
less vertices, s is the number of self-stressed members, and m is the
number of mechanisms, both of the latter can be determined by
finding the rank of the equilibrium matrix describing the framework
in a full structural analysis [72]. If M< 0, the structure is bending
dominated; if M≥ 0, the structure is stretch dominated.
Auxetic lattices are known to be bending dominated to enable

re-entrant or rolling-in mechanisms [73,74]. Therefore, mechanical
analysis of truss frameworks can be useful for guiding the design
process of auxetics. Pertinent choice of morphology and/or topol-
ogy design can be made to attain specific mechanical properties
[75–77]. The design of these two novel unit cells was inspired by
the works of Dirrenberger et al. [22] and Warmuth et al. [78]. In
Ref. [78], the authors create an auxetic unit cell based on the anal-
ysis of eigenmodes for a cubic unit cell. The unit cell created was,
therefore, buckled by design, to grant auxetic properties.
Buckling-induced auxeticity, i.e., taking advantage of structural
instabilities, has also been explored in the literature [25,79–82].
In this work, we are considering two periodic pre-buckled unit
cells that stem from the face-centered cubic (FCC) unit cell, as
shown in Fig. 1.
By curving all struts of the FCC cell inward (see equations in

Appendix A), it is expected that the resulting design will exhibit
negative Poisson’s ratio, for the hexatruss cell developed in
Ref. [22]: by enforcing buckling orientations of the constituting
struts, it is possible to select and tune the deformation behavior of
unit cells. Since they are already buckled, it is also expected that
those cells will be softer than a regular FCC cell, with an influence
of the pre-buckling amplitude.
These assumptions will be assessed using the computational

homogenization method to identify elastic moduli tensors for differ-
ent geometric configurations of the cells.

2.1 Parametric Description. In this section, both unit cells
and limiting values are described with regards to their geometrical
parameters.

2.1.1 Hexaround Unit Cell. This cell is composed of cylindric
struts that are curvilinear, arc-shaped. The arcs are oriented inward,
thus creating a re-entrant effect when the structure is being com-
pressed. Conversely, the struts are expected to straighten when
stretched.

The hexaround unit cell can be described using three parameters:
L, side length of the cubic cell, a, distance between top and bottom
of arcs, and D, diameter of the struts (see Fig. 2). These parameters
are limited by the following geometrical boundaries:

L ∈ ]0; +∞[ (2)

a ∈ ]0; L/4] (3)

D ∈ ]0; 2a] (4)

Parameter a represents the buckling amplitude: for a= 0, the cell
correspond to a regular FCC cell. For a= L/4, struts are merged in
the corners of the cell. From a>L/4, intersection of the struts
occurs, thus generating a new geometry (see Fig. 3) with different
mechanical behaviors, out of the scope of the present study. Even
though every combinations inside these parameter ranges are geo-
metrically possible, some of them also lead to geometrical configu-
rations presenting nonauxetic behavior.

2.1.2 Inverse Hexaround Unit Cell. The inverse hexaround
unit cell has been obtained starting from the hexaround by reversing
the curvature; struts then intersect at the center of sides, at the buck-
ling amplitude a. The inverse hexaround unit cell is described using
the same three parameters: L, a, and D (see Fig. 2). Again, the
parameters can vary within the following ranges:

L ∈ ]0; +∞[ (5)

a ∈ ]0; L/2[ (6)

D ∈ ]0; 2a] (7)

In the same way as the hexaround cell, when a= 0, this cell cor-
responds to a regular FCC cell. From a>L/2, the topology and
nodal connectivity change due to strut intersection. Every combina-
tion within the parameter ranges is geometrically possible, but some
of them also lead to geometries exhibiting nonauxeticity.

Fig. 1 Hexaround (left) and inverse hexaround (right) unit cells,
with their periodicity vectors Xi

Fig. 2 Hexaround (left) and inverse hexaround (right) geometric
descriptions

Fig. 3 1/8 of cell with intersection (left) and resulting cell (right)



Having introduced the two unit cell geometries, and range of
varying parameters, it is noteworthy that effective elastic properties
of periodic auxetic materials, as for any lattice structure, are gener-
ally anisotropic [18,22,83–85]. This is directly related to the sym-
metry type exhibited by the lattice, cubic symmetry in the present
cases. By means of finite element analysis combined with computa-
tional homogenization, the anisotropic response of the regular and
inverse hexaround cells will be explored.

3 Computational Strategy
Sample step files were generated using CATIA V5R20 (Dassault

Systèmes). The first step is defining a parametric line model of
the cells. Lines are then transformed into struts by assigning them
a circular thickness. Boolean intersection operation is used to cir-
cumscribe the cell inside a cubic volume of side L. Since the unit
cells present a cubic symmetry, only a 1/8 of the cell needs to be
modeled. The entire cell is reconstituted subsequently by applying
symmetry directly onto the mesh.
CAD files (STEP format) are meshed (see Fig. 4) using GMSH

software [86] with tetrahedral quadratic elements (C3D10). A
maximal mesh size of 0.05 mm is applied, ensuring the presence
of at least five elements in the thickness of struts, even for the small-
est volume fraction. This mesh size have been validated through
convergence analysis, ensuring an error inferior to 0.5%, compared
with a converged mesh (see Appendix B).
Those mesh files can then be imported into Z-set finite element

package2 and converted into the native mesh format. Finally, sets
of corresponding nodes are created on the outer boundary of the
mesh to implement periodic boundary conditions later on.
A total of 70 parametric configurations, i.e., virtual samples, are

generated for computing the effective elastic properties. Computa-
tion time is dependent on the mesh size, which is directly linked
to the relative density of the cell. The data presented in Table 1 cor-
respond to single threading on a Intel Xeon E5-2640 v4 CPU
running at 2.4 GHz. The computation time corresponds to the

time spent to identify the full elastic moduli tensor for one unit
cell configuration. For instance, the computation of a 0.05 relative
density configuration requires 695 s to import the mesh, and 32 s
per computation (six computations are needed).

4 Computational Homogenization
Computational homogenization identifies the effective properties

of a heterogeneous medium, by computing the volume-averaged
response under a physical stimulus over a virtual sample that is con-
sidered as a representative volume element (RVE). In the present
work, we rely on full-field finite element mechanical analysis
using periodic boundary conditions. For the case of elastic periodic
lattices, the RVE consists of the periodic unit cell defined by its
periodicity vectors (Xi with i= 3 for three-dimensional structures,
as shown in Fig. 1).
Periodic boundary conditions are considered for studying the

behavior of auxetic lattice structures as they are found to be
optimal for determining the effective properties of an infinite
medium made of periodic unit cells [87,88]. The application of
periodic boundary conditions allows for the identification of the
overall response of architectured materials with vanishing boundary
layer effects, which is very useful if one wants to use the identified
response as the constitutive behavior of a continuum element in a
larger scale simulations.
Periodic boundary conditions are enforced by multiple-point con-

straints applied on sets of corresponding mesh nodes that are sepa-
rated by periodicity vectors, as depicted in Fig. 1, or by a linear
combination of periodicity vectors with integer coefficients.
Another main interest of computational homogenization resides in
obtaining an equivalent constitutive model that can be implemented
in a finite element analysis, saving extensive computation time by
avoiding to explicitly represent and account for the underlying
microstructure. This strategy is commonly used for architectured
materials [5], allowing for fast computation of their effective prop-
erties. In this work, linear elastic properties of auxetics are investi-
gated first, before extending the study to elastoplasticity.
Considering the small deformation hypothesis, constitutive rela-

tions are expressed locally in a linear elasticity framework using the
generalized Hooke law:

σ∼(x) = c
≈
(x):ε∼(x) (8)

where σ∼ is the second-order symmetric Cauchy stress tensor, ε∼ is the
second-order symmetric engineering strain tensor, and c

≈
is the

fourth-order positive definite tensor of elastic moduli. Considering
a volume element V, the macroscopic stress and strain tensors Σ∼ and
E∼ are defined by the spatial averages over V of local stress σ∼ and
strain ε∼ fields.

Σ∼ : = 〈σ∼〉 =
1
V

∫
V
σ∼dV (9)

E∼ : = 〈ε∼〉 =
1
V

∫
V
ε∼dV (10)

Equations. (8)–(10) yield the tensor of effective elastic moduli C
≈
:

Σ∼ = C
≈
:E∼ (11)

For periodic boundary conditions, the displacement field u can be
dissociated into a part given by the macroscopic strain tensor E∼
and a periodic fluctuation field v for any material point x of V,
such that

u = E∼ · x + v ∀x ∈ V (12)

Fig. 4 1/8 hexaround cell CAD (left) and its corresponding mesh
(right)

Table 1 Computation time and mesh size depending on the cell
density

ρ* Nb of elements Memory (MB) Comp. time (s)

0.05 52k 1700 887
0.10 97k 4700 1620
0.15 157k 9800 2568
0.20 207k 16,100 3415
0.25 270k 26,300 4397

2http://www.zset-software.com
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where v is the periodic fluctuations vector, i.e., taking the same
value for two homologous points x+ and x− of ∂V. Furthermore,
the traction vector t = σ∼ ·n fulfills antiperiodic conditions such that

σ∼
+ · n+ + σ∼

− · n− = 0 (13)

v+ − v− = 0 (14)

The elastic moduli tensor C
≈
can then be fully identified by apply-

ing successively six fundamental macroscopic loading, three pure
extensions, and three pure shears. Although the hexaround and
inverse hexaround cells present cubic symmetry, six independent
computations are run since the developed methodology is generic
and automated. The elastic moduli tensor is identified by applying
the macroscopic strain E∼ by using Voigt’s notation:

Σ11

Σ22

Σ33

Σ23

Σ31

Σ12

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
=

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

E11

E22

E33

2E23

2E31

2E12

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

Linear relations thus appear between macroscopic stress and strain
and can readily be used to build up effective elastic moduli tensors
for a given microstructure. The formalism is similar for any linear
property, e.g., thermal conductivity. To implement periodic bound-
ary conditions, we rely on the following specific finite element
approach, i.e., adding global degrees of freedom (DOFs) shared
by all elements. These DOFs correspond to the macroscopic
strain components Eij for displacements vi in addition to the classi-
cal nodal DOFs.
The finite element problem left to solve concerns the homo-

geneous strain tensor Eij and its dual Rij, which corresponds to
the macroscopic reaction stress. Prescribing Eij corresponds to the
macroscopic strain approach, while prescribing Rij leads to the
macroscopic stress approach. In that way, mixed macroscopic
problems, e.g., tension, can be solved with periodic boundary
conditions.
We note that the effective elastic properties are varying with

loading orientations, thus we should rather refer to elastic
modulus functions or Poisson’s ratio functions. Nevertheless, for
the sake of simplicity and comparison with most of the literature
on auxetics, we will use the conventional denomination of
Young’s modulus and Poisson’s ratio, although these are, by def-
inition, isotropic.
Computing the elastic moduli tensor C

≈
is done for every set of

parameters considered for both unit cells. The resulting data can
be represented spatially by expressing elastic properties within a
particular coordinates framework. By using the Euler-Bunge [89]
angles ϕ, θ, and ψ, as shown in Fig. 5, let us define the three orthog-
onal vectors l, m, and n, such that

l =
cosϕ cosψ − sinϕ sinψ cos θ
sinϕ cosψ + cosϕ sinψ cos θ

sinψ sin θ

⎡
⎣

⎤
⎦ (16)

m =
− cosϕ sinψ − sinϕ cosψ cos θ
− sinϕ cosψ + cosϕ sinψ cos θ

cosψ sin θ

⎡
⎣

⎤
⎦ (17)

n =
sinϕ sin θ

− cosϕ sin θ
cos θ

⎡
⎣

⎤
⎦ (18)

Using the macroscopic stress Σ∼ ϕ, θ, ψ
( )

and strain E∼ ϕ, θ, ψ
( )

tensors, effective Young’s modulus E(l) and Poisson’s ratio ν*(l,
m) are defined as follows:

E =
l · Σ∼ · l
l · E∼ · l (19)

ν* =
m · E∼ · m
l · E∼ · l (20)

To compare the different geometrical configurations with each
other, normalized elastic properties need to be defined, based on
the properties of the constitutive material, considered here to be a
Ti-6Al-4V titanium alloy (E0= 97 GPa, ν0= 0.3), and the relative
density ρ* of each configuration. The normalized Young modulus
is defined as follows:

E* =
1

E0ρ*
E (21)

The relative density of a cell can be defined as the actual volume of
the cell Vlattice divided by the cubic volume circumscribed to the cell
(Vcubic= L3), as depicted in Fig. 6, yielding the following definition:

ρ* =
Vlattice

Vcubic
(22)

Fig. 5 Euler-Bunge angles

Fig. 6 Definition of Vlattice and Vcubic



5 Results
Effective elastic properties have been computed for both unit

cells, considering all combinations of parameters, for L= 3 mm,
a ∈ [0.10; 0.75] mm, and ρ*∈ [0.05; 0.25], which corresponds to
the variation of D, the strut diameter.

5.1 Hexaround Cell. As mentioned in Sec. 2, it is expected
that a pre-buckled cell will exhibit auxetic properties. To investigate
the pre-buckling effect on effective elastic properties, parameter a is
varied. Effect of the relative density ρ* is also explored by adjusting
the radius of the struts. Figure 7 illustrates the fact that struts are
merging at the corners of the hexaround cell. For an equivalent
density, longer struts corresponding to higher values of a require
a lower radius. This trend persists until a= 0.5 mm, before revers-
ing for higher values of a, as a consequence of struts merging in
the corner of the cell.

5.1.1 Young’s Modulus. For all configurations investigated,
the elastic moduli tensor C

≈
is computed. These moduli are exploited

to evaluate the dependence of the Normalized Young’s modulus
and its anisotropy. For the sake of conciseness, the data are only
represented as three-dimensional maps for extreme values for
parameters a and ρ*, as shown in Fig. 8. On the one hand, this
figure confirms that increasing the relative density of the lattice,
i.e., the strut diameter, increases its stiffness and decreases the
elastic anisotropy. On the other hand, increasing the buckling
amplitude a not only results in decreasing the elastic modulus in
every direction, but also increases anisotropy. Pre-buckling conse-
quences on stiffness are expected: since the struts are not straight

anymore and not directly oriented along the applied loading, stiff-
ness is inevitably reduced. Figure 8 also indicates that for all config-
urations explored, the direction maximizing the Young Modulus is
〈111〉, by analogy with Miller indices in crystallography, i.e., all
equivalent directions corresponding to the diagonal of the cubic
cell.
The maximal values of normalized Young’s modulus, i.e., along

〈111〉, have been computed for all configurations, as shown in
Fig. 9. From this figure, it yields that the maximal stiffness of the
hexaround cell increases monotonously while increasing relative
density ρ*. On the contrary, the evolution of the maximal stiffness
is nonmonotonous with a: first, E* decreases while increasing a, but
for a= 0.75 mm, stiffness increases again due to the struts merging
at the corner of the cell. Merging of the struts also takes place while
increasing relative density, which explains the convergence of stiff-
ness observed for ρ*= 0.25. These last two remarks justify the use
of full-field finite element simulation to study the behavior of
auxetic lattices, as reasonably simple analytical models would not
be able to account for such geometrical effects.

5.1.2 Poisson’s Ratio. Effective Poisson’s ratio is computed in
the (l, m) plane, which includes the direction l of applied load. For
the sake of clarity, the effective Poisson ratio ν* is represented
within one plane, for specific orientations, in Fig. 10, for different
values of a but density fixed at ρ*= 0.05. As a matter of fact, the
auxetic character of the hexaround lattice is due to its re-entrant
topology, which is less effective for higher densities. Computations

Fig. 9 Hexaround maximal effective Young’s modulus with
respect to relative density ρ* and pre-buckling amplitude a

Fig. 7 Effect of the strut radius on the relative density for the
hexaround cell

Fig. 8 3D maps of normalized Young’s modulus for various rel-
ative density ρ* and pre-buckling amplitude a for the hexaround
cell

Fig. 10 Hexaround Poisson’s ratio within the (100) plane, for
various a and ρ*=0.05



have showed that the minimal Poisson ratio is to be found within the
(100) plane, following the crystallographic analogy. From Fig. 10, it
can be observed that auxetic behavior is achieved through pre-
buckled design for a certain angular range, i.e., [π/8, 3π/8]± π/2.
The influence of the pre-buckling distance a is critical: increasing
a results in a lower negative Poisson ratio at ψ= π/4, and a higher
positive one at ψ= 0[2π], hence resulting in a higher anisotropy
for the Poisson ratio. For the configuration with a= 0.1 mm, no
auxetic behavior is observed, while the effect is maximal for a=
0.75 mm, with ν*=−0.73. The minimal Poisson ratio is obtained
for the (0, 0, π/4± π/2) direction within the (100) plan, which cor-
responds to the 〈110〉 equivalent directions.
The most negative values of Poisson’s ratio, i.e., along the 〈110〉

equivalent directions, have been computed for every parametric
configurations of the hexaround cell and plotted in Fig. 11. The
increase of relative density results in an increase of the Poisson
ratio. As mentioned earlier, this was expected due to the vanishing
of the lattice re-entrant topological character with increasing
density.

5.2 Inverse Hexaround Cell. For the hexaround cell, effec-
tive elastic properties are investigated depending on parameters a
and ρ*. Also, the same type of strut merging phenomenon is evi-
denced for higher density inverse hexaround lattice structures,
through a larger strut radius, as represented in Fig. 12.

5.2.1 Young’s Modulus. In the same fashion for the hexaround
cell analysis, the normalized Young modulus is obtained for any
spatial orientation for the inverse hexaround cell based on the
tensor of elastic moduli. Again, for the sake of clarity and concise-
ness, only the data obtained for extreme parameters values have
been plotted as 3D maps on Fig. 13, since intermediary values
follow a monotonous trend. From this figure, it can be seen that
increasing the relative density results in increasing stiffness and
decreasing anisotropy, for the hexaround lattice. Also, the effective

elastic modulus is inversely proportional to the buckling amplitude
a, without exception. In Fig. 13, it can also be seen that the maximal
effective Young modulus is found along the 〈111〉 equivalent direc-
tions, similar to the hexaround cell.
For the previous lattice, the maximal effective Young modulus

values, i.e., along the 〈111〉 directions, are plotted against the rela-
tive density ρ* and buckling amplitude a in Fig. 14 for the inverse
hexaround cell. Figure 14 shows that maximal stiffness increases
monotonously with relative density, while evolving inversely with
buckling amplitude a. It appears that the effective Young
modulus values do not converge toward a single value, mainly
because the strut merging effect remains marginal with the
inverse hexaround topology.

5.2.2 Poisson’s Ratio. For the hexaround lattice, the effective
Poisson ratio is computed in the (l, m) plane, which includes the
direction l of applied load. The Poisson ratio ν* is represented
within one plane, for specific orientations, in Fig. 15, for various
values of a but density fixed at ρ*= 0.05. Again, the auxetic
effect is more pronounced for lower density. Also, for the hex-
around cell, computations revealed that the minimal Poisson ratio
is to be found within the (100) plane. Exploiting Fig. 15, it can
be seen that auxetic behavior is achieved for the same angular
range as before, i.e., [π/8, 3π/8]± π/2. The same trend can be
observed for the effect of pre-buckling amplitude a: increasing a
yields a higher anisotropy, with a more negative Poisson ratio,
i.e., a more pronounced auxetic effect, while not changing the
maximum positive Poisson ratio value. A higher value of a is
needed for the inverse hexaround lattice to exhibit an auxetic
character. The auxetic effect is maximal for a= 0.75 mm, with

Fig. 11 Most negative Poisson’s ratio values for the hexaround
lattice with respect to a and ρ*

Fig. 12 Effect of the strut radius on the relative density for the
inverse hexaround cell

Fig. 13 3Dmaps of normalized Young’smodulus for various rel-
ative density ρ* and pre-buckling amplitude a for the inverse hex-
around cell

Fig. 14 Inverse hexaround maximal effective Young’s modulus
with respect to relative density ρ* and pre-buckling amplitude a



ν* =−0.70, along the (0, 0, π/4± π/2) direction within the (100)
plane, which corresponds to the 〈110〉 equivalent directions, for
the hexaround lattice.
The most negative Poisson ratio values have been computed

for each parametric configurations of the inverse hexaround cell
and plotted in Fig. 16. As expected, increasing relative density
increases ν*.

6 Extension to Elastoplasticity
Studies have suggested that auxetic behavior could improve

crashworthiness [43–46]. In this section, the influence of the
loading direction and relative density on the mechanical energy dis-
sipation through plastic work will be explored in the case of an elas-
toplastic constitutive material. It has been shown in Sec. 5 that
various mechanical responses can be obtained for specific orienta-
tions in space due to anisotropy of the elastic behavior in lattice
structures. Both unit cells exhibit minimal effective Poisson’s
ratio when loaded along 〈110〉 equivalent directions and maximal
Young’s modulus along 〈111〉. To investigate the relation
between elastic properties, elastic anisotropy, and mechanical
energy dissipation, a series of computational experiments are con-
ducted through finite element simulation. The energy dissipation
is computed as the total plastic work up to 5% of macroscopic
deformation under uniaxial compression. For the sake of simplicity,
damage is not considered in the simulation. Thanks to the periodic

element type introduced in Sec. 4, the compression state is obtained
by applying a macroscopic stress tensor Σ∼ , such that

Σ∼ =
1 0 0
0 0 0
0 0 0

⎡
⎣

⎤
⎦ (23)

The dissipated mechanical energy Ed during the deformation of
an elastoplastic material is defined as the integral of the stress–
plastic strain curve evaluated up to a final strain, noted ɛf, as in
Eq. (24), hence corresponding to the total plastic work for a mono-
tonic loading. It is obtained as a local post-processing on each inte-
gration point within the simulation.

Ed =
∫εf
0
σdε p (24)

6.1 Material Properties. The mechanical behavior of the con-
stitutive material is extended to elastoplasticity. Let us consider a
simple yield function:

f
(
σ∼
)
= σeq − R (25)

with the von Mises equivalent stress σeq such that

σeq =

������������
3
2
σ∼
dev:σ∼

dev

√
(26)

where σ∼
dev is the deviatoric part of the stress tensor. In addition,

an isotropic nonlinear hardening model is adopted, as shown in
Eq. (27):

R = R0 +
∑2
i

Qi(1 − e−bip) (27)

The constitutive material considered is a Ti-6Al-4V titanium
alloy, with elastoplastic behavior, i.e., strain rate independent,
and material modeling parameters identified from tensile experi-
ments available in the literature [90]: E= 97 GPa, ν= 0.3, σY=
759 MPa, Q1= 331 MPa, b1= 332, Q2= 259 MPa, and b2= 5.8.

6.2 Dissipated Energy Comparison. To compare the amount
of dissipated energy with respect to the loading orientation, three
orientations have been considered for the lattices: principal orienta-
tion [100], minimal Poisson’s ratio [110], and maximal Young’s
modulus [111] orientations. Also, choice has been made to
compare the dissipated energy for both cells at the configuration
a= 0.6 mm, which exhibits auxetic behavior for all ρ*, only with
varying relative density.

6.2.1 Hexaround Cell. Numerical compression tests along
three orientations have been done, keeping same parameter a and
varying relative density. The dissipated energy has been measured
following Eq. (24) up to 10% plastic strain and plotted with
respect to relative density in Fig. 17. The value of 10% plastic
strain has been chosen for being representative of the level of defor-
mation that could be sustained by the lattice in realistic applications,
yielding the local strain level up to 25–30%, which would induce
failure of the constitutive material, i.e., Ti-6Al-4V. From this
figure, it can be seen that energy dissipation is following a power
law dependence, at least between ρ*= 0.05 and 0.25, for all three
loading directions. The most efficient orientation for the hexaround
lattice to dissipate energy through plastic work appears to be along
the [111] direction, suggesting that Young’s modulus is a critical
parameter for energy dissipation through plastic work. Direction
[110] also dissipates more than the principal [100] cubic orientation.

Fig. 15 Inverse hexaround Poisson’s ratio within the (100)
plane, for various a and ρ*=0.05

Fig. 16 Most negative Poisson’s ratio values for the inverse
hexaround lattice with respect to a and ρ*



6.2.2 Inverse Hexaround Cell. For the hexaround lattice, the
dissipated energy has been measured up to 10% plastic strain and
plotted against relative density in Fig. 18. The energy dissipation
evolves to the relative density, following a power law relation on
the investigated range of densities, and this for all three loading
directions. Although the most efficient orientation is still along
[111], there is a competition between the [110] and [100] directions:
by extrapolating the results for higher densities, it seems that the
minimal Poisson’s ratio direction would be less efficient, although
stiffer than [100].

7 Discussion
Cellular auxetics appear as interesting candidates due to densifi-

cation under indentation or compression loading, and all things
equal otherwise, auxetics should behave better under impact, for
instance when used as sandwich-core material to be mainly
loaded in shear, due to the high relative shear modulus of linear iso-
tropic auxetics. Thirty-five years of auxetics research have shown
that auxetics, either deterministic or stochastic, are bending-
dominated architectures, hence yielding a very soft response with
respect to classical stretch-dominated lattices or shell-lattices [69].
This soft elastic response could result in a more progressive beha-
vior in the elastoplastic regime and potentially anisotropy that
could be exploited to create bespoke materials with tailored
mechanical behavior. Although auxetic behavior has been effec-
tively obtained through pre-buckled design, as shown in Figs. 10
and 15, one can notice that the regular and inverse hexaround lat-
tices are not as fully auxetic, i.e., auxetic in every direction, as for
most auxetic lattices available in the literature. Only specific
angular domains exhibit effective negative Poisson’s ratio. It

suggests that auxeticity is related to both shape and amplitude of
buckling. Amplitude of buckling is the main parameter driving
the Poisson ratio value, followed by the relative density. Both
parameters also have a strong influence on the effective Young
modulus: the higher the buckling amplitude, the lower the
modulus and the more negative the Poisson ratio. Hexaround and
inverse hexaround unit cells exhibit similar effective elastic proper-
ties at the same buckling amplitude for low relative density, but the
hexaround lattice exhibits both higher modulus and more pro-
nounced auxeticity at high relative density compared with the
inverse hexaround lattice. Also, no influence of relative density
on Poisson’s ratio was observed in Ref. [91], most likely due to a
small range of investigation for the relative density. In the present
work, computational results on a wider range, from ρ*= 0.05 to
0.25, show that the auxetic behavior of lattices depends strongly
on the relative density. This claim is supported by other results in
the literature on buckling-induced auxeticity [81,82]. According
to Figs. 13–16, it appears that the inverse hexaround lattice might
be a better choice for the application-oriented auxetic design, in
the sense that its effective elastic properties evolve monotonously
with respect to the geometrical parameters a and ρ*, making it
easier to draw design guidelines in comparison with the regular hex-
around lattice.
Regarding applications, crashworthiness is a key performance

expected from architectured cellular materials such as auxetic lat-
tices. By simulating the compression of both unit cells along
three different orientations ([100], [110], and [111]), one can
observe from Figs. 17 and 18 that both the regular and inverse hex-
around lattices exhibit the highest plastic work dissipation along the
[111] loading direction, which is also the direction of maximal
effective stiffness. This result is contradictory to Ref. [45], which
reports in a quasi-2D orthotropic case, that the energy absorption
is maximal for auxetic configurations that are not the stiffest.
Although three dimensional, the lattices structures introduced in
the present work exhibit a higher degree of symmetry, therefore
leading to cubic anisotropy, which drives the mechanical response
of the lattice [40,92,93]. To conclude on the crashworthiness of the
proposed lattices, an additional comparison was made with the hex-
atruss cell [22], also exhibiting a re-entrant topology, for the same
buckling amplitude a= 0.6 mm and relative density ρ*= 0.1, by
compressing the cells along the [111] direction up to 5% of
plastic strain. The data are listed in Table 2. It can be seen from
Table 2 that the hexatruss lattice displays not only a more negative
Poisson ratio than other cells but also a lower maximal normalized
Young modulus and a lower dissipated energy up to 10% plastic
strain. This observation is consistent with the one made for the
regular and inverse hexaround cells: a higher energy dissipation is
obtained for 3D elastoplastic auxetic lattices loaded along the direc-
tion of maximum effective stiffness. Finally, it can be noted that the
straightness of constitutive struts and sharps angles of the hexatruss
design lead to stress concentrations and premature localized
plasticity.

8 Conclusion and Perspectives
In this study, two new auxetic lattice designs have been proposed

based on the pre-buckled topology. The effective mechanical prop-
erties of the lattices have been investigated through computational

Fig. 17 Energy dissipated by the hexaround unit cell during the
compression testing through three different orientations, with
respect to the relative density

Fig. 18 Energy dissipated by the inverse hexaround unit cell
during the compression testing through three different orienta-
tions, with respect to the relative density

Table 2 Comparison for effective mechanical properties
between hexatruss, regular, and inverse hexaround cells for a
compression test along the [111] direction up to 10% of plastic
strain

Cell ρ* E*max ν*min Ed (J)

Hexaround 0.10 0.020 −0.435 2.53
Inverse hexaround 0.10 0.016 −0.329 2.20
Hexatruss 0.10 0.014 −0.533 1.80



homogenization using periodic boundary conditions. These cells
were conceived to exhibit negative Poisson’s ratio due to the pre-
buckled design, which consists of curvilinear cylindrical struts,
curved inward, i.e., toward the center of the cubic cell.
Computational homogenization results showed that auxetic beha-

vior has effectively been achieved in this way. The influence of the
geometrical parameters has been assessed, showing that the buck-
ling amplitude a has a critical impact on effective elastic properties,
increasing the effective Poisson ratio and elastic anisotropy, as well
as lowering the overall stiffness of the cells. On the other hand,
increasing the relative density ρ* results in an increased stiffness,
and a less and less auxetic as well as anisotropic lattice, as it
could be expected by going from a thin lattice structure to a
bulky porous material. The computational results also showed
that the stiffest spatial orientation for both lattices are in the 〈111〉
equivalent directions, while 〈110〉 yield the most negative
Poisson ratio.
Finally, an investigation about the influence of lattice orientation

and its corresponding elastic properties on energy dissipation has
been carried on the regular and inverse hexaround, as well as the
hexatruss auxetic lattices, assuming elastoplasticity for the constitu-
tive material with nonlinear isotropic hardening, using computa-
tional experiments, i.e., compression test simulation using finite
elements with periodic boundary conditions in a finite deformation
framework. Three different lattice orientations have been consid-
ered for the test: [100], a principal cubic direction; [111], a direction
of maximum Young’s modulus; and [110], a direction yielding the
most negative Poisson ratio. Energy dissipation was measured as
the total of plastic work up to 10% of plastic strain for different rel-
ative densities. The results showed that the direction of maximal
effective stiffness, [111], dissipates the most for all three cells.
These results may suggest that the effective Young modulus is
the most important elastic properties for 3D auxetic lattices when
aiming for energy dissipation through elastoplasticity, as the
results are consistent for three lattice designs. The present work
highlights the interest of investigating the influence of loading ori-
entation and geometric parameters for crashworthiness performance
evaluation, paving the way for tailored auxetic lattice materials
designed for structural applications. Only monotonic loading has
been considered in the present work; also, the current computational
analysis does not account for any damage. To accurately estimate
the dissipated energy, future investigations should incorporate
damage, fatigue, and failure modeling.
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Nomenclature
V = volume
c
≈
= microscopic elastic moduli tensor

C
≈

= effective elastic moduli tensor
E∼ = macroscopic strain tensor
E* = normalized Young’s modulus
ε∼ = microscopic (local) strain tensor

ν* = effective Poisson’s ratio
ρ* = relative density
σ∼ = microscopic (local) stress tensor
Σ∼ = macroscopic stress tensor

Appendix A: Struts Design
The equations used to generate the lattice cell design rely on the

geometrical description given in Fig. 19.
The Hexaround cell struts axes are obtained by fitting a circle

through three points (P1, P2, and P3), C being its center. Then,
only the arc starting at P1, finishing at P3, and passing through
P2 is conserved. The radius of the circle has a direct influence on
the buckling amplitude a: the smaller the radius, the higher the
buckling amplitude.
The equation for the corresponding circle is such that

x −
L��
2

√
( )2

+ y −
a

2
−
L2

4a

( )( )2

= r2 (A1)

The inverse hexaround cell struts axis are obtained by fitting a
circle through two points (P1 and P2), using the same radius than
the hexaround circle. Only the arc starting at P1 and finishing at
P2 is kept. This arc is then symmetrized with a plane of reflection.
Influence of the radius on the buckling amplitude remains the same.
Equation of the circle that fit through P1 and P2 is as follows:

x2 + (y − r)2 = r2 (A2)

Appendix B: Mesh Convergence Analysis
To ensure a mesh-independent response, a mesh sensitivity anal-

ysis has been performed, as shown in Fig. 20. From Fig. 20, it can
be seen that an error lower than 0.5% has been measured on the
[100] elastic modulus of the hexaround lattice in comparison with
the maximal mesh density attainable with our current computational
means, i.e., 271 k elements, using 25 GB of RAM.
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